
Optimising Bisulfite
Sequencing Analysis

Author

Thomas Kaplan

Supervisors

James Arram
Prof. Wayne Luk

Peter Rice

16th June, 2015

Abstract

DNA methylation is an epigenetic process that is key to numerous cellular phenomena including

embryonic development and disease. With next-generation bisulfite sequencing it is now possible

to conduct whole-genome methylation analysis at single base resolution. This has recently been

used in developing novel methods for cancer and non-invasive prenatal diagnosis. The challenge

faced in this research is that the throughput of next-generation bisulfite sequencing machines has

been improving at a faster rate than Moore’s law. This poses a significant computational and stor-

age challenge for genomic analysis tools. In this report we optimise key bottlenecks of Methy-Pipe,

an integrated bioinformatics pipeline developed for bisulfite sequencing alignment and methyla-

tion analysis. The contributions of our work include: FPGA and GPU optimisation of the bisulfite

sequencing alignment module based on a novel oversampling method, a high throughput referen-

tial compression algorithm using hardware accelerated sequence alignment, software optimisation

of the methylation calling module and translation of a downstream analysis script. Results indicate

that the runtime of Methy-Pipe’s bottlenecks is reduced from 5.5 hours to 22 minutes, which could

allow potentially life-saving diagnosis techniques to become routine in healthcare applications.

i

Acknowledgements

I would like to thank:

• Professor Wayne Luk† for providing continual guidance and support during this project, in-

cluding his decision to send me on a Maxeler training day.

• Peter Rice† for his support, and for providing a comprehensive introduction to sequencing,

sequence analysis and functional genomics.

• James Arram† for his invaluable guidance, feedback, and close collaboration in the optimisa-

tion of Methy-Pipe’s alignment module. This project would not have been possible without

his existing work on the acceleration of short-read alignment, namely the Ramethy runtime-

reconfigurable architecture.

• Moritz Pflanzer† for his novel comments on the use of hardware-accelerated sequence align-

ment in referential compression of genetic sequencing data, and his support in collecting

referential compression benchmarks.

• Dr Peiyong Jiang‡ for his insights into Methy-Pipe and his ongoing collaboration with the

Custom Computing Research Group at Imperial College London.

†Department of Computing ‡Department of Chemical Pathology

Imperial College London The Chinese University of Hong Kong

{wl/jma11/p.rice}@imperial.ac.uk jiangpeiyong@cuhk.edu.hk

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 2
1.1 Motivation . 2

1.2 Contributions . 3
1.3 Report Structure . 4

2 Background 5

2.1 Genomics . 5

2.1.1 DNA methylation . 6

2.1.2 Bisulfite sequencing . 6

2.2 Sequencing Machines . 7

2.2.1 Next generation sequencing . 8

2.2.2 Sequencing data storage format . 8

2.2.2.1 FASTA . 8

2.2.2.2 FASTQ . 9

2.3 Sequence Alignment . 9

2.3.1 Global and local alignment . 10

2.3.2 Alignment algorithms . 10

2.3.2.1 FM-index . 10

2.3.2.2 Smith-Waterman algorithm . 12

2.4 Methy-Pipe . 13

2.4.1 Implementation . 13

2.4.2 Bisulfite sequencing read alignment . 14

2.4.3 Calculation of the methylation density level 15

2.4.4 Identifying differentially methylated regions 16

2.4.5 Performance and bottlenecks . 17

2.5 Compression of Genetic Sequencing Data . 17

2.5.1 Referential compression algorithms . 18

2.5.2 Genetic compression algorithms . 18

2.5.2.1 FRESCO . 19

2.5.2.2 GDC 2 . 19

2.5.2.3 Compression performance . 20

2.6 Hardware Acceleration . 20

2.6.1 CPU . 20

2.6.2 GPU . 21

2.6.2.1 CUDA . 21

iii

2.6.3 FPGA . 22

2.6.3.1 Maxeler . 23
2.7 Summary . 25

3 Related Work 26
3.1 Ramethy . 26

3.1.1 Reconfigurable Architecture . 26

3.1.2 Alignment Algorithm and Optimisations . 27

3.1.2.1 n-step FM-index optimisation . 27

3.1.2.2 Bi-directional backtracking . 28

3.1.3 Alignment Architecture . 29

3.1.3.1 Exact Alignment . 29

3.1.3.2 Inexact Alignment . 30

3.1.3.3 Alignment Workflow . 30

3.1.4 Results . 30

3.2 Fernandez, Najjar and Lonardi . 31

3.3 Olson et al . 31
3.4 FPGA aligner comparison . 32

3.5 Summary . 32

4 Optimisation of Short Read Alignment using FPGAs 34

4.1 Alignment Algorithm Overview . 34

4.2 Alignment Optimisations . 35

4.2.1 Oversampling . 36

4.2.2 Interval store . 37

4.2.3 Seed and compare . 38

4.2.4 Optimisation Summary . 39

4.3 Hardware Design . 40

4.3.1 Maxeler MPC-X2000 platform . 40

4.3.2 Interval store . 40

4.3.3 Exact alignment modules . 41

4.3.3.1 Module 1 . 42

4.3.3.2 Module 2 . 42

4.3.4 Seed and comparison module . 42

4.3.4.1 Seed . 43

4.3.4.2 Compare . 43

4.3.5 Inexact alignment module . 43

4.4 Performance Evaluation . 44

4.4.1 Platform specification . 44

4.4.1.1 Competitor test platforms . 45

4.4.2 Sequencing data sets . 45

4.4.3 Runtime and throughput evaluation . 46

4.4.3.1 0, 1 and 2 mismatch reads . 46

iv

4.4.3.2 Bisulfite sequencing reads . 47

4.4.3.3 YH genome sequencing reads . 48

4.4.4 Power and energy usage . 49

4.4.5 Resource usage . 49

4.5 Summary . 50

5 Optimisation of Short Read Alignment using GPUs 51

5.1 Heterogeneous Platform . 51

5.2 Alignment Algorithm and Optimisations . 51

5.3 CUDA Architecture . 52

5.3.1 Cache hierarchy . 52

5.3.2 Global memory . 53

5.4 Alignment Architecture . 53

5.4.1 Memory organisation . 53

5.4.1.1 Constraints . 53

5.4.1.2 Design . 53

5.4.2 Kernel configuration . 55

5.5 Performance Evaluation . 56

5.5.1 Platform specification . 56

5.5.2 Sequencing data set . 56

5.5.3 Runtime and throughput evaluation . 57

5.5.3.1 0 mismatch reads from chromosome 22 57

5.5.3.2 0 mismatch reads from the human genome 58

5.5.3.3 Projected performance . 59

5.5.3.4 Power usage . 59

5.6 Profiling . 60

5.7 Summary . 61

6 Accelerating Compression of Sequencing Data 62

6.1 Compression Mapping . 62

6.2 Compression Algorithm . 62

6.3 Match length and tuple splitting . 64

6.3.1 Statistical estimation . 64

6.3.2 k-mer estimation . 64

6.4 Alignment Architecture . 65

6.4.1 Memory organisation . 65

6.4.2 Kernel configuration . 66

6.5 Performance Evaluation . 67

6.5.1 Platform specification . 67

6.5.2 Sequencing data sets . 67

6.5.3 GDC 2 Modifications . 68

6.5.4 Compression evaluation . 68

6.6 Summary . 69

v

1

7 Optimisation of Methylation Calling and Downstream Analysis 71

7.1 Methylation Calling . 71

7.2 Existing Design . 72

7.2.1 Inefficiencies and bottlenecks . 72

7.3 Performance Optimisation . 73

7.3.1 Parallelised file I/O . 73

7.3.1.1 Design . 74

7.3.1.2 Limitations and drawbacks . 75

7.3.1.3 Evaluation strategy . 75

7.3.1.4 Performance Evaluation . 76

7.3.2 Improved tokenisaton and alignment record analysis 76

7.3.2.1 Performance evaluation . 77
7.4 Memory Optimisation . 77

7.4.1 Reduced bitmap genome . 77

7.4.1.1 Memory usage and performance evaluation 78

7.4.2 Lightweight hash-associative container for calling records 78

7.4.2.1 Associative container alternatives 79

7.4.2.2 Memory usage and performance evaluation 80

7.5 Optimum Implementation . 81

7.6 Translating Perl scripts . 82

7.7 Summary . 83

8 Conclusion 84

8.1 Future Work . 85

8.1.1 Further Methy-Pipe Work . 85

8.1.2 Clinical and Medical Research Aspects . 85

8.1.3 Computing Research Aspects . 86

8.2 Closing Remarks . 87

Lists of Tables, Figures, Code Extracts and Algorithms 87

Bibliography 92

Appendices 97

A Accelerated Genome Compression Algorithm 98

B Methy-Pipe Manual 99

Chapter 1

Introduction

1.1 Motivation

DNA sequencing involves identifying the order of nucleotide bases, our genetic building blocks,

in a DNA molecule. Knowledge of DNA sequences is invaluable for biological research, medical

diagnosis, forensic biology, and other applied fields. For example, within medical research and

diagnosis, sequencing can be used to shed light on DNA methylation patterns which contribute

to an array of human diseases. DNA methylation is a common biochemical process in which a

methyl group reacts with a cytosine nucleotide, altering our genetic instructions in a potentially

harmful manner. Next-generation sequencing (NGS) machines are able to inexpensively produce

DNA sequences (reads) with an incredibly high throughput. We can examine the methylation of

cytosine bases at single-base resolution using next-generate whole-genome bisulfite sequencing, in

which NGS machines are used with chemically treated DNA. However, NGS machines have been

improving at a faster rate than Moore’s law, posing a significant computational challenge for tools

intending to analyse the sequencing data produced. This is shown in F.1.

Figure F.1: Sequencing costs relationship to Moore’s law[1].

Methy-Pipe[2] is an integrated bioinformatics pipeline for whole-genome methylation anal-

ysis. It not only fulfills the core methylation data analysis requirements (of sequence alignment,

differential methylation analysis etc.) but also provides numerous tools for methylation data an-

notation and visualisation. Methy-Pipe contains two modules, BSAligner and BSAnalyzer, which

perform sequence alignment and analysis respectively. These are illsutrated in F.2. Due to its sig-

nificant functionality and ease of use, Methy-Pipe is an invaluable tool for both researchers and

clinical scientists. The primary applications of Methy-Pipe are currently non-invasive methylation

analysis of the fetus[3] and tumors[4] using plasma DNA bisulfite sequencing.

NGS machines produce short reads from a DNA sample destructively, so the DNA must

be reconstructed by determining the location of the short reads in a known reference genome,

using sequence alignment. For the alignment of bisulfite sequencing data, un-methylated cyto-

sine bases transform into thymine bases. This means tools such as Methy-Pipe are faced with a

2

1.2. Contributions 3

greater computational problem: reads must be aligned to the reverse complement of the reference

genome, alongside the cytosine-depleted reference genome. Compared to more general alignment

platforms, this effectively doubles the alignment time. It is only following alignment that high-

resolution analysis can take place, which is also computationally demanding.

Even with state-of-the-art tools, solely aligning 300 million short bisulfite sequencing reads

takes roughly 5 hours, using a system with dual 12-core Intel Xeon processors and 100GB RAM.

Subsequent analysis could also take hours if workload is not distributed across many processors.

To shorten diagnosis and response times, in turn increasing patients seen and allowing po-

tentially life-saving diagnosis techniques to become routine in healthcare procedures, Methy-

pipe requires acceleration of its alignment and analysis modules.

(a) BSAligner Module (b) BSAnalyzer Module

Figure F.2: Methy-Pipe Modules, BSAligner and BSAnalyzer[2].

1.2 Contributions

Methy-Pipe is composed of two modules, BSAligner and BSAnalyzer, which are illustrated in F.2a

and F.2b respectively. BSAligner performs sequence alignment following bisulfite sequencing of

DNA, whereas BSAnalyzer performs downstream analysis which provides insights into the methy-

lation of the aligned DNA samples. We propose contributions targeting both of these modules:

1. Optimisations targeting BSAligner:

(a) We optimise a novel runtime-reconfigurable bisulfite sequencing alignment design that

uses the FM-index, which has been accelerated using FPGAs. We present optimisations

to minimise off-chip accesses to DRAM: (1) novel oversampling of the FM-index, (2) a

partial suffix-array interval store located in BRAM and (3) a novel seed and comparison

module which limits use of an inefficient inexact alignment module. The design reduces

the overall alignment time of BSAlign from 5 hours to roughly 13 minutes, correspond-

ing to a significant speed-up of 22.7 times. The design is highly competitive with other

novel FPGA-based alignment designs, aligning 144.2M bases per second.

(b) We implement the first stage of the same bisulfite sequencing alignment design using

GPUs, which involves a novel use of FM-index oversampling to reduce inefficient loads

from CUDA global memory. The motivation behind this is to assess the potential contri-

bution of GPU-based alignment to a novel heterogeneous bisulfite sequencing analysis

platform using GPUs and FPGAs. The design outperforms state-of-the-art GPU-based se-

quence aligners SOAP3-dp[5] and BarraCUDA[6], by 2.8 and 6 times respectively. Pro-

jections suggest a full implementation could align BSAlign’s typical workload in roughly

42 minutes, corresponding to a significant speed-up of 7.1 times.

4 Chapter 1. Introduction

2. Optimisations targeting BSAnalyzer: we present software optimisations targeting down-

stream analysis scripts, and the C++ module responsible for methylation calling (the process

proceeding all downstream analysis). We have demonstrated how performance optimisations

targeting the calling module, including novel parallelisation of file output, could reduce run-

time from 30 minutes to 8.8 minutes. This module had a significant memory footprint, so we

also reduce the memory usage by almost 52%, from 23.39GB to 11.3GB, resulting in a run-

time of 33 minutes. This is achieved using a lightweight hash-associative container, Google’s

sparse hash[7], alongside genome bit compression. We also translate one of the many Perl

scripts used by BSAnalyzer into parallelised C. The module is responsible for reporting the

methylation of each chromosome in the genome, a basic regional statistic. We achieve an

improvement in run-time by 45 times, corresponding to a fall in run-time from over 3 hours

to around 5 minutes.

3. Additionally, we present a novel approach to lossless referential compression of genetic se-

quencing data. This approach leverages the alignment algorithms from chapters 4 and 5,

and we create novel FPGA and GPU-based designs. With a simple alignment algorithm, we

achieve a significantly greater compression speed than referential compressor GDC 2[8]. For

example, in the case of compressing 10M bisulfite sequencing reads from a human genome,

our FPGA-based design runs 401 times faster than GDC 2, at 3.95 seconds. For this data

set, our design achieves a compression ratio of 2.20, however GDC 2 with its superior com-

pression algorithm achieved 5.94. Following a few small extensions that could dramatically

improve the compression ratio, our approach to compression could consequently be utilised

on hosts running Methy-Pipe to counter the increasingly demanding storage requirements of

patients’ bisulfite sequencing data.

1.3 Report Structure

In chapter 4 we optimise a runtime-reconfigurable bisulfite sequencing alignment design, and ex-

plore the feasibility of this design using GPUs in chapter 5. In chapter 6 we apply the previously

explored alignment algorithms to hardware-accelerated compression of genetic sequencing data.

Finally, in chapter 7 we present software optimisations targeting the methylation calling and down-

stream analysis modules.

The work presented in chapter 4 is also presented in [9] by J. Arram, T. Kaplan, W. Luk

and P. Jiang (Department of Computing, Imperial College London and Department of Chemical

Pathology, The Chinese University of Hong Kong). It has been submitted to IEEE Transactions on

Computational Biology and Bioinformatics for publication.

Chapter 2

Background

In this chapter we present the reader with an interdisciplinary overview of sequence analysis. We

introduce the process of DNA methylation, before discussing the DNA sequencing and sequencing

alignment techniques required to perform detailed methylation analysis. It should become evident

that genetic information is being collected at an extraordinary pace by next-generation sequencing

machines, putting pressure on bisulfite sequencing analysis tools such as Methy-Pipe. This reduces

the utility of tools which could otherwise contribute to the research and diagnosis of many human

diseases. To hint at a potential solution to this problem, we outline various methods of hardware-

acceleration along with their respective merits.

2.1 Genomics

Genomics is the branch of molecular biology that studies the function, structure and other proper-

ties of genomes. The genome is an organism’s complete set of deoxyribonucleic acid (DNA), and

can be found in every cell of the human body excluding blood cells. It encodes our genetic infor-

mation, which directs the development of proteins throughout our body. The genome is composed

of 23 chromosomes, which can be seen as organised units of DNA. The genome is further divided

into segments called genes, which are logical groups of information mapping to specific positions

within the chromosomes.

As illustrated in F.1, DNA is a two stranded structure in the shape of a double helix. The two

strands are often referred to as the ‘Watson’ and ‘Crick’[10] strands in literature. These strands

are connected by pairs of monomers, called nucleotides. These monomors are composed of nu-

cleobases and pentose sugar (sugar with 5 carbon atoms). There are four nucleobases in DNA:

cytosine, guanine, adenine and thymine. These nucleobases are often referred to as C, G, A and T

respectively. The strands are reverse complements of one another, in the sense that one is the re-

verse of the other, and the bases form pairs of adenine-thymine and cytosine-guanine. Any change

in the sequence of these nucleobases is described as a mutation, and can cause cellular disease,

death, or alternatively have no effect. These mutations may be inherited.

Figure F.1: Nucleic acids and their composition[11].

5

6 Chapter 2. Background

2.1.1 DNA methylation

DNA methylation is a common biochemical process in which a methyl group (carbon atom bonded

to three hydrogen atoms) reacts with a cytosine or adenine nucleotide, more specifically the fifth

carbon atom of a cytosine base or the sixth nitrogen atom of an adenine base. This clearly modifies

the DNA, altering the genes expressed in cells stably, as they divide and develop into proteins and

particular tissues from embryonic stem cells. DNA methylation is an epigenetic process, which

means although the DNA is modified, it is a heritable change that does not influence the actual

DNA sequence. It can be thought of as a pattern which overlays the DNA sequence. The specific

mechanism by which methylation of cytosine nucleobases influences organisms is that by trans-

forming our genetic information, transcription factors (proteins bound to a specific part of DNA)

cannot access the elements that regulate them.

Figure F.2: DNA Methylation - the introduction of a methyl group to nucleotides[12].

DNA methylation is a vital part of growth and development of living creatures, playing a

part in embryonic development, transcription and genomic imprinting. Although methylation of-

ten occurs in a familiar pattern, occasionally aberrant DNA methylation patterns are observed[13].

It is in these cases that DNA methylation can have harmful consequences such as the development

of carcinogenesis, the creation of cancer. The importance of methylation is ever intensifying with

the growing number of human diseases which are known to occur due to epigenetic inconsisten-

cies. The diverse group of associated diseases are presented comprehensively in [14], including

cancer, numerous paternally and maternally transmitted disorders, syndromes characterized dur-

ing infancy and even autoimmune diseases such as lupus. It is worth noting that some of these

diseases are related to mutation in our genetic methylation machinery.

Over the last few decades our understanding of the proteins involved in this process, such

as methylcytosine-binding proteins, has grown rapidly. This group of proteins includes MECP2

(methyl CpG binding protein 2), a protein deemed crucial for the functioning of nerve cells, which

can mutate to cause Rett syndrome[15], a post-natal neurological disorder. By controlling the epi-

genetic activation of genes, using re-expression, there is increasing interest into pharmacologically

reversing abnormalities caused by methylation. This has been trialled as part of cancer therapy in

[16].

2.1.2 Bisulfite sequencing

Bisulfite sequencing involves the treatment of DNA with bisulfite ions (HSO3), in order to analyse

methylation patterns. By treating the DNA with bisulfite ions, cytosine nucleotides are converted

to uracil, yet methylated cytosines are unaffected. The methylation state of the original DNA can

be simply inferred by counting the number of cytosines and thymines at genomic cytosine sites.

Various forms of analysis can be performed on the converted DNA in order to get a nucleotide

specific resolution of some DNA’s methylation status.

2.2. Sequencing Machines 7

Figure F.3: Bisulfite sequencing - sequence conversion and reconstruction[17].

Whole-genome bisulfite sequencing (pre-requisite for Methy-Pipe) involves high throughput

analysis of DNA methylation for the entire genome - our genome is composed for roughly 3.2×109

nucleotides. Although the process is the same as that previously described, it involves use of next-

generation sequencing (NGS) machines in order to produce significant volumes of reads (samples

of the genome) in a massively parallel way. The sequences are obtained through a destructive

process in which the DNA is cut, requiring the DNA to be re-aligned to the reference genome in or-

der to determine methylation states based on the mismatches through conversion of unmethylated

cytosine to uracil.

In particular, CpG sites are examined. These are regions of the DNA where C (cytosine)

and G (guanine) nucleotides are found next to one another (in that order), forming dinucleotides

where the cytosine can undergo methylation. The regions where CpG sites experience methylation

are referred to as differentially methylated regions (DMR), i.e. regions where the methylation

patterns will differ to a different sample (in this case a reference genome).

Some of the notable uses of whole-genome bisulfite sequencing with single base resolution

include non-invasive detection and monitoring of methylation associated with cancer[4], and non-

invasive sequencing of the human fetus[3] that allows pre-natal diagnosis. Both of these cases

are deemed non-invasive as long DNA strands are sampled by shotgun sequencing (expanding and

quasi-random pattern of sequencing) of plasma, a component of our blood that composes roughly

55% of a human body’s total blood volume. In the case of pre-natal diagnosis, maternal plasma

can conveniently be used, avoiding the need to pass a needle through a mother’s lower abdomen

and into the uterus.

2.2 Sequencing Machines

In the previous section we introduced the term next-generation sequence machine, to describe the

high-throughput machines used to generate genomic data (sequences) from a given DNA sample.

DNA sequencing is the process of determining the order of nucleotides within DNA. Sequencing

machines produce nucleotide sub-sequences from a DNA sample, facilitating analysis.

Following the development of Sanger sequencing in 1975[18] and its further automation in

1986[19], The Human Genome Project successfully sequenced the first human genome sequence

by 2003. This has led to an increasing demand for inexpensive and highly efficient sequencing

methods with greater genetic granularity. The human condition is far more complex than a cat-

alogue of human genes; we need to understand subtle phenomena such as epigenetic patterns

which influence the expression of genes during development (i.e. epigenetic processes such as the

methylation of cytosine). This contributed to the motivation behind creating a range of second-

generation sequencing techniques, also known as next-generation sequencing (NGS).

8 Chapter 2. Background

2.2.1 Next generation sequencing

The major advancement of NGS is the ability to produce a dramatically increased volume of ge-

netic sequencing data, with millions if not billions of reads being produced per instrument run.

This allows a whole genome to be sequenced in a day, increasing sequencing data throughput

and in turn facilitating research and allowing sequencing techniques to become more routine in

healthcare. Compared to the previous Sanger Sequencing technique, which produces long reads

of roughly 500-750 base pairs (bp) with a low error rate, NGS techniques produce significantly

shorter reads. Paired-end read sequencing can be used to reduce error which could follow from us-

ing significantly shorter reads. This involves taking sets of reads from both ends of sequenced DNA,

instead of taking single-end reads. Given that the distance between the two reads taken is known,

the accuracy for each pair improves - it helps understand the origination of the sub-sequences.

There are numerous NGS platforms, each with a unique approach to sequencing. Factors

influencing selection of a sequence platform include size of the genome being studied, the depth

of coverage needed and the accuracy needed. For example, Illumina is a company renowned for

its numerous sequencers[20], holding 70% of the sequencing market[21] and accounting for over

90% of all DNA data produced[22]. Illumina’s sequencers all vary in their outputs, run-times,

paired-end reads, maximum read lengths etc - a comparison is shown in T.I. It was claimed

by Illumina in 2014 that forty of their highest throughput platform, HiSeq X, would be able to

sequence more genomes in a single year than produced by all other sequencers to date[23]. The

growth in raw output data generated by NGS platforms such as these have exceeded Moores Law,

resulting in more data being produced than can be efficiently analysed and stored[24].

Platform Run type Max read len. (bp) Run-time (hr) Hg per run* Cost per M reads (£)

MiSeq
Micro 300 22 0 -

V3 600 cycle 600 55 0 39

HiSeq
2000 High-output 100/200 264 7 6.12

2500 Rapid 250/500 60 3 7.05
2500 High-output 125/250 144 11 5.05
4000 High-output 150/300 120 17 4.85

HiSeq X 150/300 72 20 2.00
* Human genome per run at 30x coverage, e.g. 90Gb

Table T.I: Comparison of Illumina MiSeq and HiSeq NGS technologies[25].

2.2.2 Sequencing data storage format

Beyond the generation of sequencing data, the way in which it is stored is important. There are

numerous well-known formats for storing sequencing data, allowing it to be shared widely. Two

of the most commonly used formats for sharing sequencing read data are the FASTA and FASTQ

formats. These are both plain text ASCII formats, for the sake of human readability.

2.2.2.1 FASTA

FASTA form is the simplest of formats for sequencing read data, containing a line of meta-information

followed by the read. It was originally developed by Bill Pearson for use with the FASTA suite of

tools[26]. The read sequence is represented as ASCII strings of nucleotide acids or proteins. In the

case of nucleotides, the alphabet used is {A, C, G, T, U}1 plus symbols for inaccurate sequencing

(typically N) and indels (typically a hyphen). An example is shown in F.4. Large numbers of reads

can be formatted with FASTA and stored in an individual file, such that the meta-information acts

as a read delimiter.

1Although {A, C, G, T, U} is the alphabet used by the majority of reads, additional characters do exist, such as V for
not thymine and R for purine.

2.3. Sequence Alignment 9

> SRR014849.1 EIXKN4201CFU84 length=93

GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGG

GTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAA

AGCAATGCCAATA

Figure F.4: Example of FASTA format for sequencing read data[27].

2.2.2.2 FASTQ

FASTQ form extends FASTA, combining read data with associated per base quality scores. The ad-

ditional information follows the read itself, using an additional meta-information header, allowing

full backwards compatibility with FASTA. An example is shown in F.5. There exist at least three

variants of FASTQ; in [27] the original Sanger standard and Solexa/Illumina variants are detailed,

alongside conversion between them.

The quality score is the probability that a sequenced produced the incorrect base, and is

often parameterised by bioinformatics tools such that reads beyond a threshold inaccuracy are

discounted. The quality score, or PHRED quality score, was named after the PHRED software

[28][29] which reads DNA sequencing traces, calls bases and assigns each a quality value. The file

format created to hold these quality scores is known as the QUAL format, and stores the scores as

plain text ASCII characters - this is what follows a FASTA record in the FASTQ form. The PHRED

quality score is defined as follows:

Let Pe be the estimated probability of error for a base,

QPHRED = −10× log10(Pe)

Definition - PHRED quality score

(2.1)

@SRR014849.1 EIXKN4201CFU84 length=93

GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGG

GTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAA

AGCAATGCCAATA

+SRR014849.1 EIXKN4201CFU84 length=93

3+&$#”””””””””””7F@71,”;C?,B;?6B;:EA1EA

1EA59B:?:#9EA0D@2EA5: > 5?:%A;A8A;?9B;D@

/= < ?7=9 < 2A8==

Figure F.5: Example of FASTQ format (Sanger variant) for sequencing read data[27].

2.3 Sequence Alignment

Sequence alignment is a way of arranging multiple DNA sequences to identify similar regions,

and is required to identify where sequencing reads are located in a full human genome (reference

genome). It is consequently pivotal in the identification of differentially methylated regions. Fol-

lowing introductions to the FASTA/FASTQ sequencing data formats, it should be clear that DNA

sequences being aligned are expressed as sequences of nucleobases with the alphabet Σ = {A, C,

G, T}.

10 Chapter 2. Background

2.3.1 Global and local alignment

When aligning two sequences, you can either do it globally or locally, see F.6. The local alignment

is used to find the common regions of the two sequences, and is much more flexible than a global

method in which the optimal alignment involves finding the maximum total number of matches

(all characters participate in the alignment). Therefore with local alignment, similar regions in dif-

ferent orders can be identified, which can be useful in situations where the sequences are unrelated

or differing in length.

Global: GTGTACNCCANAN

G--TAC-CCA-AN

Local: GTGTACNCC-ANAN

--GTAC-CCAAN--

Figure F.6: Global and local sequence alignment for GTGTACNCCANAN and
GTACCCAAN where ‘-’ is an indel.

In the context of whole-genome sequence alignment, local alignment is almost solely used.

This is because high throughput sequencing machines produce a tremendous number of reads (dis-

cussed in the previous section), which are significantly shorter in length than that of the reference

genome - reads range from 75 to a few hundred bases, whereas the human genome is roughly

3.2× 109 bases. This naturally leads to a high number of reads which overlap with others, and an

incredibly high number of candidate alignment locations. An explanation for this is the minimal

alphabet of DNA and the possibility for bases to change through mutation or sequencing errors.

This poses a great computational challenge similar to that of generic substring searching, so the

alignment algorithm used must be chosen carefully.

2.3.2 Alignment algorithms

Algorithms exist to find the optimal alignment between two given sequences. The optimal align-

ment is determined by a score, in which recursively replacing, inserting or removing an element

of a sequence carries an individual score contributing to the total score over the alignment. The

algorithms used for alignment can largely be placed into one of two groups: (1) suffix-trie algo-

rithms, such as the FM-index[30], where reads are aligned using an index of the reference genome

being used; or (2) dynamic programming algorithms, such as the Smith-Waterman algorithm[31],

where optimal alignments are found using a scoring matrix. This section will detail both the FM-

index and Smith-Waterman algorithm. When short reads are used with less than 150 bases, and

small edit distances, suffix-trie algorithms generally achieve better performance. Whereas when

using large reads with hundreds or even thousands of bases, and potentially large edit distances,

dynamic algorithms generally achieve better performance.

2.3.2.1 FM-index

FM-index is a compressed full-text substring index based on the Burrows-Wheeler Transformation

(BWT)[32], and to some extent the suffix array[33]. It allows substring searching with a linear

dependence on alphabet size in time and exponential dependence in space.

The suffix array of a string S is the lexicographically sorted array of its suffixes when a

terminal symbol ($) is appended to it, and each suffix is described by its offset in S. When it

comes to identifying substrings of S, we are interested in suffixes with appropriate prefixes. The

suffix array interval (low, high) covers the range of indices whereby suffixes share the same prefix,

allowing the result of a search operating to be this interval. An interval where low is greater than

2.3. Sequence Alignment 11

high indicates there are no substring hits in S, whereas if low is less than or equal to high there

has been at least one hit. An example can be found in F.7 for the string ‘BANANA’.

(a) Suffix array and BWT

i SA Suffix
0 6 $
1 5 A$
2 3 ANA$
3 1 ANANA$
4 0 BANANA$
5 4 NA$
6 2 NANA$

BWT = ANNB$AA

(b) Occ(s, i) and C(s)

i A B N
0 1 0 0
1 1 0 1
2 1 0 2
3 1 1 2
4 1 1 2
5 2 1 2
6 3 1 2

(c) C(s)

A B N
1 4 5

(d) FM-index (d=4)

BL0

A B N
1 0 0

BWT0 = ANNB

BL1

A B N
1 1 2

BWT1 = $AA−

Figure F.7: Suffix array and Bruce-Wheeler Transformation of ‘BANANA’.

