
Abstract—We introduce and implement a neural model for 
mentalization/mindfulness based psychotherapy. It uses Dan 
Levine’s neural model of pathways for emotional-cognitive 
decision making, which is integrated with a competitive 
Hopfield network built up from the new concept of strong 
patterns for the six basic emotions and for mentalization or 
mindfulness. We adopt a particular form of Q-learning to 
reinforce the mentalizing/mindful pattern in the network, 
which represents the process of psychotherapy.  In a successful 
course of therapy, the mentalizing/mindful pattern becomes the 
more dominant pattern compared to negative emotions and the 
brain makes decisions that are more deliberate and thoughtful 
than heuristic and automatic. 

I. INTRODUCTION 
We develop a neural model for psychotherapy based on 

mentalization using our current understanding of the human 
brain, psychopathology and the effect of psychotherapy on 
the individual. We adopt the fundamental viewpoint in 
attachment theory (see, for example, [1]): Psychopathology 
is, generally speaking, a reflection of suboptimal early 
neural development, integration and coordination which may 
be caused by a combination of adverse environmental and 
biological factors. Since early interactions with primary 
caregivers have a profound impact on the expression of 
genes, there is a period in an infant's life when nature and 
nurture actually coincide as experience is transformed into 
neural structure.  

The quality and dynamics of the infant's relationships with 
the primary caregivers sculpt the neural circuits 
corresponding to the secure or insecure attachment types of 
the toddler which become the basis of the internal "working 
model" for the child with long term impact on the emotional 
well-being of the child and later the adult [2][3][4]. 

Symptoms of psychopathology such as depression and 
anxiety inflict psychic pain when the neural pathways 
required for healthy functioning are underdeveloped or 
under-regulated. The individual is then unable to modulate 
and regulate his or her arousal level and strong emotions. 
Psychotherapy helps the individual to take steps to integrate 
the cognitive and affective neural pathways so as to enable 
such modulation and regulation and thereby increase the 
capacity of the individual to withstand stress in problems of 
everyday life  [6][7]. 

While there are currently many forms of psychotherapy 
available, an overarching goal in nearly all evidence based 
psychotherapies is to increase the capacity of the individual 
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for mentalizing or mindfulness, i.e., to understand the 
emotional and mental state of others as well as the individual 
self [7].  Adults who had developed a secure attachment with 
their primary caregivers as children have a well-developed 
capacity for mentalizing or mindfulness, whereas those with 
an insecure attachment type lack such a strong capacity.  

The three most widely used psychotherapies, namely 
Cognitive Behavioral Therapy (CBT), Mindfulness Based 
CBT and Psychodynamic Psychotherapy all have their main 
focus on nurturing and developing the capacity for 
mentalizing or mindfulness in the clients in one form or the 
other, an integrating process which would empower them to 
contain and come to terms with negative strong emotions. 
An increased capacity for mentalizing/mindfulness means 
that the individual is able to make more deliberate, 
thoughtful and conscious, as opposed to heuristic, automatic 
and subconscious decisions, which in turn provides a sense 
of agency and control in the individual [7]. We will from 
now refer to mentalizing/mindfulness as simply mentalizing. 

Levine [8] has developed a neural model for pathways of 
emotional-cognitive decision making, which explains how 
deliberate as opposed to heuristic decisions are made in the 
brain pathways. It is comprised of a competitive model for 
basic and higher needs which are captured by attractors of a 
neural network [9] together with four main organs in the 
brain, namely the amygdala, the Orbitofrontal Cortex (OFC), 
the Dorsolateral Prefrontal Cortex (DLPFC) and the Anterior 
Cingulate Cortex (ACC), all of which are involved in 
decision making. An Adaptive Resonance Theory (ART) 
architecture [10] has been proposed to model the interactions 
of these four organs for decision making based on the input 
from the needs network. 

We build on Levine's model to develop a model of 
mentalization based psychotherapy by integrating into his 
model the new concept of strong patterns in neural networks. 
Strong, in other words, multiply learned, patterns of the 
Hopfield network [11] have been recently introduced to 
model attachment types and behavioral and cognitive 
prototypes [12][13]. It has been shown that strong patterns 
are strongly stable, with an energy level decreasing 
proportionally to their degree (i.e., their multiplicity) and a 
retrieval capacity which, in the presence of random patterns, 
increases proportionally to the square of their degree. These 
results show that strong patterns are robust and persistent in 
the network memory as attachment types and behavioral 
prototypes are in the human memory system.  

