
Imperial College London

Department Of Computing

A Comparative Study of PHP
Dialects

Final Report

Author:
Sher Ali Khan

Supervisor:
Dr. Sergio Maffeis

June 16, 2015

Abstract

PHP is one of the most popular languages for server-side scripting. Because
of its popularity, there are a number of different interpreters for it out there.
Each one with a different performance and behaviour profile. We take a closer
look at the four most popular ones, Zend, HHVM, HippyVM and Hack.

There is no place on the internet that allows a user to experiment with these
dialects and explore the performance and behavioural differences between
them.

To solve this problem, we present a web application that allows a user to se-
curely execute snippets of PHP code on these four interpreters and run test
suites that characterise the performance and behaviour of the interpreters.
The behavioural test suite reveals strange and interesting characteristics
about what actually happens under-the-hood that makes the interpreters
behave so differently.

Acknowledgements

I would like to thank my supervisor, Dr. Sergio Maffeis, for proposing the
project and providing me with constant support throughout.

I would also like to thank my mother, for everything.

Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Objectives . 9

2 Background 10
2.1 PHP . 10
2.2 Zend . 14
2.3 HipHop Virtual Machine . 15
2.4 HippyVM . 17
2.5 Facebook Hack . 18
2.6 Other Interpreters . 21
2.7 Security in PHP . 22

2.7.1 Global Variables . 22
2.7.2 Remote Files . 24
2.7.3 Target Functions . 25

2.8 Related Work . 26

3 Technical Research 28
3.1 Jails . 28

3.1.1 chroot Jail . 30
3.1.2 FreeBSD Jail . 31

3.2 Linux Containers (LXC) . 32
3.3 Runkit Sandbox . 33
3.4 Conclusion . 33

4 Design 34
4.1 Client-Side . 34

6

Contents

4.1.1 Website Design . 34
4.1.2 Test Suites . 38

4.2 Server-Side . 38
4.2.1 Web server . 39
4.2.2 chroot Jail . 39

4.3 Architecture . 41

5 Implementation 43
5.1 Client-Side . 43
5.2 Setting up Our chroot Jail . 44
5.3 Process Router . 45
5.4 Input Handler . 46

5.4.1 Scanning Phase . 46
5.4.2 Modifying Phase . 49

5.5 Output Handler . 51

6 Tests 52
6.1 Performance Tests . 52
6.2 Behavioural Tests . 57

7 Evaluation 68
7.1 The Web Application . 68
7.2 Benchmarks and Test Suites 69
7.3 Limitations . 70

7.3.1 Scaling Up . 70
7.3.2 Security . 70

8 Conclusions 72
8.1 Future Work . 73

Appendices 76

A 77

7

Chapter 1

Introduction

1.1 Motivation

In 1995, Rasmus Lerdorf created a personal collection of Perl scripts and
transferred them into a package written in C. This package was called Per-
sonal Home Page tools, or PHP for short. Ten years later, PHP is used by
82% of the websites whose server-side programming language is known. The
growth of PHP has been phenomenal; it has gone through several iterations
over the years and now supports a wide range of complex features. While it
was called a scripting language in the past, today it is more referred to as a
dynamic programming language.

In the past, the Zend Engine was the only interpreter being used, but recently
alternative, more efficient virtual machines for PHP have been proposed by
Facebook (HHVM) and others (HippyVM). Facebook also recently intro-
duced Hack, a PHP-like new language with gradual typing that also runs on
the HHVM. Each implementation has a different performance profile, and
changes the language behaviour more or less subtly.

There is no place on the internet that allows a user to experiment with the
more popular PHP dialects and observe the performance and behavioural
differences between them. This project aims to make a start towards filling
that void.

8

Chapter 1. Introduction

1.2 Objectives

The goal of this project is to perform a comparative study of the PHP dialects
used on these virtual machines, and produce a website reflecting the state of
the art for the PHP language, as a much needed, impartial resource for the
PHP developer community. The dialects being studied are Zend, HHVM,
HippyVM and Facebook Hack. The website will provide an online interface
to execute snippets of PHP code on the various interpreters.

Along with the website, we will identify language features that are peculiar
only to some of these PHP dialects and use them to write a test suite that
characterises the PHP constructs that behave differently across the imple-
mentations. We will also write a test suite that benchmarks the performance
of the different interpreters.

These are interesting tasks because we need to look at what exactly is going
on under the hood of these interpreters and identify the behavioural and
performance differences in them. In addition to that, we also need to write
test suites to show these differences to the users.

There are a number of beneficiaries who could make use of this website. It
could help researchers in finding the differences in the interpreters or even
companies deciding which dialect to use as their server-side web program-
ming language. Provided that the websites front-end is not overwhelmingly
technical, the website could also be used by more typical web users to educate
them on the different dialects.

9

Chapter 2

Background

2.1 PHP

PHP, short for Hypertext Preprocessor, is an imperative server-side script-
ing language designed for web development but it is also used as a general-
purpose programming language. It is used for developing complex programs
and is used by not only amateur web developers but also billion-dollar com-
panies such as Google, Facebook, Wikipedia and Yahoo!. PHP files end in
with a .php extension.

PHP scripts are run on the server that hosts them, not on the clients machine.
After the client makes a request for a web page using a browser, the request
arrives at a web server. The web server loads the file required into memory.
The web server sees that the file has a .php extension and therefore sends
the file to the PHP interpreter which is also running on the web server. The
PHP interpreter runs the PHP code in the file. At this point, dependent
on the PHP code, the interpreter may further send a request to a database.
When all the PHP code has finished running, the PHP interpreter sends the
result back to the web server and the web server will then send the data to
the browser.

10

Chapter 2. Background

Figure 2.1: Client to PHP interaction.

PHP code can be embedded directly into HTML code. The ability to embed
PHP code directly into HTML code is a huge advantage in creating simple
but powerful websites and applications. It can also be used in combination
with various templating engines and web frameworks.

PHP as a programming language was influenced by Perl, C, C++, Java and
Tcl, and in terms of syntax, PHP is similar to most high level languages that
follow the C style syntax. Listing 1 shows a very basic example of PHP code
embedded into HTML code. The PHP interpreter only executes PHP code
within the delimiters. Any code outside the delimiters is not processed by
the PHP interpreter. The most common delimiters are <?php to open and
?>to close PHP sections.

11

Chapter 2. Background

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>PHP Test</title>
5 </head>
6 <body>
7 <?php
8 echo "<p>Hello World</p>";
9 ?>

10 </body>
11 </html>

Listing 2.1: Hello world program written in PHP embedded in HTML.

1 <!DOCTYPE html>
2 <html>
3 <body>
4 <form method="post" action="<?php echo

$_SERVER[’PHP_SELF’];?>">
5 Name: <input type="text" name="fname">
6 <input type="submit">
7 </form>
8

9 <?php
10 if ($_SERVER["REQUEST_METHOD"] == "POST") {
11 // collect value of input field
12 $name = $_POST[’fname’];
13 if (empty($name)) {
14 echo "Name is empty";
15 } else {
16 echo $name;
17 }
18 }
19 ?>
20

21 </body>
22 </html>

Listing 2.2: PHP code using POST to collect form data after submitting an
HTML form.

12

Chapter 2. Background

Listing 2.2 shows the use of superglobals and variables. Variables are pre-
fixed with a dollar symbol and types do not need to be specified in advance.
Superglobals were introduced in PHP 4.1.0, and are built-in variables that
are always available in all scopes. The HTML form in listing 2.2 has an
input field and a submit button. When the user submits the data by clicking
Submit, the form data is sent to the file specified in the action attribute of
the <form>tag. Then the super global variable $ POST is used to collect
the value of the input field into a variable.

Apart from server-side scripting, PHP is most widely used for command-line
scripting and with more advanced features, writing desktop applications. For
command-line scripting, a PHP script can be made to run without any server
or browser. These scripts can be used for regular text processing tasks or
other complex tasks.

PHP can be used on all major operating systems and also has support for
most of the web servers that exist today. This gives the freedom of choosing
any operating system and almost any web server. Furthermore, PHP not
only allows procedural programming but also object oriented programming.
One of the strongest and most significant features in PHP is its support
for a wide range of databases. Using a database specific extension or using
an abstraction layer makes writing a database-enabled webpage incredibly
simple. Because of these and many other features, PHP remains the most
popular server-side scripting language. As of 18th February 2015, it is used by
82% of all websites whose server-side programming language is known.

Figure 2.2: Comparison between different server-side languages.

13

Chapter 2. Background

2.2 Zend

The name Zend refers to the Zend Engine, which sits at PHPs core and acts
as the runtime interpreter that compiles code in real time. The first version
of the Zend Engine was a highly optimised modular back-end written in C
that appeared in PHP 4.

Zend splits the processing of PHP code into several phases. The PHP code
is run through a lexical analyser to convert the human-readable code into
machine-digestible tokens. These tokens are then passed to the parser where
the parser parses the tokens and generates a binary representation of the
PHP code known as Zend Opcodes. Opcodes, short for operation codes, are
low level binary instructions. Many parsers generate an abstract syntax tree
or a parse tree before passing that to the code generator. However, the Zend
Engine parser combines these steps and generates intermediate code directly
from the tokens passed to it from the lexer. The opcodes are passed to an
executor which generates HTML from the opcodes which can then be sent
to the browser.

Figure 2.3: How the Zend Engine fits into PHP (gray steps are optional).

14

Chapter 2. Background

1 <?php
2 $hi = ’hello’;
3 echo $hi;
4 ?>

1 opnum line opcode op1 op2 result
2 0 2 ZEND_FETCH_W "hi" ’0
3 1 2 ZEND_ASSIGN ’0 "hello" ’0
4 2 3 ZEND_FETCH_R "hi" ’2
5 3 3 ZEND_ECHO ’2
6 4 5 ZEND_RETURN 1

Listing 2.3: Representation of intermediate code for a simple PHP script.

Zend also provides memory and resource management for the PHP language.
Zend is able to determine whether a block is in use, automatically freeing un-
used blocks and blocks with lost references, and thus prevents memory leaks.
For resource management, Zend features a thread-safe resource manager to
provide better native support for multi-threaded Web servers. The currently
version at the heart of PHP 5 is The Zend Engine II.