The BWT generates permutations of symbols in a text, where each position of the trans-

formation is computed using a string S and its suffix array SAS . It can be understood as the

final column of a matrix where rows are cyclic shifts of S (with terminal $) in lexicographic or-

der. Through use of two auxiliary functions acting upon a BWT, the FM-index allows substring

searching. These two functions are Occ(s, i) and C(s). C(s) returns the number of symbols in

the BWT that are lexicographically smaller than the symbol s, and Occ(s, i) returns the number of

times s occurs in the BWT from positions in the range [0, i]. The values of these two functions are

pre-computed and stored as arrays, forming the FM-index.

To compress the size of the FM-index, the Occ(s, i) array can be sampled to create buckets

of size d. This involves storing Occ(s, i) values every d elements as markers, which are interleaved

with the corresponding substrings of the BWT. This reduces the Occ(s, i) array size by a factor of

d, but means that some occurrences must be calculated directly from the BWT. An example of the

BWT and the Occ(s, i) and C(s) functions can be found in F.7.

The FM-index search operation is described in Alg.1. The suffix array intervals are initialised

to the boundary indices of the suffix array, and then updated for each symbol in the substring

being searched for. This is done backwards. Having iterated through the substring, the number of

reference hits are equal to high − low. Each exact reference position is found by converting the

index in the suffix array of the reference string. An example FM-index search operation can be

found in F.8.

Figure F.8: FM-index search for substring ‘ANA’ in ‘BANANA’.

Iteration, i Symbol (low, high)(i−1) (low, high)i
0 - - (0, 6)
1 A (0,6) (1, 3)
2 N (1,3) (5, 6)
3 A (5,6) (2, 3)

The interval (2,3) gives text positions 1 and 3.

12 Chapter 2. Background

Algorithm 1 FM-index search algorithm
Input: FM-index F , bucket size d, string S, substring R and suffix array SAS

Output: positions where R occurs in S

low← 1
high← |S|
for i← |R| − 1 to 0 do

low← C(R[i]) +Occ(R[i], F [low − 1/d], low − 1)
high← C(R[i]) +Occ(R[i], F [high/d], high)− 1

end for
for i← low to high do

positions← SAS [i]
end for

function C(s, i)
marker← F.markers[s]
count← 0
for j ← 0 to j < i%d do

if s = F.bwt[j] then
count← count+ 1

end if
end for
return marker + count

end function

2.3.2.2 Smith-Waterman algorithm

The Smith-Waterman algorithm is well known dynamic algorithm developed in 1981 to find the

optimal local alignment of two sequences. It involves constructing a similarity score matrix, in

which the character of each sequence is compared with all others, and scored accordingly. For the

alignment of two sequences, s1 and s2, gap-scoring scheme Wi and similarity function s(a, b), it is

defined by the following recurrence relation:

M(i, 0) = 0, 0 ≤ i ≤ lengths1
M(0, j) = 0, 0 ≤ j ≤ lengths2

M(i, j) = max



0

maxp≥1 (M(i− p, j) +Wp)

maxp≥1 (M(i, j − p) +Wp)

M(i− 1, j − 1) + s(s1i, s2j)

where 1 ≤ i ≤ lengths1 , 1 ≤ j ≤ lengths2

Recurrance Relation - Smith Waterman
(2.2)

Out of the three cases of the recurrence relation, a diagonal step corresponds to a replace-

ment (character match or mismatch), a leftward step refers to a deletion (introduction of a gap in

s1) and an upward step refers to an insertion (introduction of a gap in s2).

Following construction of the scoring matrix M , the optimal local alignment is found by

backtracking from the cell in which the maximum score was achieved. This involves moving to-

wards the highest score neighbor to the above, left or diagonal of a cell, until the head of one of the

sequences is reached. On each backtracking step, the corresponding characters for a cell M(i, j)

can be prepended to the aligned sequences. This results in a space and time complexity of O(mn),

where m and n are the sequence lengths.

2.4. Methy-Pipe 13

Figure F.9: Alignment of sequences ACACACTA and AGCACACA using
Smith-Waterman. The results being A−CACACTA and AGCACAC−A[34].

2.4 Methy-Pipe

Methy-Pipe facilitates exploration of DNA methylation across the entire genome at single base

resolution, using whole-genome bisulfite sequencing. It analyses bisulfite sequencing data pro-

duced from MethylC-Seq[35], a library preparation protocol providing genome-wide coverage for

CpG sites. MethylC-Seq has been commended for its simplicity, and has been used commercially

for numerous studies of whole-genome DNA methylation. However, an integrative computational

tool was required to satisfy the numerous requirements of different research focuses centered

around methylation data analysis; topics of interest may include methylation-aware alignment,

identification of DMRs etc. Many software packages exist that facilitate bisulfite sequencing read

alignment[36][37], and for specific-purpose downstream analysis[38][39], but Methy-Pipe was

implemented to integrate these functions in a user friendly manner.

2.4.1 Implementation

Methy-Pipe was written using a combination of Perl, R and C++. It has been designed to run on

the x86 64 GNU/Linux platform, whereby data analysis performance is improved by distributing

multiple samples to nodes across a cluster running a Sun Grid Engine. The workflow of Methy-

Pipe is shown in F.10B. There are two modules of Methy-Pipe that are run sequentially: BSAligner

and BSAnalyzer. BSAligner is the module responsible for bisulfite sequencing read alignment. It

was implemented with influences such as 2BWT[40] and SOAP2[41], both flexible read alignment

tools using the BWT and the suffix array. BSAnalyzer is the module responsible for downstream

methylation data analysis. It has numerous functions: (1) reporting basic statistics and data se-

quencing quality; (2) calculating methylation levels of C sites on top of genome-wide methylation

levels; (3) identification of DMRs and (4) to annotate and visualise methylation information for

further data analysis, mining and interpretation. In this section we will go on to look at (2) and

(3).

The input data for BSAligner is high-throughput bisulfite sequencing reads produced from a

single or paired-end library and prepared according to the MethylC-Seq protocol F.10A. The reads

are presented in the ‘FASTQ’ format (.fa), whereby a text file stores records of reads and their

corresponding quality scores.

14 Chapter 2. Background

Figure F.10: Methy-Pipe workflow[2].

2.4.2 Bisulfite sequencing read alignment

Following the production of bisulfite sequencing reads, BSAligner must prepare them to be aligned

back to the reference genome, see F.12. This involves trimming the reads, by disregarding the

adapters (product of sequencing process) and bases at the end of reads with quality scores lower

than a threshold.

Alignment back to the reference genome is challenging compared to non-bisulfite sequence

alignment, as bisulfite conversion dramatically transforms the DNA F.11. Specifically, the DNA

changes from a large double-stranded molecule to being single-stranded, as cytosines will have al-

most completely changed to uracil, in turn removing complementarity. Due to this transformation,

Methy-Pipe depletes the cytosines of the reference genome in silico, i.e. converts all cytosines to

thymines computationally. This requires creating a separate set of the original bisulfite sequencing

reads that are fully cytosine depleted, which is again produced in silico. Indices can then be built

for the reference using the BWT algorithm, for alignment.

For alignment, BSAligner first loads the indices into computer memory, before two alignment

stages: (1) both the pre-processed and converted reads are then aligned to initial (non-converted)

reference genomes, with any reads aligning back to both W and C strands being discarded; and (2)

the remaining converted reads are replaced by the original bisulfite sequencing reads, and passed

downstream for methylation calling. This involves checking the methylation state of each cytosine

in the original bisulfite sequencing reads.

2.4. Methy-Pipe 15

Template (double stranded)

A: 5’ -GACCGTTCCAGGTCCAGCAGTGCGCTT 3’

B: 3’ -CTGGCAAGGTCCAGGTCGTCACGCGAA- 5’

Bisulfite converted (single stranded)

A: 5’ -GATCGTTTTAGGTTTAGTAGTGCGTT- 3’

B: 3’ -TTGGCAAGGTTTAGGTTGTTATGCGA- 5’

Figure F.11: Bisulfite converted DNA strands[42] - following bisulfite treat-
ment, there is a loss of reverse complementarity between the strands.

Methy-Pipe has two constraints on alignment: (1) a unique mapping must exist for each in

silico converted, i.e. reads aligned back to both strands are disregarded and (2) no more than two

mismatches can occur in each read. Any read not meeting these criteria is discarded, such that

the original bisulfite sequencing reads corresponding to each aligned in silico aligned read can be

passed on to downstream methylation data analysis (BSAnalyzer).

The alignments are outputted in a text file containing the chromosome, position, mismatches

(up to two), sequencing qualities etc. The exact file format with all headers and example content

be found in Appendix B(IXa).

Figure F.12: Methy-Pipe BSAligner - bisulfite sequencing read alignment module[2].

2.4.3 Calculation of the methylation density level

Methylation state of a DNA sample is inferred by examining the number of cytosines and thymines

at CpGs; after bisulfite treatment, the methylcytosines are not modified unlike other cytosines

which are converted into uracils before PCR further converts them into thymines.

16 Chapter 2. Background

For BSAnalyzer to calculate the methylation density level, the total number of cytosines and

thymines overlapping with each CpG site across the whole genome are calculated, and then the

following equation is applied:

Let n be the resolution of the CpG site in base pairs (bp), |Ci| be

the total number cytosines sequenced at the ith position in the

reference genome and Ti be the same metric for thymine:

MD =

(
n∑
1

Ci ÷
n∑
1

(Ci + Ti)

)
× 100%

Definition - Methylation Density

(2.3)

In a given CpG site, Ci is the total number of cytosines sequenced at the ith position in the

reference genome, and indicates methylation. Ti follows the same logic but instead suggests an

unmethylated region. The closer n is to 1, the closer to single-base resolution the methylation

density can be calculated.

2.4.4 Identifying differentially methylated regions

BSAnalyzer allows identification of DMRs genome-wide by comparing two samples, using a sliding

window approach shown in F.13. It has four key stages: (1) determining seed regions, (2) iden-

tifying whether the seed is a DMR, (3) DMR extension and (4) merging adjacent seed regions if

they are differentially methylated.

To determine the seed locations, a sliding window of length w (where w is specified in terms

of base pairs, bp) is applied from one end of the chromosomes of the two samples. Between slides,

the window will be defined as a seed region if it contains at least m valid CpG sites and each valid

CpG site is covered by at least n bisulfite sequencing reads. If this criteria isn’t met, the downstream

slide will be by an s-base increment. For example, m and n may be set to 5, s to 100 and w to

500bp.

To test if a seed is a DMR, the methylation density of each valid CpG site is calculated and

Mann-Whitney U tests are used to test for statistical significance between the two samples. If this

test holds for a given p-value, say 0.01, then the seed region is deemed a DMR. The region can then

be extended, using this approach again on successive extensions and merging if the neighboring

region is also a DMR. This extension will terminate if a new region does not classify as a DMR, or if

the overall length of the extended seed exceeds a specific length k (e.g. k=1000). Extended DMR

regions are merged if they are within 1000 bases of one another and share a similar methylation

pattern.

Finally, chi-squared tests are applied to all CpG sites within merged DMRs, to examine

whether the proportion of methylated cytosines to total sequenced is statistically different between

the samples. If a merged DMR is not significantly different, then it is not deemed a putative DMR.

2.5. Compression of Genetic Sequencing Data 17

Figure F.13: Methy-Pipe BSAnalyser - differentially methylated region detection module[2].

2.4.5 Performance and bottlenecks

Methy-Pipe has a typical workload of 300M short bisulfite sequencing reads (75bp). The total

pipeline (including BSAnalyzer’s downstream analysis) takes roughly 30 minutes for only 10M

75bp reads with a peak memory usage of 25GB when run on a single 20-core Intel Xeon X5675

processor. At a 1
30 th of the typical workload, it is clear that the overall runtime could exceed 10

hours on a meager hardware set-up. This means without acceleration or a significant hardware

backbone, Methy-Pipe is not easy to use routinely within a clinical environment.

With a full work-load of 300M short reads of 75bp, BSAligner alone takes roughly 5 hours

when running on a system with dual 12-core Intel Xeon processors. This is not fast enough to meet

the throughput of NGS machines, for example in 5 hours the Illumina HiSeq 4000 High-output

can produce over 200M reads which are four times longer at 300bp. BSAligner is certainly the

bottleneck in Methy-Pipe, as its workload cannot currently be distributed across a cluster unlike

BSAnalyzer. Alignment of reads can be highly parallelised however, as the alignment of each

individual read does not depend on the alignment of others.

There is a specific module creating a memory bottleneck prior to use of BSAnalyzer, respon-

sible for the second stage of bisulfite sequencing alignment. The module performs methylation

calling, whereby methylation information is recorded at single-base resolution. This requires cre-

ating methylation record for each base position in the reference genome, using roughly 24GB (the

peak usage across Methy-Pipe).

2.5 Compression of Genetic Sequencing Data

Improvements in DNA sequencing technology has not only posed the challenge of reconstructing

genetic information using aligners such as Methy-Pipe’s BSAligner, it has also meant storage is a

central bottleneck in many systems. This can prevent the acquisition of sequencing data that would

otherwise prove invaluable in genomics research and healthcare. Given that a human reference

18 Chapter 2. Background

genome alone requires roughly 3GB of storage, if whole-genome sequencing pipelines such as

Methy-Pipe are introduced into regular healthcare, the volume of patient sequencing information

recorded may be unmanageable. General purpose compression algorithms such as gzip[43] can

be used to achieve moderate compression, however they fail to harness inherent properties of DNA.

2.5.1 Referential compression algorithms

It is common knowledge that any two human genomes are over 99% identical[44], which suggests

compression algorithms can leverage the redundancy to achieve significant compression. With

the use of a common reference genome, such as the consensus human genomes[45], an encoder

and decoded can compress a genome losslessly. This approach is called referential or relative

compression. The popularity of this referential compression schemes is increases steadily, as many

complete genomes are becoming available for shared use as a reference.

Lossless referential genome compression is a two stage problem: (1) a mapping from a given

reference to a target genome must be created and (2) this mapping must be described as concisely

as possible to the decoder. Below is an example of referential compression, where triples are used

to describe this mapping.

Let each mapping instruction be of the form 〈pi, li, zi〉 where pi refers to

an absolute position, li a length of similar symbols and zi the edit symbol.

Target : AATGCAGGTACTATAAGNA...

Reference :AATGTAGGTACATAAGATG...

Producing instruction set {F} :

F1 : 〈p1, l1, z1〉 = 〈1, 4, C〉

F2 : 〈p2, l2, z2〉 = 〈6, 6, T 〉

F3 : 〈p3, l3, z3〉 = 〈12, 5, N〉

...

Referential Compression - Example[46]

In [47] an approach is taken whereby two files are produced for this mapping, one consisting

of single nucleotide polymorphisms (SNPs) and one for indels of multiple nucleotides. Given that

many databases store common SNPs, such as dpSNP[48], algorithms such as the one presented in

[49] can compress these two files losslessly.

The approach taken in [46] to referential compression does not require external libraries

or databases, and is motivated by the sliding window Lempel-Ziv algorithm[50], a universal loss-

less compression algorithm. They manage to compress a sample of 2991MB genome data down

to 6.99MB, while gzip compresses it to only 834.8MB. This corresponds to a greater than 99%

reduction in size, whereas gzip reduces the size by 72%, demonstrating the utility of specialised

compression algorithms in tackling the storage bottleneck created by improving DNA sequencing

technology.

2.5.2 Genetic compression algorithms

In [51] a comprehensive study of genetic sequencing compression is presented, including non-

referential techniques. We will briefly present two notable referential compression algorithms,

FRESCO[52] and GDC[8], before summarising the results presented in this study for these com-

pression algorithms.

2.5. Compression of Genetic Sequencing Data 19

Compression Ratio =
Uncompressed Size

Compressed Size

=
Uncompressed Data Rate

Compressed Data Rate
(for streamed applications)

Definition - Data Compression Ratio

(2.4)

2.5.2.1 FRESCO

Framework For Referential Sequence Compression (FRESCO) compresses any raw genetic sequenc-

ing data with the alphabet {A, C, G, T, N} (i.e. no meta-information). FRESCO first choses a

reference sequence out of a large collection, which is used to create triples similar to those pre-

vious demonstrated; matches between the text and reference are recorded using the offset in the

reference, the length of the match and the first mismatching character which occurs. The matches

are determined using a hash index over the potential subsequences that can be created using the

genetic alphabet, for a given length of symbols. The matches are then chosen using one of three

strategies, a greedy search algorithm that uses the longest matches or two optimised strategies for

the look-up of short local matches (Lempel-Ziv factorisation [53]).

Similar to many genetic compression algorithms, FRESCO offers a second order of compres-

sion harnessing genetic similarity. Given a collection of sequences, due to the similarity between

the raw sequences, the mappings to a common reference tend to be similar. FRESCO’s second or-

der of referential compression (post-processing stage) involves locating common reference triples

with respect to a designated reference compressed sequence, allowing common triples in the other

compressed sequences to be replaced by pointers. In the final stage these triples are either out-

put as plain text, or further encoding can take place (for example, using a binary compression

technique based on Huffman coding).

The selection of a reference from a large selection of sequences is described as NP-hard

by the authors, with a naive approach to finding the best reference having quadratic complexity

(O(n2)) for the number of candidate sequences. FRESCO uses heuristics to solve this problem, and

can generate an artificial reference if necessary out of a collection of sequences.

2.5.2.2 GDC 2

Genome Differential Compressor (GDC) 2 compresses complete sequence collections in FASTA

format variants, and conceptually extends the FRESCO’s approach to raw sequence compression.

Both the algorithms use a two-stage compression strategy, involving the Lempel-Ziv algorithm,

with GDC 2 introducing a few new concepts to improve compression throughput.

The first stage of compression involves identifying exact matches in parallel (one sequence

per thread) using Lempel-Ziv factorisation, and identifying any short matches which represent

SNPs or indels after these exact matches. Unlike the exact matches, these short matches do not

require consulting a hash table, and instead involve direct reference and text comparison. This

improves compression speed, and the compression of these matches can be performed such that the

overall compression ratio isn’t harmed. The second stage involves another Lempel-Ziv factorisation

over compressed sequences, whereby runs of common reference triples are encoded with respect

to a reference. Finally, the encoded values and reference sequence are processed by an arithmetic

coder and specific methods such as delta encoding (depending on the type of sequence data) are

used on the encoded values.

20 Chapter 2. Background

2.5.2.3 Compression performance

The results in [51] were taken from compression of 5 sequences of Arabidopsis thaliana DNA, with

reads of roughly 94bp, that together use 243MB of storage on disk. In total, 16 compression algo-

rithms were tested, where FRESCO and GDC 2 were the only solely reference-oriented algorithms.

FRESCO and GDC 2 both achieved poor compression throughput at 0.02MB/s and 0.01MB/s re-

spectively, which was much lower than the competition. However, FRESCO managed 21.05MB/s

of decompression throughput.

Among the three FASTA compressors tested, GDC 2 achieved a significantly lower compres-

sion ratio than the two other approaches at 2.68. FRESCO was unique among the compression

algorithms in that it only compresses raw sequence information, but achieved a compression ra-

tio of 7.72, which was the third greatest overall below the two FASTA compressors. These two

FASTA compressors, kpath[54] and ORCOM[55], take a statistical reference-based approach and

reference-free approach to compression respectively.

2.6 Hardware Acceleration

In this section we present the various hardware platforms that can be used to accelerate problems

such as sequence alignment and genome compression. For each platform, processing elements can

be defined as the smallest part of the hardware architecture that can perform an algorithm (these

are also known as processing cores).

Figure F.14: Comparison of hardware platform properties[11].

2.6.1 CPU

Central Processing Units (CPUs) are the most common processing units, and can be found in

both personal computers and higher performance computers. They can be used standalone, or

alongside others (multiprocessing). Multiple CPUs can also be placed on a single silicon chip

(multi-core processors). CPUs are general purpose, providing large instruction sets that improve

their scalability and flexibility (see F.14). Unfortunately the nature of general purpose processing

elements means much of a CPU is inactive at any one time. The performance of CPUs is largely

dependent on the frequency by which the processing elements operate, i.e. the clock rates and how

many instructions can be processed in a single clock cycle. The sequential model of CPUs means

that clock frequencies are often higher than the processing elements of other hardware platforms,

improving suitability for tasks that do not require parallelism.

2.6. Hardware Acceleration 21

Although multiprocessing can be used in highly scalable way, creating behemoth clusters

of processing elements which workloads can be distributed over, these solutions are not suitable

in a clinical setting. For example, the 1000 genome project[56] uses a 1192-processor cluster to

align reads, while the BGI Bio-cloud[57] biological storage platform has a current total of 14,774

processors delivering 157Tflops of performance.

2.6.2 GPU

Graphics Processing Units (GPUs) are specialised in and primarily used for managing computer

graphics. GPUs are composed of a many processing elements (thousands unlike CPUs which have

hundreds), allowing large blocks of data to be processed at any one time. Due to this highly

parallel structure, there is an increasing amount of attention being paid by GPU manufacturers to

more general purpose parallel computations, performed by General-Purpose Graphical Processing

Units (GPGPUs). The most commonly used GPGPU programming language for heterogeneous

platforms is OpenCL[58], and the most commonly used framework is CUDA[59]. Both use C++

primarily to create kernels that can be used to delegate work to device processing elements (GPUs)

by the host (CPUs).

2.6.2.1 CUDA

The Compute Unified Device Architecture (CUDA) is a parallel computing platform developed by

NVIDIA and performs on the GPUs that they manufacture. It is built upon three key abstractions:

(1) a hierarchy of thread groups (see F.15b), (2) shared memories and (3) barrier synchronization.

These allow programmers to partition problems such that the sub-problems can be solved indepen-

dently in parallel by groups of threads (called blocks), and each sub-problem into finer problems

that can be solved cooperatively in parallel by threads within each block.

More specifically, NVIDIA GPUs are composed of multi-threaded streaming multiprocessors

(SMs), which contain a significant number of cores. For example, the NVIDIA GTX Titan Black

which runs on the Kepler architecture has a total of 15 multiprocessors and 2880 cores. When

a GPU kernel is launched, group of threads (called blocks) are allocated to each SM, executing

concurrently. Instruction level parallelism is then achieved within each thread, through instruction

pipelining.

Groups of threads (blocks) can be grouped into one, two, or three-dimensional grids. Each

thread can be uniquely indexed within its block, and each block can be uniquely indexed within its

grid, shown in F.15b. Depending on the chosen configuration, threads can be scheduled concur-

rently or sequentially so that a CUDA program can execute on a desired number of multiprocessors

(specified by the runtime system, see F.15a). There is a hard upper limit on thread block sizes, for

example the Kepler architecture can run 1024 threads per block (32 warps2). Thread blocks are in

turn organised in warp-sized units, and are uniformly spread throughout a grid. The Kepler archi-

tecture for example allows 2,048 threads active at any one time on each multiprocessor, allowing

the following layouts: 2 thread blocks of 32 warps, 3 thread blocks of 21 warps, 4 thread blocks of

16 warps, up until 16 blocks of 4 warps.

2Warps are the minimum size of the data processed in a single instruction multiple data fashion by a CUDA multipro-
cessor.

22 Chapter 2. Background

(a) CUDA processing flow[60].

(b) CUDA parallel architecture[61].

Figure F.15: CUDA parallel processing architecture[60][61]

CUDA has a multi-tiered memory hierarchy, allowing the visibility of data to vary among

threads in different blocks and within blocks. Global device memory (DRAM) is large and visible

to every thread alongside the host CPU and other GPUs attached to the host, yet comes at a cost of

400-800x the latency of lower-tier memory accesses. To achieve good global memory performance,

access patterns maximising coalesced accesses should be used alongside storing data that meets

the memory alignment. Newer GPU devices, with compute capability 3 also provide a read-only

L1 cache for each SM of 64KB, and a shared L2 cache of up to 1.5MB depending on the exact

GPU architecture. Local memory (thread-local) also exists in DRAM with a high latency, and is

used to manage register spilling for large variables. On devices with a compute capability of 2

or greater, all local accesses are cached in both L1 and L2. Shared on-chip memory can be used

to achieve a lower latency than global memory. This memory is block-local, and shares a portion

of the 64KB allocated to the L1 cache (i.e. possible allocations are 48:16, 16:48 and 32:32MB).

The highest shared memory bandwidth is achieved when it is divided into equally-sized memory

banks allowing threads in each warp to access different data banks; otherwise accesses must be

serialised. Specialised read-only constant memory and texture memory is also found in DRAM and

cached for efficient access by all threads.

Significant speedup has been achieved using GPUs instead of CPUs for sequence alignment

algorithms. This is incredibly promising as GPUs, although more expensive than general purpose

CPUs, are still accessible and feasible for use within almost any clinical setting. For example,

SOAP3-dp[5], a well known GPU-accelerated sequence aligner, aligns 6M simulate 100bp paired-

end reads in 132 seconds using an Intel i7-3930k 3.2 Ghz quad-core processor and single Nvidia

GTX 680 GPU. This was at least 3.1 times faster than tested software competitors.

2.6.3 FPGA

Field Programmable Gate Arrays (FPGAs) are integrated hardware circuits that can be programmed

to execute combinational and sequential logic. They are composed of a matrix of configurable

logic blocks (CLBs) and interconnects; the arrays of logic blocks are connected by reconfigurable

wires that transmit signals adhering to the user-defined circuit. Developers define circuits that

correspond functionally to applications or procedures through a hardware descriptive language

2.6. Hardware Acceleration 23

(HDL), which is then mapped to the hardware. An example of the FPGA fabric is shown in F.16,

where digital signal processing (DSP) blocks and RAM blocks are interleaved between the logic

blocks. FPGAs allow runtime reconfiguration, whereby the device can switch between hardware

configurations, allowing processing elements to change their functionality on the go. It is for this

reason FPGAs are used heavily within networking and telecommunications for routing.

Figure F.16: FPGA Fabric - Maxeler dataflow chip[62].

FPGAs not only provide the potential for substantial speed-up due to the highly parallel cus-

tom computations that can be harnessed, but energy and power usage is often lower than that of

a CPU due to the lower clock frequency by which they operate. They are also favourable in some

ways to application-specific integrated circuits (ASICs) as they remove upfront non-recurring engi-

neering costs; allow a faster time-to-market due to fewer manufacturing steps and a simple design

cycle; and support post-delivery and post-fabrication changes. Unfortunately, the performance of

FPGA-based sequence aligners can come at the cost of less functionality and accuracy compared to

CPU solutions, due to the difficulties of developing hardware accelerated software.

2.6.3.1 Maxeler

Maxeler Technologies provides a leading platform offering a complete and comprehensive software

and hardware acceleration solution, founded upon multi-scale dataflow computing. It provides a

combination of traditional synchronous dataflow, array and vector processors. Using the latest and

largest FPGAs available, Maxeler’s hardware platforms exploit loop level parallelism in a pipelined,

spatial way where high-throughput can be achieved with low-latency. Multiscale dataflow comput-

ing involves employing dataflow on multiple levels of abstraction: system level through connection

of multiple dataflow engines to construct a supercomputer; architecture level by decoupling mem-

ory access from arithmetic operations; and arithmetic level and bit level through opportunities to

optimise data representation to balance computation with communication.

The MaxCompiler[63] is used to write kernels that accelerate a body of host code using

FPGAs (i.e. implement computational components of application in hardware), and managers that

connect kernels to the CPU, RAM and other kernels or dataflow engines via MaxRing (a high-

bandwidth interconnect). This kernel code is defined in a Java-like language (MaxJ), as shown in

F.17b, that describes a dataflow program. In a dataflow program, execution can be modelled in a

dataflow graph where data flows along the edges as tokens and is operated on by computational

nodes. Instead of processing elements, Maxeler refers to each processing unit as a dataflow engine

(DFE), as data streams from memory into the processing chip where data can be forwarded directly

between dataflow programs. Concurrent execution naturally occurs, as many data tokens can pass

through a dataflow program at any time.

24 Chapter 2. Background

(a) Maxeler architecture
(b) Maxeler dataflow example

Figure F.17: Maxeler multiscale dataflow computing architecture[62].

At the host, the MaxOS and MaxCompiler compile and link the manager and kernel defini-

tions (.max files), such that they can provide interfaces that can expose the accelerated regions of

the application to the host code (.c or .f, C or Fortran). This interface is referred to as the Simple

Live CPU Interface (SLiC). The host can then run the complete application, communicating where

specified with FPGA kernels via an interconnect (LMEM, PCIe, Infiniband, or MaxRing), shown in

F.17a.

This results in a simple workflow as demonstrated in F.18, where individual modules of

a large application can be accelerated by carefully identifying bottlenecks, integrating a kernel,

simulating the functionally and then building the final result in hardware to achieve acceleration.

It is worth noting that the hardware building is entirely abstracted by the MaxCompiler, and the

user is simply faced with a resource usage report explaining which lines of code use what resources

in the kernel and manager. The compilation stages are roughly as follows:

1. MaxCompiler generates VHSIC Hardware Description Language (VHDL) ready for FPGA vendor tools.

2. Synthesis transforms this VHDL into a logical netlist - description of an electronic design’s connectivity.

3. Map fits the basic logic into N-input lookup tables (LUTs).

4. Place puts these LUTs, DSPs, RAMs and other components at specific locations on the silicon chip.

5. Route sets up the wiring between the FPGA blocks.

Figure F.18: Maxeler workflow for application acceleration[62].

2.7. Summary 25

2.7 Summary

In this chapter we have presented a broad spectrum of background content. We started by explor-

ing the biological motivation behind this project, in facilitating whole-genome bisulfite sequencing

analysis that can be used within various medical contexts such as pre-natal diagnosis and the

analysis of methylcytosine-binding proteins responsible for disorders such as Rett syndrome. Bisul-

fite sequencing analysis was presented in the context of Methy-Pipe, a bioinformatics tool making

bisulfite sequencing analysis simple and accessible. It does so through provision of a bioinformatics

pipeline incorporating both the alignment of bisulfute sequencing reads and the subsequent down-

stream analysis expected by researchers and doctors. It is evident that tools such as Methy-pipe

could prove invaluable in improving healthcare procedures, improving the livelihood of patients

and potentially saving lives. It becomes clear that high-perform sequence alignment meeting the

throughput of next-generation sequencing machines is not trivial, creating bottlenecks that render

tools such as Methy-Pipe impractical for wide-spread healthcare usage.

We present two algorithms used heavily for sequence alignment problems: the FM-index and

the Smith-Waterman algorithm. The FM-index is based on the BWT, an algorithm used within data

compression and often adapted to perform bi-directional substring search; Methy-Pipe originally

used a bi-directional BWT approach to sequence alignment, without any parallelisation. This led

to poor performance over a typical work-load of 300M short reads, with the BSAligner module

alone taking roughly 5 hours when running on a system with dual 12-core Intel Xeon processors.

In order to inform the reader about possible approaches to producing higher-throughput

sequence alignment platforms, that can outperform CPU-based systems, we detail GPGPU and

FPGA acceleration. It should be evident that these hardware platforms provide the potential to

easily harness massive parallelism without the need to explicitly map out circuit designs. In the

next chapter we will explore how these technologies have already been applied in the acceleration

of Methy-Pipe, alongside related efforts.

Chapter 3

Related Work

3.1 Ramethy

There is currently a novel runtime reconfigurable design targeting Methy-Pipe’s BSAligner, as de-

tailed by J. Arram, W. Luk and P. Jiang (Department of Computing, Imperial College London and

Department of Chemical Pathology, The Chinese University of Hong Kong), at the FPGA 2015

conference, Monterey, CA, USA[64]. In this section we provide an overview of this design.

