
Towards NUMA-Aware Distributed Query Engines
Alessandro Fogli, Peter Pietzuch

Imperial College London
Darko Makreshanski

Oracle
Jana Giceva
TU Munich

Abstract—Efficient execution of distributed queries in the cloud
is of paramount importance, both for cloud vendors and their
customers. In this paper, we investigate the performance impact
of different deployment policies of distributed query engines over
multicore machines.

We corroborate prior observations that traditional data sys-
tems have limited scalability on modern machines. Since a
complete redesign to make them hardware-conscious can be
prohibitively expensive, we explore whether treating the machine
as a distributed system underneath can in fact bring performance
advantages, while being transparent to the query engine itself.

Our key observation is that, for a range of popular distributed
query engines (SparkSQL, Presto, Greenplum, SingleStore), a
deployment policy that maps an engine’s worker instances to
the compute and memory resources of a NUMA node can
bring around 2× performance improvement for the TPC-H
workload (SF 100) over a standard deployment.

I. INTRODUCTION

Efficient query execution in the cloud is critical both for
cloud vendors and their users. At large scale, even small
percentage improvement in how efficiently one uses the un-
derlying hardware resources bring considerable cost savings
for anyone offering data analytics services in the cloud.

The most common approach to create a distributed query
engine is to begin with an existing engine design and evolve
it into a distributed version by addressing the scalability,
fault tolerance and elasticity requirements of a competitive
cloud solution [2], [3], [5]. As a result, there has been
considerable research into how to design efficient distributed
query optimizers [72], [73], optimal data and work partitioning
among the database worker instances [42], [74], [75], while,
e.g., minimizing the amount of data transfer [37], [46].

However, there has been relatively little attention paid into
how efficiently deployments of distributed query engines use
resources on such a scale. In fact, existing commercial systems
use different approaches for mapping their worker instances
to hardware resources: e.g., Redshift partitions resources into
slices made up of individual CPU cores and assigns compu-
tation nodes such to slices [5]–[7]; in contrast, SingleStore
partitions computational resources according to the number
of NUMA domains, thereby fully leveraging the internal
parallelism of the base engine to exploit multi-threading [2];
other systems, e.g., Presto [3], SparkSQL [4], etc., exploit
resources in their entirety, assuming a full machine for each
instance.

This raises the question if there is a single deployment
approach for distributed query engines that fits all scenarios: if
yes, which of these configurations is optimal? If no, which fac-
tors are relevant when choosing the most suitable deployment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

1

2

3

4

5

6

S
p
ee
du
p

(a) TPC-H query speedup (SF 100).
Pr
es
to

Sp
ar
kS
Q
L

G
re
en
pl
um
0

1

2

3

4

N
o
rm

a
li
ze
d
sp
e
e
d
u
p

(b) Geo-mean.

Fig. 1: A single-machine performance improvement achieved
by applying NUMA’s conscious deployment over the stan-
dard deployment of NUMA-agnostic distributed query engines
(Greenplum (green), SparkSQL (red), and Presto (blue)).

strategy? How much efficiency can be gained by deviating
from a default deployment strategy for each of the analyzed
systems?

To address the above questions, we explore how resources
should be allocated to distributed query engines in order to get
the most performance out of modern multiprocessor (NUMA)
systems. We perform a systematic experimental study that
investigates and answers the following three questions:

1) What is the optimal number of worker instances of a
database query engine to run on a given multiprocessor
machine?

2) How to assign the computational and memory resources
to these worker instances?

3) How to place data to ensure both data locality and
low communication between worker instances across
machines?

We evaluate overall engine performance both within a single
multicore/NUMA machine and when using of a cluster of
such machines. We also investigate the impact of the chosen
workloads and datasets (e.g., in the presence of data skew),
as well as the importance of the underlying machine topology
and its hardware properties.

Based on our experiments, we identify a deployment strat-
egy that works best for all systems evaluated. Our key results,
shown in Figure 1, indicate that, by applying a NUMA-
conscious deployment policy, we can get performance im-
provements of up to 3.2× for queries executing on the same
hardware, when compared to more naı̈ve, yet commonly used,
baseline approaches that use a database worker instance per

1



machine or per core. Some of our other key insights are:

• Per-machine deployments fail to fully exploit the abun-
dant parallelism of multiprocessor systems. Deploying a
database worker instance per NUMA domain often shows
better multicore scalability, at times even close to linear.

• The bottleneck caused by congested interconnects in a
per-machine deployment can be eliminated when running
multiple database worker instances on a machine. The
communication shifts across the network (TCP loopback),
and the optimizer generates plans that minimize data
transfer.

• Deploying a database worker instance per NUMA do-
main shows performance benefits even when applied to
skewed data (JCC-H benchmark) and when executed on
different hardware. Unsurprisingly, the observed benefits
are dependent on the hardware properties, such as the
interconnect bandwidth.

• Deploying a database worker instance per NUMA domain
with a corresponding memory binding policy shows good
horizontal scalability, and the speedup improves with the
number of machines. Using multiple network interface
cards (NICs) can easily increase the bandwidth, overcom-
ing a possible network bottleneck.

Our recommendations are directly applicable to on-premise
distributed query engines, enabling them to maximize resource
utilisation transparently, without necessitating cumbersome
changes to the engine’s design. For engines deployed in the
cloud, our insights can potentially lead to better provisioning
of hardware resources and their assignment as containers.
Our study of deployment approaches does not only bring
significant performance-cost savings, but it can also influence
how we design and configure future cloud-native data systems.