2.3 HipHop Virtual Machine

HipHop Virtual Machine (HHVM) is an open-source virtual machine based
on just-in-time (JIT) compilation, serving as an execution engine for the PHP
and Hack programming languages. HHVM is developed by Facebook and is
written in C and C++. It was created as the successor to HipHop for PHP
(HPHPc) PHP execution engine, which is a PHP-to-C++ source-to-source
compiler also created by Facebook. In early 2013, the production version of
facebook.com switch from HPHPc to HHVM.

The executed PHP or Hack code is first parsed and analysed by HHVMs
frontend and compiled into intermediate HipHop bytecode (HHBC). HHBC
is a bytecode format created specifically for HHVM, in a form that is ap-
propriate for consumption by interpreters and just-in-time compilers. The

15

Chapter 2. Background

HHBC code is then passed to HHVMs JIT compiler, interpreter and runtime
where it is dynamically translated into x86-64 machine code, optimised and
natively executed.

Figure 2.4: HHVMs production compilation pipeline.

The original motivation behind HipHop was to save resources on Facebook
servers, given the large PHP codebase of facebook.com. As the develop-
ment of HipHop progressed, it was realised that HipHop could substantially
increase the speed of PHP applications in general. Increases in web page
generation throughput by factors of up to six have been observed over the
Zend PHP.

Due to performance gains and drops in the number of servers required for
hosting, other websites such as wikipedia.org have also switched from Zend
to HHVM. The performance gains Wikipedia has observed include the fol-
lowing:

• The CPU load on the servers has dropped drastically, from about 50%
to 10%;

• The mean page save time has been reduced from 6̃ seconds to 3̃ seconds;

• The median page save time fell from 7̃.5 seconds to 2̃.5 seconds;

• The average page load time for logged-in users dropped from about 1.3
seconds to 0.9 seconds.

16

Chapter 2. Background

Figure 2.5: Median page save time for Wikipedia.

2.4 HippyVM

HippyVM is an implementation of the PHP language using RPython/PyPy
technology. It started off as a Facebook-sponsored study on the feasibility
of using the RPython toolchain to produce a PHP interpreter, and was later
expanded upon.

HippyVM uses a tracing just-in-time (JIT) compiler to take HippyVM op-
codes and generate the native machine code. Tracing just-in-time compila-
tion is a technique used to optimise the execution of a program at runtime.
This is done by recording a linear sequence of frequently executed operations,
compiling them to native machine code and executing them. As opposed to
traditional JIT compilers that work on a per-method basis. HippyVM is not
complete yet but aims to be 100% compatible with Zend PHP and its pro-
ponents are claiming that it is faster than both Zend and HipHopVM.

17

Chapter 2. Background

Figure 2.6: Performance difference between Zend, HipHopVM and HippyVM.

2.5 Facebook Hack

Hack is a programming language for the HipHop Virtual Machine (HHVM),
created by Facebook as a dialect of PHP. The syntax Hack follows is almost
the same but it adds several new features to help improve the quality of
the code and take full advantage of HHVM to execute code faster. Hack
allows programmers to use both dynamic typing and static typing, and it
interoperates seamlessly with PHP. When mixing PHP and Hack code, the
PHP code sections are not checked against Hacks rules, but regular PHP
code can call Hack code and vice-versa because it is all part of the same
program.

There is a type checking phase that verifies the consistency of code according
to Hacks rules. The type checker is invoked before runtime to determine
whether the code is typesafe.

Hack code is indicated through the <?hh market at the top of a file, as
opposed to the canonical <?php marker. And it is important to note that
unlike PHP, Hack and HTML code do not mix.

Some of Hacks new features have been described below.

Generics. Hack introduces generics to PHP (in the same vein as statically
type languages such as C# and Java). Generics allow classes and methods to
be parameterised (a type associated when a class is instantiated or a method
is called).

18

Chapter 2. Background

1 <?hh
2 class Box<T> {
3 protected T $data;
4

5 public function __construct(T $data) {
6 $this->data = $data;
7 }
8

9 public function getData(): T {
10 return $this->data;
11 }
12

13 }

Listing 2.4: Class with a generic type parameter T.

Collections. The PHP language provides one primary mechanism for ex-
pressing containers of elements: the PHP array. Hack adds container types
and interfaces to PHP. Building on Hack’s support for generics, Hack adds
first class, built-in parameterised collections such as vectors and maps. Col-
lections are specialised for data storage and retrieval. Collections implement
many of the same interfaces and are extendable to create even more special-
ized collections. Currently, Hack implements the following concrete collection
types:

• Vector: An ordered, index-based list collection.

• ImmVector: An immutable, ordered, index-based list collection.

• Map: An ordered dictionary-style collection.

• ImmMap: An immutable, ordered dictionary-style collection.

• Set: A list-based collection that stores unique values.

• ImmSet: An immutable, list-based collection that stores unique values.

• Pair: An index-based collection that can hold exactly two elements.

19

Chapter 2. Background

1 <?hh
2

3 function main_col() {
4

5 $vector = Vector (5, 10);
6

7 $vector->add(15);
8 $vector->add(20);
9

10 $vector[] = 25;
11

12 $vector->removeKey(2);
13

14 foreach($vector as $item) {
15 echo $item . "\n";
16 }
17 }
18

19 main_col();

Listing 2.5: Example showing the use of the Vector collection in Hack.

Nullable. Hack introduces a safer way to deal with nulls through a concept
known as the ”Nullable” type. Nullable allows any type to have null assigned
and checked on it. The ? operand is used to represent nullable.

1 <?hh
2 function check_not_null(?int $x): int {
3 if ($x === null) {
4 return -1;
5 } else {
6 return $x;
7 }
8 }

Listing 2.6: Example showing the use of the Nullable feature in Hack.

20

Chapter 2. Background

2.6 Other Interpreters

There are several other PHP interpreters that are continually being developed
and expanded upon, but they are beyond the scope of this project. These
other interpreters are minor in scale and do not have all the features that the
current PHP version provides. Some of the interpreters do claim to be faster
than the Zend engine but since they are not fully compatible with PHP, we
will not be researching into them.

Recki Compiler Toolkit (Recki-CT)

Recki-CT is a compiler written entirely in PHP and only targets a subset of
the PHP specification. It intentionally limits itself to a more static subset so
that it is faster. This means that it does not support things like references,
variable-variables and global variables.

Recki-CT compiles PHP down to machine code but unlike HHVM and Hip-
pyVM, which use Just in Time compilation to compile PHP, it uses Ahead
of Time compilation which caches an intermediary representation that can
be compiled at run-time. Therefore, more aggressive optimisations can be
applied and more efficient code can be generated.

Based on trivial benchmarks, Recki-CT proves to be extremely fast. Some-
where between 10% to 15% faster than HHVM for average functions to some-
where in the order of 2 to 10 times faster than HHVM. These are artificial
benchmarks and in production they would not be so significant, but this
proves Recki-CT to be a interesting proof of concept.

phc

phc is an open source compiler for PHP with support for plugins. In addition,
it can be used to pretty-print or obfuscate PHP code, as a framework for
developing applications that process PHP scripts, or to convert PHP into
XML and back, enabling processing of PHP scripts using XML tools. phc is
no longer being developed but at it’s time, it was believed to be 1.5 times
faster than the Zend engine.

21

Chapter 2. Background

2.7 Security in PHP

In this section, we describe some of the vulnerabilities in the PHP language
and present some examples to showcase these vulnerabilities. Security is one
of the key factors of our website since we will be executing user given PHP
code on our servers. PHP offers a wide array of features, including running
commands on the shell and making system calls, that can be used to attack
a website such as ours.

2.7.1 Global Variables

Variables in PHP do not have to be declared and they are not specifically
typed. They are automatically created the first time they are used and are
automatically typed based on the context in which they are used. Once a
variable is created it cab be referenced anywhere in the program except in
functions where it must be explicitly included in the namespace with the
”global” function.

The main function of a PHP based web application, like ours, is usually to
take in some user input in the form of variables, uploaded files, etc, process
the input and return the desired output. A PHP script uses the globals
variables to access this input.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>PHP Test</title>
5 </head>
6 <body>
7 <form method="GET" action="test.php">
8 <input type="TEXT" name="hello">
9 <input type="SUBMIT">

10 </form>
11 </body>
12 </html>

Listing 2.7: Use of PHP globals variables.

22

Chapter 2. Background

The PHP code from listing 2.5 will display a text box and a submit button.
When the user presses the submit button, the PHP script ”test.php” will be
run to process the input. When it runs the variable $hello will contain the
text the user entered into the text box. This means that a remote attacker can
create any variable they wish and have it declared in the global namespace.
If instead of using the form above to call ”test.php”, an attackers calls it
directly with a url like ”http://example.com/test.php?hello=hi&world=no”,
not only will $hello be set to ”hi” when the script is run, but also $setup will
be set to ”no”.

1 <?php
2 if ($pass == "hello")
3 $auth = 1;
4 ...
5 if ($auth == 1)
6 echo "Important Information";
7 ?>

Listing 2.8: Script that is designed to authenticate a user before displaying
some important information.

In normal operation the code in listing 2.6 will check the password to decide
if the remote user has successfully authenticated then later check if they
are authenticated and show them the important information. The problem
is that the code incorrectly assumes that the variable $auth will be empty
unless it sets it.

In normal operation the above code will check the password to decide if
the remote user has successfully authenticated then later check if they are
authenticated and show them the important information. The problem is
that the code incorrectly assumes that the variable $auth will be empty
unless it is set. An attacker can create variables in the global namespace
using a url like ”http://example.com/test.php?auth=1” which will fail the
password check but still successfully authenticate the attacker.

To summarize the above, a PHP script can not trust any variable it has not
explicitly set.

23

Chapter 2. Background

2.7.2 Remote Files

PHP is an extremely feature rich language and ships with a vast amount of
functionality out of the box. One of these features is the use of filesystem
functions which would give the user the ability to read and write any file in
our system.

1 <?php
2 if (!($fd = fopen("$filename", "r"))
3 echo("Could not open file: $filename
\n");
4 ?>

Listing 2.9: PHP code designed to open a file.

The code in listing 2.7 attempts to open the file specified in the variable $file-
name for reading and if it fails displays an error. For example, a security issue
could be if the user can set $filename and get the script to read from /etc/-
passwd. Another security issue with the same code is that PHP’s file handling
functions can work transparently on remote files vis HTTP and FTP. If the
variable $filename were to contain ”http://attack.com/script/cmd.exe/c+dir”,
PHP will actually make a HTTP require to the specified server for the
file.