Strong patterns reflect cognitive and behavioral patterns 
or addictions that are deeply and repeatedly learned as in the 
process of Hebbian learning or long term potentiation and 
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therefore are suitable to model both the symptoms of 
psychopathology and the process of psychotherapy. They are 
incorporated in our framework to model a strong 
psychological need for cognitive closure, which can in 
particular be considered as a brain biased toward a 
combination of the basic six emotions, and in particular the 
negative emotions, namely, strong anger and fear. We also 
use them to model increased need for cognition and 
mentalizing that is developed in the individual as a result of 
psychotherapy. Facial expressions are employed to model 
the basic emotions as well as mentalizing; in fact for 
simplicity and as a first approximation in our 
implementation we employ animated smiley faces in the six 
basic emotional states and in a thinking mode to capture 
these seven states in our model. This means that in our 
implementation framework what matters is not the mental 
state itself but the relative strength of the mental states, i.e., 
the degree of the strong pattern representing each of them. 

In this paper, reinforcement learning is used to model the 
process of behavioral change.  Reinforcement learning, 
which originated from behavioral psychology and 
instrumental learning, is based on trial and error in order to 
maximize an agent’s reward depending on the responses it 
receives from the environment [14]. Q-leaning is a particular 
form of reinforcement learning based on temporal difference 
where prediction of rewards of the agent’s choices is carried 
out in immediate response to the environmental feedback. 
There is evidence from animal studies that the activity of the 
dopamine system, thought to be involved in decision making 
about reward, is actually consistent with and supports 
Q-leaning  [15]. 

The process of psychotherapy in our work is modeled by a 
form of Q-learning which reinforces mentalizing as well as 
happiness as opposed to negative emotions such as strong 
anger and fear. The reinforcement learning will result, on the 
one hand, in a modulation of the strong patterns reflecting 
negative emotions and, on the other hand, in an increase in 
the multiplicity of the strong patterns representing 
mentalizing and happiness. When the mentalizing pattern 
becomes the dominant pattern in the competitive neural 
network the psychotherapeutic process is considered to have 
been successful. The individual will now make far more 
deliberate, thoughtful and conscious decisions processed by 
the OFC and DLPFC than heuristic, automatic and 
subconscious ones that are amygdala driven and stem from 
suboptimal early neural development. 

We essentially adopt the structure of the ART architecture 
as presented in [8] to model the relevant functions of 
amygdala, OFC, DLPFC and ACC in this work, but we use 
the Restricted Boltzmann Machine (RBM) [16] for 
classification of features in these brain regions rather than 
the ART classifier itself. This makes our implementation 
efficient and can be considered as a first approximation, 
even though the RBM has symmetric synaptic couplings and 
is therefore not as biologically plausible as the ART 
classifier. 

We now briefly review neural models for psychotherapy 
in the literature. In [17] a neural model for personality has 
been proposed based on the character cube presented in [18], 
which, according to the authors, deals with individuals who 
are already functioning quite well but seek to improve their 
effectiveness.  Similarly, the work in [19] uses Cloninger’s 
character cube to develop a neural model for how human 
beings suppress or enhance certain types of behavior.  In 
[20], a Hopfield network with two weakly connected layers 
has been used to model the concept of “working through” in 
psychoanalysis. Galatzer-Levy provides in [21] an 
expository account of how non-linear dynamical systems 
and attractors can be used qualitatively to model the 
psychoanalytical process; it also contains other related 
references in this subject. There are also several volumes on 
neural modeling of psychopathologies as in [22].  

To our knowledge, however, this paper presents the first 
quantitative neural model of psychotherapy in general, 
which has been implemented, as well as the first  neural 
model of any type of mentalization/mindfulness based 
psychotherapy, which  in particular includes Cognitive 
Behavioral Therapy 

II. DECISION MAKING NETWORK

A. The Network of Needs 
In the human brain, multiple decision rules coexist and 

compete with each other. These rules are either irrationally 
heuristic or consciously deliberative. The decision rules at 
different levels of sophistication activate different regions of 
the brain [8].    

Levine posits that the heuristic decisions are inherited 
from emotionally influenced decisions made by other 
mammals, and the deliberative decisions involve logic 
calculation and working memory manipulation [8]. He 
presents a decision-making system in the human brain 
encompassing a network of needs, a network of decision 
rules, and the communication between these two 
subsystems.  

