University of London
Imperial College of Science, Technology and Medicine
Department of Computing

Exact Real Arithmetic using Mobius
Transformations

by

Peter John Potts

A thesis submitted for the degree of
Doctor of Philosophy of the University of London
and the Diploma of Imperial College.

July 1998

Abstract

In this thesis, we develop a domain theoretic and computationally feasible frame-
work for exact real arithmetic. We present a formal account of incremental digit
representations born out of domain theory, which includes the redundant binary
representation and continued fraction representation. The generalization of both
these fundamental representations for the real numbers leads to the notion of a
general normal product constructed using Moébius transformations. In this thesis,
we develop the work of Vuillemin, Nielsen and Kornerup, and show that incremen-
tality and efficiency can be simultaneously achieved in exact real arithmetic. We
examine a specialization of general normal products called exact floating point
with elegant mathematical properties on the one-point compactification of the
real line. Real functions are captured by the composition of 2-dimensional Mébius
transformations, leading to the notion of expression trees. Various reduction rules
and a lazy form of information flow analysis is used to allow expression trees to
be converted efficiently into the exact floating point representation. Algorithms
for the basic arithmetic operations and the transcendental functions are presented
using the redundant if statement for range reduction and various expression trees
derived from the theory of continued fractions. Finally, we present a practical
implementation in the functional programming language called Miranda and ex-
amine the mathematical properties of two theoretical languages with an exact real
number data type.

Acknowledgements

I would like to thank my parents without whose support and encouragement I
would never have returned to academia after six years in industry.

I must also thank my supervisor Abbas Edalat for his endless enthusiasm and
availability. In particular, we spent many hours trying to come up with a sound
theoretical representation for the real numbers using Mébius transformations. This
early work culminated in the notions of general normal product and exact float-
ing point, which formed the basis of a joint paper accepted by the Mathematical
Foundations of Programming Semantics (MEPS) [20]. Later, Abbas formed a
Real Group at Imperial College and arranged weekly meetings. Many ideas were
formed, tried and tested in these meetings. The Real Group included Lindsay
Frrington, Martin Escardé, Reinhold Heckmann, Luis Lamb, Valerie Ménissier-
Morain and Philipp Stinderhauf. Lindsay and I discussed some of the more practi-
cal aspects of the algorithms. Martin helped me understand the important role of
theoretical languages and together with Abbas we had a paper accepted by Logic
in Computer Science (LICS) [63]. Reinhold examined the complexity of many of
my algorithms and managed to improve some and come with up some new ones
[32, 34, 33]. Luis helped me by proof reading this thesis and making me aware of
many interesting articles. Valerie also proof read this thesis. She also installed a
version of the functional programming language called CAMIL with arbitrary in-
teger arithmetic. This allowed me to produce my fastest implementation of exact
real arithmetic in a functional programming language. Philipp made many con-
tributions to discussions especially during the latter days. He also helped Abbas
proof read this thesis. Philipp also edited a joint paper together with Abbas and
mysell accepted by the International Conference on Functional Programming [21].

Finally, I would like to thank the Engineering and Physical Sciences Research
Council for funding me.

Some of the algorithms in this thesis were derived with the help of Mathematica
[78] and tested in CAML [76] with BigNum [35].

This document was written using Scientific Workplace, Maple, Mathematica,
Metafile Companion and Paul Taylor’'s Commutative Diagrams package.

Contents

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Introduction

Notation and Background

Sets and Functions L L
Sequences
Semigroups, Monoids and Groups
Topological Spaces L
Trees o e
Automata
Category Theory
Domain Theory
Recursion Theory o
2.9.1 Partial Recursive Functions
2.9.2 Partial Recursive Functionals

The Real World

The Real Line and the Complex Plane

Complex Functions and Power Series

Approximate Digital Representations

The Fixed Point Representation
The Floating Point Representation

Exact Digital Representations

Domain of Real Intervals
Formal Digital Representations
Decimal Expansion oo
Incremental Digit Representation
The Automaton Connection
Linear Expansions,
Continued Fraction Expansions

11

15
15
16
16
17
18
18
18
19
24
24
26

29
29
34

37
37
40

8 CONTENTS

6 Rational Function Approximations 65
6.1 Padé Approximants 65
6.2 Equivalence Transformation 67
6.3 Stieltjes Type Continued Fraction 67
6.4 Jacobi Type Continued Fraction 68
6.5 FEuler type Continued Fraction 68
6.6 The Hypergeometric Function 69

6.6.1 The Ordinary Hypergeometric Function 69
6.6.2 The Kummer Confluent Hypergeometric Function 72
6.6.3 The 0-1 Confluent Hypergeometric Function 74
6.6.4 The 2-0 Confluent Hypergeometric Function 75

7 Effective Digital Representations 77
7.1 Recursive Functions and Functionals 77
7.2 Redundant Positional Representations 79
7.3 Redundant Continued Fractions 85
7.4 Incremental Floating Point 88
7.5 Redundant If Operator 94

8 Linear Fractional Transformations 97
8.1 Vectors, Matrices and Tensors 97
8.2 Vectors and Fxtended Rational Numbers 102
8.3 Matrices and Mobius Transformations. 103
8.4 The Theory of Mobius Transformations 105

8.4.1 Special Base Interval 105
8.4.2 Classifications Lo 106
8.4.3 Elliptic Maps 109
8.4.4 Hyperbolic Maps 112
8.5 Tensors and Mébius Transformations 112
8.6 Information 114
8.7 Quadratic Fractional Transformations 121

9 General Normal Products 123
9.1 Unbiased Exact Floating Point 127
9.2 Biased Exact Floating Point 131

10 Expression Trees 135
10.1 Basic Arithmetic Operations 137

10.1.1 Matrix Application 137
10.1.2 Reciprocal and Negation 137

10.1.3 Tensor Application, 137

CONTENTS 9

10.1.4 Addition, Subtraction, Multiplication and Division 138

10.2 Elementary Functions. L. 138
10.2.1 Square Rooto oo 140
10.2.2 Logarithm o 143
10.2.3 Expomential Lo o o 145
1024 P1o. oo 146
10.2.5 Tangent Lo oL 148
10.2.6 Inverse Tangent 150
10.2.7 Power Function o oL 152

10.3 Miscellaneous functions Lo 152
10.3.1 Real Modulus o o 152
10.3.2 Complex Functions, 153

11 Normalization Algorithms 157
11.1 Information Emission L. 157
11.2 Information Absorption 158
11.3 Information Flow Analysis 159
11.4 Digit Exchange Policy 163
11.5 Tensor Absorption Strategy 169
11.5.1 A Fair Strategy 170
11.5.2 The Information Overlap Strategy 171
11.5.3 The Outcome Minimization Strategy 173

11.6 Straightforward Reduction Rules 174
11.7 Matrix Lazy Flow Analysis 175
11.8 Tensor Lazy Flow Analysis 177
11.9 Efficient Linear Fractional Transformations 178
11.10Efficient Reduction Rules 178
11.11Destructive Data Types oL 179
11.12Scaling Invariance oo 179
12 Implementation 181
12.1 Type Definitions oo 181
12.1.1 Linear Fractional Transformations 181
12.1.2 Expression Tree o L. 181
12.1.3 Partial Exact Floating Point 182

12.2 Term Definitionso o oo 182
12.2.1 Basic Functions oo oo 182
12.2.2 Binary Scaling Functions 183
12.2.3 Exact Floating Point 183
12.2.4 Basic Arithmetic Operations 184

12.2.5 Linear Fractional Transformation Products 184

10

12.2.6 Type Cast Functions
12.2.7 The Refinement Property

12.2.8 Basic Expression Tree Functions

12.2.9 Square Bracket Application
12.2.10 Tensor Absorption Strategy
12.2.11 Normalization Functions
12.2.12 Decimal Output Function
12.2.13 Flementary functions

13 Theoretical Languages

131 PCEF . .. oo
13.1.1 Typing Rules
13.1.2 Operational Semantics
13.1.3 Denotational Semantics
13.1.4 Computational Adequacy

13.2 Language for Positive Reals
13.2.1 Typing Rules
13.2.2 Operational Semantics
13.2.3 Denotational Semantics
13.2.4 Computational Adequacy

13.3 Language for All Reals
13.3.1 Typing Rules
13.3.2 Operational Semantics
13.3.3 Denotational Semantics
13.3.4 Computational Adequacy
13.3.5 Worked Examples
13.3.6 Redundant If Operator

14 Conclusion
A Computational Adequacy Proofs

B List of Notation

CONTENTS

Chapter 1

Introduction

Real numbers are usually represented by finite strings of decimal digits
{0,1,2,3,4,5,6,7,8,9} and a decimal point {.}. This is called the decimal rep-
resentation. In a computer, it is more usual to consider finite strings of binary
digits {0,1}. In both cases, the representation specifies a function that maps fi-
nite strings to real numbers. However, finite strings of digits can only represent
a limited subset of the real numbers exactly. This means that most real numbers
are represented by nearby real numbers or enclosing real intervals with distinct
end points giving rise to the notion of round off errors. This is generally accepted
for a wide range of applications. However, it is well known that the accumula-
tion of round off errors due to a large number of calculations can produce grossly
inaccurate or even incorrect results.

Interval analysis [48] has been used to partially circumvent this problem by
maintaining a pair of bounding numbers that is guaranteed to contain the real
number or interval in question. However, this interval can get unjustifiably large
and thereby convey very little information.

Alternatively, by allowing infinite strings of digits all the real numbers can
be represented exactly. There have been a number of theoretical and practical
attempts to find a viable framework for exact real arithmetic. Broadly speaking
they fall into three categories:

1. Infinite sequences of linear maps proposed by Avizienis [2] and ap-
peared in the work of Watanuki and Frcegovac [74], Boehm and Cartwright
[5], Di Gianantonio [10, 13, 12], Escardé [23], Nielsen and Kornerup [51] and

Ménissier-Morain [47].
2. Continued fraction expansions proposed by Gosper [28], developed

by Peyton-Jones [54] and Vuillemin [71], implemented by Lester [45] and
advanced more recently by Kornerup and Matula [39, 40, 41, 42].

11

12 CHAPTER 1. INTRODUCTION

3. Infinite composition of Mobius transformations generalizes the
other two frameworks as demonstrated by Vuillemin [71]. Nielsen and Ko-
rnerup [51] showed that this framework can be used to represent quasi-
normalized floating point [74].

In this thesis, we explore and develop techniques for computing real numbers
on-line with infinite precision. The emphasis has been to improve efficiency, while
at the same time maintaining an elegant framework and a sound theoretical basis.
We start by noting that every real number can be represented by a sequence of
nested closed intervals whose lengths converge to zero. The intersection of these
intervals is a singleton set whose element is the real number being represented.
Using a computability argument, we justify an extension of the real numbers with
infinity and bottom.

In 1972, Gosper [28] presented techniques for computing with exact real num-
bers using continued fractions and Mobius transformations. Vuillemin [71], Lester
[45], Nielsen and Kornerup [51] developed these techniques in the intervening years.
In this thesis, we present a sound theoretical basis for these techniques utilizing
domain theory and recursion theory. Domain theory enables classical spaces, such
as the set of real numbers, to be embedded onto the set of maximal elements of a
suitable continuous (or algebraic) domain, which provides a good computational
model for these spaces [15, 14, 58, 60, 16, 18, 23, 19, 22].

In this thesis, we formalize the notion of a digital representation of the real
numbers and present the notion of a general normal product based on the in-
finite composition of Mébius transformations (also known as homographies and
linear fractional transformations). We then explore the relevant properties of 2-
dimensional Mobius transformations, first used by Gosper [28] and Vuillemin [71],
to perform the basic arithmetic operations on redundant continued fractions. We
show that the standard real number representations such as the decimal, continued
fractions and redundant binary fit into this framework for the real numbers. In
fact, we show that the standard real number representations are just special cases
of general normal products. We then go on to emphasize the role of redundancy,
including the redundant if operator, in order to achieve effective representations
of the real numbers and real functions. Watanuki and Ercegovac [74] devised a
redundant version of floating point and then Nielsen and Kornerup [51] extended
this representation to infinite precision using a representation based on the infinite
product of matrices each with an associated binary state. We present this tech-
nique in our sound theoretical setting and introduce our own simplified variation
called (unbiased) exact floating point [61, 62, 20]. We explore the theoretical basis
for exact floating point and show that it has fundamental mathematical proper-
ties on the one-point compactification of the real line. We highlight the crucial
features of this representation in an attempt to answer the challenge by Vuillemin

13

[71] to find a rational choice for a normal form. For this reason, much of this thesis
revolves around developing algorithms for exact floating point.

We then extend the notion of a general normal product to expression trees. Fx-
pression trees allow real functions and real expressions to be represented elegantly
and provide a link back to domain theory. New algorithms [59] are presented for
the elementary functions derived from the theory of continued fractions. A new
algorithm is presented for pi derived from a formula by Ramanujan [30]. This algo-
rithm is particularly exciting because it can be easily implemented using numerous
parallel processes. We then quantize information and use this idea to analyze the
flow of information around an expression tree in order to improve temporal effi-
ciency. We also examine the storage requirements of an expression tree in order
to improve spatial efficiency. We then bring these ideas together and present an
efficient algorithm for converting an expression tree into the exact floating point
representation.

In chapter 12, we describe an actual implementation of exact real arithmetic
written in the functional programming language called Miranda [36], which is
similar to Haskell.

Finally, chapter 13 of this thesis is devoted to the presentation of theoreti-
cal languages based on the Programnming Language for Computable Functions
[55, 29] incorporating data types for infinite precision real numbers represented by
general normal products. We present models for these languages and show that
they are sound and adequate with respect to their reduction rules. Consequently,
this confirms the correctness of some of the fundamental aspects of the more prac-
tical algorithm presented earlier in this thesis including the role of the redundant
if operator.

14

CHAPTER 1. INTRODUCTION

Chapter 2

Notation and Background

In this chapter, we outline the background knowledge and the notation used in
the remaining chapters of this thesis.

2.1 Sets and Functions

A function (or map) f: X — Y is a relation between the domain (or source) X
and the codomain (or target) Y such that for each x € X, there is a unique y € Y/
such that (z,y) € f and we say that f maps z to y, denoted f (x). The set of
all y € Y such that f(x) = y for some z € X is called the image (or range) of
f. Given X and Y, the set of all functions with domain X and codomain Y is
written VX,

A partial function f : X ~ Y is a function from a subset of X to Y. The
function f : X ~ Y is a total function if the domain of f is X. The lift X | of
a set X is the disjoint union of X and the singleton of bottom 1. The lift of a
partial function f : X ~» Y is the total function f| : X — Y| such that for every
element z in the domain of f, f| maps z to f (z) and for each element x not in the
domain of f, f, maps x to L. For convenience, the subscript | will be dropped
whenever it is clear to do so.

The powerset P (X) of a set X is the set of all subsets of X. Let P, (X) and
P*(X) denote the set of finite and non-empty subsets of X respectively. The
canonical extension of a function f : X — Y is the total function P (f) : P (X) —
P (Y) such that P (f) (Z2) ={f(2)|z € Z}. The canonical extension of a partial
function f: X ~ Y is the function P (f) : P (X) — P (V) such that

(2)|z€ Z} if f(2) is defined for all z € 7

otherwise.

P ={ Y

For convenience, the functor P will be dropped whenever it is clear to do so.

15

16 CHAPTER 2. NOTATION AND BACKGROUND

We will use the barred arrow notation — to provide an anonymous notation
for functions. For example, the function that squares its input can be denoted
x +— 22, Also, we will interpret a subscript as function application. For instance,
given a function f: X — Y

Let
N(n) = {0,1,2,....n—1}
Zn) = {1-n,2-n,...,0,1,2,....n—2,n—1}
for n € N — {0}.

2.2 Sequences

An infinite sequence xo, z1, %9, ... € X, written (z,), ,, corresponds to the func-

tion z : N — X. A finite sequence of elements xg,x1, Zg,...,T, € X, written

. . if n <
) corresponds to the partial function n — Tn H0TH :N— X. In
n=0"° p p

1 otherwise
other words, the elements of a sequence taken from a set X can be specified using
a partial function N ~» X.

2.3 Semigroups, Monoids and Groups

A semigroup is a set endowed with an associative binary operation. A monoid is a
semigroup with an identity element. A group[9/ is a monoid with inverse elements.
The order of a group G, denoted by |G|, is the number of elements in G. If H is
a subgroup of GG, denoted by H < (G, then

Ha={ha|h € H}
is called a right coset and
al = {ah|h € H}

is called a left coset. The index of H in GG, denoted by |G : H|, is the number
of distinct cosets. A subgroup N of G is called a normal subgroup, denoted by
N G, it

Va € G- Na=aN.

For a normal subgroup NN, the set of cosets

G/N ={Nglg € G}

2.4. TOPOLOGICAL SPACES 17

is a group under multiplication defined by
(aN) (bN) = (ab) N.

The group G/N is called the quotient group of G by the normal subgroup N.
A homomorphism between groups is a mapping 6 : G — H such that 6 (ab) =
0 (a)0 (b). An isomorphism is a bijective homomorphism and two groups are said
to be isomorphic, denoted by 22, if there exists an isomorphism between them.
The image image (0) of a homomorphism 6 : G — H is given by

image (0) = {0 (g)|g € G}.
The kernel kernel () of a homomorphism 6 : G — H is given by
kernel () = {g € G| 0 (g) = 1}.
An action of a group GG on a set €2 is a mapping g : Q x G — Q such that

plwl) = w
ppw,g),h) = pw,gh).

Theorem 1 (First Isomorphism Theorem) If ¢ : G — H is a homomor-
phism then
image (0) = G /kernel (0).

The element x gz is called the conjugate of g by x. The set of all conjugates
of g
{aflga:‘ rel }

is the conjugacy class of g in G.

Let GL (n, F') denote the group of n x n non-singular matrices with coefficients
taken from the field F', known as the n-dimensional general linear group over F'[50).
Let I denote the identity matrix. Let F™* denote the multiplicative group of non-
zero elements of the field F'. It can be shown that the set of scalar matrices is a
normal subgroup of GL (n, F'). The projective linear group GL (n, F') is defined to
be the quotient group GL (n, F) /F*.

2.4 Topological Spaces

A topological space (A, B) consists of a non-empty set A together with a collection
B of subsets of A such that the set A and the empty set () are members of B and
B is closed under finite intersections and arbitrary unions [68]. A cover for a set

18 CHAPTER 2. NOTATION AND BACKGROUND

A is a collection B of sets such that A C g5 B. A topological space is compact
if every cover by open subsets has a finite subcover. We will consider an interval
in a topological space X to be any connected subspace of X. Any closed bounded
interval [a,b] in R is compact. Let IX, I°X, I°X and I¥ X denote the set of all,
open, closed and compact intervals of X. For any compact interval [a, b] in the set
of real numbers R, let

width (|a, 76]) ; b—a.

2.5 Trees

A tree is an acyclic, connected graph with one node designated as the root of
the tree [27]. A tree can be constructed recursively. A single node is a tree. If
To, T4, ..., T, are trees with roots ry, 71, ..., 7, then the graph formed by attaching
a new node r by a single arc to each of rg,71,...,7r, is a tree with root . The
nodes 79,71,...,r, are children of r, and r is a parent of ro,7(,...,7,. A binary
lree is a tree, where each node has at most two children. The depth of a node in a
tree 1s the length of the path from the root to the node; the root itself has depth
0.

2.6 Automata

The tuple (S, 1,0, fs, fo) is an automaton if S is a set of states, I is a set of input
symbols (the input alphabet), O is a set of output symbols (the output alphabet),
fs : S x 1 — S is a state transition function and fo : S — O is an output
function [27]. The automaton is always initialized to begin in a fixed starting
state sg € 5. A sequence of input symbols (i,,) "

_o generates a sequence of output
symbols (0,,) ", according to the prescription
Sp+1 = fS (snyin>
Op = fO (sn) .
2.7 Category Theory

Definition 2 A category C is specified by

e a class of objects ob(C),

2.8. DOMAIN THEORY 19

e a class of morphisms mor(C),
e q source function src:mor(C) —ob(C),
e q target function tar:mor(C) —ob(C),

e an associalive composition function o :mor(C) x mor(C) ~>mor(C) where fog

is defined if tar (g) = src (f) withsrc(f og) = src(g) andtar (f o g) = tar (f)
and

e an identity morphism id, : x — x exists for each object x €ob(C) which is
unitary; namely idwrryo f = f and [oidgery = [

A functor F': C — D between categories C and D is specified by an operation
F':ob(C) —ob(D) and an operation F' :mor(C) —mor(D)such that F' (idx) = idrx
and I'(f og) = F(f)o I'(g).

A monad (T,n,) in a category C consisting of a functor T': C — C, a unit
operator 1y : X — T (X) and a multiplication operator py : T (T (X)) — T (X)
such that n and p are natural transformations

X / Y T2 (X) m T (Y)

Nx Ty Hx Hry

X)——T (Y T(X TY

X) 77 T) X) 5 T0)

and the following diagrams commute

idrx) Hx idr) Hrix) Hx
T(X) T2 (X) T(X).

Hx

2.8 Domain Theory

Most programming languages allow recursive definitions in which the name of the
entity being defined can “recur” in its own definition. The mathematical theory
known as “domain theory” provides the appropriate semantic constructions to

20 CHAPTER 2. NOTATION AND BACKGROUND

interpret such definitions. Domain theory was introduced by Dana Scott in 1970 as
a mathematical theory of programming languages [67], and for nearly a quarter of
a century developed almost exclusively in connection with denotational semantics
in computer science.

In the denotational semantics of programming languages, the meaning of a
program is taken to be an element of a domain. A domain is a mathematical
structure consisting of a set of values and an ordering relation, denoted C, on
those values. Domain theory is the study of such structures equipped with a
notion of completion and approximation [1, 17].

The fundamental idea of a domain is encapsulated by the notion of a partial
order. A partial ordered set (or poset) (D,C) is a set D with a binary relation C
that is reflexive

VeeD- -z Cx,

transitive
Ve,y,z€eD-xCyhyCz2=zxCz

and antisymmetric
Ve,ye D-2CyANyCzx=z=1y.

A partial order can be thought of as possible states of a computer ordered by
stored information. A preorder (D,C) is a set D with a binary relation C that
is reflexive and transitive only. A subset A of a poset D is an upper setif x € A
implies that y € A for all C y. The set of all elements above some element in A
is denoted by TA. The dual notions are lower set and | A. A subset A of a poset D
is directed if it is non-empty and each pair of elements of A has an upper bound in
A. A poset D is pointed if it has a least element and we call this element bottom L.
Different bottoms will not be distinguished explicitly. The least upper bound (or
supremum or join) and the greatest lower bound (or infimum or meet) of a subset
A of a poset D are denoted by LIA and MA respectively. Directed lower sets are
called ideals. Ideals of the form | {z} are called principal ideals. A function f
from a poset D to a poset F is monotone if f(z) C f (y) whenever z C y for all
x,y € D. The monotone function space between a poset D and a poset F is the
poset consisting of the set of monotone functions from D to E ordered pointwise.

A poset D in which every directed subset has a supremum is called a directed
complete partial order (or depo or domain). The flat domain D, of a set D is the
depo (DU{L},C) where zx Ty if z = yVao = L. The lift of a dcpo (D, E),
consisting of the set D = D U { L} together with the partial ordering C | where
rCyyifx CyVae=_1,isadcpo. The product D x E of a dcpo D with a dcpo
FE, together with coordinatewise order, is a dcpo. The smash product D @ E of a
dcpo D with a depo F, consisting of the set

{wy)eDx Bla# Lay+1}u{L)

2.8. DOMAIN THEORY 21

together with coordinatewise order, is a dcpo. A function f from a dcpo D to
a depo B is (Scott) continuous if it is monotone and f (| JA) = || f (A) for all
directed subsets A of D. The function space [D — E| between a depo D and a
dcpo E is the dcpo consisting of the set of continuous functions from D to E
ordered pointwise. Ewvery continuous function f on a pointed dcpo has a least
fixed point given by | |>°, f" (L). Define

e the down function from a dcpo D | to a decpo D by

down : D, — D

{a: fxeD

down(z) =\ ifa— 1

I

the up function from a dcpo D to a depo D by

up : D — D,
up (z) = x,

the smash function from a product dcpo D x E to a smash product dcpo
D ® E by

smash : DXxE—-D®E
smash(a:,y) — {(ajuy) 1faj7éj_/\y7éj_

€ otherwise,

the unsmash function from a smash product depo D @ E to a product depo
D x E by

unsmash : DQFE —- DX FE

z if 2 = (x,
unsmash (z) = {(J_ 1) ifz:S_ v)

and the fix function from a dcpo of continuous functions [D — D] to a depo

D by
fix(f) = |] /(L)

Let z and y be elements of a dcpo D. We say that x is way below or approxi-
mates y, denoted x < v, if for all directed subsets A of D, y C LIA implies 92 € A

22 CHAPTER 2. NOTATION AND BACKGROUND

such that C z. We say that z is compact (or finite) if it approximates itself. Let
K (D) be the set of compact elements and

Tz = {yeD|zCy}
lz = {yeD|yCux}
fz = {yeDlz<y}
lr = {yeD|y<Ka}.

A subset B of a dcpo D is a basis for D if [z N B is directed and U (La: N B) =z
for all x € D. A continuous domain is a dcpo with a basis. It can be shown, in
this case, that if x < y then 9z € D such that z < z and z < y. An algebraic
domain is a dcpo with a basis of compact elements. A w-continuous domain is a
dcpo with a countable basis. An w-algebraic domain is a decpo with a countable
basis of compact elements. The Scott topology of a depo (D, C) consists of all the
Scott open subsets A of D which are upward closed

Ve A.zCy=yc A
and inaccessible by least upper bounds of directed subsets

V directed BC A-LUB€ A= AN B # .

Dually, a Scott closed set is downward closed and contains all the least upper
bounds of directed subsets. In particular, the set |x is Scott closed.

For a continuous domain (D, C), the sets Tx for all € D are Scott open and
form a basis for the Scott topology.

A dcpo is bounded complete if every bounded subset has a least upper bound.
Note that a bounded complete dcpo is trivially pointed.

A Scott domain is a bounded complete w-algebraic domain. Also, the dcpo
|[D — E] is a Scott domain if D and F are Scott domains. The step function
d "\, e from a Scott domain D to a Scott domain V' is given by

e HdCux
1 otherwise

@\ @) = {

for any d € K (D) and e € K (E).

A continuous Scott domain is a bounded complete w-continuous domain. Also,
the depo [D — FE] is a continuous Scott domain if D and E are continuous Scott
domains. The step function d \, e from a continuous Scott domain D to a con-
tinuous Scott domain F is given by

e fd<zx
1 otherwise

@\ @) = {

2.8. DOMAIN THEORY 23

for any d € D and e € E. These step functions form a basis for the [D — FE].
An abstract basis (B, <) consists of a set B together with a transitive binary
relation < such that
A<z=3JyeB-A<y<zx

for all z € B and A € Py (B), where A < z denotes Va € A-a < z. Given an
abstract basis (B, <), A C B is called an ideal if it is downward closed
ac ANb<a=bc A
and directed
Ya,be A-dce A-a<cAb<c.

The set of ideals is denoted by (B, <). The ideal completion of (B, <) is the set of
ideals ordered by set inclusion. The ideal completion of a preorder is an algebraic

domain. The compact elements are the principal ideals. For any algebraic domain
D, the ideal completion of (K (D),C) is isomorphic to D. For any continuous
domain D with basis B, the ideal completion of (B, <), where < is the restriction
of the way below relation of D to B, is isomorphic to D.

Definition 3 Given an abstract basis (B, <), define the relations <#, <" and <"
on the finite non-emply subsets P} (B) of B by

X <Y iff weY -JreX -z<y
X < Y iff VeeX FyeY .x<y
X <Y iff X<#¥YAX<Y.

It can be shown that (73; (B), <#>, (73; (B), and (73; (B), <”> are ab-

stract bases. Given an algebraic domain (D, C), the ideal completions

UPPER (D) = ((73; (K (D)), C#), C)

LOWER (D) = ((73; (K (D)), =), g)

CONVEX (D) = ((Pj(K(D)),C5),<)

are algebraic domains and given a continuous domain (D, C) with basis B, the
ideal completions

UPPER (D) = ((P;(B),<7#),C)

(
LOWER (D) = ((73; (B),<<b),g)
CONVEX (D) = (

24 CHAPTER 2. NOTATION AND BACKGROUND

are continuous domains (independent of the basis chosen). These domains are
known as the upper (or Smyth), the lower (or Hoare) and the convex (or Plotkin or
Vietoris) powerdomains of D respectively. A powerdomain is the domain-theoretic
analog to the powerset. They were introduced as a tool for modeling the semantics
of non-deterministic programs [29]. We will be using the lower powerdomain in
chapter 13 together with the following theorem [1].

Theorem 4 The lower powerdomain of a continuous domain (D, C) is isomorphic
to the lattice of all non-empty Scott closed subsets of D.

|_|X = closure (U X)

2.9 Recursion Theory

Recursion theory attempts to formalize the notion of an algorithm [66]. Informally,
an algorithm is a partial function f from a set of inputs X to a set of outputs Y
together with a finite set of instructions for evaluating f (z) € Y for each z € X.
Such a partial function f : X ~» Y is said to be effectively computable and the
set of instructions is said to be an effective procedure for computing this partial
function. In recursion theory, an algorithm, such as this, is broken in three smaller
algorithms;

1. an algorithm from the set of inputs X to the natural numbers N,
2. an algorithm from the natural numbers N to the natural numbers N and

3. an algorithm from the natural numbers N to the set of outputs Y.

2.9.1 Partial Recursive Functions

Recursion theory provides a means for formalizing algorithms from the natural
numbers N to the natural numbers N. Firstly, a function f : N® X N ~» N is said
to be defined by primitive recursion from g : N® ~» N and h: N® X N X N ~» N if

f(f70) = g(f)
(@ y+1) = h(Zy f(Zy))

where Z : N*, n € N and y : N. Secondly, a function f : N* — N is said to be
defined by restricted p-recursion from g : N® X N ~» N if

VZ-Jy-g(@y) = 0
(@) = pyg@y) =0

2.9. RECURSION THEORY 25

where & : N, n € N, y : N and py.g (#,y) = 0 is defined as the least natural
number y such that g (Z,y) = 0. Thirdly, let us define the initial functions as
the zero function n — 0, the successor function n +— n + 1 and the projection
functions (z1, s, ..., 2,) — x; for 1 <1i < n. Finally, using these definitions, the
class of recursive functions is defined as the smallest class of functions

e containing the initial functions and

e closed under composition, primitive recursion and restricted p-recursion.

An important part of recursion theory is Church’s Thesis, which claims that
every effectively computable function is a recursive function. Clearly, every recur-
sive function is an effectively computable function. However, there is a problem
with the definition of a recursive function. Given a recursive function g (Z,vy),
there is no algorithm for determining whether V& - Jy - g (Z,y) = 0 is true, as
required in the definition of p-recursion. Thankfully, this problem goes away if
we consider partial functions instead of total functions. A function f is said to be
defined by unrestricted p-recursion if

J (@) =py. (Vz<y-g(@z)#L)Ng(@y) =0.

The class of partial recursive functions is the smallest class of functions

e containing the initial functions and

e closed under composition, primitive recursion and unrestricted p-recursion.

A subset of N is said to be recursively enumerable (abbreviated r.e.) if it is the
domain of a partial recursive function, or equivalently, if it is the range of a partial
recursive function. In fact, an infinite r.e. set is the range of a one-one recursive
function. A subset of N is said to be recursive if it is empty or it is the range of a
non-decreasing recursive function. In fact, an infinite recursive set is the range of
an increasing recursive function [66].

The partial recursive functions are synonymous with the algorithms from the
natural numbers to the natural numbers. However, the original informal no-
tion of an algorithm concerned partial functions with more general domains and
codomains. This gap is bridged by considering some fixed one-one function from
the domain or codomain to the natural numbers. Such a mapping is called a cod-
ing. The coding is chosen so that it is itself given by an informal algorithm and
it 1s invertible.

26 CHAPTER 2. NOTATION AND BACKGROUND

2.9.2 Partial Recursive Functionals

In this section, we consider the generalization of recursiveness by considering ef-
fective procedures that act not on numbers, but on functions as well. If f is a set
of partial functions, the class of functions partially recursive in f is the smallest
class of functions

e containing the initial functions and f and

e closed under composition, primitive recursion and unrestricted p-recursion.

The functional F': (N ~» N) X N ~» N is a partial recursive functional if it can
be obtained from the initial functions and the functions f : N ~» N by composition,
primitive recursion and unrestricted p-recursion. It follows that Ax.F'(f,z) is a
function partially recursive in the functions f. However, the reverse is not true.

Recall that a partial function f : N ~» N can be interpreted as the set f =
{(z,f(z))|z € NA f(z) is defined}. A partial functional F (f,z) : (N ~» N) x
N ~» N is said to be compact if

Vf.x-3 finite g C - F (f,2) = F(g,2)
and it is said to be monotone if

Vf,x-Ng2 f-F(f,z)=F{(g,%).

It can be shown that if F'(f, z) : (N ~» N)x N ~» N is a partial recursive functional
then it is compact and monotone.

The First Recursion Theorem states that every partial recursive functional
F: (N~ N) ~ (N~ N) admits a least fixed-point, which is a partial recursive
function, given by

UJrn—1).
n=0
A generalization of Church’s Thesis claims that every effectively computable
functional is a recursive functional. This means that effectively computable func-
tionals can be applied to non-computable functions (sometimes referred to as an
oracle).
The set of partial functions N ~» N can be viewed as a topological space with
basic open sets

f=A9:7Cg}
where f is a finite partial function. In other words, the set of finite partial functions

form a countable basis for the set of partial functions. It can be shown that if O
is an open subset of N ~» N then

2.9. RECURSION THEORY 27

e f € O implies d finite g € O such that g C f
e f €O and f C g implies g € O.

We call O effectively open if the set of finite partial functions belonging to it
is r.e. This requires a coding for the finite partial functions (i.e. a function from
the finite partial functions to the natural numbers).

An equivalent way of looking at the set of partial functions N ~» N is by
considering it to be a partially ordered set, under the ordering relation C. In
this case N ~» N is a directed complete partial order, in the sense that every
directed set has a least upper bound (which is just the union of the set). Note
that g : N ~» N is compact iff it is finite and it is Scott continuous iff it is monotone
and continuous.

It can be shown that a partial functional F': (N ~» N) ~» (N ~» N) is continu-
ous iff it is compact and monotone. This means that the behavior of a continuous
partial functional is completely determined by its behavior on finite partial func-
tions. We call a partial functional effectively continuous if its behavior on finite
partial functions, suitably coded, is partial recursive. It can be shown that the
partial recursive functionals are effectively continuous, but not vice versa. It can
be shown that the topological and domain theoretic notions of continuity with
respect to the partial functionals (N ~» N) ~» (N ~» N) coincide. Also, if a partial
functional F': (N~» N) ~ (N ~» N) is effectively continuous then its least fixed
point is partial recursive.

28

CHAPTER 2. NOTATION AND BACKGROUND

Chapter 3
The Real World

This small chapter introduces the real numbers and the closely related concepts
that will be used in the later chapters.

3.1 The Real Line and the Complex Plane

There are two standard methods for constructing the set of real numbers R, also
known as the real line, from the set of rational numbers Q. In one method, the real
line is defined as the set of Dedekind cuts endowed with addition 4, multiplication
x and order <. A Dedekind cut is a subset of the set of rational numbers satisfying
certain conditions. The essential condition being that each member of a cut must
be greater than all rational numbers that are not in the cut. The Dedekind method
results in a very elegant mathematical structure and is of historical importance
as being the first satisfactory definition of a real number. In the other method,
one considers the set of all sequences of rational numbers (g,). -, that satisfy the
Cauchy condition. The Cauchy condition states that for any rational number € > 0
there is an integer N such that |g, — ¢,,| < € for all integers n and m exceeding N.
Two sequences are said to be equivalent if their difference converges to zero. The
resulting collection of equivalence classes endowed with addition, multiplication
and order is the real line. The appeal of this definition stems from the fact that
it can be generalized easily to other mathematical settings. We classify the basic
arithmetic operations as negation, reciprocal, addition and multiplication.

It can be shown that the real line defined by Dedekind and Cauchy satisty
the set of axioms for a complete ordered field. In fact, these axioms completely
characterize the real line because there is only one complete ordered field up to
isomorphism. The real line together with the Fuclidean metric dg (z,y) = |z — y|
forms a metric space. In general, the Euclidean metric on R" is given by

dp :R"xR* — R

29

30 CHAPTER 3. THE REAL WORLD

dE((ajluaj?J"'?ajn)7(y17y27"'7yn>) =

The real line together with the set of open sets induced by the Euclidean metric
forms a topological space. Note that only the bounded closed intervals in R are
compact sets. In particular, R itself is not compact.

Classically, there are three ways to define an integer “close” to a given real
number z € R; namely the floor |x|, ceiling [z] and round |x] satisfying

0 < z—|z] <1 3.1)
-1 < z—Jz] <0 3.2)
1 1

It is convenient to extend the system of real numbers with infinity co so that
division by zero can be handled. This enlarged set is called the set of extended
real numbers or the extended real line

R® = R U {co}.

In general, F*° will be used to denote F U {oo}. The one-point compactification of
the real line is the topological space

(R*, open (R) U complement (closed (R)))

where open (R) is the set of open sets in R, closed (R) is the set of closed sets in
R and complement (A) is the set of complements of the elements in A. We do not
consider the two-point compactification RU {#+oc0} of the real line because it does
not behave as elegantly with the various representations of the real numbers that
we will be presenting in the rest of this thesis. The definition of order, addition
and multiplication are extended in the obvious manner by defining

r + 00 = X

x + xr = X
for all real numbers x and by defining

y X 00 = o0

0O X Yy = o0

0O X o0 = o0

3.1. THE REAL LINE AND THE COMPLEX PLANE 31

for all non-zero real numbers y. Note that order, addition and multiplication are
partial functions on the set of extended real numbers because

828 88F
X X 4+ A A A
8888

are undefined for all real numbers x. This essentially introduces the concept of
an “undefined number” or “not a number” denoted by NaN in the floating point
community. The extended real line R> is usually represented by the stereographic

projection o : R® — R?
(z) 2r 2?2 -1
ox)=——,———
22 +1 22 +1

of the extended real line R> onto the unit circle in Euclidean space R? as illustrated
in figure 3.1. The usual chordal metric d¢ : R x R>* — [0, 2] on the extended
real line is the chordal distance given by

2|z —y|

de (z,y) =dg (o (x),0 = 3.4
c(z,y)=dg(o(z),0(y)) NN (3.4)
as illustrated in figure 3.2. An alternative metric on the extended real line
dp : R® x R*® — [0, 2] is given by
2]z —y|
(14 Ja]) (1 +[y)

as illustrated in figure 3.3.

Proposition 5 The two metrics de (z,y) and dp (x,y) are topologically equiva-
lent.

Proof:
%dP (ajuy> S dC (ajuy> S 2dP (ajuy> u

A closed interval in R* is either the set R itself, a singleton set {a} for some
a € R™ or a set |a,b| represented by the arc from o (a) to o (b) anti-clockwise in
figure 3.1 for some a # b. Let [a,b] denote a and [a,b] denote b.

Let T[], I° [F], I€ [F] and I' [F] denote the set of all, open, closed and compact
intervals in the extended real numbers R* with end-points restricted to a subset

32 CHAPTER 3. THE REAL WORLD
15}
Euclidean plane
0 (o)
o]
057 &
Real line ‘ ‘ | X
2 -15 0.5 15 2
Unit circle

-1.5+

Figure 3.1: Stereographic projection ¢ of the extended real line R* onto the unit

circle in Euclidean space R2.

Figure 3.2: The chordal metric d¢ (x,y) on the extended real line.

3.1. THE REAL LINE AND THE COMPLEX PLANE 33

Figure 3.3: The metric dp (x,y) on the extended real line.

of R. The extended real line is also known as the one-point compactification of the
real line because the set R> itself is compact whereas R is not. Interval arithmetic
on R* is defined as the canonical extension of the basic arithmetic operations on
R>.

A complex number z is specified by a pair of real numbers (x,y); written
2 = x + 1y, where 7 is a fixed symbol. The set of complex numbers or the complex
plane is endowed with addition + and multiplication x in such a way that i2 = —1.
The complex plane is isomorphic to R?. Therefore, the complex plane together
with the Euclidean metric forms a metric space. The complex plane together with
the set of opens sets induced by the Fuclidean metric forms a topological space.
Note that only the bounded closed intervals in C are compact sets. In particular,
C itself is not compact. It is convenient to extend the system of complex numbers
with infinity oo. This enlarged set is called the set of extended complex numbers
or the extended complex plane C>*. The extended complex plane C* is usually
represented by the stereographic projection ¢ : C*° — R3

0(&3—|—@'y)=<

2z 2y 24y -1
$2+y2+1’$2+y2+1’$2+y2+1

of the extended complex plane C* onto the Riemann sphere in Euclidean space R?
as 1llustrated in figure 3.4 [50]. The usual chordal metric d¢ : C* x C* — [0, 2]

34 CHAPTER 3. THE REAL WORLD

Figure 3.4: Stereographic projection o (z2) of the extended complex plane C>* onto
the Riemann sphere in Euclidean space R3.

on the extended complex plane is the chordal distance given by

dc(a+ib,c+id) = dg(o(a+ib),o(c+id)) (3.6)

2/(a—) + (b - d)?
VIt +02V/1++d?

3.2 Complex Functions and Power Series

In this section, we examine various classes of complex functions believed to in-
teresting and relevant with respect to the representations discussed later in this
thesis, although no direct reference is made directly to them.

A function which is differentiable at every point of an open set O is said to
be holomorphic in O [64]. The set of functions holomorphic in O is denoted by
H (O). A function is holomorphic in an open set O if and only if it is analytic,
that is, locally representable by a power series. Let us define the open disc with
centre ¢ € C and radius 0 < r < o0 to be

D(er)y={z€C:|z—¢ <r}.

Theorem 6 (Taylor’s Theorem) Let f € H (D (¢ R)). Then there exists

3.2. COMPLEX FUNCTIONS AND POWER SERIES 35

unique complex numbers a, such that

K

f(z) =

an (z—¢)"

Il
o

n

for all z € D (c; R). The complex numbers a,, are given by

F™ (c)

n!

[

The series defined in the theorem is called the Taylor series for f at c¢. In
practice, the Taylor series of a function can be used to approximate the function
by taking longer and longer polynomials. However, this approach has undesirable
limitations. Often, the Taylor series of a function only converges in a small region
of the complex plane. This problem can be circumvented by considering rational
functions, that is, quotients of polynomials. However, rational functions often fail
to be holomorphic at isolated points. So, let us define the open annulus with
centre ¢ and radii 0 < r < s < o0 to be

Algr,s)={z€eC:r<|z—c| <s}.

Theorem 7 (Laurent’s Theorem) Let f € H (A(c; R,S)). Then there exists
unique complex numbers a, such that

forall z € A(c; R, S).

A function f is said to have a pole of order m > 1 at ¢ if

o0

F@=Y anlz—o)

n—=—-—m

for some 0 < r < 0o and for all z € A(c;0,r) such that a_,, # 0. A function f is
sald to have a zero of order m > 1 at ¢ if

FE) =Y anz—or

n=m

for some 0 < 7 < oo and for all z € A(c;0,7) such that a,, # 0.