This gets more interesting in the context of four other file functions that
support remote file functionality, include(), require(), include once() and re-
quire once(). These functions take in a filename and read that file and parse
it as PHP code. They’re typically used to support the concept of code li-
braries, where common bits of PHP code are stored in files and included as
needed.

1 <?php
2 include($libdir . "/languages.php");
3 ?>

Listing 2.10: Use of the include() function.

24

Chapter 2. Background

1 <?php
2 passthru("/bin/ls /etc");
3 ?>

Listing 2.11: Attack code.

In listing 2.8 $libdir is a configuration variable that is meant to be set earlier
in script execution to the directory where the library files are stored. If
the attacker can cause the variable not to be set in the script, they can
modify the start of the path. This would normally gain them nothing since
they still end up only being able to access languages.php in a directory of
their choosing but with remote files the attacker can submit any code they
wish to be executed. For example, if the attacker places a file on a web server
called languages.php containing the code from listing 2.9 and then sets $libdir
to ”http://evilhost.com/”. Then upon encountering the include statement
PHP will make a HTTP request to ”evilhost”, retrieve the attackers code
and execute it, returning a listing of /etc to the attackers web browser.

2.7.3 Target Functions

PHP has a number of functions that are frequently misused or are good
targets if they happen to be used in a vulnerable manner in the target
application. If a remote attacker can affect the parameters of these func-
tions, exploitation is often possible. The following is a non exhaustive break-
down.

PHP Code Execution:

• require() and include() – Both these functions read a specified file and
interpret the contents as PHP code.

• eval() – Interprets a given string as PHP code and executes it.

• preg replace() – When used with the /e modifier this function interprets
the replacement string as PHP code.

25

Chapter 2. Background

Command Execution:

• exec() – Executes a specified command and returns the last line of the
programs output.

• passthru() – Executes a specified command and returns all of the output
directly to the remote browser.

• `` (backticks) - Executes the specified command and returns all the
output in an array.

• system() – Much the same as passthru() but does not handle binary
data.

• popen() – Executes a specified command and connects its output or
input stream to a PHP file descriptor.

File Disclosure:

• fopen() – Opens a file and associates it with a PHP file descriptor.

• readfile() – Reads a file and writes its contents directly to the remote
browser.

• file() – Reads an entire file into an array.

2.8 Related Work

Research into related work has revealed that there is no other website that
does what we have proposed. Users compare the advantages and disadvan-
tages of the different PHP dialects on online blog posts and research papers
but there is no website where snippets of code for the different dialects can be
executed or where test suites characterising the dialects are available.

There are many websites which also users to execute snippets of PHP code in
only the Zend engine. These websites also have certain security restrictions
to keep their servers safe, such as blocking functions that allow executing
shell commands and having a memory limit for the snippets of code.

The closest application to our project is 3v4l.org. It is an online shell where
the user can execute snippets of PHP code and the site shows the output

26

Chapter 2. Background

and performance (in time and memory) from all released PHP and HHVM
versions. It does a relatively good job of comparing Zend and HHVM but
does not support HippyVM or Hack. It also has a few examples that show
behavioural and performance differences in Zend and HHVM. Currently, this
is the website that is being used by most of the people looking to execute
snippets of PHP code online. The main reason for this website’s popularity is
that it has very few restrictions and also allows users to save and share code
with each other. One of the requested features from 3v4l.org is the support
for HippyVM which our website provides.

Figure 2.7: Performance result from running PHP code on 3v4l.org.

27

Chapter 3

Technical Research

For our website, we will be executing snippets of PHP code inputed by any-
one on the internet. As mentioned earlier, PHP is a language with many
vulnerabilities and allowing users to run code on our server drastically in-
creases the risk of an attack. To overcome these security issues, we researched
into creating a sandbox environment where the code can be executed.

A sandbox is a security mechanism for separating running programs. It is
often used to execute untested code, or untrusted programs from unverified
third parties, suppliers, untrusted users and untrusted websites. A sandbox
typically provides a tightly controlled set of resources for programs to run
in, such as scratch space on disk and memory, and limited access to the
filesystem. Network access, the ability to inspect the host system or read
from input devices are usually disallowed or heavily restricted.

We looked at a number of different solutions to provide the functionality we
needed while still being compatible with all four dialects.

3.1 Jails

Jails are a fairly old concept in unix but they provide the sandbox environ-
ment we need. The jail puts the user into a restricted filesystem where they
are unable to break out of. Inside the jail, the user can carry out activities
just like a regular user but they do not have any affect on the real filesystem

28

Chapter 3. Technical Research

outside of the jail. The user can only leave the jail with the help of the root
user.

Figure 3.1: Categories in which a process may be running.

Using figure 3.1, we can illustrate the benefits of jailing:

• In category (a) (processes running as root with access to the entire
filesystem). Compromising such a service would allow the attacker to
replace binaries, to open privileged network ports, and read any file on
the system. Worst, they have the capacity for complete damage.

• In category (b) (root processes running in a jail). A process in this
state can break out of a jail. Given that the process is running as
root, the attacker could use an exploit to execute code which makes
system calls to perform root activities. Though much safer than state
(a) in the context of a scripted attack, state (b) does not provide the
strongest defence.

• In category (c) (non-root processes running with access to the entire
filesystem). The threat for a full system compromise is reduced slightly
from (a) in that the attacker will not immediately have root permis-
sions. However, any process in this state can execute all the standard
commands and shells, and thus allow the opportunity for an attacker
to explore the filesystem in search of root-level exploits.

• In category (d) (non-root processes running in a jail). A compromised
service would give an attacker no opportunity to execute shells or com-
mon commands or to explore the system information. Also, the extent
of damage posed by file deletion is limited to directories with the jail.

We looked at the chroot and FreeBSD jails for a solution.

29

Chapter 3. Technical Research

3.1.1 chroot Jail

A chroot (change root) operation changes the apparent root directory for a
running process and its children. It allows the user to run a program with a
root directory other than /. The program cannot see or access files outside
the designated directory tree. Such an artificial root directory is called a
chroot jail, and its purpose is to limit the directory access of a potential
attacker. The chroot jail locks down a given process and any user ID that it
is using so that all they see is the directory in which the process is running.
To the process, it appears that the directory in which it is running is the
root directory.

Figure 3.2: Directory tree showing the chroot jail.

30

Chapter 3. Technical Research

A chroot environment can be used to create and host a separate virtualised
copy of the software system. This can be useful for :

• Testing/Development. A test environment can be set up in the
chroot for software that would otherwise be too risky to deploy on a
production system.

• Minimal Dependencies. Software can be developed, built and tested
in a chroot populated only with its expected dependencies. This can
prevent some kinds of linkage skew that can result from developers
building projects with different sets of program libraries installed.

• Recovery. Should a system be rendered unbootable, a chroot can be
used to move back into the damaged environment after bootstrapping
from an alternate root file system.

• Compatibility. Legacy software or software using a different applica-
tion binary interface must sometimes be run in a chroot because their
supporting libraries or data files may otherwise clash in name or linkage
with those of the host system.

• Privilege separation. Programs are allowed to carry open file de-
scriptors into the chroot, which can simplify jail design by making it
unnecessary to leave working files inside the chroot directory. This also
simplifies the common arrangement of running the potentially vulnera-
ble parts of a privileged program in a sandbox, in order to pre-emptively
contain a security breach.

• Cross-Compilation. Setting up a 32 bit chroot instead of a complete
cross compilation toolchain allows a 64 bit system to compile for a 32
bit system.

Testing/Development and privilege separation are the characteristics of a
chroot jail that will allow us to securely execute PHP code.

3.1.2 FreeBSD Jail

The FreeBSD jail is an implementation of operating system-level virtual-
isation that allows administrators to partition a FreeBSD-based computer
system into several independent mini-systems called jails.

31

Chapter 3. Technical Research

FreeBSD jails improve on the concept of the traditional chroot environment
in several ways. In a traditional chroot environment, processes are only
limited in the part of the file system they can access. The rest of the system
resources, system users, running processes, and the networking subsystem
are shared by the chrooted processes and the processes of the host system.
FreeBSD jails expand this model by virtualising access to the file system, the
set of users, and the networking subsystem. More fine-grained controls are
available for tuning the access of a jailed environment.

FreeBSD jails are generally used when multiple jails are required within one
system. FreeBSD jails partition the system and allow the administrators to
manage and control multiple jails easily. Jails have their own set of users and
their own root account which are limited to the jail environment. The root
account of a jail is not allowed to perform operations to the system outside
of the associated jail environment. Each jail is also assigned an IP address
and a hostname.

3.2 Linux Containers (LXC)

The Linux Containers (LXC) feature is a lightweight virtualisation mech-
anism that does not require the user to set up a virtual machine on an
emulation of physical hardware.

The Linux Containers feature takes the cgroups resource management facil-
ities as its basis and adds POSIX file capabilities to implement process and
network isolation. You can run a single application within a container (an
application container) whose name space is isolated from the other processes
on the system in a similar manner to a chroot jail. However, the main use
of Linux Containers is to allow the user to run a complete copy of the Linux
operating system in a container (a system container) without the overhead of
running a level-2 hypervisor. In fact, the container is sharing the kernel with
the host system, so its processes and file system are completely visible from
the host. When the user is logged into the container, they only see its file
system and process space. Because the kernel is shared, the user is limited
to the modules and drivers that it has loaded.

32

Chapter 3. Technical Research

3.3 Runkit Sandbox

Runkit Sandbox is a class from the runkit package inside the PHP language
and instantiating it creates a new thread with its own scope and program
stack. Using a set of options passed to the constructor, this environment
may be restricted to a subset of what the primary interpreter can do and
provide a safer environment for executing user supplied code.

1 <?php
2 $sandbox = new Runkit_Sandbox();
3

4 echo $sandbox->str_replace(’a’,’f’,’abc’);
5 ?>

Listing 3.1: Calling PHP functions using Runkit Sandbox.

3.4 Conclusion

After researching into the different options, the best solution proved to be
a chroot jail. The chroot jail was chosen because it was compatible with
all four dialects and provided a minimal and secure system to execute PHP
code.

Using a FreeBSD jail or a Linux Container does provide a secure system like
a chroot jail but ultimately they are not minimal and cater to a wide range
of features that we will not use. Our only use from a jail would be exe-
cuting PHP scripts on the command line. The Runkit Sandbox also creates
a satisfactory virtual machine to run PHP code but it is not supported by
HHVM and HippyVM. Using the Runkit Sandbox would also meaning using
the eval function to run the PHP code which would drastically decrease the
performance of the code.