The network of needs involves physiological as well as 
psychological needs on different levels. These needs 
compete with each other, and the state of the needs network 
shifts within these needs when the individual experiences 
discontent.  

The network of decision rules consists of four connected 
areas: the amygdala, the OFC, ACC and DLPFC, which 
account for various decision rules on specific tasks. These 
four regions comprise a three-layer network, in which the 
vigilance threshold of the individual determines the status of 
activation of each layer. The state of the needs network 
influences the vigilance threshold so that the winning needs 
become dominant to implement the corresponding decision 
rules.  

Levine developed the needs module as the interpretation 
of Maslow’s hierarchy of needs [23]. Maslow added 
psychological needs, such as love, esteem, and 
self-fulfillment, to the list of purely physiological needs. 



These needs inhibit others while sending excitatory signal to 
themselves; the physiological needs have normally the 
strongest self-excitation.  

Maslow’s hierarchy of needs can be considered as a 
two-layer hierarchy containing the need for cognition [24] 
and the need for cognitive closure [25]. The need for 
cognition is the motivation to analyze arguments deeply, and 
individuals with high need for cognition are more likely to 
make deliberative decisions. The need for cognitive closure 
is thought of as the motivation to make decisions without 
thinking about the relevant issues, and individuals with high 
need for cognitive closure are more likely to make heuristic 
decisions.  

Here we employ a standard Hopfield network to model 
Levine’s needs diagram by using strong patterns that 
represent the basic emotional and cognitive needs. The 
degrees of strong attractors in this network change 
dynamically according to the strength of the needs that the 
individual experiences at each point in time. The six basic 
emotions and a “mentalizing” pattern are stored as strong 
patterns represented by animated smiley faces in the system 
with various degrees. We assume that the six basic emotions 
are correlated to the need for cognitive closure and the 
mentalizing pattern is strongly correlated to the need for 
cognition. That is, increasing the degree of one of the 
emotional patterns leads to enhancing the satisfaction of the 
need for cognitive closure, and increasing the degree of the 
mentalizing pattern leads to enhancing the satisfaction of the 
need for cognition. As shown in Fig 1, these two needs 
compete with each other in the needs module, and the six 
emotional patterns compete with each other within the need 
for cognitive closure. In the Hopfield network, the initial 

configuration of the system will be updated during iterations, 
and it will, with high probability, eventually converge to the 
strongest pattern. 

For example, if the mentalizing pattern is the dominant 
attractor stored in the Hopfield network, that is, the 
mentalizing pattern has the highest degree among all other 
strong patterns in the system, the brain model containing this 
Hopfield network is thought of having high need for 
cognition. Therefore, as in Levine’s model, the energy of the 
mentalizing pattern will be stored in the working memory, 
and then any state of the network with higher energy will be  
disturbed by random noise so that the needs 
module can shift to the mentalizing attractor. Similar to this 
process, given any initial configuration, the dynamics of the 
Hopfield network will, with high probability, eventually 
converge to its strongest attractor, i.e., the attractor with 
highest degree and least energy. 

B. The Network of Decision Rules 
 Three identical Restricted Boltzmann Machines (RBM) 

are introduced to simulate the behaviors of amygdala, OFC 
and DLPFC. These RBM’s are able to categorize the seven 
different patterns (six emotional patterns and one 
mentalizing pattern) and represent them in the hidden units 
using seven distinct 17-unit vectors. Each of these RBM’s 
responds to input signals in different ways (this will be 
discussed when combined with the network of needs in next 
subsection). And the outputs from them will be compared 
with respect to the value ! of the vigilance threshold as a 
threshold in ACC. We say that mismatch occurs if the 
Hamming distance from the amygdala output to OFC output 
(or from OFC output to DLPFC output) is greater than !. For 
individuals with mentalizing pattern as the strongest attractor 
(high need for cognition), the vigilance threshold is always 
low, while for individuals with one of the emotional patterns 
as the strongest attractor (high need for cognitive closure), 
the vigilance threshold is high. In other words mismatch is 
easier to occur in a mentalizing person, while a person with 
high vigilance threshold most likely follows the heuristic 
signals.  

The OFC is so densely connected to the limbic system 
that it has been sometimes characterized as the executive 
director of the limbic system [2]. Its optimal development in 
childhood allows it to regulate the stimuli from amygdala. 
We can therefore regard OFC as exerting a controlling 
mechanism, which we also incorporate in our model.  