II. BACKGROUND AND MOTIVATION

To discuss the trade-offs between the different deployment
configuration policies for distributed query engines, we first
introduce relevant concepts. We begin by giving an overview
of typical hardware setups. On-premise and data-center level
hardware resources are organized in racks.

While software-defined data-centers with resource-
disaggregation over fast network interconnects pick up
momentum, as they cater to a wide range of workloads [56]–
[58], our work primarily focuses on a more traditional setting
in which commodity multi-processor/multi-core machines are
stacked in a rack, connected through a network interconnect
(see Figure 2). Modern multi-processor machines follow a
non-uniform memory access (NUMA) approach 3 , with
each CPU core exhibiting different access times to memory
depending on the hop-distance of the memory node. Accessing
local memory is faster than accessing remote memory, and
this non-uniformity poses a challenge to existing systems
when it comes to efficient scaling and fully leveraging
hardware capabilities [37], [39], [41].

Fig. 2: Data center organization

Compute
Layer

Storage
Layer

ClientsDatabase 
Coordinator

Network Database Worker Instance

Database Worker Instance

Database Worker Instance

Computing Resources

Database Worker Instance

External Storage System

Memory Node

Memory

Managed Storage 

Local Memory

Computing Resources

Task Task Task

8

9

10

Split Split

Local Memory
Split Split11

Fig. 3: Distributed query engine architecture

A. Architecture of distributed query engines

From a structural and design perspective, many dis-
tributed cloud-based query engines (e.g., AWS Redshift [8],
Athena [11], Google’s Big Query [10], Microsoft’s Polaris [9])
have similarities with both on-premise data warehouses (e.g.,
Exadata [12] and Teradata [13]) and big data systems (e.g.,
Hadoop [14], Presto [3] and Spark [4]).

As shown in Figure 3, systems separate the compute from
the storage layer to support scaling out and to allow for cost-
effective customizations of each layer [8], [50], [51]. Recent
systems even propose to further separate state so that the
engine can better address the new challenges of different cloud
models, e.g., running on reserved cloud resources or serverless,
better support fault tolerance, or react to workload changes [9].

Regarding the compute layer, we assume that it consists of a
fixed set of database worker instances 10 , which execute the
SQL queries (i.e., a pipeline of the query [9], or a big data job).
In the literature, database worker instances are also referred
to as worker/leaf/segment nodes or query processes [5]. They

2



operate on data fragments, which are assigned to each database
worker instance, also called a split 11 . The worker instances
process many splits in parallel by executing a dedicated list of
tasks, as assigned by the coordinator 8 . The coordinator (also
referred to as the leader or master node) is often responsible
for admitting, parsing, planning and optimizing the queries,
in addition to orchestrating how the query’s tasks 9 are
distributed across worker instances.

The worker instances communicate with each other over
the network, either to exchange data when performing joins
over multiple tables or to broadcast the results to the co-
ordinator. The general rule is to avoid expensive network
communication as much as possible [1]. Hence, each database
worker instance processes its own queue of tasks on its own
data partition (splits), which both maximizes data locality
and reduces network traffic. The coordinator computes an
optimal distributed cost-based query plan, which accounts for
all factors involved, including data distribution (to minimize
the overhead of communication among the database worker
instances) and data placement within multi-processors.

B. Data placement within multi-processors
Choosing an appropriate thread- and data-placement policy

for a NUMA machine is a non-trivial task for any system
software. The Linux scheduler, for example, can migrate
threads and data in order to achieve a good work balancing on
each CPU core or across the memory controllers [15], [16].
However, such a policy in a noisy environment can result
in significant performance drop, especially for data-intensive
tasks [17], [18]. As an alternative, user-space libraries such
as libnuma enable applications to override the default system
policies 4 to ones that are more appropriate when having
knowledge of the workload. The numactl tool provides several
memory allocation policies to choose from:
(1) First Touch (FT) is the default policy in modern Linux
systems. In Linux, memory is not allocated at the time of a
call but at the time of first access. When a process performs
a write/read operation on a memory page for the first time,
the page is allocated to the NUMA node to which the process
belongs. If the node does not have enough free memory, an
adjacent node is used.
(2) Interleaving (INT) allocates memory in a round-robin
fashion across all NUMA nodes available in the system. It
generates an even memory load across all the NUMA nodes
and interconnects.
(3) Membind (MEM) allows processes to bind to specific
NUMA nodes. Once specified which memory a process should
use, all data allocated or generated by the process is assigned
entirely to the memory of the designated node.

C. NUMA effects on data processing
In this section, we analyze the impact of NUMA affects

on the query engines explored in the evaluation. We run the
TPC-H benchmark and monitor the amount of remote memory
accesses and the load on the interconnects during query exe-
cution, both of which can seriously impact performance [27],

TABLE I: Profiling results for TPC-H Q13 obtained by Intel’s
VTune Profiler. (QPI Bandwidth is the percentage of elapsed
time with a high use of interconnections.)

System # DRAM Remote QPI
accesses accesses bandwidth

Presto 30,564 76 2
SparkSQL 9,165 73 47
SingleStore 7,343 0 0
Greenplum 5,880 70 0

[28]. Interestingly, the systems tested exploit different data-
and thread placement policies, leading to diverse results.

Table I shows the outcome of profiling TPC-H query 13
(Q13) with a scale factor 100. The benchmark executes on
a single machine with 4 NUMA domains, and we evaluate
Presto, SparkSQL, SingleStore and Greenplum. For each sys-
tem, we use the deployment policy from its documentation.
We focus on Q13, because it is one of the longest running
queries and has a high transient memory consumption; it is
also less affected by plan optimizations [76].