33

Chapter 4

Design

Our web application consists of both a client-side application and a server-
side application. The client-side runs in the users browser whilst the server-
side runs on our web server. The two parts of our application work together
in order to securely execute snippets of PHP code. Put simply, the PHP
code from the client-side is sent to the server where it is executed and the
output is sent to the client.

4.1 Client-Side

The client-side of our application is written in JavaScript, the only client side
scripting language that is fully supported across all of todays browsers. It is
responsible for running sending the PHP code from the user to the server-side
application and getting the response (through AJAX).

4.1.1 Website Design

An important aspect to the project is the design of the website itself. The
purpose of the website was a key factor when designing the website. Anyone
visiting our website would obviously be looking to run their PHP code in
the dialects of their choosing and see the results. The other key factor in
our design was user experience. We want users to have a positive experience

34

Chapter 4. Design

on our website so that may visit it again to run other snippets of PHP
code.

Taking all this into account, we have produced a design that we believe to
address the key factors mentioned earlier. It is based around Twitter’s front-
end framework Bootstrap1 which makes it easy to produce a layout that works
consistently across all browsers. Bootstrap also allowed us to produce a design
that did not require us to spend too much time writing and testing our own
CSS stylesheets and Javascript. We will now discuss the main components
of our design that we believe are most of important to the website.

Editor

For our web application, we needed a multi-line text editor for the user to
write their PHP code in. We could have simply used the HTML <textarea>tag
to do so but we chose a more functional editor, Ace.

Ace is an embeddable code editor written in JavaScript. It is easily embedded
in any web page and JavaScript application. It has a vast number of features,
including syntax highlighting, highlighting matching parentheses and live
syntax checking. It also has a great API reference manual which makes it
easy to use.

Figure 4.1: Ace editor being used on our website.

When users visit our website, the first thing they see is a large editor. They

1http://getbootstrap.com/

35

Chapter 4. Design

can copy code into it or immediately start typing. The editor itself presents
an extremely user friendly interface. It matches the style of native editors
such as Sublime, Vim and TextMate so first time users will know exactly
where to enter their code.

Choosing Dialects and Running

We allow our users to choose which interpreter they want to use when running
the code. This is done in a very intuitive manner using checkboxes placed
to the left of the Run button. When the Run button is pressed it locks,
changes colours and changes to Running... until a response from the server
is retrieved. The changes to the button lets the user know their PHP code
is being executed.

Figure 4.2: Choosing dialects and running on our website.

Other websites that offer multiple PHP interpreters do not allow their users
to choose which dialects to run the code in. Their users have actually asked
for this feature to be added as the aggregate time from running large snippets
of code on all dialects can often take extremely long.

Also, other websites navigate away from their editor page and become static
after their respective Run button is pressed. Our website stays on the same
page, the editor remains active and the results are dynamically populated in
their respective fields.

Results

The results are dynamically populated in their respective fields once a re-
sponse is received from the server. The results include the output from
executing the user given PHP code and the time it took to execute it. The
result can also be the error messages produced from the PHP code if it failed
to execute.

36

Chapter 4. Design

Figure 4.3: Valid results for all four dialects.

If the PHP code is not allowed to execute because of our security checks,
an appropriate message is shown. For example, a message could be shown
telling the users which functions in their code are vulnerable.

Figure 4.4: Result for malicious code.

In-App Examples

As an extra feature that can be used by not-so-advanced users to try out
PHP or by an advanced user to benchmark on all dialects, we add a drop-
down list to the navigation bar. This list contains famous algorithms and
problems that are encountered in programming.

Figure 4.5: Examples drop-down list.

37

Chapter 4. Design

Pressing any one of the items on the drop-down list will replace the code in
the editor with the code received from the server for that item. We can add
new items to the list at any time.

Figure 4.6: The editor after pressing the Bubble-Sort item.

4.1.2 Test Suites

There are two test suites available to the user to run. They are the per-
formance test suite and the behavioural test suite. The tests can be added
and removed independently of each other. To run the tests, the user has
to navigate away from the main page of the website. The new page has no
editor and only displays the test source code and results. The user is not
allowed to change the source code in any way. This allows us to run the tests
without any special restrictions since we wrote the test suites.

4.2 Server-Side

The server-side must handle all of the requests made by the client-side and
carry out the necessary security operations on the PHP code. The server-side
of our application is written in PHP (Zend). Writing our server-side in PHP
would give us a better understanding of the language and allow us to develop
a more secure environment to execute user’s PHP code.

38

Chapter 4. Design

4.2.1 Web server

Our web application is currently running on a single virtual machine on the
departmental ”DoC Private Cloud” on the Cloudstack servers. The server
runs Ubuntu 14.04 LTS. We chose to use Ubuntu because we have lots of
experience with it already (especially running it as a web server) and because
its official repositories contain all of the packages we need. For our website,
we need to install a various range of libraries and packages so that the four
interpreters may work, and Ubuntu 14.04 is compatible with all the required
dependencies.

Our web application makes use of the Apache HTTP Server. Apache works
well with PHP and is easy to setup. The web server itself is run as root,
but the worker processes (those that handle HTTP requests) run as the non-
privileged user www-data. The username which runs the worker processes
is extremely important to our web application because we will use it in the
jail when executing the user given PHP scripts and to set strict read/write
permissions.

4.2.2 chroot Jail

The design of the jail does not concern the user but is crucial to running the
user’s PHP scripts securely without harming our server. We use a specific
type of chroot known as schroot (securely change root). schroot allows a user
to enter a chroot jail without requiring root credentials, automatically mounts
important file systems inside the chroot, and allows the user to create sessions
from a chroot that function like an independent chroot that disappear when
the user is finished, leaving the source chroot in its original condition.

Before setting up the web server, we add a folder with four subfolders as
shown in blue in figure 4.7 to the jail.

The read/write permissions inside the jail are extremely strict. The www-
data user only has read/write permissions to the newly created folder tmp
and its children. Another file that the www-data user has unrestricted access
to is .hhvm.hhbc. hhvm.hhbc is a file which holds the intermediary byte code
for HHVM. www-data will need access to this if we are to run HHVM (also
Hack, since Hack is run through HHVM).

39

Chapter 4. Design

Figure 4.7: Modified filesystem of the chroot jail.

A challenge with the .hhvm.hhbc file is that it is created at runtime when the
HHVM compiler is invoked and www-data will not have read/write to a newly
created file due to the strict user-permissions. One way to overcome this is to
create an empty file with the name .hhvm.hhbc. This will momentarily fix the
problem but once the current session is closed, all files that were created in
the session will be deleted including the .hhvm.hhbc file. This can be solved
by creating the .hhvm.hhbc file whenever a new session is started.

An argument can be made that if we just create the .hhvm.hhbc in the source
chroot environment as the root so that it exists before a session is started and
will remain after the session has ended. This will not work as the .hhvm.hhbc
needs to be created inside the ˜user/ directory and the user for chroot and
schroot differ. Only the root user has permission to create a file inside a
chroot jail (note that this is different to schroot) so if we were to create the
.hhvm.hhbc file as the root user, it would be created in the incorrect ˜user/
directory since the root user has access to the entire filesystem including that
out of the jail.

40

Chapter 4. Design

4.3 Architecture

In this section we will explain the architecture of the web application. This
section will mainly show how the entire application works, starting from user
input to how the input is handled and a result is sent to the client. Most of
what our application’s operations take place on the server abstracted from
the user. This is why we have divided our server into four parts, the Process
Router, the Jail, the Input Handler and the Output Handler. With such an
approach the entire backend is not only easier to manage and debug but also
creates a nice assembly line model.

Figure 4.8: System flow while executing valid PHP code.

Figure 4.8 shows the entire process that takes place within our web applica-
tion. Each step is described in greater detail below:

1 The client-side sends all the relevant information to the server-side.
The information includes the user’s snippet of PHP code and boolean

41

Chapter 4. Design

values for which interpreters are selected.

2 The Process Router sends the user’s PHP code to the Input Handler.

3 After the Input Handler receives the PHP code, the first thing it does
is scan the code for functions that are blocked in our application. If
any such functions are found, a message is sent to the Process Handler
informing it as well. If the PHP code passes through the scanner, we
add util variables and functions to the start and end of the code so
that we can extract relevant information (execution time) and impose
restrictions. At this point, the modified PHP code is sent back to the
Process Router.

4–5 Depending on the response from the Input Handler, the Process Router
will either return negative results to the client-side or carry on with
the regular process. Depending on which interpreters the user has
chosen, the Process Router will save the modified PHP code to to the
appropriate subfolders in the tmp folder inside the jail. The code is
saved in a file using the client’s IP address. This allows for multiple
users to use the web application without any problems. After the code
has been saved, the chosen interpreters will be run inside the chroot
jail (using schroot for www-data). The outputs and exit codes from the
executions are returned to the Process Router from the jail. Finally,
the file that was created earlier is deleted.

6 The Process Router checks the exit code and decides whether to extract
the time it took to execute from the information returned from the
jail. If the exit code is 0, meaning the script executed successfully, the
variable that holds the time for that dialect is set. Afterwards, the
output is sent to the Output Handler.

7 The Output Handler scans the output for information disclosure threats.
It goes through the code and removes all text associated with our sys-
tem and sends the modified output to the Process Router.

8 At this point, the code has been securely executed and the output has
been scanned and modified as necessary. The output and the time taken
for the execution is sent back to the client-side in a JSON2 format.

2http://json.org/

42

Chapter 5

Implementation

In this chapter we discuss the implementations of the components that make
up our client-side and server-side. We explain how we set up the chroot jail
so that it worked with all four dialects. We also describe in detail the Input
and Output Handlers that perform operations on the user’s PHP code.

5.1 Client-Side

The client-side of our web application was always focused on user interface
and design which has already been explained in chapter 4. Most of the
implementation was trivial involving performing asynchronous HTTP (Ajax)
requests with the server and writing HTML and CSS code to set up the front-
end. The only complex operation that takes place on the client-side is an
extra feature we added to achieve a more positive user experience that other
websites were missing.

The feature is that we allow the user to choose whether to start their script
with the <?php tag or not. On other websites, first-time users will often in-
correctly start their scripts because those websites have no indication whether
a <?php tag is required or not. This combined with the issue that websites
navigate away from the editor to a static page for results is an unpleasant
experience for the user as the user has to navigate back to the editor and
retype their code. This experience is completely avoided on our website. The

43

Chapter 5. Implementation

only overhead of this feature is that we need to send an extra boolean value
to the server so that the Output Handler can use it to show the correct line
numbers when showing errors.