As far as the control from OFC to amygdala (or from 

Fig. 1.  The Hopfield network containing the needs for cognitive 
closure and needs for cognition. The needs for cognitive closure are 
correlated to the six basic emotional patterns, and the needs for 
cognition are correlated to the “mentalizing/mindful” pattern. Similar to 
the relationship of the needs in Maslow’s hierarchy, each of these two 
kinds of needs receives inhibition signals from another and excitation 
signals from itself. 

Fig. 2.  A black box diagram of a P controller in a feedback loop. The 
dynamics of !(!) and !(!) are analogous to the control behavior of the 
OFC and the amygdala respectively. 



DLPFC to OFC) is concerned, we have designed two 
versions of our brain system in this project: one regards the 
OFC as a controller to adjust the outputs from amygdala, and 
the other disregards the control activity of OFC. However, 
before we can design such controller to simulate the control 
activity of OFC, we have to first consider the dynamics of 
the controlled system – the 17-neuron population in 
amygdala.  

C. Modeling Feedback Controlling 
To model the dynamics of the 17-neuron population in 

amygdala, we take these neurons as a neural network 
existing in a neurobiological system, even though the 
neurons used in this project are binary units. The dynamics 
of real neural population is very complex and highly 
nonlinear, but it is still a good approximation to consider the 
population as a linear system. Such linear approximation is 
still biologically plausible because it is relevant to the 
production of postsynaptic currents (PSC) in the 
postsynaptic cell [26]. For simplicity, a PSC model can be 
written as 

),/exp()( pscpsc tth τ−=  (1) 

where pscτ is the synaptic time constant. We can apply this 

model to the population system, so that the transfer function 
of the 17-neuron population is  

),/exp(1)( τ
τ

tth −= (2) 

where ! is the synaptic time constant. For convenience, we 
can rewrite Equation (2) in frequency domain using Laplace 
transformation  ℎ(!) of ℎ(!) as given by Equation (2), 

h(s) = 1
1+ sτ

. (3) 

A proportional gain controller (P controller) is the 
simplest feedback controller used in industrial control 
system. Fig 2 shows a schema of a feedback control loop 
with P controller. The proportional controller !(!), which is 
characterized by the proportional gain k!, outputs a control 
signal ! !  to the controlled system !(!) according to the 
difference (error !(!)) between the measured system output 
y(t) and the desired reference !(!). This controller attempts 
to minimize the error and increase the speed of system 
response.  

D. Connection of Needs Network and Decision Network 
In [Levine 2009], it is posited that different needs in the 

module could result in different vigilance threshold. Here, 
we assign a high value of vigilance threshold to the need for 
cognitive closure, and a low value to the need for cognition. 
When the mentalizing pattern is dominant in this model, it 
has a strong ability to detect the mismatch between the OFC 
and amygdala (or the DLPFC and OFC). On the other hand, 
if the vigilance threshold is high, the OFC-amygdala loop is 
more activated than the DLPFC-OFC loop, and then the 
individual will undertake heuristic decisions; otherwise, the 
DLPFC-OFC loop is dominant in the decision rule network, 

and the person will make deliberative decisions. 
In our DECIDER model, the input pattern will firstly 

stimulate the Hopfield network and the dynamics of this 
network will eventually evolve to an attractor with the 
lowest energy. 

If the mentalizing pattern is recalled, then the Hopfield 
network will send a low-level vigilance threshold (a constant 
r) to the error detector (ACC), and the DLPFC-OFC loop is
chosen to generate complex decision rules. As the secondary 
sensory device, the RBM in the DLPFC receives a 
mentalizing signal from the Hopfield network, and 
categorizes it into a 17-unit vector. And the RBM in the 
OFC, the primary sensory device, accounts for categorizing 
the input pattern into another 17-unit vector.  

If the Hamming distance of these two generated vectors is 
greater than the vigilance threshold, then we say that a 
mismatch occurs and the DECIDER would generate a 
deliberative rule. Otherwise, the DECIDER would make a 
heuristic decision. However, because of  the low vigilance 
threshold, the DLPFC-OFC loop would most likely not 
make heuristic decisions. Note that there is no control from 
DLPFC to OFC in our current model. 