36 CHAPTER 3. THE REAL WORLD

The above ideas can be extended to the extended complex plane by replacing
the Fuclidean metric by the chordal metric; namely redefining the open disc by

D(c;r)={2€C*:dc(2,c) <7}
and the open annulus by
Ae;r,s) ={2 € C¥ :r <dc (z,¢) < s}.

A function f is said to be differentiable, have a pole or have a zero at oo if f (%)
is differentiable, has a pole or has a zero at 0 respectively. A function which is
holomorphic in O except possibly for poles is said to be meromorphic [64].

Theorem 8 o If f is holomorphic in C* then f is constant.

o If is meromorphic in C> then [is a rational function, where a rational
function is a polynomial fractional transformation.

Suppose that we have a function that is meromorphic on a collection of open
sets that cover C* then there is a finite subcollection that cover C>. This means
that a power series can be derived for each open set in the finite subcollection with
respect to different points. These power series coincide on the intersections. This
is known as analytic continuation and we shall be using this property in order
to extend algorithms based on sequences of rational functions for the elementary
functions over the extend real line.

Chapter 4

Approximate Digital
Representations

Numbers are stored in the memory of digital computers as a sequence of binary
digits. The most common number system used to represent integers is the two’s
complement system. Many engineering and scientific applications require a larger
range for numbers which are represented in a floating point format. This is the
binary equivalent of scientific notation using a mantissa and an exponent to rep-
resent a number. In this chapter, we discuss the various digital formats that are
widely used to represent the set of real numbers in the world of computing today.

4.1 The Fixed Point Representation

A natural number N € N in base or radix r is written in positional notation as
Nr = (dmfldm,Q tee do)r (41>

where each digit d; has one of the distinct values N (r) ={0,1,2,...,r— 1} and
m 1s the number of digits required to represent the number. Thus the natural
number 741 could be written as 74119 with r = 10, m = 3, dp = 1, dy = 4 and
dy = 7 in equation (4.1). The position of the digit relative to the rightmost digit
represents a power of the base r; that is, the value of the number is calculated as

N=> da (4.2)

in which the digits are restricted in value such that d; € N(r). The arithmetic
operations in equation (4.2) could be carried out in any number base and this equa-
tion is frequently used to determine the decimal equivalent of a number in another

37

3 CHAPTER 4. APPROXIMATE DIGITAL REPRESENTATIONS

base. The decimal system is, of course, used primarily for ordinary arithmetic by
human beings, and the binary system (r = 2) is used for computer arithmetic.
Octal (r = 8) and hexadecimal (r = 16) representations are convenient for writing
long binary numbers. Note that the largest m-digit positive integer in positional
notation

Ne= (= 1) (r = 1) (r— 1),

has the value
m—1

N:(T—l)ZTi:Tm—l.

=
The positional representation defined by equation (4.1) is valid for natural numbers
only. If a fraction is to be represented, a radix point is used to separate the integer
part from the fractional part of the number. The radix point is called the binary
point in base 2 and the decimal point in base 10. In general, an m-digit positive
fraction is written with a leading radix point as

Ty = (dfld,Q cee d,m)

r

with the value
m
n= Z d ot
i=1

where the negative subscript for the digits indicates the appropriate negative power
of r.

Internally, a digital computer performs arithmetic on integers without taking
into account the position of the radix point. In other words, the programmer
is responsible for keeping track of the radix point. This is called a fixed point
representation.

In order to represent the complete set of integers, a notation for negative values
is necessary. In ordinary arithmetic, a negative number is represented by prefixing
the magnitude (or absolute value) of the number with a minus sign. For hand
calculations, the use of a separate symbols to indicate positive (+) and negative
(—) numbers is convenient. The computer circuits that manipulate positive and
negative integers are also simplified if one of the digits in the positional notation
of a number is used to indicate the sign of the integer. Two such possible repre-
sentations of signed integers are the sign magnitude notation and the complement
notation. In both notations, the most significant digit on the left in the positional
form of the number indicates the sign.

The sign magnitude representation of a number in positional notation has the
form

Nr = (dmfldm72 e dldO)T

4.1. THE FIXED POINT REPRESENTATION 39

where the sign of the number is indicated by the most significant (leftmost) digit

g {0 if N, >0
mlT Y -1 N, <0

The magnitude of the number, written |N,|, is

m—2
NG = dar’ (4.3)
=0

where only the first m — 1 digits from the right are considered. According to the
definitions and equation (4.3), the four-digit number 01015 = 5 and 1101, = —5.
The number of digits, including the sign digit, in the representation must be spec-
ified or confusion could result. For example, 1101, in an eight-digit representation
is assumed to be 000011015, which has the decimal value 13.

Most microprocessors have arithmetic instructions that operate on negative
numbers represented in a complement number system. Complement representa-
tions have an advantage over sign magnitude notation because the sign digit does
not have to be treated in a special way during addition and subtraction. This
simplifies the arithmetic circuits. In these systems, positive numbers have the
same representation as in sign magnitude notation, but the negative numbers are
formed by computing the complement of the number according to the rules of the
specific system being used. The two most common complement systems are the
radix complement and the diminished radix complement systems.

In the general form, the radix complement of an m-digit number is computed
mathematically as

N! =™ — N, (4.4)

where N, is the radix complement of the base » number NV,. In a digital computer,
only m-digit values can be represented. If any operation produces a result that
requires more than m digits, the higher order digits are ignored. The two most
commonly used radix complement systems are the two’s complement and the ten’s
complement systems. If the number and its complement are added, the result is
0 to m digits, as expected. In a two’s complement system, negative values always
have a leading 1 and positive values have 0 as the leading digit.
The diminished radix complement is computed as

N, =7 —N, -1 (4.5)

which is one less than the radix complement value computed by equation (4.4).

40 CHAPTER 4. APPROXIMATE DIGITAL REPRESENTATIONS

4.2 The Floating Point Representation

The representation for numbers that we have considered above assume that the
radix point is located in a fixed position, yielding an integer or a fraction as the
interpretation of the internal machine representation. Of course, the radix point
is not actually stored with the number, but its position must be remembered by
the programmer. This method is called fixed point.

In practice, the machine value is limited to a finite range which is determined
by the number of bits used in the representation. For a 32-bit word, the range of
signed fixed point integers is about 423! or +10'. Thus the limited range of fixed
point notation is a drawback for certain applications.

To overcome many of the limitations of the fixed point notation, a representa-
tion that is the counterpart of the scientific notation is used for numbers in digital
computers. The floating point notation represents a number as a fractional part
times a selected base raised to a power. In the machine representation, only the
fractional part and the value of the exponent are stored. The decimal equivalent
is written as

Nn=f x10°

where [is the fraction or mantissa and e is an integer called the exponent. The
choice for the base is usually base 2, although base 16 is sometimes used.

The typical floating point format stores the fraction and the exponent together
in an m-bit representation. The choice for a fixed length floating point format
is commonly 32 or 64 bits, referred to as single precision and double precision,
respectively. Fxtended formats with m > 64 are occasionally used when a greater
range of precision is required.

Once the length of the floating point representation is chosen, a number of
choices for both the length and the format of the fraction and exponent are possi-
ble. Many floating point formats employ a sign magnitude representation for the
fraction. The fraction is generally normalized to yield as many significant digits
as possible. Thus, in a base r system, the most significant digit is in the leftmost
position in the fraction. For non-zero numbers in the binary system, the leftmost
digit will be a 1. As the arithmetic unit or the program shifts the digits in the
fraction during arithmetic operations, the exponent is adjusted accordingly. When
normalized as a base 2 value, the magnitude of the fraction is 0.5 < |f]| < 1 unless
the number is zero. The number of digits reserved for the fraction represents a
compromise between the precision of the fraction and the range of the exponent.
A typical single precision format (32 bits) might contain an &-bit exponent and a
23-bit fraction and 1-bit for the sign.

An exponent could be represented in two’s complement or any other notation
that allows signed values. A different alternative, which permits the exponent to

4.2. THE FLOATING POINT REPRESENTATION 41

be represented internally as a positive number only, is to add an offset value. This
value is often called an ezcess.

The overwhelming majority of the computer industry has adopted the IEEE
standard for floating point [37]. Ultimately though any floating point format can
only represent a tiny subset of the rational numbers. Since physical measurements
have only finite accuracy, calculated values that depend on measured data are
inherently inexact. Consequently, floating point arithmetic has a strong physical
justification. However the vast majority of real numbers can only be represented
approximately leading to the unavoidable notion of a round off error. Furthermore,
these errors can accumulate leading to totally incorrect results.

Interval analysis [48] provides a way to handle the insidious nature of round-off
errors. In interval analysis, a pair of bounding floating point numbers is main-
tained, which is guaranteed to contain the real number or interval in question.
However, this interval can get unjustifiably large and thereby convey very little
information.

42 CHAPTER 4. APPROXIMATE DIGITAL REPRESENTATIONS

Chapter 5

Exact Digital Representations

We have seen earlier that a certain set of equivalence classes on Cauchy sequences
completely characterize the set of real numbers. It might be deduced from this
that Cauchy sequences might provide a way to represent real numbers exactly
in a digital computer. However, this is not true because in a digital computer
only finite portions of a Cauchy sequence may be examined in finite time and a
finite portion of a Cauchy sequence says absolutely nothing about the real number
being represented. In fact, it is necessary to have bounding information about the
portion of the Cauchy sequence that has not been examined. In this thesis, we
will only consider representations of a real number, x say, by infinite sequences
of intervals (I,)" , such that (", I, = {z}. Without loss of generality, we can
assume that the sequence of intervals is nested. We shall call such a sequence a
representative of x. A sequence of intervals (1), is valid if (", I, is a singleton
set. In order to avoid a circular argument, the end-points of the intervals must be
restricted to a dense strict subset F of R. Typically, the end-points set F is taken to
be the set of rational numbers @Q, but other contenders include the set of algebraic

numbers A, the b-adic numbers B (b) = {b% nE€ZAmE N} for any real number
b greater than 1 and a quadratic field Q (\/c_l) = {p +qVd:pqge Q} for some

square-Iree integer d greater than one. A finite sequence of intervals (I,)"" , will
be interpreted as the infinite sequence <In>20:0 with 1, = I, for all n > m.

The axioms for the real numbers state that every real number has a reciprocal
except 0. However, given a sequence of intervals, it cannot necessarily be decided
in finite time whether it is a representative of 0. This means that we cannot
necessarily avoid taking the reciprocal of 0. Therefore, it is convenient to include
infinity, written oo, in any exact representation of the real numbers. In other
words, we shall be considering exact representations for the extended real numbers.

Of course, an infinite sequence of intervals (,,), -, corresponds to the function
I : N — I[F]. Recall that I[F] is the set of all intervals (i.e. open, closed

43

44 CHAPTER 5. EXACT DIGITAL REPRESENTATIONS

or otherwise) in R> with end points restricted to the dense subset F of R>.
Therefore, an extended real number may be represented simply by a function
N — I[F]. In practice, a rate of convergence

1

for some a > 1 is imposed on the sequences of intervals (I,) " ,. This approach
can be used for developing non-incremental representations of the real numbers
in a digital computer. In other words, [, can be evaluated without necessarily
evaluating [; for 0 < ¢ < n. In particular, Ménissier-Morain [47] has implemented
exact real arithmetic using this idea. However, the thrust of this thesis is to
investigate whether an efficient incremental representation can be found. In other

words, the evaluation of [, ;1 must efficiently use the results of evaluating I,,.

Let us define the function n : (N — I[F]) — IR> by

n(1)=()In

5.1 Domain of Real Intervals

For any closed interval I € I°R™ of the extended real line, the set of closed
intervals I¢I ordered by reverse inclusion is a continuous domain (]IC] , Q). Note
that

IcJ = 12J
IuJ = InJ
I < J < interior(l) D J

where

interior ([a,b]) = (a,b).

Definition 9 (Continuous real domain) Define the continuous real domain
C(I) on I € I°R™ by
C(l)=(I°1,2).

A sequence of nested closed intervals representing an extended real number can
be modeled by a chain in the continuous domain C (R>) [63]. The extended real
numbers are represented by singleton sets on the rim of the cone, while the other
intervals are represented by points on the surface of the cone. The bottom element
is R™. For any dense subsets F of I, the set of closed intervals I¢ [F] in [with
end-points taken from F is a basis for the continuous domain C (/). For any dense

5.1. DOMAIN OF REAL INTERVALS 45

extended
real numbers
on the rim

{-1} {1}

Figure 5.1: The continuous real domain (]IC]ROO, Q).

subsets I of I, the ideal completion of the abstract basis (]IC [F|, <<> is isomorphic
to the continuous domain C (). The maximal elements (or singleton sets) are
identified with the elements of I. For a continuous function f : C([) — C(I), if
I°[F] 2 y < f(x) then there exists I¢ [F] 3 z < z such that y < f(2).

For any closed interval I € I°R*> of the extended real line and a dense subset
IF of 1, the ideal completion ((]IC Fl,2), g) of I¢ [F] ordered by reverse inclusion

is an algebraic domain.

Definition 10 (Algebraic real domain) Define the algebraic real domain
A (F) on I € T°R™ with respect to dense subset F of I by

A(F) = (. 2).€).

A sequence of nested closed intervals representing an extended real number can
be modeled by a chain in the algebraic domain A (Q>) [63]. The bottom element
is {R>*}. The algebraic domain A (F) is a Scott-domain. The compact elements
of A (F) are given by

K(A@)={lz|zreI®F)}.

In other words, the ideal completion ((]IC Fl,2), g) of (I°[F], D) is an algebraic
domain with basis isomorphic to I¢[F|. For any d,e € K (A (R>)), the step

46 CHAPTER 5. EXACT DIGITAL REPRESENTATIONS

one point for each

irrational number four points for each
on the rim rational number
on the rim
ll1||

{r~}

Figure 5.2: The algebraic real domain ((]IC [Q>], D), g).

5.1. DOMAIN OF REAL INTERVALS 47

function d \ e is compact and they are sufficient to generate a basis for the higher
domain [A (R*) — A (R*>)] [1]. The algebraic real domain has the advantage
of allowing a distinction to be made between finitely and infinitely represented
real numbers [11]. This is useful for efficiency reasons as we do not want to be
forced to represent every number by an infinite product of matrices if it can be
avoided. However, rational numbers cannot always be stored as a vector because
ascertaining whether a real number is rational or irrational is undecidable. Given
an interval x € (]IC 1], Q), let us use the notation z = inf (z), T = sup (z) and

() = {yeI’[F] |y <zandT <7}
(z)) {yel°IF|] |y <zand T <7}
((z) = {yel°[F] |y<zandT <7}
((z)) = {yel°[F] |y <zandZ <7}

where (perhaps counter intuitively) I<I and I < I. Note that (z) =|z and
{({(z)) = [z. In the algebraic domain, the elements (), (r)), ({(z) and ((z)) are
distinct whenever z € I° [F|, they provide only two distinct elements whenever
x € I°I with one end-point in F and they are indistinguishable whenever z € I¢I
with neither end-point in F.

48 CHAPTER 5. EXACT DIGITAL REPRESENTATIONS

Note that the functions e : C(I) — A (F) with x — |z and p: A (F) — C (1) with
x — Nz form an embedding/projection pair with poe =Id and eo p C Id.

a:l—»ia:

Nx ~—x

For a continuous function f : A (F) — A(F), if y C f(z) with y compact then
Jz C x such that y C f(z) with z compact.

5.2 Formal Digital Representations

An alternative indirect approach is to represent a real number by a sequence of
digits that can be used to incrementally generate a sequence of intervals repre-
senting that real number. Ironically, although this approach is more elegant, it
this has led to much less satisfactory implementations as testified by Boehm and
Cartwright [5]. Nielsen and Kornerup [51] and Weihrauch [75] have examined the
theoretical basis for such representations. A convenient definition for a formal
digital representation is:

Definition 11 The tuple (F, D,) is called o digital representation if

e the end-points set F is a subsel of R,
e the digit set D is a non-empty countable set of symbols and

e the digit sequence map 0 is a partial functional

(N~ D) ~ (N~ I(F)).

5.3. DECIMAL EXPANSION 49

So, a digital representation specifies a function for converting a sequence of
digits into a sequence of intervals.

Definition 12 The tuple (F, D, 0, ®) is called an adequate digital representa-
tion if

o the tuple (F,D,0) is a digital representation and
e the interval sequence map P is a partial functional
(N~ I(F)) ~ (N~ D)

satisfying

ﬂ I(n) ={z} for some x € R implies ﬂ (P (1)) (n)={x}.

n=0

So, an adequate digital representation specifies two functions; one for convert-
ing a sequence of digits into a sequence of intervals and the other for converting a
sequence of intervals into a sequence of digits. A trivial example of an adequate
digital representation is

(F,L[F], I+ I,I1).

5.3 Decimal Expansion

The usual way to visualize real numbers is in terms of their decimal expansions;
that is, one tends to think of them as entities such as 12.5 and 3.14159.... Of
course, these can be viewed as infinite sequences dg - didads - - - of natural num-
bers, where the first natural number is arbitrary and the other natural numbers
lie between 0 and 9. In order to ensure that each real number has a unique rep-
resentation, we exclude those sequences that terminate with nines. We could also
assume that there are always infinitely many digits after the point by completing
a finite sequence with 0’s. Traditionally, the decimal expansion dy-didsds - - - for a
real number, x say, is interpreted as the Cauchy sequence <Z?:0 ldoii >ZO:0. However,
each member of this Cauchy sequence is actually endowed with an implicit piece
of additional information; namely that

"L d; =~ d; 1
T € ;1—@,;1—014-@)

for all n € N. The reason for this is that only real numbers in this interval can
be represented by a decimal expansion starting with the digits dg - didsds - - - d,,.

30

CHAPTER 5. EXACT DIGITAL REPRESENTATIONS

So, in fact, the unique decimal expansion dy - d1dads - - - for a real number actually
represents the sequence of intervals

[do, do + 1)
dy dy +1
O |do+ —,do + ——
= l°+1o’0+ 10>
dl d2 d1 d2—|—1
O |do+ 2+ 2 dy+ —
= l"Jr10+100’°+10Jr 100>
2

such that their intersection is the singleton set containing x. It can be shown that
a real number is rational if and only if its decimal expansion is periodic.

Proposition 13 The decimal representation for the non-zero real numbers
corresponds to the adequate digital representation ([0,00) NB(10),N, 0, D) with

Proof:

"L d (i) ~d(i 1
0(d) () - [Z DY 1f)3+1—0n>

() = ﬂ{d:ﬂ&(d)(z’)g ﬁ](j)}.

(1) = {z}=

No@w)m - m(ﬂ{d:{z%’?}g{x}}) (n)

= = d (i
= ﬂ&(d) (n) such that ZZO: 183 =z
= {z} W

5.4 Incremental Digit Representation

It is convenient to define the following two special digital representations, which

are similar to a representation by Nielsen and Kornerup [51]:

Definition 14 The tuple (F, B, A ,Q,¢) is called an unsigned incremental
digit representation if

5.4. INCREMENTAL DIGIT REPRESENTATION 51

the end-points set F is a dense strict subset F of R,

the base interval B is a member of I [F]|,

the digit set A is a non-empty countable set of symbols,

the digit map v is a function A — F' — F' and
e the terminator set () is a non-empty countable set of symbols and

e the terminator map ¢ is a function Q — F'
where ' =F N B and ¢ (d) is a monotonic function for all d € A.

An infinite sequence of digits (d,) ~, represents a real number z in B if it
induces an infinite sequence of intervals (I,,)° , with

I = v (do) (4 (d) (.. (d,) (B)..))

such that the induced sequence (I,,).° , is a representative of z. Similarly, a finite
sequence of digits <dn>2n;01 terminated by 7 € () represents a real number x in B
if it induces a finite sequence of intervals (I,)" with

I :{1/)(d0)(1/)(d1)(...1/1(dn)(B)...)) if n < m
"I % (do) (W () (- ¥ (dm) (B ({7)))..) ifn=m

such that the induced sequence (I,)" | is a representative of x. This un-
signed incremental digit representation is equivalent to the digital representation

(F, A UQ,0) with
W (do) (... (dn) (B)...) it do,...,d, €A

PO Z o) (v) @)) Ll €8

This representation is incremental in the sense that
W (do) ot (dy) 0+ - 01 (dnia)
can be derived from the composition of
W (do) 09 (dr) 0+ -+ 01 (dn)

with
,L/} (dn+1) :

52 CHAPTER 5. EXACT DIGITAL REPRESENTATIONS

Definition 15 The tuple (F, B, %, ¢, A ¢, Q, ¢) is called a signed incremental
digit representation if

o (F,B,A¢,Q,¢) is an unsigned incremental digil representation,
e the sign set Y is a non-emply countable set of symbols and

e lhe sign map @ is a function ¥ - F — F

where ' =F N B and ¢ (o) is a monotonic function for all o € X.

A real number x in the unsigned incremental digit representation prefixed by
a sign o € X represents the real number ¢ (o) (z). This signed incremental digit
representation is equivalent to the digital representation (F, ¥ U A UQ,0) with

o(do) (-9 (dy) (B)...) ;fncéoi%wdn A
0(d) (n) = ifdy € %
o (do) (ot (dn 1) (@ ({d})...) anddy,....dp 1 €A
and d,, € Q.

We will see concrete examples shortly.

5.5 The Automaton Connection

An incremental digit representation can be viewed as an automaton. This
view is useful during implementation. For instance, an unsigned incremental
digit representation (F, B, A ¢, Q, ¢) is equivalent to the automaton with states
S = (" — F) UF, input alphabet I = A UQ, output alphabet O = I[F'], state
transition function fq: S X I — S, output function fp : S — O and starting state
2 +— x where F/ =FN B and

fs(S,dEA) = 301/’(d)
fs(s,7€Q) = sogp(r)

[s(B) fseF T
Jo(s) = { {s} ifsel.

5.6. LINEAR EXPANSIONS 53

A

Similarly, a signed incremental digit representation (F, B, 3, ¢, A, ¢, Q, ¢) is equiv-
alent to the automaton with states S = (F' —F) UF U {L}, input alphabet
I = YUAUQ, output alphabet O = I[F|, state transition function fg: Sx 1 — S,
output function fo : S — O and starting state 1 where F' =F N B and

fs(s,0€X) = ¢(0)
fs(s,deA) = sorp(d)
Js(s,7€Q) = s0¢(7)
s(B) ifseF — T
Jols) = {{s} if s €T
A

z Q Q
5.6 Linear Expansions

It is not hard to see that the decimal representation of the non-negative real
numbers corresponds precisely to the signed incremental digit representation

(F7 B7 E? <707 A? 7‘/}7 Q? ¢) Where

F = B(10)

B = [0,1)

> = N

¢ = d—x—d+zx

o4

CHAPTER 5. EXACT DIGITAL REPRESENTATIONS

0 = b

10
- N(lo) — {0}

= TI—>—

For a valid infinite sequence of digits (d,,).",, the induced valid infinite sequence

of intervals is

which is equal to

V)

2

V)

+1[0,1)

<1+

01>>

[do,do + 1)

[do + —

dy dy
ld bt do

dy dy+1
d -
10" 10 >

10 100’ 10 100

dq d2+1>

as required. This can be generalized to the radiz b expansions of the real numbers

for any natural base b greater than 1 by (F, B, %, ¢, A ¢, Q, ¢) where

o D e b MM H
|

B (10)
[0,1)
{+,—} xN
(0,d) —x 0o (d+x)
N (b)
d+x
d— x— 7
N(b) — {0}

b

5.7. CONTINUED FRACTION EXPANSIONS 35

and called a positional representation. A general linear representation, explored
by Escardé [23], can be prescribed by the signed incremental digit representation
(F7 B7 E? <707 A? 7‘/}7 Q? ¢) Where

F

o D Pbes MM

[0, 1]
Q2

(g mx—p+(g—p)x

(@n[o,1])

(g mx—p+(g—p)x

QN [0,1]
PP

5.7 Continued Fraction Expansions

A particularly important digital representation of the real numbers are continued

fractions. The development

bo

Qg + bl

al—l—

(5.1)

by

ag + —

is called a continued fraction [7, 38] and it represents the sequence (c,).~ , where

Cp = Qg +

bo

ai +

b

(5.2)

as +

by

bn—1

" —
Qp—1 +

Q.

The continued fraction is described as convergent if this sequences converges. The

quantity ¢, is called the n*® approzimant of the continued fraction. The n'* con-
tinuation is the continued fraction

Ay +

bn

Apy1 +
An42 +

bn+1

bn+2

56 CHAPTER 5. EXACT DIGITAL REPRESENTATIONS

A simple continued fraction has b, = 1 for all n € N.

1

ag + —

For convenience, we will denote the continued {raction in equation (5.1) by
lag.bo, ay1.b1,a9.be, .. .].
Similarly, we will denote the simple continued {raction in equation (5.3) by
lag,ay,as,...].

Definition 16 The backward sequence (e,) -, of the continued fraction

b
ag + 0 by
aq + 62
Ao + —
18 given by
€1 = a1
bnfl
€, = Qp+ b
Qp-1+ nin 3
Ap—29 + =
b
ag + —
aq

for n € N— {0} where e, is called the n'" term.

The following theorem demonstrates an invariance property that will prove
extremely useful later in the thesis when we will wish to transform continued
fractions while retaining their meaning.

Theorem 17 (Backward Theorem) The convergent continued fraction

5.7. CONTINUED FRACTION EXPANSIONS a7

represents the Cauchy sequence (dy,). ", where

do = ao+ ko

dn = CLO—I—
ay +

as +

bnfl

n-1+ a, + k?n

for n € N—{0} and (k) ", is any sequence of exlended real numbers such that

the sequence
€n o
kn+en/, 4

is eventually bounded where e, is the n'™ term in the backward sequence of the
continued fraction.

Proof: The sequence (A,) ", defined by the recurrence relation

Ag = 1
Al = Qg
An+2 = an+1An+1 + bnAn

and the sequence (B) ~, defined by the recurrence relation

BO — 0 .
B = 1 (5.5
Bn+2 = an+1Bn+1+ann-
satisfy
A,
+1_ cn
Bn+1

with ¢, as defined in equation (5.2) where

iy A N bo
m — =aqy+ ———75——
nooo B, O

@y + ———

o% CHAPTER 5. EXACT DIGITAL REPRESENTATIONS

by definition. This can be seen, if we let

b
1
a1+ by
as +
b,
Qp-1+ :
a, +x
. An+1 + Ana')
" Bpj1+ Buz
and observe that
An+1
fn 0 = =Cy
() Bn+1

bn an+1An+1 + bnAn An+2
fn = = = Cpi1-
Q41 an+1Bn+1 + ann Bn+2

Note that B,, # 0 for all n € N because the continued fraction under consider-
ation is convergent. It is now a straightforward matter to show that

o Ankn + An+1
" Bnkn + Bn+1 ‘

We know that given € > 0, there exists N € N such that for all n > N

Apr Ay
‘Bnﬂ N
But
Apii Av A Ba— AuBan
Bpyi Ba BrnBn
and
Ankn + Api Ay Awi1By — AuBoy
Buky + Bpy1 Bn By (Buky + Bpy1)
Therefore

L e e IS L ——
Bnkn + Bn+1 Bn Bnkn + Bn+1

But equations (5.4), (5.5) and (5.6) imply that

B,
By !
Bn+1 - a, + bnfl

5.7. CONTINUED FRACTION EXPANSIONS 59

and so by induction we have

Bn+1

Bn

In general, this theorem shows that all but the most contrived sequences
(kn)." o are allowable. For example, the continued fraction for V2 is

1
V2 = 1+
14++/2
1

(1—|—1)—|—1

=e,. N

= 1+

with
m e, =1+ V2.

n—o0

Therefore, any sequence (k,,) -, that has no subsequence convergent to — (1 + \/§>
is allowable. This theorem also leads to the following important corollary.

Corollary 18 Suppose the continued fraction

bo
by
b
a24——ji

T =ap+
a1—+

with positive cocfficients converges to x € R then the intervals

bo

]ﬁ ::a0-+ bl

a1 +

b
a2—+ 2

bnfl

Gn1 + a, + [0, 0]

forn € N are nested and

{z} = In-

60 CHAPTER 5. EXACT DIGITAL REPRESENTATIONS

Proof: The sequence (I,),, of intervals is nested because

a, +

o e

for all n € N. Using the definitions in theorem 17, a,, b, > 0 implies that B,, > 0.
Therefore e, > 0. Consider any sequence (k) ~, with k,, € [0, c0]. Clearly

en
kn, + e,

<1

Therefore the sequence (d,),_, converges to z. B
In 1899, Pringsheim [65] showed that the divergence of the series

f: bn—1bn (5.7)

a
n=2 n

is a necessary and sufficient condition for the convergence of the continued fraction
lag.bo, a1.b1, as.by, . . .| with positive coeflicients.

A continued fraction can be viewed as a sequence of intervals provided some
restrictions are applied to the coefficients. Firstly, let us consider N-fractions, also
known as reqular continued fractions. The N-fraction of a real number z is the
simple continued fraction |ag, ay, as, .. .| with a, recursively given by

(a07T0) = (LxJ ;L — LJTJ)

e = (i 212

The procedure stops if r,, = 0. Observe that
0<y—|yl <1

for any real number y. Therefore

1
0<r,<l=r,el0,1)= — € (1,00].
Tn

It can be shown that the set of N-fractions defined this way is isomorphic to the set
of real numbers. Note that the above procedure excludes sequences that terminate
with a one. It can be shown that a real number is rational if and only if its N-
fraction is finite and an irrational number is algebraic of degree 2 if and only if

5.7. CONTINUED FRACTION EXPANSIONS 61

its N-fraction is periodic. An N-fraction denoted by [{a;),",] induces the following
sequence of intervals

N 1
Qo
(1, 0]
1
2 a0+ 1
“ T Moo
1
2 Qo + 1
a1+ I
“ 7 (Lo
)
or equivalently
lao, a0 + 1)
1 1
2 Qo + , Ao + —
1+ 1 ay
1
2 Qg + 1 , Qo +
Gt Cl—2 Gt as +1

2

It follows that the signed incremental digit representation (F, B, ¢, A ¢, Q, ¢)
where

= Q

= (1,09]

= Z

1

O+ T+ 0+ —
x

= N-{0}

= d—x—d+ —
x

— N-{0,1}

o = T—T

D e D e MmHE
I

faithfully represents N-fractions. For example, the N-fraction for v/2 is

V2 = 1,27

& EICHEISE EIC R

62 CHAPTER 5. EXACT DIGITAL REPRESENTATIONS

and the N-fraction for the golden ratio ¢ and the natural number e are

PR LR STEN

e = [2,(1,2n4+2,1).7 .

Here is another surprising N-fraction

exp <\/§) +1

\/§exp (\/§> —1

= [(2 48,3+ 4n), 7.

Definition 19 The continuation function &g : Z — P (R>) for a particular type,
S say, of continued fraction, S-fractions say, is defined as

& (n) = {[ao, a1, a9, ...] € S-fractions|ag =n}.

The continuation function is best understood as defining the set of real numbers
that are expressible by continued function given the first digit. So, using this
definition, we have

&n(n) = {lao,a1,as,...] € N-fractions |ag = n }
[n]U{[n,a,as,...]|a; € N—{0}}

= {ntu(n,n+1)

= [n,n+1)

as expected.
Secondly, let us consider Z-fractions. The Z-fractions of a real number z is the
simple continued fraction |ag, ay, as, .. .| with a, recursively given by

(a07T0) = (Lx—‘ ;L — La{D

e = (i 212

The procedure stops if r,, = 0. Observe that

1

—§<y—LyW§

| —

for any real number y. Therefore

1 11 1
<7"n§§:>7"n€ ——, | =—€[2,-2).

[Nl

272 T

5.7. CONTINUED FRACTION EXPANSIONS

It can be shown that the set of Z-fractions defined this way is isomorphic to the
set of real numbers. Note that the above procedure ensures that positive digits are
not proceeded by minus two, negative digits are not preceded by two and excludes
sequences that terminate with a minus two. A Z-fraction denoted by [{a;;),

induces the following sequence of intervals

equal to

It follows that the signed incremental representation (F, B, %, ¢, A ¢,), ¢) where

V)

2

2

V)

o D e b s MT =

1
[27 _2)
1

CLO—I—

1
ap + , ag +
2 al—%>
1 1
a0+ 1 7a0+ 1
a1 + a1+
1 1

- Q

= [27_2)
= Z
1
= o X0+ —
T

= Z_{_luoul}
= d—x—d+ —
X

= Z- {_27 _1707 1}

= T =T

64 CHAPTER 5. EXACT DIGITAL REPRESENTATIONS

captures the notion of a Z-fraction. For example, the Z-fraction for the golden
ratio ¢ and the natural number e are

1
¢ = 2+71
1+¢
- 9 1
(14+2)+ I
1+¢
= [27 <_373>20:0]
e = [3,-4,(2,4n+5,-2,—4n —T7) "].

Coincidently, the Z-fraction for v/2 is the same as its N-fraction, but its interpre-
tation is very different.

V2 = (127

= Gl 2E8) 2065 20%) 2

Also, note that the continuation function for Z-fraction is given by

£,(n) = {lao,a1,0as,...] € Z-lractions |ag = n }
= [n]U[n,Q]U{[n,al,aQ,...] ’a’ZEZ_ {_17071}}
(U {20) Ut B)
= (- bt
as expected.

Many continued fractions for elementary functions have been derived by using
various techniques [53, 72] from their Taylor series, most notably by Euler [24, 25].

Chapter 6

Rational Function
Approximations

In this chapter, we examine the theoretical basis for representing real functions by
sequences of rational functions by consolidating a variety of background material.
We present certain known algorithms that can be easily implemented in a math-
ematical programming language such as Mathematica. The author found these
algorithms useful in the search for elegant algorithms for the elementary functions.

6.1 Padé Approximants

A Padé approximant [4] to a function is a particular type of rational function
approximation.

Definition 20 The L, M Padé Approximant to f (z) is the rational function,
denoted by

P(x)

Q(z)’

where P(x) is a polynomial of degree at most L and Q(x) is a polynomial of degree
at most M. The coefficients of P(x) and Q(x) are determined from the Taylor
series of f at 0

[7,/M) =

together with the conditions

_ P(z) pL M1
Q0) =1

66 CHAPTER 6. RATIONAL FUNCTION APPROXIMATIONS

and P(x) and Q(x) have no common factors [4, page 5].

Theorem 21 (uniqueness) When the [L/M] Padé approzimant to a Taylor se-
ries f (x) exists, then it is unique [4, page §].

In 1892, Padé [52] emphasized the importance of displaying the Padé approx-
imants in tabular form in order to study their structure. The array

0/0] [0/1] [0/2] [0/3] [0/4]
(/o] 1] [1/2] [1/3] [1/4]
2/0] [2/1] [2/2] [2/3] [2/4]
[3/0] [3/1] 3/2] [3/3] [3/4]
[4/0] [4/1] |][4/3][]

is known as a Padé table. The partial sums of the Taylor series of f at 0 occupy
the first column of the table. However, in general taking the sequence of rational
functions down the diagonal provides faster and more efficient convergence and it
is this property that is the basis of our interest. In particular, it turns out that
continued fractions occupy this part of the Padé table as we shall see below. An
analytic formula for the Padé approximant [L/M] can be derived and from this
formula it is evident that C' (L/M) # 0 is a sufficient condition for its existence
where

Qr_g41 Qpr—gy2 ¢ Qp
Qr_g42 Qr_gy3 Qry1
C(r/s) = det _ _ _
Qp Ar41 st Qpgs—1

as defined by Frobenius [26]. The array

C(0/0) C(0/1) C(0/2) C(0/3) C(0/4)
C(1/0) C(1/1) C(1/2) C(1/3) C(1/4)
C(2/0) C(2/1) C(2/2) C(2/3) C(2/4)
C(3/0) C(3/1) C(3/2) C(3/3) C(3/4)
C(4/0) C(4/1) C4/2) C4/3) C(4/4)

is known as the C table. The C table can be efficiently computed [4] using the
equations
C(L/0) =1 (6.1)
C(L/1) = ay

6.2. EQUIVALENCE TRANSFORMATION 67

C(0/M) = (- Vg
C(L—1/M = 1)C(L+1/M —1) — C(L/M —1)*

CL/M) = C(L/M - 2)

The relative position of the C table elements referenced in equation (6.1) are

C(L—1/M—1)
C(L/M—2)| C(L/M—1) |C(L/M)
C(L+1/M—1)

6.2 Equivalence Transformation

Later in this thesis we will derive various algorithms for the transcendental func-
tions from various continued fractions. In fact, we will be particularly interested in
continued fractions with positive coefficients. In this light, it is useful to consider
what transformations can be found in the literature. The so-called equivalence
transformation

[<a0-bo>20:0] = [ao-CobO, <Cn71an-cnflcnbn>zo:1]

where ¢,, are any non-zero numbers, allows us to transform some continued frac-
tions to ones with positive coefficients [4, page 44]. In particular,

[{a0-bo),—o] = lao. — bo, (—an.bp), "]

when ¢, = —1.

6.3 Stieltjes Type Continued Fraction

The corresponding [53] or Stieltjes type [72] continued fraction to the power series
Yo ganx™ s

[G’O'a17 <1bn7 1'Cn>:,O:O]
where

. C(n+2/n+1)C(n/n)
b = Cln+1/n)C(n+1/n+1) (6:2)
.- Cn+2/n+2)C(n+1/n) (6.3)
" Cln+1l/a+ 1O +2/n41) '

6% CHAPTER 6. RATIONAL FUNCTION APPROXIMATIONS

[4, page 57]. The sequence of approximants for this continued fraction correspond
to the stair step sequence of Padé approximants

to > 7 o anz™.

6.4 Jacobi Type Continued Fraction

The associated [53] or Jacobi type [72] continued fraction to the power series

> anx™ s
[ao.ala:, 1+ box. — bocox?, <1 + (cn1+by)z. — bncna:2>20:1}
where b, and ¢, are as given in equations (6.2) and (6.3) [4, page 56]. The sequence

of approximants for this continued fraction corresponds to the diagonal sequence
of Padé approximants

[0/0]
[1/1]
2/2]
[3/3]
[4/4]

to > 7 o anz™.

6.5 Euler type Continued Fraction

The equivalent or Fuler type continued fraction to the power series Y, a,z" is

o0
431 ap, Apt1
0.a0,1. — —z,(1+ T. — T .
Qo An—1 Qan n—1

6.6. THE HYPERGEOMETRIC FUNCTION 69

The sequence of approximants for this continued fraction correspond to the vertical
sequence of Padé approximants

[0/0]
[1/0]
2/0]
[3/0]
[4/ 0]

to >, a,z"; namely the partial sums of the power series.
For example

sin (z) = ;(—1)"m
B lo‘l’lf’ <1 2 (2n+1) (2n+2) (2n—|—3)>n11 ’
cos(z) = Z(—l)n 20

01,1222 (1 s s N
= . =X — .
2 2n(2n—1) 2n+1)2n+2)/ |’

ep(-a) = Y L

x x \7
= 01,1z, {(1——.)
nn+1/

6.6 The Hypergeometric Function

6.6.1 The Ordinary Hypergeometric Function

In terms of the Pochhammer symbol

(a)g =1

(a), = ala+1)(a+2)---(a+n—-1)=

the ordinary hypergeometric function is defined by

oI (a,b;¢;2) = Z (a)(z;b)n%

70 CHAPTER 6. RATIONAL FUNCTION APPROXIMATIONS

where a, b, ¢ and z are complex numbers. This series converges for |z| < 1 so long
as ¢ is not a negative integer or zero. The hyperbolic differential equation

d?y dy
l—2)—+4+c—(1+a+b)z——aby=0
21-2) Ty e (1 at): — aby
is satisfied by 2 F\(a, b; ¢; z) together with twenty-three other variants [43], whose
regions of convergence cover the entire complex plane. These expressions lead
to an analytic continuation of the hypergeometric function to the remainder of
the complex plane outside the unit circle. The ordinary hypergeometric function

captures many interesting holomorphic functions.

log(1+z) = 25 (1,1;2;—x)
(14+2)" = oF(—a,bb;—x)
arcsin (z) = xzoF) (% L %$2>
arcsinh (z) = xoF) (%7%7%;_332)
arctan (z) = xoF) (%717%;_332)
arctanh (z) = zoF) (%71;%;332
sin(az) = o) (%“,%“;%,sm(mf)
cos(az) = oF (&,—%; 1;sin (a:)Q)
sinh (az) = oF) (%,%“,%,sinh(a:f)
cosh (az) = oF (%, —%;3;sinh (a:)Q)

Gauss derived the following continued fraction
oF 1 (a,b+ 15¢+ 1;2) 01 (1 (n+a)(n+c—>)
= : — x
o F (a,b;¢;) C2n4c)2n+c+1) "

n+b+1)(n+ec—a+1) \™
L= C2n+c+1)2n+c+2) a:>] (6.4)

n=0

Since 5Fi(a,0;c¢;x) =1, equation (6.4) becomes

o _ (nta)(ntc—1)
2P (e, L) = l0'1’<1' @nte—1)(2nto)

- (gﬁii ngfc_fiﬁf] ‘

I

n=0

In particular,

log(l1+2z) = x9F;(1,1;2;—x)

n+1 n+1 0
= |0. 1. 1.
[$< dnt 2" 4n+6x>n01’

6.6. THE HYPERGEOMETRIC FUNCTION

arctanh (z) = z.F) (%,1;%;362)

B . (2n41)? 2
= [0.a7,<1. @t) @nt)”
L L\
@3+)

n? >
= (0.2, (1. — 2
l aj, < 4n2 - 137 >n11 7

(1+2)Y = oF (—y,1;1;—2)
_ Joq (1 rzy, nAlty N
T\ 4n+277 7 4dn+2 ol
T gp—l D
/ i = Z,p <2,1;£+1;_xq>
0 (1‘|’tq) b q q
— o 1 (an +p)° 2
p’\ (2qn+p) 2m+p+tq)

(gn + Q)2 21
2qn+p+q) 2n+p+29) [|

o1
arctan (z) = /Omdt

B (2n +1)°)
- [O‘x’ <1'(4n+ 1) (4n+3)"

L ent2? \T
(n+3)(dn+5)" |

: 11.3
arcsin (z) 9P (3,51 57%)

- 1 1.1 2
V1—a? oI (57—§7§aa7>

71

72 CHAPTER 6. RATIONAL FUNCTION APPROXIMATIONS

2n+1)(2n+2) ,
l0‘$’<1 T Wnt) (dn+3)
B (2n—|—1)(2n—|—2)$2>°°]

@nt3)(@nts) /. |

At - Q-2 B0 <(1—y) 3 (2—y); 37;72)
oF1 (5 (1 =), =5y §; 22

- y* — (2n+1) 2
- [O‘xy’<1‘(4n+1)(4n+3)$’

1 y2—(2n—|—2)2 22 h
'(4n +3) (4n +5) o
2 2 00
Yy —nw 4
= . 1.
o (15257)|

oy = [ty (1550 20 y1>)>:°0] |

and

6.6.2 The Kummer Confluent Hypergeometric Function

The Kummer confluent hypergeometric function is defined by

o0

(b),, ="
1Flbca7 ZC n‘

n:O n

The confluent hypergeometric function captures many interesting holomorphic
functions including the incomplete gamma function v (a, z) and the error function

erf (z)

exp(xz) = 1Fy(b;b;x)

N S L

v (a,x) :/ e "t ldt = xelFl(l;a—l—l;a:).
0 a

The confluent hypergeometric function can also be deduced as a special case of
the ordinary hypergeometric function using

1Fi (bye;z) = lim o F) (a,b; c; f) .
a

a— 00

6.6. THE HYPERGEOMETRIC FUNCTION 73

Therefore, the continued fraction in equation (6.4) can be specialized to

Fi(b+Lie+Lia) lo-l <1‘_(n+c—=b

1F1 (b; ¢; x) 2n+c¢)(2n+c+ 1)37’
n+b+1 >
1. x . 6.5
2n+c+1)(2n+c+2) >n0] (6:5)
Alternatively, by symmetry, it can be specialized to
Fi (a; 1;
hlaictLiz) oy /g nta z,
1Fi (a; ¢;) (2n+c)(2n+c+1)
n+c—a-+1 >
— x . 6.6
G D ery)) 69

Since 1F1(0;¢;) = 1, equation (6.5) becomes

n+c—1
tFi (L5 o) [’< (2n—|—c—1)(2n—|—c)x’

n+1 >
1. x .
2n4c)2n+c+1) /.,
In particular,

exp(xz) = 1F1(1;1;2)

1 1 >
= d,(10— 1.
[0 ’< dnt2" 4n—|—2x>]’

the error function

erf () = 20 * 1y (51 3: _372)
Vi B (55)
2a:e v dn 42 9
= x
4n—|—1)J(dn+3) 7

dn 44
(4n +3) (4n + 5) 0
and the incomplete gamma function

a T

v(a,z) = /ettaldt:a:e
0 a

1Fi (a4 1)
x%e”® n-+a

_ a’bL<L—@n+@@n+a+D%

. n+1 >
. x .
2n+a+1)(2n+a+2)

n=0

74 CHAPTER 6. RATIONAL FUNCTION APPROXIMATIONS

6.6.3 The 0-1 Confluent Hypergeometric Function
The 0-1 confluent hypergeometric function is defined by

of1 (e) ZZL

= (),

n

8

!