3.1.1 Reconfigurable Architecture

Ramethy exploits the reconfigurability of FPGAs, using distinct configurations for each module

in the alignment pipeline, where intra-stage parallelism is improved by maximising the resources

used by each algorithm stage. This is illustrated in F.1b. The user has great control over alignment

parameters, as configurations can be re-ordered, added or removed at runtime to meet runtime

demands such as the desired alignment workflow. This removes the potential for data hazards or

unbalanced pipeline stages, the cost is loss of concurrent processing of the algorithm stages.

Many attempts to accelerate alignment pipelines on FPGAs involve statically configuring the

circuit so that it is functionally equivalent to the desired alignment algorithm, producing several

interlinked modules. Static configurations allow the interlinked modules to process data concur-

rently, however suffer numerous limitations that harm performance and utility:

1. Data Hazards: Alignment algorithms, as large modules in pipelined systems, naturally feature data

hazards whereby execution of stages are depending on the execution of previous stages. If data hazards

occur, then a subset of the modules may be left idle, reducing hardware efficiency in throughput and

power usage.

2. Module Latencies: It is inevitable that different modules in the pipeline will take differing numbers

of cycles to process a read. To balance the pipeline latencies, certain modules will be replicated more

than others. However, as the other modules of the pipeline will be consuming a great deal of circuit

space, the possibility for replication is limited.

3. Extensive Resource Usage: If a pipeline contains many modules that produce large circuits, the total

static circuit may simply exceed the space available on the FPGA. Without dynamic reconfiguration,

workload must then be held back on the CPU, which according to Amdahl’s Law will hinder the overall

system acceleration.

4. Inflexible Alignment Parameters: Static configurations inherently restrict the potential for controlling

alignment parameters. Often the alignment reporting method, allowed mismatches and other param-

eters will be varied by the bioinformatician using an aligner, however substantial parameter changes

may require the static circuits to be re-placed and re-routed (this can take days).

Figure F.1: Types of FPGA pipeline architecture[64].

26

3.1. Ramethy 27

Ramethy uses an alignment pipeline composed of three stages. In stage 1, modules are de-

signed that perform a function in the alignment algorithm. In stage 2 the modules are replicated to

form an FPGA configuration, where the number of replications is specified simply by the following

equation below.

Let ri be the fabric required for one module and A the

total FPGA fabric area available:

Pi =
A

ri

Definition - Population of a module on an FPGA.

(3.1)

In stage 3, for each module of the alignment algorithm, the steps are as follows: (1) each

module has a configuration that is loaded onto the device, (2) data is streamed from the previous

module (if there was one), (3) the data is processed concurrently and (4) the data is output into

off-chip memory attached to the target device or simply stored in host memory. The performance

of Ramethy’s architecture can be measured simply using the equation below, where T is alignment

time, Ni is the number of data items processed in the respective alignment stage, ti is the time the

corresponding module takes to process a single read and Pi the number of modules in the config-

uration. The overheads of the architecture are reconfiguration time tr, and the data transmission

time to, although these are deemed negligible for a typical alignment workload of roughly 300M

reads.

Let tr be reconfiguration time, to the data transmission time,

n be the number of alignment modules, ti be a given modules run-time,

Pi the population of module i and Ni the number of data items for i:

T =

n∑
i

(
tr + to +

Ni × ti
Pi

)

Definition - Run-time reconfigurable architecture run-time.

(3.2)

3.1.2 Alignment Algorithm and Optimisations

Ramethy targets Methy-Pipe and consequently bisulfite sequencing read alignment. Specifically,

the typical workload would involve aligning 300M reads of 75bp. The FM-index was chosen as the

basis for its alignment algorithm. Ramethy presented a novel FM-index optimisation that improves

the pattern matching performance, involving a new index structure that reduces the search steps

and consequently computational complexity. The FM-index extended with backtracking was also

optimised to improve the search space during inexact alignment. Both of these two optimisations

are presented in this section.

3.1.2.1 n-step FM-index optimisation

The FM-index search algorithm in Alg.1 can be optimised. The basic implementation involves a for

loop which steps through each character of the substring query R. After |R| steps, a final interval

is computed with consecutive indexes indicating areas of the suffix array with have R as a prefix.

Chacón et al.[65] proposed a variation of this, the n-step index, which reduces the number of steps

required. The number of steps required are reduced from |R| by a factor n, by allowing n symbols

in R to be matched in each iteration. This does however increase the computational complexity

per step, and increases the size of the reference string’s index. The n-step FM-index is illustrated

in F.2.

28 Chapter 3. Related Work

Figure F.2: n-step FM-index structure, where B is the BWT and F is the FM-index.

Ramethy extended the n-step FM-index for improved runtime and identical computational

complexity to the basic FM-index search operation, using a compression and merging step when

generating the n-step FM-index. Index generation for the reference genome broadly involves three

steps: (1) compressing the reference genome into a reduced bitmap, (2) dividing the single BWT

produced from merging n BWTs into buckets, as shown in Alg.2; and (3) interleaving buckets

with their corresponding counters. This new FM-index is denoted as F , and its adapted search

algorithm is shown in Alg.3. The cost of this optimisation is in the increased index size, which can

be offset by larger bucket sizes d. The total memory usage can be calculated using the equation

below, where a step of n = 3 and bucket size d = 128 results in the human genome consuming less

than 10GB of memory.

Let n be the FM-index step, d the bucket size, |R| the substring length,

and Σ the reference string alphabet:

M =
4× |R| × (|Σ| − 1)n

d
+
|R| × n× log2 |Σ|

8
Bytes

Definition - Total memory usage of n-step FM-index.

(3.3)

Algorithm 2 Generation of merged BWT
Input: String S, reduced bitmap Sr and suffix ar-

ray SAS

Output: Merged BWT B

/* generate n BWTs: b1, b2, ..., bn */
for i← 1 to n do

for j ← 0 to |Sr| do
bi[j] = Sr[(SAS [j]− i)%|Sr|]

end for
end for
/* merge b1, b2, ..., bn to form B */
for i← 0 to |Sr| do

B[i] = concatbits(bn[i], .., b1[i])
end for
return B

Algorithm 3 n-step FM-index search algorithm
Input: Reduced bitmap of substring Rr , string S, FS and SAS

Output: positions where R is a prefix in S
low← 1
high← |S|
for i← |R| − 1 to n, step − n do

str← concat bits(Rr[i− (n− 1)], .., Rr[i− 1], Rr[i])
low ← F [low − 1/d].counters(str)

+C(str, F [low − 1/d].B, low − 1%d)
high← F [high/d].counters(str)

+C(str, F [high/d].B, high%d)
end for
for i← low to high do

positionsi ← SAS [i+ low]
end for

3.1.2.2 Bi-directional backtracking

Ramethy uses an extended n-step FM-index search operation to support inexact read alignment,

i.e. alignment whereby substitutions, insertions or deletions (edits) have occurred in the read.

This is done through introduction of backtracking: the state of a read is captured in a stack, while

performing edits to try and achieve exact alignment. A naive brute force approach would have

resulted in the search operations scaling exponentially with the number of edits allowed.

3.1. Ramethy 29

However, Ramethy extends the FM-index search by generating an FM-index for the forward

and reversed reference genome, allowing both backward and forward search operations respec-

tively. By placing constraints on the mismatch position in a read, an efficient bi-directional search

can be performed where much of the search space can be removed by exact matching long seg-

ments. As Methy-Pipe’s BSAligner has the alignment constraint that no more than two mismatches

can occur, a simple approach to segmenting a read failing to inexactly align is used. This involves

dividing the read into two segments, and forward or reverse exact matching half of the read before

the search is extended with edit permutations (see F.3). This approach is based upon the 2-way

BWT structure proposed by T.W. Lam et al.[66].

Figure F.3: One/Two mismatch alignment phases - arrows indicate search di-
rection and reads are represented by rectangles, with shaded segments indi-
cating where mismatches are tested and non-shaded segments indicating exact
matches[64].

3.1.3 Alignment Architecture

The alignment parameters used in Methy-Pipe ensure (1) reads must be aligned to the reference

genome with no more than two mismatches, and (2) reads must be aligned uniquely. Ramethy

supports these parameter through three modules based on the n-step FM-index: exact match, one

mismatch and two mismatch alignment. The designs overall performance is improved by pipelining

the module operations to achieve high throughput and replicating modules on the FPGA to achieve

high parallelism.

Ramethy runs on the Maxeler MPC-X1000 data-flow node, which provides up to 8 DFEs in

a 1U form factor, with power utilisation similar to a single high-end server. Each DFE is composed

of a single Altera Stratix V FPGA with 48GB of dynamic RAM (DRAM), where the DRAM consists

of 6x8GB memory modules that give a 384 byte world length. A single memory controller is used

to manage the read and write operations.

3.1.3.1 Exact Alignment

In the case of the exact match module, Alg.3 is simply performed on hardware. The human genome

index is too large to fit in on-chip block RAM (BRAM), so is stored on off-chip DRAM attached to the

FPGA (see F.4a). Accessing this memory introduces latency, which alongside FM-index iteration

interdependence results in a non-full pipeline. The high level design for this module is presented in

F.4b. In each cycle, the low and high index elements from F are accessed from off-chip DRAM via

a data buffer. The index data, current (low, high) interval and relevant read symbols can then be

used to compute the next interval. These new interval values overwrite the previous values in the

circular buffer, and the index elements are streamed to an off-chip memory command generator.

After the required number of alignment steps have been executed, the final interval is transferred

to the host.

30 Chapter 3. Related Work

(a) General module design (b) Exact match module

Figure F.4: Ramethy module designs - data buffers are denoted by D, and memory command
generators are denoted by CG[64].

3.1.3.2 Inexact Alignment

The one and two mismatch modules are responsible for inexact matches, and are extensions of

the exact match module; additional logic is simply required to control FM-index backtracking.

To support the second Methy-Pipe alignment parameter of only permitting unique alignments,

all possible mismatch positions in each read must be tested. A bread-first approach is taken to

backtracking, with the aforementioned 2-way BWT algorithm being used to avoid the exponential

number of alignment steps required for the number of mismatches allowed. This requires use of

the reversed reference genome. Note that this stage is terminated after a reference position is

found with one mismatch, or two mismatches if the former could not be identified.

3.1.3.3 Alignment Workflow

Before alignment, all the reads are loaded onto host memory and compressed into reduced bitmaps.

Initial intervals are initialised, and precomputed for excess symbols where read lengths aren’t di-

visible by the index step n. Once this pre-processing is complete, the FPGA device is configured for

exact match. The reduced bitmap reads and initial index intervals are streamed to the FPGA, and

the final intervals streamed back to the host once the concurrent processing has been completed.

Depending on whether the interval indicates reads as unaligned or not, they may be filtered; the

FPGA is then configured for one mismatch, and needs to only handle the unaligned reads. Again,

the host can filter out reads that have been aligned, as they are indicated by a single index interval

(the number of hits to determine alignment uniqueness is also returned). The process is repeated

for two mismatches. Finally, all the intervals can be converted using the suffix array to reference

genome coordinates.

3.1.4 Results

The performance of Ramethy was analysed using an FM-index with a step of n = 3 and bucket

size d = 368 (consuming 3.3GB of memory). The runtime, energy consumption and alignment

accuracy of Ramethy was compared primarily to that to aligners widely regarded as some of the

fastest on their platforms: (1) SOAP2 running on a 1U server rack with dual Intel Xeon E5-2650

CPUs and (2) SOAP3-dp running on a NVIDIA GTX-580 GPU. For all tests, 10M 75bp reads were

used. This is only 3% of a typical alignment workload, so the reconfiguration time of roughly 12s

was not included due to the negative bias it could have introduced. Realistically, this time would

also only constitute about 3.5% of the total alignment with a typical workload.

3.2. Fernandez, Najjar and Lonardi 31

Using 10M 75bp bisulfite sequencing reads of the human genome simulated by Sherman[67],

results show a 14.9 times speedup compared to SOAP2 running with 16 threads on dual Intel

Xeon E5-2650 CPUs and a 3.8 times speedup compared to SOAP3-dp running on a NVIDIA GTX

580 GPU. However, upper-bound performance estimations suggest the MPC-X1000 design could

achieve a maximum speedup of 88.4 times that of SOAP2 and 22.6 times that of SOAP3-dp. These

upper-bound estimations are based on the situation whereby the MPC-X1000 memory modules are

detached, allowing for 3 modules per configuration. It is also worth noting, experiments indicated

Ramethy’s reconfigurable architecture exceeds the performance of a static design, operating 11%

faster when accounting for reconfiguration time. Due to its lower operational clock frequency and

shorter alignment time, Ramethy uses 72W, which is roughly 3 times less total power than both

SOAP2 and SOAP3-dp. The energy consumption was 1.5kJ, which was over 8 times less than

SOAP3-dp and over 21 times less than SOAP2. Ramethy improves both runtime, power and en-

ergy consumption without compromising accuracy; it achieves identical alignment accuracy to the

other two platforms.

As an FPGA accelerated application, Ramethy’s alignment time scales linearly with read

count. Therefore, Ramethy’s runtime can be linearly extrapolated to that of a typical workload.

Compared to the previous alignment time of 5 hours with dual 12-core Intel Xeon CPUs, the

extrapolated result is an impressive 6 minutes. The upper bound estimate would give a time of

just over 1 minute. These alignment times could have a significant influence on the diagnosis

times, response times and consequently patient samples analysed per day.

3.2 Fernandez, Najjar and Lonardi

Fernandez et al.[68][69] have proposed designs also based on the FM-index. In [68], the index

of a small reference genome is stored in on-chip BRAM, which can align 1000 reads in 60.2µs on

a single Xilinx Virtex-6 FPGA. This work is extended in [69] to allow for approximate alignment,

with modules for exact match, one mismatch and two mismatches alignment. For every n permitted

mismatches, n+1 exact string matchers populate an FPGA device in a statically configured pipeline.

When mismatches are detected, the incompatible symbol is substituted with the alternate possible

symbols from the reference genome alphabet and sent towards the next exact matcher for re-

evaluation. This design is built upon the Convey HC-1 platform, and can align 18M reads in 138s.

3.3 Olson et al

Olson et al.[70] have proposed a design based on the Smith-Waterman algorithm. They pre-

compile an index in hardware that allows the mapping of seeds (22bp) of a short read (76bp) to

locations in the reference genome where the seed occurs. The index is a modifiable hash table,

composed of a candidate alignment location (CAL) table and pointer table, and implemented in

hardware. Short reads are scored against the reference genome at each of the CALs using the

Smith-Waterman algorithm. The Smith-Waterman scoring tables are also performed in hardware

as a systolic array, as scoring table cells can have their values computed in anti-diagonal waves[71].

The design is built upon a platform with 8 Pico M-503s, each using Xilinx Virtex-6 FPGAs. This

design aligns 50M reads in 34s.

32 Chapter 3. Related Work

3.4 FPGA aligner comparison

Different alignment solutions use different alignment parameters, and FPGA solutions are not eas-

ily accessible for testing, so a normalised performance metric is used to compare the different

platforms. This is bases aligned per second (bps), and allows for a fairer comparison (see equation

below). Although Ramethy is designed for bisulfite sequencing analysis, with alignment parame-

ters such as total permitted mismatches being specialised to that of Methy-Pipe’s BSAlign, it per-

forms alignment in a rather generalised manner. The difference is that, for bisulphite sequencing,

due to loss of DNA reverse-complementarity the aligner must be run twice for each strand of DNA.

However, bps is a normalised metric that examines solely alignment throughput, which despite the

differing applications of sequences aligners, largely allows comparison.

Let |r| be read length, Nr the read count and ta the total alignment time:

bps =
|r| ×Nr

ta

Definition - Bases aligned per second.

(3.4)

T.I contains bps counts presented in [64] to compare the aforementioned FPGA alignment

platforms. All of the systems tested are housed in a 1U rack unit, suggesting that Ramethy could

offer the highest performance per unit volume.

Program Platform |r| Nr (M) Clock F (MHz) Devices Time (s) bps (M) Speedup
SOAP2 Intel E5-2650 75 10 2000 2 168 4.5 -

SOAP3-dp GTX-580 75 10 772 1 43 17.4 3.9x
Fernandez[69] Convey HC-1 101 18 150 4 138 13.2 3.0x

Olson[70] Pico M-503 76 54 250 8 34 120 26.8x
Ramethy MPC-X1000 75 10 150 8 11.3 66.4 14.9x

Ramethy (U) MPC-X1000 75 10 150 8 1.9 395 88.4x

Table T.I: FPGA aligner performance comparison.

3.5 Summary
In this chapter we presented Ramethy, a novel reconfigurable architecture for accelerating bisulfite

sequence alignment. The architecture targetted Methy-Pipe, replicating its alignment parameters:

(1) reads must be uniquely aligned and (2) alignments cannot have more than two mismatches.

The architecture was also specialised in hardware for 75bp reads, as these form the typical work-

load for Methy-Pipe.

The design was based on the FM-index, and extended with the n-step optimisation and bi-

directional backtracking for inexact alignment. Ramethy was implemented on the Maxeler MPCX-

1000 platform, using 8 FPGAs. It outperformed the CPU-based SOAP2 with a 14.9× speed-up, and

outperformed the GPU-based SOAP3-dp with a 3.8× speed-up. This was achieved whilst using an

order of magnitude less energy, and achieving identical alignment accuracy. For a typical BSAligner

workload of 300M bisulfite sequencing reads of 75bp, Ramethy would align the reads in roughly 6

minutes, whereas the original implementation took 5 hours. In light of these results, it is evident

that Ramethy is a highly competitive sequence aligner and a strong candidate for integration into

not just Methy-Pipe, but other bioinformatics pipelines.

However, Ramethy’s design is limited in accuracy of inexact alignment, as it terminates af-

ter a reference position is found with one mismatch, or two mismatches if the former could not

be identified. This renders the inexact algorithm stage unsuitable for paired-end alignment, as

3.5. Summary 33

all candidates positions would be required for checking repeat regions on the reference sequence.

It is therefore appropriate to extend Ramethy’s design to report all potential inexact alignment

positions, such that the host can manage the results as desired. This will increase the number

of alignment positions checked by the inexact alignment module, increasing the amount of back-

tracking performed and consequently reducing the design’s runtime and bps. The alignment design

therefore requires further optimisation to remain highly competitive.

Chapter 4

Optimisation of Short Read Alignment using FPGAs

In this chapter we present a runtime reconfigurable (FPGA) alignment architecture extending and

optimising Ramethy (chapter 3), again targeting Methy-Pipe’s BSAligner. The design achieves

higher alignment throughput than other FPGA-based alignment designs, aligning 144.2M bases

per second (bps), whereas the most competitive efforts of Olson et al. [70] achieved 120.7bps

(the differences in FPGA technologies used are discussed later in the section). The design reduces

the overall alignment time of BSAligner from 5 hours to 13 minutes. The novel aspects of this

contribution are:

1. Oversampling of the FM-index, which prevents some unnecessary random accesses to FM-

index buckets in DRAM. This comes at the cost of an increased index size.

2. Seed and compare alignment stage, which uses direct string comparison to reduce the amount

of inefficient FM-index backtracking used in inexact alignment.

This work is also presented in [9] by J. Arram, T. Kaplan, W. Luk and P. Jiang (Department

of Computing, Imperial College London and Department of Chemical Pathology, The Chinese Uni-

versity of Hong Kong). It has been submitted to IEEE Transactions on Computational Biology and

Bioinformatics for review. All the newly introduced optimisations used are demonstrated in this

chapter for the sake of completeness, with the interval store kernel (4.2.2) and the compare kernel

of the seed and compare module (4.2.3) comprising my contribution to the alignment architecture.

4.1 Alignment Algorithm Overview

The alignment algorithm is composed of four stages, which consecutively filter an initial set of

reads (in .fastq format) into a file annotated with alignment information ready for methylation

calling and subsequent downstream analysis (in .bsalign format). The four stages are: (1) exact

read alignment, (2) seed and compare, (3) one mismatch read alignment and (4) two mismatch

read alignment. This is demonstrated in F.1. These stages are similar to those presented in Ram-

ethy, meeting BSAligner’s alignment constraint of reads being uniquely aligned to the reference

genome with no more than 2 mismatches.

The reads are initially passed through the exact alignment stage, to identify reads with no

mismatches. This stage uses the n-step FM-index, presented in 3.1.2.1, and has been further opti-

mised as in a typical workload it operates on the entire set of reads. Unaligned reads are deemed to

have at least one mismatch, so are passed onto the inexact alignment stages, in particular the new

seed and compare stage. This involves splitting each read into three sections that are aligned to the

reference genome, to check how many positions each seed aligns to. If the total sum of these ref-

erence positions is below a specified threshold, the read is compared directly against the reference

genome at these positions. Any reads with a sum of reference positions exceeding the threshold are

passed to the one and two mismatch stages, which perform backtracking with the FM-index. These

modules are more efficient for inexact alignment with numerous candidate reference positions.

34

4.2. Alignment Optimisations 35

INPUT
Reads (.fasta/fastq)

Stage 1
Exact Match

OUTPUT
0M Reads

Stage 2
Seed

Stage 2
Compare

Stage 3
One Mismatch

OUTPUT
1M Reads

Stage 4
Two Mismatch

OUTPUT
2M Reads

=0 mismatch reads >0 mismatch reads

≤ threshold > threshold

=1 mismatch reads >1 mismatch reads

=1 mismatch reads

=2 mismatch reads
=2 mismatch reads

Figure F.1: Alignment algorithm stages - 0/1/2M represent 0, 1 and 2 mis-
matches in alignment.

4.2 Alignment Optimisations

Prior to introduction of the seed and compare stage, all alignment stages were reliant on the n-step

FM-index search operation shown in Alg.3; in the exact stage it is used conventionally whereas in

the one and two mismatch stages it is extended with backtracking. Naturally, this makes the FM-

index search operation one of the alignment pipeline’s bottlenecks, and a major consideration in

alignment optimisation.

To simplify the explanation of optimisations, the notation used is summarised in T.I. Simi-

larly to Ramethy, this new alignment architecture has a typical workload consisting of 300M short

bisulphite sequencing reads (75bp), so these optimisations involve specialising the hardware ac-

celeration for this 75bp read length. For each optimisation presented, it will be specified when it

cannot be used in a general-length alignment approach.

Symbol Explanation

L Length of a read (bp)
LR Length of the reference genome (bp)
Σq Alphabet size of reads, the query text
Σt Alphabet size of the reference genome, the text
n FM-index step size, number of symbols the suffix

array interval is updated per search iteration
b Number of symbols that the suffix array intervals

are updated for using precomputed values
L Average number of symbols before the low and

high interval values tend to the same FM-index
bucket

d Size of an FM-index bucket
f Sampling factor of an FM-index bucket

Table T.I: Optimisation analysis disambiguation.

36 Chapter 4. Optimisation of Short Read Alignment using FPGAs

4.2.1 Oversampling

Random accesses to the FM-index are costly, as the C-depleted human reference genome requires

significant storage space and consequently storage in off-chip DRAM. This is because in most FPGA

architectures, many GBs of data storage are allowed in DRAM (off-chip large memory, LMem)

but only several MBs of BRAM (on-chip fast memory, FMem), and off-chip DRAM accesses have

a latency in the order of hundreds of cycles. In the n-step FM-index search algorithm, the size of

the suffix array interval (high− low) will decrease or remain the same after each search iteration.

This is achieved by accessing the FM-index twice each search iteration to update the high and low

intervals using the respective FM-index bucket - these two DRAM accesses become very costly.

However, the interval values often tend to the same FM-index bucket after less than 10

iterations. Ideally, this would mean both low and high could be updated using the same FM-index

bucket, and consequently a single access to DRAM. If the number of iterations taken to tend to the

same bucket is L, and the read length is L, then the total number of random accesses is reduced

from 2L to 2L + (L − L). Clearly, if the read length is 75bp or longer, and a single bucket is

required to update low and high after less than 10 FM-index search iterations, there could be a

drastic reduction in unnecessary off-chip memory accesses.

Currently the n-step FM-index does not currently accommodate this. Unnecessary random

accesses would need to be reduced by removing cases where two adjacent buckets have values of

low and high at their respective boundaries. This means instead of two FM-index accesses being

required to update low and high interval values, a single FM-index access would be required.

Proposition: Similar in motivation to the the use of oversampling in signal processing, where

increasing the frequency of signal sampling improves resolution of a signal, we can oversample the

FM-index. This would involve novel sampling buckets from the BWT every d/f symbols, where

d is the BWT length in symbols and f is the new sampling factor. This means the end of a given

FM-index bucket will have the first d/f symbols from the following bucket. To relate this to signal

processing, this means a given bucket has a more representative sample of the complete BWT due

to increased bit length (similar to a signal’s bit depth), so the overall resolution improves. Unless

the interval values are greater than or equal to d/f apart, as f increases, it becomes increasingly

likely a single bucket can be accessed. Unsurprisingly, this increases the index size by a factor of

f , such that if f = 2, n = 3 and d = 256, the reference index would use roughly 9GB of memory

(shown below in equation 4.1). Note that this is still significantly less than the DRAM available on

many FPGAs, and most importantly Maxeler DFEs.

The algorithm for the FM-index search operation can be adapted to Alg.4 (for the sake of

demonstration ignoring the n-step). If the suffix array interval is less than d/f , i.e. high − low <

d/f , the low and high values will be able to access the same FM-index bucket, resulting in only

one off-chip access to the corresponding FM-index bucket being required to update the suffix array

interval for the remaining symbols. Again, this is because thanks to oversampling the BWT when

creating these buckets, the regions of the BWT required to update the interval values are more

likely to be accessible within a single bucket. Note that we evaluate the performance provided by

oversampling in detail in 5.5.3.2.

4.2. Alignment Optimisations 37

Fernandez et al. [69] store a small reference index (chromosome 14) in BRAM, whereas

our design uses the larger DRAM to accommodate an entire human genome index. The support

of whole-genome indexes is crucial, with the rise of whole-genome sequencing analysis (such as

bisulfite sequencing analysis). Alongside the n-step, the use of FM-index oversampling is a novel

way to reduce expensive off-chip accesses to DRAM. This problem would not necessarily be faced

by designs using BRAM to store the FM-index.

Let n be the FM-index step, d the bucket size, |R| the substring length,

f be oversampling factor and Σ the reference string alphabet:

M ≈ f ·
(

4× |R| × (|Σ| − 1)n

d
+
|R| × n× dlog2 |Σ|e

8

)
Bytes

Definition - Total memory usage of oversampled n-step FM-index.

(4.1)

Algorithm 4 Oversampled FM-index search algorithm
Input: Substring R, reference string S and FM-index FS with bucket size d an sampling factor f
Output: SA interval where R is a prefix in S

Function: calc interval(s, Fb, v) returns an updated interval using FM-index bucket Fb, inter-
val (low/high) value v and symbol s.

low← 0
high← |R|
for i← |R| − 1 to 0 do

if high− low ≥ d/f then
low← calc interval(R[i], Fs[(low1)/(d/f)], low1)
high← calc interval(R[i], Fs[high/(d/f)], high)

else
low← calc interval(R[i], Fs[(low1)/(d/f)], low1)
high← calc interval(R[i], Fs[(low1)/(d/f)], high)

end if
end for

4.2.2 Interval store

In computational genomics, k-mers are all the possible subsequences of length k that could be ob-

tained from a DNA read. For example, the read AGCTAG could produce 3-mers {AGC, GCT, CTA,

TAG}. For a given k, the set of possible k-mers in string of length L is L − k + 1, where L is the

string length. Given an alphabet of size Σ, the total possible k-mers is (Σ)
k. For each k-mer, the

corresponding suffix array intervals can be precomputed and stored.

Proposition: Given a section of a read with b symbols, the corresponding suffix array interval has

only (Σq)
b values. This b can be chosen such that all the precomputed suffix array intervals can be

stored using the few MB of BRAM storage available on the Maxeler DFEs. Within a cycle, Maxeler

limits the number of write operations that can be made, or writes in conjunction with reads, but

several reads can be made. This allows the suffix array interval to be updated for b symbols effi-

ciently, and reduces inefficient random accesses to off-chip DRAM from 2L to 2(L− b). This could

be performed for roughly 9 symbols of each read, given the limitations of BRAM storage of 8MB.

This number was arrived at by the total number of suffix array interval entries and the maximum

of 64 bits required to store each interval, where low and high each require 32 bits.

Generalisation Issue - This optimisation could not be used in a general length alignment platform

in conjunction with the n-step FM-index optimisation.

38 Chapter 4. Optimisation of Short Read Alignment using FPGAs

4.2.3 Seed and compare

In 3.1.2.2 a bi-directional backtracking extension was introduced to the FM-index, specifically a

variant on a 2-way BWT, allowing inexact alignment. This reduced excessive backtracking through

restricting the sample space in which read edits had to be tested for exact alignment. However, the

one and two mismatch stages are still comparatively slower than the exact match stage due to the

fact they extend the n-step FM-index search further.

Proposition: An additional pipeline stage, seed and compare, can be introduced to remove some

of the workload passed to the one and two mismatch stages. More specifically, this reduces the

amount of inefficient backtracking taking place for inexact alignment. This seed and compare

module will efficiently manage the inexact alignment of reads with few candidate alignment lo-

cations on the reference genome. There are four stages to the seed and comparison optimisation,

illustrated in F.2:

1. Each read is split into three segments (seeds). If the read length is L, then the seeds will

have (start,end)s of : (0, L/3), (L/3, 2L/3), (2L/3, L).

2. These seeds are individually aligned to the reference genome using exact match. This iden-

tifies positions where regions of the individual read could occur without mismatch in the

reference genome.

3. Given we know at least one of the seeds will contain a mismatch symbol, the aligned positions

found by the three seeds must be collated and normalised. For example, if ai stands for

a position where ith seed has aligned, and ui means there is not a connected alignment

position for i, we are looking for patterns of contiguous alignments (separated by L/3 bases)

such that: a1a2u3, u1a2a3, a1u2a3, a1u2u3 etc. In F.2, we see these valid patterns: aAaBuc
and aAuBaC .These patterns indicate a mismatch has occurred in one or two of the seeds,

and one or two seeds have aligned. This qualifies as a valid inexactly aligned read. However

if all three seeds do not align to the reference genome, it can be inferred that a read contains

at least three mismatches, which does not meet BSAligner’s alignment constraint of up to

two mismatches, so the read is discarded.

4. We are left with a series of positions on the reference genome for each read, which can now

be compared to identify the specific mismatches. In F.2, these are X and Y, the positions

of the first seeds in the valid alignment patterns. Assuming the positions to be compared

against are below a specified threshold (i.e. fewer than a given number of positions need

to be considered), direct string comparison can be used to inexactly match the read and

identify the locations and symbols where mismatches have occurred. If any read has a greater

number of reference positions than the threshold, then it will be passed on to the one and

two mismatch stages.

The direct string comparison can be performed in a highly parallel manner on FPGAs, as

each equality checks can take place over each of a read symbols in parallel. If few positions need

to be checked using this direct string comparison, it should be more efficient than the backtracking

peformed by the one and two mismatch stages.