On the other hand, if the recalled pattern is one of the six 
emotional patterns, the Hopfield network will send a 
high-level vigilance threshold to ACC, and the 
OFC-amygdala loop is chosen for making decisions. Similar 
to the loop above, as the secondary sensory device, RBM for 
OFC categorizes the emotional pattern from the Hopfield 
network, and amygdala categorizes the input pattern. The 
Hamming distance between the two output vectors is 
compared to the high-level vigilance  threshold. A heuristic 
decision is generated if the Hamming distance is lower than 
the vigilance threshold; otherwise, a deliberative decision is 
made. Furthermore, the control from the OFC to amygdala 
influences the output of the RBM in amygdala. A 
well-trained OFC (with the proportional gain k! tuned to be 
appropriate) can adjust the amygdala output to some value 
close to the output of the OFC. 

III. MODELING PSYCHOTHERAPY

A. Aims and Objectives 
The main purpose of this work is to apply a Q-learning 

algorithm to model the psychotherapeutic process. Two 
experiments are carried out to study how the discount factor 
of the Q-learning is related to the therapeutic process, and 
how the initial configuration of the attractor-competitive 
network influences therapy. 

B. Outline of Implementation 
As already pointed out, CBT aims at a more rational 

interpretation of events by the individual, which would 
ultimately enhance the control from the orbitofrontal cortex 
to amygdala. In this work, the interpretation of an event is 
modeled metaphorically by the recall pattern when the 
Hopfield network, with stored strong patterns for the six 
basic emotions and mentalization, is exposed to an initial 



random pattern.  These strong patterns are stored in the 
Hopfield network as smiley faces representing the six 
emotions and mentalization with different degrees. The 
regulating behavior from OFC to amygdala is realized by 
implementing the P-controller in which the parameter !! is 
analogous to the control strength.  

In addition now a Q-learning algorithm is designed to 
model how the modulating process from orbitofrontal cortex 
to amygdala is enhanced during therapy and how the relative 
strength of the strong patterns in the attractor-competitive 
network are altered. In other words, the degrees of patterns 
in the Hopfield network, and the parameter !!  keep 
changing during the operation of the Q-learning algorithm. 

C. Hopfield Network 
The Hopfield network is trained with eight types of 

patterns (Angry, Happy, Sad, Disgusted, Fearful, Surprised, 
Mentalizing and random patterns). The degrees of five of the 
basic seven patterns, namely Angry, Happy, Sad, Fearful 
and Mentalizing would change during the Q-learning 
process. 

D. Feedback Control Loop 
The initial value of !!  is set to 0.5. This value will 

increase in the course of treatment as the degree of the 
mentalizing pattern increases. The steady-state output of 
amygdala gets close to the output of OFC if we increase the 
value of parameter p. 

E. Q-learning 
We apply Q-learning to model how the choices that the 

patient makes will influence the state transition during the 
process of psychotherapy. In Q-learning it is assumed that 
there are a set !!of Q-states and a set !!of actions for an 
agent. The Q function !: !×! → ℝ calculates a Q value for 
each pair of Q-state !!!!!! and action!!!!!!!. These Q values 
are an estimate of the expected reward that the agent will 
receive from choosing this particular action when it comes to 

make an action decision. Following the choice of action ! in 
Q-state ! and an observed transition to Q-state!!!, the reward 
is given by !! !, !! !and the Q values are updated according 
to the conventional rule: 

! !, ! ← ! !, ! + ![!! !, !! + !] 
where 

! = !max
!!

! !!, !′ − !(!, !). 
The learning rate 0 ≤ ! ≤ 1 determines the extent to which 
newly acquired information overrides old information, and 
the discount factor 0 ≤ ! < 1 signifies the relative value the 
agent places on immediate/future rewards. 

In our model, the state of the patient is given by a D-state 
and a Q-state: 

• The D-state is the 5-vector, whose components are
the degrees of the five chosen patterns in the
following order: Angry, Happy, Sad, Fearful,
Mentalizing.

• The Q-state is the ordinal 5-vector corresponding to
the D-state, i.e., the relative rank of the degrees of
the five patterns.

For example, if the D-state is [10,1,5,1,3], which gives the 
degrees of the five above patterns, then the Q-state would be 
[4,1,3,1,2]. The idea of using ordinal ranks in Q-learning 
was first introduced in [27]. There are in our case 5! Q-states 
for the permutations of all strict ordinal vectors, i.e. for the 
case where all five degrees are different, 5!/2! Q-states for 
the non-strict ordinal vector with two equal degrees, 5!/3! 
Q-states for the non-strict ordinal vector with three equal 
degrees, 5!/4! Q-states for the non-strict ordinal vector with 
four equal degrees, and 5!/5! states for the case where all 
degrees are equal. This thus gives a Q-state space  ! of size 
120+60+20+5+1=206. 