3

Again, this can also be deduced as a special case of the confluent hypergeometric
function 1Fy (b; ¢; x) using

of1(Gez) = blim il (b; c; %) .
Therefore, the continued fraction in equation (6.5) or (6.6) can be specialized to
OFl (, C —I— 1, a?)
ol ;¢)

= lo'l’ <1' (20 +0) (21n e) g er 1)1(2n Tt 2)$>:0J

- lo‘l’<1‘<n+c><i+c+1>x>:oj‘

This confluent hypergeometric function captures many interesting holomorphic
functions including the Bessel function J, (x) of the first kind.

1\l (Ga+1;,—12?
Julz) = <§x> <r i1)
sin(z) = zoly (; %; —ia:Q)
sinh (z) = xoF (;3;127)
cos(z) = ol (; %; —}la:Q)
cosh () oF (; % ;11a72
Jo (2) z oy fa+1;—32%)
Jo1(z) 2a oFy (, a; 4a72>

- lO% <1‘ T 4i(nta) (1n—|— at 1)x2>200] ‘

In particular, Lambert’s continued fraction for tan (z) can be derived

: (-3
tan(z) = sin () _ 0 1<’§
cos(x) of' (33—

6.6. THE HYPERGEOMETRIC FUNCTION 75

and similarly for tanh (z)

_sinh(z) ofy <’
tanh (37) - cosh (aj) ol <7

z)
z?)

- [0.1,<1.(2n+1)1(2n+3>x2>:°0].

6.6.4 The 2-0 Confluent Hypergeometric Function

7

MI»—t le
4;|,_. »th—t

7

The 2-0 confluent hypergeometric function is defined by

QF()CLba? i

n=0

n

The confluent hypergeometric function can also be deduced as a special case of
the ordinary hypergeometric function using

oFp (a,b;;2) = lim oF] (a,b;c;cx).

C— 00

Therefore, the continued fraction in equation (6.4) can be specialized to

oFo (a,b+1;; —x)
2L (a, by 5 —x)

=[0.1,{(I.(n4+a)z,1.(n+b+1)z) " ,].

Since 9Fp(a,0;;2) =1, it follows that
oFo(a,1;;—x) =101, (1. (n+a)z, 1. (n+ 1) z),"]

In particular,

o0 eft
/0 mdt = ol (a’7 15 _37)

and the complementary error function

e
erfc(z) = 1—erf(z)= oFo (3,15 —27?)
e r
- /T [0'17 <1'%>n:0:| :

76

CHAPTER 6. RATIONAL FUNCTION APPROXIMATIONS

Chapter 7

Effective Digital Representations

In this chapter, we consider the subset of exact digital representations that are
effectively computable as understood in recursion theory.

7.1 Recursive Functions and Functionals

The study of recursive functions and functionals is intimately related to the study
of the extended real numbers and functions respectively. Recall that an extended
real number can be represented by a sequence of intervals I [F] with end-points
taken from a dense subset I of the extended real numbers R*. In other words, a
function

f:N—1I[F]

from the natural numbers to the set of intervals I[F|. Also, recall that recursion
theory only allows us to consider functions having domains and codomains with
codings. In other words, only end-points sets F accompanied by a one-one ef-
fectively computable function to the natural numbers may be considered. This
means that the end-points set must be countable at least. So, given an end-points
set F and an associated coding function

p:I[F] — N,
every real number can be represented by a function
pof:N—N

N-L I[F] & N

from the natural numbers to the natural numbers. A real number is said to
be effectively computable if it can be represented by a recursive function. The

77

78 CHAPTER 7. EFFECTIVE DIGITAL REPRESENTATIONS

fact that the set of recursive functions is countable and the set of real numbers
is uncountable implies that not all the extended real numbers can be effectively
computable with respect to a given end-points set. The set of computable real
numbers or constructive real numbers is classically considered to be the effectively
computable real numbers with respect to the rational numbers. However, any real
number can be considered to be effectively computable with respect to a suitable
end-points set (e.g. x is effectively computable with respect to z 4+ Q).

In domain theory, a real number z is defined as computable with respect to
C@) if

{(a,0) |la,0] <z}

is recursively enumerable where (;) : Q*° x Q> — N is any suitable coding function
[22]. This domain theoretic definition for a computable real number is equivalent
to the classical one [22].

The set of closed intervals I¢ [Q>°] with end-points taken from the set of ex-
tended rational numbers Q> is isomorphic to (Q> x Q>),. This means that it
is a particularly straightforward matter to construct a coding for I¢ [Q>].

An n-ary real function f : R"™ — R can be represented by a function from se-
quences of intervals to sequences of intervals; namely, a functional /' : (N — N)" —
N — N on the natural numbers [10, 13]. Classically, a real function is said to be
effectively computable (with respect to a given end-points set F) if it can be repre-
sented by a recursive functional. It follows that every effectively computable real
function is continuous [77].

In domain theory, a real function f : R* — R is defined as computable with
respect to C (Q>) if there is a Scott continuous extension g : C(Q>*) — C (Q>)
such that

g({=}) =A{f ()}
and

{(a,b,¢,d) [la,b] < g([c.d])}

is recursively enumerable where (,,) : Q™ x Q> x Q> x Q™ — N is any coding
function [22]. This domain theoretic definition for a computable real function is
equivalent to the classical one [22].

A digital representation (F,D,#) is effective if 6 is an effectively computable
functional and a coding function ¥ : D — N exists for the digit set I); an adequate
digital representation (F, D, 8, ®) is effective if # and P are effectively computable
functionals and a coding function ¢ : D — N exists for the digit set I. It can
be shown that the decimal representation is not an effectively adequate digital
representation. For instance, consider the sequence of intervals n — [1 — %, 1].
No finite portion of this sequence contains sufficient information to decide even

7.2. REDUNDANT POSITIONAL REPRESENTATIONS 79

the first digit of its decimal expansion. It can be seen from the diagram

F

N — I[F] N — I [F]
© P
N—D N—D
G

that any effectively computable functional can be computed using an effectively
adequate digital representation.

Definition 22 A redundant representation is a digital representation in which
every real number has more than one sequence of digils representing it.

7.2 Redundant Positional Representations

The positional representations for the real numbers can be made redundant by
extending the digit sets with negative counterparts. Redundancy ensures that the
simplest mathematical operations are computable. For instance, multiplication by
3 is only computable with redundancy. For example, consider 3 x % Note that,
using the decimal representation, + is represented by 0.333 ... with the interpre-

) 3
tation

0,1] 2 [0.3,0.4] 2[0.33,0.34] D - --.

1

, 3 can also be represented by 0.333 - - -

Using the redundant decimal representation
but with the interpretation

[—1,1] 2 [0.2,0.4] 2[0.32,0.34] D - - -.

This difference ensures that for a given output precision, only a finite amount of
input precision is required.
The redundant radix b positional representation is the signed incremental digit

representation (F, B, ¥, ¢, A ¢, Q, ¢) where

F = B()
B = [-1,1]
S o= Z

80 CHAPTER 7. EFFECTIVE DIGITAL REPRESENTATIONS

p = 00— TrH—0+x
A = Z(b)
Y = de oz d —Ib— x
Q = Z(b)
-
¢ = T 7
In particular, the redundant binary representation is given by the signed incremen-
tal digit representation (F, B, 3, ¢, A ¢, Q, ¢) where
F = B(2)
B = [-1,1]
> = Z
p = 00— TrH—0+x
A = Z(2)
Y = de oz d —|2— T
Q = Z(2)
-
¢ = T 5

Example 23 The finite sequence of
sentation for 9%, The first symbol is
terminator and the other symbols are

g
do
dy
do

T

symbols 91011 is a redundant binary repre-
called the sign, the last symbol is called the
called digits and so let

= 9eX
= leA
= 0e€A
= leA
= 1€Q.

The finite sequence of intervals loli 15131, induced by this representation is given

by

Iy = ¢(0)(B)

= ¢ (=11

= [8,10]
= 9+[-1,1]
Iy = ¢(0) (¥ (do)

(B))

7.2. REDUNDANT POSITIONAL REPRESENTATIONS 81

]3 =

O
|

< o ©
D~

-8 e 8

AAA/:AH;|O

—_

Ne) Ne)
S N N N N

AN TN TN N N
= TN TN TN

—

=}

I
©f—":‘6‘6‘6‘6‘6‘6©
=z
——

tatits+ i)

The redundant positional representation turns out to be an effectively adequate
digital representation for the real numbers. Interestingly, the redundant binary
representation was first introduced by Avizienis [2] in 1961 as a means to avoid
carry propagation in the addition and subtraction of integers rather than as an
effective means to represent exact real numbers.

Let t list denote the list type of ¢ (i.e. a sequence of values with the same
type t) and let : denote the infix constructor for building a list by attaching a new
member to the front.

The algorithm for the scaled addition of two redundant positional expansions

82 CHAPTER 7. EFFECTIVE DIGITAL REPRESENTATIONS

with radix r > 3 is well known [3]; namely

add : Z(r) listx Z(r) list — Z(r) list
add (o, 3) = add'(«,3,0)

where
add” : Z(r) list xZ(r) list x Z(r) — Z(r) list
c+1l:add (o, B,a+b—71) ifat+b>r—1
add' (a:a,b:8,¢) = c—1:add (o, 8,a+b+7r) fa+b<1—r
¢:add (o, 8,a + b) otherwise.
The interpretation is
o atle]
la:a] = .
aof + |3
fodd (o, 3 = LU
ladd’ (e, B,)] = W_
r

The binary version of scaled addition (i.e. mean) is more tricky.

Proposition 24 An algorithm for the mean of two redundant binary expansions

is
mean : Z(2) list x Z(2) list — Z (2) list (7.1)
mean (a : o, b : f)
B div (¢, 2) : mean (o, 3) if mod(c,2) =0
N mean’ (a, 3, ¢) otherwise
where
c=a-+b
and
mean’ : Z(2) list x Z(2) list x Z(2) — Z(2) list (7.2)
mean’ (a: a,b: 3,¢)
c: mean’ (o, 3, —c) ifa+b=c

= h:div(t,2) : mean (o, 3) if mod(d,2) =0

h : mean’ (o, 5, 1) otherwise

7.2. REDUNDANT POSITIONAL REPRESENTATIONS 83

where

d = a+b+2c
h = div(d,4)
t = mod(d,4)

where div : Z X 7. — Z, and mod : Z X 7. — Z are integer division and remainder
respectively satisfying

m % div (n,m) + mod (n,m) = n.

The interpretation 1s

la:a] = a +2[[a]]
[mean (a, B)] = w
[mean’ (a, 3,¢)] = o] +£ﬂ]] +c

Proof : Consider equation (7.1).

[mean (a: a,b: B)] = <“+2[[O‘]]> ' <L2m>

o] + 18] + (a +)
4

If we assume mod (¢,2) = 0 then

ldiv (¢, 2) : mean (a, O)) - =)+ ()

2
[e] + 8] +(
4

a+b)

Otherwise we must assume mod (¢, 2) # 0 and so

lo] + 8] + (a +b)

[mean’ (e, 3,¢)] = 1 .

() ().
o] + 18] + (a4 b+ 2¢)

8

Now consider equation (7.2).

[mean’ (a: ,b: 3,¢)] =

84 CHAPTER 7. EFFECTIVE DIGITAL REPRESENTATIONS

If we assume a + b = ¢ then

o (e =0)

2
[a] + 8] + (a4 b+ 2c)
g :
Alternatively, if we assume a 4 b # ¢ and mod (d,2) = 0 then

mod (d, 4) N <[[a]] + [[ﬂ]])

[e: mean’ (o, 3, —¢)] =

div (d,4) + 2 5 2
[h:div(t,2) : mean (o, B)] = 5
_ Lo+ 18] +4 < div(d,4) + mod (d,4)
8
_ o] + 161+ (a+ b+ 2¢)
g .

Otherwise, we must assume a + b # ¢ and mod (d,2) # 0 and so

div (d, 4) + <[[a]] + [[ﬁ]]zmod (d,4>>
2

le] + [8] + 4 x div (d,4) + mod (d, 4)
8

la] + [5] + (a+ b+ 2¢)

= .
8

[h : mean’ (o, 3,1)]

Proposition 25 An algorithm for the comparison of two redundant binary expan-

stons .
p <y true Zfa: <y
~ false if x > vy

18
less : Z (2) list x Z (2) list X Z(3) — boolean

true ifd < —2
less (a : a,b: 3,¢) =< false if d > 2 (7.3)

less (o, 3,d) otherwise

where
d=2c+a-—0>.

7.3. REDUNDANT CONTINUED FRACTIONS 85

The interpretation 1s
a+ [o]
2

[less (@, 3,¢)] = ([l +¢) S 18]

la:a] =

Proof : Consider equation (7.3).

[less (a: o,b: B,c)] = <a +2[[a]] + c> < b+2[[ﬂ]]

= (a+]a]+2¢) S0+ [7])

= ([a] +4d) S 4]
true ifd< -2
= false ifd>2

[less (e, B,d)] otherwise. B

7.3 Redundant Continued Fractions

N-fractions and Z-fractions are not redundant because the floor and round opera-
tions are not effectively computable. However, the FEuclidean part of a real number
x, which is defined by Vuillemin [71] as any integer ||z]| such that dc (z, [|z]]) < 1,
is effectively computable. So, the E-fraction of a real number z is the simple con-
tinued fraction [ag, a1, as,...] with a, recursively given by

(a0re) = (l=].z— [l=T)
(i1 rar) = (uiﬂ,i—uiﬂ)

It has been shown by Lester [45] that the continuation function & for E-
fractions (see definition 19) is

£ (n) = (—4n—l—(n2—|—1)\/§ —4n—(n2—|—1)\/§>

N n?—3 ’ n?—3

because

de (x, |[2]]) <1 &z e &g (([=1]).

On careful inspection, this expression can be simplified to a pair of Mébius trans-

(nV3-1 nV3+1
gE(n)_<\/§+n7\/§_n>'

formations

86 CHAPTER 7. EFFECTIVE DIGITAL REPRESENTATIONS

Figure 7.1: The shaded region is a plot of the points (x,y) such that d¢ (z,y) < 1.

The shaded region in Figure (7.1) shows a plot of the points (x,y) such that

de (z,y) < 1. So, a general E-fraction |ag,aq,as,...] induces the sequence of
intervals (1),
Iy = &g(ao)
1
L = ao+
€ (a1)
1
]2 = ao + 1
ay +
' §e (a2)
1
]3 = Qg —I— 1
aq + N 1
a9
{s (as)

Unfortunately, due to the inherent redundancy of this representation, there is no
guarantee that this sequence is nested. This is perhaps, why Vuillemin goes on to
consider the continuation function

o) — (—2,2) Hn=20
£ (n) { (In| = 1,1 —|n]) ifn#o0.

7.3. REDUNDANT CONTINUED FRACTIONS 87

So, what might a good continuation function be? Firstly, every extended real
number needs to be covered

J¢m) =r>. (7.4)

nez

otherwise we have real numbers that cannot be represented. Secondly, it would
be convenient from a computational efficiency point of view if we could restrict
ourselves to nested intervals

U{”Qé@)

meZz

1
wt g 60 b =€) (7.5)

Unfortunately, the redefined continuation function does not satisfy these condi-
tions. The problem can be illustrated with an example. Consider the E-fraction

5
for 5"

r = 365(1):@’_%)
(ao,m0) = (17_%>
£(a0) = (3.-3)
Ti _ _%eg(z) for z € Z (3)
1 31 a
ao—l-w = (3,3) L€ (a0)
1
ao—l-@ = (=1,3) ££(ao)
1 15
Wty = (53) L)

However, the simple continuation function

does satisfy equations (7.4)

U&= no] =R~

nez nez

and (7.5)

meZz meN

8% CHAPTER 7. EFFECTIVE DIGITAL REPRESENTATIONS

for all n € Z. We will call a continued fraction constructed using this continuation
function, a P-fraction. So, the P-fraction of a real number z is the simple continued
fraction [ag, a1, as,...| with a, recursively given by

(o) = (lzf).z— |lz])
(nsr) = (uiﬂ,i—uiJQ

Tn Tn Tn

where || z|| is defined as any integer less than or equal to x, which we will call the
basement of x. Observe that

0<y—[lyl] <o
for any extended real number . Therefore
1
0<r,<oco=m,€|0,00] = —¢c[0,00].
Ty,
It follows that the signed incremental digit representation (F, B, ¢, A ¢, Q, ¢)

where

- Q

D e P s M=
I
Q
1
&
1
Q
|
|

o = T—T

faithfully represents P-fractions.

7.4 Incremental Floating Point

In 1983, Watanuki and Ercegovac [74] explored the possibilities of redundant radix
b floating point. Let us extend their definitions from finite to infinite sequences of
digits.

Definition 26 The incremental mantissa exact radix b floating point rep-
resentation of an extended real number, x say, is an infinite sequence of digits
(dn)," o with the interpretation

xTr = (0.d1d2d3 .. ')b X bdo

7.4. INCREMENTAL FLOATING POINT 89

where the first digit (the exponent) is an arbitrary integer and the other dig-
its (the mantissa) are restricted to Z(b). The representation is referred to as
y—mnormalized if

1
7 < (0didads..), < 1.

In particular, the representation is ~-normalized if (dids...d,), €
Z (") — Z(2). Therefore, the signed incremental digit representation
(]F7B7E7 <707 A77‘/}797¢> Where

10
- ZX (Z () - Z(2)

0+a7><be

= (e,0) —x—
Z(b)
= d—xH—

= Z()- {0}

= T —

b

b

o D e Db s M=
I

corresponds to the incremental mantissa y—normalized exact radix b floating point
representation.

Example 27 The signed incremental digit representation (F, B, X, ¢, A9, Q, @)

where
F = B(2)
B = [-1,1]
Y = Zx{-3,-2,2,3}
¢ = (e,0)~xr (0+mx)x2?
A = {_17071}
Y o= diozo d+x
Q = {-1,1}
6 = T3

corresponds to the incremental mantissa 2—normalized exact radix 2 floating point
representation. The finite sequence of symbols (5,2) (—1)01 represents 13. The

90 CHAPTER 7. EFFECTIVE DIGITAL REPRESENTATIONS

R - {0}
(5.3)
(5,-2) (5,2)
[-32,-16] [-24,-8] [8,24] [16,32]
1 0 1
[8,16] [12,20] [16,24]

1 0 1

[8,12] [10,14] [12,16]
1 0 1

[10,12] [11,13] [12,14]

Figure 7.2: An illustration of the incremental mantissa 2—normalized exact radix
2 floating point representation.

7.4. INCREMENTAL FLOATING POINT 91

first symbol is called the sign, the last symbol is called the terminator and the other
symbols are called digits and so let

(e,0) = (5,2)eX

dg = —-1e€A
dl - OEA
T = 1leq.

The finite sequence of intervals Iol11515 induced by this representation is given by

Iy = p(e,0)(B)
= ¢(52)([-1,1])
= [8,24]
L = ¢(e0)(¢(do) (B))
= ¢(6,2) (¥ (=D (-1,1])

= ¢(5,2)([-1,0])
— [8,16]

Iy = @(e0) @ (do) (¢ (d1)(B)))
= ¢(5,2) (¥ (-1) (¥ (0)([-1,1])))
= 05,2 (¥ (-1 ([-3.3])
= ¢(5.2) ([-§.-3])
= [10,14]

Iy = ple,0) (@ (do) (v (di)(¢(7))))
= ¢(5,2) (¥ (-1) @ (0)(¢({1})))
= »(5,2) (¥ (=1 (¥ (0) ({2})))
= (5,2 (-1 ({1})
= ¢(5,2) ({-%})
= {13}

and illustrated in figure (7.2).

Note that v =1 for b = 2 is not allowed because the sign set would be empty.
Also, note that this representation cannot handle 0 and co. This is essentially
because the exponent is not incremental. Incrementality in the exponent can be
achieved by replacing the integer e with a sequence of (1 + e) successor digits s
if e > 0 and a sequence of (1 — e) predecessor digits p if e < 0 as pointed out by
Nielsen and Kornerup [51] in 1995. This gives a fully incremental representation

92 CHAPTER 7. EFFECTIVE DIGITAL REPRESENTATIONS

z(b")-z(2)

z(b") -z(2)

Figure 7.3: The automaton for the fully incremental y-normalized exact radix b
floating point representation.

corresponding to the digital representation (B (b),{s,p} UZ(b7),0) where

([1,—1x "' ifdy,...,dn=s
1,1 x b ifdy,...,d, =p

m x b7 and d. € Z (V") — Z (2)
and dey1,...,d, € Z(b)
ifd(),...,de,1 =P

m X b€ and d, € Z (b") — Z (2)
and det1,...,d, € Z(b)

0(i—d;)(n)=

with
[_17 1]
e :

m = de + (O.de+1de+2 e dn)b +

The corresponding automaton is illustrated in figure (7.3).

7.4. INCREMENTAL FLOATING POINT 93

[2,-2] [-1/2,1/2]
s |O

\

[16,-8] [12,-4] [4.12] [8,16]

1/4 1/4]

/.

[-1/4,-1/8] [-3/16,-1/16] [1/16,3/16] [1/8,1/4]

-1 1
0

[12,-8] [-10,-6] [-8,-4]

Figure 7.4: An illustration of the fully incremental 2-normalized exact radix 2
floating point representation.

94 CHAPTER 7. EFFECTIVE DIGITAL REPRESENTATIONS

7.5 Redundant If Operator

The basic arithmetic operations are computable only for redundant representations
of the real numbers [49, 46, 8, 69]. In effect, non-determinism is being traded for
computability. The basic predicates, such as equality and comparison, are not
computable at all. However, the way-below relation < on the continuous domain
of intervals is recursively enumerable. Consequently, the if operator defined by

if KXFX(K—>t)2—>t

: f flx) ifz<yg

ifz < gthen felseg = { g(@) ifz>q (7.6)
where K € IR and F is a dense subset of K, should be replaced by the redundant
if operator

if o IO (K] < I°[F)? x (I°|K] — t)" — ¢
fl) flgx

g(z) < (7.7)

rifx < ([,J) then felseg = {
where K € I°R> and F is a dense subset of K. As it stands, the redundant if
operator is a partial multivalued function. However, the side condition

interior (/) U interior (J) = interior (K) (7.8)
ensures that it is a total function and the side condition

f{z}) =g{x}) it I < {z} and J < {z} (7.9)

ensures that it is single valued for the maximal elements. In practice, the redun-
dant if operator as defined in equation (7.7) is still not useful because f and g
are frequently only defined over I and J respectively; as is the case with analytic
continuations over the real line. This usually means the insertion of some domain
restricting functions between f and it’s argument x and g and it’s argument x.

The redundant if operator is similar to the quasi-relational comparison operator
<. introduced by Boehm and Cartwright [6, 5]

true ifr<y—e
r<.y=< false ifx>y+e
either true or false otherwise.

The redundant if operator will be used implicitly in statements like “if f(d) for
some d € D”. This notion will be used for the transcendental functions by utilizing
the idea of analytic continuation in complex analysis as described in section 3.

7.5. REDUNDANT IF OPERATOR 95

The redundant if operator overcomes the problem of undecidability because
one of the if conditions is satisfied in finite time. Therefore, the redundant if
operator makes comparison feasible even when applied recursively. This contrasts
with the parallel if operator [5, 10, 23]

f (z) ifx <0
pif x < Othen f (x) elseg (z) = ¢ f(z)MNg(z) ifz=0
g (x) if z > 0.

In particular, recursive application of the parallel if operator may result in an
exponential growth in resource usage.

96

CHAPTER 7. EFFECTIVE DIGITAL REPRESENTATIONS

Chapter 8

Linear Fractional Transformations

In this chapter, we explore the mathematical properties and representations of
the extended real numbers together with various important classes of rational
functions including Mébius transformations.

8.1 Vectors, Matrices and Tensors

For the sake of this thesis, a vector is a pair of integers, a matrizis a pair of vectors
and a tensor is a pair of matrices. Therefore, the set of all vectors V, the set of
all matrices Ml and the set of all tensors T are given by

V = ZXZ
M = VYxV
T = MxM
and for convenience
V' = NxN

MY = V" xV*
T = M* x M*.

The symbols V' (and W), M (and N and O) and T’ (and U) will be used to denote

vectors, matrices and tensors respectively. The vector (a,b) will be denoted by

(3) e

97

a

b.

9% CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

The matrix ((a,b), (c,d)) will be denoted by

<Z ccl> and
b—d.

The tensor (((a,b), (c,d)), ((e, f), (g, h))) will be denoted by

a

a (&

N N

a c e g
<bdfh>and
b f

N N

d h.

A pair with the subscript 0 (1) denotes its first (second) projection respectively.
In other words

(X,)Y), = X
(X7Y>1 = Y.

Let the transpose of a matrix and tensor be defined by

<MT>ij = Mj
<TT>z‘jk = Ty

Lemma 28

Proof:

T
Tooo Toio Tioo Th10 _ Tooo Toio Tioo Ti10
Toor Toun Tion Tin - Toor Tonn Tim Thin jik

]

8.1. VECTORS, MATRICES AND TENSORS

((
((
(

= (T, Tjir),

(
= ((
((

|

(T()OO; T()Ol) (T0107 T()ll)))
T1007 Tl()l) (T1107 Tlll)))jl‘k
(T00, Thor) , (Tj10, T11)),

(Tow, Toi) , (Thios Thir)) ;5
(To00, Toot) , (Tr00, Tho1)) ,
To10, To11) 5 (Tr10, T111))) g5

Tooo Trwo Toro Tiro n
Toor T Ton Tin ik

99

The symbol e will be used to indicate the usual dot product between vectors,
matrices and tensors.

Lemma 29

Proof:

= Z VM

j
N);; = Z Nig My
ZTZ]lMlk

e) (%)),

_ MooVo + M1oV4
Moy Vo + M1V

zgk
Moo
MeV) =
(i)z << MOl
= Moo+ M1
-
J
- Moo Mo
(MeN)y = << Mo My

)«(

Mo1Noo + M11 Ny

_ < MooNoo + MioNo1

_ MooNyo + MioNy
Mo Nyo + My Ny

= Mo Nip + Mi; Ny

=) NyMy,
k

Noo Nig
Noi Ny i

Moo N1o + M1oN1q
My N1o + M1 N1q

),

),

100 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

(MeoT),, = Moo Mo . Tooo Toro Tioo Thio
b Moy My Toor Tour Tr T))
o MooTooo + MioToor MooTo10 + MioTo11
MoiTooo + M1 Toor MoiToio + MiiTon

MooTr00 + MioTi01 MooT110 + MioT111
Mo Thoo + M Thor MoiTrio + MiTin ik

_ Moolioo + MioTion Moolii0 + MioTin
MoiTioo + M1 101 Moy 110 + My 'Tin ik

_ MooTij0 + MioT51
Moi'lijo + M T35 k

= MoT50 + MipTij
= Y TypMy |
!
The same symbol with a numerical subscript e,, will be used to indicate a more

general dot product between vectors, matrices and tensors. In particular, e; and
e, are given by

(T o V), = > Vil
k
(1o M), = Z M T,
1
(T oy V)ij = Z Vi'llik;
k

(1" o M)ijk = Z M Ty,
!

This is all we need in this thesis, but for the sake of completeness, the general dot
products is given by

(X on Y)ili2"'irk1k2~"kn71kn+1---ks = Z }/iliQ"'i'ranklkJQ"'ks‘

kn

The symbols e; and e5 will be referred to as the left product and right product
respectively. Note that, in fact e = e,

Lemma 30

ToiV=((T"),eV.(T7), V)

Tey M= ((T7), oM, (TT), M)

8.1. VECTORS, MATRICES AND TENSORS 101

T.QV: (To.‘/,Tl.V)
T.QM:(T().M,Tl.M)
Proof:

(T o V), = Y Vil
- Z Vi <TT>ikj
= ZV’“ <<TT>i>kj
= ((17),0V),
- ((TT>0 oV, (TT>1 ° V)ij
(T o1 M)y = Y MyTi
= Z M; <TT>jlk
- ZMH (<TT>j)zk

- (<TT>j * M)zk

= ((TT>0 ° M, <TT>1 ° M>jik

= (((TT>0.M7<TT>1.M>T)
(T o V), = > Vilu

= Z Vi (Ti)kj

= (leV),
= (loeV,TieV),

ik

(T L] M)ijk = Z Mlez‘lk

1
= > Mu(Ty)y
1

= (T;e M)jk

= (TOQM,Tl.M) [|

ik

102 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

8.2 Vectors and Extended Rational Numbers

The set of vectors V with integer coefficients together with product x defined by

a f(ec)_(oa

b d) \ b
is a monoid. Therefore, the kernel of the morphism @ : V — Q> from the monoid
of vectors V to the extended rational numbers given by

1l fa=0andb=0
c1><z>= oo ifa#0andb=0
& ifp 40

is the monoid of non-zero integers Z*. Consequently, the monoid of extended
rational numbers Q> is isomorphic to the quotient monoid V/Z*. In the light of
this, we shall consider vectors to be equivalent, denoted by =, up to scaling. For
convenience, we will drop ® whenever it is clear to do so and an extended real

number will be pictured abstractly by ﬁ . Let us define the set of unsigned

vectors V' by
VH={VeV|®((V)el0,|}.

and let ‘< Z >‘ - < ’,Z” > Note that if V € V+ then V = |V|. Let the sign

function 0 : V— {—1,0,1} be defined by

(-1 ifa<Qand b<0
0 fa<Oandb>0
—1 fa=0and b<0

a<“>= 0 ifa=0andb=0 (3.1)
Ha=0and b>0
Ha>0and b<0
ifa>0andb>0.

[e R

Note that
V+:{V€V]J(V) #0}.

Therefore, the set of unsigned vectors can be identified by the set

vovv{()

8.3. MATRICES AND MOBIUS TRANSFORMATIONS 103

8.3 Matrices and Mobius Transformations

A Mobius transformation is considered to be a linear fractional transformation

axr + ¢
X
br +d

on the extended complex plane C>* with a,b,c,d € C. A Mobius transformation

with
a ¢
det<b d>:0

will be referred to as a singular Mobius transformation. The set of non-singular
Moébius transformations with coeflicients taken from the restricted field F C C
together with function composition forms a group, which we shall denote by M (F).
In particular, if we consider the group M (Q) and utilize the scaling invariance
of Mobius transformation, we can restrict the coefficients to the set of integers
Z. Note that the singular Mobius transformations are not included in the group
M (Q). However, the set of all M&bius transformations with integer coeflicients
does form a monoid.

Tet O < Z ccl denote the Mobius transformation
axr + ¢
8.2
T et d (82)

on the extended real numbers R*> formed by the four integers a, b, ¢ and d arranged
a c
b d

matrices. So, this definition includes some strange mappings, such as
1 -1 1 it #l
‘I’<1 —1><$>_{ L oifr=1
00 B |0 ifx#oo
lI1<0 1>($)_0X$_{ 1 ifr=o00

‘I’<8 8>(a¢):J_.

The composition of Mébius transformations ¥ (M) and ¥ (V) is equivalent to the

conveniently in the matrix M = This definition includes singular

and

and

product of matrices M and N

(M) (¥ (N)(z)) = (M eN)(x).

104 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

Therefore, ¥ : Ml — R* — R™ is a morphism from the monoid of matrices with
integer coefficients M to Mobius transformations and the kernel of ¥ is the monoid
of non-zero integers Z*. Consequently, the monoid of Mobius transformations is
isomorphic to the quotient monoid M/Z*. In the light of this, we shall consider
matrices to be equivalent, denoted by =, up to scaling. Let

]:<(1) (1)> (8.3)

denote the identity matrix and define the tame inverse of a matrix by

(o) -(5) o0

det (M) 0
0 det (M) >

and note that
I

M e M= <
provided that
det (M) # 0.
The function apply given by
apply : @ (V) x ¢ (M) — (V)
(@, f) — [J(=)

is an action of the monoid of Mé&bius transformations on the extended real numbers
because

U(M)(D(V)=D(MeV).

For convenience, we will drop ¥ whenever it is clear to do so and a Mébius transfor-

mation will be pictured abstractly by . Define the set of unsigned matrices

M* by
M ={M e M|Vz € [0,00] - ¥ (M) (z) € [0, 00] }

a c\|_(la |
<b d>‘_<]bl ’d’>.Notethat

MY = {MeMVYVeV'-®(MeV)e 0,00}
= {M eM|o(Mo) =0 (M) #0}

and let

8.4. THE THEORY OF MOBIUS TRANSFORMATIONS 105

and if M € M* then M = |M]|. Therefore, the set of unsigned matrices can be

identified by the set
4 . a c¢ a c 0
M M _{<b d> a,b,c,dEN/\,<d>7é<0>}.

8.4 The Theory of Mobius Transformations

In this section, we explore the relevant theoretical properties [20] of non-singular
Mbobius transformations with integer coefficients.

8.4.1 Special Base Interval

It is convenient to broaden the investigation to the group of Mébius transforma-
tions M (Q). One basic property of the group of Mébius transformations M (Q)
is that it is 3-transitive. This means that for any pair of distinct triples (4, z9, 3)
and (y1,y2,ys) with x;,y; € Q™ for all i € {1,2,3}, there exists a unique Mobius
transformation M € M (Q) with M (x;) = y; for all i € {1,2,3}. An immediate
consequence is the following property.

Proposition 31 If [p,q| and [r, s] are two non-trivial closed intervals on the ex-
tended real line then there exists a Mdbius transformation M with M (|p,q]) =
[, s].

It follows that if we fix a base interval, then we can express, or encode, all
other non-trivial closed intervals as the image of this base interval under a Mobius
transformation. The most efficient base interval is |0,00] as no computation is

needed to determine the Mobius transformation in the proposition. The Mobius
T+ S sx+r both
o

and x —
x + x 4+

map [0, 00| to [r, s|, the first reverses the orientation whilst the second preserves
it. The closed interval [0, co] will be called the special base interval.

A Mébius transformation M refines an interval [p,q| if M (|p,q]) € [p,q].
Clearly, the identity transformation refines any interval. We say a subset S C M
refines [p, q| if each elements of S refines |p, q]. It follows that there is a largest
submonoid of M, which refines a given interval. It is easy to see that M is the
largest refining submonoid of the special base interval [0, o] and more generally
that NM*NT is the largest refining submonoid of N [0, co].

transformation is simply written down. Indeed x +—

106 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

8.4.2 Classifications

The group of non-singular Mobius transformations M (R) can be classified ac-
cording to their conjugacy classes and their geometric dynamics on the ex-
tended real line. Alternatively, we can look at the group GL (2,R) because
M (R) =2 GL(2,R) /R*. The problem of finding canonical representatives of con-
jugacy classes of GL (2,R) is that of finding for a given matrix M a conjugate
matrix NTMN of pleasantly simple form. It is natural to start the search by look-
ing for subgroups of GL (2,R) fixed by M. This is the same as finding non-zero
vectors V' with real coefficients such that A ¢ V' = AV. It follows that

det (M — AI) = 0.

So, if
a c
=i)
and
trace (M) =a+d
then

det (M — M\) = A* — trace (M) A\ + det (M)

The polynomial
x (A, M) = * — trace (M) A + det (M) (8.5)

is known as the characteristic polynomial of M, and its zeroes are the eigenvalues
of M. An interesting property, which is a consequence of Cayley’s Theorem [50],
is that

x (M, M) =0.
Let us define invariance (M) € R by

trace (M)”
invariance (M) = 7rjcte((M)) :
e

The roots of the characteristic polynomial x (A, M) are

%trace (M) £ %\/<trace (M)2 — 4det (M)>

with three distinct cases [50, chapter 12]:

8.4. THE THEORY OF MOBIUS TRANSFORMATIONS 107

1. Two real roots :
invariance (M) > 4

The roots A, p are necessarily non-zero because det (M) # 0.
X (M) = (=) (t—p)

Without loss of generality, we can assume that || > |u|. Therefore, a
canonical representative is

A

0 p

because x (A, N) =0 and x (A, N) = 0.

2. One real root :
invariance (M) = 4

The root A is necessarily non-zero because det (M) # 0.
We know that (M —)\)2 = 0. This reveals two possibilities.

(a) M — Al = 0. Therefore, a canonical representative is

- (32)

because N — Al =0 and x (A, N) = 0.
(b) M — Al # 0. Therefore, a canonical representative is

A
(0 3)
because N — Al # 0 and x (A, N) = 0.

3. No real roots :
invariance (M) < 4
The roots are a complex conjugate pair (pe’®, pe **) where p > 0 and o €

(0, 7).

x (6, M) = (L — pe®) (t — pe ™) = * — 2tpcos () + p*

108 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

A canonical representative is

N = pR.,
. < cos(a) sin(a) >

—sin (a) cos (@)
because x (pe™™ N) = 0.

In terms of classifications, it can be shown [50, exercise 17.5] that the canon-
ical representatives of the conjugacy classes of the group of non-singular M&bius
transformations with real coefficients are

e Improper Hyperbolic : x — ax for a < —1.

xcos (a) + sin ()

Elliptic : . fi 0,].
o iptic : = — ~sin () + cos (@) or o € (0, 7]
e Parabolic: z+— z + 1.
e Identity : x — z.

e Proper Hyperbolic : z — ax for a > 1.

Note that hyperbolic corresponds to a dilation or contraction, elliptic corre-
sponds to a rotation and parabolic corresponds to a translation. It can be shown

[50, exercise 17.6] that invariance (M) = invariance (V) # 4 if and only if M and

N are conjugate. In particular, it can be shown [50, exercise 17.7] that

if invariance (M) < 0 then M is improper hyperbolic,

if invariance (M) € [0,4) then M is elliptic,

if invariance (M) = 4 then M is either parabolic or the identity,

if invariance (M) > 4 then M is proper hyperbolic.

Incidently, the term lozodromic is reserved for maps M € M (C) in which
the invariance invariance (M) is complex. So, which conjugacy class does negation

belong? Well, note that
: : -1 0\ 0
invariance { = | =0.

Therefore, negation is elliptic. But
invariance (R,) = 4cos” ().

Therefore, negation belongs to the conjugacy class with the canonical representa-

tive)
0 1

8.4. THE THEORY OF MOBIUS TRANSFORMATIONS 109

8.4.3 Elliptic Maps

The elliptic maps are conjugate to rotations. Therefore, subsets of the elliptic
maps provide ideal sign sets for incremental digit representations because they
would provide an elegant way to cover the extended real line using the special base
interval. Therefore, it would be interesting to consider the Mobius transformations
that form cyclic groups.

Proposition 32 For any finite order Mdobius transformation ¥ (M) in M (Q),
the order is given by

1 ifinvariance (M) =4
2 ifinvariance (M) =0
order (M) =< 3 ifinvariance (M) =1
4 if invariance (M) = 2
6 if invariance (M) = 3

Proof : The group of Msbius transformations M (Q) is isomorphic to
GL(2,Q)/Q*. Let U (M) be an element of finite order in M (Q). In other words,

M" =1.

Therefore
M" = pl

for some p € Q*. The eigenvalues of M satisty

x(A M) =0
AT = .

with x (A, M) as defined in equation (8.5). Let us change variable according to

A = wexp <ﬂ> .
n

Therefore
(=D)"w" = p
trace (M) = 2wcos (ﬂ)
n
det (M) = w?

invariance (M) = 4cos’ (—)

110 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

But

2 1
cos? (1) = cos(2r) + 1
2
and
invariance (M) € Q.
Therefore
2
cos <£> e
n
and so
ne{1,2,3,4,6).
Also

order (M) =n if ged (r,n) =1

and so the result follows immediately. B
So, all finite order Mobius transformations are either elliptic or the identity.

For example,
order < (1) (1) > = 1
order < i :; > = 2
order < _01 1 > = 3
order < _11 1 > = 4
order < 1 _21 > = 6.

The example of order 4 is particularly interesting because it represents rotation

by %

1 1 1+x

S = <_1 1>—aﬁl—>1_$
0 1 1

S = <_1 0>—a:|—>—;:SOOOSOO
1 -1 r—1

S0 = <1 1 > Tl s e ® P ® S
10

S, = 0 1 =rx—x=5,05,05,05,

8.4. THE THEORY OF MOBIUS TRANSFORMATIONS 111

and the Mobius transformations generated represent overlapping intervals that
cover the extended real line

SOO ([07 OO]) = [17 _1]

S ([0,00]) = [0070] S+ ([0,00]) = [0,00]

SO ([07 OO]) = [_17 1] :

The example of order 3 gives rise to

“e (o)

Sl = < 1>:$|—>$—1—Sh.sh

Sy = <0 1> =1 = S, 0S5, e 5,

which when applied to the special base interval [0, 00| represent 3 overlapping
intervals that cover the extended real line

Sh([0,00]) = [170]
Si([0,00]) = [o0,1]
S+([0,00] - [700

The example of order 2 gives rise to

2 -1 20 —1
10 _
Sy = <0 1>:a:|—>a::SOS,

which when applied to the special base interval [0, 00| represent 2 overlapping
intervals that cover the extended real line

S« ([0,00]) = [2,5]
S1(0,00)) = [0,00].

112 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

8.4.4 Hyperbolic Maps

The hyperbolic maps are conjugate to contracting linear (affine) maps. Therefore,
they should form ideal candidates for the digit set in an incremental digit repre-
sentation because they would provide a way to shrink intervals on the extended
real line to a limit. Linear maps play an important role in the redundant posi-
tional representation as defined in section 7.2. For the redundant radix b positional
representation the digit set is Z (b) and the digit map is

d|—>a:|—>d_|b_x:dl—><(1) z>

Note that

d 1
0 b>—2+b+g

and therefore this digit map is hyperbolic if b # +1. In fact, it is proper hyperbolic
if b is positive and improper hyperbolic if b is negative. The redundant positional

invariance <

representation operates with the base interval

Therefore, the conjugate Mobius transformation given by

b+1+d b—1+d 1 d
by ot
Dd_<b—1—d b+1—d>—50°<0 b>.S°

forms the basis of the digit map d — ?D, operating on the special base interval
[0, 0c]. This can be seen more clearly in the following commuting diagram [62, 20]

(05

S() SO

0, o] T» 10, 00].