We observe that its execution on Presto, SparkSQL and
Greenplum generates a large number of expensive remote
memory accesses. With Presto and Greenplum, this mainly
happens during the initial scanning phase of tables. SparkSQL
uses a SortMerge Join for query execution, so remote memory
accesses also occur during the sort phase. In all three systems,
the data is placed across all NUMA domains, and each task
has the ability to process both local and remote splits.

The results in Table I also indicate that, when executing Q13
with SparkSQL, the machine’s interconnects are congested
47% of the query execution time. This is an artefact of not
placing the data in a balanced fashion among the NUMA
domains. Since a large portion of the data resides on a
single NUMA domain, most data accesses are directed there,
creating congestion over the interconnect. In contrast, Presto
and Greenplum balance data between NUMA domains, thus
avoiding congestion.

Finally, we observe that SingleStore is the only system
that does not incur remote memory accesses. Each split in
SingleStore is bound to the NUMA domain that also hosts the
tasks that process it. Furthermore, SingleStore evenly places
the data among the 4 NUMA domains and does not allow
tasks to process remote splits.

III. DESIGN SPACE OF DISTRIBUTED QUERY ENGINES

Current distributed query execution engines have different
design configurations for their deployment within a single
multiprocessor machine. In this section, we describe the main
characteristics of the most widely adopted designs, highlight-
ing strengths and weaknesses.

A. Design space overview

The design space can be divided into three categories:
(1) Single-Worker Instance per Machine (WIM), (2) Single-

3



Database Worker Instance

Core 14

NUMA 
Domain 1Core 1

L2 Cache

IL1 DL1

Core 3

L2 Cache

IL1 DL1

Core 2

L2 Cache

IL1 DL1

Core 4

L2 Cache

IL1 DL1

Core 9

L2 Cache

IL1 DL1

Core 11

L2 Cache

IL1 DL1

Core 10

L2 Cache

IL1 DL1

Core 12

L2 Cache

IL1 DL1

Core 5

L2 Cache

IL1 DL1

Core 7

L2 Cache

IL1 DL1

Core 6

L2 Cache

IL1 DL1

Core 8

L2 Cache

IL1 DL1

Core 13

L2 Cache

IL1 DL1

Core 15

L2 Cache

IL1 DL1

L2 Cache

IL1 DL1

Core 16

L2 Cache

IL1 DL1

NUMA 
Domain 2

NUMA 
Domain 3

NUMA 
Domain 4

Server 1

(a) WIM: Single Database Worker Instance
per Machine

x

Database Worker InstanceDatabase Worker Instance

Core 14

NUMA 
Domain 1Core 1

L2 Cache

IL1 DL1

Core 3

L2 Cache

IL1 DL1

Core 2

L2 Cache

IL1 DL1

Core 4

L2 Cache

IL1 DL1

Core 9

L2 Cache

IL1 DL1

Core 11

L2 Cache

IL1 DL1

Core 10

L2 Cache

IL1 DL1

Core 12

L2 Cache

IL1 DL1

Core 5

L2 Cache

IL1 DL1

Core 7

L2 Cache

IL1 DL1

Core 6

L2 Cache

IL1 DL1

Core 8

L2 Cache

IL1 DL1

Core 13

L2 Cache

IL1 DL1

Core 15

L2 Cache

IL1 DL1

L2 Cache

IL1 DL1

Core 16

L2 Cache

IL1 DL1

NUMA 
Domain 2

NUMA 
Domain 3

NUMA 
Domain 4

Server 1

Database Worker InstanceDatabase Worker Instance

(b) WIN: Single Database Worker Instance per
NUMA Domain

Core 14

NUMA 
Domain 1

Database Worker Instance

Database Worker Instance

Database Worker Instance

Database Worker Instance

Core 1

L2 Cache

IL1 DL1

Core 3

L2 Cache

IL1 DL1

Core 2

L2 Cache

IL1 DL1

Core 4

L2 Cache

IL1 DL1

Database Worker Instance

Database Worker Instance

Database Worker Instance

Database Worker Instance

Core 9

L2 Cache

IL1 DL1

Core 11

L2 Cache

IL1 DL1

Core 10

L2 Cache

IL1 DL1

Core 12

L2 Cache

IL1 DL1

Database Worker Instance

Database Worker Instance

Database Worker Instance

Database Worker Instance

Core 5

L2 Cache

IL1 DL1

Core 7

L2 Cache

IL1 DL1

Core 6

L2 Cache

IL1 DL1

Core 8

L2 Cache

IL1 DL1

Database Worker Instance Database Worker Instance

Core 13

L2 Cache

IL1 DL1

Core 15

L2 Cache

IL1 DL1

L2 Cache

IL1 DL1

Core 16

L2 Cache

IL1 DL1

Database Worker Instance Database Worker Instance

NUMA 
Domain 2

NUMA 
Domain 3

NUMA 
Domain 4

Server 1

(c) WIC: Single Database Worker Instance per
CPU Core

Fig. 4: Different design configurations for distributed query engines

Worker Instance per NUMA Domain (WIN), and (3) Single-
Worker Instance per CPU Core (WIC). The main differences
between these approaches concern the number of database
worker instances, the way computing resources are allocated
to each worker instance and data allocation policies. Different
designs affect the degree of parallelism, amount of data to be
exchanged and efficient use of NUMA.