For each Q-state!!!!!!, there is a corresponding finite set 
of valid actions !  to choose from. For simplicity it is 
assumed that all Q-states share the same action set 

! = 
{Be_Angry, Be_Happy, Be_Sad, Be_Fearful, Be_Mentalizing} 

resulting in 206*5 (Q-state, action) combinations. 
A probabilistic ‘Boltzmann’ action selection rule [28] is 

introduced to prevent the Q-values getting stuck in a local 
minimum. This rule allows state-action combinations with 
low Q-value to be chosen with some positive probability. 
According to the rule, the probability that action !  is 
selected is: 

Fig. 3. The average number of rounds required for the mentalizing  
pattern become dominant when undergoing  CBT treatment for 
different discount factor (!). Each line in the plot corresponds to a 
particular exploration rate (!) in the action selection rule. The y-axis is 
presented in log scale because the values for ! = 0.9 are unexpectedly 
high. 

TABLE I 
REINFORCEMENT REWARDS FOR EACH ACTION 

Action Name Reward 

Be_Angry 0 
Be_Happy 0.5
Be_Sad 0.2 
Be_Fearful 0.1 
Be_Mentalizing 1 



! ! ! = !!(!,!)
!!(!,!)!"#

 

where ! is an exploration parameter, whose increase results 
in reducing the probability of selecting those actions with 
low Q value. Therefore, the action selection rule with high 
exploration parameter can be thought of deterministic 
selection rule (i.e. always choosing the action associated 
with the highest Q value). 

The discount factor varies from 0.1 to 0.9, and for 
simplicity the learning rate is set to 1. The goal of CBT is to 
learn to deal with current problems in an appropriate way by 
mentalizing and therefore the “Be_Mentalizing” action 
receives the highest immediate reward. Be-Happy as a 
positive affect receives the next highest reward followed by 
Be-Sad to allow for grief and loss. Since a certain minimal 
amount of anxiety is also required for any effective 
performance, Be-Fearful is also slightly rewarded.  The 
reward for each action as shown in Table I. 

The initial Q value of each (Q-state, action) combination 
equals the value of the corresponding element in the Q-state 
vector.  For example, if initially  ! = [1, 4, 2, 3, 5], then we  
set!!(!, Be_Angry) to 1 and  !(!, Be_Happy) to 4. 

The algorithm for changing the D-state and Q-state works 
as follows. At any point in time, we have a given D-state and 
its corresponding Q-state. According to the ‘Boltzmann’ rule, 
an action Be_X from the set !  is selected, where X is one of 
the five chosen patterns: Angry, Happy, Sad, Fearful and 
Mentalizing. Subsequently, the Q-values are updated 
according to the Q-learning rule for Q-states. Concurrently, 
the degree of the pattern X is incremented by one, resulting 
in a new D-state that has the components of the old D-state 
except for the increment in the degree of the component of X.  
Note that the Q-state will now change if and only if the 
relative rank of the degrees of the five patterns changes. 

 The algorithm terminates once the mentalizing pattern 
becomes the dominant pattern in the Hopfield network. 
Otherwise, it will continue running until the maximum 
number of iterations. In the full version of this paper we will 
show mathematically that this algorithm eventually 

converges to a Q-state with a dominant Mentalizing pattern. 

F. Experiment 1 
In this experiment we study how the discount factor is 

related to the number of iterations required to change the 
dominant pattern from one of the emotional patterns to the 
mentalizing pattern. Also, the relation between the 
exploration rate !  in the probabilistic ‘Boltzmann’ action 
selection rule and the required rounds of iteration is 
examined. 

The experiment goes as follows: 
• The dominant pattern is initially set to the Angry

pattern. 
• The exploration rate ! varies from 1 to 4.
• Discount factor varies from 0.1 to 0.9.
• An individual experiment is run up to 10,000 rounds.
• The number of rounds required to make the mentalizing

pattern dominant is recorded.
• Each individual experiment is repeated for 20 times.
Initially the degrees of the seven patterns are set as 

follows: 

Angry: 8   Fearful: 5       Sad: 3                 Disgusted: 1 
Happy: 1   Surprised: 1 Mentalizing: 2 

In addition 500 random patterns are stored in the network. 
After, 200 rounds, we take the mean value of the number 

of rounds required to make the mentalizing pattern to 
become dominant. This average provides a more accurate 
estimate for the Q-learning behavior. The results are 
displayed in Fig 3. 