8.5 Tensors and Mobius Transformations

In order to compute the basic arithmetic operations on redundant continued frac-
tions, Gosper [28] and Vuillemin [71] used 2-dimensional Mébius transformations.

8.5. TENSORS AND MOBIUS TRANSFORMATIONS 113

A 2-dimensional Mébius transformation Y (T) is a linear fractional transformation
on the extended real numbers

ary +cxr+ey+yg
bxy +dx+ fy+h

(2,y) — (8.6)

parameterized by the eight integers a, b, ¢, d, e, f, g and h arranged conveniently

in the tensor T' = Z ccl jf Z . The basic arithmetic operations are given by
Ty (z,y) = <8 (1, (1, ?)(fﬂ,y)zaﬁw (8.7)
T (w,y) = <8 (1, _01 ?)(fﬂ,y)zaﬁ—y (8.8)
T (z,y) = <388?>($,y)=mxy (8.9)
e = (o1 o) ma=ot (3.10)

However, the definition of a 2-dimensional Mobius transformation includes some
strange functions such as

0100 =z ify#oo
$H<o 0 0 1><a”y>_{xHL if y = oo

and

It can be shown that

T(r)(M(z),y) = T(Te M) (x,y)
T(T)(x,M(y)) = T(T e M)(z,y)
T (Vy) = ¥ (TeV)(y)
T(T)(x,V) = U (TeV)(x)
M(T(T)(z,y)) = T(MeT)(x,y)
We shall consider tensors to be equivalent, denoted by =, up to scaling. For

convenience, we will drop T whenever it is clear to do so and a 2-dimensional

Mobius transformation will be pictured abstractly by . Define the set of

114 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

unsigned tensors T by

P ={T € T|Va,y € [0,00] - YT (T) (2,y) € [0,00] }

a ¢ e g la| || el !9!)
= . Note that
<b d f h> <!b! d| |f] |h|

T" = {TeT|VWV,W eV -®(Te;VeW)e|[0,00]}
{T"e T|o (Too) = 0 (Tor) = 0 (Tho) = o (T11) # 0}

and if 7 € T* then T = |T|. Therefore, the set of unsigned tensors can be
identified by the set

0 e g a,b,c.d,e, f,g,h € NA
b d f h

()G () (0) 2 (0)

and let

THNT =

8.6 Information

The extended rational numbers, Mobius transformations and 2-dimensional
Mbobius transformation will be collectively referred to as linear fractional transfor-
mations. So, let

L = VUMUT
L* = VVuUM*UT"
L = vtuMtuT®,
Definition 33 The information contained in a linear fractional transformation is

info : L — I°[Q™]

_ B R> ifV=_L1

info (V) = { {V'} otherwise

| (R if 3w € [0,00] - M () = L
info (M) = { M ([0, 00]) otherwise

: B R> if dz,y € [0,00] - T (x,y) = L
info (1) = {T([O,oo],[o,oo]) otherwyise, ’

Proposition 34

V e Vb if VM € M . info(M) C info(MeV)
V e Vb ff vI' € T info () C info(T e V)
V e Vb ff vI' € T info () C info(T e, V)
M e MY iff YN € M - info(N) C info(NeM)
M e MVt iff VI' € T info(T") LT info (7 e; M)
M e MVt iff VI' € T info(T") LT info (7 ey M)
T € Tt 4ff VM € M - info(M) C info(MeT)

8.6. INFORMATION 115

Figure 8.1: The surface plot of a typical tensor T (z,y) over x and y.

Proof: We only really need to show that

V eVhiff VM € M- info (M) Cinfo(MeV).

“=”. Assume V € VT. By definition, V' € [0,00]. Consider M € M. Let
info(M) = R*®. Then R> C info(M e V). Therefore info(M) C info(M e V).
Let info(M) = M (|0, 00]). But M ([0,00]) & M ({V}). Therefore info(M) C
info (M eV). “<”. Assume info (M) C info(M e V) for all M € M. Choose

M = (1) (1) . But info (M) = [0,00] and info (M V) = info (V). Therefore

[0,00] C info (V). So info(V) # R>*. Therefore V € [0,00]. In other words,
Vevt. &

As a result of this proposition, a linear fractional transformation is said to
satisfy the refinement property if it is a member of L*. A 2-dimensional Mobius
transformation is orientation preserving or reversing in each argument separately,
with respect to the one-point compactification of the real numbers, as illustrated

116 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

in figure 8.1. Therefore

info =

d h

info<b d>U|nfo<d h>U|nfo<h f>Uinfo<jf Z>

Deriving an elegant and efficient algorithm for the information function info is
surprising difficult. Consider the relations =< and < on vectors V given by

V=W if Ir<0-V=rW
VW if det(V,W) <0

and let

bottom (Vo, Vi,..., V1) = {true if 3i,j € N(n)-V; <V,

false otherwise
max (Vo, Vi,...,Vo1) = V(pi-VjEN(n) -V, 2V

where pi indicates the minimum 7 and

if bottom (X') = true
interval (X) = { [min (X)), max (X)] if bottom (X) = false
list (V) = (V)
list (M) = (Mo, My)
list (1) = (1o, To1, Tro, Th1) -

Proposition 35
info = interval o list

Proof:
FOR VECTORS:

8.6. INFORMATION 117

. R* V=1

info (V) = { {V} otherwise
(R LV =V
N [min (list (V) , max (list (V)))] otherwise

= interval (list (V))

FOR MATRICES:
Assume

AV evinv .- M(V)=1

a

Therefore, there exists < b

> € VI NV* (note that a,b > 0) such that

CLM()—I—le =1

or equivalently

My =1 Ha=0and b>0
aMo+bMy=1 ifa>0andb>0
My =1 fa>0and b=0.
Therefore
Assume
VW evinv . M(V)#£ L
{M(V)[VveVv'} = {aM0+bM1 < Z > eV*}
[min (list (M)) , max (list (M))]
: R> Havevt.-M(V)=_1
info (M) { {M V)|V e Vt} otherwise
B R> if 3i,j e N(2) - M; < M;
N [min (list (M)) , max (list (M))] otherwise

= interval (Mo, M)

FOR TENSORS:
Assume

WV, W eV NV T (VW) =L

118 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

C

Therefore, there exists < Z > , < d

that

> € Vt NV* (note that a,b,c,d > 0) such

acloy + bclor + adlo +bd11 = L

or equivalently

(T =1 fa=0Ab>0Ac=0Ad >0
alip+b0l =L fa>0Ab>0ANc=0Ad >0
Tio=_L1 fa>0Ab=0Ac=0Ad >0
oy +dly =L fa=0Ab>0Ac>0Ad >0
acloo +bclor +adlg+bdlii =1L a>0A0>0Ac>0Ad >0
oo +dl =L fa>0Ab=0Ac>0Ad >0
Toy = L fa=0Ab>0Ac>0Ad=0
alpy + bl = L fa>0Ab>0Ac>0Ad=0

\T()O:J_ fa>0Ab=0Ac>0Ad=0.

Therefore

if Hi,j,k‘,l € N(Q) . Tij = Tkl-

Assume
YV, W e VY AVE T (VW) £ L
{T(V,W)|[V,W eV}

= {aCToo + bcTyr + adTio + bdT1; < Z > , < ccl > € V+}

= [min (list (7)) , max (list (7"))]
info (T) R> HIv.wevt. (VW)= 1
e {T(V,IW)|[V,W € Vt} otherwise

N [min (list (T")) , max (list (T'))] otherwise

= interval (list (7)) W

The information contained in a vector and a matrix can be written more ex-

R* ifa=0andb=0
. a
info = a .
< b > {E} otherwise

plicitly as

8.6. INFORMATION 119

and

;

v(p,q,r,s) ifﬂp,q,r,seZ-<Z 2>:<7"P 3P>

rq sq
: a c a c) a c
|nfo<b d>: [E’E} 1fdet<b d><0

c a . a ¢
\ b’g} 1fdet<b d>>0
respectively where
R>* ifrs<0
vp,q,r,s) = {E} if rs > 0.
q

The head of a tensor T' that contains some information (i.e. info (T') # R*>) is
given by
T = (max (list (') , min (list (T))) .

Note that

info (T') # R* = bottom (list (7)) = false
= bottom (max (list (7)) , min (list (T"))) = false.

Therefore

info (17**") = info (H, L)
= interval (H, L)
[min (H, L) ,max (H, L)]
7. 1]
info (T°)
where L. = min (list (7))
and H = max (list(7)).

In other words, the head of a tensor is a matrix that incorporates the same in-
formation as the tensor provided that the tensor contains some information. The
tail of a tensor T" that contains some information is given by

Ttail — <Thead>T = T+‘

As mentioned earlier, Mobius transformations are usually considered over the
entire extended complex plane rather than just the extended real line. Interest-
ingly, Mobius transformations are conformal over the extended complex plane.

120 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

NN

NI

—

X
N
AN

S—_——

s>~

S—

T
5T
—]
7~
N
S

X
N
AN

S\

R
/7

_—

=
]

-
L7

Figure 8.2: The information T (|0, o0], [0, 00]) € C> in a tensor T with Gaussian
integer coefficients Q (v—l) is constructed using circular arcs on the extended

complex plane C™.

In other words, circles are mapped to circles and lines are interpreted as circles
of infinite radius. Complex numbers can be represented by considering vectors,
matrices and tensors with Gaussian integer coefficients Q <\/—_1> In this way,
the information {V} C C*> in a vector V is a point on the extended complex
plane C>, the information M ([0,00]) C C™ in a matrix M is a circular arc on
the extended complex plane C> and the information 7' (|0, oo] , [0, 00]) € C> in a
tensor 7' is an interval (i.e. connected subspace) of the extended complex plane
C* constructed using circular arcs as illustrated in figure 8.2. The main problem
with this extension of Mobius transformations is in finding a good algorithm for a
bounding box. However, should this difficulty be overcome, there is no reason why
the contents of this thesis should not be extended to exact complex arithmetic in

a non-trivial manner.

8.7. QUADRATIC FRACTIONAL TRANSFORMATIONS 121

8.7 Quadratic Fractional Transformations

Gosper [28] and Vuillemin [71] examined quadratic fractional transformations of

the form
ax? +cxr+e

jEHbaE?—l—dal:—l—f’

(b)

Unfortunately, the composition of quadratic fractional transformations and linear
fractional transformations is not particularly elegant. For instance

ace (9 T\

b d f h j)
ag? + cgh +eh®> (2ai +cj)g+ (ci+2ej)h ai® + cij + ej?
bg? +dgh + Rt (2bi+dj) g+ (di +2f§) h bi2 +dij + f52)"

Another problem is that the formula for the information in a quadratic frac-
tional transformation, defined by

: a c e a c e
Inf0<b d f>_<b d f>([0700]),
involves square roots. However, note that
o &€ € o 20 ¢ ¢ 2e
b d f 26 d d 2f

b d f
and indeed in practice
info~<ace>:interva|<<a> <C> <e>>
“\b d f b)'\d)\ f

provides a good approximation for the information in a quadratic fractional trans-
formation. Practical implementations reveal that quadratic fractional transforma-
tions have considerable merit for computing 2? and transcendental functions.

which we will denote by

V)

122 CHAPTER 8 LINEAR FRACTIONAL TRANSFORMATIONS

Chapter 9

General Normal Products

In section 8.4, it was concluded that the special base interval [0, 00| is extremely
desirable because evaluating its application to Mébius transformations is compu-
tationally trivial. This fact together with proposition 34 leads naturally to the
definition of the general normal product [59).

Definition 36 The unsigned general normal product representation on
|0, 00| is the unsigned incremental digit representation

(@>N[0,00],[0,00] ,M", &, V",).

Definition 37 The signed general normal product representation on |0, oo
18 the signed incremental digit representation

Q>, [0, 00] ,M, ¥, M+, T V").
[0, 00]

A general normal product represents an extended real number x if the least
upper bound of the induced chain is the singleton set {z}. Note that vectors and
matrices with pairs of zeros are disallowed. This avoids any awkward complica-

tions. For instance,
: 10
|nfo<1 2> = [0,1]

w((2)(18) - =
o} 2) (3 2)+(41)

123

and so

124 CHAPTER 9. GENERAL NORMAL PRODUCTS

{0}

{-1} {1}

extended
real numbers
on the rim

boundary

Figure 9.1: A chain representing the extended real number z on the continuous
real domain C (R>) induced by a general normal product.

For example, the natural number e = 2.71828.. can be expressed by the
general normal product

~()GR) GG e

The derivation for this general normal product can be found in section 10.2.3. This
general normal product is interpreted by the following sequence of closed nested
intervals:

info<f é) — [2,09]

(2)41 -
mol()e(53)(57)) = e
(2)-(22)+(25)(33) - e

A general normal product of the form

125

corresponds to the continued fraction [(a,.b,),~,]. In fact, any general normal
product consisting of non-singular matrices can be converted into a continued
fraction of this form by using the identity

. < §> ifd=20
<b d>: < a—o%c>.<§ g) if d £ 0

For example, the natural number given in equation (9.1) can be converted into
the continued fraction

—oe

—ale

(2 N(B b (B 2\ (3 N (54
1 0 1 0 1 0 1 0 1 0
1
= 24 -
3 2
2 2
5_ 4
4 4

5+ —

This means that Pringsheim’s [65] test for convergence of continued fractions as
expressed in equation (5.7) can be generalized to general normal products.

Proposition 38 Given a sequence of non-singular matrices
(i),
bn dn n=0
with d,, # 0 for all n € N then the divergence of the series
¢ dnfl 1 <an Cn >
+ — det
(e) (i s

s a necessary and sufficient condition for the convergence of the general normal

product
10—0[an Cp
b, d, |’

n=0

126 CHAPTER 9. GENERAIL NORMAL PRODUCTS

Proof:

Cn bn Cn

where g, = —,ﬂQn = an — —d y Qo1 = bn7ﬂ2n+1 =dy
n

o

- ﬂnflﬂn _ ¢ ﬂanlﬂQn ﬂQnﬂ2n+1

n Qon41

- dn—1 1 < an Cn >
= + — det [|
nz; (Cp, Vbn) \/ bn dn

Deriving a general normal product from a continued fraction is made difficult
by the requirement for positive matrices MI*. In particular, the product of matrices

(e)

n=0

corresponding to the continued fraction [{a,.b,)] is only a general normal prod-
uct if

Qo
bo
Vn € N-a,
Vn e N-b,1

M M M M
Z Z N N

—{0}.

Otherwise, a sequence of matrices M,, € M for all n € N must be found satisfying

Mo < Clln+1 8n+1 > o M, €M

for all n € N. Therefore

{anbn)2 o] = << 61“) 80 > o M0> ﬁ <Mn1 . < 61‘"“ 8"“ > o n+1> ,

The definition of a general normal product precludes the use of the vector

0 . a 0 0 ¢ . .o
< 0 > and any matrix of the form < b0 > or < 0 d > In practice, this is

9.1. UNBIASED EXACT FLOATING POINT 127

awkward to enforce. So, we could alternatively allow these vectors and matrices
and transfer the problem to the reduction rules rather than the representation.
For instance, assimilation could be prescribed by the reduction rules

M{V*t} — (MeV™)
M{N*{E}} — (MeN"){E}

where M € M, V' € V' and Nt € M*. In other words, the vector 8 and

a 0 0 ¢
b o) \od
This is the approach taken in the theoretical languages of chapter 13 because

any matrix of the form must not be absorbed directly.

the programmer cannot be syntactically prevented from using such vectors and
matrices.

9.1 Unbiased Exact Floating Point

General normal products can be used to elegantly represent algorithms derived
from the theory of continued fractions [59]. However, as a general tool for repre-
senting extended real numbers it is extremely difficult to control the size of the
integers and the flow of information. Of course, the redundant positional represen-
tation does not suffer from these drawbacks. In section 8.4, it was suggested that
the conjugate of the digit map of the redundant positional representation would
be a suitable choice for an incremental digit representation with the special base
interval [0, 0c]. In other words, the digit map d — °Dy where

b+1+d b—1+d
b —
Dd_<b—1—d b+1—d>' (9:2)

For radix 2, this gives rise to the three digit matrices [41, 51, 62, 20]

n-(1})
m=(19) ¢ o o (i)

For convenience, Dy will be used to denote 2D,. For radix ¢ = % (i.e. the

)

golden ratio), this gives rise to the two digit matrices

10
(1) 4

¢
0

— S =

A ‘”%Z(

G\HA

128 CHAPTER 9. GENERAIL NORMAL PRODUCTS

The golden ratio provides an interesting radix because the rules for addition and
subtraction using the positional representation for the real numbers is extremely
elegant as testified by Di Gianantonio [12]. If hardware assistance was provided at
bit level for this radix then it would provide an extremely competitive alternative
toradix 2. Alternatively, each coefficient could be stored as a pair of integers (a, b)
representing a¢ + b with

(@) +(d) = (atebrd)
a,b) X (¢,d) = (ac+ ad+ be,ac+ bd)

and

For example

2) % (3,4)

(0+2)xBe+4) = (1,
(Ix3+1x44+2x3,1x34+2x4)
(
1

13,11)
3¢+ 11

and
(1,0) (0,0) \ ,((1,0) (0,0)\ _ [(1,1) (0,0)
(0,1) (1,1) 0,1) (1,1) (2,1) 32)
The base ¢ corresponds to the group of Mébius transformations M (Q (\/5_)>> with
coeflicients taken from the quadratic field Q (\/5) for /5.
If we define
b [D" FCc+1 D H+c—1
©0_<bn—c—1 " —c+1 (9:3)

then it follows from the basic properties of the redundant positional representation
that

°Dy4,"Dg, ..." Dy, ="D" (9.4)

where

c= zn: d;b" e
=1

9.1. UNBIASED EXACT FLOATING POINT 129

For convenience, D7 will be used to denote ?D7. The implication of this identity
is that any sequence of n radix 2 digit matrices can be compressed into n + 1 bits
of memory. For example, the two’s complement representation of ¢. Note that

c € Z(b")
"Dre’D; = "Dyt

Beware, however, that the original sequence of digits cannot usually be recovered.

Definition 39 The unsigned radixz b € N exact floating point representa-
tion on [0, 00| is the restricted incremental digit representation

<[07 OO] JbDZ(b)u \II7V+7 @) .

This representation is called floating point because a sequence of digits can be
divided into two parts in a fashion reminiscent of an exponent and a mantissa.
An infinite sequence of *D,_; digits represents co. Any other infinite sequence of
digits can be identified as a finite sequence of n *D, ; digits (exponent) followed
by an infinite sequence of digits not starting with a *D, ; digit (mantissa). In
particular, the mantissa part represents a real number in

lJ info("Da) = 0,26 1],
deZ(v)—{b—1}
while the exponent part maps this number into the interval

"Dy 4 (10,26 —1]) = [b" — 1,20"" —1].

The following proposition is useful for deciding how many more digits are required
when the exponent plus two digits of an exact floating point number is known and
a certain absolute tolerance is required.

Proposition 40 For anye e N, a« € {—1,0}, B € {—1,0,1} and v € Z, if
n=2+1-v+{1+a)1+75)

then
2771 < width (info (D e D, ® Dy e D7) < 2711

for all c € Z (2").

Proof: Note that

4 x 2¢tm

width (info (D] @ D)) = m

130 CHAPTER 9. GENERAIL NORMAL PRODUCTS

So, by considering end points
width (info (Df oD oD
width (info (Df oD oD

width (info (Df eDoeD oD
width (info (Df eDyeD ;oD
width (info (Df eDoeD ;oD

D§0D00D0°®?/

width (info DS e Dy e DyeD"

N N e s N e S N e S
N N e s N e S N e S

(
(
width (info (Di o DyeDjeD
(
(

zefn’fl
Qefn’+1
width (info (Df oD eDe @"))
2efn’72

!

ge—n
Qefn’fl
Qefn’+1

width (info (Df eDieD o @n))

!

width (info (D5 e Dy e Dy e D' o
width (info DfoDO.Dl.@?’ ge—n'+2
e Case o = —1.
n=2+1-—7
n —=—7v
e Case o =0 and 7 =—1.
n=2+1-—v
n/:e—fy—l
e Case a =0 and §=0.
n=2+2—7y
n —=e—7v
e Casea=0and g=1.
n=2+3—7y

n=e+1-—~71

There are no “natural” constants in physics, goes the maxim, except zero, one
and infinity. Therefore, the most natural choice for redundantly dividing up the

9.2. BIASED EXACT FLOATING POINT 131

one-point compactification of the real numbers is the four intervals [0, oo, [1, —1],
[00,0] and [—1,1]. These intervals can be represented by the four sign matrices

== (1)
=17 (o)
s=(171)

which conveniently form a cyclic group of order 4 [62, 20, 50].

Definition 41 The signed radixz b € N exact floating point representation
on R> be the unrestricted incremental digit representation

(10, 0], Sg,00,—01, ¥, " Dyry, ¥,V D) .

Other sign matrices might be considered as discussed in section 8.4, but in this
thesis we will concentrate on S{4 ,— 03

9.2 Biased Exact Floating Point

For biased exact floating point, matrices are chosen such that addition and sub-
traction are particularly efficient. The simple automaton illustrated in figure 9.2

where n € Z (b7) — Z (2), d € Z (b) and

11
= (4)

b —b
()
_ b+l b1
o= <b—1 b+1>

T, = < n n—2>
n-+ 2 n

Qn = b’yDn

132 CHAPTER 9. GENERAIL NORMAL PRODUCTS

corresponds to the fully incremental y-normalized exact radix b floating point
representation as defined in section 7.4 and illustrated in figure 7.3. Recall that v

is typically 1 except when b = 2 in which case it is typically 2. Observe that

info (SR®) =

info (SR°T,,) =

info (PR®) =

info (PRQ),) =

for exponent e € N as required.

: be b
|nfo< b b >

[1,—1] x v*!
: (n+1)b6° (n—1)b°
|nfo< b b >

n—1,n+1 xb!

. b —b

|nfo< b b >
[—1,1] x b ¢t?

» n+l n-—1
Info bvflJre b’771+e
n—1,n+1] xb et

Recall figure 7.4 which illustrates the general

properties of this representation for v = 2 and b = 2.

9.2. BIASED EXACT FLOATING POINT 133

Figure 9.2: The automaton for biased radix b exact floating point.

134 CHAPTER 9. GENERAIL NORMAL PRODUCTS

Chapter 10

Expression Trees

In this chapter, we define the notion of an expression tree and use it to represent
real numbers and real functions.

Definition 42 An unsigned expression tree is a binary tree. Fach node may
be either

e a tensor T € T with 2 children or
e a matriz M € M™T with 1 child or
e a vector V € V1 with no children.
Definition 43 A signed expression tree is a tree consisting of either
o alensor’l' € T connected to two unsigned expressions trees or
o a matrix M € M connected to one unsigned expressions tree or
o q vector V €V with no children.

Let E and E' denote the set of signed and unsigned expression trees respec-
tively. An expression tree (e.g. as shown in figure 10.1) induces a directed set
in the continuous real domain C(R>) (e.g. as illustrated in figure 10.2). Fach
element of the directed set corresponds to a particular cut through the expression
tree. This element is then the interval derived by plugging each exposed argument
with the special base interval [0, co].

An expression tree represents an extended real number x if the least upper
bound of the induced directed set is the singleton set {z}. The expression tree
F € E consisting of a root node L € L connected to expression trees F; . vy € E*
with N € {0,1,2} will be denoted by L{Fi,..., Ex}. Note that the general
normal product representation and exact floating point representation are just
special expression trees.

135

136 CHAPTER 10. EXPRESSION TREES

root node
exposed
leaf arguments
node S S
IS e
cut ,/// : /
,,,,,,,,,,,, ,+:f \\4#””””””

Figure 10.1: A typical expression tree

{00}

{-1} {1}

bdundary

Figure 10.2: A directed set representing the extended real number x on the con-
tinuous real domain (]IC (R>), Q) induced by an expression tree.

10.1. BASIC ARITHMETIC OPERATIONS 137

10.1 Basic Arithmetic Operations

10.1.1 Matrix Application

The (square bracket) application of a matrix M € M to a signed expression tree
L{Fy,...,Ex} € E can be reduced to the signed expression tree with the root
node M e I connected to the same unsigned expression trees Fyi . a

MI[L{Ey,... . En}]=(Me L){E,... En}. (10.1)

10.1.2 Reciprocal and Negation

Reciprocation rec and negation neg are achieved by matrix square bracket appli-

rec () — <(1) (1)>[E]
es(r) = ())1EL

A purely symbolic algorithm is possible if we restrict to signed exact floating point

catlon

rec (Sy {£}) = Sy {rec(£)}
rec(S_ {E}) = S_{rec(£)}
rec(So{E}) = Sy {rec(E)}
rec (Seo {E}) = So{rec(E)}
rec "Dy {E}) = "D_4{rec(E)}
neg (S, {E}) = S {rec(E)}
neg (S {E}) = S, {rec(B)}
neg (So{E£}) = So{rec(F)}
neg (Sw{F}) = Sy {rec(F)}

10.1.3 Tensor Application

The (square bracket) application of a tensor 7" € T to two signed expression trees
KA{Ey,...,Ey}, L{F,...,Fy} € Ewith K,L e VUM and M, N € {0,1} can
be reduced to the signed expression tree with the root node 1" ey K o5 I connected
to the same unsigned expression trees Ly

.....

T[KA{Ey,...,Eu}y, L{F,..., Fn}]
— (T ey L) o K){Er,..., Eat, Fryoon Fy) (10.2)

138 CHAPTER 10. EXPRESSION TREES

Note that a signed expression tree with root node T' € T can be converted into a
matrix connected to an unsigned expression tree or a vector using the reduction
rules in the section 11.

10.1.4 Addition, Subtraction, Multiplication and Division

The basic arithmetic operations +, —,x and <+ are achieved by tensor square
bracket application as pointed out by Gosper [28]. The actual tensors required
are given in equations (8.7), (8.8), (8.9) and (8.10). For example, the signed
expression tree corresponding to the subtraction of the two signed exact floating

point numbers S, { Dy, {Dg, {---}}} and S, {De, {De, {---}}} is

(T ®1 55 0.5,) {Day { Dy {++-1}, Dey {De -1} } -

10.2 Elementary Functions

The Taylor series of a function f(z) can often be used to derive a number of
continued fractions with the general form

[() = a0 (2) + fo (@) (10.3)

By (z)
ap (x) + ﬂQ—@)

ag (x) +

including the Stieltjes, Jacobi and Fuler types [73, 4, 59]. Sometimes these con-
tinued fractions can be converted into an expression tree

fx) = T

(10.4)

for some Ty € T and T,, € T for all n > 1 [59]. A general procedure for this is:

10.2. ELEMENTARY FUNCTIONS

Part (i) Using the simple matrix identities

_ ﬁ d bn

N Cn G

. aX cA

= <b)\ d)\> for A #0
find

such that

n=0 n=0

No particular method was used for doing this.

- Oén(aj) ﬂn(aj) — M an + €n @+ Gn
H<1 0 >:H<bna¢—|—fn dna:—l—hn>'

139

(10.5)

(10.6)
(10.7)

(10.8)

Part (i) Find a sequence of matrices M,, € M for n > 0 and a matrix N such that

M. ' oT, e Neyh,cT"

n—

for all n > 1. In which case

J(N(y) = (Toe1 N ey My){y, E1(y)} where
En(y) = (M, eT, e N ey M) {y, Eni1(y)}

for all y € [0,00]. Note that the matrix N essentially limits the domain of

the function to info (V).

The Backward Theorem (Theorem 17) must be used to justify these transfor-
mations as illustrated later. We will use the general procedure outlined above in
the following subsections to derive algorithms for the basic set of transcendental
functions; namely square root, natural logarithm, exponential, tangent and inverse

tangent. The other transcendental functions can be derived from this basic set

using the identities:

¥ = exp(ylog(x))

140
sin (x)
cos ()

arcsin ()

arccos ()
sinh (x)
cosh ()

tanh (z)
arcsinh (z)
arccosh ()

arctanh (z)

CHAPTER 10. EXPRESSION TREES

(1001)n(E) = ()
(3000 [e(5) e (3)

t
arc an(1—a:2>

N

arctan

GitE

(o1 51>[exp<as>,exp<x>1
(611) en)
(100 1)er en)
Iog(a:—l—\/aT—l-l)

Iog(—I—\/aTl)

“log (S 1)

The complexity of the following algorithms have been favorably analyzed by Heck-

man [32, 34, 33].

10.2.1 Square Root

A simple algorithm for the square root /n of a positive integer n is recursively

given by

A= (M

) vy

This algorithm is related to Newton Raphson’s iterative method for finding a root.

In particular, for f(z) =z

Tpy1 — Ty — f an)
[(@)
—n, we have
22 4+ n

10.2. ELEMENTARY FUNCTIONS 141

Compare this with
T, N of Tn M _ a:% +n 2x,n
1 =z, 1 =z, - 2z, 1l +n
22 4n
T)
= (211377. :1:2 in) .
1 2

Incidently, this makes it clear why we choose zg = | y/n]. This formula is easily
generalized to positive rational numbers by

Jam (9 L)i

The efficiency of the algorithm is related to the determinant of the matrix simply

because

(2) - (i)

b d bd

Clearly, the ideal determinant has absolute value 1 and in which case the formula
will be directly related to a simple continued fraction. For example, consider /2

V2 = [L(2)7)

because
LY (21 (11 _(12
10 10 10) ~\11)

Let us now consider the square root of any positive real number. Let loop (T, x)
be the function represented by the expression tree in equation (10.4) with T, =T’
for all n > 0. It can be shown, for example, that

vz = loop (T,)

1 m 1 O
T_<01 m1>

where

142 CHAPTER 10. EXPRESSION TREES

for any m € N — {0}. The contractivity of a matrix M is computed by Reinhold
Heckmann [34] as

(11|

(M) = sup<‘(50.M.sg)’([—1,1])‘>
det (M)
(min (|a + 0], | +d]))?

and he showed that the efficiency of a matrix is inversely related to its contractivity
and using this he found that

(3 312)

is the best general formula for square root. The usual algorithm for converting an
expression tree into an exact floating point number can be improved dramatically
for loop (T, x) by employing a feedback mechanism.

T loop(T,x)

N

For loop (T, z) with T'€ Tt and z € [0, o0

1. Ensure z 1s an unsigned exact floating point number.

2. While Djl eT e, Dy €Tt for some d € {—1,0,1}, emit digit Dy and set T
to Djl o ey, D,

3. Absorb a digit Dy from z, set T to T" e; Dy and goto 2.

This algorithm for loop (T, z) can be improved even further if z is a rational

number. For loop (T, V) with T'€ T and V € V*:

1. Set M toT o1 V.

2. If Dil e M e D_y € MT then set d to —1 else set d to 1.

3. Emit digit Dy, set M to D}, e M @ Dy and goto 2.

10.2. ELEMENTARY FUNCTIONS 143

Recall that the tame inverse MT of a matrix M is defined in equation (8.4). In
fact, Reinhold Heckmann [31] has improved this algorithm for the square root of
a rational number even further

p
— = rollover (p,q,p—q)
q

1 >
rollover (a,b,¢) = { D_y {rollover (4a,d,c)} ifd=>0

Dy {rollover (—d,4b,c)} otherwise

where

d=2(0b—a)+ec.

10.2.2 Logarithm

The Stieltjes type continued fraction for logarithm [4] is

x n (n+1)x
log (1 = |0z, 1., (1. 1. . 10.
g(l+2) [0:1:, 2’< dn 2" dn +2 >n>1] (109

0N (LN e) (L
1 0 1 n=1 1 0 1 0
_<1 0><a: 0> <%0>< @ 0 by (10.5)

Therefore, according to part (i), the corresponding sequence of tensors is

T 010 0 . 0 n+l
"T\100 2n+1)P\ n+l 2 J°
Since T,, € T' for all n > 0, this immediately gives an expression tree for
log (z) valid for all z € [1,00|. However, we can do better. Note that for

M, = <1 -1 >andN: <1 _1>,MnlloTnolN02Mn€T+ for

Note that

[enB L

0 n+1 0 1

all n > 1. Therefore, according to part (ii), we have

11 —1

log (z) = <0 L1 _01>{a7,E1(93)}

_ n 2n+1 n+1 0

144 CHAPTER 10. EXPRESSION TREES

for all z € [0, c0]. Pictorially, we have

log(x) =

i
=
—
o

This expression tree is only efficient for x close to 1. However, the domain can

%, 2] by repeated application of the identity

easily be reduced to [
x
log (z) = log (5) + log (2).

Using the identity

1 1
arctanh (z) = §|og < + a:>

1—=x

and the cyclic properties of the sign set {5, Sw,S_,So}, inverse hyperbolic tan-
gent can be given by

arctanh (S, {E}) = %Iog (Sa {ED)
arctanh (S {E}) = %Iog (S_{E})
arctanh (S_ {E}) = %Iog (So{E})

arctanh (Sp {E}) = %Iog (S+{E}).

As an aside, note that the expression tree can be collapsed into quadratic
fractional transformations as defined in section 8.7

B, (2) = (n? 4+ n)z? + (6n® + 12n+4) z + (n* + 3n + 2)
" N (4n® +8n +4) z + (4n? 4 8n + 2)

(4n? +8n+2)2> + (4n*+8n+4)x (z)
(n? 4+ 3n+2)z? + (6n®> + 12n 4+ 4) z + (n? +n) e

10.2. ELEMENTARY FUNCTIONS 145

_ n24+n 62+12n+4 n>+3n+2
N 0 An?+8n+4 4An’?+8n+2)’

An?2 4+8n+2 4n?2+8n+4 0 I (a:)
n24+3n+2 6n2+12n+4 n?+n nt2 ’

10.2.3 Exponential

A Jacobi type continued fraction for exponential [24, 25] is

X ,172 ,172
B T R . 10.1
exp () [“ 212’< um2—4>nm] (10.10)

Note that

Therefore, according to part (i), the corresponding sequence of tensors is

1 120 .
<—11 20> itn =0
In= 01 4n+2 0
< n > ifn>1.

10 0 0

Note that S_! e T, e; Sy ey S,, € T for all n > 1. Therefore, according to part
(ii), we have

exp (So{z}) = FEo(x)
I (a:) _ 2n+2 2n+1 2n 2n + 1
n o on+1 on 2n+1 2n+2

) B)

146 CHAPTER 10. EXPRESSION TREES

for all z € [0, c0]. Pictorially, we have

exp(S(¥) = 2

,_.
S-Fo
=
o

This deals with exponential for x € [—1,1]. For = outside this range, repeatedly

apply the identity
2
exp (z) = (exp (g))

until z € [—1,1]. A general normal product for the natural number e can be

derived
. 1"—"[2n+2 2041 2 241 (1
XA\ 2041 20 2041 2042) A0
B 1"—"[2n+2 2n+1
- -+ 2n+1 2n

with a good convergence rate because the determinant of each matrix has an
absolute value of 1.

10.24 Pi

A very fast formula for 7 can be derived using Ramanujan’s formula [30, 59]

o0

12(6n)! 545140134n 4 13591409

~ 2TV EEa (s (10.11)

3=

Ramanujan’s formula can be viewed as the instantiation of the Taylor expansion
of a function f (z) = > ", ana”

/10005 1

w / <6403203>

(6n)! 5451401347 + 13591409
(n!)3(3n)! 426880

a, = (1"

10.2. ELEMENTARY FUNCTIONS 147

The general formula for the Euler type continued fraction [73] of a Taylor expansion
f(x)=>"panx" is

f(z) = [0.a0,1. — %a:, <1 + ot _ M>
a n>0

0 Ap, Ap+1
Note that
< 0 ap > QL 1"_"[1+ agﬂa: —Z"”a:
Ao n n+1
10 10) 1 0
Any1
00 1+ x 1
. 0 ag 11 a,
= <1 0><1 0>H Onih 0 by (10.5)
n=0
an
Ay,
a0 00 1+ x 1
_ 0 n—1
- < 1 1 > H _ M
n=1 Ap—1
and
an (2n — 1) (6n —5) (6n — 1) (545140134n + 13591409)
— r = .
Ap1 10939058860032000n2 (545140134n — 531548725)
Therefore

78 426880 426880 Cn, 0

b, = 10939058860032000n> (545140134n — 531548725)
¢n = (2n—1)(6n—>5)(6n —1)(545140134n + 13591409) .
We can do even better than this. For

M. o— 5451401357 + 13591410 545140133n + 13591408
" —n—1 n+1 ’

/10005 < 13591409 0 > s <bn—cn by >
H where

b, — ¢, by
Cn, 0

some rescaling, that

M. e > e M, € T for all n > 1. Therefore it can be shown, with

V10005 [/ 6795705 6795704 ﬁ@ where
— o\ 213440 213440) 1lm

0, = <en—dn—cn en—l—dn—cn>
no en+dn+cn en—dn+cn

dy, = (2n—1)(6n—-5)(6n—1)(n+1)
e, = 10939058860032000n".

148 CHAPTER 10. EXPRESSION TREES

The convergence rate for this general normal product is extremely impressive.
Each matrix corresponds to approximately 14 decimal places of information. Note

that the entries of the matrix @Q,, ® Q1 are divisible by 2 (n + 1). Therefore the
entries of the matrix Hgil (), are divisible by at least N!. However, we conjecture

that the entries of the matrix HN (), are divisible by sV
n=1'<n N1

10.2.5 Tangent
A continued fraction by Lambert [44] for tangent is

tan (z) = [o,<4”+1,—4”+3>n>0] . (10.12)

X X

Lemma 44 The terms in the backward sequence (see definition 16) of the contin-

ued fraction
0 dn+1 4n+3
3 T 3 T 50

have absolute value greater than one for all z € [—1,1].

Proof: Let e, (z) be the n'™ term in the backward sequence in question. In
general, using the definitions in the Backward Theorem (theorem 17)

bn
€nt2 = Ont2 + - =
n+1
for all n € N with
€1 = aq.
In this particular case
a; € [1, —1]
any2 € [37 _3]
b, = 1
Clearly
€ € [1, —1]
1
ey € [37_3] + [1 _1] = [27_2]

So, assuming that

10.2. ELEMENTARY FUNCTIONS 149

it follows that

€ntz € [37 _3] + [2 _2]
€n+43 2
—_—" C [£2.2]. 1
1,1 +ents 52]

So, using the Backward Theorem, it follows that

0 1Y\ 7y =21 —dnts
(LT) (7 o)

is a sound general normal product for tangent provided that we use the base in-
terval [—1, 1] instead of the usual [0, co]. In other words, we consider the following
sequence of nested intervals

(V5) -1
> (Vo) (5 y)
()3)(7)

2

But

01 i dntl 4 _dni3 g
<1 0>1_[0< 1 0>< 1 0>

_ 1 [O T 0 z

B 1_[0<aﬁ 4n—|—1><a; —4n—3> by (10.8) and (10.7)

and the corresponding sequence of tensors is

010 0 ’

1 0 0 27’L+1 1I N even
In= 01 0 0

<1 00 —2n—1> if n odd

for all n > 0. Note that 50—1 o1, e 5,8y5y€ T for all n > 1. This conveniently
brings us back to the special base interval [0, co] because

SO ([07 OO]) = [_17 1] :

150 CHAPTER 10. EXPRESSION TREES

Therefore, according to part (ii) and the application of equation (10.6), we have

tan (So {w}) = <; o _21>{a:,E1(a:)} (10.13)

_ 2n+1 2n—1 2n+1 2n+3
Ey(z) = <2n—|—3 om+1 2n—1 2n+1>{$’E"+1(x>}

for all z € [0, c0]. Pictorially, we have

n(S() = 41T,

This deals with tangent for x € [—1,1]. For x outside this range, repeatedly apply
the trigonometric identity

tan (z) = 12_117[]((%%)2 - < _01 (1) (1) (1) > [tan (%) ,tan (g)}

0 1 10
-1 0 01

of square brackets as defined in equation (10.2) instead of round brackets.

until z € [—1, 1]. Beware that < > ¢ T+. Hence, the subtle presence

10.2.6 Inverse Tangent

A continued fraction for inverse tangent [73] is
arctan (z) = [O.x, (2n — 1.n2a72>n>1} . (10.14)
The formula stated by Vuillemin [71] can be derived using equation (10.5)

<(1) g>f’[1<2n1—1 n20a72>:<(1) é>ﬁ<2n$—1 n;a:>

n=1

10.2. ELEMENTARY FUNCTIONS 151

and simplified even further using equation (10.7) to
10—0[0 x
-4 nlr 2n—1)°

Therefore, the corresponding sequence of tensors according to part (i) is

T 0 10 0
"T\(n+1)” 00 2n+1)"
Since, T,, € T for alln > 0, this immediately gives an expression tree for arctan (x)
valid for all z € [0,00]. However, the efficiency of this expression tree decreases

1 -1 B .

T, e N ey M, € T* for all n > 1. Therefore, according to part (ii), we have

with increasing x. Note that for M, = <

arctan (Sp {z}) = <; (1) _01 _21 > {z, Fy (z)} (10.15)

. 2n+1 n 0 n+1
En (@) = <n—|—1 0 n 2n+1>{$’E"+1($>}'

Pictorially, we have

arctan(S (x)) =

N
=

Col—'
AR
_|
o

w

w
SN
)
—
N

This equation for inverse tangent can be used to capture all the extended real
numbers when used in conjunction with the following trigonometric identities

arctan (S {y}) = arctan (Sy {y}) + 7

arctan (S, {y}) = arctan (Sp{y})+ g
3

arctan (S_ {y}) = arctan (So{y}) + T

152 CHAPTER 10. EXPRESSION TREES
The identity

t b) = t t b

arctan (a + b) = arctan (a) + arctan <1—|—a(a—|—b)>

can be used to derive an alternative algorithm for inverse tangent. Note that the
inverse tangent of a rational number evaluates more quickly than the inverse tan-
gent of an irrational number and the inverse tangent of a small number evaluates
more quickly than the inverse tangent of a large number. So, consider a real num-
ber z and find a rational number § close to = and let € be the difference z — %.

Therefore

arctan (z) = arctan <E + e>

q

arctan | = | + arctan €.
<q> <<pq g)l

10.2.7 Power Function

A Jacobi type continued fraction for the power function [70] is

(1+2) = ll.a:y, <1'2x((27;—_y1)) ’ 1'293((2?;}1)) >:00] '

This can be transformed to
v [y 1 - 0 T 0 n—1y
(1+$>_<0 1>1_[1<a7 2n—1><n—|—y 2

where x > 0 and 0 <y < 1.

10.3 Miscellaneous functions

10.3.1 Real Modulus

A useful function is the real modulus function rmod : R® x R* — Z x R> given
by
rmod (z,y) = (n, 2)

where

r = ny+=z
z

€ [~y

10.3. MISCELLANEOUS FUNCTIONS 153

This provides an alternative method to implement tangent; namely

Sy {tan(y)} if mod

(n,4)
tan (z) = S {tan (y)} if mod EZ, i;
(n,4)

I

S_{tan(y)} if mod
So{tan(y)} if mod

I

0
1
2
, 3

where

(n,y) = rmod (a:, g) .

Note that y € [— } C info(Sp). Therefore, equation (10.13) can be used to

evaluate tan (y).

T
47 4

10.3.2 Complex Functions

The striking symmetry between the expression trees for logarithm and inverse
tangent is tantalizing.