5.2 Setting up Our chroot Jail

The chroot jail is one of the main factors in keeping our server secure and
therefore it has to be set up with the utmost care. The design of the file struc-
ture has already been explained in subsection 4.2.2. Here we will describe
the process in setting up our custom jail with all four dialects.

To set up our jail, we (as root user) set up a folder on our server to hold
our chroot jail. We used the debootstrap command to create a full but
minimal Debian installation inside the chroot jail. The Linux distribution
we have set up inside the jail is Ubuntu 14.04 with amd64 architecture.

1 [jail]
2 description=ubuntu_jail
3 type=directory
4 directory=/srv/chroot/jail
5 users=sak212,www-data
6 groups=gernot
7 root-users=root

Listing 5.1: Our configuration file for the jail.

After setting up the a minimal distribution in the jail, we installed the four
dialects. It is important to chroot into the jail as the root and install the
required dependencies and packages so that they persist in the jail when a
non-root user enter the jail via schroot.

Installing the native PHP compiler (Zend version 5.5.9) was relatively easy
and all the dependencies get installed automatically.

HippyVM required a full source checkout of RPython into the chroot jail
which was undesirable as we want to restrict the resources in the jail. How-
ever, the HippyVM builds on the system and produces a hippy-c binary that

44

Chapter 5. Implementation

works mostly like a php-cli1. Therefore, when the build process is complete,
we can restrict read/write permissions to RPython and only use the hippy-c
binary for execution.

Installing HHVM (version 3.7.1) in the chroot jail was a challenge. The
compiler had an enormous number of dependencies which did not install
on the chroot jail automatically and therefore had to be installed manually.
Even then, various libraries had problems linking. Once again, the job had
to be done manually.

Hack did not require any installation as it runs on HHVM but it does need
a configuration file to start the type checker. We create an empty file named
.hhconfig in the folder where the type checker is invoked. The type checker
uses this file to know what directory tree to type check without needing to
specify paths to every command. When running the Hack type checker, it
looks in the current directory for the .hhconfig file. If the.hhconfig file
is not found in the current directory, the directory will be traversed upward
looking for that file until it finds one.

5.3 Process Router

The Process Router’s has two main responsibilities. It controls the pipeline
for the entire system and executes the user’s PHP code by entering the jail
as www-data and invoking the compilers on the command line. It sits at the
centre of the entire application and communicates with all components of
the application. The routing mechanism behaves as described earlier.

The execution of the user’s PHP code is done through the exec() function
in PHP. The function will return an array containing every line from the
output of executing the user’s PHP code. The function also returns the exit
code from the execution which is used to set the time variables. The time
variables hold information on how long the execution took and are only set
if the code executed successfully.

After the entire process is complete, the Process Router encodes the infor-
mation that is to be sent to the client-side into JSON. The is mali boolean

1http://php.net/manual/en/features.commandline.php

45

Chapter 5. Implementation

in listing 5.2 corresponds to the value returned from the Input Handler when
scanning for malicious code.

1 {
2 "is_mali":false,
3 "zend_out":"Hello, World!
",
4 "zend_time":"0.00002799s",
5 "hhvm_out":"Hello, World!
",
6 "hhvm_time":"0.00057109s",
7 "hippyvm_out":"Hello, World!
",
8 "hippyvm_time":"0.00002109s",
9 "hack_out":"Hello, World!
",

10 "hack_time":"0.00057209s"
11 }

Listing 5.2: JSON returned to client side.

5.4 Input Handler

As mentioned before, the Input Handler serves two functions. It acts as a
scanner that detects malicious code and modifies the code to make it ready
for execution. These two steps are described in detail below.

5.4.1 Scanning Phase

The scanning phase is vital to our security. It detects and stops harmful code
from reaching our server.

The scanning process is broken down into smaller steps. First, the user’s PHP
code is converted into tokens using PHP’s very own token get all().
The tokens are then parsed and the tokens which hold relevant information
like the names of functions are retrieved. These tokens include T STRING,
T ENCAPSED AND WHITESPACE, T EVAL, etc. These tokens will con-
tain there id which corresponds to the token itself and a string that equals
the name of the function or the name of the variable. To have a better
understanding of the tokens see Appendix.

46

Chapter 5. Implementation

The filtered tokens are now scanned for exploitable functions. This list of
exploitable functions is predefined on our server. The list comprises of a large
number of functions that we do not want the user to have access to. The list
is described in greater detail later in the section.

1 $predefined_list; \\ list containing blocked funtions
2 $tokens = $token_get_all($source);
3

4 $banned_functions_found;
5

6 foreach ($token in $tokens) {
7 if ($token is NOT empty AND holds relevant information) {
8 foreach ($func in $predefined_list) {
9 if ($token.information is equal to $func) {

10 $banned_functions_found.add($func);
11 break;
12 }
13 }
14 }
15 }

Listing 5.3: Pseudocode for scanning.

Following the Pseudocode shown in Listing 5.3, we produce a list of blocked
functions that we found in the user’s PHP code. If the list is empty, we move
onto the next phase, but if it is not the entire process stops and the list of
blocked functions is returned to the client-side where it is shown to the user
so that they may change their code and try again.

Blacklisted Functions

The list was put together after consulting research papers and the publicly
available source code of a security software2 on GitHub. The main functions
that are blocked are described below.

• Command Execution – We do not want the user to have access to
the shell as they might try to tamper with the system or try to break
out of the jail.

2https://github.com/robocoder/rips-scanner

47

Chapter 5. Implementation

• PHP Code Execution – Apart from eval there are other ways to
execute PHP code: include/require can be used for remote code ex-
ecution in the form of Local File Include3 and Remote File Include4

vulnerabilities.

• Functions which Accept Callbacks – These functions accept a
string parameter which could be used to call a function of the attacker’s
choice. Depending on the function the attacker may or may not have
the ability to pass a parameter. In that case an Information Disclosure
function like phpinfo() could be used.

• Information Disclosure – Most of these function calls are not sinks.
But rather it maybe a vulnerability if any of the data returned is view-
able to an attacker. If an attacker can see phpinfo() it is definitely a
vulnerability.

• Filesystem Functions – Our jail will not allow the user to have any
affect on the filesystem but these functions are still blocked as a pre-
caution.

Variable Function Attacks

PHP supports the concept of variable functions. This means that if a variable
name has parentheses appended to it, PHP will look for a function with
the same name as whatever the variable evaluates to, and will attempt to
execute it. Fortunately for us, variable functions won’t work with language
constructs such as echo, print, eval(), unset(), isset(), include, require and
the like. However a wrapper function can be utilised to make use of any of
these constructs as variable functions.

If an attacker does use a wrapper function to use a blocked function, like
eval() for example, our scanner will find it when searching through the tokens.
To get around the scanner, an attacker may try to deceive the scanner by
assigning the variable to a blocked function or a wrapper at runtime like
in listing 5.4, where the function eval() is broken into different strings and
concatenated before being assigned to a variable. This will not work in PHP,
as the interpreter will try to look for a user defined function called eval.

3https://www.exploit-db.com/exploits/12510/
4https://en.wikipedia.org/wiki/File inclusion vulnerability

48

Chapter 5. Implementation

1 <?php
2 function foo($bar) {
3 $var = "ev" . "al";
4 $var($bar);
5 }
6

7 foo("malicious code");
8 ?>

Listing 5.4: PHP code making use of variable functions.

5.4.2 Modifying Phase

The modifying phase is a relatively small and quick but an extremely impor-
tant one in the process. During this phase, we modify the user’s PHP code
by adding our own PHP code to the start and end of the code.

The main modifications we make to the user’s PHP code are:

• Open and close tags – We add the opening and closing tags to the
user’s PHP code. Hack requires <?hh as an opening tag.

• Time keeping variables – These variables are used to keep track of
the execution time for the script so that we can show it to the user on
the client-side later.

• set time limit() – This function is used by PHP to limit the maximum
execution time. By default the limit is 30 seconds which is too high for
our server. We do not want users abusing our server’s resources so we
set the maximum execution time to 3 seconds.

• ini set() – We use this function to set a memory limit on the current
PHP script. Once again, we do not want users to take advantage of
our system’s resources so we set it to 64K.

Listing 5.5 shows the modifications made to the file after it leaves the modi-
fying phase. The printf statement is used to output the time taken onto
the shell so that it can be retrieved.

49

Chapter 5. Implementation

1 <?php
2 $time_before_$ip = microtime(true);
3 set_time_limit(3);
4 ini_set(’memory_limit’,’64K’);
5

6 /* User Code */
7

8 $time_after_$ip = microtime(true);
9 printf(’%.7f’, $time_after_$ip - $time_before_$ip);

10 ?>

Listing 5.5: The modifications made to the user’s code.

HippyVM’s Special Case

The code being executed in HippyVM requires an extra modification. Hip-
pyVM produces the same exit code on failure and success. Therefore, we
need to output a unique value to act as the exit code for HippyVM. Print-
ing an extra value at the end of execution shows that the end of the file
was reached successfully. This allows the Process Handler to carry out it’s
operations.

The Namespace Case

When a namespace declaration statement is present, it needs to be the very
first statement in the script. However, with our modifications will cause
scripts with namespaces to fail. Whenever we encounter this case, we simply
start modifying the user’s PHP code after the namespace declaration.

This special case is one of the examples where the knowledge we obtained
from using PHP as our backend scripting language allowed us to create a
better web application.

50

Chapter 5. Implementation

5.5 Output Handler

The Output Handler works much like the scanner phase in the Input Han-
dler. It scans the output for any information relating to our file system,
system architecture or configurations. Revealing such information makes us
vulnerable to information disclosure threats, therefore, we remove it from the
final output.

Due of our modifications to the code earlier, the line numbers that are re-
turned are incorrect. The Output Handler replaces the incorrect line num-
bers with the correct ones. It does so by calculating the offset created by
our modifications and whether the user used a <?php tag to start their php
code. The offset is added to the line number returned from execution and
that gives us the correct line number.

Figure 5.1 shows the output when the Output Handler is not active. It can be
seen that information about the directories is revealed to the user. However,
when the Output Handler is active in figure 5.2, no such information is
revealed and the line numbers have also changed.

Figure 5.1: Output without using the Output Handler.

Figure 5.2: Output with using the Output Handler.