As the exploration rate ! increases, the average number of 
rounds required for obtaining a successful CBT treatment 
(i.e. the mentalizing pattern becomes dominant in the 
Hopfield network) decreases. The patient with a higher value 
of ! is thought of as a patient who is more willing to comply 
with the treatment protocol, a major assumption of 
successful CBT. We also observed that, in general, the 
patient with higher discount factor, i.e., the patient waiting 
for long-term rewards, achieves a slower rate of success than 
those striving for more short term change and reward. 

We also observed that the number of rounds required for 
the mentalizing pattern to become dominant is quite high 

Fig. 4. The average number of rounds required for a 
“mentalizing/mindful” pattern when a patient received CBT treatment 
for initial degree of anger pattern. 

Fig. 5. An illustration of DECIDER, responding to the outside world. 



 
 

 

 

when the discount factor ! > 0.9  (i.e. the patient who 
prefers to wait for future rewards). The patient receives 
reward every time a reinforced action is chosen, even though 
no state transition occurs, that is, !! !, !! > 0 for ! = !!. 
Therefore, the value of !(!, !) is updated even if no state 
transition has occurred. For the situation that a patient has 
high discount factor!! > 0.9, these non-reinforced actions 
will induce large ! and more state-action exploration. 

G. Experiment 2 
In this experiment we studied how the initial degrees of 

the stored patterns in the Hopfield network are related to the 
number of iterations required to change the dominant pattern 
from one of the emotional patterns to the mentalizing 
pattern.  

The experiment goes as follows: 
• The dominant pattern is initially set to the Angry 

pattern. 
• The initial degree of the Angry pattern varies from 10 to 

20. 
• The initial degrees of other patterns are constant. 
• Discount factor ! = 0.2. 

• Exploration rate ! = 2. 
• Each experiment is repeated 10,000 rounds. 
• The number of rounds required to make the mentalizing 

pattern dominant is recorded. 
• Each experiment is repeated1000 times. 

 
  Initially 500 random patterns are stored in the network 
together with the seven basic patterns with the following 
degrees: 
 

Angry: 10 to 20 Fearful: 5,    Sad: 3  Disgusted: 1 
Happy: 1    Surprised: 1    Mentalizing: 2 
 

  We again run the experiment 1000 times and take the 
average of the number of rounds required to make the 
mentalizing pattern dominant and depict the result in Fig 4. 

Except for the Angry pattern, the degree of any other 
pattern is viewed as constant. In general, as the degree of the 
Angry pattern is increased, the average number of rounds 
required for obtaining a successful CBT treatment (i.e. the 
mentalizing pattern becoming dominant in the Hopfield 
network) increases. 

 

 
 
Fig. 6. DECIDER model combining Hopfield network as needs network, and RBMs as decision network. Q-learning influences the attractors in the 
Hopfield. Needs for cognitive closure outputs high-level vigilance threshold signals to ACC. Needs for cognition outputs low-level vigilance threshold 
signals to ACC. The control from OFC to amygdala is designed as a feedback control loop. 
 



 
 

 

 

IV. BRINGING IT ALL TOGETHER 
Integrating the above components, we now obtain a 

super-model containing a super-network DECIDER, which 
simulates decision making and reinforcement learning, 
mimicking the effect of CBT treatment. Fig 5 illustrates how 
DECIDER tackles the input pattern from outside world and 
makes decisions as output. Fig 6 illustrates the structure of 
DECIDER and how its subsystems communicate with each 
other.  

As described previously, the seven basic patterns are 
stored in the Hopfield network as strong attractors, and one 
of them is recalled once the network receives a stimulus. If 
the recalled attractor is one of the six emotional patterns, it 
will be treated as an input signal to amygdala; otherwise, it 
will be viewed as an input signal to DLPFC. 