(1) WIM: Single-Worker Instance per Machine. The Single-
Worker Instance per Machine design is the most widely
adopted by existing distributed query engines. The deployment
of this design is not dependent on the topology of the under-
lying hardware and involves a single database worker instance
that can manage all resources, as shown in Figure 4a. In
addition, there are no restrictions on how memory is accessed.
All threads can access both local and remote memories. This
type of design is adopted by systems such as Presto or
SparkSQL.

(2) WIN: Single-Worker Instance per NUMA Domain. In
the Single-Worker Instance per NUMA Domain design, there
are as many database worker instances as NUMA domains.
The worker instances are placed by considering the physical
layout of the multiprocessor machine and can only use the
computational resources of the NUMA nodes that they are
associated with. Communication between instances takes place
through the network stack. The OS can migrate threads but
only within the NUMA domain to which they are bound.
In terms of data allocation, the WIN design relies on the
Membind policy. The Membind policy allows each instance to
be forced to use only its local memory. SingleStore suggests
adopting this design when deploying its database in multipro-
cessor systems [29].

(3) WIC: Single-Worker Instance per CPU Core. Figure 4c
shows the Single-Worker Instance per CPU Core design. It
involves using one database worker instance per CPU core
and is adopted by systems such as Greenplum [30], [31], H-
Store [32] and HyPer [33]. The deployment varies according
to the number of effective CPUs or cores. A rule of thumb
is to use as many database workers as CPU cores. As in the

WIN design, all instances exchange data using the network
stack. In addition, there are no constraints on data placement
strategies, but each instance prioritises memory local to the
core on which it runs.

B. Trade-offs

One objective of this study is to explore the trade-offs be-
tween different deployment designs in multiprocessor systems.
The main requirements that need to be balanced to achieve an
efficient system are: data locality, efficient communication, and
low resource contention. Each of these affects the others.

The Single-Worker Instance per Machine design is the
only one among those discussed whose implementation is not
conditioned by the physical system architecture. Moreover,
with just a single database worker instance for each node in
the cluster, communication between nodes can be minimised.
However, maximising the data and threads locality is challeng-
ing. Inadequate allocation of data between NUMA domains
risks congesting interconnects, leading to severe performance
reductions. Redesigning the database engine to make it more
NUMA-aware requires cost and effort, and, in many cases,
this is an unviable option. To use all hardware on a single
instance, there is always a NUMA cost somewhere.

In contrast, the Single-Worker Instance per NUMA Domain
design can guarantee high data locality. Each instance is forced
to use only the memory of the NUMA node to which it is
bound, eliminating remote memory access and interconnect
congestion. In addition, the work is partitioned by the database
engine, thus generating a fair use of the resources shared
in NUMA nodes. The downside of the WIN design is that
the intra-node communication takes place via the network
stack with less bandwidth than what can be achieved through
interconnects. In addition, a larger number of database worker
instances increases the inter-node communication and may
vary the degree of parallelism generated by the database
engines.

Similarly, the Single-Worker Instance per CPU Core de-
sign increases the amount of communication required for
data processing but at the same time can improve data and

4



thread placement. It allows explicit control over the contention
within each database worker instance. As a result, WIC-
based systems exhibit high single-thread performance and low
contention. Running a single thread per worker instance allows
them to disable locking and latching. However, ignoring thread
safety limits growth and re-usability.

In the next section, we evaluate the performance of the
above designs by varying their characteristics, e.g., the number
of database worker instances, their data allocation policy, the
degree of parallelism, etc., workflows, and hardware topolog-
ical properties.

IV. EXPERIMENTAL DESIGN EVALUATION

We carry out an extensive empirical study with 4 popular
distributed query engines running analytical queries. We an-
alyze the effects that different system design decisions and
configurations have on the overall performance and resource
usage. Our analysis focuses on Presto [3], SparkSQL [4],
SingleStore [2] and Greenplum [30]. Interestingly, all these
systems use a different default deployment policy (e.g., dif-
ferent numbers of database worker instances, different mem-
ory and thread placements, etc.) when running on a multi-
processor system. This makes them an interesting set of
systems for exploring which design and configuration uses
hardware resources most efficiently. We want to answer the
following questions:

1. How many worker instances should run on a machine?
2. Which data- and thread- placement policies should be

adopted by each worker instance?
3. Does the resulting deployment policy affect the engine’s

multi-core scalability?
4. Is the performance of the deployment policies affected

by the underlying hardware?
5. Can we expect a similar behaviour of the policies when

running a skewed workload?
After performing experiments on a single machine, we

proceed with experiments in a distributed setting and explore:
1. How do the deployment policies perform in a scale-out

setting with multiple multi-processor machines?
2. How much does the hardware setup play a role (e.g.,

the number of NICs per compute node, or the NICs’
supported bandwidth)?

A. Setup and methodology

In the first half of our evaluation, we use an Intel Xeon
CPU E5-4660 v4 with 4 NUMA domains, with 16 physical
CPU cores each and 128 GB of RAM. The system runs
Ubuntu 16.04.7 LTS, kernel version 4.4.0-201-generic, with
the automatic NUMA balancing capability enabled.

To evaluate different deployment settings, we use the lib-
numa library [36] when starting a worker instances for thread
binding and data placement. Our analysis focuses on the TPC-
H [34] and JCC-H [35] benchmarks with scale factor 100
(approx. 100 GB of data). Every data point presented is an
average of 5 runs.