51

Chapter 6

Tests

In this chapter we discuss the tests that we have written for the dialects
and go into further detail for some of the tests. The main purpose of the
tests is to compare how the four dialects perform against each other and to
showcase how their behaviour differs to one another. Note that HHVM and
HippyVM are still being developed so we will not be testing features that are
not compatible with all the dialects (HHVM is almost fully compatible with
the PHP specification but HippyVM is not).

These tests are not run inside a jail and do not have any restrictions placed
on them. We are writing the tests ourselves so we can assume that they are
not malicious. HHVM and Hack will be combined for all tests as they are
identical in behaviour and performance.

6.1 Performance Tests

The performance tests we run for benchmarking are based on PHP’s internal
benchmarking tests. We run each test five times, discard the two slowest
runs and use the remaining three times to get an average time. This way we
remove the overhead of the JIT compilers and are able to get more accurate
results. We now go over some of the performance tests we used. All execution
times shown below are normalised to the fastest time so that we can see the
performance difference between the dialects more clearly.

52

Chapter 6. Tests

Function Calls

This is a very simple test where a user defined function is called a large
amount of times. The user defined function does not do anything.

1 function test($arg) {}
2

3 function call_to_usr_func() {
4 for ($i = 0; $i < 1000000; ++$i)
5 test("hello");
6 }

Figure 6.1: Test using function calls shows HippyVM to be the fastest.

String Operations

This test measures the performance for concatenation operations on a string.

1 function string_concat($n) { // 200000
2 $str = "";
3 while ($n-- > 0) {
4 $str .= "test\n";
5 }
6 $len = strlen($str);
7 }

Figure 6.2: Test using string concatenations shows HippyVM to be the
fastest.

53

Chapter 6. Tests

Array Operations

In this test, we are measuring the performance of reading from and writing
to an array.

1 function array_op($n) { // 50000
2 for ($i = 0; $i < $n; ++$i) {
3 $X[$i] = $i;
4 }
5 for ($i = $n - 1; $i >= 0; --$i) {
6 $Y[$i] = $X[$i];
7 }
8 }

Figure 6.3: HHVM is fastest when operating on arrays.

Recursion

To test recursion, we use the naive way to find fibonacci numbers.

1 function fib_rec($n){
2 return(($n < 2) ? 1 : fib_rec($n - 2) + fib_rec($n - 1));
3 }
4

5 function fib($n) { // 30
6 $res = fib_rec($n);
7 }

Figure 6.4: HHVM recurses the fastest.

54

Chapter 6. Tests

Sorting

To test sorting, we use heap-sort. A randomly generated array of length
20000 is passed to the function to sort.

1 function heapsort($n, &$ra) { // 20000, randomly array
2 $l = ($n >> 1) + 1; $ir = $n;
3 while (1) {
4 if ($l > 1) {
5 $rra = $ra[--$l];
6 } else {
7 $rra = $ra[$ir];
8 $ra[$ir] = $ra[1];
9 if (--$ir == 1) {

10 $ra[1] = $rra;
11 return;
12 }
13 }
14 $i = $l; $j = $l << 1;
15 while ($j <= $ir) {
16 if (($j < $ir) && ($ra[$j] < $ra[$j + 1])) {
17 $j++;
18 }
19 if ($rra < $ra[$j]) {
20 $ra[$i] = $ra[$j];
21 $j += ($i = $j);
22 } else {
23 $j = $ir + 1;
24 }
25 }
26 $ra[$i] = $rra;
27 }
28 }

Figure 6.5: HHVM is the fastest at sorting arrays.

55

Chapter 6. Tests

Mandelbrot set

We use the Mandelbrot set as a test for the dialects. It is a complex object
in mathematics and requires a large number of operations so it makes for a
good test.

1 function mandel() {
2 $w1 = 50; $w2 = 40; $h1 = 150; $h2 = 12;
3 $recen = -.45; $imcen = 0.0;
4 $r = 0.7; $s = 0; $x = 0; $y = 0;
5 $rec = 0; $imc = 0; $re = 0; $im = 0; $re2 = 0; $im2 = 0;
6 $color = 0;
7 $s = 2 * $r / $w1;
8 for ($y = 0 ; $y <= $w1; $y++) {
9 $imc = $s * ($y - $h2) + $imcen;

10 for ($x = 0 ; $x <= $h1; $x++) {
11 $rec = $s * ($x - $w2) + $recen;
12 $re = $rec;
13 $im = $imc;
14 $color = 1000;
15 $re2 = $re * $re;
16 $im2 = $im * $im;
17 while(((($re2 + $im2) < 1000000) && $color > 0)) {
18 $im = $re * $im * 2 + $imc;
19 $re = $re2 - $im2 + $rec;
20 $re2 = $re * $re;
21 $im2 = $im * $im;
22 $color = $color - 1;
23 }
24 }
25 }
26 }

Figure 6.6: HippyVM performs the Mandelbrot test the fastest.

56

Chapter 6. Tests

6.2 Behavioural Tests

The behavioural tests are far more interesting than the performance ones. It
is exciting to see how the dialects differ and what is going on under the hood
that makes them behave differently. We will look at a few tests that produce
different behaviour from the interpreters.

These sort of tests are challenging to write as the developers of the dialects are
constantly trying to be as compatible with the PHP language specification as
possible and that makes finding behaviour that is actually different difficult.
We wrote our tests after consulting various resources, which included the
research paper An executable formal semantics of PHP by Daniele Filaretti
and Sergio Maffeis. We also looked at a large number of tests published on
GitHub1,2 by the development teams behind the interpreters.

For the behavioural tests we will change the way we list our tests so that we
can interact better with the source code in this section.

Aliasing

Consider the following test code from the research paper mentioned ear-
lier:

1 $a = array("a","b","c");
2

3 foreach ($a as &$v) {}; // aliasing on $v
4 foreach ($a as $v) {};

Calling var dump() on $a produces:

1https://github.com/php/php-src/tree/master/Zend/tests
2https://github.com/facebook/hhvm/tree/master/hphp/test

57

Chapter 6. Tests

// Zend, HHVM/Hack
var_dump($a);
> array(3) {

[0]=>
string(1) "a"
[1]=>
string(1) "b"
[2]=>
&string(1) "b"
}

// HippyVM
var_dump($a);
> array(3) {

[0]=>
string(1) "a"
[1]=>
string(1) "b"
[2]=>
string(1) "b"
}

The output may seem strange as the values in the array are changing even
though there is no code inside the bodies of the two loops. What happens
is that variable $v from the first loop has global visibility and when the first
loop ends $v and and $a[2] are aliased. Now at every iteration in the second
loop, the assignment $v= $a[...] is made, storing the current array element
in $v and hence in $a[2]. Because of this we know that the last element in
the array should be aliased.

When we look at the output, Zend and HHVM/Hack behave similarly but
HippyVM behaves differently. We can see that third element in the array
for Zend and HHVM/Hack is aliased like it should be while it is not for
HippyVM. If we add the line $v = ”x”; to the end of the code and run it. We
should expect the last element in the array to change to ”x”. Lets see:

// Zend, HHVM/Hack
var_dump($a);
> array(3) {

[0]=>
string(1) "a"
[1]=>
string(1) "b"
[2]=>
&string(1) "x"
}

// HippyVM
var_dump($a);
> array(3) {

[0]=>
string(1) "a"
[1]=>
string(1) "b"
[2]=>
string(1) "x"
}

The last element changes as expected due to the aliasing. Even though it
does not show on the HippyVM output, it is still aliased as the value changed.
Since $v and $a[2] are aliased, we should expect the value of $v to change

58

Chapter 6. Tests

if we modify $a[2]. Now instead of $v = ”x”, lets try $a[2] = ”x” and call
var dump on $v. We should expect to see the same result as before:

// Zend, HHVM/Hack
var_dump($v);
> string(1) "x"

// HippyVM
var_dump($v);
> string(1) "b"

The value of $v in Zend and HHVM/Hack changed as expected but stayed
the same in HippyVM. This means that in HippyVM aliasing is one-sided
while it is two-sided in Zend and HHVM/Hack.

Another test that shows the same aliasing behaviour for HippyVM is:

1 $array1 = array(1,2);
2 $x = &$array1[1]; // Unused reference
3 $array2 = $array1; // Aliased to $array2!
4 // unset($x);
5 $array2[1]=22;

Calling var dump($array1) produces:

// Zend, HHVM/Hack, HippyVM
var_dump($array1);
> array(2) {

[0]=>
int(1)
[1]=>
&int(22)
}

The output is the same for all the dialects. Notice the aliasing on the second
element of the array. $x may be an unused reference but when we copy array1
into array2, the alias applies to array2 as well. So when we set $array[2] =
22, the value of $x is also 22.

59

Chapter 6. Tests

Now if we uncomment the unset($x) function call in the test and run it, we
get:

// Zend, HHVM/Hack
var_dump($array1);
> array(2) {

[0]=>
int(1)
[1]=>
int(2)
}

// HippyVM
var_dump($array1);
> array(2) {

[0]=>
int(1)
[1]=>
&int(22)
}

The second element in the array for Zend and HHVM/Hack is 2 (not aliased)
which the second element in the array HippyVM is 22 (aliased). Unsetting
$x stops the aliasing between $x, $array1[1] and $array2[2] in Zend and
HHVM/Hack but not HippyVM. Calling unset on $x destroys the variable
in HippyVM as well but to HippyVM the alias was called on $array1[1].
Therefore, even if $x is unset, $array1[1] and $array2[1] are still aliased. To
stop aliasing, we would need to unset $array1[1].

In the first test for aliasing, we saw a variable not in the array aliased on and
in the second test we saw a element in the array aliased on.

Internal Array Pointers

In PHP, arrays have internal pointers that are used for traversal by loops,
iterators, etc. Arrays have functions that allow users to change the pointers
as they wish.

60

Chapter 6. Tests

This is a test that makes use of the internal pointer of an array:

1 $arrayOuter = array("key1","key2");
2 $arrayInner = array("0","1");
3

4 while(list(,$o) = each($arrayOuter)){
5 // $placeholder = $arrayInner;
6

7 while(list(,$i) = each($arrayInner)){
8 echo "$o, $i\n";
9 }

10 }

Running the test produces:

// Zend, HHVM/Hack, HippyVM

> key1, 0
key1, 1

All the dialects produce the same output but this behaviour is still strange.
The code never enters the second while loop while in the second loop of
the first while loop. To investigate, we call var dump(current($arrayInner))
which returns bool(false) during the second iteration of the first while loop.
The current() function simply returns the value of the array element that is
currently being pointed to by the internal pointer.