This seed and compare stage is novel, as seed and expansion approaches are conventionally

used when the alignment algorithm is built upon hash tables. Seeds are often shorter sequences

of reads, and the hash tables record the location of these seeds in a reference genome. The en-

tire read can be verified at the locations recorded on the hash table, for example using the Smith

Waterman algorithm. This was demonstrated by Olson et al. in [70]. However, seed and compari-

son approaches have not been used by FM-index based designs to reduce inefficient backtracking.

4.2. Alignment Optimisations 39

For example, Fernandez et al. inefficiently support inexact alignment in [69] by re-using exact

alignment modules to match all permuted reads.

Figure F.2: Seed and compare stages, where L is the length of a read.

In order to gauge the viability of the seed and compare stage, we altered the software

simulation of the alignment pipeline so that the number of candidate locations in the reference

genome for inexactly aligned reads would be written to file. Using this information, it was possible

to plot how many reads had particular numbers of positions to be checked. In F.3 this graph is

presented for a set of 10M bisulphite reads generated by Sherman from the human genome[45],

to demonstrate the sheer volume of reads with few reference positions to be checked. Although

many reads had in the order of thousands of potential reference positions, 70-80% fall within a

threshold of 10, which could mean a significant inexact alignment acceleration using the seed and

compare stage.

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5
·106

Number of Positions

Fr
eq

ue
nc

y
(×

10
6
)

Figure F.3: Reference hits for hg19, using 10M reads produced by Sherman.
The number of candidate positions for inexact alignment hits is plotted against
the frequency of occurence. Note that any reads with more than 100 positions
were discounted for graph clarity.

4.2.4 Optimisation Summary

The FM-index alone results in 2L random accesses to off-chip memory every search iteration. The

pre-existing n-step optimisation reduces this significantly to 2L/n. The interval store would reduce

this to 2(L − b), for a small b, which results in a reasonable improvement. Oversampling would

reduce this to 2L+(L−L), a significant improvement. All these optimisations combined reduce the

40 Chapter 4. Optimisation of Short Read Alignment using FPGAs

total accesses to off-chip DRAM to 1
n ·(2 ·(L−b)+(L−L)). Given BSAligner’s typical workload, L is

75bp, the current FM-index step is n = 3 and the interval store pre-computations will support b = 9

to remain within 8MB of BRAM. Overall, these optimisations reduce the total off-chip accesses from

150 by around 6 times if L falls within 15-20 symbols, i.e. if it takes an average of 15-20 search

iterations (over roughly a fifth of a reads symbols) for the low and high interval values to tend to

the same bucket. This corresponds to fewer clock cycles by an order of six hundreds.

4.3 Hardware Design

In this section we present the hardware designs used to implement BSAligner with FPGA acceler-

ation. This includes an explanation of the hardware platform being targeted (the Maxeler MPC-

X2000 dataflow node), the high level module design for exact and inexact alignment, alongside the

implementation of the interval store and seed and compare optimisations. The modules composing

the alignment platform are built as a run-time reconfigurable architecture, as described in 3.1.1,

where each module has its own FPGA configuration which is replicated using all the resources

available on the FPGA devices when required.

4.3.1 Maxeler MPC-X2000 platform

The hardware design targets the Maxeler MPC-X2000, which is part of the MPC-X dataflow node

series with architecture shown in F.4. It provides up to 8 maia DFEs, with a 1U form factor and

the power consumption of a high-end server. Each DFE is comprised of a single Altera Stratix V

FPGA and up to 96GB of DRAM, with a single on-chip memory controller. These DFEs can all

communicate directly with one another using a dedicated high-speed interconnect, the MaxRing.

Similar to a GPU, the DFEs are a shared resource on a network and simply connected to the

host CPU via by dual fourteen or quad data rate (FDR or QDR) Infiniband. Infiniband is a high

throughput and low latency interconnect that uses switching fabric technology, as opposed to a

shared medium such as Ethernet. This is combined with remote direct memory accesses (RDMA)

to ensure memory transfers take place without inefficient memory copies.

Figure F.4: Maxeler MPC-X dataflow node architecture [72].

4.3.2 Interval store

The interval store is accessed using a FPGA kernel (BramKernel.maxj) which takes as input the bit

compressed reads and their ids from the host CPU, and as output provides an exact match module

with reads and the pre-computed suffix array interval values of low and high. The kernel is used

for both the seed and exact match modules. Specifically, for the exact match module the output

stream connects to the exact match module 1 kernel (Em1Kernel.maxj), which has its functionality

described in the following section. The code from the exact match kernel manager responsible for

this stream mangement is shown in Alg.4.1.

4.3. Hardware Design 41

The way in which the interval store is accessed by the interval store kernel is shown in

Alg.4.2. The first 9 bits are extracted from the bit compressed read, and each symbol’s value is

multiplied according to the possible number of k-mer permutations possible to create an address.

This is derived from the fact that (Σq)
b possible suffix-array values can exist for the reads first b

symbols, where Σq is 3 (A, G, T) due to C-depletion, and entries are stored lexicographically. The

access itself uses Maxeler fast memory (FMem), where the low and high stores are mapped ROMs

from the host CPU. To update the high and low values for the first 9 symbols, these two stores can

just be read in a highly abstracted manner given the address computed using the symbol values.

KernelBlock kBram = addKernel (new BramKernel (makeKernelParameters (” BramKernel ”))) ;
KernelBlock kEm1 = addKernel (new Em1Kernel (makeKernelParameters (” Em1Kernel ”))) ;

DFELink readInput = addStreamFromCPU(” readInput ”) ;
kBram . get Input (” readInput ”) <== readInput ;

DFELink bramOutput = kBram . getOutput (” a l ignOutput ”) ;
kEm1 . get Input (” readInput ”) <== bramOutput ;

Code Extracts 4.1: Extract from Em1Manager.maxj - interval store stream management.

DFEVector<DFEVar> readSym = readInput . get (” readSym ”) ;
readSym = readSym . ro ta teE lementsR ight (readLength − 9) ;

// i n t e r v a l s t o r e addr e s s = sym1 + (3∗sym2) + (9∗sym3) + (27∗sym4) + (81∗sym5) . . .

DFEVar storeAddr = dfeUInt (15) . newInstance (th i s) ;
DFEVar m u l t i p l i e r = cons tant . var (dfeUInt (13) , 1) ;
for (in t i = 8; i >= 0; ++i)
{

storeAddr += readSym[i] . c a s t (dfeUInt (15)) ∗ m u l t i p l i e r ;
m u l t i p l i e r = (m u l t i p l i e r << 1) + (m u l t i p l i e r << 0) ;

}

readSym = readSym . ro ta t eE l ement sLe f t (readLength − 9) ;

Memory<DFEVar> lowStore = mem. a l l o c (dfeUInt (32) , memSize) ;
lowStore . mapToCPU(” lowStore ”) ;
Memory<DFEVar> highStore = mem. a l l o c (dfeUInt (32) , memSize) ;
h ighStore . mapToCPU(” highStore ”) ;

DFEVar low = lowStore . read (storeAddr) ;
DFEVar high = highStore . read (storeAddr) ;

Code Extracts 4.2: Extract from BramKernel.maxj - BRAM address computation for interval store

accesses.

4.3.3 Exact alignment modules

The exact alignment stage in the alignment pipeline is composed of two modules, whereby the

first has been optimised with the interval store. These modules will be detailed separately, and are

illustrated in F.5. Note that these modules can be merged to form a single module, yet these are

presented seperately for clarity.

42 Chapter 4. Optimisation of Short Read Alignment using FPGAs

(a) Exact match module 1. (b) Exact match module 2.

Figure F.5: Exact match module hardware designs[9].

4.3.3.1 Module 1

Module 1 is based on the FM-index search algorithm, and extended with the interval store. This

optimisation allows the suffix array interval to be updated for the first 9 symbols of each read,

through use of pre-computed interval values stored in BRAM. The appropriate symbols are ex-

tracted from each read passed through the input stream, and converted into an address, allowing

the corresponding values of low and high to be accessed from BRAM. The suffix array interval must

then be updated for the remainder of the symbols, L− b, using the standard FM-index search.

The FM-index is stored in off-chip DRAM, and in each search iteration two buckets accesses

are required. Two streams to DRAM are used to update the suffix array interval using low and high,

halving the DRAM bandwidth. To propagate the current values of low and high into subsequent

computation, a circular buffer is used. This is also able to store multiple reads, allowing loop

pipelining.

Following oversampling of the FM-index, a few different cases each search iteration must be

considered. If high− low < d/f , the suffix array interval values have tended to the same FM-index

bucket, and the result is streamed back to the host CPU where it can be managed by module 2. If

low > high, a symbol is unaligned and indicates a mismatch, terminating the FM-index search and

streaming the result back to the host. Alternatively, the read may exactly align, again requiring the

result to be streamed back to the host.

4.3.3.2 Module 2

If high − low < d/f , the suffix array interval can be updated for the remaining read symbols

using module 2. This module is also based on the FM-index search algorithm, however only one

stream to DRAM is required as only one FM-index bucket must be accessed. This allows the single

stream to fully utilise the DRAM bandwidth. The search operation continues until the entire read is

aligned, or low > high, indicating a mismatch. The result is then streamed back to the host CPU. If

a mismatch has occurred, the read is passed to the new seed and compare stage, or alternatively if

it has been aligned it can have its suffix array interval converted into a reference genome position

at the host.

4.3.4 Seed and comparison module

The seed and compare stage in the alignment pipeline is composed of two modules, seed and com-

pare, each with their own kernels and corresponding managers. The stages of seed and comparison

were previously illustrated in F.2.

4.3. Hardware Design 43

4.3.4.1 Seed

The read is first split into 3 seeds, which are exact aligned using the FM-index search. Similar

to exact match module 1, the suffix array interval for the first several symbols of these seeds can

be precomputed using an interval store, and the FM-index on off-chip DRAM must be used to

update the suffix array interval for the remainder of the symbols. The seed kernel extends the

exact match module 1 with the management of the 3 seeds. The alignment positions of the 3 seeds

are streamed back to the host CPU, where the suffix array intervals can be converted into reference

genome positions.

4.3.4.2 Compare

If the total number of reference genome positions collated over the three seeds is less than a

pre-specified threshold, the read and reference are directly compared at each position using the

compare kernel (CompareKernel.maxj). Reads are streamed to this kernel with an equal length

segment from the reference genome, corresponding to the candidate alignment position. The

string comparison used is an incredibly simple equality test over each character, and shown in

Alg.4.3. The number of mismatches, their symbols and positions are streamed back to the host

CPU. Note that additional logic is not required to manage in excess of two mismatches, as any

reads with more than two mismatches will have been filtered by the seed stage (i.e. if all 3 seeds

do not align to the reference).

for (in t i = 0; i < MAX READ LENGTH; ++i) {
posMismOne = i < readLen & noMism === 0 & pat te rn [i] !=== t e x t [i] ?

cons tant . var (dfeUint (8) , i) : posMismOne ;
symMismOne = i < readLen & noMism === 0 & pat te rn [i] !=== t e x t [i] ?

t e x t [i] . c a s t (dfeUint (8)) : symMismOne ;
posMismTwo = i < readLen & noMism === 1 & pat te rn [i] !=== t e x t [i] ?

cons tant . var (dfeUint (8) , i) : posMismOne ;
symMismTwo = i < readLen & noMism === 1 & pat te rn [i] !=== t e x t [i] ?

t e x t [i] . c a s t (dfeUint (8)) : symMismTwo;
noMismatch = i < readLen & pat te rn [i] !=== t e x t [i] ? noMismatch + 1 : noMismatch ;

}

Code Extracts 4.3: Extract from CompareKernel.maxj - read (pattern) and reference (text)

comparison

4.3.5 Inexact alignment module

Any read with seeds aligning to a number of positions exceeding the specified threshold will be

processed by the one and two mismatch modules. These are similar in design to Module 1 of exact

match, yet incorporate bi-directional backtracking allowing inexact alignment using the FM-index.

The inexact match hardware design is illustrated in F.6. Both the one and two mismatch modules

contain additional circular buffers that allow the storage of mismatch state, where each mismatch

record is composed of a symbol, position, low and high value. These states are used to control

backtracking.

The number of alignment positions is unpredictable, so the results of backtracking must be

stored in off-chip DRAM before being streamed to the host CPU once processing has finished. This

requires creation of a third stream to DRAM, for writing these results, which further divides the

bandwidth. Given that there may be a range of alignment hits, the output of the mismatch modules

is a set of suffix array intervals which can all be converted into reference genome positions at the

host.

44 Chapter 4. Optimisation of Short Read Alignment using FPGAs

Figure F.6: Inexact match module hardware designs[9].

4.4 Performance Evaluation

In this section we evaluate the performance of the bisulfite sequence alignment design, providing

comparisons against the fastest CPU, GPU and FPGA-based alignment solutions currently available.

We compare performance using simulated sequencing data, namely bisulfite sequencing data and

data replicating raw reads from a consensus genome. Beyond the runtime and throughput of the

alignment design, FPGA resource usage and system energy consumption is also evaluated. First,

the experimental platform is specified, before describing the chosen sequencing data sets and

finally presenting the alignment performance.

4.4.1 Platform specification

The bisulfite sequence alignment design is run on the MPC-X2000 using 8 DFEs, each equipped

with a Altera Stratix V FPGA and 48GB of DRAM. The FM-index used is constructed with a step size

of n = 3, bucket size d = 256 and oversampling factor f = 2. This produces a 8.7GB index for a

C-depleted version of the human genome[45]. MPC-X2000 is limited in that only a single memory

controller is available per FPGA, limiting our design to a single module populating each of the 8

FPGAs. The only exception to this is the compare module, which does not require data streams

to DRAM, and can consequently have 8 modules populating each FPGA. In the cases where the

memory controller is required, the random access pattern of the FM-index search algorithm reduces

performance for the MPC-X2000, as the controller is optimised for coalesced memory accesses.

Theoretical peak memory bandwidth per FPGA is 38GB/s, however measurements indicate that

only 4.2GB/s is achieved.

Given the architecture is runtime reconfigurable as opposed to static, there is an FPGA re-

configuration time. This is roughly 3s per FPGA, and ignored as the sequencing data sets used

for testing are small compared to a typical workload to avoid introducing a negative bias. The

FM-index transfer time of roughly 2.5s and disk IO is also ommitted from run-time measurements.

In a typical workload of 300M short reads, performance suggests these overheads would amount

to < 5% of total run-time. We do however include the time taken by the host CPU to perform oper-

ations such as convert suffix array intervals into reference genome positions. This does not include

operations such as creating the FM-index and pre-computing suffix array intervals; although these

are slow operations, the concencus human genome undergoes irregular changes and consequently

these resources can be re-used considerably.

4.4. Performance Evaluation 45

4.4.1.1 Competitor test platforms

The bisulfite sequence alignment design we have presented will be compared to the following

reputable CPU-based tools: SOAP2 v2.21[41], Bowtie2[73]1 and BWAaln+samse[74]. In our

alignment design, the host CPU gets returned a suffix array interval of all possible hits, allowing

uniqueness of alignment to be identified. In all testing however, the other platforms will be run

such that they report the random best hit out of the best possible alignments (that is, if there is

more than one candidate). The maximum of two-mismatches property of our alignment is not

enforced by these other aligners, and has been specified for SOAP2. To alleviate any performance

loss that results, BWA has been run with the -very-fast-flag set, and all the platforms were run on

16 threads. The tools are run using dual Intel Xeon X5650s with 120GB of DDR3-1333GHz RAM.

The performance is also compared to GPU-based SOAP3-dp[5], also aligning with a maximum of

2 mismatches and finding the best random hit. It is run on a NVIDIA Tesla C2070, with 448 cores,

6GB of GDDR5 and a memory bandwidth of 144GB/sec. It runs on the Kepler architecture and has

compute capability 2.0.

4.4.2 Sequencing data sets

Three different types of sequencing data are used to test the performance of our bisulfite sequenc-

ing design against the competitor platforms:

1. Simulated bisulfite sequencing reads: As a bisulfite sequencing design, primarily bisulfite

sequencing data was chosen to test performance. Realistic bisulfite sequencing reads can be

simulated using Sherman, as bisulfite conversion rates can be adjusted at C-G and non C-G

(C-H) sites. We used the following command to generate 10M reads of length 75bp from

hg19:

. / Sherman -q 40 -I 75 -CG 20 -CH 98 -e 0

Bisulfite sequencing however is a rather unique case of sequence alignment, as the alphabet

changes from {A,C,G, T} to {A,G, T} and there is a loss of complementarity between DNA

strands. Although the CPU and GPU platforms can be tested with the simulated bisulfute

sequencing reads, it is not possible to run the competitor FPGA platforms, let alone with

the sequencing data of our choosing given the inflexibility of hardware designs. Therefore,

we must use the previously defined bases aligned per second (bps) metric, whilst aligning a

more generalised sequencing data set to ensure fair comparison.

2. YH genome sequencing reads: In order to arrive at a bps metric allowing comparison to

other FPGA alignment designs, we will use 10M reads of 100bp attained by whole genome

sequencing over the YH genome[75]. Clearly our alignment platform is specialised to 75bp

reads, so we analysed SOAP2’s alignment output for the YH genome reads to simulate a

75bp data set demonstrating the same alignment percentages. The differing alignment per-

centages between the bisulfite reads and YH genome reads are demonstrated in F.7. Note

that any reads with above 2 mismatches were deemed unaligned, due to the constraint on

our alignment design.

3. 0,1 and 2 mismatch reads: In order to attribute the demonstrated results to specific

modules of our alignment design, we have also generated three datasets of 10M reads of 75bp

by directly sampling hg19. These three sets have 0, 1 and 2 mismatches respectively inserted

into random positions of the reads. This sheds some light into the relative performances

1Bowtie2 is the alignment platform used by Bismark, a bisulfite sequencing mapper[36].

46 Chapter 4. Optimisation of Short Read Alignment using FPGAs

of the exact match and inexact match modules. These are tested against only SOAP2 and

SOAP3-dp, due to the difficulties in enforcing mismatch constraints on the other platforms.

(a) Bisulphite sequencing reads produced by Sherman.

53%

0M

2%

1M
2%

2M
43%

Unaligned

(b) Raw sequencing reads from the YH
genome[75].

73%

0M

12%

1M

3%

2M

12%

Unaligned

Figure F.7: Alignment percentage comparison between bisulfite and non-
bisulfite data sets. Note that any reads with above 2 mismatches were deemed
unaligned for the sake of testing.

4.4.3 Runtime and throughput evaluation

4.4.3.1 0, 1 and 2 mismatch reads

The performance of our design is measured for exact match, one mismatch and two mismatch

alignment using corresponding simulated data sets with 10M reads taken from hg19. This was

compared to the performance of SOAP2 and SOAP3-dp, CPU and GPU aligners respectively, as their

alignment parameters are highly configurable allowing the number of mismatches to be specified

across the full read being aligned2. The performance of our design relative to these two platforms,

alongside the performance previously achieved by Ramethy, is shown in F.8.

Our design was significantly faster for exact and inexact matching with up to 2 mismatches,

with the largest performance difference being seen for exact match, where the run-time was 80.9

times faster than SOAP2 and 24.8 times faster than SOAP3-dp. This strong performance can in part

be attributed to the interval store and oversampling optimisations, which reduced the number of

random accesses required in the FM-index search operation. The exact improvement of the exact

kernel achieved through optimisation is roughly 9.5%, as shown in T.II.

The performance difference was less substantial over inexact matches. For one mismatch,

our design was 17.4 times faster than SOAP2 and 8.3 times faster than SOAP3-dp. For two mis-

match, our design was only 3.5 times faster for SOAP3-dp, but 14.6 times faster than SOAP2. The

performance gap would have closed significantly without the seed and compare stage, with inexact

matching becoming roughly 2.5 times worse. This is because by setting a comparison threshold

of 20, almost 80% of the reads were able to rely on the lightweight compare kernel for inexact

alignment.

For each set of reads, our design is faster than Ramethy, however in the next section we

present a total bps value less than that of Ramethy for bisulfite sequencing reads. This was initially

surprising, as Ramethy terminates inexact alignment after a single valid reference position has

2Bowtie2 and BWA only allow the number of mismatches in alignment seeds to be specified, i.e. in the first n characters
used to determine whether a location in the reference genome is a suitable alignment candidate.

4.4. Performance Evaluation 47

been identified, whereas our design reports all possible positions. This outcome is likely due to

the way in which the reads are being simulated; the two mismatch reads created from raw reads

likely do not align to a large number of reference positions, in turn resulting in a performance

improvement following the seed and compare optimisation.

Figure F.8: Run-time tests for 10M 0, 1 and 2 mismatch reads from the hg19.

137.5
151

383.3

42.2
72.6

92.7

3 10
27

1.7 8.7
26.2

0 1 2
0

100

200

300

400

Mismatches

R
un

-t
im

e
(s

)

SOAP2 SOAP3-dp Ramethy Our design

Table T.II: Exact match and seed kernel acceleration with oversampling and the interval store.

Kernel Exact Match Seed

Reads (M) 10 20 30 10 20 30
Speed-up (%) 9.47 10.17 9.48 19.23 26.21 27.65

4.4.3.2 Bisulfite sequencing reads

The performance of our alignment platform using bisulfite sequencing reads representative of ac-

tual data found in BSAligner’s typical workload is incredibly promising. Compared to CPU aligners,

T.III indicates that our design is at least 15.4 times faster. Our design is also 6.2 times faster than

the GPU aligner. Overall, this results in a significantly higher bps metric of 56.82.

In F.7a the alignment percentages for this data set were presented: 53% exactly matching,

2% with a single mismatch, 2% with two mismatches and 43% being deemed unaligned. In terms

of the percentage of run-time spent on the corresponding modules: 7.5% on exact match, 12.1% on

seed and compare, 9.1% on one mismatch and 71.3% on two mismatch. Two mismatch alignment

took almost 75% of the total run-time, for alignment of a small fraction of the total read set. This

is clearly the bottleneck of our design, and should be the target of further optimisations. This

bottleneck can be eliminated by terminating inexact alignment after the first reference position is

found - this was demonstrated by Ramethy, which achieved 66.4bps over a similar set of bisulfite

sequencing reads. This however reduces the aligner’s utility, reducing accuracy, and making the

algorithm stage unsuitable for paired-end alignment (this was motivation behind the optimised

alignment design).

Following our definition of a run-time reconfigurable alignment architecture’s run-time in

3.1.1, which scales linearly with the read count, it is possible to extrapolate this 10M read workload

to that of a typical 300M workload. The 13.2s required to align 10M bisulfite sequencing reads

becomes 396s (6.6 minutes) for 300M over a single strand, so little over 10 minutes for 300M

reads over both the Watson and Crick strand. This is a tremendous improvement over the 5 hour

alignment time taken when running BSAligner on dual 12-core Intel Xeon processors.

48 Chapter 4. Optimisation of Short Read Alignment using FPGAs

Program Platform Clock F (MHz) Devices Time (s) bps (M) Speed-up

SOAP2 2x Intel X650 2660 2 256.1 2.93 1.00×
BWA-aln+samse 2x Intel X650 2660 2 241.4 3.11 1.06×

Bowtie2 2x Intel X650 2660 2 203.0 3.69 1.26×
SOAP3-dp NVIDIA C2070 1150 1 82.0 9.15 3.12×
Our design MPC-X2000 150-200 8 13.2 56.82 19.40×

Table T.III: Comparison of state of the art CPU, GPU and FPGA alignment using 10M bisulfite reads
of 75bp generated by Sherman

.

4.4.3.3 YH genome sequencing reads

The performance of our alignment platform is demonstrated over a data set more representative of

a standard sample used to test non-bisulfite sequencing alignment designs. Specifically, we adapted

a set of real 10M reads of 100bp sequenced from the YH genome, with alignment percentages

as demonstrated in F.7b. This increased the number of reads aligned by the highly optimised

exact match module by 20%, it also increased the number of one mismatch reads by 10%, but

it barely increased the number of reads processed by the inefficient two mismatch module. The

results presented in T.IV demonstrate our design is 10.9 times faster than the design produced

by Fernandez which also uses the FM-index search algorithm, and it is 1.19 times faster than the

Smith-Waterman approach used by Olson.

It is important to note that although bps is a normalised alignment throughput metric, it is

still unfair to compare different FPGA technologies. For example, our design uses Altera Stratix V

FPGAs which using 28nm transistor technology. Olson et al. use Virtex-6 FPGAs which have 40nm

technology, and they could achieve greater performance if using more recent Stratix V FPGAs. If

the transistor technology had a linear relationship to performance, they could improve run-time

by a factor of roughly 1.43. Equally, we could use the recent Convey HC-2 platform, allowing

more modules to populate each FPGA; currently we struggle with memory restrictions, which

will explained in a later evaluation of resource usage. Assuming this could bring about a linear

improvement in the performance of the corresponding alignment stages, we can project a speed-up

of 2.42. These calculations involved very naively scaling the corresponding module’s contribution

to total run-time by the number of potential module population. The results are shown in T.V.

Clearly, it is difficult to directly compare FPGA-based designs without authors collaborating

to use identical hardware platforms and identical data sets, which may not be feasible due to

hardware specialisation for different alignment parameters. However, three notable strengths of

our design are:

1. A run-time reconfigurable architecture is used, allowing flexible and efficient alignment. The

other alignment designs are static designs, with pitfalls detailed in 3.1.1.

2. All alignment hits are found that meet the constraint of up to 2 mismatches, producing

accuracy identical to software, where all the hits are often found and filtered as desired

during downstream analysis. It is again worth noting that Ramethy does not support this.

3. The architecture stores the reference genome FM-index in DRAM, allowing a large reference

to be used, such as the entire human genome. This is made possible through use of optimi-

sations such as the interval store, n-step and the newly introduced novel oversampling of the

FM-index; these in part reduce expensive loads from DRAM.

4.4. Performance Evaluation 49

Program Platform |r| Nr (M) Clock F (MHz) Devices Time (s) bps (M)

Fernandez[69] Convey HC-1 101 18 150 4 138 13.2
Olson[70] Pico M-503 76 54 250 8 34 120.7

Our design MPC-X2000 75 10 150-200 8 5.2 144.2

Table T.IV: Comparison of novel FPGA alignment designs - the read volumes and read lengths
detailed in the papers have been used. Note, our design made use of reads derived from the YH
genome.

Program FPGA Technology Time (s) bps (M) Scaled Time (s) Speed-up Scaled bps (M)

Olson[70] Virtex-6 34 120.7 23.78 1.43× 172.6

Our design Stratix V 5.2 144.2 2.15 2.42× 309.9

Table T.V: Scaled performance comparison of novel FPGA alignment designs - note Fernandez et
al. was omitted due to time limitations.

4.4.4 Power and energy usage

The power and energy usage of our design is compared to SOAP2 and SOAP3-dp, CPU and GPU-

based tools respectively. The MaxOS was used to measure the device power for each of the 8

FPGAs, however the CPU and GPU power values were conveniently sourced from vendor product

information. Our design uses significantly less energy than both SOAP2 and SOAP3-dp, as demon-

strated in T.VI. This is not surprising, as our design runs significantly faster than the others, and

FPGAs run at a much lower operational clock frequency than CPUs and GPUs. Specifically, our

design is run using a maximum of 200MHz clock frequency, whereas SOAP2 and SOAP3-dp run at

2660MHz and 1150MHz respectively. Although expensive to purchase in comparison to CPUs and

GPUs, the operational costs (and recurring engineering costs) are low for FPGA solutions. Along-

side the small form factor of 1U for systems such as MPC-X2000, FPGAs are certainly practical

within a clinical environment.

Program Device Type Device Power (W) Energy Usage (kJ)

SOAP2 CPU 190 48.7
SOAP3-dp GPU 238 19.5

Our design FPGA 86 (avg) 1.1

Table T.VI: Comparison of power and energy usage between different hardware platform aligners.

4.4.5 Resource usage

The proportion of the FPGA resources utilised for our alignment designs different alignment stages

is demonstrated in T.VII. All modules based on the FM-index search algorithm require at least

one DRAM stream, and the achievable population is limited by Maxeler’s memory architecture;

each FPGA has a single memory controller, resulting in random access commands being processed

sequentially. We previously mentioned that only 4.2GB/s memory bandwidth is achieved per FPGA.

Given the latency in the order of hundreds of cycles to access an off-chip FM-index bucket from

DRAM, using multiple modules would not improve performance. The compare module is unique in

that it does not require streams to off-chip DRAM, and as such can be configured with a population

of 8 modules. The total achievable population is simply limited by the number of I/O streams to

the DFE. Currently only 16 are possible, however without any limitations on these streams a total

population of 32 modules could be achievable.

Hardware platforms with multiple memory controllers, and random access speeds that can

rival sequential access, could improve the performance of our alignment design significantly. If

multiple memory controllers were supported, the FPGA could fit 3 of each module during any one

50 Chapter 4. Optimisation of Short Read Alignment using FPGAs

configuration. An example platform that could be used to achieved greater performance is the

Convey HC-2[76], which provides 8 memory controllers and a total of 16 DDR2 memory channels.

This provides a a bandwidth of 80GB/s, which is over twice the bandwidth supposedly achievable

with the Maxeler MPC-X2000. The HC-2 memory crossbar also uses Convey Scatter-Gather DIMMs,

which improves the performance of applications with random memory access patterns3.

Module Clock (MHz) LUT FF BRAM

Exact (module 1) 150 69535 (26.6%) 130062 (25.1%) 763 (29.9%)
Exact (module 2) 150 65582 (25.1%) 119255 (23.0%) 609 (23.8%)

Seed 150 71576 (27.3%) 134190 (25.9%) 1220 (47.7%)
Compare 200 51675 (19.7%) 116023 (22.4%) 948 (37.1%)

One mismatch 150 74084 (28.3%) 141293 (27.3%) 835 (32.7%)
Two mismatch 150 74636 (28.5%) 142583 (27.5%) 845 (33.1%)

Table T.VII: Resource usage on an Altera Stratix V FPGA - the percentage use is
listed for look-up tables (LUTs), flip-flops (FFs) and BRAMs. Note that a single
module is used on an FPGA for each alignment stage, excluding compare where
8 are used due to lack of DRAM streams.

4.5 Summary

In this chapter we have presented a series of optimisations targeting a bisulfite sequencing align-

ment design built upon the Maxeler MPC-X2000 FPGA platform. The design leverages the recon-

figurability of FPGAs, using a run-time reconfigurable architecture to allow highly efficient and

flexible alignment. The platform has a 1U form factor and a low operational cost, using less energy

than CPU and GPU alternatives without compromising alignment accuracy. The design could also

be used to support paired-end read alignment, which was not previously possible using Ramethy.

Evaluations indicates the platform is faster than the competitors tested, but more impor-

tantly, the design dramatically reduces the alignment time of Methy-Pipe’s BSAligner from 5 hours

on dual 12-core Intel Xeon processors to roughly 10 minutes. Consequently, downstream analysis

modules within BSAnalyze will become Methy-Pipe’s bottleneck.

The optimisations presented extend a novel algorithm based on the n-step FM-index search

algorithm: oversampling and the interval store reduce the number of costly off-chip DRAM accesses

to retrieve FM-index buckets; and the seed and compare stage significantly improves the inexact

alignment by 2.5 times. The optimisations have improved the exact kernel and seed kernel perfor-

mance by approximately 10% and 25% respectively, however even after introduction of the seed

and compare stage the two mismatch stage is highly inefficient and will be the target of future

work. Future work will also involve applying reconfigurable architectures such as the one pre-

sented to other bioinformatics pipelines, as bisulfite sequence alignment although computationally

demanding is a very unique type of sequence alignment.