1 2 4 8 16 32 64
Number of Worker Instances

0

1

2

3

4

S
p
ee
du
p

(a) Presto

1 2 4 8 16 32 64
Number of Worker Instances

0

1

2

3

4

S
p
ee
du
p

(b) SingleStore

1 2 4 8 16 32 64 128
Number of Worker Instances

0

10

20

30

40

50

S
p
ee
du
p

(c) Greenplum

1 2 4 8 16 32 64
Number of Worker Instances

0

1

2

3

4

S
p
ee
du
p

(d) SparkSQL

Fig. 5: Varying the number of database worker instances

B. Number of worker instances

To find the optimal number of database worker instances per
machine, we run the full TPC-H benchmark on all systems,
and vary the number of instances N . The resources assigned
per database worker instance (e.g., the number of CPU cores),
depend on the total number of cores in the system C, i.e., each
worker instance is assigned C/N cores, and, where possible,
all cores are from a single NUMA domain.

Figure 5 shows the geometric mean of each TPC-H query
speed-up over the default deployment policy that runs a
single worker instance per machine. We observe that Presto,
SingleStore, and SparkSQL all have a similar behaviour and
reach a peak performance when using 4 worker instances
(2.53×, 2.35×, 3.2×, respectively). The speed-up plateaus
for higher number of instances and deteriorates when going
beyond 32.

In contrast, Greenplum shows linear growth until 64. Its en-
gine is based on Postgres 9.4, which does not support parallel
processing. Deploying more database worker instances better
exploits computational resources. We note that Greenplum’s
performance drops when using 128 worker instances, meaning
that it does not benefit from hyper-threading.

In conclusion, all systems benefit from running more worker
instances per machine. For systems that support parallel query
execution, the peak can be reached by running as many
instances as there are NUMA nodes on the machine. Unsur-
prisingly, for systems that only support single-threaded query
execution, running as many worker instances as there are
physical cores on the machine gives the best results.

C. Data placement

As we briefly discussed in Section II, choosing a suitable
data- and thread-placement policy plays a critical role in how
efficiently a system uses the underlying hardware resources.
Hence, we continue our analysis by fixing the number of
database worker instances to the standard Single-Worker In-

5



W
IM

-I
N
T

W
IN
-F
T

W
IN
-I
N
T

W
IN
-M

E
M

W
IC
-F
T

W
IC
-I
N
T

W
IC
-M

E
M

0.0

0.5

1.0

1.5

2.0

2.5

N
or
m
al
iz
ed

sp
ee
du

p
Speedup over WIM-FT

(a) Presto

W
IM

-I
N
T

W
IN
-F
T

W
IN
-I
N
T

W
ID
-M

E
M

W
IC
-F
T

W
IC
-I
N
T

W
IC
-M

E
M

0.0

0.5

1.0

1.5

2.0

2.5

N
or
m
al
iz
ed

sp
ee
du

p

Speedup over WIM-FT

(b) SingleStore

W
IC
+
IN
T

W
IC
+
M
E
M

0.0

0.5

1.0

1.5

2.0

2.5

N
or
m
al
iz
ed

sp
ee
du

p

Speedup over WIC+FT

(c) Greenplum

W
IM

+
IN
T

W
IN
+
F
T

W
IN
+
IN
T

W
IN
+
M
E
M

W
IC
+
F
T

W
IC
+
IN
T

W
IC
+
M
E
M

0.0
0.5
1.0
1.5
2.0
2.5
3.0

N
or
m
al
iz
ed

sp
ee
du

p
Speedup over WIM+FT

(d) SparkSQL

Fig. 6: Effects of data placement strategies

stance per Machine or Single-Worker Instance per NUMA
Domain, and evaluate what happens when altering the default
data placement policy from First Touch (FT) to Interleaving
(INT) or Membind (MEM).

Figure 6 shows the results. We use WIM+FT policy as
the baseline, and the speed-up is the geometric mean of the
speed-ups obtained for all TPC-H queries. Presto, SparkSQL
and SingleStore exhibit the best performance when running
a worker instance per NUMA domain in combination with
the Membind policy. Specifically, they each achieve speed-ups
of 2.61×, 3.33× and 2.65×, respectively, over to the base-
line (WIM+FT), and a smaller improvement over WIN+FT.

Unsurprisingly, interleaving memory shows the worst per-
formance, because it disregards the locality requirements even
if balancing load well across NUMA domains. Due to its
single-threaded execution engine for Greenplum, we only
evaluate the WIC design. Again, using the Membind policy
shows a 1.25× performance improvement over the FT policy,
whereas the INT option has almost no effect.

Finally, SparkSQL is the engine with the biggest gain from
the default deployment strategy, achieving a speed-up of 3×.
Here, we refer back to the fact that SparkSQL is the engine that
suffers from a higher percentage of interconnect congestion
in the default setting. The WIN+MEM deployment policy
overcomes these issue by avoiding resource sharing among the
instances and enforcing a local computation over local data.

D. Thread placement

Until now, the core assignment to the worker instances
has followed a policy that bundles them in proximity to one
another, ideally in the same NUMA domain. An alternative
approach is to spread them out across the machine, i.e., assign

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22
0

1

2

3

4

5

S
p
ee
du
p

(a) TPC-H query speed-up

0

1

2

3

4

N
or
m
al
iz
ed

sp
ee
du
p

WIN

SPMWIN

(b) Geo-mean

Fig. 7: Effect of thread-placement strategies

one CPU core from a different NUMA node to a worker
instance. We call this variant SPread Multiple database Worker
Instances or SPMWIN. To be clearer, the WIN and SPMWIN
policies use the same number of worker instances, and assign
the same number of cores to each instance. As previously,
we compare these two with the default configuration of
Presto (WIM+FT) and evaluate their performance with the
TPC-H benchmark.