<n 2n+1 n+1 0>

log 0 n+1 2n+1 n
¢ 2n+1 n 0 n+1
arctan ntl 0 n 2n+1

The following transformations provide a compelling link between these expression
trees, but we do not provide any mathematical justification.
Suppose

f(So{z}) = Eo(z)
Ey(z) = To{z, By (2)}

Tn_<bn d, cp an>
and suppose we want an expression tree for f (iz) where i = /—1. Let
147 1—1
No= < 1—4 1+ >

= ()

Z.S() — S()N

and note that

154 CHAPTER 10. EXPRESSION TREES

and
4 a ¢ d b
M.<bdca>.1N.2M
at+d—b+c b+c+a—-d a+d+b—c b+c—a-+d
b+c—a+d at+d+b—c b+c+a—d at+d—-—>b+c
Therefore

[iSofa}) = M {ho(2))
b (2) = Un {2, by (2}

U <an—|—dn—bn—|—cn b, +c, +a, —d,

"o by +cn—an+d, an,+d,+b, —cp

an+dn+bn_cn bn+cn_an+dn
b, +c, +a,—d, a,+d,—5b,+ec, |

Example 45 Nole that
arctanh (Sp {x}) = —iarctan (iSp {z})

and
1 1 -1 —1
arctan (Sp {z}) = <2 0 0 2 >{a:,E1(a:)}
. 2Zn+1 n 0 n+1
En (@) = <n—|—1 0 n 2n+1>{$’E"+1($>}'
But
(1 1 -1 —1
_Z<2 0 0 2 >.1N.2M
_ 11 -1 -1
- 02 2 0
2Zn+1 n 0 n+1
T
M°< n+l 0 n 2n—|—1>.1N.2M
_ n 2n+1 n+1 0
- 0 n+1 2n+1 n
So

arctanh (Sp {z}) = <(1) ; _21 _01>{37,E1 ()}

n 2n+1 n+1 0
En(a:) - <0 n+1 2n+1 n>{$7En+1(aj>}'

10.3. MISCELLANEOUS FUNCTIONS 155

Example 46 Nole that
tanh (Sp {z}) = —itan (iSo {2 })

and

tan (Sp {z}) = <; (1) _01 _21>{a?,E1(a?)}

n+1 2n—1 2n+1 2n+3 {a:E (a:)}
M+3 2n+1 2n—1 2n+1 el '

But

20 0 2

_ 1 1 -1 -1
- 0 2 2 0
MT0<2n+1 2n—1 2n+1 2n+3

n+3 2n+1 2n—1 2n+1

2n—1 2n+1 2n+3 2n+1
on+1 2n+3 2n+1 2n—1 /-

—Z<1 1 _1 _1>.1N.2M

>.1N.2M

So

tanh (So {z}) = <(1) ; _21 _01>{a7,E1(a:)}

_ 2n—1 2n4+1 2n+3 2n+1
Fn (@) = <2n—|—1 Mm+3 2n+1 2n—1>{$’E"+1($>}'

Example 47 Nole that
exp (So {«}) = Lo (z)

2n+2 2n+41 2n 2n+1
E"<$>_<2n+1 o0 2n+1 2n+2>{$’E"+1<$>}'

Therefore

. 7 1+2¢ 2412 1
eXp(ZSO{yD = <1 247 149 Z>{qu1<y>}

<2n—|—1 Mm+2 2n+1 2n

Fnly) = 2 2n+1 2n+2 2n+1>{y’Fn+1<y)}'

1 —i 0 0
TX°2M_<0 0 —¢1>'

156 CHAPTER 10. EXPRESSION TREES

Therefore

e (o (ab +iso) = (o o 2) Bn@) R}

. 2n+2 2n+1 2n 2n+1
En (@) = <2n—|—1 o 2+ 1 2n+2>{$’E"+1($>}

. 2n+1 2n+4+2 2n+1 2n
b ly) = < 2 2m+1 242 2n+1>{y’Fn+1<y)}'

Chapter 11

Normalization Algorithms

In chapter 13, we define theoretical languages and reduction rules for converting an
expression tree into a general normal product. This is interesting at a theoretical
level and helps verify the theoretical basis for many underlying ideas. However, at a
practical level, we need to consider the process of converting an expression tree into
an exact floating point number. We call these conversion processes normalization.
The process of normalization can be seen as a tug of war between two subprocesses;
namely emission and absorption.

Emission Fxtract information from the root node in order to construct an exact
floating point number if you can.

Absorption Assimilate information from the depths of the expression tree into
the root node if you have to.

11.1 Information Emission

In general, any non-singular matrix M can be emitted from an expression tree

E=L{FE,..., Ex} provided
info (M) 2 info (L)

or equivalently

Miel el?.

In which case, emission proceeds according to
E— M{M'"[E]}

or 1n other words

E— M{(M'eL){F,...,Ex}}

157

158 CHAPTER 11. NORMALIZATION ALGORITHMS

using the definition of matrix square bracket application as given in section 10.1.1.
For a signed expression tree I/, only a sign matrix S{y 0} may be emitted
leaving the unsigned expression tree S] [F]

E— S, {S][E]}. (11.1)

For an unsigned expression tree I/, only a digit matrix Dy) may be emitted

leaving the unsigned expression tree Djl [E|
E— D, {D; [E]} . (11.2)

The digit matrix Dg should be avoided, if given a choice, because it involves slightly
more computation.

11.2 Information Absorption

Absorption is the process of assimilation.

e Matrix assimilation M € M
M{V*t} — (MeVH)
MANT{E}} — (Mo N ") {E}
M AT {Ey, By}t — (M e T) {Ey, By}
where V* € V, M+t € MT and T+ € T*.
e Tensor assimilation T’ € T
T{VI, W} — (Te; Ve W)
T{V' N"{Ey}} — (T e VM e N1) {Ep}
T{M"{E\} Wt} — (T e, M 0o W) {E\}
T{M*{E} ,N"{E5}} — (T o1 M ey N*) {E}, E>}

where VT W+t € V* and Mt Nt € M™.

11.3. INFORMATION FLOW ANALYSIS 159

11.3 Information Flow Analysis

One of the advantages of the exact floating point representation over the general
normal product representation is that it gives a natural unit of information re-
lated to metric dp defined in equation (3.5). This means that the complexity of
algorithms can be more easily measured and controlled. In particular

dp (z,) = [So () — S0 (y)]
for all z,y € [0, 00]. Note that

dp (Da (z) . Da (y)) = [(Soe Da)(z) — (So® Da) (y)]
=6 2) s)-((5 2)»))
= %dp(a:,y).

More generally, define the distance function d : LT—[0,2] on unsigned linear
fractional transformations by

d (L) = width (info (Sp e L))
because
dp (M (0), M (o00)) = width (info (Sp @ M))
for any M € M.

Example 48

505
M= <1o 11>
-5 —6
Soe M= <15 16>

info (So e M) — l—g—a
d(M) — 21—4

It can be seen that if d (L) < 27" then at least n digit matrices can be emitted
and if d (L) > 27" then at most n digit matrices can be emitted. So, let

st () = |og, (7757) |

most (L) = 1+ least(L).

160 CHAPTER 11. NORMALIZATION ALGORITHMS

In particular

a@y) = 2

least (D)) = n—1
most (D7) = n
with D7 as defined in equation (9.3). Of course, we know that exactly n digit

matrices can be emitted from D7 because it is defined as the product of n digit
matrices.

Lemma 49 If L is an unsigned linear fractional transformation then al least
least (L) digit matrices can be emitted and at most most (L) digit matrices can
be emitted.

Note that
least (V') = most (V) = 0o

s (01) =g, (5205

least (M) = most(M)—1

for V€ V' and

a ¢

b d

5 5 10 0O
<10 11>ED1.D1.D1.D1.D1.<5 16>

can emit exactly 5 digit matrices and consistently

ef3 0 - 5
mosti 10 11) ~

5 5
|east<10 11> = 4.

Consider an arbitrary matrix M € M" applied to an unsigned general normal

for M = < > € M*. For example, the matrix

product. A reasonable question to ask is; can we decide in advance how many
digit matrices we need to absorb into the matrix M in order that we can emit
a specified number of digit matrices? Unfortunately, it turns out that we can
only easily estimate how many digit matrices are required. The two estimates
of particular interest to us are underestimates and overestimates. In particular,
suppose that we want to emit € € N digit matrices from a matrix M € Mt applied

11.3. INFORMATION FLOW ANALYSIS 161

to an unsigned general normal product and that 6 € N is the estimated number
of digit matrices required from the unsigned general normal product.

€ o}
- M <

Underestimate Find §(M,e€) such that dp (M (z), M (y)) > 2°° whenever
dp (z,y) = 2'72M) In other words, if we absorb § digit matrices into
M then at most ¢ digits can be emitted from M.

Overestimate Find 6 (M, €) such that dp (M (z),M (y)) < 2°° whenever
dp (z,y) = 21729 In other words, if we absorb & digit matrices into M
then at least ¢ digits can be emitted from M.

Note that

[(So @ M) (x) — (So @ M) (y)]
= [(Soe M e5) (S0 ()~ (So e M e S3) (S0 (1)

dp (M (), M (y))

- ‘(Soo M e Sg)/ (2)|dp (x,y) for some z € (—1,1)

by the mean value theorem provided that the function (SO e M e Sg) (x) is contin-

uous over |—1, 1] and differentiable over (—1,1). This condition is satisfied because

M e M*. Given that M = < @ c >, it can be shown that

b d
(SOoMoSg)/(QT) = ((a+b_c_;;ge;tﬁ(?+b+c+d))2
(oo o) () = 2200
(SOoMoSS)/(l) = ?:tf;;

Define the ezpansivity function Z: Mt — Q by

(1]

(M) = sup{kl|dp (M (z),M(y)) = kdp (z,y) }

_ inf <‘ (Soe 0 53)/ (-1, 1])‘)

|det (M)
(max (Ja+], |c +d|))*

(11.3)

162 CHAPTER 11. NORMALIZATION ALGORITHMS

and the contractivity function = : Mt — Q by
S(M) = inf {kldp (M (), M (9)) < kdp (2,5)}

7
sup <‘ (SO oM e SS) (-1, 1])‘)
|det (M)
(min (Ja+ b, |c+4d]))*
Theorem 50 Given a matric M € M™ and € > 0 then

6 (M,¢) = c + [logy (E(M))]

(11.4)

and
6(M,¢) =c+ [log, (E(M))] +1

are underestimates and overestimates respectively.

Proof : Assume

dp (z,y) = o1~ 8(Me),
But
dp (M (), M (y)) > Z(M)2"29)
= Z(M) pow (2,1 — ¢ — [log, (Z(M))])
= EZ(M)2 “pow (2,1 — [log, (E(M))])
> Z(M)2 ¢ pow (2, —log, (= (M)))
— 9

because 1 — (aﬂ > —z. Therefore

dp (M (z), M (y)) > 2"

Assume ~
dp (z,y) = o1-o(M,e)
But
dp (M (z), M (y) < E(M)2"°0"9
= Z(M) pow (2,—¢ — [log, (Z(M))])
= Z(M)2 “pow (2,— [log, (Z(M))])
= (M)

IA

M) 2" pow (2, —log, (Z (M)))

—€

[\]

because — [z] < —x. Therefore

dp (M (z), M (y)) <2 . R

11.4. DIGIT EXCHANGE POLICY 163

5 5
M:<10 11>'

Example 51 Consider

We have

sn0) = e (2)] -

§(M,e) = e+ [IogQ <1i52ﬂ +1=¢€—4.

This means that if the matriz M is applied to an unsigned general normal product
then

e al most € digit malrices can be emitled whenever (e — 5) digit matrices are
absorbed and

o at least € digit matrices can be emilted whenever (e —4) digil malrices are
absorbed.

In summary, ¢ (M,€) corresponds to a digit matrix absorption underestimate
and E(M ,€) corresponds to a digit matrix absorption overestimate whenever e
digit matrices are required from an unsigned matrix M applied to an unsigned
general normal product. These formulae can and will be used for the optimization
of evaluation.

11.4 Digit Exchange Policy

Tensors cannot be assimilated with tensors without introducing rank 4 tensors.
The next best thing is an information exchange (i.e. a simultaneous emission and

164 CHAPTER 11. NORMALIZATION ALGORITHMS

absorption).
T Assimilation
// \
! Absorption
\ A /
AN D, 7
Flow
B S of
B Information
-7 4 = i
D, info(D)
/ Y Emission
\ 1
Assimilation

Only the digit matrices Dy 9y should be exchanged

By — D, {D; [EQ]}

T{V+ By} — (T e, V+eDy) {D; [EQ]}

By — D, {D; [EQ]}

T{M*{E}, By} — (T o) M+ ey Dy) {El,Dg [EQ]}
By — D { D} [E\]}
T{E, W+ — (T &, D, e W+) {Dl [El]}
By — D { D} [E\]}
T{Ey, N+ {E,}} — (T e, D, ¢ N {Dz (1] ,EQ}
By — D, {D; [El]} Ey — D, {Df [y}

T{Ey, By} — (T e, Dy ey D) {D; (4], D} [EQ]}'

This policy ensures a linear integer bit size growth for the coefficients in the two
tensors. This conjecture has been proved by Reinhold Heckmann, which he calls
the law of big numbers [32]. However, this policy introduces potential deadlock

11.4. DIGIT EXCHANGE POLICY 165

situations. For instance, consider an expression tree consisting of an infinite binary
tree of tensors

and suppose that all the tensors contain insufficient information to emit a single
digit matrix. Clearly, no digit exchange can occur and a deadlock results. In this
case, a deadlock is inevitable with a digit exchange policy. However, in practice, we
can restrict ourselves to expression trees that contain at most one infinite branch
of tensors and without loss of generality we can insist that this branch is the
right most branch as illustrated in equation (10.4). This still leaves other possible
deadlock situations. Suppose that we have an expression tree as illustrated in
equation (10.4) such that all the tensors contain insufficient information to emit a
digit matrix and the argument x is given by an infinite unsigned general normal
product. The root tensor Ty cannot emit a digit and so, in the interest of fairness, it
must absorb from the left and the right argument. The left argument is an infinite
unsigned general normal product and so a matrix is absorbed. The right argument
is an expression tree with root tensor 17 and so a digit exchange is required. But
the tensor T} cannot emit a digit and so we have a deadlock. This kind of deadlock
can be avoided sometimes if we insist that a number of identity matrices are placed
between every pair of connected tensors. These identity matrices act as a kind of
delaying tactic. However, this still assumes that a digit emission is possible with
sufficient absorption from the general normal product. Unfortunately, this may
not be the case. For instance, consider the function f (x) in equation (10.4) with

_{ 9 Cn En Yn +
T"‘<bn dn I hn>€T

for all n € N. Observe that

ap Cpn €n Gn . An® + €n CRT + gn
<bn d, f, hn><a”y>_<bna:+fn dna:+hn>(y)

166 CHAPTER 11. NORMALIZATION ALGORITHMS

and so -
. An + €n CRT + gn
“@‘Hxaw+ndw+m>'
This insight shows that the function f (x) will deadlock if

an + e, Cn + gn
VnEN-Va:E[O,oo]-d<bnx+fn dna:—l—hn>>1 (11.5)

and x is given by an infinite unsigned general normal product. This is because
whatever left absorption occurs it will never be enough to allow a digit matrix
emission. Actually, we may allow

vneN-d< An + Cn Cn + Gn > —1

bt + fo do+ iy (11.6)

at isolated points. This is because whatever left absorption occurs it will never be
as good as a singleton.

Example 52 Consider

f(a?)zuy-<g 1 g ?>{aﬁ,y}

by Reinhold Heckmann. So

f(f”>:ﬁ<2a:()+3 iﬁ)

n=0
But
d 0 r+2\ 2x+4
20+3 z4+1) 2043
Notice thatl gﬁig > 1 for x € [0,00) and gﬁig = 1 at the isolated point r =

oo. Therefore the function f(x) will deadlock whenever x is given by an infinile
unsigned general normal product.

Conversely, suppose that for each unsigned tensor T, a right absorption of
6 € N digit matrices implies that 6 + 1 € N digit matrices can be emitted if a
sufficient number v (6) € N of digit matrices are absorbed from the left. This
scenario can be compared to the notion an overestimate E(M ,€) for a matrix
M € M'* applied to the unsigned general normal product y € E*

M. = <ana:—|—en cna:—l—gn>
" bpx + fn dpx+ hy
e > 6+1
§(M,e) = 6.

11.4. DIGIT EXCHANGE POLICY 167

Therefore, from theorem 50, the condition

={ anr+e, c,x+ gy 1
VnEN-Va:E[O,oo]-:<bnaj+fn dna?+hn>§1

must be satisfied. Actually, this condition must be strengthened slightly to

an® + €, Cp + gy 1
< bt + [y + Dy > S (L7)

(1]

Vn e N-Vz € [0, 00| -

with)
VneN.§<anaﬁ+en Cn + gn >

bor+ fo doz+hy)1 (11.8)

at isolated points because whatever left absorption occurs it will never be as good
as a singleton. Unfortunately, uncertainty remains for expression trees that do not
satisfy the deadlock conditions (11.5) and (11.6) or the deadlock-free conditions
(11.7) and (11.8).

Note that

<aa:—|—e ca:—l—g)_ |(ax +¢€) (dx+ h) — (bz +) (cx + g)|
br+f dr+h (min (ax + e+ bz + f,cx + g+ dx + h))*

[11]

Therefore

={ ar+e cr+yg 1
Va:E[O,oo]-u<b$+f da:—l—h><4

if and only if

vz € [0,00] ’(aﬂv‘l’e)(da?—l-h)—(ba:—l—];)(ca:—l—g)] <1
(az+e+bx+ f) 4

and
vz € [0, 00] - |(ax +¢€) (dx + h) — (bx + f) (cx + g)| <1‘

(cx + g +dx + h)’ 4
Example 53 Consider the formula for tangent in equation (10.13).

Cn+1)z+(2n+1) (2n—1)z+ (2n+ 3)
<(2n—|—3)a¢—|—(2n—1) C2n+1)xz+ (2n+1) >

[11]

2
B z—1
B <2am + 2n 4+ 2min (1,a:)>
1
< —.
~ 4n?
Clearly Z(M) < 1 for all n > 1 except at x € {0,00} for n =1 where it is equal
to i, This means that the formula for tangent in equation (10.13) is deadlock-free.

168 CHAPTER 11. NORMALIZATION ALGORITHMS

Example 54 Consider, the formula for inverse tangent in equation (10.15). Note
that

(1]

< 2w+ x na:+n+1>:(min(n(z—17%n+1)

nr+r+n 2n+l 3nx 4 22 +n,3n + 2 + nx))’

does not satisfy equations (11.7) and (11.8). However, let us consider a left ab-
sorption of Do, which corresponds to the variable substitution x = Dy {y}.

Ll =1 =1\, 5 _(11-1-1

20 0 2 1= 13 1 1 3
<2n+1 n 0 n+1 > <6n—|—3 dn+1 2n+1 4n—|—3>
.1D0: .

n+1 0 n 2n+1 An+3 2n+1 4n+1 60+ 3

In other words, let us consider the following formula for inverse tangent

arctan (S {Do {y}}) = < ; 1 _11 _31 > {y, Er (y)}

[6n+3 4n+1 2n+1 4n+3
E"<y>_<4n+3 2n+1 dn+1 6n+3>{y’E"+1<y)}'

Observer thal

[11]

6n+3)y+(2n+1) (dn+1)y+ (4n+3)
<(4n—|—3)y—|—(4n—|—1) (2n+1)y+ (6n+3) >

n(y—1)°(n+1)
(min(5yn—|—3y—|—3n—|—1,3yn—|—y—|—5n—|—3))2
< n(n+1)
= (Bn+1)°
-1
4

for alln € N — {0} and for all y € |0,00|. Therefore, the revised formula for
inverse tangent is deadlock-free. We do not know if the more elegant formula in
equation (10.15) is deadlock-free or not.

In general, a formula based on a Taylor series can always be made deadlock-
free if the domain of the function is sufficiently reduced. This is not a problem
because various identities can be used to make up for the shortfall. In any case,
a smaller domain means a more rapid convergence, leading to greater efficiency.
The following proposition summarizes the above ideas.

11.5. TENSOR ABSORPTION STRATEGY 169

Proposition 55 The expression tree

f(x) = T

with To € T and T, = < Z” CCln jfn Zn > € T for alln > 1 is deadlock-free if

there exists m € N such that

[11]

<ana:—|—en Cn® + gn > <

1
bo + fn dnz + hn 4

for all z € [0, 00| and for all n > m, where

(1]

(27)- (1)

poo (min (Jac+ 5], |y +6]))"

11.5 Tensor Absorption Strategy

In the sections above, we assumed that absorption into a tensor occurred simul-
taneously from both arguments. In practice, it is usually best to absorb from one
argument at a time and not necessarily alternately. The word “strategy” refers
to the process of deciding whether to absorb from the left argument or to absorb
from the right argument of a tensor. Consider a tensor with two unsigned general
normal product arguments. Suppose that both arguments are infinite sequences
of matrices. In this scenario, a strategy consists of an infinite sequence of states
generated by a transition function

strategy : T x N — {1,2}

where 1 indicates “left absorption” and 2 indicates “right absorption”. A sequence
of states (T',n) is generated according to the following prescription.

170 CHAPTER 11. NORMALIZATION ALGORITHMS

e bor strategy (7, n) = 1 - Absorb the matrix M from the left argument P =
M{R}.
T{P,Q} — (T ey M){R,Q}

The next state is (7' o3 M, n + 1).

e Lor strategy (1,n) = 2 - Absorb the matrix N from the right argument
Q =N{S}.
T{PuQ} - (T.QN){PNS}

The next state is (1" o N, n + 1).

However, if one or other of the arguments is finite (i.e. terminated by a vector)
then a point may be reached at which the tensor mutates into a matrix and so the
notion of strategy is no longer relevant.

e bor strategy (1',n) = 1 - Absorb the vector V from the left argument P =V
and mutate into a matrix

T{P,Q} — (T'&; V){Q}.

e bor strategy (1,n) = 2 - Absorb the vector W from the right argument
Q = W and mutate into a matrix

T{P,Q} — (T oo W){P}.

In the next three sections, we explore three different strategies.

11.5.1 A Fair Strategy

Definition 56 A fair strategy is any strateqy such that endless left absorption
implies that the meaning of the expression tree is independent of the right arqument
and endless right absorption implies thalt the meaning of the expression trec is
independent of the left arqgument.

A simple example of a fair strategy is one in which we alternately choose “left
absorption” and “right absorption”.

strategy; (1',n) = mod (n,2) + 1 (11.9)

11.5. TENSOR ABSORPTION STRATEGY 171

11.5.2 The Information Overlap Strategy

Left absorption into a tensor T’ increases the information in (TT> o and (TT>1
because

ToV = ((IT)yeV.(I7), V)
TeyM = ((17), oM, (T7), o M)"

while right absorption into a tensor 1" increases the information in Ty and T}
because

T.QV = (To.‘/,Tl.V)
T.QM = (TOQM,Tl.M)

as demonstrated in lemma 30. So, consider the strategy in which we choose any
fair strategy if the information in (TT>0 is bottom or the information in (TT>1 is

bottom, we choose “right absorption” if the information in (TT>0 and the infor-

mation in (TT>1 are disjoint and “left absorption” otherwise.

strategy; (T,n) i T ¢ T

1 if info ((T7))N
strategy, (1',n) = ilmclcr: <O<§v<T> >>07>g 0 (11.10)
1
2 otherwise.

We call this the information overlap strategy.
Proposition 57 The information overlap strategy is a fair strategy.

Proof : Consider a tensor T' € T with a left argument Ey € ET and a right
argument Iy € ET defined by

E;, = M, {E;1}
Fj = Nj{FjH}-

We only need to consider T" € Tt. This means that 7' (z,y) € [0,00] for all
z,y € [0, 00].

e Assume endless left absorption. Note that

-]ﬁ)Mk _ <<TT>O,§MR, (M) .Iﬁ)Mk>T

172 CHAPTER 11. NORMALIZATION ALGORITHMS

for all n € N. Therefore

" T
ﬂ info (T o H Mk> #
ie{0,1} k=0 :

ﬂ info ((TT>Z. ° ﬁMk> # 0
i€{0,1} E=0

for all n € N. Therefore
ﬂ info ((TT)Z. ° V)]
ie{0,1}
V ={(info (H Mk>
n=0 k=0
and V has real coefficients. But, this means that

info ((TT)O ° V) = info ((TT)l ° V) .

where

Therefore

det ((T7), oV, (T7), o V) =det(T e, V) =0.
In other words, the expression tree T {Fy, Iy} is independent of the right
argument Fy.

e Assume endless right absorption. Note that
T ey [[N = (TO.HM,T1 .HNR>
k=0 k=0 k=0
for all n € N. Therefore

(] info (T.QﬁNk>T] - 0

i€{0,1}
ﬂ info (TO.HNR;Tl HNk
i€{0,1}
for all n € N. Therefore

N info((TooﬁNk,Tl HNk>> # 0
|

N mfo(ToHNk # 0

ic{0,1}

ic{0,1}

11.5. TENSOR ABSORPTION STRATEGY 173
for all n € N. Therefore

ﬂ info (T; @ V) #£ ()

ie{0,1}

V= ﬁ info (ﬁNk>)
n=0 k=0

where

But, this means that
info (Tp @ V) = info (17 e V).
Therefore
det(To L] MTl L] V) = det(T.2 V) =0.
In other words, the expression tree T {Ey, Fo} is independent of the left
argument Fy. B

In practice, the information overlap strategy has proved the most efficient and
effective.

11.5.3 The Outcome Minimization Strategy

The principle behind the outcome minimization strategy is to minimize the pos-
sible range of outcomes. The range of outcomes for a left absorption is given
by

left (1) = sup {d ((T7), (), (TT"), (x))| = € 0,00] }

and the range of outcomes for a right absorption is given by

right (") = sup {d (To (y) , T1 (y))| y € [0, 0]}
where d (x,y) is a suitable metric. For instance, suppose d (x,y) = dp (z,y) as
defined in equation (3.5). Sadly, the exact formula for left (T") and right (7') involves

square roots. However, a good approximation, in practice, for T € T', which is
exact in many cases, is given by

left~ (T) = w(SoeT")
right, (1) = w(SpeT)
where
w (T) = max (|To (0) = T3 (0)], [To (00) — T3 (o0)]) .

So, the outcome minimization strategy is given by

strategy; (T,n) if T ¢ T

strategy,, (T,n) =< 1 if lefts, (T') < right, (T')
2 otherwise.

We conjecture that the outcome minimization strategy is a fair strategy.

174 CHAPTER 11. NORMALIZATION ALGORITHMS

11.6 Straightforward Reduction Rules

In this section, we bring together the ideas of emission, absorption, exchange and
strategy.

Firstly, let us define a decision function A, that extends the strategy function
to all linear fractional transformations. Let

Aq : L x N — boolean (11.11)
Ay (M, n)
Ay (T)n) = (strategy (T,n) =1)
Ay (T)n) = (strategy (T,n) =2).

= true

The parameter d refers to the direction of absorption. This makes sense even for
matrices because in fact ¢ = e1. The parameter n is best implemented as a hidden
counter associated one per tensor and initialized to 0 at creation. In this way, we
will drop the parameter n when it is convenient to do so.

Secondly, let us define a sign emission function sem that partially converts a
signed expression tree F into the signed exact floating point representation. Let

sem @ EXN—-E (11.12)

. T +
0 ot . itS eLclL
sem (F,1) = Sy {dem (D3, 53 [£],7) } for some o € {+,00,—,0}

sem (L [Fy,..., Fy|,i) otherwise

where
L{El,...,EN} = E
and
Fd =ab (L, Ed; Ad (L)) .
Note that

10
’}385<0 1>.

In particular, sem (£, i) returns a signed expression tree of the form S, {D% {E'}}
where S, is the required sign, D? is the 7 required digits compressed according to
equation (9.4) and E’ is an unsigned expression tree for the remaining digits (i.e.
a continuation).

Thirdly, let us define a digit emission function dem that partially converts the
unsigned expression tree ©° {E} into the unsigned exact floating point represen-
tation.

dem : M'xE'xN-—>E' (11.13)

11.7. MATRIX LAZY FLOW ANALYSIS 175

D {E} ifj=0o0or LEV
et +
i N i ¥ : if D e €™ for
dem (’DC,E,]) = dem (@;C“}rd,Dd E],j— 1) somg dic7()

dem (D!, L|Fy,...,Fy],j) otherwise

where

L{E,,....Ex}=E

and

Fd = ab (L, Ed, Ad (L)) .

In particular, dem (D?, E,j) returns an unsigned expression tree of the form
’ijj {E'} where ’DT is the (i + j) required digits compressed according to equa-
tion (9.4) and E’ is an unsigned expression tree for the remaining digits (i.e. a
continuation).

Finally, let us define an absorption function ab that converts an unsigned ex-
pression tree F into another unsigned expression tree with a root node ready
for absorption (by square bracket application as defined in equations (10.1) and
(10.2)) into its parent node K.

ab : L xE" x boolean — E* (11.14)
DO{E} if b = false
ab(K,FE)b) = dem (D), F,1) f K€Tand LT
b otherwise

where

L{E,,...,Ex} =E.

The boolean b is used to specify whether any information is actually required.
The middle line in the definition corresponds to an information exchange between
tensors.

11.7 Matrix Lazy Flow Analysis

For a matrix M € M" and natural number €, we need to find the maximum units
of information 6 (M, €) that can be absorbed into M such that it contains at most
¢ units of information. In other words, we need the underestimate 6 (M, €) given
in theorem 50. We need to convert this formula into an efficient algorithm. Let
(a) denote the number of bits required to represent the absolute value of the
integer a.

176 CHAPTER 11. NORMALIZATION ALGORITHMS

a cC

S
b d>€M,2f

_ [e—#(a?) +#(det(M)) — 1 ifdet(M) is a power of 2
Ar(M,e) = { € — # (a?) + # (det (M)) otherwise.

Proposition 58 For M = <

where
a=max(la+0b|,|c+d|)
then
Ay (Me) =6(M,e)
or

Ay (M,e)=6(M,e) — 1.

Proof : We will use the easily verified identities

[a] = —|—a
llogya] = #(a)—1
g s
and the fact that |a+0b|] = |a] + |b] or |a+b] = |a] + |b] + 1. Consider

M:<Z 2>EM+. So
6(M,e) = e+ [logy (Z(M))]
= ¢+ [log, (|det (M)]) — log, (a”)]
= ¢— |log, (@?) — log, (|det (M)])] .

But
|log, (o) | + [—log, (|det (M)])]
= #(a”) =1 — [log, (|det (M)])]
— { #(O‘Q)_l_(# (det(M)) —1) if det(M) is a power of 2
(a?) — 1 — # (det (M)) otherwise.
= e—1—-A] (M,e)
Therefore

§(M,e) = e—(e—1—A7 (M,e)
= A7 (M,e)+1

11.8. TENSOR LAZY FLOW ANALYSIS 177

or

§(Mye) = e—(e—1—A7] (M,e)+1)
= A (M,e). R

This proposition shows that A; (M, €) is a conservative approximation of
6 (M,e). In some cases, even though ¢ > 1 and no digits can be emitted, the
flow analysis given by A, indicates that no information needs to be absorbed. So,
we really need the function A (M €) = max (1, Ay (M, 6)) as well.

11.8 Tensor Lazy Flow Analysis

For a tensor 7' € Tt and natural number €, we need to find the maximum units of
information 61 (T, €) and 69 (T, €) that can be left and right absorbed respectively
into T" such that it contains at most ¢ units of information. In other words,

we need something similar to the underestimate § (M, €) given in theorem 50. By
symmetry, it is clear that 61 (T, €) = 69 (TT, 6). Note that for U = SyeT1 e, Sg o Sg

dp (T'(w,z), T (w,y)) = |(SoeT)(w,z) = (SoeT)(w,y)|
= [U (S0 (w), So (x)) = U (So (w) , S ()|
= |Uy (So (w),2)| dp (x,y) for some z € (—1,1)

where Us (x,y) is the partial derivative of U with respect to y. It can be shown
that

inf (|03 ((=1,1], [=1,1])]) = min (2(T0) , E(T1))

using the definition of the function =: Mt — Q in equation (11.3). This means
that the algorithms

AT = min(A; (1)) A7 ((17),)
Ay (Te) = min (A7 (To,€) Ay (T1,€))

provide conservative approximations for ¢; and 0y respectively. Note that the
overloading of A on matrices and tensors is intentional. In some cases, due to
its conservative nature, even though ¢ > 1 and no digits can be emitted, the flow
analysis given by A] and A, indicate that no information needs to be absorbed
from the left or from the right. So, in these cases, we need to decide whether
to absorb just one from the left or just one from the right. So, let us define

AE 2} (T, ¢€) by

A (T e) =if Ay (T,e) <0 and A, (T,e) <0 then A, (T) else A, (Te).

178 CHAPTER 11. NORMALIZATION ALGORITHMS

11.9 Efficient Linear Fractional Transformations

It should be noted that it is not always desirable to assimilate a vector or a matrix
into its parent node. It depends on whether the vector or the matrix is spatially
efficient relative to the information that it contains. The idea is that if a vector
or a matrix is efficient then it should be assimilated directly otherwise only the
digits Dz should be exchanged. Actually, it should also depend on the amount
of information € required as well. A particularly useful definition is

efficient : L' x N — boolean

. L :
efficient (L,¢) = #(I) + amin (e, least (L)) < 3
n
where « and (3 are adjustable parameters (e.g. o = 2 and § = 32), # (L) denotes
the total number of bits required to represent the coefficients in L and n is the
number of coefficients in L.

11.10 Efficient Reduction Rules

In this section, we improve upon the straightforward reduction rules of section
11.6.

Firstly, let us improve the emission function dem with edem. The efficient digit
emission function edem partially converts the unsigned expression tree ®° { E'} into
the unsigned exact floating point representation. Let

edem : MxE'"xN-—-E"'

D {E} fj=0or LeV
et +
i N il + - if D,e L €L" for
edem (’DC, E,j) = edem (®20+d7Dd [E],j 1) some d € Z(2)

edem (’Dé, L [Ff, e ,F]H ,j) otherwise

where

L{E,,....Ex}=E

and

F} = eab (L, En, A (L))

In particular, edem (D’ F,j) returns an unsigned expression tree of the form
’ijj {E'} where ’ijj is the (i + j) required digits compressed according to equa-
tion (9.4) and E’ is an unsigned expression tree for the remaining digits (i.e. a
continuation).

Secondly, let us improve the absorption function ab with eab. The efficient ab-
sorption function converts the unsigned expression tree F into another unsigned

11.11. DESTRUCTIVE DATA TYPES 179

expression tree with a root node ready for absorption (by square bracket applica-
tion as defined in equations (10.1) and (10.2)) into its parent node K. Let

eab : LxE'XxZ—E"
DY{E} ife<0
_ _¢ if efficient (L, ¢) and
eab (K, F,e) = L[Fl,...,FN} (KgZTor(Lgé)T)

edem (D), F.€) otherwise

where

L{El,,EN}:E

and

F, =eab(L,E, A, (Le).

n

The integer ¢ indicates the maximum required units of information in the root
node. Note that A is used when a specified number of digits Dy is required
from an expression tree, whereas A is used when a conservative number of units
of information is required from an expression tree.

11.11 Destructive Data Types

Any efficient implementation must avoid re-evaluating the same expression. This
means that the language used must support references, pointers or destructive
data types of some sort. For instance, there need only be one instantiation of the
argument x in equation (10.4).

11.12 Scaling Invariance

Rescaling the coefficients of a linear fractional transformation down by their great-
est common divisor is inefficient and generally unnecessary. In fact, absorption
and emission of the radix 2 digit matrices means that only rescaling by 2 is nec-
essary. The following theorem, a simpler variation of one by Reinhold Heckmann
[32], effectively proves this conjecture.

Theorem 59 If M is a matriz and V' is a vector then every prime factor of M eV
is a prime factor of det (M) or V.

Proof : Let W €V be any vector such that

MeV =kW

180 CHAPTER 11. NORMALIZATION ALGORITHMS

for some prime number k. Note that
Mie(MeV) = (M'eM)eV
= det(M)V

and

MTo(k:W) :/{:<MT0W>.
Therefore k is a prime factor of det (M) or a prime factor of V. B

Corollary 60 If M is a matriz and L is a linear fractional transformation then
every prime factor of M e L is a prime factor of det (M) or L.

Proof : Use

MeN = (MeNy MeNy)
MeT = (MeTy,MeT) R

Corollary 61 If T is a tensor and M is a matrixz then ecvery prime factor of
T e, M is a prime factor of det (M) or T.

Proof : Use

TeM = ((T7), oM, (T7) e M)
Tes M = (ToeM,TieM) R

This theorem means that if M is a matrix in its lowest terms then the only
common factors of M ?D, and bDjl e M are the common factors of det (de> and

det (bDjl). But
det (D) = det ("D}) = 4b.

Therefore, only rescaling by 2 and b is necessary. In particular, for b = 2 only
rescaling by 2 is necessary. Similarly for tensors.

Corollary 62 If T is a tensor in its lowest terms and M is a malrices in ils
lowest terms then every common factor of T e, M is a factor of det (M).

Corollary 63 If T' is a tensor in its lowest terms and M is a malrices in ils
lowest terms then every common factor of M T is a factor of det (M).

Chapter 12

Implementation

All the algorithms in this thesis, from the lazy to the strict, have been tried
and tested in a variety of languages including C/C++, Miranda, Haskell, Clean,
Mathematica and CAML. Listed below is the most elegant out of all the imple-
mentations using the functional programming language called Miranda [36]. This
implementation uses the straightforward reduction rules (see section 11.6) and the
information overlap strategy (see equation (11.10)).

The strict implementations provide the best performance. However, the code
is too long and complex to list in this thesis. Consequently, I will restrict myself
to describing a fully lazy implementation of signed exact floating point in Miranda

[36].

12.1 Type Definitions

12.1.1 Linear Fractional Transformations

vector == (num,num)

matrix == (vector,vector)

tensor == (matrix,matrix)

1ft ::= Vec vector | Mat matrix | Ten tensor num

Note that we maintain a hidden counter associated with each tensor in order
to support a fair absorption strategy as discussed in section 11.6.

12.1.2 Expression Tree

expression ::= V vector |
M matrix expression |
T tensor num expression expression

181

182 CHAPTER 12. IMPLEMENTATION

12.1.3 Partial Exact Floating Point

Signed exact floating point is partially defined by sefp and unsigned exact floating
point is partially defined by uefp. These types are partially defined in the sense
that they are partially evaluated with an expression tree as a continuation. Se-
quences of digit matrices are stored compressed as two natural numbers as defined
by digits. The compression technique used is described in section 9.1.

sefp ::= Spos uefp | Sinf uefp | Sneg uefp | Szer uefp
uefp == (digits,expression)
digits == (num,num)

12.2 Term Definitions

12.2.1 Basic Functions

Here are some basic functions that we need later.

One function.

one :: % —-> num -> *
one x 1 = X

Identity matrix.

identity = ((1,0),(0,1))

Transpose of matrix or tensor.

trans :: ((Ok %), (x,%)) —> ((*,%),(*,%))
trans ((a,b), (c,d)) = ((a,c), (b,d))

Determinant of matrix.

determinant :: matrix -> num
determinant ((a,b),(c,d)) = a*d-b*c
e Tame inverse of matrix (see equation (8.4)).

inverse :: matrix -> matrix
inverse ((a,b),(c,d)) = (({d,-b),(-c,a))

12.2. TERM DEFINITIONS 183

12.2.2 Binary Scaling Functions

Only rescaling of vectors, matrices and tensors by 2 is necessary as discussed in
section 11.12.

vscale :: vector -—-> vector
vscale (a,b) = vscale (a div 2,b div 2),
amod 2 =0 & bmod 2 =0
= (a,b), otherwise

mscale :: matrix -> matrix

mscale ((a,b),(c,d)) mscale
((a div 2,b div 2),
(c div 2,d div 2)),

amod 2 =0 & bmod 2 =0 &
cmod 2 =04& dmod 2 =0
= ((a,b),(c,d)), otherwise
tscale :: tensor -> tensor
tscale (((a,b),(c,d)),
((e,f),(g,h))) = tscale
(((a div 2,b div 2),
(c div 2,d div 2)),
((e div 2,f div 2),
(g div 2,h div 2))),
amod 2 =0 & bmod 2 =0 &
cmod 2 =0 & dmod 2 =0 &
emod 2 =0 & fmod 2 =0 &
gmod 2 =0 & hmod 2 =0

= (((a,b),(c,d)),
((e,1),(g,h))),

otherwise

12.2.3 Exact Floating Point

e Sign matrices for the exact floating point representation (see section 9.1).

spos = ((1,0),(0,1))
sinf = ((1,-1),(1,1))
sneg = ((0,1),(-1,0))
szer = ((1,1),(-1,1))

184 CHAPTER 12. IMPLEMENTATION

ispos = Mat (inverse spos)
isinf = Mat (inverse sinf)
isneg = Mat (inverse sneg)
iszer = Mat (inverse szer)

e Digit matrices for the exact floating point representation (see section 9.1).

dneg = ((1,1),(0,2))
azer = ((3,1).(1,3)
apos — ((2,0),(1.1))
idneg = Mat (inverse dneg)
idzer = Mat (inverse dzer)
idpos = Mat (inverse dpos)

12.2.4 Basic Arithmetic Operations

e Basic arithmetic tensors (see equations (8.7), (8.8), (8.9) and (8.10)).

tadd ((€0,0),(1,0)),((1,0),(0,1)))
tsub ((€0,0),(1,0)),((-1,0),(0,1)))
tmul = (((1,0),(0,0)),((0,0),(0,1)))
tdiv ((€0,0),(1,0)),((€0,1),(0,0)))

e Reciprocal of signed exact floating point, unsigned exact floating point and
expression tree (see section 10.1.2).

srec :: sefp -> sefp

srec (Spos u) = Spos (urec w)
srec (Sneg u) = Sneg (urec w)
srec (Szer u) = Sinf (urec u)
srec (Sinf u) = Szer (urec u)
urec :: uefp -> uefp

urec ((n,c),e) = ((n,-c),erec e)
erec :: expression -> expression

erec e = M ((0,1),(1,0)) e

12.2.5 Linear Fractional Transformation Products

e Matrix products (see lemma 29).