3Convey’s Scatter-Gather DIMMs are optimised for transfers of 8-byte bursts, allowing near peak bandwidth to be
achieved by non-sequential 8-byte accesses.

Chapter 5

Optimisation of Short Read Alignment using GPUs

In this chapter we present a bisulfite sequencing alignment design accelerated using GPUs, and

specifically the CUDA architecture. Following the previous section, where we presented an opti-

mised bisulfite sequence alignment design built upon the Maxeler MPC-X2000 FPGA platform, this

solution leverages the highly optimised alignment algorithm on a GPU-based platform. The design

outperforms state-of-the-art GPU-based sequence aligners SOAP3-dp[5] and BarraCUDA[6], by 2.8

and 6 times respectively. Projections suggest a full implementation could align BSAligner’s typical

workload in roughly 40 minutes.

The novel aspect of this design is the use of FM-index oversampling to reduce the number

of off-chip accesses to CUDA global memory. Without this optimisation, performance is poor due

to un-coalesced load patterns in accessing FM-index buckets.

5.1 Heterogeneous Platform

The motivation behind this contribution is to assess the potential contribution of GPU-based align-

ment to a heterogeneous bisulfite sequencing analysis platform using GPUs and FPGAs. This kind

of heterogenous system would be novel, and we believe it could support the wide-spread clinical

adoption of Methy-Pipe.

A heterogeneous bisulfite sequencing alignment and analysis pipeline would allow a multi-

tude of separate tasks to be shared, or delegated such that the appropriate hardware acceleration

platform is used. In terms of sequence alignment, this could involve delegating (in a fully ab-

stracted manner) stages of the pipeline with an inefficient reconfiguration time away from an

FPGA and towards a GPU. Heterogeneity could also prove useful for downstream analysis, as

GPUs are heavily optimised for performing linear operations on vectors and matrices efficiently -

determining the relative strengths of different hardware acceleration platforms is always highly

algorithm dependent. Numerous heterogeneous bioinformatics platforms with multiple kinds of

processors exist, such as message passing platforms using reconfigurable co-processors alongside

conventional processing with streaming SIMD instructions[77]. However, there does not currently

exist an integrated alignment and analysis pipeline using both GPUs and FPGAs alongside conven-

tional processors.

Within the scope of this project, we only asses the feasibility of a GPU-based alignment

design, by implementing the exact matching alignment stage; this module aligns the majority of

reads in a typical workload, and is built upon the FM-index search algorithm which would be

extended for the inexact alignment stages.

5.2 Alignment Algorithm and Optimisations

The previous FPGA-based alignment algorithm was composed of four stages which consecutively

filter a set of reads: (1) exact match, (2) seed and compare, (3) one mismatch and (4) two mis-

match read alignment. We assess the feasibility of a GPU-based alignment architecture for exact

read alignment alone, as this module processes the bulk of an alignment workload, is algorithmi-

cally extended by the inexact alignment stage, and has been the primary target of most optimi-

sations. This alignment architecture would be extended to target Methy-Pipe, although we solely

implement exact match, so are currently not concerned with BSAligner’s alignment constraint of

51

52 Chapter 5. Optimisation of Short Read Alignment using GPUs

reads uniquely aligning to the reference genome with no more than 2 mismatches.

The FM-index search algorithm forms the basis for the exact alignment algorithm, and is

extended in this design with an n-step and oversampling. These algorithmic changes are not

hardware specialised, but minimise accesses to off-chip DRAM given the FM-index is typically too

large to be stored using on-chip memory in both FPGAs and GPUs. We use a variant of the interval

store optimisation. It previously targeted on-chip BRAM, whereas it will now reside in a specialised

partition of the GPU’s DRAM with a dedicated cache for each multiprocessor.

5.3 CUDA Architecture

In this section we present some important aspects of the CUDA architecture, expanding upon the

introduction provided in 2.6.2.1. These insights inform the design of our alignment architecture.

Specifically, these insights indicate that although CUDA has significant caching capabilities, ineffi-

cient global memory usage could greatly harm kernel performance.

5.3.1 Cache hierarchy

In the CUDA architecture, there are three caches: (1) a 64KB configurable shared memory and L1

cache, (2) a 48KB read-only data cache and (3) a L2 cache. This is illustrated in F.1.

Each streaming multiprocessor (SM) has 64KB of on-chip memory for shared memory and

L1 cache. This can be configured to prioritise either shared memory or L1 cache, with a 48KB/16KB

distribution. In the Fermi architecture, all global loads stores are through this L1 cache, whereas

in Kepler this is often not the case. There is also a new 48KB cache which is read-only for the

duration of a function (supporting the L1 cache), which takes the load footprint away from the

shared memory and L1 cache path. The read-only data cache’s higher bandwidth also supports

full speed unaligned memory access patterns. Directing use of this cache is simple, with the const

restrict keyword or ldg() intrinsic. Finally, the L2 cache is a data unification point between

all SM units, serving load and store requests. Execution with random accesses common to multiple

SMs benefit from this cache.

Thread

L1 Cache
Shared

Memory
Read-Only

Data Cache

L2 Cache

DRAM
(global memory)

Memory Level Latency (cycles)
Zero-copy DRAM 1000+

Global DRAM 400-800
L2 Cache 200-400
L1 Cache 10-20

Shared Memory 10-20
Constants 4-64

Figure F.1: CUDA memory architecture and corresponding memory latencies.
Note that these are general figures and will vary on each CUDA device.

5.4. Alignment Architecture 53

5.3.2 Global memory

Global memory refers to GPU DRAM, which is accessible to both the host and all threads of the

device. It typically has a significant latency of 400-800 cycles, whereas the L2 cache has a latency of

200-400 cycles. Performance of global memory usage is achieved with memory coalescing, aligned

data accesses and minimising memory strides. CUDA also supports zero-copy global memory,

whereby the GPU threads directly access host memory, with an unsurprising latency in 1000s of

cycles over PCIe. This memory is page-locked by pinning or mapping. However, on discrete GPUs

this data is not always cached on the GPU, so it should ideally be read and written only once.

In cases where significant global accesses take place, memory transactions may regularly

miss the L1 cache. When this occurs, the miss value is returned to L1 cache and the respective

warp scheduler is notified to replay the instruction. If the sheer number of load and store instruc-

tions are also increasing the load/store unit (LSU) to its maximum resource usage, this will cause

instructions to be replayed. Overall, this can cause a high global memory replay overhead and

prove to be the kernel performance bottleneck.

5.4 Alignment Architecture

In this section we present an alignment architecture, starting by discussing memory organisation,

before explaining the kernel configuration and the workload management. The memory organisa-

tion section tackles the primarily challenge of accommodating whole-genome sequencing analysis

in GPU memory, as whole-genome index sizes will often exhaust the memory available. The kernel

configuration section tackles the challenge of harnessing the GPUs potential for parallelisation, in

producing an accelerated alignment workflow.

5.4.1 Memory organisation

5.4.1.1 Constraints

The FM-index alone for the human genome consumes 8.7GB of memory, when constructed with a

step size of n = 3, bucket size d = 256 and oversampling factor f = 2. The DRAM available on the

majority of GPU devices is 4-6GB, however high performance devices are available with 12-24GB

of DRAM, such as the Tesla K40. Devices running the new Maxwell architecture are available with

12GB of DRAM at a very reasonable price and will support this design, such as the GeForce GTX

TITAN X.

5.4.1.2 Design

Our design is illustrated in F.2. As this architecture would be extended to specialise for whole-

genome bisulfite sequencing, i.e. optimising Methy-Pipe’s BSAlign, we design our architecture

such that the FM-index is stored in DRAM (global memory). The is necessary for two reasons:

(1) all threads need FM-index visibility, and (2) it would be challenging to store an FM-index

for the whole human genome in a more granular region of the CUDA memory hierarchy without

significantly compromising alignment throughput. The FM-index could be stored in zero-copy host

memory as opposed to global memory, but the increased memory latency would render the design

infeasible.

The most crucial problem our design consequently faces is that random accesses to the FM-

index in device global memory are costly. CUSHAW[78], a reputable GPU-based short read aligner,

uses a bi-directional BWT approach to alignment which requires only 2.2GB memory for the human

genome. However, it also uses global memory, and highlights poor data locality and consequent

warp execution divergence as its performance bottleneck. Our unstinting use of memory, due

54 Chapter 5. Optimisation of Short Read Alignment using GPUs

to the n-step and oversampling optimisation of the FM-index, improves the potential alignment

performance beyond that of CUSHAW. Specifically, although index bucket sizes increase, the sheer

number of global memory loads are reduced. The use of oversampling to achieve this is novel, and

is key in alleviating the problem of random access costs.

Due to the poorly coalesced nature of FM-index accesses and little scope for thread co-

operation with the given alignment algorithm, we also make use of the L1 cache. The const

restrict keywords are used to use the read-only data cache for bucket accesses, and we con-

figure the memory for the kernel such that the L1 cache is preferred to shared memory (using

cudaFuncSetCacheConfig(exact match, cudaFuncCachePreferL1)).

Zero-copy memory must be used however to bypass the memory limitations of GPUs with

less than 24GB of DRAM; the suffix array for a human genome can use in excess of 10GB, and the

reads themselves may use as much as 69GB for a typical workload. This is achieved by creating

device pointers to these resources for the kernel (cudaHostGetDevicePointer()), after loading

them into host memory and creating a mapped, pinned host buffer (cudaHostRegister()). The

reads could be copied in batches to the kernel, however we have chosen to store them in zero-copy

memory for two reasons: (1) a thread addressing scheme can be used that results in coalesced

accesses, as shown in Alg.5.1; and (2) only a single load to get read symbols is required, and a few

writes to update read position and hit count is required following alignment, which should be less

costly in cycles with coalesced accesses than the time taken to copy reads to and from the device.

s t a t i c g l o b a l void
exact match (const u in t32 t BATCH, const u in t32 t VOL , r ead t ∗ reads , . . .)
{

in t i = (threadIdx . x + blockIdx . x ∗ blockDim . x) + ((BATCH − 1) ∗ N READS BATCH) ;
i f (i >= (N READS BATCH ∗ BATCH) | | i >= VOL)

return ;
r ead t read = reads [i] ;

. . .
}

Code Extracts 5.1: Extract from exact.cu - thread addressing scheme used within exact match

kernel, where BATCH identifies the stream of the given kernel call and VOL identifies the number

of reads being processed across all streams.

Although nowhere near as important as the oversampling optimisation, the suffix array

interval store optimisation can be implemented using constant memory, given there is a total of 64

KB constant memory on a device. Clearly this store must be significantly smaller than that using

the 8MB of BRAM available in the FPGA-based design. The constant memory space in CUDA has

a dedicated 8KB cache on each SM, meaning the store values are cached separately to FM-index

buckets, and will not consequently use space that would other be used to reduce FM-index DRAM

accesses.

5.4. Alignment Architecture 55

Figure F.2: Memory organisation for CUDA alignment architecture - SA stan-
dards for suffix array, and n-mer refers to the pre-computed suffix interval val-
ues

5.4.2 Kernel configuration

Beyond memory management, the way in which the GPUs parallel potential is harnessed is im-

portant in achieving high sequence alignment performance. Following our discussion of memory

management, we can propose a simple workflow for our kernel which lets us achieve reasonable

performance despite the memory limitations.

The exact match kernel is written such that each thread takes responsibility for the alignment

of a read. Due to the dependence of FM-index search steps on previous steps, this is an intuitive

way of managing the workload as it avoids the complexity of sharing work within blocks of threads.

We launch the kernel in batches from the CPU, such that each batch processes a total of 4000 reads.

The kernel is specifically configured in a 64×1 grid of blocks, which each contain a 64×1

grid of threads, as this produces the highest performance. CUSHAW also uses 64 threads per

block, however uses multiple passes over batches of short reads to alleviate memory pressures. We

perform exact alignment of reads in a single pass, with the parallelism achievable at any one time

limited by the competing accesses to the FM-index in global memory; arrays allocated in DRAM

are aligned to 256-byte memory segments by the CUDA driver, and the device is limited in how

many 128-byte transactions it can make to global memory at any one time (each FM-index record

is typically over 128-bytes in size).

The fact we are using a single pass is not novel, however, it is worth noting that designs such

as CUSHAW using multiple passes may create a lot of memory transfer overhead. This would be

the case if many non-overlapped calls to cudaMemcpy() are made between each pass, transferring

data inefficiently between host and device. Our design does not encounter this problem, as we

have stored reads in zero-copy memory to avoid using any storage space in DRAM - we devote this

space solely to a highly optimised FM-index.

We also launch the kernel over batches of reads using separate kernel streams. In CUDA,

streams are sequences of operations that execute on the device in the order issued by the host, yet

operations within streams can be interleaved and run concurrently with those of other streams.

This is organised by the CUDA work distributor, however concurrent behaviour is not guaranteed.

We create separate streams for each batch of reads, each being non-blocking with respect to the

host CPU. After submitting the batches to the GPU, the host blocks until the streams have all

terminated and synchronised, using cudaDeviceSynchronize(). This is shown in Alg.5.2

56 Chapter 5. Optimisation of Short Read Alignment using GPUs

u in t32 t batches = ! (N READS % N READS BATCH) ? N READS/ N READS BATCH :
((N READS BATCH − (N READS % N READS BATCH)) + N READS) /N READS BATCH ;

for (in t batch = 1; batch <= batches ; ++batch)
{

// Launch the k e r n e l c o n f i g u r a t i o n o f b l o c k s B and th r ead s T (64x64)
exact match<<<B , T , batch>>>(batch , . . .) ;

}
cudaDeviceSynchronize () ;

Code Extracts 5.2: Extract from exact.cu - launching streams of read batches to the kernel.

5.5 Performance Evaluation

In this section we evaluate the performance of the sequence alignment design, providing compar-

isons against some of the fastest GPU-based alignment solutions currently available. These are

SOAP3-dp[5] and BarraCUDA[6]. Unfortunately we were unable to test CUSHAW as incompati-

ble C++ compilers were available for the target CUDA version. Similar to the previous section,

we test the performance of the following CPU aligners using 16 threads: SOAP2, Bowtie21 and

BWAaln+samse2. The performance of our FPGA-based design is also presented. We compare per-

formance using simulated read data extracted from chromosome 22 of a concensus genome. We

also project performance over the human genome and a typical bisulfite sequence alignment work-

load. First, the experimental platform is specified, before describing the chosen sequencing data

sets and finally presenting the alignment performance.

5.5.1 Platform specification

We use the NVIDIA TITAN Black to test the performance of our alignment design against SOAP3-

dp and BarraCUDA. The TITAN Black has Compute Capability 3.5 and can run the Kepler GK110

architecture. It has 2880 cores with a base clock frequency of 889Hz, and a memory bandwidth of

336GB/s. This card only has 6.14GB of GDDR5 DRAM, so does not have enough memory to store

the entire human genome index following oversampling. Due to inaccessibility of more recent

GPUs with greater DRAM, we will only be able to project results for the human genome. The host

CPU used is an 8-core Intel E5-1620 v2 3.70GHz, with 16GB RAM. This CPU will be used to test the

performance of the CPU-based aligners, and the experimental platform specified in the previous

chapter is used to test the performance of our FPGA-based design.

5.5.2 Sequencing data set

As we are limited in the hardware available for testing the performance of our GPU design, we

cannot use whole-genome sequencing data without removing the oversampling optimisation - con-

structing the FM-index with a step size of n = 3 and bucket size d = 256 uses only 5.4GB. We use

two different types of sequencing data to test the performance of our bisulfite sequencing design

against the competitor platforms:

1. 0 mismatch reads from chr22: In order to demonstrate the performance of our design with

the intended optimisations, we have generated a dataset of 10M reads of 75bp by directly

sampling chromosome 22 (chr22) from a consensus human genome (hg19). In this case,

1Bowtie2 was run with the --very-fast flag and scoring options --score-min ‘C,0,-1’ to ensure exact matches.
2BWAaln+samse was run with the options -n 0 -o 0 -k 0 to ensure exact matches.

5.5. Performance Evaluation 57

we use an FM-index with a step size of n = 3, bucket size d = 128 and oversampling factor

f = 2. The performance is tested against CPU and GPU-based alignment solutions, alongside

our proposed FPGA-design.

2. 0 mismatch reads from hg19: Although we do not intend this design to target GPUs which

cannot store the FM-index in memory, we will test the performance of our design against

10M reads of 75bp taken by directly sampling hg19. This involves using an FM-index with a

step size of n = 3 and bucket size d = 256, and no oversampling, allowing us to demonstrate

the importance of the oversampling optimisation.

5.5.3 Runtime and throughput evaluation

5.5.3.1 0 mismatch reads from chromosome 22

The performance of our design is measured for exact match over 10M reads taken from chr22. This

was compared to the CPU aligners running with 16 threads, SOAP3-dp and BarraCUDA (GPU) and

our FPGA-based design. The results are presented in F.3. We have not tested CUSHAW, a reputable

GPU aligner, due to incompatibilities with our available test platform. Similar to the approach

taken in the previous chapter, we have ignored the time taken to configure hardware and load the

index, instead focusing solely on alignment time.

Our design was significantly faster than the GPU based platforms, running 3.8 times faster

than BarraCUDA and almost 6 times faster than SOAP3-dp. Unsurprisingly, our design exceeded

the run-time performance of all CPU aligners. It ran 21.9 times faster than the slowest, BWA-

aln+samse, and 10.1 times faster than the fastest, Bowtie2. On a single GPU, our design is only

3.2 times slower than our FPGA-based design which uses 8 FPGAs. For each additional GPU

introduced, the read workload could be distributed evenly, such that if Ng is the number of GPUs

and T0 is the single-card run-time, the new time T1 would simply be: T1 ' T0/G. For example, if

G = 3, the performance of our design over this set of sequencing reads would be roughly 2s, which

is very similar to that of our FPGA-based design.

The simplicity of using multiple GPUs allows us to perform this simple calculation to dis-

tribute workload. All GPUs and CPUs on a network will have a unified virtual address space, which

can be used to access the zero-copy memory (including reads and suffix array). With respect to the

index however, which is stored in DRAM, the host CPU can simply load the index into each GPU

by programmatically switching device. This would be done using cudaSetDevice(), before calling

another cudaMalloc() and cudaMemcpy(). Naturally, this would result in a slightly larger start-

up overhead. The multi-GPU approach would not require any complicated peer-to-peer memory

copies, and the host code required to manage the workload between different GPUs would not be

complicated. The cost incurred would instead be the significant power usage, which is high on a

single GPU alone - this is discussed later in the chapter.

58 Chapter 5. Optimisation of Short Read Alignment using GPUs

Figure F.3: Run-time tests for 10M 0 mismatch reads of 75bp from chr22.

127
119

58.8

34.7

22.1

5.8 1.8

0
0

20

40

60

80

100

120

Mismatches

R
un

-t
im

e
(s

)

BWA-aln+samse SOAP2 Bowtie2 SOAP3-dp BarraCUDA Our GPU design Our FPGA design

5.5.3.2 0 mismatch reads from the human genome

The performance of our design is measured for exact match over 10M reads taken from hg19. The

FM-index generated does not use oversampling due to the fact our target GPU has only 6GB of

DRAM. The FM-index has a step size of n = 3 and bucket size d = 256, and is 5.4GB in size. The

results of this test demonstrated the importance of the oversampling optimisation in minimising

costly global memory accesses to retrieve FM-index buckets, as alignment time was 38.5s whereas

with oversampling we observed a run-time of 5.8s. This corresponds to slowing in runtime by 6.64

times, i.e. it took 664% longer.

In F.4 we modified our exact alignment CPU simulation to report the number of FM-index

search iterations taken each read before single-bucket accesses can take place, i.e. when oversam-

pling would usually kick in. For this data set, the average number of FM-index search iterations

was only 6, with 88.3% of the reads benefiting from oversampling after less than 8 search itera-

tions. We can calculate the total off-chip accesses to DRAM for the FM-index using the following

equation, 1
n · (2L+ (L−L)) (ignoring the interval store optimisation), where L is sequence length,

n is the step and L is average iterations until an oversampled access. Using this equation, the

average number of off-chip accesses to DRAM is reduced from 50 to 27 with this set of sequencing

data. For this design, that corresponds to a 46% decrease in global memory accesses which each

require 400-800 cycles. Therefore, the alignment time increasing by 664% for alignment of 10M

reads of 75bp without an oversampled FM-index is by no means surprising.

5.5. Performance Evaluation 59

5 10 15 20 25

103

104

105

106

107

Avg. number of search iterations before single-bucket access.

O
cc

ur
re

nc
es

Figure F.4: Test of average number of search iterations taken before single-
bucket access with oversampling optimisation - using 10M reads of 75bp and
0 mismatches from hg19. Note that a logarithmic scale has been used on the Y
axis.

5.5.3.3 Projected performance

We can make projections of the performance our design would achieve if inexact alignment was

incorporated, and the GPU chosen had sufficient DRAM to store an oversampled FM-index for

the human genome. Assuming the extended design implemented a seed and compare stage and

inexact alignment stage identical, algorithmically speaking, to that of the FPGA-based design, we

could also assume the speed-up achieved by the FPGA-based design for exact match is similar for

the following pipeline stages. This is not unrealistic, as all the optimisations carried through from

the FPGA-design are not hardware specialised, but support hardware acceleration with any device

where the FM-index can be stored in DRAM.

Our FPGA-based design achieves a 3.22 times speed-up over this design for exact match of

10M reads of 75bp from chr22, and achieves a total runtime of 13.2s for the alignment of 10M

bisulfite sequencing reads of 75bp generated by Sherman from hg19. This indicates this design

could align the same 10M bisulfite sequencing reads in 42.5s. This would be 6.02 times faster than

SOAP2, and 1.93 times faster than SOAP3-dp. This would mean achieving 17.65Mbps, as shown

in T.I. If this is scaled to project the alignment time for a typical BSAligner workload of 300M

bisulfite sequencing reads of 75bp, a full GPU-based alignment design would take a little over 21

minutes.

Program Platform Clock F (MHz) Devices Time (s) bps (M) Speed-up

SOAP2 2x Intel X650 2660 2 256.1 2.93 1.00×
BWA-aln+samse 2x Intel X650 2660 2 241.4 3.11 1.06×

Bowtie2 2x Intel X650 2660 2 203.0 3.69 1.26×
SOAP3-dp NVIDIA C2070 1150 1 82.0 9.15 3.12×

Our GPU-design* NVIDIA TITAN Black 889 1 42.5* 17.65* 6.02×*
Our FPGA-design MPC-X2000 150-200 8 13.2 56.82 19.40×

Table T.I: Comparison of state of the art CPU, GPU and FPGA alignment using
10M bisulfite reads of 75bp generated by Sherman. This includes the projected
performance of our GPU-design (indicated with an asterisk, *).

5.5.3.4 Power usage

We have so far ignored the power usage of our design, which compared to our previous FPGA-

based design, is significant. In the last chapter we used MaxOS to measure the device power for

each of the 8 FPGAs being used, and noted an average power usage 86W over several trials. This

60 Chapter 5. Optimisation of Short Read Alignment using GPUs

can in part be attributed to the low operational clock frequency of FPGAs. It was however clear

that the power usage of CPU and GPU-based aligners, such as SOAP2 and SOAP3-dp were much

greater. Our GPU-based design is no exception, as when run on the NVIDIA GTX TITAN Black,

with a base clock frequency of 889MHz, stock power usage is 250W (see T.II). Unfortunately we

could not manually measure power usage due to host drivers failing to recognize the CUDA device

properly. It is clear that with a single device, the power usage is 2.9 times greater than that of our

FPGA-based design, which could become even more costly following introduction of more GPUs to

rival the FPGA-based performance.

Program Device Type Device Power (W) Alignment Speed-up

SOAP2 CPU 190 1.0×
SOAP3-dp GPU 238 3.12×
Our design GPU 250 6.02×
Our design FPGA 86 (avg) 19.40×

Table T.II: Comparison of power usage between different hardware platform
aligners, including our GPU-based design. This is shown alongside the speed-
up over 10M bisulfite sequencing reads, to highlight the performance of each
solution.

5.6 Profiling

The NVIDIA CUDA Profiler (nvprof) provides a greater insight into the memory utilisation and

compute resources utilisation of our design. The profiling results shown in T.III were taken when

aligning the 10M and 0 mismatch reads of 75bp taken from chr22. It should be evident that our

design, although producing competitive alignment speeds for exact match, is highly inefficient.

The glaringly obvious observation is that the theoretical resource occupancy of our approach

is only 50%, with only 31 registers being allocated per thread for our small threadblock dimensions

of 64 × 1 × 1 threads and 64 × 1 × 1 blocks. Optimising a kernel typically involves improving

concurrent access patterns, saturating the bus width by increasing occupancy, however we found

that larger threadblocks increase LSU utilisation to the point that lower performance was achieved.

Our alternative means of improving concurrent access patterns would be to process several reads

per thread, changing the way in which we manage batches.

Due to the random-access usage of the FM-index, the global memory address pattern is not

coalesced, i.e. adjacent threads are unlikely to perform adjacent memory transactions. The address

pattern can sometimes improve by using non-caching loads (which can be enabled by a compiler

directive), whereby smaller transactions are made from the SM to L1 (32B instead of 128B). This

however is not feasible for our design, given the size of our FM-index accesses (i.e. bucket size) are

in excess of 128B; alignment performance is roughly 2.19 times slower, likely due to the increased

number of memory transactions that non-caching loads creates.

The actual effect of high transaction volume and non-coalesced addressing of global mem-

ory for the FM-index can be quantified numerically, as it largely contributes to the global memory

replay total for the kernel. The global memory replay is 45.1%, which is a significant proportion

of replayed instructions - this is calculated using the equation below. Naturally, our design’s poor

access pattern also results in high global memory divergence; threads within each warp will expe-

rience an uncorrelated cache hit or miss outcome, in turn causing differing memory latencies and

replays. The actual hit/miss ratio for L1 global cache loads is reasonable though, at roughly 16:1

(note that these transactions could be in chunks as low as 32B).

5.7. Summary 61

G.M.Replay (%) = 100× l1 global load miss

instructions issued

Definition - Global Memory Replay (%)

(5.1)

Event Detail

Kernel run-time 2.356ns
Registers allocated per thread 31

Peak theoretical occupancy 50%
Single instructions issued per cycle 1.686×107

Global load memory divergence replays 1.218×107

Global load requests 5.453×105

L1 global load transactions 1.311×107

L1 global load hits 1.196×107

L1 global load misses 7.603×105

Table T.III: NVIDIA Profiler details for an average kernel launch (batch) in our
GPU-based alignment design - run with 10M and 0 mismatch reads of 75bp
from chr22. For some of the notable CUDA events, we provide a description
and the corresponding metric.

5.7 Summary

In this chapter we have presented a GPU-based bisulfite sequencing alignment design, using the

CUDA architecture. Specifically, we have produced the exact alignment stage, however this could

be extended. The motivation behind this was to test the feasibility of a GPU-based aligner that

could contribute to a heterogeneous alignment platform, supporting our FPGA-based design. For

example, when having to configure FPGAs sequentially (which is a current limitation faced with the

Maxeler MPC-X2000 platform), the overhead may render the GPU-based design faster for smaller

alignment workloads.

The design is faster than the GPU competitors tested, as it was 3.8× faster than BarraCUDA

and almost 6× faster than SOAP3-dp. Projections based on this test suggest the GPU-based de-

sign could reduce the alignment time of Methy-Pipe’s BSAligner from 5 hours on dual 12-core

Intel Xeon processors to roughly 42 minutes on a single GPU with 12GB DRAM (for bisulfite se-

quence alignment of the Watson and Crick strand). This is around 28.8 minutes slower than the

performance expected of our FPGA-based design, which targets 8 FPGAs running on the Maxeler

MPC-X2000 platform. Using three GPUs should result in a near identical alignment time for a

typical workload, suggesting the GPU-design could at least share the alignment workload with the

FPGA-based design in a heterogeneous system, alongside accelerating tasks further downstream

that it may be better suited to. However, the power usage of this design is much greater than that

of the FPGA-based design, which could prove costly in the long run.

Profiling the design supported the test using a non-oversampled FM-index in exposing the

limitation of this design: performance is memory bound, as the FM-index is so large that it must

be stored in global memory, and non-coalesced random-accesses result in a high global memory

replay and costly memory accesses to DRAM. Although oversampling greatly reduced the effect of

this inefficiency, there is still significant pressure on the LSU that results in a poor computational

resource occupancy. Further work to this design should involve identifying spatial access patterns

to the FM-index, such that the workload of reads can be spread allowing warps to access coalesced

buckets. This in turn could leverage more architecture-specific CUDA features, such as Kepler and

Maxwell’s dynamic parallelism, which allows work distribution to be performed by the GPU.

Chapter 6

Accelerating Compression of Sequencing Data

In this chapter we present a novel approach to lossless referential compression, adapting the algo-

rithms used throughout this report for alignment. Specifically, we use the exact match design to

identify matches between the to-be compressed sequence, and a given reference. This work was

inspired by M. Pflanzer’s comments in [51] on our observations that in our FPGA-based design for

short read alignment, potentially 70-80% of reads could be aligned using exact match alone. This

suggested a simple alignment design, lacking in any inexact alignment support, could be suitable

for accelerated referential compression.

The poor compression throughput of FRESCO and GDC 2 (presented in 2.5.1) could prove

problematic for clinical settings where Methy-Pipe and related tools are used for aligning or

analysing sequencing data, due to the increasing importance of these tools in standard clinical

routines and consequently volume of patient sequencing data.

Therefore, we use the proposed compression algorithm to produce novel FPGA-based and

GPU-based compression designs, whereby the GPU-based design is presented in this chapter. In

the case of compressing 10M bisulfite sequencing reads from a human genome, our FPGA-based

design runs 401 times faster than GDC 2 at 3.95 seconds. For this data set, our design achieves a

compression ratio of 2.20, however GDC 2 with its superior compression algorithm achieved 5.94.

6.1 Compression Mapping

Given an arbitrary sequence, we represent a mapping to the reference sequence using a tuple

〈pos, len〉 where pos is the offset of the sequence within the reference text and len is the sequence

length. For example, if the query sequence was a single sequencing read of 75bp that exact aligned

to the reference sequence, a single tuple would be required to store the read. If a sequence does

not exactly align to the reference sequence, it can be split into shorter sequences which may match.

For a given sequence, it can have a set of tuples T , where the length of the sequence is equal to∑|T |
i=0 snd 〈posi, leni〉. An example is shown in F.1. In the most extreme case, a tuple could naively

encode a single base, ensuring lossless compression, i.e. 〈p, 1〉 where p could be any position where

the respective base occurs.

Reference : ACGTGCGAGTCCAAGTGCGTAC...

Query1 : ACGTGCCAAGTA 〈0, 12〉 is unaligned.

Query2 : ACGTGC CAAGTA 〈0, 6〉 is aligned as is, but 〈7, 6〉 is unaligned.

Query3 : ACGTGC CAA GTA 〈7, 3〉 and 〈10, 3〉 are aligned to 〈11, 3〉 and 〈18, 3〉.

Figure F.1: Example of mapping tuples for sequence compression.