Figure 7 shows the results. As expected, locality plays a
key role and the WIN design shows superior performance
compared to SPMWIN. In fact for WIN, the speed-up for
individual queries is between 1.21× and 5.23× with a ge-
ometric mean of 2.65×. In contrast, the mean speed-up for
SPMWIN is just 1.25×, with almost half of the TPC-H queries
experiencing a slow-down compared to the default deployment
configuration.

E. Multi-core scalability

Previously, we have shown that the deployment with a
Single-Worker Instance per NUMA Domain produces better
performance than other deployment strategies. The next step
is to evaluate how this deployment scales as the number of
cores increases. In this experiment, we compare the multi-core
scalability of the WIN+MEM deployment against the more
classical WIM+FT deployment.

Figure 8a shows the scalability of Presto, SingleStore and
SparkSQL when using the WIM+FT deployment policy. For
comparison, in Figure 8b, we show the maximum speed-up of

0 16 32 48 64
Cores

0

10

20

30

40

50

60

N
or
m
al
iz
ed

S
p
ee
du

p

Presto

SingleStore

SparkSQL

(a) WIM+FT scalability

WIM+
FT

WIN+
ME

M
0

10

20

30

40

50

60

N
or
m
al
iz
ed

sp
ee
du
p

(b) 64 cores

Fig. 8: Multi-core scalability

6



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

1

2

3

4

5

6

7
S
p
ee
du
p

(a) TPC-H query speedup

0

1

2

3

4

N
or
m
al
iz
ed

sp
ee
du
p

Xeon E5-4660

Xeon Platinum

(b) Geo-mean

Fig. 9: SparkSQL: Different hardware platforms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22
0

2

4

6

S
p
ee
du
p

(a) TPC-H query speedup

0

1

2

3

4

N
or
m
al
iz
ed

sp
ee
du
p

Xeon E5-4660

Xeon Platinum

(b) Geo-mean

Fig. 10: Presto: Different hardware platform

the WIM+FT deployment policy alongside the performance
achieved when applying the WIN+MEM deployment.

All systems have a similar performance with lower core
counts, and scale well within a single NUMA node. However,
as the number of cores increases, the performance of all
systems is affected by the NUMA effects and their scalability
decreases. With 64 cores, the speed-up for Presto and Single-
Store is around 20× over a single core; for SparkSQL, it is
only around 10×. In contrast, when applying the WIN+MEM
design with 64 cores, Presto achieves a speed-up of 53×
over the single core execution. SingleStore and SparkSQL
also exhibit a good scalability of around 46× and 33×,
respectively.

In conclusion, the main problem with the Single-Worker In-
stance per Machine deployment policy is that it fails to exploit
the abundant parallelism of multiprocessor systems. By using a
single database worker instance, there will always be a NUMA
cost somewhere. These costs inevitably limit the multicore
scalability. By contrast, isolating database worker instances
within NUMA nodes avoids remote memory accesses and does
not congest interconnects, resulting in better scalability.

F. Different hardware platforms

Our hypothesis is that the properties of the underlying
hardware are also a key factor in the observed behaviour
and bear the potential for performance improvements. For
example, often when profiling the engines under test, the
congestion in the interconnect is one of the main bottlenecks.

Therefore, we evaluate if we can also get significant speed-
ups on a newer generation Intel machine (Xeon Platinum).

It replaces the standard QuickPath Interconnect (QPI) with
the Ultra Path Interconnect (UPI), allowing transfer speeds
of up to 10.4 GT/s. For this experiment, we run the TPC-H
benchmark using SparkSQL and Presto, applying the WIN
design, and compare performance over the standard WIM
design. We used an Intel Xeon Platinum CPU 8275CL with
96 physical cores, 2 NUMA domains and 192 GB of RAM.
The system runs Ubuntu Pro 18.04 LTS with the automatic
NUMA balancing capability enabled.

Figure 9 shows the results for SparkSQL. As anticipated, the
performance gains from using the WINdeployment are smaller
than before, but are still non-negligible. We point out that
SparkSQL previously showed the highest level of interconnect
congestion among the systems tested (see Section II-C). The
UPI technology mitigates this weakness by diminishing the
advantages obtained with the WIN design. Nevertheless, using
the Intel Xeon Platinum 2nd Gen processor, the Single-Worker
Instance per NUMA Domain design shows an average speed-
up of 1.78× compared to the default WIM design. Moreover,
all queries show a speed-up that varies in the range of 1.13×
and 2.39×.

Figure 10 shows the results when running the same experi-
ment using Presto. We observe a speed-up of the WIN design
over the WIM ranging from 1.18× to 3.93× for the individual
queries, with a geo-mean of 2.1×.

Query number 6 is the only one that shows a performance
degradation with a speed-up of 0.93×. It is one of the shortest
running queries, and does not have the Orders table as a base
table, thus avoiding the costly remote accesses when evalu-
ating the predicate. Hence, eliminating the remote accesses
on the newer generation Intel machine does not outweigh the
communication overhead of running multiple database worker
instances.