12.2. TERM DEFINITIONS

mdotv :: matrix
mdotv ((a,b),(c,d)) (e,f) =
mdotm :: matrix

mdotm m (v,w)

mdott

matrix
mdott m (n,o0)

-> vector —> vector

(axe+c*xf ,bxe+d*f)

-> matrix —-> matrix
= (mdotv m v,mdotv m w)
-> tensor —-> tensor
= (mdotm m n,mdotm m o)

e Tensor products (see lemma 30).

tleftv :: tensor
tleftv t v

tleftm :: tensor
tleftm t m
trightv :: tensor
trightv (m,n) v
trightm :: tensor
trightm (m,n) o

e General dot product for linear fractional transformations.

vector —> matrix

trightv (trans t) v

matrix —> tensor

trans (trightm (trans t) m)
vector —> matrix

(mdotv m v,mdotv n v)
matrix —> tensor

(mdotm m o,mdotm n o)

185

Note that for

tensors, dot 1 corresponds to a left product and dot 2 corresponds to a
right product.

dot
dot
dot
dot
dot
dot

dot
dot

e

(Mat m) (Vec v)
(Mat m) (Mat n)
(Mat m) (Ten t 1)
(Ten t i) (Vec v)
(Ten t i) (Mat m)

(Ten t i) (Vec v)
(Ten t i) (Mat m)

num
Vec
Mat
= Ten

Mat

Ten
= Ten

-> 1ft -> 1ft —> 1ft
(vscale (mdotv m v))
(mscale (mdotm m n))

(tscale (mdott m t)) 1

(mscale (tleftv t v))
t i, m = identity
(tscale (tleftm t m))

(i+1), otherwise

= Mat
= Ten
= Ten

(mscale (trightv t v))
t i, m = identity
(tscale (trightm t m))

(i+1), otherwise

12.2.6 Type Cast Functions

e Convert a partial signed exact floating point into a matrix.

stom ::

stom
stom
stom
stom

sefp
(Spos w)
(S8inf w)
(Sneg w)
(Szer w)

-

matrix

mdotm
mdotm
mdotm
mdotm

spos (dtom (fst w))
sinf (dtom (fst w))
sneg (dtom (fst w))
szer (dtom (fst w))

186 CHAPTER 12. IMPLEMENTATION

e Convert a partial unsigned exact floating point into an expression tree.

utoe :: wuefp —-> -expression
utoe (d,e) = M (dtom d) e

e Convert compressed digit matrices into a single matrix (see equation (9.2)).

dtom :: digits -> matrix

dtom (n,c) = mscale
((2°n+c+1,2"n-c-1),
(2°n+c-1,2"n-c+1))

12.2.7 The Refinement Property

e The sign function enables a simple implementation of a refinement property
predicate (see equation (8.1)).

sign :: vector -> num
sign (a,b)

|
|
'_\
.

a<0 & b<=0
0, a<0 & b>0
-1, a=0 & b<0

0, a=0 & b=0
= 1, a=0 & b>0
= 0, a>0 & b<0
= 1, a>0 & b>=0

e Vector, matrix and tensor refinement property predicates (see proposition

34).

vrefine v=ve V"
mrefine m=me M™"
trefine t=t e T

12.2. TERM DEFINITIONS 187

vrefine :: vector -> Dbool
vrefine v = sign v "= 0
mrefine :: matrix -> Dbool
mrefine (v,w) = a=b & b~=0
where a = sign v
b = signw
trefine :: tensor -> Dbool
trefine ((v,w),(x,y)) = a=b & b=c &
c=d & d"=0
where a = sign v
b = signw
¢ = sign x
d = signy

e (General refinement property predicate for linear fractional transformations.

refine 1=1€¢L"

refine :: 1ft -> bool
refine (Vec wv) = vrefine v
refine (Mat m) = mrefine m

refine (Ten t 1) trefine ¢

12.2.8 Basic Expression Tree Functions

e Number of branches emanating from a linear fractional transformation if it
were in an expression tree.

branch :: 1ft -> num
branch (Vec v) = 0
branch (Mat m) = 1
branch (Ten t i) = 2

e Type predicate for vectors, matrices and tensors.

vis :: 1ft -> Dbool
vis (Vec v) = True
vis 1 = False
mis :: 1ft -> Dbool
mis (Mat m) = True
mis 1 = False
tis :: 1ft -> Dbool
tis (Ten t i) = True

tis 1 = False

18% CHAPTER 12. IMPLEMENTATION

e Cons to expression tree

cons :: 1ft -> (num -> expression) —> expression
cons (Vec v) f = Vv
cons (Mat m) f = Mn (f 1)

cons (Ten t i) f Tt i (£ 1) (£ 2)

e Head of expression tree

head :: expression -> 1ft
head (V v) = Vec v
head (M m e) = Mat m
head (T t i e £) = Ten t i

e Tail of expression tree

tail :: expression —-> num -> expression
tail (M me) 1 = e
tail (Tt ief) 1 = e
tail (Tt ie f) 2 = f

12.2.9 Square Bracket Application

Matrix application as defined in section 10.1.1 and tensor application as defined
in section 10.1.3 are handled by a single generic function.

app (Mat m) 1 = ml[l4]
app (Ten t 1) 1 = t[1y,1s]
app :: 1ft -> (num —> expression) -> expression

app (Mat m) g = cons

(dot 1 (Mat m) (head (g 1)))

(tail (g 1))

cons

(dot 1 (dot 2 (Ten t i)

(head (g 2))) (head (g 1))) h

where c = branch (head (g 1))
h i tail (g 1) i, i<=c

tail (g 2) (i-c),

otherwise

app (Ten t i) g

12.2.10 Tensor Absorption Strategy

e The natural ordering on the special base interval [0, oo .

12.2. TERM DEFINITIONS 189

vlessv :: vector —> vector —> bool
vlessv v W = determinant (v,w) < 0
mlessv :: matrix -> vector —> bool
mlessv (v,w) x = vlessv v x & vlessv w X
mlessm :: matrix —-> matrix —-> bool

mlessm m (v,w) mlessv m v & mlessv m w

e Disjoint information on the special base interval [0, co.

mdisjointm ! matrix -> matrix -> bool
mdisjointm mn = mlessmmn \/ mlessm n m

e A fair strategy (see equation (11.9)).

strategyf t i = strategy;(t,1)

strategyf :: tensor —-> num -> num
strategyf t i = imed 2 + 1

e The information overlap strategy (see equation (11.10)).

strategyo t i = strategy, (t,1)

strategyo :: tensor—->num —> num
strategyo t i strategyr t i, trefine t
= strategyf t i, otherwise
strategyr :: tensor —-> num —-> num
strategyr t i 2, mdisjointm
(fst (trans t)) (snd (trans t))
= 1, otherwise

e Decision function (see equation (11.11)).

decision 1 (Mat m) = A, (m,1i)
decision 1 (Ten t 1) = A;(t,1)
decision 2 (Ten t 1) = A,(t,1)
decision :: num —-> 1ft -> bool

True
strategyo t 1 =1
strategyo t i

decision 1 (Mat m)
decision 1 (Ten t i)
decision 2 (Ten t i)

I
N

190 CHAPTER 12. IMPLEMENTATION

12.2.11 Normalization Functions

e Sign emission function (see equation (11.1))

sem !: expression —> num —> sefp
sem e i Spos (dem (0,0) (app ispos (one e)) i),
refine (dot 1 ispos 1)
= Sneg (dem (0,0) (app isneg (one e)) i),
refine (dot 1 isneg 1)
= Szer (dem (0,0) (app iszer (one e)) i),
refine (dot 1 iszer 1)
= Sinf (dem (0,0) (app isinf (one e)) i),
refine (dot 1 isinf 1)
= sem (app 1 f) i, otherwise
where 1 = head e
fd ab 1 (tail e d)
(decision d 1)

e Digit emission function (see equation (11.2))

dem 11 digits —> expression —> num —> uefp
dem (i,c) e j = ((i,c),e), j=0 \/ vis 1
= dem (i+1,2*%c-1) (app idneg (one e))
(j-1), refine (dot 1 idneg 1)
= dem (i+1,2%c+1) (app idpos (one e))
(j-1), refine (dot 1 idpos 1)
= dem (i+1,2%c) (app idzer (one e))
= (j-1), refine (dot 1 idzer 1)
= dem (i,c) (app 1 f) j, otherwise
where 1 = head e
= fd = ab1l (tail e d)
(decision d 1)

e Absorption function (see equation (11.14))

ab i1 1ft -> expression —> bool —> expression
abkeb utoe ((0,0),e), b = False
= utoe (dem (0,0) e 1),
tis k & tis (head e)
= e, otherwise

12.2. TERM DEFINITIONS 191

12.2.12 Decimal Output Function

The function eshow takes an expression tree, e say, and a natural number, i say,
as arguments and returns a string corresponding to the value of e in decimal
evaluated to i exact floating point digits. In other words, the expression tree
is evaluated according to the straightforward reduction rules until it has emitted
a sign matrix followed by i digit matices. The partially evaluated exact floating
point number is then converted into the decimal representation to as many decimal
places as are valid. In particular, the last digit is guaranteed to be no more than

1 out. For instance

0.314el = [3.13,3.15]
0.20 = [0.19,0.21]
0e-3 = [—0.001,0.001].
eshow :: expression -> num -> [char]
eshow e 1 = mshow (stom (sem e 1))
mshow :: matrix -> [char]
mshow m = show p, d=0 & g=1
= (show p) ++ ?’/? ++ (show q),
d=0 & q~=1
= sshow (scientific m 0),
d"=0
where d = determinant m
(p,q) = vscale (fstm)
sshow :: [num] -> [char]
sshow [] = > ’unbounded’’
sshow (e : m) = (shows v) ++ (showm v) ++ (showe h)
where f = (foldr g 0).
reverse
gdc = d+10%*c
(h,1,v) = normalize
(e,#m,f m)
normalize :: (num,num,num) -> (num,num,num)
normalize (e,l1,v) = normalize (e-1,1-1,v),
1>0 & (abs v)<10~(1-1)
= (e,1,v), otherwise
shows :: num -> [char]
shows v = A Y]

;);)’ v>=0

192

showm :: num ->
showm v =
showe :: num ->
showe e
scientific

scientific mn

mantissa
mantissa i nm =

CHAPTER 12. IMPLEMENTATION

[char]

12027 y=0

’70.°> ++ show (abs v), v™=0
[char]

7?7 ++ (show e)

matrix -> num -> [num]

[1, vrefine (mdotv (inverse m) (1,0))
n : (mantissa (-9) 9 m),

mrefine (mdotm (inverse szer) m)
scientific (mdotm ((1,0),(0,10)) m)
(n+1), otherwise

num —> num —> matrix -> [num]
i : mantissa (-9) 9 (e i), c i
mantissa (i+1) n m, i<n

[1, otherwise
where c¢ j

mrefine (mdotm
(inverse (d j)) m)
dj = ((j+1,10),(j-1,10))
e j = mdotm
((10,0),(-j,1)) m

12.2.13 Elementary functions

e Convenient iterators for building expression trees (see equation (10.4)).

eiterate

eiterate i n
eiteratex

eiteratex i n x

(num —> matrix) -> num ->
expression

M (i n) (eiterate i (n+1))

(num —-> tensor) -> num ->
expression —> expression

T (i n) 0 x (eiteratex i (n+l1l) x)

e Square root (see section 10.2.1).

Vp,q € N-esqrtrat p q= \/E

q

Vx € [0,00] - esqrtspos x = /X

12.2. TERM DEFINITIONS

esqrtrat
esqrtrat p g
rollover
rollover a b

esqrtspos
esqrtspos
itersqrtspos
itersqrtspos

num —> num —> eXpression

= rollover p q (p-q)
:: num —-> num —> num —> expression
¢ = M dneg (rollover (4*a) d c), d >=0
= M dpos (rollover (-d) (4*b) c),
otherwise
where d = 2*(b-a)+c

expression —> expression
eiteratex itersqrtspos 0
num —-> tensor

(((1,0),(2,1)),((1,2),(0,1)))

n

e Logarithm (see section 10.2.2).

Recall that

elogspos
elogspos
iterlogspos

iterlogspos O
iterlogspos n

Vx € [0,00] - elogspos x = log (55 (x))

Sy (z) =x.

expression —> expression
= eiteratex iterlogspos O
num —-> tensor
(((1,0),(1,1)),((-1,1),(-1,0)))
(((n,0), (2#n+1,n+1)),
((n+1,2*%n+1),(0,n)))

e Ixponential (see section 10.2.3).

Recall that

ee
ee =
itere

itere n

eexpszer
eexpszer
iterexpszer

iterexpszer n

ee=c¢
Vx € [0, 00] - eexpszer x = exp (Sp (x))

rz—1

expression

eiterate itere 0

num —> matrix
((2%n+2,2%n+1) , (2*n+1,2%*n))

expression —> expression
= elteratex iterexpszer O
num —-> tensor
(((2*n+2,2*n+1), (2*%n+1,2*n)),
((2%n,2%n+1), (2%n+1,2%n+2)))

193

194

° I)i(see sectlon 10.2.4).

epi
epi =
eomega

eomega =
iteromega :
iteromega 0 =
iteromega n

e Tangent (see section

etanszer
etanszer
itertanszer
itertanszer O
itertanszer n

expression

CHAPTER 12. IMPLEMENTATION

epi=m

T tdiv O (esqrtrat 10005 1) eomega

expression

eiterate iteromega O

num —-> matrix
((6795705,213440), (6795704,213440))
((e-d—c,e+d+c), (etd—c,e-d+c))

where b = (2%n-1)*(6*n-5)*(6*n-1)
¢ = bx(545140134*n+13591409)
d = bx(n+l)
e = 10939058860032000*xn"4
10.2.5).

Vx € |0, 00| - etanszer x = tan (Sp (x))

expression —> expression
eiteratex itertanszer O

num —> tensor
(((1,2),(1,0)),((-1,0),(-1,2)))
(((2%n+1,2%n+3), (2*n-1,2*n+1)),
((2%n+1,2%n-1) , (2*n+3,2%n+1)))

e Inverse tangent (see section 10.2.6).

Vx € [0, 00] - earctanszer x = arctan (S (x))

earctanszer
earctanszer
iterarctanszer
iterarctanszer O
iterarctanszer n

expression —> expression
eiteratex iterarctanszer O

num —> tensor
(((1,2),(1,0)),((-1,0),(-1,2)))
(((2%n+1,n+1),(n,0)),

((0,n), (n+1,2%n+1)))

Chapter 13

Theoretical Languages

In this chapter, following the work of Di Gianantonio [10] and Escardé [23], we
incorporate the representation of the extended real numbers based on the com-
position of linear fractional transformations with integer coefficients into the Pro-
gramming language for Computable Functions (PCF) [55, 29]. We present models
for the extended language and show that they are computationally adequate with
respect to the operational semantics.

Note that the proofs for the numerous lemmas and propositions in this chapter
are located in appendix A for clarity.

13.1 PCF

The Programming Language for Computable Functions (PCE) devised by Plotkin
[55] and described by Gunter [29] includes the terms of the simply-typed A-calculus.
The context-free grammar for PCF is given in BNF by

x € variable

t == num |bool |t =t

P = |0 |true |false|
succ (P) |pred (P) | zero (P) |
if Pthen Pelse P |

Ax- P |PP |px- P

where variable is the primitive syntax class of variables. The expressions in the
syntax class over which ¢ ranges are called fypes, and those over which P ranges
are called term trees. The types num and bool are called the ground types for the
natural numbers N and the booleans B = {true,false}. The remaining types are
called the higher types.

195

196 CHAPTER 13. THEORETICAL LANGUAGES

Term trees of the form Ax.P are called abstractions, and those of the form
PP are called applications. The other constructs of PCF include the succes-
sor — succ(P), predecessor — pred(P), test for zero — zero(P), conditional —
if Pthen Pelse P and recursion — px.P. The equivalence class of term trees mod-
ulo renaming of bound variables are called just terms and we refer to closed terms
of ground type as programs. We will use the notation [Q/xz|P for substitution
to indicate the result of replacing all free occurrences of the variable x in P by
(), making the appropriate changes in the bound variables of P so that no free
variables in () become bound.

There are two systems of rules describing PCF. The first of these determines
which of the terms described by the syntax above are to be considered well-typed.
These are the terms to which we will assign a meaning in our semantic model.
The second set of rules form the operational semantics for evaluation.

13.1.1 Typing Rules

A type assignmentis a list H =z : t1, 29 : tg,..., T, : t, of pairs of variables and
types such that the variables are distinct. A typing judgement is a triple, denoted
H F P : 1, consisting of a type assignment H, a term P and a type ¢ such that
all the free variables of PP appear in the list H. We read this triple as “given
the assignment H, the term P has type t”. It is defined to be the least relation
satisfying the well known typing rules [29]

Grx:t,HFx:t
HF O:num
H + true:bool

H I false:bool
HEF P :num

H Fsucc (P) : num
HF P :num
H F pred (P) : num
HF P :num
H F zero (P) : bool
HEFP:bool HFQ:t HFR:1
HFEif PthenQelse R : ¢t
Hax:sHP:t
HEXe - M:s5—1
HFP:s—t HFQ:s
HEPQ:t

13.1. PCF 197

Hax: tHP:t
HFpx-M:t

13.1.2 Operational Semantics

The strategy for evaluating a term is called an operational semantics for the lan-
guage. One approach to describing such a semantics is to indicate how a term P
evaluates to another term @) by defining a relation P — () between terms using a
set of one-step reduction rules. Let the symbols P, (), R and S indicates arbitrary
terms and let a terminal value, indicated using the symbols X and Y, be a term
generated by

X =0 |true |false |succ (X) | Az P .

The one-step reduction relation — is defined to be the least relation satisfying the
one-step reduction rules for call-by-name evaluation of PCF given by

P—Q
succ (P) — succ (Q) (13.1)
pred (0) — 0 (13.2)
pred (succ (X)) — X (13.3)
P—Q
pred (P) — pred (Q) 13-4
zero (0) — true (13.5)
zero (succ (X)) — false (13.6)
P—Q
zero (P) — zero (Q) (18.7)
if true then Pelse Q — P (13.8)
if false then Pelse Q — @ (13.9)
P=5 (13.10)
if PthenQelse R — if SthenQelse R
Az P)Q — [Q/z] P (13.11)
P—R
PO = RO (13.12)
px - P — px - P/x] P. (13.13)

The reduction relation —* is defined as the reflexive, transitive closure of the one-
step reduction relation. We say that a term P evaluates to a term () whenever
P —* (). Note that the one-step reduction relation is deterministic.

198 CHAPTER 13. THEORETICAL LANGUAGES

13.1.3 Denotational Semantics

We will use the semantic brackets | | to distinguish between terms in the language
and expressions in the model. In the standard model for PCF, the number type
num is interpreted as the flat dcpo of natural numbers - [num] = N, = NU{Ll},
the boolean type bool is interpreted as the flat depo of booleans - [bool] =B, =
{true, false, 1} and the function type s — t is interpreted as the depo of continuous
functions from [s] to [t] - [s — t] = [[s] — [Z]]-
[num] = N,
[bool] = B,
[s =t = [ls] =[]l
While a type assignment associates types with variables, an environment asso-
ciates values to variables. If H is a type assignment, then an H-environment is a
function p on variables that maps each z : ¢ € H to a value p(z) € [t].
Let us use the notation [H > P : t] for the interpretation of term P relative to
type assignment H and typet. Thus [H> P : t] is a function from H-environments

to [t] defined by induction on the type derivation of H - P : t. For convenience,
we will sometimes abbreviate [H > P : t]p to just [P].

[Hez:tlp = p(x)
[H>0:numjp = 0
|H > true : bool]p = true
|H > false : bool]p = false
_ B [H>P:nump+1 if [H> P:num]p # L
[H > suce (P) : num]p = { 1 f[H>P:numlp=_L
0 f[H> P :numjp=0
|H > pred (P) : num]p = [H> P :num]p—1 if [Hr> P :num]p >0
1 if [H> P :numjp= L
true if [H> P :num]p=0
|H > zero (P) : bool]p = false if [H > P : num]p > 0
1 i [H>P:numlp=
[H>Q:t]p if [H > P : bool]p = true
|H > if PthenQelse R: t]p = [H>R:t]p if [H > P : bool]p = false

1 if [Hr> P :boollp=_L
[H>Me-P:s—tlp = d—|H,xz:s> P :t)plr—d
[H>PQ:tlp = ([H>P:s—t)p)([H>Q :s]p)
|[Ho>px- P:tlp = fix(d—[H,z:t> P :t]plx—d])

13.2. LANGUAGE FOR POSITIVE REALS 199

13.1.4 Computational Adequacy

Computational adequacy is a property of a given denotational semantics of a pro-
gramming language with respect to its operational semantics. Roughly speaking,
it says that the two coincide in the sense that anything that can be derived from
the operational semantics can be derived from the denotational semantics and
visa versa. Computational adequacy can be deduced from the combination of two
other properties; namely soundness and completeness.

Proposition 64 (Soundness) If P is a program and P —* X then [P] = [X].
Theorem 65 (Completeness) If P is a program and [P] = [X] then P —* X.

It is well known that the standard model for PCF is computationally ade-
quate. In order to establish completeness, it is usual to consider Plotkin’s notion
of computability [57] and show that every term is computable.

Definition 66 The computable terms of PCF form the least set of terms such
that

o If P : t is a program then P is computable whenever [P] = [X] implies
P—-*X.

o IfH P :s—t then P is computable whenecver PQ is computable for ecvery
closed computable term Q) of type s.

o Ifwi:ty,x9:19,...,2, : L, = P:t then P is computable whenever
[Pl,PQ,... ,Pn/,171,a?2,... ,a:n]P
1s computable for all closed computable terms P; such that = F; : ;.

Lemma 67 FEvery PCF term P is computable.

13.2 Language for Positive Reals

The TLanguage for Positive Reals (LPR) [63] includes the syntax and conventions
of PCF as described in section 13.1. The context-free grammar for LPR is given
in BNF by

x € variable
t == num |bool |real’ |t xt |t —1¢
P = |0 |true |false|

200 CHAPTER 13. THEORETICAL LANGUAGES

succ (P) | pred (P) |zero (P) |
if Pthen Pelse P |

Ax-P | PP |px- P|

(P, P) |fst(P) |snd (P) |
(P).

The new ground type real™ represents the set I°R* of closed intervals in R*. The

types generated by
t =num |bool |real’ | x ¢ (13.14)

are called the ground types. The new constructs are pairing — (P, Q), first projec-
tion — fst (P), second projection — snd (P) and transformation — (P). For conve-
nience,

vector’” denotes num X num,
matrix” denotes vector™ x vectort and
tensor” denotes matrix" x matrix .

For example, the real number 2 may be expressed as

= (3:4)

- (2)

and the real number /2 may be expressed as

\/5 = px <((171)7(271))>x
<1 2>x
11

((1,0),(0,1)))) ({(1,1)) (2, 1))

=

%4

and 1 4 2 may be expressed as

1

I I

142 = {((0,0),(1,0))

01 0

0 0 1

13.2.1 Typing Rules

The typing judgement H = P : ¢ for LPR is the least relation satisfying the typing
rules for PCF as listed in section 13.1.1 together with

H-EP:s HFQ:t
HE(PQ):sxt

(
1
0

13.2. LANGUAGE FOR POSITIVE REALS 201

HEP:sxt
HEfst(P):s
HEP:sxt
HEsnd(P):t

H + V:vectort

H (V) :real”

H = M :matrix™

H = (M) :realt — real®
H E T :tensort
H 1= {T) :real” x real” — realt

13.2.2 Operational Semantics

Let a terminal value be a term that cannot be reduced to another term. Let the
symbols

PQ.R,S indicate arbitrary terms,

XY indicate terminal values,

VW indicate terminal values of type vector®,

vVt wt indicate terminal values of type vectort excluding (0,0),
M, N,O indicate (V, W),

M*T Nt O" indicate (V W),

T,U indicate (M, N),

Tt Ut indicate (M+ N

and the generated term
A indicates (V') | (M) P
and

L° indicates mnot L where L € { XY, VW M N O, T .U A},
L~ indicates (L") where L € {V,W,M,N, O, T,U}.

For example, V° indicates any term that is not a terminal value of type vectort
and V™ indicates (0,0) or not a terminal value of type vector™.

The one-step reduction relation — for LPR is defined as the least relation
satisfying the one-step reduction rules for PCF as listed in section 13.1.2 together
with the product rules

P—R
(P,Q) — (R,Q)

202 CHAPTER 13. THEORETICAL LANGUAGES

Q—5
(P,Q) — (P,95)
fst (P,Q) — P
snd (P,Q) — @

P—Q
fst (P) — fst (Q)

P—qQ

snd (P) —snd (@)’

the transformation rule
P—qQ
(P) = (Q)

the matriz rules

and the tensor rules

(1) ((V*').Q) — (TeVH)aQ
(1) (PAV") — (TeVH)P
Ty ((MY)YP,Q) — (Te,M")(P,Q)
(T) (P{M")Q) — (Tey M")(P,Q)
P—Q
(T)P — (1) Q

The product rules are non-deterministic. The transformation rule together with
equation (13.12) ensures that the parameter in a transformation construct is com-
pletely evaluated before any matrix or tensor rule can be applied. The matrix rules
allow information to be absorbed into a matrix. The tensor rules allow information
to be emitted from and absorbed into a tensor.

13.2. LANGUAGE FOR POSITIVE REALS 203

13.2.3 Denotational Semantics

Let us extend the standard model for PCF as described in section 13.1.3. The
real type real’ may be interpreted as the continuous real domain C(R*") or the
algebraic real domain A (Q1). The product type s x ¢t will be interpreted as the
lifted product of depos - ([s] x [¢]) |-

[real™] = C(R")
[s >t = (Is] > [t]) .
The interpretation of the new constructs (P, P), fst(P), snd(P) and (P) are given
by
[(P,Q)] = up([P],[Q])
[fst(P)] = fst(down ([P]))
[snd (P)] = snd (down ([P]))

[0,00] if [V] =L
Vil = { {[V]} otherwise
B 0, o0 ifdre X [M](x)=L
LD} (X)) = { [M] (X) otherwise
[((X,)Y) = { FT]]O?)](Y) gtlal:rvevé wer =4
Note that
[(VT)] = info (V)
[(M)]([0,00]) = info (M)
[[<T+>]] (10,00],[0,00]) = info <T+>
and

= |[0,00] # R*> = info <V7>

|
[(M)]([0,00]) = [0,00] #R* = info (M)
) = [0,00] #R> =info (T7).

13.2.4 Computational Adequacy

LPR is a non-deterministic extension of PCF with meaningful programs that
never terminate. However, Plotkin’s notion of computability assumes that non-
terminating programs are meaningless. Fscardé [23] circumvented this problem

204 CHAPTER 13. THEORETICAL LANGUAGES

by generalizing Plotkin’s notion of computability by considering a program P to
be computable whenever

[P] E eval (P)

where

eval (P) = |_| {value (Q)| P =" Q}

and

n if P = succ™(0)
true 1if P = true
false 1if P = false

1 otherwise.

value (P) =

The evaluation function eval is well defined provided that the one-step reduction
relation — is sound
P—qQ
value (P) C value (Q)

and weakly Church-Rosser

P—-Q P—R
S Q —-*S R—*S

For PCF, the one-step reduction relation is sound because only terminal values
have non-bottom values and the one-step reduction relation is weakly Church-
Rosser because the reduction rules are deterministic.

Definition 68 The computable terms of LPR form the least set of terms such
that

o If P:tis aprogram then P is computable whenever |P] C eval (P).

o IfH P :s—t then P is computable whenecver PQ is computable for ecvery
closed computable term Q) of type s.

o Ifwi:ty,x9:19,...,2, : L, = P:t then P is computable whenever
[Pl,PQ,... ,Pn/atl,a:Q,... ,a?n]P
1s computable for all closed computable terms P; such that = F; : ;.

Lemma 69 If P is a PCF program then |P] C eval (P) iff [P] = [X] implies
P—-"X.

13.2. LANGUAGE FOR POSITIVE REALS 205

For L.LPR, the value function value is extended to

(n if P = succ™ (0)
true if P =true
false if P = false

value (P) = ¢ info (V) ifpP="
info (M) ifP=(M"R
(value (R) ,value (5)) if P =(R,S5)
L otherwise.

\
Lemma 70 The one-step reduction relation for LPR is sound

P—Q
value (P) C value (Q)

Lemma 71 The one-step reduction relation for LPR is weakly Church-Rosser

P—Q P—R
15-Q —-*S R—*S

The last two lemmas ensure that the evaluation function eval is well defined.
In order to establish soundness, namely

eval (P) C [P],
the following two lemmas are required.
Lemma 72 If P is an LPR program then P — Q implies |P] = [Q].
Lemma 73 If P is an LPR program then value (P) C [P].
Proposition 74 (Soundness) If P is an LPR program then eval (P) C [P].
In order to establish completeness of LPR, namely
[P] E eval (P),
the following two lemmas are required.
Lemma 75 An LPR program P is computable iff

Va < [P]-3Q: P —"Q-aCvalue (Q).

206 CHAPTER 13. THEORETICAL LANGUAGES

Lemma 76 For any closed LPR term P : s — t, where s andt are ground types,
if [P] is continuous and

VR:Q —" R-35: PQ —" S - [P](value (R)) C value (S5)

for every closed computable term @) : s then P : s —t is computable.

So, we need to prove that every LPR term is computable, establishing theorem
113 below, by extending the inductive proof of Plotkin [56] with the following
lemmas.

Lemma 77 The pairing construct is computable.

Lemma 78 The projection constructs are computable.
Lemma 79

VQ:P =" Q-3R: (M)P =" R-[(M)] (value (Q))) = value (R).
Lemma 80

VQ:P—="Q -3JR: ()P =" R-[(T)] (value (Q)) = value (R).
Lemma 81 The transformation construct is computable.
Lemma 82 FEvery term P of LPR is computable.

Theorem 83 (Completeness) If P is a program then

[P] E eval (P).

The soundness and completeness properties are together called the computa-
tional adequacy property. We have shown that LPR is computational adequate.
This result means that a mathematical proof of correctness of a recursive algo-
rithm is sufficient to conclude that a program induced by it produces the correct
result. In other words, a syntactic proof for the program by appealing to the oper-
ational semantics is unnecessary. This language does not incorporate any strategy
for tensor absorption and therefore says nothing about their correctness. However,
computational adequacy does say that a correct strategy exists.

13.3. LANGUAGE FOR ALL REALS 207

13.3 Language for All Reals

The Language for All Reals (LAR) is a further development of work by Edalat,
Siinderhauf and mysell [21] to capture multi-valued functions. It includes the
syntax and conventions of PCF as described in section 13.1. The context-free

grammar for LAR is given in BNF by

x € variable

t = num |bool |real® |real’ |t xt |t —t
P = z]0 |true |false|

succ (P) |pred (P) | zero (P) |

if Pthen Pelse P |

Ax+ P |PP |px- P|
(P, P) |fst(P) |snd (P)]|
(PP} |P <P

(2] [[P) [{P) .

The new ground types real™ and real™ represent the sets I’R™ and I°R™* of closed
intervals in R>® and R" respectively. The types generated by

t = num | bool | real® |real" |t x ¢ (13.15)

are called the ground types. The new constructs are pairing — (P, Q), first projec-
tion — fst (P), second projection — snd (P), parallel - {P, P} , squeeze P < P and
transformation — | P|, [P), (P). For convenience, int denotes num X num represent-
ing an integer in the usual way (i.e. (n,m) represents n —m),

vector™ denotes int X int,
enotes
vector” denot num X num,
matrx™ denotes vector™ X vector™
matrix” denotes vectort x vectort
enotes i i
tensor™® denot matrx™ X matrix™
tensort denotes matrix" x matrix™.

For example, a typical finite general normal product for —% is

=[P DGHGD6)

Note the use of brackets to indicate type. Furthermore,

|~

i)71 may be expressed

!
=[O DE NG

=)

as

208 CHAPTER 13. THEORETICAL LANGUAGES

The parallel and squeeze constructors are used to form the redundant if oper-
ator as defined in equation (7.7)

rif 2 < (M ([ool), N ([0, 00])) then felseg
f (@) i [0, 00] < M ()
g(z) if [0,00] < NT(z)
= {f<[MT}().9 < [NT] (@)}

The parallel construct allows the two if conditions to be evaluated in parallel while
the squeeze operator allows the if conditions to be incrementally tested.

13.3.1 Typing Rules

The typing judgement H F P : ¢ for LAR is the least relation satisfying the typing
rules for PCF as listed in section 13.1.1 together with

H-EP:s HFQ:t
HE(PQ):sxt
HEP:sxt
HEfst(P):s
HEP:sxt
HEsnd(P):t
P:t Q:1
HEA{PQ}:1
HF Prealt —t HF Q:real™
HFEP<Q:t
H F V:vector™
HFE[V):real™
H F V:vectort
H (V) :real”

H = M :matrix™
H + [M]:real™ — real™
H = M :matrix™
H = [M):real” — real™
H = M :matrix*

H (M) :realt — real®
H FT :tensor™
H F [T]:real™ x real™ — real™
H FT :tensor™
HF [T):real” x realt — real™

13.3. LANGUAGE FOR ALL REALS 209

H E T :tensort
H (T :real” x real’ — real*”

13.3.2 Operational Semantics

Let a terminal value be a term that cannot be reduced to another term. Let the
symbols

P QRS indicate arbitrary terms,

XY indicate terminal values,

V.W indicate terminal values of type vector™ or vector™,

vVt wt indicate terminal values of type vector™ excluding (0,0),
M, N,O indicate (V, W),

M*T Nt O" indicate (V' W),

T,U indicate (M, N),

Tt Ut indicate (M+ NTY,

and the generated terms

A indicates [V) [(V1) |[M)
B indicates ([V),[V)) | (M))| (
C indicates (V') P) |({(M*) P, P) | (P, (V1)) |(P,{(M™")P)

and

L indicates mnot L where L € { XY, VW M N O T .U A B, C},
L~ indicates (L*)° where L € {V,W,M,N, O, T,U}.

For example, V° indicates any term that is not a terminal value of type vector™
or vector™.

The one-step reduction relation — for LAR is defined as the least relation
satisfying the one-step reduction rules for PCF as listed in section 13.1.2 together
with the product rules

P—-R Q—S
(£, Q) — (R,S)
P—qQ
(P, X) —(Q,X)
P—qQ
(X, P) = (X,Q)
fst(P,Q) — P
snd (P, Q) — @

210 CHAPTER 13. THEORETICAL LANGUAGES

P#(RS) P—Q
fst (P) — fst (Q)
P#(RS) P—Q
snd (P) —snd (Q)

the parallel rules

succ ({P,Q}) — {succ(P),succ(Q)}
pred ({£,Q}) — {pred (P),pred (Q)}
zero ({P,Q}) — {zero(P),zero(Q)}
if {P,Q} then Relse S — {if Pthen Relse S| if () then Relse S}
- {P,Q} — {Xz-P Iz -Q}
{P,QIR — {PR QR}
P{Q, R} — {PQ,PR}
{rQ}.r) — {(PR),(Q R)}
(L AQ R}Y) — {(£,Q), (P, R)}
fst ({£,Q}) — {fst(P), fst(Q)}
snd ({£,Q}) — {snd(P), snd(Q)}
P<a{Q,R} — {P<Q,P<R}
{rQ — ([P, 1Q}
{£,Q)) — {[P). @)}
{r,Q1 — {((P) (@)}
P—-R Q—S
{P,Q} — {R,S}
P—qQ
{P, X} —{Q,X}
P—=aQ
{X, P} = {X,Q}

(note that the parallel construct does not distribute through the recursion opera-
tor, the “then” part of conditional, the “else” part of conditional and the function
part of squeeze), the squeeze rules

A°—Q
P<gA — P<aQ
info (V') C (0, 00)
PalV)— PV

13.3. LANGUAGE FOR ALL REALS 211

info (M) C (0, 00)
PaM)Q— P((M)Q)
info(M) £(0,00) [M)Q— R
Pa[M)Q —P<R

the transformation rules

P—qQ

[P] = [Q]
P—qQ

the matriz rules

and the tensor rules

(V). W) — [TeVeW)
[T1(V),[IN)Q) — [TeVeN)Q
T ((M)P,W)) — [Te Me; W)P
[T]([M) P,IN)Q) — [Ty M ey N) (P, Q)
B°— P

212 CHAPTER 13. THEORETICAL LANGUAGES

bbb
=
E
+
=
=
O

Ll

Iy (v, (wh) — (Te VieWw")

(Y (V) .(NF)Q) = (T V' eN")Q
(TY ((MYYP, (W) — (TeyM" e, WH) P
(Y ((MYYP(NTYQ) — (Te Moy N*)(P,Q)

() (V) 4) = (TevH)a
(IY ((M*Y)P,A°) — (T e M) (P A)
() (A, (WF)) — (TeaWh)A
(1) (A7 (N Q) — (Te;N')(4,Q)
c° =P
(TY C° —{T) P

13.3. LANGUAGE FOR ALL REALS 213

Note that the one-step reduction relation — for LAR is deterministic in contrast
to the one-step reduction relation — for LPR. This reflects the fact that a fair
strategy for tensor absorption as explained in section 11.9 has been incorporated
into the product rules and the tensor rules. The transformation rule together
with equation (13.12) ensures that the parameter in a transformation construct
is completely evaluated before any matrix or tensor rule can be applied. The
matrix rules allow information to be absorbed into a matrix. The tensor rules
allow information to be emitted from and absorbed into a tensor. The unprimed
transformation constructs [I') and (T’) indicate “emission required next”, while
the primed transformation constructs [T') and (T')’ indicate “absorption required
next”. The primed constructs are not intended for direct use by the programmer.

13.3.3 Denotational Semantics

Let us extend the standard model for PCF as described in section 13.1.3. The
real type real™ may be interpreted as the continuous real domain C (R*) or the
algebraic real domain A (Q>). Note that [Q] C (0, 00) is equivalent to [0, c0] <
[@Q] in the continuous real domain C (R*>). The real type real” may be interpreted
as the continuous real domain C(R") or the algebraic real domain A (Q1). The
product type s x t will be interpreted as the lifted product of depos - ([s] x [t]) .

[real™] = C(R™)

[real”] = C(R")

[s >t = (Is] > [t]) .
The interpretation of the new constructs (P, P), fst(P), snd(P), P < P, [P], [P)
and (P) are given by

(P, = uw(lP] Q)
[fst(P)] = fst(down ([P]))
[snd (P)] = snd (down ([P]))

1 otherwise

[P<qQ] = {[[PMQ]] if [Q] < (0,00)
= ([0, 00l N AIP]1QD)) (I<1)

(R if3re X [M](z)=L
LM (X) = { [M] (X) otherwise
{Roo f3reX eV [T](ry) =L
[T](X,Y) otherwise

214

[0, 0]

0, o<

DX Y) =

|
—— —— —— ——
—
~
===}

Note that

and

and

if[V]=1

{[V]} otherwise

ifdze X [M](z)=1

[M] (X) otherwise
fdre X -FyeY |T)(z,y) =L

X,Y) otherwise

if[V]=1

{[V]} otherwise

ifdze X [M](z)=1

(X) otherwise

0 fdre X -FyeY |T)(z,y) =L

[T](X,Y) otherwise.

[N T N

[N

CHAPTER 13. THEORETICAL LANGUAGES

info (V)
info (M)
info (T°)

info (V)
info <M+)
info <T+)

[0, 0]

R

info <V+>

[0, 0]

R

info <M+)
[0, 0]

R

info <T+) .

At this point, consider the monad (LOWER, 7, 1) in the category of continuous
Scott domains and continuous functions where LOWER is the lower powerdomain

13.3. LANGUAGE FOR ALL REALS 215

operator and

np : D — LOWER (D)

np (x) = L{z}
1y, : LOWER (LOWER (D)) — LOWER (D)

pp (X) = |_|X-

Recall Theorem 4, which states that the lower powerdomain of a continuous do-
main (D, C) is isomorphic to the lattice of all non-empty Scott closed subsets of

D and so
|_|X = closure (UX) .

This monad induces a new model for LAR, which we will call the parallel model.
We will use the semantic brackets (| |) to distinguish between terms in the language,
expressions in the standard model and expressions in the parallel model. In the
parallel model, the ground types are interpreted as the lower powerdomain of the
interpretation in the standard model, while the higher types merely reflect this
change. In other words, for any ground type ¢

(t) = LOWER ([t])
and for any higher type s — ¢
(s —t) = 1(s) — ()]
Definition 84 For any z : [t] wheret is a ground type

: (|t|)
= Iz} (1)

and for any f : s — t] where s — t is a higher type

>

>

Lemma 85 For any f : |s — t] where s — t is a higher type

o

f (@)= f ().

216 CHAPTER 13. THEORETICAL LANGUAGES

The lower powerdomain LOWER(N,) of N, is isomorphic to the powerset
P (N) of N ordered by inclusion. The lower powerdomain LOWER(B,) of B,
is isomorphic to the powerset P (B) of B ordered by inclusion. The lower pow-

erdomain LOWER(C (R?)) of C(R?) is a continuous Scott domain with a basis
consisting of the set Py (]ICIF> of finite subsets of the set I°F of closed intervals
with end points in the dense subset F of R°.

The general formula giving the interpretation (H > P : t)p of an LAR term P
without the parallel construct in the parallel model in terms of its interpretation
[H > P :t]p in the standard model is given by

(H> Pty = | | [H S P t]p.
p:VmEvariabIe-p/(a:\)Eu(m)

In particular, for any closed LAR term P without the parallel construct

(P) = [P].
The interpretation of the remaining new construct {P, P} in the parallel model is
given by
({r.Q}) = (rhu(Q).

13.3.4 Computational Adequacy

LAR is a deterministic extension of PCF with meaningful programs that never ter-
minate. However, Plotkin’s notion of computability assumes that non-terminating
programs are meaningless. FEscardé [23] circumvented this problem by generaliz-
ing Plotkin’s notion of computability as described in section 13.2.4. This notion
can be specialized by considering chains instead of directed sets. In particular, a
program P is computable whenever

[P] E eval (P)
where -
eval (P) = |_| step (P, n)
n=0
and
step (P,n) = value (reduce (P, n))

n if P = succ” (0)
true if P = true

value (P) = false if P = false
1 otherwise
reduce (Q,n—1) ifn>0and P— Q
reduce (P’ n) - { P () otherwise.

13.3. LANGUAGE FOR ALL REALS 217

The evaluation function eval is well defined provided that the one-step reduction
relation — is sound
P—qQ
value (P) C value (Q)

and weakly Church-Rosser

P—-Q P—R
15-Q —-*S R—*S’

For LLAR, the one-step reduction relation is weakly Church-Rosser because the
reduction rules are deterministic.

LAR without the parallel construct in the standard model

For LAR without the parallel construct in the standard model, the value func-
tion value is extended to

(n if P = succ™ (0)
true if P = true
false if P = false
info (V) if P=1[V)

value (P) = < info (M) it P=[M)Q
info (V1) ifpP="
info (M) fP=(M"HQ
(value (@) ,value (R)) if P =(Q,R)
L otherwise.

\

Lemma 86 The one-step reduction relation for LAR without the parallel con-
struct in the standard model is sound
P—qQ
value (P) C value (Q)

The last lemma and the determinism of the reduction rules ensure that the
evaluation function eval is well defined. In order to establish soundness, namely

eval (P) C [P],
the following two lemmas are required.

Lemma 87 If P is an LAR program without the parallel construct then P — @
implies [P] = |@].

218 CHAPTER 13. THEORETICAL LANGUAGES

Lemma 88 If P is an LAR program without the parallel construct then
value (P) C [P].

Proposition 89 (Soundness) If P is an LAR program without the parallel con-
struct then eval (P) C [P].

In order to establish completeness of LAR without the parallel construct,
namely

[P] E eval (P),

the following two lemmas are required.
Lemma 90 An LAR program P without the parallel construct is computable iff
Va < [P]-3n € N-a Cstep (P,n).

Lemma 91 For any closed LAR term P : s — t without the parallel construct,
where s and t are ground types, if

Vn € N-3m € N- [P] (step (Q,n)) C step (PQ,m)
for every closed computable term @) : s then P : s —t is computable.

So, we need to prove that every LAR term without the parallel construct is
computable, establishing theorem 113 below, by extending the inductive proof of
Plotkin [56] with the following lemmas.

Lemma 92 The PCF constructs are computable.
Lemma 93 The pairing construct is computable.
Lemma 94 The projection constructs are computable.
Lemma 95 The squeeze construct is computable.