6.2 Compression Algorithm

Our compression algorithm is simple, and involves generating, exact matching and splitting tuples

successively until they are all aligned to the reference sequence. In this section we step through

the algorithm at a high level, as shown in Alg.5. The pseudo-code for the auxiliary functions is

shown in Appendix A. We have not included the exact match pseudo-code as it only requires a few

modifications to the previous fully optimised implementation: (1) input records contain sequence

62

6.2. Compression Algorithm 63

symbols and a tuple 〈pos, len〉 and (2) n-step FM-index search iterations are limited by len as op-

posed to the sequence length. Although these modifications are made, the exact match alignment

is not concerned with the origins of each tuple - they are considered individual sequences through-

out the algorithm. This maintains a high level of abstraction between the alignment module and

tuple management logic. The alignment stages are as follows :

1. Given a set of sequences, in FASTA or FASTQ format, we load them from file into memory and

create records which contain the sequence symbols alongside the tuples that will be used to

store the compressed sequence. Large sequences in FASTA format are read in chunks of 150

symbols (this is relatively arbitrary and could be altered). The algorithm is written in C++,

so we store the sequences in arrays of structs, where each struct contains a std::vector

for the tuples. The first tuple will have a length equal to the length of the sequence read from

file.

2. A batch of records that can be processed by the exact match alignment stage is created using

the first tuples1. Exact alignment then takes place over this batch of records.

3. The tuples are parsed and their (low, high) interval values checked to see if they were aligned

successfully. There are now two cases for each tuple,

(a) If aligned, then a full sequence match has taken place and the corresponding reference

position can be calculated from the interval values.

(b) If unaligned, we repeat the prior stages for the reverse complement of the sequence.

This accounts for any strand differences between the sequence and reference; unlike our

previous bisulfite sequencing alignment procedures, where reverse complementarity is

lost during bisulfite treatment, allowing us to accept more generic sequencing data.

4. Remaining unaligned tuples following the full-sequence reverse match are split in half, such

that each tuple refers to a half of the sequence. This means each sequence which has not

been exactly matched, in full, will have two tuples in its vector. These tuples are then added

to a new batch of records for processing by the exact match algorithm.

5. Using a non-terminating while loop, the tuples get exact matched in batches and split until

parsing of an output batch indicates all remaining tuples have been aligned (i.e. low ≤ high
for all tuples).

6. Finally, the tuples can be written to file.

Algorithm 5 Referential compression with exact match alignment
Input: Set of sequencing reads, reference FM-index F , suffix array intervals SAI and reference suffix array SA
Output: Sequence-to-reference mapping tuples, T

step← 1 . Initially, single tuple per read
T ← generate input(reads, step) . Add each unaligned tuple in all read mappings to an array
exact align(T , F , SAI) . FM-index search algorithm, ideally using n-step and oversampling
parse output(reads, step, T) . Check low/high values of tuples, then update reference position or split tuple
reverse complement(reads) . Get DNA reverse complement of read sequences
while unaligned tuple in T do . Keep generating tuples and aligning them until termination

T ← generate input(reads, step)
exact align(T , F , SAI)
parse output(reads, step, T)
step← step× 2 . Increase step, causing each unaligned tuple to be split in half on input generation

end while

1This is simplified in 5, it is worth noting that these records do not contain the tuples alone - they also contain the id
of the read they come from and the read symbols.

64 Chapter 6. Accelerating Compression of Sequencing Data

6.3 Match length and tuple splitting

Achieving a competitive compression ratio relies on few tuples being required to store each se-

quence, and consequently few tuple splits taking place. Trivially, if tuples are regularly being used

to store sequences of only a few symbols, the compression will be inefficient. We perform a few

simple estimations to justify the worst case performance of this algorithm.

6.3.1 Statistical estimation

Without taking into consideration the unique properties of genomic sequencing data, we can treat

the reference sequence as a random string of uniformly distributed symbols in the alphabet {A, C,

G, T} and show statistically that generally, few sequence splits need to take place. We can use the

equation below to prove halving the sequence dramatically improves probability of occurrence,

where n is query sequence length, m is reference sequence length, Σ is alphabet size and Po is

the probability of occurrence. Concisely written, this equation calculates the probability of not

not seeing a sequence of n desired characters in the m − n possible locations, given Σn possible

subsequences.

Let Po be probability of occurence, n be the query length,

m be the text (reference) length and Σ be the alphabet size.

Po = 1−
(

Σn − 1

Σn

)m+1−n

Definition - Subsequence occurrence probability estimation

(6.1)

For example, taking an alphabet size of Σ = 4, sequence of length n = 10 and reference

sequence of length m = 1000, Po is 0.0094% whereas a split to n = 5 improves this probability

to 62%. The ratio of n : m in this example is 1 : 100, whereas if compressing reads of Methy-

Pipe’s typical workload of 75bp against a genome of roughly 3.2×109 bases, where the ratio is

1 : 42666667, it can be assumed the effect of splitting is a lot greater statistically.

6.3.2 k-mer estimation

We can however generate k-mers and attempt to align them to the human genome, in order to

get an idea as to when a given read will be split, i.e. wont exactly align. With the correct genetic

distribution in the reference text, and all permutations of query texts aligned, this will indicate

the base case by which the average read will always exactly align following splits. For each k,

all permutations of reads with length k are generated, for example a 5-mer produces 45 = 1024

reads. We identified that it was only at 11-mer, that 32 of 4194304 reads didn’t exactly align

(7.63 × 10−4%). At 12-mer, only 4491 of 16777216 reads didn’t exactly align (0.027%). For a

sequence of length n, we can be certain that in the worst case s = dlog2 dn/10ee splits must occur.

This corresponds to 2s tuples of 5B being required to store a sequence.

Take 300M reads with an alignment distribution similar to that of the YH genome we tested

in chapter 4. We stated that 70-80% of the reads could exactly align, in the worst case producing

210M tuples immediately which requires 1.05GB storage. For the remaining 90M reads, we can

be certain that no more than 3 splits occur: 75bp splits to 37/38bp, which splits to 19/19/19/18,

which splits to 10/9/10/9/10/9/9/9 reads that will all exactly align. This means a maximum of

23 = 8 tuples would be required to store each remaining read, which would require 3.6GB storage.

The raw bit compressed storage of these 300M reads would require 5.63GB storage, indicating

that overall a compression ratio of 1.21 in the absolute worst case for inexact alignment. Note that

6.4. Alignment Architecture 65

it is highly unlikely this would be the outcome, given the likelihood of an 11-mer not aligning is

less than 1%.

This indicates that although our algorithm is simplistic compared to the two pass compres-

sion approaches used by FRESCO and GDC 2, it could achieve a reasonable compression ratio.

6.4 Alignment Architecture

It should be clear to the reader that the foundation of the proposed compression algorithm is

the exact match alignment algorithm used in the last two chapters of this report. Therefore we

implement this compression design on CPU, GPU and FPGA. It is the high throughput nature

of our FPGA and GPU alignment designs that improve the matching process of our referential

compression algorithm in a novel way, providing the scope to surpass the achievable compression

times of FRESCO and GDC 2.

The majority of changes made to both the FPGA and GPU-based designs involve changes to

the host code, for the management of tuple batches and parsing of tuple alignment results. For

demonstration purposes, we will present the GPU-based design, which modifies that presented in

the previous chapter (despite the inefficiency of the design).

6.4.1 Memory organisation

There are two main differences in the memory organisation between this design and that used in

the previous section: (1) the suffix array is stored in host RAM, instead of zero-copy memory and

(2) compressed reads are additionally copied between host and device between kernel executions.

This is illustrated in F.2a.

We have designed the compression algorithm such that the exact match kernel should be

oblivious to the management of tuples. If the GPU was managing tuples on the device, instead

of simply aligning batches of tuples, it would undergo significantly memory strains; alongside the

FM-index, at any one time there may 2n tuples for each read, where n is the number of tuple

splits that have occurred. For the sake of Methy-Pipe, for each tuple we require a uint32 t for

storage of the position, to allow for an offset throughout a human genome, and only a uint8 t

for the length as we expect to be compressing reads of only 75bp. Ignoring the other information

required for alignment, with only 10M reads and no tuple splits, this would require a minimum

0.4GB of DRAM. For a typical workload with no overlapping of the read loading into host CPU

RAM, the 300M reads with no tuple splits would require 12GB of GPU DRAM, which is infeasible.

The alternative of storing the tuples in zero-copy memory would also not be feasible, due to the

increased memory latency overhead.

Similar to the previous design, where optimum performance was achieved with a configu-

ration allowing batches of reads to be aligned at any one time, we copy tuples from host RAM to

the GPU DRAM in batches. The read symbols are stored in zero-copy global memory, so the record

sent between the host and GPU requires only: (1) uint32 t for read id, (2) uint32 t for low and

high values, (3) uint8 t for the tuple length value and (4) uint8 t for position of tuple (in read

as opposed to in reference, so doesn’t require uint32 t this time). The struct is shown in Alg.6.1.

This sizing means the average batch requires only 0.45MB, which is permanently allocated for the

duration of compression in DRAM, allowing the majority of DRAM to be dedicated to an optimised

FM-index.

66 Chapter 6. Accelerating Compression of Sequencing Data

(a) Memory organisation for CUDA compression ar-
chitecture.

typedef s t ruc t
{

u in t32 t id ;
u i n t 8 t s t a r t ;
u in t32 t low ;
u in t32 t high ;

}
r e f t ;

Code Extracts (6.1) (b) Extract from index.h -
struct for a tuple sent to DRAM.

Figure F.2: Memory management for CUDA compression acceleration.

6.4.2 Kernel configuration

As we are now sending batches of tuples to and from the GPU between kernel invocations, ad-

ditional logic demonstrated in Alg.6.2 is added to our host code responsible for launching the

kernel. Specifically, batches of tuples stored in host memory are copied to and from the host using

cudaMemcpyAsync(), and the respective cudaMemcpyDeviceToHost or cudaMemcpyHostToDevice

flag.

We have found that using significantly larger batch sizes than previously achieves greater

performance, using batches of 128,000 tuples instead of only 4000. The number of threads per

block remains the same, with a group of 64 threads (64× 1× 1). The block configuration has been

increased to a larger linear layout with 2048 blocks (2048×1×1). Unlike the previous exact match

alignment implementation, we suspect this is in part due to a reduction in the number of zero-copy

global memory accesses required to update read alignment properties - instead, the device global

memory is updated.

The kernel’s volume parameter no long refers to the size of the entire workload, but instead

the number of tuples in the batch delegated to the specific kernel invocation. Usually this will be

the batch size, however if the number of tuples to be processed is not divisible by this then an

additional batch will have less tuples. The actual thread addressing scheme is then simplified, with

a thread managing each tuple. A thread’s tuple id is calculated by threadIdx.x + blockIdx.x *

blockDim.x, and if this exceeds the volume of the batch then the kernel terminates.

6.5. Performance Evaluation 67

// Records used to s t o r e tup l e , c o r r e spond ing read symbols and low/ high i n t e r v a l v a l u e s
r e f t ∗ tup les , ∗ d e v i c e t u p l e s ;
t up l e s = new r e f t ∗[n t u p l e s c e i l] ;
. . .
// A l l o c a t e d e v i c e memory f o r t u p l e s
s i z e t t u p l e b a t c h s i z e = s izeof (r e f t) ∗ N TUPLES PER BATCH ;
cudaEr ro r t e r r = cudaMalloc ((void ∗∗)&dev i c e tup l e s , t u p l e b a t c h s i z e) ;
. . .
for (in t batch = 1; batch <= batches ; ++batch)
{

// C a l c u l a t e number o f t u p l e s in batch , and o f f s e t o f batch in hos t t u p l e s array
u in t32 t volume = batch < BATCHES ? N TUPLES PER BATCH : n i tems % N TUPLES PER BATCH ;
u in t32 t o f f s e t = (batch − 1) ∗ N TUPLES PER BATCH ;
// Copy t u p l e s to d e v i c e , run e x a c t match , then copy the updated t u p l e s back
cudaMemcpyAsync(dev i ce tup l e s , t up l e s + o f f s e t , t u p l e s b a t c h s i z e ,

cudaMemcpyHostToDevice) ;
exact match<<<B , T , batch>>>(batch , volume , dev i c e tup l e s , . . .) ;
cudaMemcpyAsync(tup l e s + o f f s e t , dev i c e tup l e s , t u p l e s b a t c h s i z e ,

cudaMemcpyDeviceToHost) ;
}
cudaDeviceSynchronize () ;

Code Extracts 6.2: Extract from exact.cu - launching streams of compressed tuples to kernel.

6.5 Performance Evaluation

In this section we evaluate the performance of our CPU, GPU and FPGA-based compression designs

against the referential compressor GDC 2. Due to time restrictions it was not possible to perform

a comprehensive evaluation. Primarily this means excluding the performance of FRESCO, as it

required significant modifications to ensure only first order compression was performed.

6.5.1 Platform specification

We use the NVIDIA TITAN Black again to test the performance of our GPU-based design. This

card only has 6.14GB of GDDR5 DRAM, so again we are unable to store an oversampled FM-index

for the human genome on-chip. Consequently we provide projections of the performance for the

GPU-based design over data sets involving the human genome, whereas we perform all other tests.

The host CPU used is an 8-core Intel E5-1620 v2 3.70GHz, with 16GB RAM.

The performance of the FPGA-based design targets the same platform as our FPGA-based

bisulfite sequencing alignment design, the Maxeler MPC-X2000. It is run using 8 DFEs, each

equipped with a Altera Stratix V FPGA and 48GB of DRAM. The host CPU used has dual Intel Xeon

X5650s with 120GB of DDR3-1333GHz RAM. This CPU is also used to test the performance of our

CPU-based implementation, which is compiled with the g++, and paralellised using OpenMP and

16 threads. GDC 2 was also run on this CPU.

6.5.2 Sequencing data sets

We use four different types of sequencing data to test the performance of our compression design

against GDC 2, note that due to our design the following files are in the FASTA or FASTQ format:

1. YH genome sequencing reads: We re-use the YH genome sequencing reads, which are 10M

reads of 100bp sequenced attained by whole genome sequencing. Now that our design is not

specialised to a specific read length, these should be representative of a relatively typical

68 Chapter 6. Accelerating Compression of Sequencing Data

set of reads to be compressed. The reference used for compression is the reference genome

(hg19).

2. Simulated bisulfite sequencing reads: We also re-use the bisulfite sequencing reads, which

are 10M reads of 75bp and simulated using Sherman. This should provide a representative

compression performance for the compression of reads generated for use in Methy-Pipe. The

referenced used for compression is the C-depleted version of the reference genome.

3. Whole genome shotgun sequenced chr22[79]: Realistically, the storage and hence com-

pression of larger sequences will also be required. Therefore, we test the compression of

chromosome 22, sequenced using an Illumina HiSeq2000 and whole genome shotgun se-

quencing. The ambiguous bases (N symbols) in the sequencing data have been trimmed. In

the case of the GPU-based aligner, the reference used is simply chromosome 22 from the ref-

erence genome as this permits oversampling. With the other platforms, which are not under

memory pressure, the reference genome itself is used.

4. chr1 from the reference human genome (hg19): As chromosome 22 is rather small, we

also compress chromosome 1 to gauge the performance over a longer single FASTA sequence.

Again, the ambiguous bases have been trimmed. This is sampled from the reference genome,

and compressed against the reference genome. Note that the alignment stage of this com-

pression is performed over 150 symbol segments of the chromosome, as opposed to one large

sequence.

6.5.3 GDC 2 Modifications

In order to produce compression ratios and throughputs comparable to that of our simplistic de-

sign, we have made a series of modifications to GDC 2:

1. GDC 2 would typically perform two stages of compression, whereby the first would involve

generating triples (similar to our tuples). We have only implemented a design with a single

stage of compression due to time limitations. Therefore, we have omitted the second round

of compression used by GDC 2.

2. We also found the GDC 2 experienced integer overflow when attempting to perform refer-

ential compression with a complete human genome, so have split the reference genomes

into smaller chunks. Specifically, we divided the genome by two over chromosome 11. The

fastest compression time attained over the two sections was used, as this typically involves

the most effective mapping, and consequently achieved the highest compression ratio. This

ratio should be representative of compression if the integer overflow bug was fixed.

3. The to-be compressed FASTA/FASTQ files in the case of sequencing reads were split into

numerous chunks and compressed sequentially. The maximum time to compress a chunk

was taken as the compression time, as this would have determined overall run-time in a

multi-threading solution (which could have been used). This allows fairer compression time

comparisons against our hardware-accelerated solutions.

6.5.4 Compression evaluation

The results in T.I compare the performance of our various acceleration designs against GDC 2.

Note that we have omitted I/O times for all designs (including GDC 2), for fairness of comparison.

GDC 2 greatly exceeded almost all of our achieved compression ratios, with the largest

difference observed for chr1.trim at 9.1 times. This is because GDC 2 can achieve high compression

ratios using variable length encoding over consecutive matches. Specifically, a match of length up

6.6. Summary 69

to 223 characters can be encoded in only 7B. Therefore, in cases where the to-be-compressed

files are near identical to regions of the reference, compression ratios will greatly exceed those

achieved by our design. Unsurprisingly, this was observed for the chr1 and chr22 sequencing

data. The bisulfite and YH genome reads are concatenated by GDC 2, and mapped as a single

sequence instead of independently. This means the compression ratio for numerous sequences can

still be significant, for example the bisulfite read compress rate achieved by GDC 2 was 2.7 times

greater than ours. Considering 43% of the bisulfite reads do not exactly align to the reference, a

significant number of tuples need to be created for storage with our design, producing an inefficient

compression rate of 2.20. We could improve our design such that tuples of the format 〈pos, len〉,
〈pos+ len, len〉,〈pos+ 2 · len, len〉 are compressed into a single tuple 〈pos, 3 · len〉.

In light of the differences in compression ratio, it is unsurprising the run-time of our design is

shorter than that of GDC 2 for even the CPU compression design. The difference in run-time greatly

exceeded the difference in compression ratio. For example, the compression time for chr22.trim

was 1135.0 times slower for GDC 2 than our FPGA-based design, whereas the compression ratio

was only 8.8 times better. This indicates that some basic operations, such as tuple concatenation,

could greatly reduce the difference in compression ratio without compromising overall run-time.

The performance differentials between the CPU, GPU and FGPA aligners weren’t entirely surpris-

ing. The FPGA implementation was at least 5.9 times faster than the CPU implementation, yet the

GPU implementation was only 1.8 times faster. This meagre improvement is due to the increased

overhead of copying tuples between device memory and host memory, on top of the already inef-

ficient use of global memory in the design.

Time (s) Time (s)
Data CPU GPU FPGA Ratio GDC 2 Ratio

chr22.trim 0 .48 0.26 0 .02 10.18 22.70 89.75
chr1.trim 3.05 1.65* 0.34 11.34 113.40 102.72

YH genome 17.80 9.64* 2.17 8.06 1321.80 8.24
bisulfite 23.58 12.77* 3.95 2.20 1585.40 5.94

Table T.I: Peformance comparison of GDC 2 and our compression designs (CPU,
GPU and FPGA). Note that Ratio refers to the compression ratio, and projected
GPU performed is indicated with an asterisk (*).

6.6 Summary

In this chapter we have presented an approach to lossless referential compression. We used the

alignment algorithms detailed earlier in this report to identify matches between a to-be com-

pressed sequence and a given reference sequence. The motivation behind this was to create a high-

throughput referential compression algorithm, in light of the recent advances in next-generation

sequencing methods and our considerable optimisation of Methy-Pipe’s BSAligner.

We observed much greater compression ratios achieved by GDC 2 than expected, especially

for large sequences with few differences to a given reference. This was due to the use of variable

run-length encoding, something which our design does not currently implement. The nature of

the data was important however, as GDC 2 had at least an 8.8 times greater compression ratio for

the chromosomes we compressed, but only a 2.7 times better compression ratio for the bisulfite

reads. This difference naturally came at the cost of a significantly reduced compression run-time.

For example, GDC 2 barely improved upon our achieved compression ratio for the YH genome

reads, but was 609.0 times slower than our FPGA-based design and 124.2 times slower than our

projected GPU-based performance.

It is very positive that hardware-accelerated alignment can be used to efficiently perform the

matching stage of referential compression. We could easily make modifications to our compression

70 Chapter 6. Accelerating Compression of Sequencing Data

algorithm, to improve the compression ratio without compromising the low-runtimes. For example,

we could run-length encode tuples similar to GDC 2’s appriach. We could also explore possible

techniques for second order compression.

Chapter 7

Optimisation of Methylation Calling and

Downstream Analysis

In this chapter we present software-based optimisations targeting the methylation calling and

downstream analysis stages of Methy-Pipe, where methylation calling is the stage following align-

ment before starting downstream analysis using BSAnalyze. These optimisations address the fact

that following hardware acceleration of Methy-Pipe’s alignment module, the bottleneck may in fact

shift towards the latter pipeline stages. There is a framework for distributing analysis workload

across a cluster already in place, so we simply explore software-based optimisations that support

individual nodes. Note that we will present these optimisations solely for single-end alignment,

however these concepts can be easily extended to paired-end alignment

For systems with significant memory, we have produced a performance optimised version of

the C++ module responsible for methylation calling, which should reduce overall runtime from

roughly 30 minutes to 8.8 minutes. For systems with less available memory, we reduce the signifi-

cant memory overhead by almost 52%, from 23.39GB to 11.3GB, with a projected run-time of 33

minutes. This is achieved using a lightweight hash-associative container, Google’s sparse hash,

alongside genome bit compression. The novel aspect of this contribution is the parallelisation of

file output using OpenMP and system() calls that leverage Unix processes, improving run-time of

the output stage by 2.5 times.

We also translate one of the many Perl scripts used by BSAnalyzer into parallelised C, achiev-

ing an improvement in run-time by 45 times, corresponding to a fall in run-time from over 3 hours

to around 5 minutes.

7.1 Methylation Calling

Prior to the methylation calling stage of bisulfite sequencing alignment, BSAligner will have pro-

duced a set of bisulfite sequencing reads corresponding to C-depleted reads that have success-

fully aligned to the C-depleted reference genome. For each of these bisulfite sequencing reads,

methylation calling involves checking each cytosine against the corresponding base in the refer-

ence genome, to see if methylation has occurred at single-base resolution. This is illustrated in

F.1.

Reference : 5’ ...GATCGATTGACGAGTCGCATAATGCTAGTA... 3’

(.bsalign) | | | | |
Read1 : ATTGATTGACGAG | | |
Read2 : AGTTACGTAATGC

Read3 : TAGTA...

Figure F.1: Methylation calling against reference genome - for each cytosine in
the reference that is covered by an (aligned) read, the corresponding base is
checked. If it is a cytosine, methylation has occurred.

71

72 Chapter 7. Optimisation of Methylation Calling and Downstream Analysis

typedef s t ruc t
{

unsigned short C; // c o v e r i n g c y t o s i n e s
unsigned short T ; // c o v e r i n g thymines
unsigned short Z ; // n e i t h e r ’C ’ nor ’ T ’

} c a l l ;

Code Extracts 7.1: Extract from meth call.cpp - single-base methylation call type definition.

7.2 Existing Design

In Methy-Pipe, the methylation calling modules report methylation at a single-base resolution,

the number of CpG sites covered and methylated, the number of uncovered CpG sites and the

number of cytosines covered by reads in each chromosome. This is all managed by a C++ module,

meth call.cpp, with the primary output file being a .call file that details the position of each base

in the reference genome with cytosine or thymine coverage in the reads. The exact format is shown

in Appendix B(IXb).

In order to record methylation at single-base resolution, the struct shown in Alg.7.1 is used,

which stores the number of cytosines, thymines or other bases covering a cytosine in the reference

genome. In the existing design, this is consequently initialised for each base in the reference

genome, i.e. for roughly 3.2×109 bases. This results in a large static heap allocation of roughly

16GB.

For single-end reads, the process of methylation calling is simple, and is composed of four

steps: (1) the reference genome is loaded from a given FASTA file (.fa) into a std::map<string,

string> with the key being the chromosome’s string identifier and the value being the reference

bases; (2) the specified .bsalign file is opened and reads are read one at a time, identifying

cytosines they cover in the reference genome and updating corresponding call structs; (3) the

call records covered by cytosines and thymines are written to file (.call); and finally, (4) the

number of coverage bases per chromosome are written to file (.chr count). This is demonstrated

in Alg.6.

Algorithm 6 Methylation calling for single-end reads
Input: Reference genome file hg.fa and aligned reads file reads.bsalign
Output: Methylation call file meth.call and chromosome counts cover.chr counts

genome← load genome(hg.fa)
call∗ ← (call*) malloc(length(genome))
while reads in reads.bsalign do

read← split soap line(reads)
frag vs CpG(genome, call, read])

end while
write methcall(meth.call)
write chr counts(cover.chr counts)

function FRAG VS CPG(genome, call∗, read)
for j ← 0 to read.length do

if genome[i+ read.pos] is C then
update(call[i+ read.pos], read.symbols[i]) . Checks methylation state and updates call

end if
end for

end function

7.2.1 Inefficiencies and bottlenecks

Performing profiling analysis on the original meth call.cpp module using the GNU Profiler, gprof,

gives an indication of the relative performance of its functions. It was tested using simulated

alignment data, comprised of 10M bisulfite sequencing reads sampled from hg19. All the reads

7.3. Performance Optimisation 73

cover cytosines in the reference genome, and are methylated at a rate similar to that of real bisulfite

sequencing data. The experimental platform used for this profiling and subsequent testing consists

of dual 8-core Intel Xeon E4650 2.70 GHz CPUs with over 32GB main memory. Note that this

platform is shared, so resource utilisation may vary and consequently skew results on different

runs.

We have used the Intel C++ compiler, icpc with optimisation flag -O3 to compile meth call

throughout our experimentation. The notable results are shown in T.I. The total run-time was

70.4s, which indicates that a typical workload would run in roughly 30 minutes. Using the Intel

compiler instead of GNU g++ has already accelerated the module by 9.83 times.

For each record processed from an alignment file, it is tokenized using split soap line

before updating the calling records using frag vs CpG. These operations are incredibly lightweight

and close to I/O bound; they run in linear time, O(n), and together constitute 26.52% of total run-

time. The initial memory allocation of calling records, which largely constituted intel memset,

took longer than the time to process the 10M records. To some extent this is unavoidable, and

for a typical workload should account for less than 2% of the total run-time. A similar argument

applies to load genome, which will account for even less than 2% over a typical workload. Writing

the methylation call file is certainly a bottleneck however, with the slow sequential writing of each

methylation record constituting a sizable 21.06% of total run-time.

The module has a peak memory usage of 23.39GB, which is also Methy-Pipe’s peak memory

usage. When Methy-Pipe is used alongside other processes, be it due to multi-tasking or alignment

and analysis pipelining, this high memory usage has proven problematic. This memory usage is

constituted largely by 16GB of calling records and 4.54GB for the genome reference.

Function Name Calls Self Time (s) % of Total Time

intel memset - 22.11 31.42%
frag vs CpG 10M 17.00 24.16%

write methcall 1 14.82 21.06%
load genome 1 9.09 12.91%

split soap line 10M 1.59 2.26%

Table T.I: Profiling (gprof) results for meth call.cpp - total execution time
was 70.4s with peak 23.39GB memory usage. Note that some results have been
omitted. These provide smaller contributions to total run time, for example
internal std libary calls.

7.3 Performance Optimisation

Most systems used in computational genomics will be high performance to meet the demands of

high throughput sequencing machines. They will often have numerous cores and in excess of

16GB main memory. Therefore, despite the considerable memory footprint of meth call.cpp,

we start by presenting performance optimisations. In the profiling results, note that (P) indicates

performance optimisation.

7.3.1 Parallelised file I/O

The previous meth call.cpp module wrote the methylation call file sequentially, one cytosine at

a time. This involves inspecting each base in the reference genome sequentially, which is slow,

taking roughly 21% of the modules run-time when calling over 10M alignment records.

Calling records are produced for over 24 chromosomes1, one chromosome at a time. In-

stead of writing these records sequentially, we have proposed a novel solution that generates
1Sequencing and even reference genome construction results in more chromosome sequences than those of the human

genome. In downstream analysis the typical chromosomes are often filtered out, namely chromosomes 1-22, X and Y.

74 Chapter 7. Optimisation of Methylation Calling and Downstream Analysis

chromosome-specific methylation call files in parallel, such that they can then be concatenated

to form a single file. Fundamentally, if these files can be written in parallel, the process of merging

them will be faster than writing the files sequentially; concatenating two files effectively should

only require a one-shot re-allocation of memory and pointer updates.

7.3.1.1 Design

We have used OpenMP to construct a task producer and consumer pattern within write methcall,

shown in Alg.7.2. This involves creating a parallel region with N THREADS threads (thread pool),

where the code is run sequentially in a single threaded manner until a region denoted by pragma

omp task is reached. A thread in the pool then claims the task associated with this pragma, launch-

ing a function asynchronously. Once the sequential code has been completed, the threads executing

tasks (child tasks) will be waited on, synchronising execution using pragma omp taskwait.

The function performed by each task is write meth for chr(...), which is responsible for

file output. More specifically, it involves creating a unique output stream for one of the chro-

mosomes found in the specified reference genome, writing the corresponding calling records (for

methylated cytosines) to file. This allows calling records to be written concurrently, such that while

larger chromosomes have their methylation records written to file, numerous smaller chromosomes

can also be written to file.

As Methy-Pipe targets Linux x86 64, instead of writing a significant body of code to con-

catenate these chromosome-specific methylation records into a single file, Unix processes can be

used. The Unix processes used are highly optimised C binaries, designed for file management, and

consequently outperform any code that could have been written within the scope of this project.

The command used is constructed at the end of Alg.7.2 (concatenate cmd), and is passed to

a system() call, invoking the command processor (int status = system(concatenate cmd)).

The command passed to system() has several components: (1) find is used to identify all chro-

mosome calling files with the path and name specified by the user; (2) sort is used to arrange

these files by chromosome and remove newline characters; and finally (3) cat is used to redirect

the content of these calling files into one merged file.

The system() call creates detached processes for invoking the specified commands, which

can have a considerable overhead. Therefore, a single system() call is made, using pipes and

redirects. On failure of any one of the chained Unix processes, the error value returned can be

analysed and the program can fall back on serial writing of methylation call records to a single file.

7.3. Performance Optimisation 75

#pragma omp p a r a l l e l shared (genome , m e t h c a l l f i l e) , num threads (N THREADS)
#pragma omp s i n g l e
{

for (b i t = base counts . begin () ; b i t != base counts . end () ; ++b i t)
{

. . .
#pragma omp task shared (base counts) , f i r s t p r i v a t e (len , chr , ch r base s)

wr i t e me th fo r ch r (m e t h c a l l f i l e , len , chr , chr bases , base counts) ;
}

#pragma omp taskwa i t
}
. . .
s t r i n g concatenate cmd = ” f ind ” + d i r + ” −maxdepth 1 −type f −name ’ ” + fname + ” ∗ ’

−pr in t0 ” + ” | s o r t −z | xargs −0 ca t −− >>” + merged fname + ” . c a l l && rm ” +
dir fname + ”∗ ” ;

in t s t a t u s = system (concatenate cmd . c s t r ()) ;
. . .

Code Extracts 7.2: Extract from meth call.cpp - parallelisation of methylation call writing using

OpenMP and producer-consumer design.

