Countable and uncountable sets



Structure of the lecture course

» Abbas Edalat will give the first part of the course with 9
lectures and the first assessed course work followed by the
second part with another 9 lectures and the second course
work by Pete Harisson.

» For the first part of the course, the General Lecture Notes
(by Istvan Maros) will be used mostly to review the material
you studied in your first year.

» In addition, there will be lecture notes covering new

material and providing proofs for some of results in the
General Lecture Notes.



Textbooks and Videos

» As well as the three textbooks recommended in the
description of the course on the departmental web-page
for the course, you can look at:

() Strang, Gilbert. Introduction to Linear Algebra. 4th ed.
Wellesley, MA: Wellesley-Cambridge Press, February
2009.[an introductory textbook]

(i) Strang, Gilbert. Linear Algebra and its Applications. 3rd
ed. Harcourth Brace Jovanovich, February 1988. [a more
advanced textbook]

» You can also watch Gilbert Strang’s lectures at MIT on
video online.



Countable sets

» We say an infinite (i.e., a non-finite) set S is countable if
there exists an onto map (i.e., a surjection)

f:N— S

where N ={0,1,2,..., } is the set of natural numbers.
» Such a map f is called an enumeration of S.
» Given such an enumeration f we can construct an
enumeration
g:N— S,

which would be 1-1 as well. Such g will have the same
range as f (namely S) but it will map distinct elements to
distinct elements.

» Here is an inductive definition of g:

» Let g(0) := £(0).

» For i > 0, assume inductively that g(/ — 1) has been
defined and g(i — 1) = f(j) for some j € N. Put g(i) = f(j)
where j is the least integer greater than j (i.e., j/ > j) such
that f(j') # f(n) for n < f'.

» ltis easy to check that g is onto and 1-1:



Rational numbers are countable

Consider the two dimensional array of fractional numbers below, where every
fraction on the nth row has n in the numerator and every fraction in the mth
column has m in the denominator.

We count the elements of the array as in the diagram by discarding fractions

that are not in reduced form.

This gives a 1-1 correspondence between natural numbers and positive
rational numbers.
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Exercises: examples of countable sets

() The set of all positive integers is countable.
(i) The set of all integers is countable.

(iii) We can show by induction on n that the set of ordered lists
of natural numbers that have length nis countable.

(iv) We can then use (iii) to show that the set of all finite
ordered lists of natural numbers is countable.

(v) Any non-finite subset of a countable set is countable.

(vi) If Sis countable then S”, i.e., the collection of all n-tuples
of elements of S, is countable.

(vii) From (vi), we can deduce that the set of integer
polynomials (i.e., polynomials with integer co-efficients) is
countable.

(viii) From (vii) it follows that the set of roots of integer
polynomials, the so-called algebraic numbers, is also
countable.



Real numbers are not countable

>

The set of real numbers in [0, 1] is not countable.

» Suppose, for the sake of deriving a contradiction, that real

numbers in [0, 1] are countable, given by ay, as, as, . . ..
Write each of these in its decimal expansion:
am = 0.am1a@mea@ms - .. where amp € {0,1,2,--- ,9} is the
nth digit in the decimal expansion of ap,.
We then obtain:

a; =0.a11a2a13..-a1m- -

a = 0.as1a0a03...a2m -

Define b € [0, 1] with decimal expansion b = 0.b1bsbs . ..
by putting: by, =1 if amm #1 and by, =2 if amm = 1.
Then, foreach m=1,2,3, ..., the mth digit of b differs
from the mth digit of a;; and therefore we have b # ap,.
Thus, b € [0, 1] but b # an, for any m, a contradiction.



	