Lemma 96
reduce ([M] (reduce (P,1)),1) = reduce(|M]P,2)
reduce (| M) (reduce (P,1)),1) = reduce([M) P,2)
reduce ((M) (reduce (P,1)),1) = reduce ((M) P,2)

S~—r

Lemma 97

Vn € N-reduce ([M](reduce (P, n)),1) = reduce ([M|P,n+ 1)
Vn € N-reduce([M) (reduce (P, n)),1) = reduce (M) P,n+ 1)
Vn € N-reduce ((M) (reduce (P,n)),1) = reduce ((M) P,n+1).

13.3. LANGUAGE FOR ALL REALS 219

Lemma 98

[[M]] (value (P)) step ([M] P, 1)
[1M)] (value (P)) = step([M) P,1)
[(M)] (value (P)) = step((M)P,1).

Lemma 99

Vn € N.[[M]] (step (P, n)) =step ([M] P,n+1)

Vn € N.[[M)] (step(P,n)) =step ([M)P,n+1)

Vn € N-.[(M)] (step (P, n)) =step ((M)P,n+1).
Lemma 100

Vn € N.3m e N-step([7](reduce (P, 1)),n) C step ([T'] P,m)
Vn € N.3dm e N-step([T) (reduce (P,1)),n) C step ([I') P,m)
Vn € N.3dm e N-step ((1) (reduce (P, 1)),n) C step ((T") P,m).

Lemma 101

Vn,m € N-.3r e N-step([T] (reduce (P, n)) m) C step ([T] P.)
Vn,m € N-3r e N-step ([T) (reduce (P,n)),m) C step ([T') P,r)
Vn,m € N.dr & N-step <<T>/ (reduce (P, n)) C step ()

Lemma 102

dn € N-[[T] (value (P)) = step ([T] P,n)
In € N-[[T)] (value (P)) = step ([T") P,n)
dn € N-[(T)] (value (P)) = step ((I") P,n).

Lemma 103

¥Yn € N-3meN-[[T]] (step (P,n)) C step ([T] P,m)
vn € N-3meN-[[T)] (step (P,n)) Cstep ([I') P,m)
vn € N-3meN-[(T)] (step (P,n)) C step ((T') P,m).

Lemma 104 The transformation constructs are computable.

Lemma 105 FEvery term P of LAR without the parallel construct is computable.

220 CHAPTER 13. THEORETICAL LANGUAGES

Theorem 106 (Completeness) If P is an LAR program without the parallel
construct then

[P] E eval (P).

‘LAR without the parallel construct in the parallel model‘

Let

pvalue (P) = | {value (P)} (13.16)
and let

pstep = pvalue o reduce.

Lemma 107 The one-step reduction relation for LAR without the parallel con-
struct in the parallel model is sound
P—qQ
pvalue (P) C pvalue (Q))

Therefore .
peval (P) = |_| pstep (P, n)
n=0
is well defined. But

o0

peval (P) = |_|pstep(P,n)

n=0

= || Listep(P,n)}

= l{Dstep(P,n)}

| feval (P)}

= HIrL

= (P)
and so LAR without the parallel construct is computationally adequate in the
parallel model.

‘LAR in the parallel model‘

Extend the definition of pvalue in equation (13.16) with

pvalue ({ P, @Q}) = pvalue (P) Ll pvalue (Q) .

13.3. LANGUAGE FOR ALL REALS 221

Lemma 108 The one-step reduction relation for LAR in the parallel model is
sound

P—qQ
pvalue (P) C pvalue (Q)

Therefore .
peval (P) = |_| pstep (P, n)

n=0

is still well defined. In order to establish soundness, namely
peval (P) (P,
the following two lemmas are required.
Lemma 109 If P is an LAR program then P — Q implies (P)) = (Q).
Lemma 110 If P is an LAR program then pvalue (P) C (| PJ).
Proposition 111 (Soundness) If P is an LAR program then peval (P) C (P]).
In order to establish completeness, namely
1) C peval (P).

we consider Plotkin’s notion of computability [57] as extended by Escardé [23].
So, we need to prove that every term is computable, establishing proposition 113
below, by extending the inductive proof of Plotkin [56] with the following lemma.

Lemma 112 The parallel construct is computable.
Theorem 113 (Completeness) If P is an LAR program then
(P) C peval (P).

Finally, proposition 111 and theorem 113 together show that LAR is compu-
tationally adequate, namely

1P) = peval (P).

Computational adequacy verifies that the incorporated fair strategy for tensor
absorption as described in section 11.9 is correct. LAR allows a very wide range of
mathematical functions to be defined elegantly from the rich theory of continued
fractions.

222 CHAPTER 13. THEORETICAL LANGUAGES

13.3.5 Worked Examples
Example 114 Consider the LAR program P : num

PN} ={L,0,1}

P)}}})

P = pxr-Q
Q = {0,succ(x)}
pstep (P,0) = pvalue(P) ={L}
pstep (P,1) = pvalue ({0,succ(P)}) = {L,0}
pstep (P,2) = pvalue ({0,succ ({0,succ(P)})}) ={L,0}
pstep (P,3) = pvalue ({0 {succ ,succ’ (P) }}) ={L1,0,1}
pstep (P,4) = pvalue ({0 {succ ,succ? ({0, succ (
pstep (P,5) = pvalue ({0, {succ (0),succ ({succ (0),succ* (P)})}})
= {L1,0,1}
pstep (P,6) = pvalue ({0, {succ (0), {succ ,succ®
— {1,0,1,2}

e (1) {L}UNQ‘”WJ)
peval (P) = N,

(P) = fix(D—(z:num> Q :num) [z +— DJ)
_ i _ (z :num>0:num) [z — D]LI
= <D (x : num > succ (z) : num|) [z +— D]
= fix <D|—>{J_,0}I_I |_| Lz : num > succ ()
[z : numDsucc(z): num]]p:{ %i\]]p—l-l
_ {p@%H-Up()%
1 ifpla) =1
C(d+1 ifd#L
- {L ifd=1
where A = x :num D> 2 : num
andp = [z+—d|.

So, we have shown explicitly that

(px - {0,succ (z)}) = eval (ux - {0,succ (z)})

)

:num| [z — d]})

=Nj.

13.3. LANGUAGE FOR ALL REALS 223

Example 115 Consider the LAR term P : realt — real®
P = pxr-Q
Q = {lebu"'7R717R07R17"'7Rb71}

where o denotes function composition. This interesting example corresponds to the
normalization of a general normal product to exact floating point. Let

t = realt — real”
g = [[aﬁ:t><bDi>0373t]Ha7'_>f]
— bDZ- of
o= lwite|"D]) s real” — real™] [z f]
= 'D]
and so
(P) = fix (F = (z:t>Q: 1) [z — F])
(:t>Q:t)fw—Fl= | | (z:t> Rt [x— F]
1€ Z(b)
(x:t> R :t) [x— F| =
D | | Hlz:t> R t] [z — f](d)}
fvecO(RY)-f(e)e F(l{e})
deD
o210 Bl f]—dme { 40 TR0 2 000
Let
o "Dy ([(d)) if info("D;) < d
0(f.i) = dH{ 0, o0] otherwg'se)
F(F) = D | | L{0(f,4) (d)}
fvecC(RT)-f(e)e F(l{e})
1€ Z(b)
deD
and so

lz:t> R, t] [z — fl]=0(f,i)
(x:t> R :t) [x— F| =

224 CHAPTER 13. THEORETICAL LANGUAGES

D] L0/, (d))
f:veec(wd)-}ge)eF(i{e})

(z:t>Q:t)[x— F|=F(F)

(P) = [|F" (D {[0,00]}).

n=0

But

FDw={0,00]}) = D || [{0(e+10,00],9) (d)}
1€Z(2)

info (*D;) if info ("D;) < d
0, o0 otherwise

0(c—[0,00],i) = dH{

FD={pof}) = D= | {hgiﬁgmi)} i info('D;) < d
e

FH(D = {[0,00]}) =
Lginfo EbDi.bDj)} if info("D; ¢"D;) < d

D — || < L{info("Di)} if info (*D;) < d
iez®) | {[0, 00|} otherwise
JEL(Y)
deD
Fr(D—={0,00]}) = D= || L{info("®})|info("D}) < d}
mEN((n+)1)
ceZ(b™

decD

where "D is defined in equation (9.3). Therefore

(P)=D— || L{info("D}) |info(*Dl) < d}
cer%%bNm)
decD

and in particular, for all z € (0, 00)

(P) (L{z}) = L {z}.

In other words, the program P effectively converts an arbilrary unsigned real num-
ber into the unbiased exact floating point representation as defined in section 9.1
(i.e. normalization,).

13.3. LANGUAGE FOR ALL REALS 225

Example 116 A continued fraction by Lambert [{4] for tangent is

1
1

tan (z) =

8 [~
+
—

8 o
+
ISHEN

This can be transformed to

tan y—l y—l
y+1 2y

¥ 2n—|—3(+1) (2n+1Dy+(2n+5)
H< 2n + 5) y—l—y(Zn—l—l) (2n+g)(y+1) >

or pul another way

(33
- (0T DEE TG D)

Jory € [0,00|. This calers for tan(x) in the range x € [—1,1|. Thus, a restricted
program for tan in LAR is

1 1
tan = P<1l_1 11

p -)\a:[; C >(a:,(uf.An.Q(a:,f(n+1)))0)

<2n—|—3 m+1 2n+3 2n—|—5>

Q = M+5 2m+3 m+1 2n+3

where for all x € R>

ot ={ 7 n

For x € [1,—1|, we must repeatedly apply the trigonometric identity

)= 25 =01 on (5) 0 (5)

226 CHAPTER 13. THEORETICAL LANGUAGES

0 110
T‘<—1oo1>

until z € (—1,1). A recursive application of the parallel and squeeze construct can

be used to accomplish this provided that we use an interval way below [1,—1]; for

mstance [%, —%} So, bringing all this together, we have

1 1 2 -1
tan = ug-{PQ[_l 11,R<1[2 1]}

Po=aly g o g)@ Qe e))o)

O — n+3 2n+1 2n+3 2n+5
o n+5 2n+3 2n+1 2n+3

o [55 V(A D))o ([1))

where for all x € R*>

where

(tan (L {=}) = | {tan (2)}.

13.3.6 Redundant If Operator

The redundant if operator is defined in equation (7.7) by
if o 19K x I9F? x (I°K —)" — ¢

: f flx) Ik
nfrz < (],J)thenfelseg—{g(a;) T <

where K € I°R* and F is a dense subset of K. In practice, this definition is not
useful because f and g are usually only defined over I and J respectively. This
means that we need to insert some domain restricting functions between f and
it’s argument x and g and it’s argument x. In terms of the language for all reals,
this gives rise to two flavors of the redundant if operator; namely

sif : real® x (matrix®)? x (real™ — t)2 — 1
sif (0, M., £,g) = {f < [MT] 9. [V])
and

urif : real™ x (matrixJ“)2 X (reaIJr — t)2 —t
urif (@, MN, £,9) = {f < [M7).g< [N}

13.3. LANGUAGE FOR ALL REALS 227

where M and N must be non-singular. The interpretations of srif and urif are
(srif) (z, M, N, f,g)
= (urif) (=, M, N, f,g)
f(MT(z))Ug (NT(z)) if info(M) < z and info (N) < =

_ f(MT (37)> if mfo(M) <<ajon1y
a g (N (x)) if info (N) < z only
{L} otherwise.

The first side condition
interior (/) U interior (J) = interior (K)

becomes

interior (info (M)) U interior (info (N)) = R

and

interior (info (M)) U interior (info (N)) = (0, c0)
respectively. The second side condition
[(o) =g ({a}) it I < {2} and J < {)
becomes
F(MT([{z})) =g (NT(] {z})) if info (M) < {z} and info (N) < {z}.

In practice, these two conditions ensure that one argument in the parallel construct
can be discarded in finite time. In particular, the program srif (P, M, N, F,G),
where (P|) = | {z} for some z € R*, can be reduced with impunity in the
following manner: If info(MT> C (0,00) then

srif (P, M, N, F,G) — F ({|M]) P)
else if info(NT) C (0, 00) then

srif (P, M, N, F,G) — G ({|N7|) P)

else

srif (A°, M, N, F',G) — srif (reduce (A°,1), M, N, F,G)
info (MTe V) C (0,00)
srif (V) , M,N, F,G) — F ({|{MT e Vt]))
info (N7 e V) C (0, 0)
srif (V) , M, N, F'G) — G ({|{NTe VT|))
srif <<O+> Q,M,N,F,G) — srif (Q, <O+> o M, <O+> ON,F,G).

228 CHAPTER 13. THEORETICAL LANGUAGES

Chapter 14

Conclusion

We started this thesis by noting that any real number can be represented by a
sequence of nested closed intervals. We then put this idea into the formal context
of an incremental digit representation. In particular, we presented the decimal,
continued fraction, redundant binary, general normal product and exact floating
point representations in this framework. We pointed out that any such sequence
can be seen as a chain in the continuous domain of extended real numbers.

We then introduced the notion of an expression tree and linked it to the concept
of a directed set in the continuous domain of extended real numbers. We then
outlined a general two part procedure for converting any function with a power
series representation into an expression tree. This general procedure was applied
to the transcendental functions culminating in the introduction of new algorithms
for 7, e and the transcendental functions.

We presented the redundant if statement, which provides a simple and efficient
means to overcome various computability problems during the construction of
various expression trees. Straightforward reduction rules were presented to allow
any valid expression tree to be converted incrementally into the exact floating
point representation.

The digit set in the exact floating point representation has properties that
enable the size of integers to be controlled and the flow of information to be
analyzed in an expression tree. As a result, we introduced an efficient algorithm
for converting an expression tree into the exact floating point representation. The
quantization of information means that the complexity of these reduction rules
is amenable to analysis. Although, both the spacial and temporal aspects of
exact real arithmetic have been tackled in this thesis, for many applications the
spacial overhead is still unavoidably prohibitive. This is essentially because, in
general, the entire history of every variable must be remembered, not just the
last value as in a conventional floating point application. Nevertheless, exact
real arithmetic is still useful for many small applications where the user wants

229

230 CHAPTER 14. CONCLUSION

guaranteed correct answers, such as verification of algorithms. The efficiency of
the exact real arithmetic presented in this thesis can undoubtedly be improved even
further by hardware assisted software and parallel processes. The universality of
the Language for All Reals is still an open question. In other words, can any
computable real function be defined in this language? Another open question is

whether the class of expression trees of the form

0 = T,

is the meromorphic functions.

Appendix A

Computational Adequacy Proofs

This appendix contains the proofs for each lemma and proposition in chapter 13.

Proof of Lemma 69:

“=". Assume [P] C eval (P). Suppose [P] = [X]. Note that [X] # L.
Therefore [P] = eval (P). Note that [X] = eval (X). Therefore P —* X. “<”.
Assume [P] = [X] implies P —* X. Fither [P] = L or [P] € BUN. Consider
[P] = L. Clearly |[P] C eval (P). Consider [P] € BUN. Clearly [P] = [X].
Therefore P —* X. So, eval (P) = eval (X). But [X] = eval (X). Therefore
[P] =eval (P). A

For L.LPR, the value function value is extended to

(n if P = succ™ (0)
true if P = true
false if P = false

value (P) = ¢ info (V) ifpP=VH
info (M) fP=(M"R
value (R) x value (S) if P = (R,S)
L otherwise.

\

Proof of Lemma 70:

The proof is by induction on the definition of —. The rules P —) with
value (P) = L are trivial.

Basis:

value (M) (V")) = [(M)] ([0, 00])
[[<Mo V+>]]
value <<M ° V+>)

I

231

232 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

value <<M> <<N+> P)) = [{(M)] ([0, o0])
C [(MeNT)[([0,0))
= value <<M0N+>P).

Inductive Step:

value (P) C value (R)
value (P, Q) = (value (P) ,value (Q)) C (value (R) ,value (Q))) = value (R, Q)
value (@) C value (5)
value (P, Q)) = (value (P) ,value (Q)) C (value (P),value (S5)) = value (P, S)
value (P) C value (Q)

value (M) P) = [{(M)] ([0, 0c]) = value ((M) Q)

Proof of Lemma 71:

The proof is by induction on the definition of —. The deterministic rules are
trivial.

Basis: Trivial

Inductive Step:

e Pairing - If P — R and () — S then

Q) — (RQ)
— (&,9)
(P,Q) — (P,59)
— (R,9).
e Hirst projection - If) — S then
fst(P,Q) — fst(P,95)
— P
fst(P,Q) — P
e Hirst projection - If P — R then
(PQ) — fst(R Q)
— R
fst(P,Q) — P
— R.

233

e Transformation - If P — () then

() (N P) = (MeN)P
— <M.N+>Q
(M) ((NF) P) - — (M) ((NT) Q)
— <M.N+>Q
e Transformation - If P = (V') then
(My((Nt)P) — (MeNTYP
— (MeN"eV")
(M) ((NT)P) — (M)(NTeVT)
— (MeN"eV")
e Transformation - If P = (O") Q then
(M) ((NT)P) MeN*)P
MeNte O+> Q

Ll

(M) ((N7) P)

e Transformation - If P — () then

e Transformation - If () — S then
(T ((V1).Q)

() (V). Q)

Ll

234 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

e Transformation - If Q = (W) then

TV.Q) = (TeVha
— (TeVieWw")

TV).Q) = (TeWH){V!)
— (Te,WheVH)

e Transformation - If Q = (O") S then

() ((V1).Q) —
(T o V+OO+>S
§T°2O+>(< V.S

T.Q O+ o V+>S

(1) (V). Q)

bl

e Transformation - If () — S then

(1) (M) P.Q) — (T e M")(PQ)
— (T oy M) (P,5)
(T)y((MTYP,Q) — (I)((M*')P,S)
— (T oy M) (P,5)

e Transformation - If Q = (W) then

(T)y((M*)P,Q) — (T M")(P,Q)
- <T.1M+.2W+>P
(1) ((MT)P,Q) — (T e, W) ((M")P)
— <T02W+0M+>P.

e Transformation - If P = (O1) S then

(1) (M) P,Q) — (T e M")(P,Q)

— <T.1M+.20+>(P,S>
(1) (MT)P.Q) — (T'e0%) ({(M")P,5)

— (Te, 0" oy M*)(P,5). W

235

Proof of Lemma 72:
The proof is by induction on the definition of —. Trivial. W

Proof of Lemma 73:
The proof is by induction on the structure of P. Trivial. B

Proof of Proposition 74:

Assume P is an LPR program. But P — @ implies [P] = [@]. Therefore,
P —* @ implies [P] = [Q]. But value (P) C [P] and value (@) C [@]. Therefore
P —* Q implies value (@) C [P]. Therefore | |{value (Q)| P —* Q} C [P]. But,
eval (P) = | |{value (Q)| P —* Q}. Therefore, eval (P) C [P]. B

Proof of Lemma 75:

“=". Assume P is computable. Therefore, [P] C eval (P). Consider a < [P].
So, a < eval (P) = | |[{value (Q)| P —* Q}. Therefore, 3Q : P —* @Q such that
a C value (Q). “«<”. Trivial. &

Proof of Lemma 76:

Consider computable (). Consider ¢ < [PQ]. But, [PQ] = [P]IQ]- By
continuity of [P], 3b < [@Q] such that a < [P]b. By computability of @), IR :
() —* R such that b C value (R). But, 35 : PQQ —* S such that [P] (value (R)) C
value (S). By monotonicity of [P], [P]b T [P](value(R)). So, a < [P]b C
[P] (value (R)) T value (S). Therefore, a T value (S). B

Proof of Lemma 77:
Consider (P, Q). The function z — y +— (z,y) is clearly continuous. So, we
only need to show that

VR:P—="R-VS:Q—="5-3D:(P,Q) =" D-

(value (R) ,value (S)) C value (D)

for all closed computable terms P and). Let P and) be closed computable
terms and consider R : P —* Rand §:Q —* S.

(P,Q) =" (P,S) =" (R,S). 1

Proof of Lemma 78:

236 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

Consider fst(P). The function z — fst(z) is clearly continuous. So, we only
need to show that

VQ: P —"Q- 3R :fst(P) =" R - fst (value (Q)) C value (R)

for any closed computable term P. Let P be a closed computable term and

consider () : P —* Q.

e Consider value (Q) = L.
fst (P) —* fst (Q).

e Consider @ = (R, S).

fst(P) =" fst ((R,S)) — R.
Similarly for snd (£). B

Proof of Lemma 79:

Consider P —* Q. Clearly (M) P —* (M) Q.

e Consider value (Q)) = [0, o).
(M) Q-

e Consider @ = (V7).
(M)Q=(M){V") = (MeVT').
e Consider Q = (N1)S.

(MYyQ=(M)((N")S) = (MeN")S. 1

Proof of Lemma 80:
Consider P —* Q. Clearly (1) P —* (T) Q.

e Consider value (Q)) = L or ([0, 0], [0, 00]).
— Consider [T'] € T™.

<T> Q N <Thead> <<Ttai1> Q)]

237

— Consider [T] ¢ T™.
(1) Q.
e Consider Q = (A7, (V3)).

(HQ = () (A7, (V)
— (T oy Vy) A].

e Comnsider Q = (A7, (Ny) Ss).
— Consider [T ey Ny] € Tt.

<T> Q = <T> (A(f; <N2> 52)
— (T o3 Ny) (A7, 52)

= (10 o)) (T 0y o)™} (A5,5))
— Consider [T o9 Ny| ¢ T.

<T> Q = <T> (A(f; <N2> 52)
— <T (D) N2> (Ai, SQ) .

e Consider @ = ((V4), A3). Similar to @ = (A3, (V2)).
e Consider Q = ((V1), (V).

(T)Q () (V1) , (1))
<T 4 V1> <V2>

(T'o1 VioVs).

Lol

e Consider @ = ((V4), (Ng) Ss).

(1 Q (T) (V1) , (N2) 5s)

— (e V1) ({N2) 59)

— <T .1‘/1.NQ> SQ.

e Consider @ = ((N1) S1, A3). Similar to @ = (A3, (Na) Ss).

e Consider @ = ((N1) S1, (V). Similar to @ = ((V1), (N2) Sa).
e Consider @ = ((Ny) S1, (Ng) Sa).

238 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

— Consider [T o1 Ny o Ny| € T*.

<T> Q = T> (<N1> S1, <N2> 52)
o Vi) (S1, (V2) S2)

o Nyo N2> (51, 52)
- <(T o Ve NQ)head> (<(T o Nyeo NQ)“*“> (S, 52)) .

(
— <T
— <T
— Consider [T ey Ny o Ny| ¢ TT.

<T> Q = <T> (<N1> S1, <N2> 52)
(T o1 Ny) (S1, (Vo) So)
<T L1 Nl [] N2> (Sl, SQ) . .

—
—

Proof of Lemma 81:

e Consider (P) : real*. The function [Az - (x)] is continuous. So, we only need
to show that

VQ:P—="Q -3JR: (A\z-(x)) P =" R- [x- ()] (value (Q)) C value (R)

for every closed computable term P. So, let P be a closed computable term

and consider Q : P —* Q.
— Consider Q = X°.
(Az - (z)) P — (P) =" (Q) = (X°).
— Consider Q = X.
(Az - (z)) P — (P) =" (Q) = (X).

e Consider (P) @ : real”. The function [Az- {x)] is continuous because Mébius
transformations are continuous. So, we only need to show that

VR:P—="R-YS:Q—="5-3D: Az (z)) PQ =" D-

[Az - (z)] (value (R)) (value (S)) C value (D)

for all closed computable terms P and (). So, let P and () be closed com-
putable terms and consider R : P —* R and S: @Q —* S.

239

— Consider R = X°.
(Az - (2)) PQ — (P)Q =" (R) Q = (X") Q.

— Consider R = X. By Lemma 79 and Lemma 80, there exists D :
(X)Q —* D such that [(X)] (value (S)) = value (D).

A () PQ—=(P)Q—="(X)Q—="D. 1

Proof of Lemma 82:

The proof is by structural induction on P. Let ¢ be a substitution of closed
computable terms for the free variables in P. Thus, we must show that ¢P is
computable.

e Lor P =z, 0, true, false, succ(Q), pred(Q), zero(Q), if Q then Relse S or QR,
P is computable because it is in PCF.

e bor P = A\z.QQ, we must show that R = (Ax.0Q)P, P, ... P, is computable if
PR ... P, are closed computable terms and R has ground type t.

— For t = num or bool, R is computable because it is in PCF.

— For t = real™ or s x t, observe that
R — ([Pl/QT](O'Q))PQP?, Pn == ((O'[Pl/QT])Q)PQP?, -Pn7

which we will call S. But, S is computable because () is computable.
Therefore, [R] C eval (R) because [R] = [S], eval (R) = eval (S) and
[S] E eval (S).

e For P = px.(), we must show that R = SP P, ... P, where S = pz.0() is
computable if Py, P, ..., P, are closed computable terms and R has ground

type ¢.

— For t = num or bool, R is computable because it is in PCF.

— For t = real’ or r x s, define S™ by

S = pxax
St = (Az.oQ) S™.

240 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

It is easy to show by induction on n that [S] = | |7 ,[S"]. Clearly, S™
is computable for all n € N. Let o < [R].

[B] = [SIIALLR] - - (5]
= <|_| [[5"]]> (P[P - 18]

n=0

o0

= || IS"IPIIP - [PaD)

n=0
o0

= | |[s"P~p... P

n=0

However, dn € N such that a < [S"P P ... P,], therefore 35, :
S"PPy... P, —* S, such that a C value(S,) because S™ is com-
putable. Therefore 3R, : R —* R, such that value (R,) = value (S,)
by a straightforward extension of the Unwinding Theorem [29).

— For P = (Q, R). Proved in Lemma 77.
— For P =fst(Q) or snd(Q). Proved in Lemma 78.
— For P = (Q). Proved in Lemma 81. W

Proof of Lemma 85:

f@ =] 7w =7F(x).n

2L g

Proof of Lemma 86:

The proof is by induction on the definition of —. The rules P —) with
value (P) = L are trivial.

Basis:

value (fst (P,Q)) = fst(value (P),value (Q))

= value (P)

value (snd (P, @Q)) = snd (value (P),value (Q))
= value (@)

value ([M) (V")) = info(M)

C info (M ° V+)

241

= value ([M e V™))

value (M) ((N*) P)) = info(M)
info (M e N™)
value ([M e« N*) P)
info (M)

= value ([M) P)
value (M) (V*)) = [(M)] ([0, 0]
(0 0V
value <<M ° V+>)
value ((M) ((NTYP)) = [(M)]([0,o0])
[(M e N*)]([0,00])
value ((M e NT) P)
value (M) A%) = [(M)] ([0, o0])
value ((M) P)

I

value ([M) A°)

I

I

Inductive Step:

value (P) C value (R) value (Q)) C value (S)

value (P,Q)) = (value (P) ,value (Q))) C (value (R) ,value (S)) = value (R, S)
value (P) C value (Q)
value (P, X') = (value (P) ,value (X)) C (value (@), value (X)) = value (@), X)
value (P) C value (Q) -
value (X, P) = (value (X) ,value (P)) C (value (X) ,value (Q)) = value (X, Q)"

Proof of Lemma 87:
The proof is by induction on the definition of —. Trivial. W

Proof of Lemma 88:
The proof is by induction on the structure of P. Trivial. B

Proof of Proposition 89:

Assume P is an LAR program without the parallel construct. But P — @
implies [P] = [Q]. Therefore, [reduce (P,n)] = [reduce (P,n+ 1)]. Therefore,
[P] = [reduce (P,n)] for all n € N. But value (reduce (P,n)) C [reduce (P,n)] for
all n € N. Therefore, step (P, n) T [P] for all n € N. Therefore | |>° ,step (P,n) C
[P]. But, eval (P) =| |7 ,step (£, n). Therefore, eval(P) C [P]. B

242 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

Proof of Lemma 90:

“=". Assume P is computable. Therefore, [P] C eval (P). Consider a < [P].
So, a < eval (P) = | |>° ,step (P, n). Therefore, 3n € N such that a C step (P, n).
“<". Trivial. B

Proof of Lemma 91:

Consider computable (). Consider ¢ < [PQ]. But, [PQ] = [P]IQ]- By
continuity of [P], there exists b < [Q] such that a < [P]b. By computability of
@, there exists n € N such that b C step (@), n). But, there exists m € N such that
[P] (step (@,n)) C step (PQ,m). By monotonicity of [P], [P]b C [P]step (Q,n).
So, a < [P]b C [P] (step (Q,n)) C step (PR, m). Therefore, a C step (PQ,m). B

Proof of Lemma 92:

We only need to check the computability of those constructs that appear in
the new reduction rules. Consider succ(P). The function x — succ (z) is clearly
continuous. So, we only need to show that

Vn € N-3m € N - succ (step (P, n)) C step (succ (P),m)

for any closed computable term P. Let P be a closed computable term and n € N.
Let

i=pn-(3s € N.step (P,n) =succ’® (0)).

e Consider 7 > n.

succ (step (P, n))
= 1
step (succ (P),0).

e Consider i < n. Clearly i # oc.

succ (step (P, n))
= succ (step (reduce (P,i) ,n — i))

(
(

succ (step (succ (0),n—1))
(

step (succ®" ,n — z)

step (succ (succ (0)),n+1—1)
= step (succ (reduce (P,i)) ,n+ 1 — i)
= step (succ(P),n+1).

243

Similarly for pred (P), zero (P) and if PthenQelse R. B

Proof of Lemma 93:

Consider (P, Q). The function z — y +— (z,y) is clearly continuous. So, we

only need to show that

Vn,m € N-3r € N (step (P,n),step (Q,m)) C step ((P,Q),r)

for all closed computable terms P and). Let P and) be closed computable

terms and consider n,m € N.

(step (P, n), step (Q,m))

= step(

Proof of Lemma 94:

C (step (P,max(n,m)),step (@, max (n,m)))
= value ((reduce (P, max (n,m)) , reduce (@, max (n,m))))
(P,Q),max(n,m)). R

Consider fst(P). The function z — fst(z) is clearly continuous. So, we only

need to show that

Vn € N-3dm € N . fst (step (P, n)) C step (fst (P) ,m)

for any closed computable term P. Let P be a closed computable term and n € N.

Tet

i=pn- (step(P,n) =

e Consider 7 > n.

(@ R)).

fst (step (P, n))
= 1
= step (fst (P),0).

e Consider i < n. Clearly i # oc.

fst (step (P, n))

fst (step (reduce (P, i) ,n —i))
fst (step ((Q, R) ,n —i))

step (Q,n — 1)

step (fst ((@, R)) ,n+ 1 — 1)

(
step (fst (reduce (P,)) ,n+ 1 —4)
step (fst (P) ,n+1).

244
Similarly for snd (£). B

Proof of Lemma 95:

APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

The function x — y +— x <y is clearly continuous. So, we only need to show

that

Vn € N-dm e N. [P<] (step (Q,n)) C step (P < Q,m)

for all closed computable terms P and). Let P and) be closed computable

terms and consider n € N. Let

i = pn - step (Q,n) C (0,00).

e Consider 7 > n.

[P<] (step (Q, 7))

e Consider i < n. Clearly i # oc.

= step (P <Q,0).

— Consider reduce (@),7) = [V). Using the computability of P, there exists

m € N such that

[P] (step ({[V]) ;7 — 7)) T step (P

Therefore

[P<] (step (Q, 7))

— Consider reduce (Q,i) =
exists m € N such that

[P] (step ({|M]) B, n —i)) C step (P

I

(VD) ,m—i—1).

[P<] (step (reduce (Q,7) ,n — 7))
[<] (step ([V) ,n — 1))

[P] (step ((|V]} ,n — 1))

step (P ({|V])) ,m —i—1)
step (P < [V} ,m — i)

step (P < reduce (Q,4) ,m — i)
step (P <@, m).

[M) R. Using the computability of P, there

((IM[) B),m —i—1).

245

Therefore
[P<] (step (@,n)) = [P<] (step (reduce(Q,i),n — 1))
= [P<](step([M) B, n —1))
= [Pl (step (| M]) B, n — 7))
C step (P ({|M]) R),m —i—1)
= step (P < [M)R,m—1)
= step (P < reduce (Q),i),m — i)
= step(P<@Q,m). R
Proof of Lemma 96:
Consider [M].
e Consider P = A° — Q.
M|P = [M]A
— [M]Q
e Consider P = [V).
(M]P = [M][V)
— [MeV)
e Consider P = [N) (V') — [N e V).
(M P = [M]([N) (V"))
— [MeN)(V")
— [MeNeVt)

e Consider P = [N) ({0 Q) — [N e O Q.

= [M](IN) ((0")Q))
— [MeN)((0")Q)
— [MONOO+> Q.

246 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

e Consider P = [N) A° — [N) Q.

=
Y
Il

Ll

Similarly for (M), (M). R

Proof of Lemma 97:
Consider [M]. The proof is by induction on n € N.
Basis:

reduce ([M] (reduce (P,0)),1) = reduce ([M] P,1).

Inductive Step: Assume
reduce ([M] (reduce (P, n)),1) = reduce (M| P,n+1).
Using lemma (96)

reduce ([M] (reduce (P, 1)) ,1) = reduce ([M] P, 2)
reduce ([M] (reduce (P,n+1)),1) = reduce((reduce (P,n),1)),1)
= reduce ([M] (reduce (P,n)),2)
= reduce (reduce ([M] (reduce (P,n)),1),1)
(
(

M| (reduce

.—‘.—‘

= reduce (reduce (M| P,n+1),1)
= reduce ([M]P,n+2).

Similarly for (M), (M). R

Proof of Lemma 98:
Consider [M].

e Consider P = A° — Q.

[[M]] (value (P)) = [[M]] (value (A%))
[[M]] (R*)

R

= value ([M] Q)

= step ([M]P,1).

247

e Consider P = [V).

[[M]] (value (P)) [[M]] (value ([V)))
[M] (info (V))
info (M e V)

value ([M o V))

step ([M][V),1)

= step ([M] P, 1).
e Consider P = [N) Q.
[[M]] (value (P)) = [[M]] (value ([V) Q))
— [M] (info (V)
info (M e N)

value ([M e N) Q)

step ([M] (V) Q), 1)
= step ([M]P,1).

Similarly for (M), (M). R

Proof of Lemma 99:
Consider [M] and n € N. Using Lemma 98 and lemma (97)

[[M]] (step (P,n)) = [[M]] (value (reduce (P,n)))

step ([M] (reduce (P, n)),1)

value (reduce ([M] (reduce (P, n)), 1))
(
[M

= value (reduce ([M] P,n + 1))

= step([M|P,n+1).

Similarly for [M), (M) by symmetry in the matrix rules. H

Proof of Lemma 100:
Consider [T].
Consider P = B°.

step ([7'] (reduce (P, 1)) ,n)
= step([T|P,n+1).

248

Consider P =

Consider P =

Consider P =

Consider P =

Consider P =

APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

(V). [W)).

step ([1') (reduce (P, 1)) ,n)
= step([T] P,n).

([M) (V) [W)).

step ([T'] (reduce (P, 1)) ,n)
() ([0 V) 1) 0
step ([T o (M V+) 0W> N0
<T01M02 <V+>,n—|—1>
step ([T P,n+ 2).

step

1 1 I

([M) (Mg) R, [W)).

(
= ([T]([M°M+> [W>)un>
C stepE[Tol (M o M) o, W) R,n)
(
)

—

Tei MeyW <MJ“>Rn—|—1)
= step([T|P,n+2).

T| (reduce (P, 1)) ,n)

T) (M) (reduce (45, 1)) , W) , n)
o, M oy W) (reduce (A7,1)),n)
o Moy W)Al n+1)

=
—
=
0]
Q.
c
(@]
(0]
—
R
—
~—
~—
~—

(
step ([T] ([M e V') [N e W)) , n)

[T°1 (M.V+> ° (N.W)> ,n)
(XM (X o VI e W) ,n+1)
[Xheed) <Xtaﬂ>/ (V) , (W), n+ 2)
step ([X> <<V+> ; <W>> Nt 3)
step ([T| P,n+4).

1t
1]
—
o
o

I
0
[l
0]
©
N TS N

249

where

X=Te Me, N.
Consider P = ([M) (Mg) R, [N) (W)).

w0

—+

[¢]
©
|
~~

([T (reduce (P, 1)) ,n)
step ([T] ([M e My) R, [N e W)) ,n)

[T 01 (M e My) ey (NeW))R,n)
o) (X1 o) MG oy W) Ryn 4 1)
0 (X (04g) B, (W) .+ 2)
step ([X) ((M") R, (W)) ,n+3)
step ([T] P,n + 4)

1
1]
(=g
o
©

I

0

(g

[0}

o
TN TN T

where

X=Te Me, N.
Consider P = ([M) Aj,[N) (WT)).

s
T

[i—

(reduce (P,1)),n)

([M) (reduce (A7,1)), [N e WH)) n)
o, M ey <N0W+)> (reduce (A7, 1)),)
.1M.2(N.W+)>A n+1)

— step ([XP° ><Xtl wt >A n—|—2)

step (([X"4) (X" (47, (W) ,n +3)

step ([X) (A7, (W) .n+4)
step ([T] P,n + 5)

step (

[—

step
step

1t
NN

(
([
step ([
([

where

X_T.lM.QN.

Consider P = (<M > < >)
step ([T'] (reduce (P,1)) ,n)
= step ([([M o M+> [N No') S) .n)
C step ZhdZtl))

(
step([Xhead) (Yhead) (Yo 1> (R, S),n—l—l)
step([Xh d> n—|—2)

250 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS
— step ([xP0) (X (M) R, (NG) S) m +3)
= step ([X) ((My') R,(Ny)S) ,n+4)
= step ([T P,n+5)
where
X = Te Mey N
Y = X"le; M, ey N}
7 = T.1<M.MJ>.2<N.NJ>.
Consider
P = ([M) AL IN) (No') (M) - (V) (W)
step ([7'] (reduce (P, 1)) ,n)
~ e reduce (A7, 1)) .
- s (10 R Yy))
C step ([ZsoY)" 102W+> (reduce (A7,1)),n)
= step ([Zs;o V" oa W) A7 n+ 1)
= step(<YtloW>A n—|—2)
= step(Ytl (A7, <W+>>,n—|-3)
— step<[ZZ (yhead) (y ey << L) >>,n+33—|—1—3@'>
— step ([2) Vs < 0 Ym0 23
= step (1) (V") (A5, (N,)+ (NSY (W) o+ 8543 - 3i)
= step (([X) (g (V) (AT, (V) o (N (W) o+ 35+ 4)
= step (|X hd><Yo>(<) (NG) (W) n+ 35+ 5)
= step ([XP) (X1 (A7, (N)+ (NS) (W), + 35 +-6)
= step((< > < ><W+>>,n—|-38+7>
= step ([T] P,n+ 3s+ 8)
where

X = T.lM.QN

251

o tail +
Yo = X'"le, N,
ZO — Xhead ° }/Ohead
o tail +
Yn+1 - Yn) Nn+1

_ head
Tny1 = ZneYad,

Consider

P = ([M) A}, [N) (Ng") (NI°) - (N") 45).
step ([7'] (reduce (P, 1)) ,n)
s (1 (ST vy))
[Zs) <Y;aﬂ>/ (reduce (A7, 1), reduce (A5, 1)) ,n)

(
(

step ([ZS> (VY (A3, A3) o+ 1)
(

step ([Z5) (Yot (yisy < By v Ao>,n—|—33—1—3@'>
[Z:) (Yipa) (AL (NG) - (NJSY A3) ,n+ 3s — 3i)

20 (VY (AT (N)+ (V) A5) m 35+ 1= 3i)

Yo) (A7, (Vi) -+ (NJ) A5) ,m+ 35 + 3)
[(XY (A7, (NG) -+ () A5) m+ 35+ 4)

step ([X) (A7, (Ng) -+ (NS) A3) ,n+3s +5)
([T) P,n+ 35+ 6)

(
(
step (([X"4) (Vg™) (V™)' (A7, (N)+ (NF) A5) m+ 35 + 2)
({
(

X =T L a1 M (D) N
}/0 — Xtail o NO+
ZO — Xhead ° }/Ohead

o tail +
Yo = Yi*le,Ni,
head

D1 = ZyneYhesd

Consider P = ([M) A3, [N) A3).

step ([7'] (reduce (P, 1)) ,n)

252

where

APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS
step ([T'] ([M) (reduce (A}, 1)), [N) (reduce (A3, 1))) ,n)
(Xherd) Xhead) (reduce (A], 1), reduce (A3, 1)) ,n)
(Xhead Xhead (A(i; A;) n ‘I‘ 1)

step ([X) (A7, A3) ,n+ 2)
[T](IM) AL, IN) A3) n +3)
(1] P,n + 4)

step

—

step

(
step (
step (

X:T.lM.QN.

Consider [T)'.
Consider P = C°.

step (|T)’ (reduce (P, 1)) ,n)
= step (I P,n+1).

Consider P = B. Similar to [I'] by symmetry in the tensor rules.

Consider P =

Consider P =

where

(V) 43).

" (reduce (P, 1)) ,n)
"({V),reduce (43,1)) ,n)
T e V) (reduce (A5,1)) ,n)
= step([T o1 V) A5 n+1)

reduce(P 1)),n)

) reduce (A2,1)))
T01< +)> (reduce (A3,1)) ,n)
T V)Y A5 n+1)
Xhead> <Xta11 ° V+> A;,n—l— 2)

[Xhead> <Xtaﬂ>’ <<V > 7 2) 4 3)

=
i
<

=
<
=
2
|
N

253

Consider

I

P = ({M) (Mg) (M) (M) (V) A3).

step ([T')’ (reduce (P, 1)) ,n)
step ([T <<M M+> <M > < > <V+> , reduce (A3, 1)) ,n)
step ([Z; o Y, *" @1 V1) (reduce (A3,1)) , n)

step([Z, oY o) V+>A n—l—l)

step ([< e V) A3 n 4 2)

step

v (V1) 45) n+3)

‘ + =+ +
step <[ZZ Yz}ild YZtHl <<Mi+2> (M) (V) >,n—|—37~—|—1—3@'>

A
[Z:) Vi) (< M) - (M) (V
126 (VI (M) (M) (V) A5) m o+ 3+ 3 = 3i)

step +>,A;),n—|—3r—|—2—3i>

e

step ([X"*%) (¥ << > (M) (V) 43) n+3r+5)
step (([X"4) (X1 (M) (M1) (V') 45) .+ 37 +6)

step ([X) << > < ><V+> A),n—l—?w—l—?)

(
(
step (([X74) (Y=) (V) ((MF) - (MY (V') A5) o+ 30+ 4)
(
(
(I
step ([T)’ Pn—|—37"—|—8)

X = Te M

}/0 Xtail o, MO+

ZO Xhead Yh ad
Yot Yol ey My
Tnp1 = Zne Y50

Consider

P (M) (M) (M) - (M) A5, 45).

step ([T)’ (reduce (P, 1)) , n)
step ([T>’ <<M M+> <M > <M+> A7, reduce (A5, 1)))

254 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

r

= step (12,) (V") (47, 45) 0 +1)

C step ([Zr> <Ytaﬂ>/ (reduce (A7, 1), reduce (A3, 1)) ,n)

: + e °
= step <[ZZ-> (Vi) vty < %*” M 4 > 3 —1— 3@)
2
(

[Z:) Vi) (M) -+ (M,7) AT, A3) n + 3r = 3i)
1) (VY (M) o (M) A5 A5) n 4+ 3r 41— 31)

(
- Step([Xhead><yhead><ytaﬂ> (M) (M) AT, A7) ,n+37~+2)
([Xhead> << > <M+>Ai7A°> n—|-37~_|_3>
(X)X () -~ (M) A3, 45) o+ 3 4. 4)

= step (|X) ((Mg) (M) - (M,") A1, A3) ;n + 3r + 5)
= step ([T)' P,n + 3r +6)

X = Te M

}/0 — Xtail o, Mdi»

ZO — Xhead ° }/Ohead
Yn+1 — Ytail o M:,;l

head
T = ZyeYhed,

Consider P = ((M) A3, A3).