G. Skewed workloads

Next, we evaluate if the WIN+MEM’s deployment policy
is also preferable to the others when running skewed work-
loads. We repeat the experiments with the JCC-H bench-
mark [35], which introduces join-crossing-correlations (JCC)
and skew within the TPC-H dataset. It uses the same queries
with “skewed” parameters to experience strong join-crossing-
correlations and distortion in filter, aggregation and join op-
erations. The objective of this experiment is to assess the
efficiency or need for additional balancing to the data allo-
cation [35]. We conduct the experiments with SingleStore and
SparkSQL using the first generation Intel Xeon processor.

Figure 11 shows the results for both the individual queries
and a geo-mean for the whole benchmark suite for both
systems. The results indicate that the WIN+MEM design does
not affect the skew data management strategies of the systems.
More specifically, one can also observe performance improve-
ments over the default WIMdeployment, with an observed
speed-up range from 1.06× to 8.19× for SingleStore and from
1.05× to 3.65× for SparkSQL, respectively. The geo-mean
speed-up for SingleStore and SparkSQL is 2.17× and 2.25×,
respectively.

7



V. SCALE-OUT EXPERIMENTS

The results in the previous sections have consistently shown
that the Single-Worker Instance per NUMA Domain deploy-
ment policy achieves more favorable performance over the
WIM+FT policy for all the systems under test in a single-
machine setting. We now proceed with an exploration if the
same observation holds in a scale-out setting.

In the next experiment, we run the TPC-H benchmark on an
on-premise cluster, consisting of 8 multiprocessor machines.
Each machine has a dual-socket Intel Xeon CPU E5-2630
v4 processor, with 40 CPU cores, 32 GB of RAM and
2 NUMA domains. It also contains a 1 Gbps NIC and a
10 Gbps NIC. Due to lower memory capacity of our cluster,
we use a smaller scale factor than in the previous experiments,
which we increase proportionally as the number of machines
increases. We use a scale factor of 15 per machine during the
experiments with Presto and a scale factor of 6 per machine
for SingleStore.

A. Multiple machines

We compare the performance of both systems when using
the WIN+MEM deployment policy over the default WIM+FT.
In the baseline WIM+FT configuration, we use a 1 Gbps NIC.
For the WIN+MEM design, we explore the impact when both
database worker instances on the machine share the NIC.
In configuration (1), they share the 1 Gbps network card; in
option (2), they share the 10 Gbps NIC.

Our hypothesis is that we will observe linear horizontal
scalability as we increase the number of machines, i.e., the
speed-up obtained when running multiple instances on a single
machine is maintained when using a cluster (our dataset size
increases linearly as we add more machines) until a certain
point. Scaling to more machines, and hence more worker
instances, will eventually be dependent on the communication
fan-out for each instance and the available resources. Further-
more, we expect the performance to be better when using
the 10 Gbps NIC, as it enables less congested communication
between the instances.

Figure 12 shows the geometric mean speed-up of the
whole TPC-H workload over the baseline deployment. As
expected, the WIN+MEM retains the speed-up when we
increase the number of machines for both systems. With

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

2

4

6

8

10

S
p
ee
du
p

(a) JCC-H query speedup

0

1

2

3

4

N
or
m
al
iz
ed

sp
ee
du
p

SingleStore

SparkSQL

(b) Geo-mean

Fig. 11: Impact of skewed workloads

1 2 4 8
0

0.5

1

1.5

2

Number of machines

N
or
m
al
iz
ed

S
p
ee
du
p

1Gbps NIC

10Gbps NIC

(a) Presto

1 2 4 8
0

0.5

1

1.5

2

2.5

Number of machines

N
or
m
al
iz
ed

S
p
ee
du
p

1Gbps NIC

10Gbps NIC

(b) SingleStore

Fig. 12: Speedup over WIM+FT with 1 Gbps NIC (TPC-H)

Presto, the WIN+MEM deployment using the 1 Gbps NIC
shows a slight decrease in speed-up as the number of machines
increases. From 1.3× with 1 machine, it decreases to 1.25×
with 8 machines. By increasing the number of machines,
we also increase the amount of data exchanged between the
instances, making the 1 Gbps network a bottleneck. This is
confirmed when using the 10 Gbps NIC as an alternative,
which enables an increase in the speed-up with a peak of
1.52× when using all 8 machines. While SingleStore exhibits
a similar behaviour to Presto in the 1 Gbps deployment, it
shows a constant increase in speed-up when scaling-out to
8 machines with the 10 Gbps NIC, thereby confirming our
second hypothesis that a higher network bandwidth leads to a
better performance.

B. Multiple network interface cards

In the previous section, we have seen that the network band-
width can become a bottleneck when using the Single-Worker
Instance per NUMA Domain design and that using a higher
bandwidth NIC can help improve performance. However, there
is another attractive aspect that we can explore using the
WINdeployment: making use of potentially multiple NICs
in the machine, by associating different cards with different
worker instances running on the machine.

1 2 4 8
0

0.5

1

1.5

2

Number of machines

N
or
m
al
iz
ed

S
p
ee
du
p

1Gbps NIC

2x1Gbps NICs

1Gbps NIC + 10Gbps NIC

(a) Presto

1 2 4 8
0

0.5

1

1.5

2

2.5

Number of machines

N
or
m
al
iz
ed

S
p
ee
du
p

1Gbps NIC

2x1Gbps NICs

1 Gbps NIC + 10 Gbps NIC

(b) SingleStore

Fig. 13: Scalability when using 2 NICs per machine

8



We repeat the previous experiment by evaluating two more
alternatives: (1) in each node of the cluster, we assign a 1 Gbps
NIC to each of the database worker instances, i.e., we limit
the 10 Gbps NIC to 1 Gbps; (2) we assign a 1 Gbps NIC
to the first worker instance, and the other 10 Gbps NIC to
the second. As before, we compare the performance of both
systems when deployed with these two alternatives to the
standard configuration of using one 1 Gbps NIC shared among
both worker instances.