This strange behaviour happens because after the second while loop is done
iterating, the internal pointers of $arrayInner do not reset to the start. There-
fore, when the second iteration of the first while loop begins, the current
pointer has already traversed the entire array and points beyond the end of
the array causing it to return as false.

This behaviour may be strange but is common to all the dialects. It gets
interesting when we uncomment line 5 from the test case and run it:

61

Chapter 6. Tests

// Zend
> key1, 0
key1, 1
key2, 0
key2, 1

// HHVM/Hack, HippyVM
> key1, 0
key1, 1

Making a copy of the inner array before it is traversed causes the internal
pointer of the array to point to the start of the array. This behaviour only
exists in Zend and could be a decision made by the developers. The array
resets its own internal pointer before being copied so that the copied array’s
internal pointer is also pointing to the start. Perhaps the developers of
HHVM/Hack and HippyVM believed that the copied array should be exactly
like the old one and not reset its internal pointer.

There is a simple test associated with internal pointers of arrays that shows
what happens to the pointers after the array is fully traversed.

1 $arr = array(’one’, ’two’, ’three’);
2

3 foreach($arr as $key => $value);
4 $curr = current($arr);
5

6 var_dump($curr);

// Zend
> bool(false)

// HHVM/Hack
> string(3) "one"

HippyVM has a segmentation fault during this test. This is probably because
the internal pointer is pointing to somewhere in memory we do not have
access to. In other words, the internal pointer is pointing beyond the end of
the array just like Zend. HHVM/Hack, however, resets its internal pointer
to the start after it reaches the end of the array.

62

Chapter 6. Tests

Foreach Loop

To get a better understanding of the foreach loop, we use it in conjunction
with the current function in the following test:

1 $arr = array("A","B","C","D");
2

3 foreach ($arr as $v) {
4 var_dump(current($arr));
5 }

// Zend
> string(1) "B"
string(1) "B"
string(1) "B"
string(1) "B"

// HHVM/Hack, HippyVM
> string(1) "A"
string(1) "A"
string(1) "A"
string(1) "A"

The current function is a by-ref function, even though it does not modify
the array. It has to be in order to work well with all the other functions like
next which are all by-ref. The reason that the ”B” and ”A” are repeating is
that the array that is being iterated over by the foreach is different to the
one that current is being called on. The foreach loop makes a copy of the
array and iterates over that therefore the internal pointer is not moving. In
Zend, the reason why we get a ”B” instead of an ”A” is that foreach advances
the array pointer before running the user code, not after. So even though
the code is at the first element, foreach already advanced the pointer to
the second. The foreach implemented in HHVM/Hack and HippyVM seems
to be advancing the array pointer after running the user code like a more
conventional language.

63

Chapter 6. Tests

PHP allows you to substitute the iterated entity during the loop. So you can
start iterating on one array and then replace it with another array halfway
through. Or start iterating on an array and then replace it midway with an
object:

1 $arr = [1, 2, 3, 4, 5];
2 $obj = (object) [6, 7, 8, 9, 10];
3

4 $ref = &$arr;
5 foreach ($ref as $val) {
6 echo "$val\n";
7 if ($val == 3) {
8 $ref = $obj;
9 }

10 }

// Zend
> 1 2 3 6 7 8 9 10

// HHVM/Hack, HippyVM
> 1 2 3 4 5

The Zend interpreter behaves as expected. It just starts iterating the other
entity from the start once the substitution has happened. HHVM/Hack and
HippyVM never switch to the object and continue with the array till the
end.

If we call var dump on $ref after it has been substituted we get:

> object(stdClass)#1 (5) {
[0]=>
int(6)
[1]=>
int(7)
[2]=>
int(8)
[3]=>
int(9)
[4]=>
int(10)

}

64

Chapter 6. Tests

The value of $ref does switch to the object but the entity that the foreach is
iterating over does not change. The foreach in HHVM/Hack and HippyVM
makes a copy of the entity it is iterating over and continues to iterate over
it even if the original is replaced.

Evaluation Order

To check the evaluation order of the dialects, we use a test from the Zend
test suite:

1 function i1() {
2 echo "i1\n";
3 return 1;
4 }
5 function i2() {
6 echo "i2\n";
7 return 1;
8 }
9 function i3() {

10 echo "i3\n";
11 return 3;
12 }
13 function i4() {
14 global $a;
15 $a = array(10, 11, 12, 13, 14);
16 echo "i4\n";
17 return 4;
18 }
19

20 $a = 0;
21 list($a[i1()+i2()], , list($a[i3()], $a[i4()]), $a[]) =

array (0, 1, array(30, 40), 3, 4);
22

23 var_dump($a);

The output from the calls to echo will show us in what order the evaluation
during assignments:

65

Chapter 6. Tests

// Zend, HHVM/Hack
>i1 i2 i3 i4
array(6) {

[0]=>
int(10)
[1]=>
int(11)
[2]=>
int(0)
[3]=>
int(30)
[4]=>
int(40)
[5]=>
int(3)

}

// HippyVM
> i4 i3 i1 i2
array(5) {

[0]=>
int(10)
[1]=>
int(11)
[2]=>
int(0)
[3]=>
int(30)
[4]=>
int(40)

}

It can be seen from the output that Zend and HHVM/Hack follow the same
order while HippyVM does not. Zend and HHVM/Hack go from left to right
for outside the brackets and inside. HippyVM goes right to left for outside
but goes left to right inside brackets for expressions.

Namespace

This test shows how the namespace are handled differently in the dialects.

1 namespace Foo;
2 define(’Foo\\true’, false);
3

4 if (true) {
5 echo "TRUE";
6 } else {
7 echo "FALSE";
8 }

// Zend, HippyVM
> FALSE

// HHVM/Hack
> TRUE

66

Chapter 6. Tests

Language Constructs

This test shows how differently a function defined in the PHP language spec-
ification behaves under different dialects. The function used is func get arg
which gets the specified argument from a user-defined function’s argument
list. The test case is:

1 function foo($a)
2 {
3 $a = 5;
4 return func_get_arg(0);
5 }
6 echo foo(2) . "\n";

// Zend, HippyVM
> 2

// HHVM/Hack
> 5

The func get arg function, under Zend and HippyVM, returns the value from
the arguments without change. HHVM/Hack on the other hand allow the
argument being returned to be modified before the func get arg functions
returns it.

67

Chapter 7

Evaluation

7.1 The Web Application

Our web application securely executes snippets of PHP code in the four
dialects that were chosen at the start. The website is up and running on the
department’s cloud server at the moment. The user interface for our website
is clean, minimalistic and easy-to-use. The entire process of executing the
code is abstracted from the user. This not only makes it more secure for us
but also more convenient for the users as all they have to do is enter their
code and press a button; just as if they were on their own machine.

The design of the user interface makes it so that all first time users will know
exactly what to do the second they visit the website. The editor we use
makes it extremely easy to code in the browser. The editor itself has great
reviews online and is used by massive websites like GitHub and Wikipedia.
As a way for users to evaluate our website, we have set up a way for the users
to send us feedback and bug reports.

Compared to other websites that serve the same purpose as us, we stack
up against them quite well. We have our strengths and weaknesses, and so
do the other websites. There is no website that runs PHP code in all four
dialects but other websites allow their users to save and share code amongst
each other, which is a feature that we do not have. Our website remains
dynamic the entire time allowing the user to edit their code and run it at

68

Chapter 7. Evaluation

any time without changing pages, while most of the other websites navigate
away from the editor and become static while retrieving the result.

7.2 Benchmarks and Test Suites

Our test suites are set up so that test cases can be added and removed at
any time without disturbing the rest of the system.

Figure 7.1: Time from running some of our tests.

It can be seen from figure 7.1 that HHVM is the overall fastest by a small
margin over HippyVM. Zend performs quite bad compared to the other di-
alects. Note that HHVM and HippyVM are JIT compilers which have a
noticeable delay at startup. HippyVM has shown to have a smaller delay
than HHVM. The times we measured in our benchmarks compensated for
the delay by discarding the two slowest times.

The behavioural test suite has shown us some strange and interesting char-
acteristics of the interpreters such as the evaluation order that HippyVM
follows or how the foreach loop, one the most used commands in PHP, has a
different behaviour depending on the dialect.

Overall, we did manage to write test suites but we feel that there should have
been more test cases in both the test suites. We underestimated the security
challenge of the web application at the start of the project and that cost
us time that we could have spent writing more tests. However, the security
aspect of the web application was critical to the project.

69

Chapter 7. Evaluation

7.3 Limitations

In this section we discuss the limitations of our application in its current
state. We offer potential future improvements and fixes for some of these,
but we also believe that some of the limitations cannot be worked around
due to the nature of the application.

7.3.1 Scaling Up

Scaling up may prove to be difficult with the current setup. Currently, there
is only one virtual machine so there is only one point of attack. If we add
more virtual machines, we have to set up chroot jails on all of them and
monitor them for attacks. Managing multiple jails is challenging task and
can take up lots of overhead. To scale up, the best solution would be to use
Docker1 instead of a chroot jail.

7.3.2 Security

The PHP language

The PHP language may change at any time and introduce bugs in our Input
Handler which scans the user’s code for an attack. This can happen at any
time and there is no real way to protect against this. All we can do is keep up
with the latest PHP specification so our scanner is always up-to-date.

Jails

Jails are a powerful tool, but they are not a security panacea. While it is not
possible for a jailed process to break out on its own, there are several ways in
which an unprivileged user outside the jail can cooperate with a privileged
user inside the jail to obtain elevated privileges in the host environment.

Most of these attacks can be mitigated by ensuring that the jail root is not
accessible to unprivileged users in the host environment. To protect against

1https://www.docker.com/

70

Chapter 7. Evaluation

this, we have to make sure that untrusted users with privileged access to a
jail should not be given access to the host environment.

71

Chapter 8

Conclusions

In this chapter we summarise what this project has achieved and where it
might go next, providing suggestions for future work and experiments.

Before this project, no web application existed which was capable of securely
executing snippets of PHP code on four different dialects but now with our
application, we do exactly this. A lot of different components work together
to make this application functional. Security was key. There are two lines of
security to protect our server. The first is a scanner that looks through the
user’s code for blacklisted functions and the second is a custom configured
chroot jail. All of the user’s code is executed inside the jail where it cannot
harm the system. Even the output is checked to protect against information
disclosure.