(reduce (P, 1)), n)

((M) (reduce (A}, 1)), reduce (43,1)) ,n)
Xhead) <Xtaﬂ>/ (reduce (A7, 1), reduce (A3,1)) ,n)

I
1]
[l
o

<

I
1]
[l
o

<

I

1]

—+

[¢)

o
N TN T N

Xhead> <Xtai1>/ (Ai,A;) n —I— 1)

||
9
[0}
©
>
e
2
3
+
N

where

X=Te M.
Consider (T). Similar to [T"). B

255

Proof of Lemma 101:
Consider [T']. Consider m € N. The proof is by induction on n € N.
Basis:

step ([7] (reduce (P,0)) ,m) = step ([T'] P,m).

Inductive Step: Assume there exists 7 € N such that
step ([7'] (reduce (reduce (P, 1) ,n)),m) C step ([T'] (reduce (P, 1)) ,i).
Using Lemma 100, there exists » € N
step ([7'] (reduce (P, 1)) ,4) C step ([T] P, 7).
Therefore

step ([7'] (reduce (P,n + 1)) ,m) = step ([T] (reduce (reduce (P, 1),n)),m)
step ([1'] (reduce (P, 1)) ,1)
step ([T P,r) .

NN

Similarly for [T, (T')". B

Proof of Lemma 102:
Consider [T].

e Consider P = B°.

L[] (value (P))
— R
= step ([T P,0).

e Consider P = ([V), [W)).

(7] (value (P))

— [[7]] (value ([V) , 7))
= [77] (info (V') ,info (W))
= info(T e VeW)

= value ([T o1 V e W))

= step(ITI(IV) . [W)), 1)
= step([T] P, 1).

256 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

e Consider P = ([V),[N) R).

[[7]] (value (P))
[[7]] (value ([V) , [N) R))

[77] (info (V) ,info (V)
info (7" ey V e N)

= value ([T o; V e N) R)

step ([([V)),[N) R) ;1)

step ([1'] P, 1).

e Consider P = ([M) Q,[W)). Similar to P = ([V),[N) R).

e Consider P = ([M) Q,[N) R).

— Counsider info (7" e; M o3 N) = R>™.

I
=X
(o]

/\/\;l:
T~
<
=
=
[¢]

T.lM.QN)

= value ([(T o, M e, N)head> ([(T o, M o N)taﬂ> (@, R)))
([To1 M ey N)(Q, R), 1)

step ([T ([M) Q,[N) R),2)

step ([T'] P,2) .

Similarly for [T, (T). &

Proof of Lemma 103:

257

Consider [T'] and n € N. Using Lemma 102, there exists i € N such that
I[T]] (step (P, n)) = step (|T] (reduce (P, n)) ,i).
Using Lemma 101, there exists m € N such that
step ([7'], (reduce (P, n)) ,i) C step ([T] P,m).
Therefore

I[T]] (step (P,n)) = step(|T] (reduce (P, n)),i)
C step([T]P,m).

Similarly for [T, (T')'. W
Proof of Lemma 104:

e Consider [P) : real™. The function [Az- [z)] is continuous. So, we only need
to show that

Vne€N-dm e N [Az - [z)] (step (P, n)) C step ((A\x - [z)) P,m)

for every closed computable term P. So, let P be a closed computable term
and consider n € N. Let

i = pn - reduce (P,n) = X.

— Consider 7 > n.

Do [2)] (step (P,n) = R
= step ((Az - [z)) P,0).

— Consider 7 < n.

Do - [2)] (step (Pn) = [Aa- [2)] (value (X))

e Consider (P) : real’. Similar to [P) : real™.

258 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

e Consider [P] @ : real™. The function [Az - [z]] is continuous because M&bius
transformations are continuous on the extended real line. So, we only need

to show that
Vn,me&N-JrcN:

[Az - [2)] (step (P, n)) (step (Q,m)) E step (A - [x)) PQ,)
for all closed computable terms P and (). So, let P and () be closed com-
putable terms and consider n,m € N. Let

i = pn - reduce (P,n) = X.

— Consider 7 > n.

[Aa - [2)] (step (P, n)) (step (@, m))
= [Az-)] (L) (step (@, m)
= R®
= step ((Az - [2)) PQ.0).

— Consider i < n. Using Lemma 99 and Lemma 103, there exists r € N
such that

[[X]] (step (Q,m)) T step ([X]Q,r —1—1).
Therefore

[Az - [z]] (step (£,n)) (step (Q,m))
[Az - [x]] (value (X)) (step (Q,m))
[X]] (step (Q, m))
step ([X] Q,r —1 —1)
= step ([reduce (P,1)) Q,r — 1 —1i)

(I

(

I

= step([P)Q,r —1)
= step((Az - [2)) PQ,7).
e Consider [P) Q : real’. Similar to [P]Q : real™.
e Consider (P)Q : real”. Similar to [P]Q : real™. B

Proof of Lemma 105:
The proof is by structural induction on P. Let ¢ be a substitution of closed
computable terms for the free variables in P. Thus, we must show that ¢P is

computable.

259

e Lor P =z, 0, true, false, succ(Q), pred(Q), zero(Q), if Q then Relse S or QR,
P is computable because it is in PCF.

e bor P = A\z.QQ, we must show that R = (Ax.0Q)P, P, ... P, is computable if
PR ... P, are closed computable terms and R has ground type t.

— For ¢ = num or bool, R is computable because it is in PCF.

— For t = real™, real™ or r x s, observe that
R — ([Pl/QT](O'Q))PQP?, .. Pn == ((O'[Pl/QT])Q)PQP?, .. -Pn7

which we will call S. But, S is computable because () is computable.
Therefore, [R] C eval (R) because [R] = [S], eval (R) = eval (S) and
[S] E eval (S).

e For P = px.(), we must show that R = SP P, ... P, where S = pz.0() is
computable if Py, P, ..., P, are closed computable terms and R has ground

type ¢.

— For ¢ = num or bool, R is computable because it is in PCF.

— For t = real™, realt or r x s define S™ by

S = pxax
S = (Az.0Q) S

It is easy to show by induction on n that [S] = | |7 ,[S"]. Clearly, S™
is computable for all n € N. Let o < [R].

(8] = [SIANA]. .. [P]
= <|_| m) PP .. [Pu]

o0

= || AS" AP - 12])

n=0
o0

= | |[s"PP... B

n=0

However, In € N such that a < [S"PP,...F,], therefore Js, € N
such that a C step (S"P1 P ... P,, s,) because S™ is computable. There-
fore 3r,, € N such that step (R,r,) = step(S"PFPs...F,,s,) by a
straightforward extension of the Unwinding Theorem [29)].

260 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

— For P = (Q, R). Proved in Lemma 93.

— For P =fst(Q) or snd(Q). Proved in Lemma 94.

— For P =(Q < R. Proved in Lemma 95.

— For P =1[Q)], [@) or (Q). Proved in Lemma 104. B

Proof of Lemma 107:

The proof is by induction on the definition of —. The rules P —) with
pvalue (P) = { L} are trivial. Only the parallel rules need to be considered because
we have already shown that the other rules are sound.

Basis:

e Consider P{Q, R} — {PQ, PR}.

pvalue (P {Q, R} : real”)

{ Linfo (M)} if P =[M)
Linfo (M)} if P = (M)
{1} otherwise

= pvalue (PQ) U pvalue (PR)

= pvalue ({PQ, PR} : real”).

e Consider ({P,Q},R) — {(P,R),(Q,R)}.

pvalue (1P, Q} .)

= pvalue ({P,Q}) X pvalue (R)

(pvalue (P) LI pvalue (Q)) , pvalue (R))

(pvalue (P), pvalue (R)) Ul (pvalue (@) , pvalue (R))
pvalue ((P, R)) Ll pvalue ((Q, R))

= pvalue ({(P7 R)) (Qu R>}) :

e Consider (P, {Q,R}) — {(P,Q),(P,R)}. Similar to ({P,Q},R) —
{(PR),(Q R)}.

Inductive Step:

P—-R Q—S5
{P,Q} — {R, S}

e Consider

261

Assume pvalue (P) T pvalue (R) and pvalue (@) T pvalue (.5).

{P.Q})
P) U pvalue (Q)

R) U pvalue ()
{R,S}). W

pvalue

pvalue

I

pvalue

N TN N N

pvalue

Proof of Lemma 112:
Assume P and @) are computable and consider { P,@Q}. The function (Az- Ay -
{z,y})) is clearly continuous. So, we only need to show that

Vn,me&N-JrcN:

(Az - Ay - {z,y}) (pstep (£, 1)) (pstep (Q,m)) E pstep (£, Q) ,7)

for any closed computable terms P and (). So, let PP and) be closed computable
terms and consider n,m € N.

(Az - Ay - {z,y}) (pstep (P, n)) (pstep (Q,m))

(Az- Ay {z,y}) (pstep (P, max (n,m))) (pstep (@), max (n,m)))
(pstep (P, max (n,m))) LI (pstep (@, max (n,m)))

pvalue ({reduce (P, max (n,m)) , reduce (Q), max (n,m))})

pstep ({P,Q},max (n,m)). A

262 APPENDIX A. COMPUTATIONAL ADEQUACY PROOFS

Appendix B

List of Notation

f: X —=Y total function
X ~Y artial function
/ p

L bottom

P (X) powerset

P (X) set of finite subsets

P (X) set of non-empty subsets

— barred arrow notation

N (n) N(n)={0,1,2,... ,n—1}

Z(n) Zn)y={l—-n,2—mn,...,0,1,2,... n—2n—1}
(T0) infinite sequence xg, X1, X3, . ..

(Tn)? finite sequence g, 71, Zs, . . ., Ty,

|G| order of a group

Ha right coset

aH left coset

NG normal subgroup N of G

G/N quotient group of GG by the normal subgroup N
image (6) image of homomorphism 6

kernel (6) kernel of homomorphism #

x lgx conjugate of g by x

GL(n,F) n-dimensional general linear group over F'
I multiplicative group of non-zero elements
la, b closed bounded interval in R

Ix set of all intervals of X

I°X set of open intervals of X

°x set of closed intervals of X

X set of compact intervals of X

width ([a,b]) width ([a,b]) =b—a

la, b la,b] =a

263

264

ob(C)

mor(C)

sre ()

tar (f)

fog

C

LA

MA

|D — E

r Ly

K (D)

Tz

lz

T

Lx

d\, e
UPPER (D)
LOWER (D)
CONVEX (D)

APPENDIX B.

[a, 0] =b

objects of category C
morphisms of category C
source of morphism f
target of morphism f
function composition
information ordering
least upper bound
greatest lower bound
function space

T approximates y

set of compact elements of decpo D
fo=1{yeD|oCy)
lo=1{yeD|yCal
fe={yeD|z<y}
le={yeD|y<a}
step function

upper powerdomain
lower powerdomain
convex powerdomain
set of natural numbers
set of integers

set of rational numbers
set of real numbers
Fuclidean distance
chordal distance
alternative distance
floor of x

ceiling of x

round of x

Euclidean part of x
basement of x

F>* =F U {}
extended real line
extended complex plane

LIST OF NOTATION

all intervals in R* with end-points in F

open intervals in R* with end-points in [F
closed intervals in R* with end-points in [F

compact intervals in R>* with end-points in F

set of functions holomorphic in O

SO EraIeTSg
3 -
L A
Qg
O
Qg
Zm

gHE >0
=

TEEST

o~
e~
~——

— —

agp, 1,09, . .]

SHSTAIE LIS

mod

rif

pif

<e

interior (/)
det (M)

ag-bo, a1.01,a3.b, ..

]

265

ideal completion of abstract basis
empty set

open disc with centre ¢ and radius r
open annulus centre ¢ and radii r and s
radix r positional notation

set of algebraic numbers

set of b-adic numbers

quadratic field for d
() =M In
continuous real domain
algebraic real domain
z = inf ()
Z = sup (x)
z)={y €I°[F] |y <z and T <7}

{
(@)) = {y € I°[F] |
§< [F] |

[IQ
SIS

z) = {y € I°[F] and T <7}

(o)) = {y €I°[F] | y < z and 7 < 7}
continued fraction abbreviation
simple continued fraction abbreviation
golden ratio
natural number
pi
continuation function
L, M Padé Approximant
C table entry
Pochhammer symbol
ordinary hypergeometric function
Kummer confluent hypergeometric function
n-m confluent hypergeometric function
error function
complementary error function
incomplete gamma function
Bessel function of the first kind
integer division
integer remainder
redundant if operator
parallel if operator
quasi-relational comparison
interior of [
determinant of matrix M

266

S<HESHES
++ **

=5

Al R N

o O
3

invariance (M)
order (M)

ged (m,n)

SO'

de

Dy

L

L*

L+

APPENDIX B. LIST OF NOTATION

set of vectors with integer coefficients
set of matrices with integer coefficients
set of tensors with integer coefficients
set of vectors with natural coefficients
set of matrices with natural coefficients
set of tensors with natural coefficients
set of unsigned vectors

set of unsigned matrices

set of unsigned tensors

V' denotes vector

W denotes vector

M denotes matrix

N denotes matrix

O denotes matrix

T denotes tensor

U denotes tensor

first projection

second projection

transpose

dot product

general dot product

left product

right product

interpretation morphism of vector V'
interpretation morphism of matrix M
interpretation morphism of tensor T’
sign of vector V/

group of Mobius transformations
tame inverse of matrix M

trace of matrix M

characteristic polynomial of matrix M
invariance of matrix M

order of matrix M

greatest common divisor of m and n
sign matrix with o € {co,+,0,—}
radix b digit matrix with d € Z (b)
radix 2 digit matrix with d € {—1,0,1}
L=VUMUT

L*=V*uM*UT*

Lt =vtuMtuTt

information in Ift L

basic arithmetic tensor i € {+, —, X, +

head of tensor T’
tail of tensor T’
b@? = del de2 ..
DN = 2pn
expression tree with root node I
matrix square bracket application
tensor square bracket application

Dy

contractivity of matrix M
expansivity of matrix M
underestimate

overestimate

fair strategy

information overlap strategy
outcome minimization strategy
decision function

sign emission function

digit emission function
absorption function

efficient digit emission function
efficient absorption function
number of storage bits required
conservative approximation
abstraction

recursion

substitution

type assignment

typing judgement

one-step reduction relation
reduction relation

standard model interpretation
parallel model interpretation
transformation construct
transformation construct
transformation construct
parallel construct

squeeze construct

standard model to parallel model mapping

268 APPENDIX B. LIST OF NOTATION

Bibliography

[1]

S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 3,
chapter 1, pages 1-168. Clarendon Press, 1994.

A. Avizienis. Signed-digit number representations for fast parallel arithmetic.
IRE Transactions on electronic computers, (10):389-400, 1961.

A. Avizienis. Binary-compatible signed-digit arithmetic. In AFIPS Confer-
ence Proceedings, pages 663-672, 1964.

G. A. Baker. Essentials of Padé approximants. Academic Press, 1975.

H. J. Boehm and R. Cartwright. FExact real arithmetic: formulating real
numbers as functions. In D. A. Turner, editor, Research topics in functional
programming. Almqvist and Wiksell, 1990. The University of Texas Year of
Programming Series.

H. J. Boehm, R. Cartwright, M. J. O’Donnel, and M. Riggle. FExact real
arithmetic: A case study in higher order programming. In Proceedings of the
1986 ACM conference on Lisp and Functional Programming. ACM, 1986.

C. Brezinski. History of continued fractions and Padé approrimants, vol-
ume 12 of Springer series in Computational mathematics. Springer Verlag,

1991.

A. Church. An unsolvable problem in elementary number theory. American

Journal of Mathematics, 58:345-363, 1936.
P. M. Cohn. Algebra, volume 1. John Wiley & Sons, second edition, 1984.

P. Di Gianantonio. A functional approach to computability on real numbers.
PhD thesis No. TD-6/93, University of Pisa-Genova-Udine, 1993.

269

270

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

P. Di Gianantonio. Real number computability and domain theory. In Pro-
ceedings of the 18® International Symposium on Mathematical Foundations of
Computer Science, pages 413-422, Gdansk, Poland, September 1993. LNCS
711.

P. Di Gianantonio. A golden ratio notation for the real numbers. Technical

report, CWI Amsterdam, 1996.

P. Di Gianantonio. Real number computability and domain theory. Informa-

tion and Computation, 127(1):12-25, May 1996.

A. Edalat. Domain theory and integration. Theoretical Computer Science,

151:163-193, 1995.

A. Edalat. Dynamical systems, measures and fractals via domain theory.

Information and Computation, 120(1):32-48, July 1995.

A. Edalat. Power domains and iterated function systems. Information and

Computation, 124:182-197, 1996.

A. Edalat. Domains for computation in mathemetics, physics and exact real

arithmetic. Bulletin of Symbolic Logic, 3(4):401-452, 1997.

A. Edalat and M. H. Escardé. Integration in real PCF. In Logic in Computer
Science. IEEE, Computer Society Press, 1996.

A. Edalat and R. Heckmann. A computational model for metric spaces.

Theoretical Computer Science, (193):53-73, 1998.

A. Edalat and P. J. Potts. A new representation for exact real numbers. In
Proceedings of Mathematical Foundations of Programming Semantics 13, vol-
ume 6 of Electronic Notes in Theoretical Computer Science. Flsevier Science
B. V., 1997. Available from http://www.elsevier.nl/locate/entcs/volume6.html.

A. Edalat, P. J. Potts, and P. Siinderhauf. Lazy computation with exact
real numbers. In ACM SIGPLAN International Conference on Functional
Programming, 1998. To appear.

A. Edalat and P. Stinderhauf. A domain theoretic approach to computability
on the real line. Theoretical Computer Science, 1997. To appear, available
from http://theory.doc.ic.ac.uk/people/Edalat/reals.ps.gz.

M. H. Escardé. PCF extended with real numbers. Theoretical Computer
Science, 162(1):79-115, August 1996.

BIBLIOGRAPHY 271

[24]

[33]

[34]

[35]

[36]

L. Fuler. Commentatio in fractionem continuam qua illustris La Grange
potestates binomiales expressit. Mémoires Acad. impér. Sci. Petersb., 6:3—
11, 1813-1814.

L. Euler. An essay on continued fractions. Mathematical Systems Theory,

18:295-328, 1985.

G. Frobenius. Uber Relationen zwischen den Niherungsbriichen von Poten-

zrethen. J. fir Math. (Crette), 90:1-17, 1881.

J. L. Gersting. Mathematical structures for computer science. Computer
Science Press, third edition, 1993.

R. W. Gosper. Continued fraction arithmetic. Technical Report HAK-
MEM TItem 101B, MIT AT MEMO 239, MIT, February 1972. Available from
ftp://ftp.netcom. com/pub/hb/hbaker/hakmem.

C. A. Gunter. Semantics of Programming Languages: Structures and Tech-
niques. MIT Press, Cambridge, MA, 1992.

G. Hardy. Ramanugan’s collected papers. Chelsea Publishing Company, 1962.

R. Heckmann. Some results in exact real arithmetic. Department of Com-
puting, Imperial College, 1997.

R. Heckmann. The appearance of big integers in exact real arithmetic based
on linear fractional transformations. In Proceedings of Foundations of Soft-
ware Science and Computation Structures (FoSSaCS 98), volume 1378 of
LNCS, pages 172-188. Springer Verlag, 1998.

R. Heckmann. Big integers and complexity issues in exact real arithmetic.
Presented at the Third Comprox Workshop (September 1997 in Birming-
ham). Accepted for publication in ENTCS (Electronic Notes in Theoretical
Computer Science), Volume 13, 1998.

R. Heckmann. Contractivity of linear fractional transformations. In J. M.
Chesneaux, F. Jézéquel, J. [.. Lamotte, and J. Vignes, editors, Third Real
Numbers and Computers Conference (RNC3), pages 45-59, 1998.

J.-C. Hervé, F. Morain, D. Salesin, B. Serpette, J. Vuillemin, and P. Zim-
mermann. BigNum: a portable and efficient package for arbitrary-precision
arithmetic. Technical report.

I. Holyer. Functional programming with Miranda. University College London
Press, 1991.

272

[37]

[38]

[39]

[40]

[41]

[47]

BIBLIOGRAPHY

IEEE. IEEE Standard 754 for Binary Floating-Point Arithmetic. SIGPLAN,
22(2):9-25, 1985.

D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms,
volume 2. Almqvist and Wiksell, 1981.

P. Kornerup and D. W. Matula. An on-line arithmetic unit for bit-pipelined
rational arithmetic. Journal of Parallel and Distributed Computing, 5(3):310—
330, 1988.

P. Kornerup and D. W. Matula. FExploiting redundancy in bit-pipelined ratio-
nal arithmetic. In Proceedings of the 9 IEEE Symposium on Computer Arith-
metic, pages 119-126, Santa Monica, 1989. IEEE Computer Society Press.

P. Kornerup and D. W. Matula. An algorithm for redundant binary
bit-pipelined rational arithmetic. IFEE Transactions on Computers, C-

39(8):1106-1115, 1990.

P. Kornerup and D. W. Matula. FIinite precision lexicographic continued
fraction number systems. In Proceedings of the T IEEE Symposium on
Computer Arithmetic, pages 207-214, Urbana, 1995. IEEE Computer Society
Press.

E. E. Kummer. Uber die hypergeometrische Reihe F(«, 5, x). J. fir Math.,
15:39-83, 1836.

J. H. Lambert. Beitrige zum Gebrauch der Mathematik und deren Anwen-
dung, volume 1 of Zweiter Teil. Berlin, 1770.

D. R. Lester. Vuillemin’s exact real arithmetic. In R. Heldal, C. K. Holst, and
P. L. Wadler, editors, Functional Programming, Glasgow 1991: Proceedings
of the 1991 Workshop, Portree, UK, pages 225-238, Berlin, 1992. Springer
Verlag.

C. Mazenc. On the redundancy of real number representation sys-
tems. Technical Report Research Report 93-16, LIP, Fcole Normale
Supérieure de Lyon, 1993. Available from ftp://ftp.lip.ens-Lyon.fr/
pub/LIP/Rapports/RR/RR93/RR93-16.ps.Z.

V. Meénissier-Morain. Arbitrary precision real arithmetic: design and al-
gorithms. Submitted to the Journal of Symbolic Computation, September
1996. Available from ftp://ftp.inria.fr/INRIA/ Projects/ cristal/
Valerie.Menissier/ submission_JSC.ps.gz.

BIBLIOGRAPHY 273

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

R. E. Moore. Interval Analysis. Prentice Hall, Fnglewood Cliffs, 1966.

J. Myhill. What is a real number? American Mathematical Monthly,
79(7):748-754, 1972.

P. M. Neumann, G. A. Stoy, and E. C. Thompson. Groups and geomelry.
Oxford Science Publications, 1995.

A. M. Nielsen and P. Kornerup. MSB-first digit serial arithmetic. Journal of
Universal Computer Science, 1(7):527-547, July 1995.

H. Padé. Sur la représentation approchée d’'une fonction pour des fractions
rationnelles. Ann. Sci. Ecole Norm. Sup. Suppl., 9:1-93, 1892.

O. Perron. Die Lehre von den Kettenbriichen, volume 1. B. G. Teubner
Verlagsgesellschaft, Stuttgart, 1954.

S. L. Peyton-Jones. Arbitrary precision arithmetic using continued fractions,

1984. INDRA Note 1530, University College London.

G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223-255, 1977.

G. D. Plotkin. Post-graduate Lecture Notes in Advanced Domain Theory
(incorporating the “Pisa Notes”). Dept. of Computer Science, Univ. of Edin-
burgh., 1981.

G. D. Plotkin. A powerdomain for countable non-determinism. In M. Nielsen
and F. M. Schmidt, editors, Automata, Languages and programming, pages
412-428, Berlin, 1982. EATCS, Springer Verlag. Lecture Notes in Computer
Science Vol. 140.

P. J. Potts. The storage capacity of forgetful neural networks. Master’s thesis,
Department of Computing, Imperial College, September 1995.

P. J. Potts. Computable real arithmetic using linear fractional transforma-
tions, June 1996. Early draft PhD Thesis, Imperial College, available from
http://www-tfm.doc.ic.ac.uk/"pjp.

P. J. Potts. A smooth approximation on the edge of chaos. In A. Edalat,
G. McCusker, and S. Jourdan, editors, Proceeding of the Third Imperial Col-
lege Workshop, Advances in Theory and Formal Methods of Computing. Im-
perial College Press, April 1996.

274 BIBLIOGRAPHY

[61] P. J. Potts and A. Edalat. FExact real arithmetic based on linear frac-
tional transformations, December 1996. Imperial College, available from
http://www-tfm.doc.ic.ac.uk/"pjp.

[62] P. J. Potts and A. Kdalat. Exact real computer arithmetic.
Technical Report DOC 97/9, Imperial College, March 1997.
http://www-tfm.doc.ic.ac.uk/"pjp.

[63] P.J. Potts, A. Edalat, and M. H. Escardé. Semantics of exact computer arith-
metic. In Twelfth Annual IEEE Symposium on Logic in Compuler Science,
pages 248-257, Warsaw, Poland, 1997. IEEE Computer Society Press.

[64] H. A. Priestley. Introduction to complex analysis. Oxford Science Publica-
tions, revised edition, 1995.

[65] A. Pringsheim. Uber ein Convergenz-Kriterium fiir die Kettenbriiche mit
positiven Gliedern. Sitzungsber. der math.-phys., 29:261-268, 1899.

[66] H. Rogers. Theory of recursive functions and effective computability. McGraw
Hill, 1967.

[67] D.S. Scott. Outline of a mathematical theory of computation. In 4th Annual
Princeton Conference on Information Sciences and Systems, pages 169-176,

1970.

[68] W. A. Sutherland. Introduction to Metric and Topological Spaces. Oxford
University Press, 1993.

[69] A. M. Turing. On computable numbers with an application to the entschei-
dungs problem. Proceedings of the London Mathematical Society, (42):230—
265, 1936.

[70] J. Vuillemin. Exact real computer arithmetic with continued fractions. In
Proceedings ACM conference on Lisp and Functional Programming. ACM,
1988. Extended version as INRIA research report 760, 1987.

[71] J. Vuillemin. Exact real computer arithmetic with continued fractions. IEEE
Transactions on computers, 39(8):1087-1105, August 1990.

[72] H. S. Wall. Analytic Theory of Continued Fractions. Chelsea Publishing
Company, 1948.

[73] H. S. Wall. Analytic theory of continued fractions. Chelsea Publishing Com-
pany, 1973.

BIBLIOGRAPHY 275

[74]

[75]

[76]

[77]

(78]

O. Watanuki and M. D. Frcegovac. Frror analysis of certain floating-point
on-line algorithms. IEEFE Transactions on Computers, C-32(4):352-358, April
1983.

K. Weihrauch. Computability. ATCS monographs on theoretical computer
science. Springer Verlag, 1987.

P. Weis, M. Aponte, A. Laville, M. Mauny, and A. Sudrez. The CAML
reference manual. Technical Report 121, INRIA, Domaine de Voluceau, 78153
Rocquencourt, FRANCE, September 1990.

E. Wiedmer. Computing with infinite objects . Theoretical Computer Science,

10:133-155, 1980.

S. Wolfram. Mathematica: a system for doing mathematics by computer.
Almqvist and Wiksell, 2 edition, 1991.

Index

0-1 confluent hypergeometric func-
tion, 74

2-0 confluent hypergeometric func-
tion, 75

2-dimensional Mobius
tion, 112, 114

transforma-

absorption, 157, 158

absorption function, 175, 178, 190

abstract basis, 23, 45

abstraction, 196

action, 17, 104

addition, 29, 113, 131, 138, 184

adequate, 195

adequate digital representation, 49,
a0, 78

affine, 112

algebraic domain, 22, 23, 45

algebraic number, 43, 60

algebraic real domain, 45, 203, 213

algorithm, 24

alternative metric, 31

analytic continuation, 36, 70, 94

analytic function, 34

application, 137, 196

apply function, 104

approximant, 55

approximate, 21

assimilation, 127, 158, 163, 178

associated continued fraction, 68

automaton, 18, 52, 92, 131

axioms for the real numbers, 43

b-adic number, 43

276

backward sequence, 56, 148

backward theorem, 148

barred arrow notation, 16

base, b4

base interval, 51, 112

basement, 88

basic arithmetic operation, 29, 33, 94,
112, 137

basic open set, 26

basis, 22, 44, 45

Bessel function, 74

biased exact floating point, 131

binary, 38

binary point, 38

binary tree, 18, 135, 165

BNF, 195, 199, 207

boolean, 195

bottom, 15, 20, 44, 45

bottom function, 116

bound variable, 196

bounded complete, 22

C table, 66

call-by-name evaluation, 197
canonical extension, 15, 33
canonical representative, 106
carry propagation, 81
category, 18, 214

Cauchy condition, 29
Cauchy sequence, 43, 49, 57
Cayley’s Theorem, 106
ceiling, 30

chain, 44, 45, 123, 216

characteristic polynomial, 106

INDEX

children, 18

chordal distance, 31, 34

chordal metric, 31, 33, 36

Church’s Thesis, 25

classification of Mobius transforma-
tions, 106

closed interval, 78

closed term, 196

coding, 25, 77

coding function, 77

codomain, 15

common factor, 66, 179, 180

compact, 18, 22, 26, 27, 30, 33, 47

comparison, 84, 94

complement representation, 39

complementary error function, 75

complete, 199

complete ordered field, 29

complex function, 34, 153

complex number, 33, 70, 119

complex plane, 29, 33, 70

complexity analysis, 94

composition, 19, 103, 195

compress, 129, 174, 186

computability, 94, 199

computable real number, 78

computable term, 199, 204

computational adequacy, 199, 203,
216

conditional, 196

confluent hypergeometric function,
72,74, 75

conformal, 119

conjugacy class, 17, 106

conjugate, 17, 112

cons, 188

conservative approximation, 177

constructive real number, 78

context-free grammar, 195, 199, 207

continuation, 55, 174, 178

continuation function, 62, 85-88

277

continued fraction, 55, 67, 68, 70, 73—
7h, 112, 125, 138, 143, 145,
147, 148, 150, 225

continuous, 21, 45, 48, 161

continuous domain, 22, 44

continuous real domain, 44, 135, 203,
213

continuous Scott domain, 22, 214

contraction, 108, 112

contractivity, 142, 162

convergence, 60, 70, 125, 168

convex powerdomain, 24

corresponding continued fraction, 67

coset, 16

cosine, 70, 74, 139

cover, 17, 36, 109, 111

cut, 135

cyclic group, 109, 131

dcpo, 20, 27

deadlock, 164, 167
deadlock-free, 167

decimal expansion, 49, 79, 191
decimal point, 38

decimal representation, 50, 53, 78
decision function, 174, 189
Dedekind cut, 29

denotational semantics, 198, 203, 213
depth, 18

destructive data type, 179
determinant, 141, 180, 182
deterministic, 204

digit emission, 178

digit emission function, 174, 190
digit exchange policy, 163

digit map, 51, 112, 127

digit matrix, 127, 158, 165, 184
digit sequence map, 48

digit set, 48, 51, 112

digital computer, 43

278

digital representation, 48, 49, 51, 52,
79

dilation, 108

diminished radix complement, 39

directed complete partial order, 20,
27

directed set, 20, 23, 135, 216

disjoint information, 189

distance function, 159

div function, 83

division, 113, 138, 184

domain, 15, 20

domain theory, 19

dot product, 99, 100, 185

down function, 21

downward closed, 23

E-fraction, 85

effective procedure, 24

effectively adequate digital represen-
tation, 79

effectively computable, 24

effectively computable function, 77

effectively computable functional, 26,
78

effectively open, 27

efficient, 47, 116, 131, 141, 144, 168,
175, 178, 179

efficient absorption function, 178

efficient digit emission function, 178

eigenvalue, 106

elementary function, 36, 138

elliptic, 108-110

embedding/projection pair, 48

emission, 157

emission function, 174

end-points, 44, 77

end-points set, 43, 48, 51

environment, 198

equality, 94

equivalence transformation, 67

INDEX

equivalent, 102, 104, 113

equivalent continued fraction, 68

error function, 72, 73

estimate, 160

Fuclidean metric, 29, 36

Fuclidean space, 31, 33

FEuler type continued fraction, 68, 147

evaluate, 197

evaluation function, 204, 217

exact floating point, 88, 127, 131, 183

exact floating point number, 157

exact floating point representation,
135, 159

exact real number, 81

exchange, 163

expansivity, 161

exponent, 37, 40, 89, 129

exponential, 73, 139, 145, 155, 193

exposed argument, 135

expression tree, 135, 138, 157, 165

extended complex number, 33

extended complex plane, 33, 103, 119

extended rational number, 78, 102,

114
extended real line, 30, 44, 45, 106,
109, 111, 112

extended real number, 30, 43, 77, 103,
113, 123, 135, 195

fair strategy, 170, 181, 189, 213
feedback, 142

finite, 22, 27

finite order, 109

finite sequence, 16

finite sequence of digits, 51, 129
finite sequence of intervals, 43, 51
finite time, 43

finitely represented real number, 47
First Isomorphism Theorem, 17
first projection, 200, 207

First Recursion Theorem, 26

INDEX

fix function, 21

fixed point, 38

flat domain, 20

floating point, 31, 37, 40

floor, 30

formal digital representation, 48
function, 15

function space, 21

functional, 48, 49, 78

functor, 19

Gaussian integer, 120

general linear group, 17

general normal product, 123, 124,
135, 159

golden ratio, 62, 64, 127

greatest common divisor, 179

greatest lower bound, 20

ground type, 195

group, 16
group of Mobius transformations,
103, 105, 106

hardware, 128

head, 188

head of a tensor, 119

hexadecimal, 38

higher domain, 47

higher type, 195

Hoare powerdomain, 24
holomorphic function, 34, 70, 72, 74
homomorphism, 17

hyperbolic, 108, 112

hyperbolic cosine, 70, 74, 139
hyperbolic differential equation, 70
hyperbolic sine, 70, 74, 139
hyperbolic tangent, 75, 139, 155
hypergeometric function, 69

ideal, 20, 23
ideal completion, 23, 45
identity, 104, 108, 110, 165, 182

279

identity morphism, 19

IEEFE standard, 41

image, 15, 17

improper hyperbolic, 108, 112

incomplete gamma function, 72, 73

incremental digit representation, H2,
109, 112, 127

incremental floating point, 92, 132

incremental mantissa, 88

infimum, 20

infinite sequence, 16

infinite sequence of digits, 51, 54, 129

infinite sequence of intervals, 43, 51,
54

infinitely represented real number, 47

infinity, 30, 130

info function, 114

information, 20, 114, 165

information exchange, 163

information flow analysis, 159, 175,
177

information overlap strategy, 171, 189

initial function, 25

input alphabet, 18, 52, 53

input symbol, 18

integer division, 83

integer remainder, 83

interpretation, 198

interval, 18, 30, 77

interval arithmetic, 33

interval function, 116

interval sequence map, 49

invariance function, 106

inverse, 104

inverse cosine, 139

inverse hyperbolic cosine, 139

inverse hyperbolic sine, 70, 139

inverse hyperbolic tangent, 70, 71,
139, 144, 154

inverse sine, 70, 71, 139

280

inverse tangent, 70, 71, 139, 150, 154,
168, 194
isomorphic, 17, 45, 102, 104

isomorphism, 17

Jacobi type continued fraction, 68,
145, 152
join, 20

kernel, 17, 102, 104
Kummer confluent hypergeometric
function, 72

Language for All Reals, 207

Language for Positive Reals, 199

LAR, 207

law of big numbers, 164

least function, 159

least upper bound, 20, 123, 135

left absorption, 169

left coset, 16

left function, 173

left product, 100, 185

lift, 15, 20

linear, 112

linear fractional transformation, 103,
113, 114, 174, 178, 179, 195

linear map, 112

linear representation, 55

list function, 116

logarithm, 70, 139, 143, 193

loop function, 141

lower powerdomain, 24, 214, 215

lower set, 20

lowest terms, 180

loxodromic, 108

LPR, 199

mantissa, 37, 40, 89, 129

map, 15

matrix, 97, 103, 114, 123, 135, 178,
180

INDEX

matrix application, 137, 188

matrix assimilation, 158

matrix identity, 104, 139

matrix inverse, 104

matrix lazy flow analysis, 175

matrix rule, 202, 211

max function, 116

maximal element, 45

meet, 20

meromorphic, 36

metric, 159

metric space, 29

min function, 116

minimization strategy, 173

minimum slope, 177

Mobius transformation, 85, 103, 112,
114, 123

mod function, 83

model, 195

monad, 19, 214

monoid, 16, 102, 104, 105

monotone, 20, 26, 27

monotone function space, 20

morphism, 19, 102, 104

most function, 159

multiplication, 29, 113, 138, 184

multiplication operator, 19

N-fraction, 60, 85

natural logarithm, 70, 139, 143

natural number, 62, 64, 77, 124, 146,
195

natural transformation, 19

negation, 29, 108, 137

nested intervals, 43

Newton Raphson, 140

non determinism, 24, 94

non-singular Mobius transformation,
103

normal subgroup, 16

normalization, 157, 224

INDEX

normalized floating point, 89
not a number, 31
numerical subscript, 100

object, 18

octal, 38

one, 130, 182

one-point compactification, 30, 33,
115

one-step reduction relation, 197, 201,
209

one-step reduction rule, 197

open annulus, 35

open disc, 34

open set, 30, 36

operational semantics, 196, 197, 201,
209

order, 29, 35, 109-111

order function, 109

ordinary hypergeometric function, 69,
72,75

outcome minimization strategy, 173

output alphabet, 18, 52, 53

output function, 18, 52, 53

output symbol, 18

overestimate, 160, 162, 166

overlap strategy, 171, 189

P-fraction, 88

Pade approximant, 65
Pade table, 66
pairing, 200, 207
parabolic, 108
parallel, 207

parallel if operator, 95
parallel model, 215
parallel rule, 210
parent, 18

partial function, 15
partial ordered set, 20
partial recursive function, 24

281

partial recursive functional, 26

PCF, 195

periodic, 50

physics, 130

pi, 146, 194

Plotkin powerdomain, 24

Pochhammer symbol, 69

pointed, 20

pointer, 179

pole, 35

polynomial, 35, 65

poset, 20

positional notation, 37

positional representation, 38, 55, 79

power function, 70-72, 139, 152

power series, 34, 36, 67, 68

powerdomain, 24, 214

powerset, 15, 24

practical, 157

predecessor, 196

predicate, 94

preorder, 20, 23

prime factor, 180

primitive recursion, 24

principal ideal, 20, 23

product, 20, 103

product rule, 201, 209

program, 196

Programming language for Com-
putable Functions, 195

projection, 98

projective linear group, 17

proper hyperbolic, 108, 112

quadratic field, 43

quadratic fractional transformation,
121

quasi-relational comparison operator,
94

quotient group, 17

quotient monoid, 102, 104

282

radix, 128

radix complement, 39

radix expansion, 54

radix point, 38

Ramanujan’s formula, 146

range, 15

rate of convergence, 44

rational function, 35, 36, 65

rational number, 29, 47, 60, 78

real line, 29

real modulus, 152

real number, 18, 29, 43, 60, 63, 78,
115, 131

reciprocal, 29, 137, 184

recursion, 196

recursion theory, 24, 77

recursive, 25

recursive definition, 19

recursive function, 25, 77

recursive functional, 77

recursively enumerable, 25, 78

reduction relation, 197

reduction rule, 138, 174, 178

redundant binary representation, 80

redundant continued fraction, 112

redundant floating point, 88

redundant if operator, 94, 208, 226

redundant positional representation,
79, 112, 127, 128

redundant representation, 79, 94

reference, 179

refine, 105, 114

refinement property, 115, 186

regular continued fraction, 60

representative, 43, 51

Riemann sphere, 33

right absorption, 169

right coset, 16

right function, 173

right product, 100, 185

rmod function, 152

INDEX

rollover algorithm, 143
root, 18

root finding, 140
rotation, 108

round, 30

round off error, 41

scaled addition, 81

scaling, 102, 104, 113, 179, 183

Scott closed, 22

Scott continuous, 21

Scott domain, 22, 214

Scott open, 22

Scott topology, 22

second projection, 200, 207

semantic brackets, 198, 215

semigroup, 16

sequence, 16

sign, 102

sign emission function, 174, 190

sign function, 186

sign magnitude representation, 38

sign map, H2

sign matrix, 131, 158, 183

sign set, 52, 109, 144

signed exact floating point represen-
tation, 131, 174

signed expression tree, 135, 158, 174

signed general normal product repre-
sentation, 123

signed incremental digit representa-
tion, 52, 53, 55, 61, 79, 88,
89

simple continued fraction, 56

sine, 70, 74, 139

singleton set, 43, 123, 135

singular Mobius transformation, 103

smash function, 21

smash product, 20

Smyth powerdomain, 24

sound, 199, 204, 217

INDEX

source, 15, 19

spatially efficient, 178

special base interval, 105, 109, 111,
112, 123, 127, 135

square bracket application, 137, 150,
175, 179, 188

square root, 121, 139, 140, 173, 192

squeeze, 207

squeeze rule, 210

standard model, 198, 203, 213

starting state, 18, 52, 53

state, 18

state transition function, 18, 52, 53

step function, 22, 47

stereographic projection, 31, 33

Stieltjes type continued fraction, 67,
143

strategy, 169

strategy function, 169, 174

subscript, 98, 100

substitution, 196

subtraction, 113, 131, 138, 184

successor, 196

supremum, 20

tail, 188

tail of a tensor, 119

tame inverse, 104

tangent, 74, 139, 148, 155, 167, 194,
226

target, 15, 19

Taylor series, 35, 64, 65, 138, 168

tensor, 97, 112, 114, 135, 180

tensor absorption strategy, 169

tensor application, 137, 188

tensor assimilation, 158

tensor lazy flow analysis, 177

tensor rule, 202, 211

term, 196

term tree, 195

terminal value, 197, 201

283

terminator map, 51

terminator set, 51

test for zero, 196

theoretical language, 195
tolerance, 129

topological space, 17, 18, 26, 30
topologically equivalent, 31
total function, 15
transcendental function, 94, 139
transformation, 200, 207
transformation rule, 202, 211
transition function, 169
translation, 108

transpose, 98, 182

tree, 18, 135, 165

two’s complement, 37, 40, 129
type, 195

type assignment, 196

typing judgement, 196

typing rule, 196, 200, 208

unbiased exact floating point, 127

undefined number, 31

underestimate, 160, 162, 175, 177

unit of information, 159, 175

unit operator, 19

unitary, 19

unsigned exact floating point repre-
sentation, 129, 174, 178

unsigned expression tree, 135, 158,
174, 178

unsigned general normal product rep-
resentation, 123

unsigned incremental digit represen-
tation, 50-52

unsigned linear fractional transforma-
tion, 159

unsigned matrix, 104

unsigned tensor, 114

unsigned vector, 102

unsmash function, 21

284

up function, 21
upper powersdomain, 24
upper set, 20

valid sequence of intervals, 43
value, 198

value function, 205, 217, 220, 231
variable, 195

vector, 97, 102, 114, 123, 135, 178

Vietoris powerdomain, 24

way below relation, 21, 94
weakly Church-Rosser, 204, 217
well-typed, 196

width, 18, 129

Z-fraction, 63, 85
zero, 35, 130

INDEX