7.3.1.2 Limitations and drawbacks

Although parallelised file I/O is not novel in itself, this usage of system() alongside OpenMP

is seemingly novel. However, this is likely because developers have a rightful aversion to the

system() function.

By using a system() call, the portability of code is reduced dramatically. Although this is

not currently problematic in the case of Methy-Pipe, as it targets the Linux x86 64 platform, it

could become so if wide-spread clinical adoption of Methy-Pipe required porting it to different

platforms such as Windows. Preprocessor directives would then be required to switch between

write methcall implementations.

system() can also produce unpredictable, if not dangerous, results. This isn’t surprising,

given it involves the creation of detached processes, which cannot be wrangled with error handling

the same way that bespoke code could.

Typically, a programmatic approach to managing parallel file I/O involves using a dedicated

I/O thread, which uses worker threads to submit formatted data into an output buffer (which

can then be written to file). The difference between this approach and that of using cat with a

system() call is that the programmer has an understanding of internal file structure, whereas cat

simply manages byte streams. This could result in a more complicated concatenation process than

a bespoke programmatic approach if internal file structure has to be considered.

7.3.1.3 Evaluation strategy

We evaluate the performance of this approach using bisulfite alignment records simulated from

alignment against the reference human genome. The specific schema is specified in Appendix

B(IXa). Methy-Pipe performs whole-genome bisulfite sequencing alignment, which should always

use the same reference human genome, and consequently produce aligned reads across all chro-

mosomes. Therefore, the write methcall implementation performance is tested solely against

this predictable data type.

The number of alignment records requiring methylation calling will influence the run-time

for write methcall, as more alignment records will produce more methylated cytosines requiring

calling records. The system() call overhead should not vary significantly, however the time taken

to write chromosome-specific calling records in parallel will increase, alongside the time taken

76 Chapter 7. Optimisation of Methylation Calling and Downstream Analysis

by the Unix processes to concatenate these records into a single calling file. We therefore test

performance of the sequential and parallelised implementations for alignment records varying in

size between 10M and 40M. Note that the times, similar to all results previously presented in this

paper, are mean run-times from 10 trials over each record set. This is especially important now, as

it accounts for the potentially un-predictable behavior of the created Unix sub-process.

7.3.1.4 Performance Evaluation

Profiling demonstrated a significant performance improvement, with the write methcall function

contribution half as much as before to the total meth call.cpp execution time. This is shown in

T.III. With larger sets of alignment records, it is demonstrated in T.II that the run-time improve-

ment gained through parallelisation is roughly 2.5 times. This is consistent among record sets,

although a significant standard deviation and consequent performance loss may only be observ-

able over significantly larger alignment volumes closer to that produced by BSAligner’s typical

workload of 300M reads - we could not feasibly test this due to memory limitations.

Despite the inherent problems of system() calls, the novel use of OpenMP for multi-threading

and delegation of file concatenation to Unix processes provides a highly abstracted and simple

means of parallelising file output. Although a bespoke implementation would improve code porta-

bility and integrity, this approach could be extended to other problem domains as an initial means

of facilitating file output parallelisation.

Function Name Calls Total Self Time (s) % of Total Time

write methcall 1 14.82 21.06%

write methcall (P) 1 7.03 11.23%

Table T.II: Profiling (gprof) results for meth call.cpp with optimised writing
of methylation call file - using 10M alignment records.

Script Sequential Parallelised

.bsalign records (M) 10 20 30 40 10 20 30 40
Run-time (s) 100.42 154.96 203.85 256.62 39.48 62.36 78.45 97.38

Speed-up - 2.54× 2.48× 2.60× 2.58×

Table T.III: Performance improvement of meth call.cpp following parallelisa-
tion of writing methylation call file.

7.3.2 Improved tokenisaton and alignment record analysis

The parsing and analysis of alignment records is close to becoming I/O bound. Improving the

performance of I/O bound applications can prove challenging, and can be achieved by upgrading

a system’s hardware. For example, the introduction of SSDs, RAID striping and PCI express hard

drives. For large scale clinical adoption of Methy-Pipe, these hardware improvements may not be

affordable or achievable for many users. Therefore we optimised the tokenization and analysis of

alignment records to ensure the run-time was as close to I/O bound performance as possible.

Initially we experimented with parallelising this stage of methylation calling, by buffering

alignment records and passing them to threads. Considering the operation is close to I/O bound

however, the overhead of managing these multithreaded tasks did not provide a speed-up. We did

however re-write the alignment record tokenisation, using character pointers (char*) to iterate

between delimiters and an enumerated type to switch over the column numbers that presented

the useful information. This meant the read symbol sequence, the chromosome string and position

of alignment could be extracted through pointer swapping. The previous implementation used a

7.4. Memory Optimisation 77

series of for loops to iterate between successive columns, and string appended characters individ-

ually to a token buffer when the column was one of interest. Other than re-writing the record

analysis for clarity, little was altered. We also ensured these functions were inline, to remove any

function call overhead and potentially allow for further compiler optimisation.

7.3.2.1 Performance evaluation

Few changes were made to the tokenisation and analysis of alignment records; the split soap line

and frag vs CpG functions respectively perform trivial tasks, with little scope for improvement.

The performance improvements are demonstrated in T.IV. The total time taken to parse and anal-

yse each record experienced a speed-up of 3.76 times.

Function Name Calls Total Self Time (s) % of Total Time

split soap line 10M 1.59 2.26%
frag vs CpG 10M 17.00 24.16%

split soap line (P) 10M (inline) 1.02 1.46%
frag vs CpG (P) 10M (inline) 4.03 7.02%

Table T.IV: Profiling (gprof) results for meth call.cpp with optimised record
parsing - using 10M alignment records.

7.4 Memory Optimisation

To ensure methylation could be explored at single-base resolution, the struct shown in Alg.7.1 was

previously initialised for each base in the reference genome, i.e. for roughly 3.2×109 bases. This

requires a large static heap allocation of roughly 16GB. Following successful performance optimi-

sations, we present a few memory optimisations explored to try and soften the memory footprint of

meth call.cpp without significantly compromising performance. We have used Valgrind’s Massif

tool[80] for heap profiling, in order to evaluate memory usage at a fine granularity. In the profil-

ing results, note that (M) indicates memory optimisation, and (PM) indicates memory optimisation

targeting the previous performance optimisation.

7.4.1 Reduced bitmap genome

The current implementation of meth call.cpp stores the reference genome as strings of bases,

using a std::map<string, string> where the key is the chromosome identifier and the value the

bases of the chromosome. In 3.1.2.1 we presented how Ramethy creates the n-step FM-index using

a reduced version of the human genome, following compression of each character in the alphabet

of DNA into a 2-bit equivalent, such that {A, C, G, T} becomes {00, 01, 10, 11}. When loading the

reference genome during methylation calling, it can again be stored as a reduced bitmap.

This can be implemented for each chromosome using bit-masking and a vector of uint64 t

types. An additional integer used to store the number of bases stored in case empty bits in the

trailing uint64 t are misinterpreted as adenine (A). This type is named chr encoded, and shown

in Alg.7.3 alongside a snippet of the masking process. This unsurprisingly slows the loading of

the genome, so we have parallelised it using a producer-consumer OpenMP pragma. This involves

buffering lines of bases in the FASTA file until a new chromosome header is reached, whereby a task

to compress a chromosome is launched asynchronously (encode bases seen in 7.3 is responsible

for this).

78 Chapter 7. Optimisation of Methylation Calling and Downstream Analysis

typedef pair<int , vector<uint64 t> > chr encoded ;
typedef unordered map<s t r i n g , chr encoded> genome encoded ;

. . .
s t a t i c void encode bases (s t r i n g bases , chr encoded &chr)
{

. . .
u i n t64 t mask = base == ’T ’ ? 3 : (base == ’G ’ ? 2 : (base== ’C ’ ? 1 : 0)) ;
mask <<= chr l en % 32 == 0 ? 0 : 64 − 2 ∗ (ch r l en % 32) ;
. . .

}

Code Extracts 7.3: Extract from meth call.cpp - bit compression of genome.

7.4.1.1 Memory usage and performance evaluation

Using bit compression to store a reduced bitmap of the genome as opposed to strings of bases

reduces genome heap usage from 4.54GB to 1.03GB. This in turn reduces overall memory usage

reduced by 15%. We have used OpenMP to improve the rate by which the genome is compressed,

however this is a one-off cost that will contribute little to total run-time of a typical workload.

The profiling results in T.V demonstrate that the burden of the memory reduction is taken by

frag vs CpG, due to the bit shifting operations needed to regularly retrieve bases from the bit

compressed genome. However, with a 15% reduction in memory usage, the time taken to process

each alignment record remains faster than the original implementation. Note that for the moment

we have omitted write methcall as the previous I/O parallelisation can be used to greatly offset

the loss in performance caused by the introduction of bit shifting required by this function.

Version Function Name Calls (M) (P) Total Self Time (s) % of Total Time

v1
load genome 1 9.09 12.91%
frag vs CpG 10M 17.00 24.16%

v2 frag vs CpG 10M (inline) X 4.03 7.02%

v3
load genome 1 X X 14.13 23.55%
frag vs CpG 10M (inline) X X 12.41 20.68%

Table T.V: Profiling (gprof) results for meth call.cpp with genome bit com-
pression - using 10M alignment records.

7.4.2 Lightweight hash-associative container for calling records

Instead of creating a static array of calling records for each base in the human genome, in turn

creating a large region of static memory on the heap, a dynamic data structure can be used. The

human genome has approximately 42% GC content, i.e. 42% of nitrogenous bases are either cyto-

sine or guanine. This indicates that at least 58% of the 16GB static allocation could be redundant.

Two approaches can be adopted to manage calling records using dynamic data structures:

(1) a fully dynamic approach, where calling records are only created when analysis of an alignment

record indicates cytosine coverage on the reference genome; or (2) pre-construction of the calling

records, where calling records are created for each cytosine identified in the reference genome

when it is loaded. The only difference in parsing and analysis of alignment records is the way

in which calling records are updated. When pre-constructing calling records, the number of cy-

tosines, thymines or other bases can simply be incremented for the corresponding record, whereas

a fully dynamic approach involves upserting calling records into the respective positions in the

data structure. This is achieved by overloading the += operator of the call t struct, as shown

in 7.4. We will now explore associative containers, the data structures chosen to be used in these

7.4. Memory Optimisation 79

approaches, before presenting the performance of each of these approaches to identify an optimal

solution.

s t ruc t c a l l t
{

unsigned short C;
unsigned short T ;
unsigned short Z ;

. . .

c a l l t & operator+=(const c a l l t & a)
{

C += a . C;
T += a . T ;
Z += a . Z ;
return ∗ th i s ;

}
}

. . .

i f ((bucket >> s h i f t) & 0x3)
{

c a l l t c a l l r e c o r d ;
switch (read . seq [j])
{

case ’C ’ : c a l l r e c o r d . C++; break ;
case ’ T ’ : c a l l r e c o r d . T++; break ;
default : c a l l r e c o r d . Z++;

}
c a l l i n g r e c o r d s [chr][pos] += c a l l r e c o r d ;

}

Code Extracts 7.4: Extract from meth call.cpp

- upserting calling records using an overloaded

+= operator.

7.4.2.1 Associative container alternatives

In order to store calling records dynamically, a data structure is required that will allow a call-

ing record to be identified by its position within a specific chromosome. The calling records are

currently accessed for each chromosome using std::map, an associative array found in the C++

standard library. Searching for an element, alongside insertion and deletion is performed in loga-

rithmic time with associative containers - O(log(n)).

Given that the human genome has approximately 42% GC content, the number of calling

records accessed using a chromosome identifier will not equal the number of bases found within

the chromosome. Therefore calling records must not only store methylation state, but the position

within each chromosome. As these records are identified using positions within the genome as

opposed to sequence numbers within the dynamic structure, associative containers are also suit-

able to store pairs of positions and calling records (std::pair<int, call t>). The structure is

illustrated in F.2.

Figure F.2: Methylation call dynamic data structure. In this example, the cy-
tosine at position 23012 in chr3 1 is covered by 4 cytosines, 3 thymines and 2
other bases.

The choice of associative container is not trivial. Assuming 21% of the human genome is

composed of cytosine, there may be 672 × 106 calling records. Each pair is composed of three

unsigned shorts (shown in 7.1) and an additional unsigned integer for the position, resulting in

80 Chapter 7. Optimisation of Methylation Calling and Downstream Analysis

10 bytes. Ignoring the associative container storing these associative containers of records, in an

ideal world this would require 6.72GB. However, dynamic data structures require housekeeping

information to manage records. For example, in the 64 bit GNU Standard C++ Library, std::map

needs 48 bytes for map alone, and 32 bytes for each object contained[81]. This would increase

the total storage size to 28.2GB, which is much larger than the static allocation. In general, an

std::map storing n elements has a memory usage of ((size of(key) + size of(value) + 3)) × n

bytes, indicating only 8.74GB may be required, which would be a reduction in memory usage by

almost 50%. We will consider the following three associative containers:

1. std::map: This is an associative array implemented as a balanced tree, requiring traversal

and re-balancing. These operations can become expensive and typically make the structure

less cache-friendly. It is ordered, which results in a readable methylation call file. This is not

crucial however, as many of the downstream Perl modules do not require this ordering.

2. std::unordered map: This is a hashed and unordered associative container which gener-

ally uses more memory than std::map. It should provide constant operations faster than

O(log(n)) as hashing over positions should not result in collisions. This could be a preferable

structure if std::map uses a satisfactory amount of memory.

3. Google sparse hash[7]: This is an incredibly lightweight unordered hash-associative con-

tainer, which is reported to use 2 bits of overhead for each element. According to results pre-

sented on Google’s documentation, the memory used in each map grow operation is merely

84.4MB compared to the 236.8MB used by the STL map2. This comes at a cost however, as

the operation is over twice as slow at 665ns. Insertions, deletions and other operations are

also slower. This is not surprising given the container’s stingy use of memory. sparse hash is

used by a few platforms performing bisulfite sequencing analysis, most notably MOAB[82].

7.4.2.2 Memory usage and performance evaluation

To test the dynamic and pre-construction approaches of managing calling records, we have run

meth call.cpp using alignment files of varying sizes over the aforementioned associative contain-

ers. These alignment files were simulated using hg19, which contains almost 593×106 cytosine

bases. We have run the Massif heap profiler with default memory snapshot settings, and have

omitted the parallelisation of write methcall as this produced spurious results. The results are

presented in T.VI. We have chosen not to use gprof to evaluate the performance of these strate-

gies with respective to specific calls, as the results become difficult to interpret given the number

of internal calls used to manage the dynamic data structures.

It is evident from the results of the pre-construction approach that in the worst case memory

utilisation where all the genome’s cytosines were covered, both std::map and std::unordered map

are inappropriate. With pre-construction, the peak memory usage of these containers exceeded the

original implementation by over 13%. Unsurprisingly, this is due to the significant overhead re-

quired to store an individual calling record. We did not expect the std::map to use more memory

than std::unordered map, let alone 39% more at 36.8GB.

Memory optimisation using associative containers requires use of sparse hash, with mem-

ory usage being reduced by almost 52% in the worst case. Therefore the performance of the

two different approaches must be considered. Although the performance of pre-construction was

slower over all trials, this can largely be attributed to the increased time taken to load the genome

and build the calling records. For example, this took 182.5s on average, which corresponds to

72.9% of the 10M alignment record run-time. This would correspond to only 17.3% of a typical

2These results were attained with code compiled with gcc2.95.3 and the optimisation flag -O2. The system used was
a 2.80GHz Pentium 4 CPU with 2GB of memory

7.5. Optimum Implementation 81

workload. This also means the calling time for pre-construction using 10M alignment records was

roughly 35s on average, whereas for a dynamic approach this was 122s on average. The differ-

ence in these times can be attributed to the additional time required to create calling records on

the fly; Google claims sparse hash takes 117ns for a map fetch operation, and a hefty 665ns for

map grow. Overall, it is evident that the performance of the pre-construction strategy will signif-

icantly outperform the dynamic approach, as although the maximum number of costly map grow

calls are made when loading the genome, these can be parallelised to mitigate the cost.

Container
.bsalign Dynamic management Pre-construction

records (M) Time (s) Mem (GB) Time (s) Mem (GB)

std::map

2 45.0 2.7 164.3 36.8
5 87.7 5.2 182.25 36.8

10 132.3 9.0 199.7 36.8

std::unordered map

2 45.2 2.0 77.8 26.5
5 82.9 3.8 83.4 26.5

10 128.4 6.3 93.7 26.5

google::sparse hash

2 52.2 1.3 204.7 11.3
5 110.4 1.8 221.9 11.3

10 208.3 2.6 250.5 11.3

Table T.VI: Run-time and Massif results for meth call.cpp with dynamic man-
agement of calling records.

7.5 Optimum Implementation

Following the various performance and memory optimisations, we can summarise the two versions

of meth call.cpp created which maximise performance and minimise memory usage respectively.

The performance optimised version contains the calling file output parallelisation and modifica-

tions made to record parsing and analysis. The memory optimised version extends the perfor-

mance optimised version, with genome bit compression and a pre-constructed methylation calling

records stored in a dynamic hash-associative container (sparse hash). These two versions and the

original version were tested with 10M .bsalign alignment records for a final point of comparison,

and the results are presented in T.VII.

We were able to achieve close to a 2.5 times improvement in run-time through performance

optimisation, without increasing memory usage. This includes a constant time to load the genome,

of roughly 19s, which if ignored results in a 3.4 times improvement in run-time. The original

developers of Methy-Pipe reported a total run-time of roughly 30 minutes, which would be reduced

to 8.8 minutes.

We were also able to reduce the modules significant memory footprint from 23.4GB to only

11.3GB. On the face of it, for the 10M record workload we tested, the performance cost is more

than a 1.9 times increase in run-time. The majority of this is due to the time taken to load the

genome and construct the dynamic calling record map. For a typical workload of 10M reads, this

would correspond to a small proportion of the total runtime, which would be roughly 33 minutes

- slightly more than the original implementation.

meth call.cpp Version Time (s) Speed-up Mem (GB) % Mem Reduction

Original 125.4 - 23.4 -

Perf. Optimised 50.3 2.49× 23.4 0%
Mem. Optimised 242.1 -1.93× 11.3 51.7%

Table T.VII: Performance results for optimised meth call.cpp - comparison
of the original version against our two versions for 10M .bsalign alignment
records

82 Chapter 7. Optimisation of Methylation Calling and Downstream Analysis

7.6 Translating Perl scripts

The management of methylation call records after meth call.cpp, but before and during subse-

quent downstream analysis is performed almost solely by Perl and R scripts. Perl is used heavily

within bioinformatics as a scripting language given it is highly portable, has a wide selection of

libraries, uses dynamic typing and has a useful regex engine. However, large volumes of alignment

data are handled in a typical Methy-Pipe workload, which can result in poor performance.

We have translated one of Methy-Pipe’s Perl scripts into parallelised C in order to demon-

strate the performance gain that can be achieved, in turn accelerating modules which may other-

wise prove to be downstream bottlenecks. In particular, we translated the calc met per chr.pl

script which merges the calling records (.call) by chromosome for the Watson and Crick strands

and reports methylation density. This module was chosen given its simplicity, yet inefficient design,

shown in Alg.7.5. It iterates over two sets of calling records line by line, adding the cytosine and

thymine coverage to the map met. For each chromosome, the methylation density is then printed

such that the shell output can be piped into a log for subsequent analysis.

#Params : <W. CpG . c a l l > <C . CpG . c a l l >\n ” ;

my %met ;
while(<>)
{

chomp ;
my @F=s p l i t ;
$met{$F[0]}{C}+=$F [4] ;
$met{$F[0]}{T}+=$F [5] ;
i f ($F[0]=˜/chr\d+/)
{

$met{chrT}{C}+=$F [4] ;
$met{chrT}{T}+=$F [5] ;

}
}
for (’T ’ , 1 . . 22 , ’X ’ , ’ Y ’)
{

my $chr=” chr$ ” ;
i f (ex i s t s $met{$chr })
{

my $metD=$met{$chr}{C}/($met{$chr}{C}+
$met{$chr}{T}) ∗100;
print jo in (”\ t ” , $chr , $metD) , ”\n” ;

}
else
{

print jo in (”\ t ” , $chr , 0) , ”\n” ;
}

}

Code Extracts 7.5: calc met per chr.pl -

merges of Watson and Crick calling records and

reports methylation density.

This script can be trivially parallelised using OpenMP in C, calculating the cytosine and

thymine coverage of each chromosome for the Watson and Crick strands independently before it-

erating through each chromosome, merging the records and finally printing the methylation. To

avoid atomic operations that introduce serialisation between the two threads needed for manag-

ing each strand, we have avoided using a shared structure and simply created two static arrays.

Alg.7.6 is an extract from the translated script, calc met per chr.c which demonstrates the par-

allelisation.

#pragma omp p a r a l l e l num threads (2)
{

i f (omp get thread num () == 0)
c a l c m e t p e r s t r an d (w c a l l f i l e , w counts) ;

else
c a l c m e t p e r s t r an d (c c a l l f i l e , c count s) ;

}

Code Extracts 7.6: Extract from calc met per chr.c - parallelisation using OpenMP over Watson

and Crick strands.

7.7. Summary 83

Performance gain: We tested the C and Perl scripts using pairs of .call records produced

using meth call.cpp on simulated data sets of bisulfite sequencing read alignments (.bsalign).

The largest data sample used was 20M alignments, which corresponds to roughly 13% of a typical

workload. The results are displayed in T.VIII. The improvement in runtime was over 45 times

following translation from Perl to optimised C. This is not surprising, as roughly half the workload

can be immediately eliminated by parsing the Watson and Crick strands in parallel, and compiled

code can perform significantly faster than interpreted languages such as Perl.

Script Perl C

.bsalign records (M) 5 10 20 5 10 20
Run-time (s) 220.7 452.12 821.10 4.84 8.77 18.10

Speed-up - 45.60× 51.6× 45.4×

Table T.VIII: Comparison of run-time performance between Perl and C version
of calc met per chr module.

7.7 Summary

In this chapter we presented optimisations targeting the C++ module primarily responsible for

methylation calling, meth call.cpp The previous implementation used a significant amount of

memory, however the lightweight implementation meant a complete workload could be processed

in roughly 30 minutes. We have demonstrated how performance optimisations, including novel

parallelisation of file I/O, could reduce run-time to 8.8 minutes. We have also demonstrated a

couple of memory optimisations that can reduce the memory usage to 11.3GB, a 51.7% reduction,

which comes at the cost of a 10% slower run-time. This would correspond to a negligable three

minutes for a typical workload.

We also demonstrated the performance that can be achieved by translating the Perl scripts

which follow meth call.cpp into C. The example used was the module which provides chromo-

some specific methylation densities, calc met per chr, which experienced a 45 times improve-

ment in run-time. Projections based on this run-time suggest the run-time for a typical workload

could consequently fall from over 3 hours to under 5 minutes.

The most significant improvement in run-time we achieved was evidently through transla-

tion of the Perl script. Although we saw an improvement in the run-time for methylation calling, it

seems that there is significant potential for further improvement to be made further downstream.

This suggests that although extensive hardware acceleration has targeted Methy-Pipe’s BSAligner,

the further translation of highly inefficient and crucial Perl scripts could render BSAligner the

pipeline bottleneck once again.

Chapter 8

Conclusion

The results of optimising Methy-Pipe are summarised in T.I, and we can reiterate the key achieve-

ments initially outlined in the introduction to this thesis:

1. Optimisation of Methy-Pipe’s BSAligner:

(a) We have optimised Ramethy, a runtime-reconfigurable bisulfite sequencing alignment

design, in order to return all candidate inexact alignment locations to the host CPU.

This is necessary if the design is to support paired-end alignment. We presented two

optimisations to reduce the off-chip DRAM accesses used by this design, and one to

reduce the burden of inexact alignment placed on the inefficient FM-index oriented

modules. The design reduces the overall alignment time of BSAligner from 5 hours to

13 minutes, corresponding to a significant speed-up of 22.7 times.

(b) We implemented the first stage of the same bisulfite sequencing alignment design using

GPUs. The design outperforms state-of-the-art GPU-based sequence aligners SOAP3-dp

and BarraCUDA, by 2.8 and 6 times respectively. Projections suggest a full implementa-

tion could align BSAligner’s typical workload in 42 minutes. This suggests a complete

GPU-based alignment design could support our FPGA-based design in a novel heteroge-

neous system.

2. Optimisations targeting BSAnalyzer: we presented software optimisations targeting down-

stream analysis scripts, and the C++ module responsible for methylation calling (the process

proceeding all downstream analysis). This module had a significant memory footprint, so we

reduced the memory usage by almost 52%, from 23.39GB to 11.3GB, with a negligible ef-

fect on run-time. In the case that host CPUs have 24GB of RAM, we have also produced a

performance optimised version of this module that is 2.5 times faster with the same memory

utilisation. We also translated one of the many Perl scripts used by BSAnalyzer into paral-

lelised C. The module was responsible for reporting the methylation of each chromosome in

the genome, a basic regional statistic. We achieve an improvement in run-time by 45 times,

corresponding to a fall in run-time from over 3 hours to around 5 minutes. This indicates

that any inefficiencies remaining in Methy-Pipe could be eliminated.

3. Additionally, we presented a novel approach to lossless referential compression of genetic

sequencing data. This approach leveraged the alignment algorithms used throughout this

report, and we created novel FPGA and GPU-based designs. With a simple alignment al-

gorithm, we achieved a significantly greater compression speed than referential compressor

GDC 2. For example, in the case of compressing 10M bisulfite sequencing reads from a hu-

man genome, our FPGA-based design runs 401 times faster than GDC 2 at 3.95 seconds.

For this data set, our design achieves a compression ratio of 2.20, however GDC 2 with

its superior compression algorithm achieved 5.94. Following a few small extensions that

could dramatically improve the compression ratio, our approach to compression could con-

sequently be utilised on hosts running Methy-Pipe to counter the increasingly demanding

storage requirements of patients’ bisulfite sequencing data.

84

8.1. Future Work 85

Methy-Pipe Module Original Time New Time Speed-up

BSAligner using 8 FPGAs ≈300m0s 13m12s 22.7×
BSAligner using 1 GPU ≈300m0s 42m30s 7.1×

meth call, high performance 30m45s 8m48s 3.5×
meth call, 52% less memory 30m45s 32m51s -1.1×

calc met per chr in parallelised C 205m17s 4m32s 45.4×
Referential compression using 8 FPGAs* 792m42s 1m59s 401.4×
Referential compression using 1 GPU* 792m42s 6m23s 124.2×

*compared to GDC 2 first order compression

Table T.I: Final optimisation results for the targeted Methy-Pipe modules - these
results are arrived at through projections based upon the testing presented
throughout this report, for a typical workload of 300M bisulfite sequencing
reads.

8.1 Future Work

In this section we present possible avenues of further research that this project has enabled, along-

side further optimisations that can be applied to Methy-Pipe.

8.1.1 Further Methy-Pipe Work

The optimisations presented in this thesis largely targeted Methy-Pipe’s BSAligner, as it was pre-

viously the pipeline bottleneck; the BSAnalyzer unlike BSAligner is able to be parallelised in its

current implementation over numerous nodes in a cluster. Following the optimisation of BSAligner

and the methylation calling module, it is evident that any significant bottlenecks could only occur

further downstream in BSAnalyzer. We were able to accelerate the performance of a downstream

analysis script written in Perl by 45 times, simply by translation to C. This corresponds to a reduc-

tion in runtime for a typical workload from over 3 hours to under 5 minutes. This was a basic

script, performing regional methylation analysis, suggesting there may be more elaborate scripts

demanding additional attention.

The one aspect of the optimisations presented requiring immediate attention is the paralleli-

sation of file output for methylation calling. This involved using OpenMP and C++ system() calls

in a novel way to create numerous files in parallel before concatenating them with Unix processes.

We discussed the limitations of this approach, largely highlighting the fragility of the system()

function. In the future, a more typical programmatic approach should be taken.

8.1.2 Clinical and Medical Research Aspects

The scientific significance of this project is yet to be determined, as the proposed optimisations

are yet to be realised by Methy-Pipe within a clinical or research environment. The dramatic

reduction in alignment time for a typical workload could result in unconventional forms of future

work however, such as altering clinical appointment schedules for patients, due to changes in

the achievable patient throughput. If the accelerated performance of Methy-Pipe helps enable the

adoption of whole-genome bisulfite sequencing procedures, such as non-invase pre-natal diagnosis,

there may also be significant clinical work required to adopt these procedures.

From a research perspective, the reduction in alignment time may support use of higher

throughput sequencing techniques, and in turn larger genetic sequencing data sets which could

be used to study the patterns of methylcytosines in numerous areas of medicine including: epi-

genetics, embryonic development, post-natal development, carcinogenesis and even the study of

methylation in different organisms (such as bacteria).

86 Chapter 8. Conclusion

8.1.3 Computing Research Aspects

Although the contributions presented in this report largely target Methy-Pipe, many of the optimi-

sations are not software or hardware specialised, and can be used widely to accelerate alignment

and compression solutions. Our exploration of using FPGA and GPU-based techniques in particular

to accelerate multiple sequence alignment and referential compression has posed a few avenues

for further work:

• Different FPGA-based architectures: Accessing off-chip FM-index buckets from DRAM was ex-

pensive for both the FPGA and GPU-based designs, with a latency in the order of hundreds

of cycles. Resource utilisation in the FPGA-based architecture was roughly a third of that

available, limited by the number of available memory controllers. If a different FPGA-based

architecture to the Maxeler MPC-X2000 was used, such as the Convey HC-2, we would ben-

efit from a substantially higher bandwidth of 80GB/s and improved non-sequential access

speeds thanks to Convey Scatter-Gather DIMMs. In turn, this would allow us to increase the

number of modules that could be fabricated during any one configuration.

• Coalesced FM-index access patterns: In the case of the GPU-based design, CUDA attempts to

coalesce global memory loads to allow efficient DRAM usage, however the FM-index is not

accessed sequentially and buckets are large, resulting in load serialisation. If the occupancy

of the design is to improve, maximising compute resource utilisation, the FM-index access

pattern must be coalesced. Research could be undertaken to understand how read workload

could be balanced across CUDA warps to allow FM-index access localisation, for example

using pre-computation and heuristics.

• Heterogeneous alignment platform: We presented significant GPU-based alignment perfor-

mance, which despite an inefficient design, could contribute to a heterogeneous design. The

true power of a heterogeneous system however would be achieved when playing to the

true strengths of the GPU, allowing different applications (not simply alignment) to use the

system appropriate for their unique demands on computing resources. This would require

exploring the operations performed downstream for analysis, as GPUs can outperform FPGA-

based platform for tasks common to high productivity computing such as matrix and vector

arithmetic[83] - these are commonplace tasks in scientific research. A specific application

of GPUs in bioinformatics is regression analysis used to identify associations between ge-

netic variants[84], which could in turn be used to identify common methylation patterns at

a single-base resolution. Alternatively, Methy-Pipe’s approach to DMR identification using a

sliding window, presented in 2.4.4, could be parallelised using CUDA - parallel sliding win-

dows are explored in the context of genomic analysis in [85]. Methy-Pipe is unique in that

it incorporates both alignment and analysis, and the creation of a heterogeneous integrated

alignment and analysis platform using FPGAs and GPUs would be novel.