We wrote two test suites for the interpreters. One was for benchmarking
performance while the the other one was to showcase the behavioural dif-
ferences of the interpreters. The behavioural test suite revealed some quite
interesting differences between the dialects.

Our project has provided a much needed, impartial resource for the PHP
developer community.

72

Chapter 8. Conclusions

8.1 Future Work

In this section we discuss various improvements that could be made to our
project in the future. Many of these are things that we would have liked to
implement if more time had been available to work on the project.

• Saving and sharing code – We believe that if we want our website
to be the widely adopted, this is the main feature that is has to be
implemented. On online blog posts and forums, people users regularly
share their code through online compilers. With this feature, users will
begin to share their code through our application and drive more traffic
to our website. In fact, the HHVM team regularly use 3v4l.org to share
their code.

• Averaging execution times – In the web application, we should
execute the code five times and discard the highest two times returned.
This way we remove the overhead of the JIT compilers and are able to
get more accurate results for the users.

• Move to Docker – To scale up, we should move to Docker. Docker
is a tool that can package an application and its dependencies in a
virtual container that can run on any Linux server. The main benefit
from Docker will be that instead my managing many jails, we would
have to manage fewer containers1.

• Add more tests – Adding more test cases would characterise the
behaviour of the dialects better.

• Add more interpreters – Adding more interpreters, like Recki-CT,
will mean we can start writing tests for these interpreters. The ben-
efit of this will be that users can get a hands on with lesser known
interpreter.

• Open source the test suites – We could open source the test suites
on GitHub. Other developers would be able to write their own tests
showcasing behavioural differences and make pull requests. After a
review, they could be merged into the repository.

1https://en.wikipedia.org/wiki/LXC

73

Bibliography

[1] Zend Technologies Inc. An overview on PHP. http://www.zend.com/
topics/overview_on_php.pdf.

[2] Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Adrew
Paroski, Brett Simmers, Edwin Smith and Owen Yamauchi. The HipHop
Virtual Machine.

[3] Yuko Kashiwagi. PHP. http://www.edb.utexas.edu/minliu/
multimedia/PDFfolder/PHPKashiwagi.pdf.

[4] PHP. http://en.wikipedia.org/wiki/PHP.

[5] What is PHP?. http://php.net/manual/en/
getting-started.php.

[6] Manual Lemos. Hack Language is All that PHP Should
Have Been. http://www.phpclasses.org/blog/post/
230-Hack-Language-is-All-that-PHP-Should-Have-Been.
html.

[7] PHP Performance. http://www.phpclasses.org/blog/
category/php-performance/.

[8] Manual Lemos. PHP compiler performance.
http://www.phpclasses.org/blog/post/
117-PHP-compiler-performance.html.

[9] W3Techs. PHP Market Report. http://w3techs.com/
technologies/report/pl-php.

74

http://www.zend.com/topics/overview_on_php.pdf
http://www.zend.com/topics/overview_on_php.pdf
http://www.edb.utexas.edu/minliu/multimedia/PDFfolder/PHPKashiwagi.pdf
http://www.edb.utexas.edu/minliu/multimedia/PDFfolder/PHPKashiwagi.pdf
http://en.wikipedia.org/wiki/PHP
http://php.net/manual/en/getting-started.php
http://php.net/manual/en/getting-started.php
http://www.phpclasses.org/blog/post/230-Hack-Language-is-All-that-PHP-Should-Have-Been.html
http://www.phpclasses.org/blog/post/230-Hack-Language-is-All-that-PHP-Should-Have-Been.html
http://www.phpclasses.org/blog/post/230-Hack-Language-is-All-that-PHP-Should-Have-Been.html
http://www.phpclasses.org/blog/category/php-performance/
http://www.phpclasses.org/blog/category/php-performance/
http://www.phpclasses.org/blog/post/117-PHP-compiler-performance.html
http://www.phpclasses.org/blog/post/117-PHP-compiler-performance.html
http://w3techs.com/technologies/report/pl-php
http://w3techs.com/technologies/report/pl-php

Bibliography

[10] W3Techs. Usage of server-side programming languages for
websites. http://w3techs.com/technologies/overview/
programming_language/all.

[11] Zend API: Hacking the Core of PHP.http://php.net/manual/en/
internals2.ze1.zendapi.php.

[12] Zend Engine. http://en.wikipedia.org/wiki/Zend_Engine.

[13] BaroqueSoftware. Hippy. http://www.mlife.pl/pdf/
Projekty%20inwestycyjne/Broszura_HIPPY.pdf.

[14] How the Zend Engine Works: Opcodes and Op Arrays. http://php.
find-info.ru/php/016/ch20lev1sec1.html.

[15] Maciej Fijalkowski. Prototype PHP interpreter using the PyPy
toolchain - Hippy VM. http://morepypy.blogspot.co.uk/2012/
07/hello-everyone.html.

[16] Ori Livneh. How we made editing Wikipedia twice
as fast. http://blog.wikimedia.org/2014/12/29/
how-we-made-editing-wikipedia-twice-as-fast/.

[17] Allan MacGregor. An Introduction to HHVM. http://
coderoncode.com/2013/07/24/introduction-hhvm.html.

[18] Haiping Zhao, Iain Proctor, Minghui Yang, Xin Qi, Mark Williams, Qi
Gao, Guilherme Ottoni, Andrew Paroski, Scott MacVicar, Jason Evans
and Stepen Tu. The HipHop Compiler for PHP. http://coderoncode.
com/2013/07/24/introduction-hhvm.html.

[19] HipHop for PHP. https://en.wikipedia.org/wiki/HipHop_
for_PHP#History_Before_HHVM.

[20] HipHop Virtual Machine. http://en.wikipedia.org/wiki/
HipHop_Virtual_Machine.

75

http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all
http://php.net/manual/en/internals2.ze1.zendapi.php
http://php.net/manual/en/internals2.ze1.zendapi.php
http://en.wikipedia.org/wiki/Zend_Engine
http://www.mlife.pl/pdf/Projekty%20inwestycyjne/Broszura_HIPPY.pdf
http://www.mlife.pl/pdf/Projekty%20inwestycyjne/Broszura_HIPPY.pdf
http://php.find-info.ru/php/016/ch20lev1sec1.html
http://php.find-info.ru/php/016/ch20lev1sec1.html
http://morepypy.blogspot.co.uk/2012/07/hello-everyone.html
http://morepypy.blogspot.co.uk/2012/07/hello-everyone.html
http://blog.wikimedia.org/2014/12/29/how-we-made-editing-wikipedia-twice-as-fast/
http://blog.wikimedia.org/2014/12/29/how-we-made-editing-wikipedia-twice-as-fast/
http://coderoncode.com/2013/07/24/introduction-hhvm.html
http://coderoncode.com/2013/07/24/introduction-hhvm.html
http://coderoncode.com/2013/07/24/introduction-hhvm.html
http://coderoncode.com/2013/07/24/introduction-hhvm.html
https://en.wikipedia.org/wiki/HipHop_for_PHP#History_Before_HHVM
https://en.wikipedia.org/wiki/HipHop_for_PHP#History_Before_HHVM
http://en.wikipedia.org/wiki/HipHop_Virtual_Machine
http://en.wikipedia.org/wiki/HipHop_Virtual_Machine

Appendices

76

Appendix A

Malicious code tokenised.

1 <?php
2

3 $var = "String that decodes into malicious code!"
4

5 eval(gzinflate(str_rot13(base64_decode($var))));
6

7 ?>

1 Array
2 (
3 [0] => Array
4 (
5 [0] => 372
6 [1] => <?php
7

8 [2] => 1
9)

10

11 [1] => Array
12 (
13 [0] => 375
14 [1] =>
15

16 [2] => 2
17)

77

Appendix A.

18

19 [2] => Array
20 (
21 [0] => 309
22 [1] => $var
23 [2] => 3
24)
25

26 [3] => Array
27 (
28 [0] => 375
29 [1] =>
30 [2] => 3
31)
32

33 [4] => =
34 [5] => Array
35 (
36 [0] => 375
37 [1] =>
38 [2] => 3
39)
40

41 [6] => Array
42 (
43 [0] => 315
44 [1] => "String that decodes into malicious code!"
45 [2] => 3
46)
47

48 [7] => Array
49 (
50 [0] => 375
51 [1] =>
52

53

54 [2] => 3
55)
56

57 [8] => Array

78

Appendix A.

58 (
59 [0] => 260
60 [1] => eval
61 [2] => 5
62)
63

64 [9] => (
65 [10] => Array
66 (
67 [0] => 307
68 [1] => gzinflate
69 [2] => 5
70)
71

72 [11] => (
73 [12] => Array
74 (
75 [0] => 307
76 [1] => str_rot13
77 [2] => 5
78)
79

80 [13] => (
81 [14] => Array
82 (
83 [0] => 307
84 [1] => base64_decode
85 [2] => 5
86)
87

88 [15] => (
89 [16] => Array
90 (
91 [0] => 309
92 [1] => $var
93 [2] => 5
94)
95

96 [17] =>)
97 [18] =>)

79

Appendix A.

98 [19] =>)
99 [20] =>)

100 [21] => ;
101 [22] => Array
102 (
103 [0] => 375
104 [1] =>
105

106

107 [2] => 5
108)
109

110 [23] => Array
111 (
112 [0] => 374
113 [1] => ?>
114

115 [2] => 7
116)
117

118 [24] => Array
119 (
120 [0] => 311
121 [1] =>
122

123 [2] => 8
124)
125

126)

80

Appendix A.

Figure A.1: Benchmarks of the Recki-CT compiler.

81

	Introduction
	Motivation
	Objectives

	Background
	PHP
	Zend
	HipHop Virtual Machine
	HippyVM
	Facebook Hack
	Other Interpreters
	Security in PHP
	Global Variables
	Remote Files
	Target Functions

	Related Work

	Technical Research
	Jails
	chroot Jail
	FreeBSD Jail

	Linux Containers (LXC)
	Runkit_Sandbox
	Conclusion

	Design
	Client-Side
	Website Design
	Test Suites

	Server-Side
	Web server
	chroot Jail

	Architecture

	Implementation
	Client-Side
	Setting up Our chroot Jail
	Process Router
	Input Handler
	Scanning Phase
	Modifying Phase

	Output Handler

	Tests
	Performance Tests
	Behavioural Tests

	Evaluation
	The Web Application
	Benchmarks and Test Suites
	Limitations
	Scaling Up
	Security

	Conclusions
	Future Work

	Appendices
	