Three identical well-trained Restricted Boltzmann 
machines (RBMs) represent three regions accounting for 
various decision rules in the brain: DLPFC, OFC and 
amygdala. This trained RBM has the capability of 
categorizing the seven basic patterns, the six basic emotions 
and the mentalizing pattern. It receives binary images with 
25*25 pixels as input, and reduces the dimension of the 
input to 17-unit vectors. As mentioned above, the DLPFC 
receives the mentalizing pattern as input and the amygdala 
receives the emotional patterns as input.  In addition, the 
OFC categorizes the input patterns from outside world 
directly. The DLPFC-OFC loop works if the recalled pattern 
of the Hopfield network is the mentalizing pattern, and it 
accounts for generating deliberative rules. On the other hand, 
the OFC-amygdala works if the recalled pattern is one of the 
emotional patterns, and it deals with heuristic rules and some 
deliberative rules.  

The ACC has the function to detect the potential conflict 
between the outputs of DLPFC and OFC (or OFC and 
amygdala). It is viewed as a selective constant vigilance 

threshold: the vigilance threshold is low if the recalled 
pattern is the mentalizing pattern, and it is high if the 
recalled pattern is an emotional pattern.  

The decision-making loop outputs heuristic rules if the 
Hamming distance between the two RBM outputs is lower 
than the vigilance threshold; otherwise it makes deliberative 
decisions. Since the vigilance threshold for the DLPFC-OFC 
loop is low, it is unlikely that the DLPFC-OFC loop makes 
heuristic decisions. For the OFC-amygdala loop, if a 
mismatch does not occur (i.e. the Hamming distance is less 
than the vigilance threshold), the decisions are made based 
on the emotion output from amygdala; otherwise, decisions 
are made based on sophisticated rules. 

The first task of the reinforcement learning is to reinforce 
the positive patterns stored in the Hopfield network. It works 
with a variety of adjustable parameters, such as exploration 
rate, discount factor, and learning rate. Different 
combinations of the values of these parameters represent the 
patient in various situations. Secondly, the reinforcement 
learning aims to reinforce the control from the OFC to 
amygdala by simply increasing the parameter of the 
controller in the feedback control system. Such feedback 
system consists of the OFC as controller, and the amygdala 
as the plant to be controlled. It aims to adjust the output of 
amygdala to get close to the output of OFC, which is treated 
as a reference signal in the control loop. 

A. Experiment  
Initially we store 500 random patterns and the seven basic 

patterns with the following degrees:   
   

Angry: 10 Fearful: 5      Sad: 3     Disgusted: 1 
Surprised: 1  Happy: 1     Mentalizing: 2 
 
The value of high vigilance threshold is set to 16 and the 

value of low vigilance threshold is set to 2. As described 
above, if the recalled pattern of the Hopfield network is 
“mentalizing”, the low value is assigned to the vigilance 
threshold; otherwise, the high value is assigned to it. Then, 
the output vectors of the two sensory devices in the loop will 
be compared, and if the Hamming distance (the number of 
different bits) is greater than the vigilance threshold value, 
the object will make deliberative decisions; otherwise, it will 
make heuristic decisions. 

In a single experiment, the patient chooses an action 
subject to the reinforcement rules, and then the Hopfield 
network is updated according to the chosen action. 
Subsequently, a random pattern is used to stimulate the 
Hopfield network and the output is recorded. This is 
considered as one iteration. Such iteration will be repeated 
200 times in the single experiment. 

This experiment is run 1000 times and each time we have 
recorded the decisions that are made during the Q-learning 
procedure (200 iterations). As shown in Fig.7, the average 
numbers to make deliberate decisions over the 1000 runs are 
essentially monotonically increasing.  

 

 
 
Fig. 7. Simulation of DECIDER model: average numbers to make 
deliberative decisions versus iterations during Q-learning. 
 



 
 

 

 

V. CONCLUSION AND FUTURE WORK 
This work can be regarded as a first attempt to develop 

and implement a quantitative neural model for 
mentalization/ mindfulness based psychotherapy which 
includes CBT and psychodynamic therapy.  

Here we list a number of themes for future research: 
• Improving the performance of the Hopfield network so 

that it is robust to correlated patterns. 
• Using Deep Learning networks to be able to categorise 

emotions on real human faces, so that the system is 
able to cope with the real world. 

• Using artificial neural network to represent the control 
from the OFC to amygdala, so that the model is more 
biologically plausible. 

• Modeling the connections between the DLPFC to 
OFC. 

• Designing a learning scheme such that it reinforces the 
control in terms of time (or iteration in discrete 
domain). 

• Allowing for Long Term Depression of strong patterns 
by reducing their degrees if they are not recalled for a 
long time. 

• Redesigning the super model using spiking neurons. 
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