• Alternate hardware-accelerated referential compression strategy: We presented an incredibly

simple approach to referential compression, involving exact matching sequences and subse-

quently splitting them if an exact match cannot be found. Each sequence is stored as a a series

of tuples, containing the positions and lengths of regions in the reference that can be concate-

nated to form the query sequence. Although this approach required minimal alteration of the

exact match alignment designs already produced on GPU and FPGA, an alternate approach

could be adopted to improve the compression ratio and throughput: modify the hardware

designs to exact match a given sequence numerous times, saving intermediate mismatch

symbols in triples also containing position and length. These triples can be stored in faster

on-chip memory (e.g. BRAM on the FPGA), before being streamed to the host following full

alignment. This would reduce the host workload drastically.

8.2. Closing Remarks 87

8.2 Closing Remarks

In this project we have attempted to address the increasing strain placed on platforms intending to

harness the plethora of genetic sequencing data that can be created by next-generation sequencing

machines. We have focused our efforts on the optimisation of Methy-Pipe, an integrated bioin-

formatics pipeline which facilitates both the sequence alignment and analysis requirements for

healthcare and scientific study of DNA methylation. We have successfully been able to accelerate

and optimise both the alignment and analysis modules of Methy-Pipe, dramatically reducing the

runtime of its bottlenecks for a typical workload from 5.5 hours to 22 minutes; shown in T.I, align-

ment and methylation calling alone previously took 5.5 hours, and the analysis could take several

hours if the workload is not distributed across numerous processors.

This improvement bears the potential to facilitate further adoption of life-saving healthcare

applications, such as non-invasive pre-natal diagnosis and the detection of aberrant methylation

patterns in cancer biopsies. If Methy-Pipe was adopted widely, it may not simply be found within

a clinical environment, but is now feasible for extensive use within research, which could further

our understanding of epigenetic abnormalities and how we can reverse them pharmacologically in

novel healthcare applications.

This project has also demonstrated the sheer extent to which computational techniques,

namely hardware acceleration of substring index search algorithms, can be applied to multiple

sequence alignment and related problems such as referential compression. Given the cost of a

state-of-the-art heterogeneous alignment platform can be in the magnitude of thousands less than

a next-generation sequencing machine, there is the definite potential for hardware-accelerated in-

tegrated alignment and analysis platforms to become tightly coupled with sequencing machines.

This could ease the management of high throughput sequencing data, alongside further automat-

ing sequencing data analysis to improve the personalisation of medical care and patient through-

put.

List of Tables

T.I Comparison of Illumina MiSeq and HiSeq NGS technologies[25]. 8

T.I FPGA aligner performance comparison. 32

T.I Optimisation analysis disambiguation. 35

T.II Exact match and Seed kernel speed-up. 47

T.III CPU, GPU and FPGA bisulfite alignment performance comparison. 48

T.IV FPGA aligner performance comparison. 49

T.V Scaled FPGA aligner performance comparison. 49

T.VI Aligner power and energy usage. 49

T.VII Module resource usage. 50

T.I CPU, GPU and FPGA bisulfite alignment performance comparison. 59

T.II Aligner power usage. 60

T.III NVIDIA Profiler details for GPU-based alignment design 61

T.I Performance comparison of compression platforms. 69

T.I Profiling results for methylation calling. 73

T.II Profiling results for optimised writing of methylation call file. 76

T.III Methylation calling with I/O parallelisation. 76

T.IV Performance results for optimised record parsing. 77

T.V Performance results following genome bit compression. 78

T.VI Performance results for dynamic management of calling records. 81

T.VII Performance results for optimised meth call.cpp. 81

T.VIII Results from translating Perl to C. 83

T.I Final optimisation results. 85

88

List of Figures

F.1 Sequencing costs relationship to Moore’s law[1]. 2

F.2 Methy-Pipe Modules, BSAligner and BSAnalyzer[2]. 3

F.1 Nucleic acids and their composition[11]. 5

F.2 DNA Methylation - the introduction of a methyl group to nucleotides[12]. 6

F.3 Bisulfite sequencing - sequence conversion and reconstruction[17]. 7

F.4 Example of FASTA format for sequencing read data[27]. 9

F.5 Example of FASTQ format (Sanger variant) for sequencing read data[27]. 9

F.6 Global and local sequence alignment . 10

F.7 Suffix array and Bruce-Wheeler Transformation . 11

F.8 FM-index search . 11

F.9 Alignment using Smith-Waterman[34]. 13

F.10 Methy-Pipe workflow[2]. 14

F.11 Bisulfite converted DNA strands[42]. 15

F.12 Methy-Pipe BSAligner - bisulfite sequencing read alignment module[2]. 15

F.13 Methy-Pipe BSAnalyser - differentially methylated region detection module[2]. . . 17

F.14 Comparison of hardware platform properties[11]. 20

F.15 CUDA parallel processing architecture[60][61] . 22

F.16 FPGA Fabric - Maxeler dataflow chip[62]. 23

F.17 Maxeler multiscale dataflow computing architecture[62]. 24

F.18 Maxeler workflow for application acceleration[62]. 24

F.1 Types of FPGA pipeline architecture[64]. 26

F.2 n-step FM-index structure . 28

F.3 One/Two mismatch alignment phases[64]. 29

F.4 Ramethy module designs[64]. 30

F.1 Alignment algorithm stages. 35

F.2 Seed and compare stages. [9] . 39

F.3 Reference hits for hg19. 39

F.4 Maxeler MPC-X dataflow node architecture [72]. 40

F.5 Exact match module hardware designs[9]. 42

F.6 Inexact match module hardware designs[9]. 44

F.7 Alignment percentage comparison . 46

F.8 Run-time tests for 10M 0, 1 and 2 mismatch reads from the hg19. 47

F.1 CUDA memory architecture and corresponding memory latencies. 52

F.2 Memory organisation for CUDA alignment architecture. 55

F.3 Run-time tests for 10M 0 mismatch reads of 75bp from chr22. 58

F.4 Test of average number of search iterations taken before single-bucket access with

oversampling optimisation. 59

F.1 Example of mapping tuples for sequence compression. 62

F.2 Memory management for CUDA compression acceleration. 66

89

90 LIST OF FIGURES

F.1 Methylation calling against reference genome. 71

F.2 Methylation call dynamic data structure. 79

List of Algorithms

1 FM-index search algorithm . 12

2 Generation of merged BWT . 28

3 n-step FM-index search algorithm . 28

4 Oversampled FM-index search algorithm . 37

5 Referential compression with exact match alignment 63

6 Methylation calling for single-end reads . 72

7 Referential compression with exact match alignment - the key auxiliary functions

are detailed for completeness. 98

91

List of Code Extracts

4.1 Extract from Em1Manager.maxj - interval store stream management. 41

4.2 Extract from BramKernel.maxj - BRAM address computation for interval store accesses. 41

4.3 Extract from CompareKernel.maxj - read (pattern) and reference (text) comparison 43

5.1 Extract from exact.cu - thread addressing scheme used within exact match kernel,

where BATCH identifies the stream of the given kernel call and VOL identifies the

number of reads being processed across all streams. 54

5.2 Extract from exact.cu - launching streams of read batches to the kernel. 56

6.1 (b) Extract from index.h - struct for a tuple sent to DRAM. 66

6.2 Extract from exact.cu - launching streams of compressed tuples to kernel. 67

7.1 Extract from meth call.cpp - single-base methylation call type definition. 72

7.2 Extract from meth call.cpp - parallelisation of methylation call writing using OpenMP

and producer-consumer design. 75

7.3 Extract from meth call.cpp - bit compression of genome. 78

7.4 Extract from meth call.cpp - upserting calling records using an overloaded +=

operator. 79

7.5 calc met per chr.pl - merges of Watson and Crick calling records and reports

methylation density. 82

7.6 Extract from calc met per chr.c - parallelisation using OpenMP over Watson and

Crick strands. 82

92

Bibliography

[1] E.C. Hayden. Technology: The 1000 dollar genome. URL: http://www.nature.com/news/

technology-the-1-000-genome-1.14901.

[2] P. Jiang et al. “Methy-Pipe: An Integrated Bioinformatics Pipeline for Whole Genome Bisul-

fite Sequencing Data Analysis”. In: PLOS ONE (2014).

[3] J. Kitzman et al. “Noninvasive whole-genome sequencing of a human beingus.” In: Science
Translational Medicine (2012).

[4] K.C.A. Chan et al. “Noninvasive detection of cancer-associated genome-wide hypomethy-

lation and copy number aberrations by plasma DNA bisulfite sequencing.” In: Biological
Sciences, PNAS (2013), pp. 18761–18768.

[5] R. Luo et al. “SOAP3-dp: Fast, Accurate and Sensitive GPU-Based Short Read Aligner”. In:

PLOS ONE (2013).

[6] P. Klus et al. “BarraCUDA - a fast short read sequence aligner using graphics processing

units”. In: BMC Research Notes (2012).

[7] Google. Sparse Hash. URL: https://code.google.com/p/sparsehash/.

[8] S. Deorowicz and S. Grabowski. “Robust relative compression of genomes with random

access”. In: Bioinformatics (2011), pp. 2979–2986.

[9] J. Arram et al. “Leveraging FPGAs for High Throughput Bisulfite Sequence Alignment”.

2015.

[10] D. Graur and R.A. Cartwright. “The multiple personalities of Watson and Crick strands”. In:

Biology Direct (2011).

[11] B. Strengholt and M. Brobbel. “Acceleration of the Smith-Waterman algorithm for DNA se-

quence alignment using an FPGA platform”. 2013.

[12] SIGMA-ALDRICH. Introduction to DNA Methylation. URL: http://www.sigmaaldrich.com/

technical-documents/articles/biofiles/introduction-to-dna-methylation.html.

[13] J.T. Attwood, R.L. Young, and B.C. Richardson. “DNA methylation and the regulation of

gene transcription”. In: Cellular and Molecular Life Sciences CMLS 59 (2002), pp. 241–257.

[14] K.D. Robertson. “DNA methylation and human disease”. In: Nature Reviews Genetics (2005),

pp. 597–610.

[15] W. Yang and H. Pan. “Regulation mechanism and research progress of MeCP2 in Rett syn-

drome.” In: Hereditas (2014), pp. 625–30.

[16] R. Brown and G. Strathdee. “Epigenomics and epigenetic therapy of cancer”. In: Trends in
Molecular Medicine 8 (2012), pp. 457–463.

[17] atdbio. Sequencing forensic analysis and genetic analysis. URL: http://www.atdbio.com/

content/20/Sequencing-forensic-analysis-and-genetic-analysis.

[18] F. Sanger, S. Nicklen, and A.R. Coulson. “DNA sequencing with chain-terminating inhibitors”.

In: Proceedings of the National Academy of Sciences 74 (1977), pp. 5463–7.

[19] L.M. Smith et al. “Fluorescence detection in automated DNA sequence analysis”. In: Nature
321 (1986), pp. 674–679.

93

[20] Illumina. Illumina Sequencing Introduction. Tech. rep. URL: http://www.illumina.com/

content / dam / illumina - marketing / documents / products / illumina _ sequencing _

introduction.pdf.

[21] E. Zimmerman. 50 Smartest Companies: Illumina. 2014. URL: Technologyreview.com.

[22] A. Regalado. EmTech: Illumina says 228000 Human Genomes will be sequenced this year.
2014. URL: Technologyreview.com.

[23] S. Young. Illumina Claims It’s Reached 1,000 dollar-Genome Milestone. 2014. URL: Technologyreview.

com.

[24] S. D. Kahn. “On the Future of Genomic Data”. In: Science (2011), pp. 728–729.

[25] James Hadfield. Comparing Illumina Sequencers. 2015. URL: http : / / core - genomics .

blogspot.co.uk/2015/02/comparing-illuminas-sequencers.html.

[26] W.R. Pearson and D.J. Lipman. “Improved tools for biological sequence comparison”. In:

Proceedings of the National Academy of Sciences 85 (1988), pp. 2444–2448.

[27] P.J.A. Cock et al. “The Sanger FASTQ file format for sequences with quality scores, and the

Solexa/Illumina FASTQ variants”. In: Nucleic Acids Research 38 (2010), pp. 1767–1771.

[28] B. Ewing et al. “Base-calling of automated sequencer traces using phred. I. Accuracy assess-

ment.” In: Genome Research (1998), pp. 175–85.

[29] B. Ewing and P. Green. “Base-calling of automated sequencer traces using phred. II. Error

probabilities”. In: Genome Research (1998), pp. 186–94.

[30] P. Ferragina and G. Manzini. “An experimental study of an opportunistic index”. In: So-
ciety for Industrial and Applied Mathematics - Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms (2001), pp. 269–278.

[31] T.F. Smith and M.S. Waterman. “Identification of Common Molecular Subsequences”. In:

Journal of Molecular Biology (1981).

[32] M. Burrows and D.J. Wheeler. “A Block-sorting Lossless Data Compression Algorithm”. In:

SRC Research Report (1994).

[33] U. Manberand and G. Myers. “Suffix arrays : A new method for on-line string searches.” In:

SIAM Journal on Computing (1992), pp. 935–948.

[34] Wikipedia. Smith Waterman Algorithm, Wikipedia. URL: http://en.wikipedia.org/wiki/

Smith-Waterman_algorithm.

[35] R. Lister et al. “Highly Integrated Single-Base Resolution Maps of the Epigenome in Ara-

bidopsis”. In: Cell Volume 133 (2008), pp. 523–536.

[36] F. Krueger and S. R. Andrews. “Bismark: a flexible aligner and methylation caller for Bisulfite-

Seq applications”. In: Bioinformatics (2011), pp. 1571–1572.

[37] PY. Chen, S. J. Cokus, and M. Pellegrini. “BS Seeker: precise mapping for bisulfite sequenc-

ing”. In: Bioinformatics (2010).

[38] T. Benoukraf et al. “GBSA: a comprehensive software for analysing whole genome bisulfite

sequencing data”. In: Nucleic Aids Research (2012), p. 55.

[39] K. D. Hansen, B. Langmead, and R. A. Irizarry. “BSmooth: from whole genome bisulfite

sequencing reads to differentially methylated regions”. In: Biology (2012).

[40] T.W. Lam et al. “High Throughput Short Read Alignment via Bi-directional BWT.” In: IEEE
International Conference on Bioinformatics and Biomedicine (2009), pp. 31–36.

[41] R.Q. Li et al. “SOAP2: an improved ultrafast tool for short read alignment.” In: Bioinformatics
(2009).

94

[42] Zymo Research. Bisulfite Beginner Guide. URL: http://www.zymoresearch.com/bisulfite-

beginner-guide.

[43] J. Gailly and M. Adler. 2003. URL: http://www.gzip.org/.

[44] E. S. Lander et al. “Initial sequencing and analysis of the human genome”. In: Nature (2001),

pp. 860–921.

[45] Assembly of the human genome. 2009. URL: http://hgdownload.cse.ucsc.edu/goldenPath/

hg19/chromosomes/.

[46] B. G. Chern et al. “Reference Based Genome Compression”. In: IEEE Information Theory
Workshop (2012), pp. 427–431.

[47] D. A. Wheeler et al. “The complete genome of an individual by massively parallel DNA

sequencing”. In: Nature 452 (2008), pp. 873–876.

[48] National Center for Biotechnology Information. dbSNP - Short genetic variations database.

URL: http://www.ncbi.nlm.nih.gov/snp/.

[49] S. Christley et al. “Human Genomes as email attachments”. In: Bioinformatics 25 (2008),

pp. 274–275.

[50] A. Lempel and J. Ziv. “A universal algorithm for sequential data compression”. In: IEEE
Transactions on Information Theory 24 (1977), pp. 337–343.

[51] M. Pflanzer and W. Luk. “Optimised Compression of Genetic Sequencing Data”. 2015.

[52] S. Wandelt and U. Leser. “FRESCO: Referential Compression of Highly-Similar Sequences”.

In: IEEE Transactions on Computational Biology and Bioinformatics (2013), pp. 1275–1288.

[53] J. Karkkainen, D. Kempa, and S. J. Puglisi. “Linear Time Lempel-Ziv Factorization: Simple,

Fast, Small”. In: Data Structures and Algorithms, Cornell University Library (2012), pp. 89–

200.

[54] C. Kingsford and R. Patro. “Reference-based compression of short-read sequences using path

encoding”. In: Bioinformatics (2015).

[55] S. Grabowski, S. Deorowicz, and L. Roguski. “Disk-based compression of data from genome

sequencing”. In: Bioinformatics (2014).

[56] 1000 Genomes Project Consortium et al. “A map of human genome variation from population-

scale sequencing.” In: Nature (2010), pp. 1061–1073.

[57] China National GeneBank (CNGB). BioCloud - biological data storage service. URL: http:

//biocloud.cngb.org/.

[58] Khronos Group. OpenCL, Open Computing Language. URL: https://www.khronos.org/

opencl//.

[59] NVIDIA. CUDA, Compute Unified Device Architecture. URL: http : / / www . nvidia . com /

object/cuda_home_new.html.

[60] Wikipedia. CUDA Processing Flow, Wikipedia. URL: http://en.wikipedia.org/wiki/CUDA.

[61] NVIDIA. Parallel Thread Execution Architecture. URL: http://docs.nvidia.com/cuda/

parallel-thread-execution/.

[62] Maxeler Technologies. Multiscale Dataflow Programming. 2013.

[63] Maxeler Technologies. MaxCompiler. URL: http://www.maxeler.com/products/software/

maxcompiler/.

[64] J. Arram, W. Luk, and P. Jiang. “Ramethy: Reconfigurable Acceleration of Bisulfite Sequence

Alignment”. In: FPGA (2015), pp. 250–259.

95

[65] A. Chacon et al. “n-step FM-index for faster pattern matching.” In: Procedia Computer Science
18 (2013), pp. 70–79.

[66] T.W. Lam et al. “High throughput short read alignment via bi-directional BWT”. In: The IEEE
International Conference on Bioinformatics and Biomedicine (BIBM 2009) (2009), pp. 31–36.

[67] Babraham Bioinformatics Institute. Sherman - bisulfite-treated Read FastQ Simulator. URL:

http://www.bioinformatics.babraham.ac.uk/projects/sherman/.

[68] E. Fernandez, W. Najjar, and S. Lonardi. “String Matching in Hardware Using the FM-Index”.

In: Field-Programmable Custom Computing Machines (FCCM) (2011), pp. 218–225.

[69] E. Fernandez et al. “Multithreaded FPGA acceleration of DNA sequence mapping.” In: HPEC
(2012), pp. 1–6.

[70] C.B. Olson et al. “Hardware acceleration of short read mapping”. In: Field-Programmable
Custom Computing (2012), pp. 161–168.

[71] C. W. Yu et al. “A Smith-Waterman Systolic Cell”. In: Field Programmable Logic and Applica-
tions (2003), pp. 375–384.

[72] Maxeler Technologies. MPC-X Series. URL: https://www.maxeler.com/products/mpc-

xseries/.

[73] B. Langmead and S.L. Salzberg. “Fast gapped-read alignment with Bowtie 2”. In: Nature
Methods (2012), pp. 357–359.

[74] H. Li and R. Durbin. “Fast and accurate short read alignment with Burrows-Wheeler trans-

form.” In: Bioinformatics (2009), pp. 1754–60.

[75] Raw reads from the YH (Homo sapiens) genome (version SOAPdenovo2). URL: http://www.

ebi.ac.uk/ena/data/view/ERP001652.

[76] Convey. Convey HC-2 Architectural Overview. Tech. rep. URL: http://www.conveycomputer.

com/files/4113/5394/7097/Convey_HC-2_Architectual_Overview.pdf.

[77] X. Meng and V. Chaudhry. “A High-Performance Heterogeneous Computing Platform for

Biological Sequence Analysis”. In: IEEE Transactions on Parallel and Distributed Systems 21

(2010), pp. 1267–1280.

[78] Y. Liu, B. Schmidt, and D.L. Maskell. “CUSHAW: a CUDA compatible short read aligner to

large genomes based on the BurrowsWheeler transform”. In: Bioinformatics (2012).

[79] Homo sapiens chromosome 22, alternate assembly CHM1 1.1, whole genome shotgun sequence.

URL: http://www.ncbi.nlm.nih.gov/nuccore/528476531.

[80] Valgrind. Massif. URL: http://valgrind.org/docs/manual/ms-manual.html.

[81] David. STL Container Memory Usage when Developing with C++. 2014. URL: http://info.

prelert.com/blog/stl-container-memory-usage.

[82] “MOABS: model based analysis of bisulfite sequencing data”. In: Genome Biology (2014).

[83] D.H. Jones et al. “GPU versus FPGA for high productivity computing”. In: 2010 International
Conference on Field Programmable Logic and Applications (2010), pp. 119–124.

[84] “CARAT-GxG: CUDA-Accelerated Regression Analysis Toolkit for Large-Scale Gene-Gene In-

teraction with GPU Computing System”. In: Cancer Informatics (2014), pp. 27–33.

[85] B. Kreuter et al. “Accelerating Genomic Analyses with Parallel Sliding Windows”. 2010.

[86] P. Jiang. Methy-Pipe Manual. URL: http://137.189.133.71/methy-pipe/data/Methy-

pipe.manual.pdf.

96

Appendices

97

Appendix A

Accelerated Genome Compression Algorithm

Algorithm 7 Referential compression with exact match alignment - the key auxiliary functions are
detailed for completeness.
Input: Set of sequencing reads, reference FM-index F , suffix array intervals SAI and reference suffix array SA
Output: Sequence-to-reference mapping tuples, T

step← 1 . Initially, single tuple per read
T ← generate input(reads, step) . Generate tuples for alignment
exact align(T , F , SAI)
parse output(reads, step, T)
reverse complement(reads) . Get DNA reverse complement of read sequences
while unaligned tuple in T do . Keep generating tuples and aligning them until termination

T ← generate input(reads, step)
exact align(T , F , SAI)
parse output(reads, step, T)
step← step× 2 . Increase step, causing each tuple to be split in half

end while

function PARSE OUTPUT(reads, step, T)
for tuple in T do

i← get tuple index in mapping(reads[tuple.id].mapping, tuple)
if tuple.low ≤ tuple.high then . Parse aligned tuple

reads[tuple.id].mapping[i].pos← convert pos to reference(tuple.low)
else . Parse unaligned tuple

tuple1 ← (tuple.pos, tuple.len/2)
tuple2 ← (tuple.pos+ tuple1.len, tuple.len− tuple1.len)
reads[tuple.id].mapping[i]← tuple1
reads[tuple.id].mapping[i+ 1]← tuple2

end if
end for

end function

function GENERATE INPUT(reads, step)
T ← []
for read in reads, where read.discard != true do

for j ← 0 to read.mapping.size() do
if read.mapping[j].len ≤ dread.len/stepe then

compressed read← (read.id, read.symbols, read.mapping.pos, read.mapping.len)
T .append(compressed read)

end if
end for

end for
return T

end function

function EXACT ALIGN(read tuples, F , SAI)
... . FM-index search algorithm, ideally using n-step and oversampling

end function

98

Appendix B

Methy-Pipe Manual

On the following pages we have included the Methy-Pipe manual (v2.02)[86]. This details the

Methy-Pipe directory structure, provides some usage instructions and gives examples of output

files.

99

1

 1
 2

Methy-Pipe Manual (v2.02) 3

 4
The structure of directory hierarchy for Methy-Pipe and analysis output. 5
 6

(1) Methy-Pipe pipeline structure. 7
 methy-pipe2 8

 |-methy-pipe2.pl # main script used to run Methy-Pipe 9
 |-cpp_prog/ # binary programs compiled from C++ 10
 |-perl_prog/ # perl programs 11
 |-R_prog/ # R scripts (requires ggplot2 and gridExtra packages) 12
 |-bed_files/ # bed files such as TSS regions frequently used to calculate 13
 # the regional methylation density 14
 |-utils/ # extra utilities such as DMRs mining etc. 15

 |-2bwt-builder/ # scripts can be used to build the BWT index for a reference genome 16
 |-split_meth_call/ # scripts can be used to split the methylation call files based on 17
 # each chromosome. 18
 |-DMR/ # programs can be used to identify the differentially methylated regions 19
 # based on above split methylation call files 20
 |-bed_files/ # containing regions of interest in bed format such as TSS regions, 21
 # gene regions, etc 22
 |-database/ # containing reference genome 23

 24
(2) Methy-Pipe output structure. 25

 Methy-Pipe_output 26
 |-outprefix_alignment/ # BS-Seq alignment results 27

 |-outprefix_meth_call/ # methylation calling results 28
 |-outprefix_meth_density/ # methylation density profiling by using a fixed window size 29
 |-outprefix_summary/ # summary for the Methy-Pipe 30
 |-outprefix_logs/ # intermediate results that can be deleted by users 31
 |-DMRs/ # analyzing the differentially methylated regions 32

 33

2

How to use Meth-Pipe 34
 35

I. If you want to quickly start Methy-Pipe, please use the following shell scripts in dataset folder. It 36

 will show some key instructions of how to run it. For the detailed implementation, please refer to 37

 the following section and manuscript. 38

 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62

II. Two test datasets are accompanied with the released Methy-Pipe software: 63
(1) dataset_light.tar.bz2: 64
This folder contains the raw data in fastq format, which can be used to test the Methy-Pipe. Since 65
the depth of this dataset is very low (less than 5 fold on average), the DMR detection probably is 66
not very accurate to offer biological significance. Nevertheless, it is a good example to illustrate 67
how to use Methy-Pipe for the following purposes: 68

 69
 trimming the raw reads with low-quality bases or sequencing adaptors. 70

 aligning the BS-seq reads. 71

 calculating the mappability and sequencing coverage. 72

 summarizing the results in a "summary.html" file. 73
 74

(2) dataset_full.tar.bz2: 75
This dataset contains raw data in fastq format, which can be used to test Methy-Pipe as said in (1). 76
In additional, users can perform the DMR mining. 77

 78

#IMPORTANT:

#Please install the ggplot2 (http://ggplot2.org/) and gridExtra

(http://cran.r-project.org/web/packages/gridExtra/) libraries for R before

starting Methy-Pipe.

#uncompress the files:

tar xjf methy-pipe2.full.tar.bz2

tar xjf dataset_light.tar.bz2

cd dataset_light

#create a makefile for BS-Seq alignment and methylation calling:

./wk.sh

#change to the output result folder:

cd Methy-Pipe_output

#Use makefile to run the Methy-Pipe:

make

#if users want to use 2 parallel computing nodes to run

#Methy-Pipe based on SGE platform, run the following command:

#./qsub.sh 2 makefile

#Split the methylation call by each chromosome:

./demo_split_call.sh

#change to DMRs identification folder

mkdir DMRs

cd DMRs

./demo_DMRs.sh

3

III. The configuration file for the Methy-Pipe is illustrated in CONF. It is easy to modify this standard 79

 CONF to analyze new dataset. The following is one example of CONF (Please modify the path in 80

 blue accordingly). 81

 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128

#FOMART: KEY<TAB>VALUE

path to the statistics program R

R /path-binary-R/R

#reference genome index for the BSAaligner

BS_INDEX /path-to-BSAlignerIndex/hg19

#mismatch allowed for each end

MISMATCH 2

#minimal insert size allowed for paired-end reads

MIN_INS 0

#maximal insert size allowed for paired-end reads

MAX_INS 600

#each chromosome length

LIST_CHR_LEN /path-to-BSAlignerIndex/hg19.size

#Watson strand reference (fasta)

GENOME_W_FA /path-to-BSAlignerIndex/hg19.W.ori.fa

#Crick strand reference (fasta)

GENOME_C_FA /path-to-BSAlignerIndex/hg19.C.ori.fa

#frequency for each 3mer in reference genome

HG_3MER /path-to-BSAlignerIndex/hg19.3mer

#windows around TSS (ucsc reference gene)

TSS /path-to-BSAlignerIndex/TSS.win.bed

#sequencing data in fastq format

SEQ_FORMAT fq

#prefix for each output result

OUT_PREFIX test

#sequencing mode in a paired-end manner (PE) or single-end manner (SE)

SEQ_MODE PE

#how many first cycles supposed to be used

#for example, 75 means the cycles after 75th would be omitted

USED_CYCLES 75

#how many threads supposed to be used for the BSAligner

THREAD 20

#whether to merge the all of alignments in this batch

#0 mean don’t merge; 1 means merge

MERGE 0

#window size to profile the methylation density across the genome

#only the CpG sites are considered

BIN_SIZE_CPG 100e3

#window size to profile the methylation density across the genome

#only the CpG sites are considered

BIN_SIZE_NONCPG 100e3

#how many total cycles expected to be used (read1+read2).

SEQUENC_TOT_CYCLE 150

#a separated file recording the path of fastq files as well as the

#sample names to be analyzed (see Part IV)

INFO ./info

#the output directory

OUT_DIR Methy-Pipe_output

4

IV. The info file is required for CONF. It records the location of raw data as well as sample 129

 information. 130

 131
 132
 133
 134
 135
 136
 137

V. If you need to perform DMR identification, you should first split the methylation call by each 138

 chromosome using the following commands. 139

 140

 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153

VI. You can use the following commands to identify DMRs: 154

 155

 156

 157

 158

 159

 160

 161

 162

VII. You can further annotate DMRs to closest genes using the following script in DMRs directory by: 163

 164
 perl ../../../methy-pipe2/utils/DMR_anno/dmr_anno.pl \ 165

 ../../../methy-pipe2/bed_files/iGenome.hg19.revised.gff3 \ 166
 all.hyper.call.filtered > all.hyper.call.filtered.anno2gene.xls 167

 168

VIII. The methylation in any arbitrary region can be calculated by following script: 169

 170
 perl utils/regional_meth_density/calc_regional_met_density.pl \ 171
 region.bed sample.W.CpG.call sample.C.rev.CpG.call > output 172

 173

#sample lane description path-to-read1.fq [path-to-read2.fq

for paired-end reads]

PW396w 7 PW396w /path-to/PW396w.read1.fq /path-to/PW396w.read2.fq

CVS396 8 CVS396 /path-to/CVS396.read1.fq /path-to/CVS396.read2.fq

#Please change to Methy-Pipe output directory,

#then type in the following commands:

../../methy-pipe2/utils/anno/split_call.sh \

 test.CVS396_8.W.call test.CVS396_8.C.rev.call CVS396_8_split CVS396_8

../../methy-pipe2/utils/anno/split_call.sh \

 test.PW396w_7.W.call test.PW396w_7.C.rev.call PW396_7_split PW396w_7

#or users can directly run the demo_split_call.sh in Methy-Pipe output

directory.

#Please change to Methy-Pipe output directory,

#then type in the following commands:

mkdir DMRs

cd DMRs

../../../methy-pipe2/utils/DMR_calling/auto_DMR.biomarker.sh \

 ../CVS396_8_split ../PW396_7_split CVS396_refto_PW396w

#or users can directly run the demo_DMRs.sh in Methy-Pipe output directory.

5

IX. Examples of Methy-Pipe output. 174

a. Alignment results (*.bsalign) 175

 176
b. Methylation calling (*.call) 177

 178
c. Methylation density (*.density) 179

 180
d. Regional methylation density calculation 181

 182
e. DMR identification (DMRs/all.hypo.filtered) 183

 184
f. DMR annotation 185

 186
 187

X. If you have any other question, please contact jiangpeiyong@cuhk.edu.hk 188