Figure 13 shows the geometric mean of each TPC-H query
speed-up over the WIM+FT design. In Presto, both alternatives
show the same results. The speed-up is only marginally higher
than in the experiment with only one NIC and reaches up
to 1.40× with 8 machines. Using multiple NICs is better
than having both instances sharing one, but there is no clear
benefit when using a higher bandwidth NIC. This suggests that
Presto’s query engine is not bottlenecked by transferring data
over the network. However, the experiment with SingleStore
clearly shows that there is a difference in speed-up between
the two alternatives, with the 1 + 10 Gbps alternatives showing
better scalability than the 2 × 1 Gbps one.

In conclusion, by using multiple NICs, the WIN+MEM
design can benefit even more, but the impact of the gain is
not only influenced by the underlying hardware. By showing
a different behaviour, Presto and SingleStore, suggest that the
efficiency of the query engine itself and the distributed query
plan execution can also play a role in how much we can benefit
from the deployment configuration.

C. Network-intensive queries

Next, we focus our analysis on selected TPC-H queries.
More specifically, we investigate the ones that are more
network-intensive when performing distributed joins.

In Figure 14, we show the speed-up for Presto when using
the WIN+MEM deployment policy over WIM+FT for Q7,
Q11, Q17 and Q21. As before, with a 1 Gbps NIC per
machine, these queries are easily saturating the network band-
width. Consequently, by increasing the number of machines,
we also increase network pressure and, unsurprisingly, the
performance drops to the point of losing the benefits of the
WIN+MEM design.

As expected, using multiple or a more powerful NIC im-
proves speed-up. With a 10 Gbps NIC, the speed-up increases
with the number of machines up to 2.2×, 2.7×, 1.53× and
2× with 8 machines. Interestingly, there is not much difference
between the two variants using two NICs. For both versions,
their speed-up increases to around 1.7×, 1.6×, 1.3× and 1.6×
with 8 machines.

Figure 15 shows the same experiment with SingleStore.
In this case, the TPC-H queries with the most network
traffic during data processing are Q5, Q13, Q16 and Q20. In
addition, we evaluate the following extra query that performs
a distributed join using non-primary keys select count(*)
from lineitem, partsupp where l partkey = ps partkey and
l suppkey = ps suppkey.

1 2 4 8
0

1

2

3

Q7

1 2 4 8

Q11

1 2 4 8

Q17

1 2 4 8

Q21

Number of machines

S
p
ee
du
p

1Gbps NIC 2x1Gbps NICs 1Gbps NIC + 10Gbps NIC 10Gbps NIC

Fig. 14: Scalability of TPC-H queries with Presto

1 2 4 8
0

1

2

3

Q5

1 2 4 8

Q13

1 2 4 8

Q16

1 2 4 8

Q20

1 2 4 8

QExtra

Number of machines

S
p
ee
du
p

1Gbps NIC 2x1Gbps NIC 1Gbps NIC + 10Gbps NIC 10Gbps NIC

Fig. 15: Scalability of TPC-H queries with SingleStore

The experiment with a 10 Gbps NIC for both database
worker instances again shows the best results. The speed-up in-
creases as the number of machines increases to 2.64×, 1.94×,
2.15×, 2.23× and 2.42×, respectively, with 8 machines. On
the other hand, as with Presto, the experiment with the 1 Gbps
NIC shows a decrease in speed-up as the number of machines
increases. With 8 machines, the speed-up decreases to 1.26×,
1.14×, 1.04×, 1.34× and 1.13×.

In contrast, experiments with multiple NICs show an
increasing speedup. Unlike Presto, the two configurations
evaluated do not always show the same performance. The
experiment with one 1 Gbps NIC and one 10 Gbps NIC shows
slightly better results than the one with two 1 Gbps NICs for
Queries 13, 16, 20 and our extra query. With 8 machines,
its speed-up reaches 1.72×, 1.71×, 1.75×, 1.99× and 2.11×,
respectively; the experiment with two 1 Gbps NICs reaches
1.62×, 1.56×, 1.53×, 1.84× and 1.88×, respectively.

We also perform an additional synthetic join benchmark.
The realized synthetic dataset consists of two tables with 4-
byte keys and payloads. The two tables have a cardinality
of 65 million and 125 million, respectively, when run with
a single machine. Their size increases proportionally as the
number of machines increases.

Figure 16 shows the speed-up of the WIN+MEM design
over the WIM+FT one as the number of machines changes. As
in the previous cases, the configuration with two NICs yields
a higher speed-up than the configuration with a single 1 Gbps

9



1 2 4 8
0

1

2

3

Q-Join

Number of machines

S
p
ee
du
p

1Gbps NIC 2x1Gbps NIC 1Gbps NIC + 10Gbps NIC 10Gbps NIC

Fig. 16: Join Performance with SingleStore

NIC. Interestingly, the experiment with one 1 Gbps NIC and
one 10 Gbps NIC achieves the same speed-up as the one with
the single 10 Gbps NIC. With 8 machines, the WIN design is
2.17× faster than the WIM design, while the same design but
with a single 1 Gbps NIC is only about 1.3× faster. Finally,
the experiment with two 1 Gbps NICs, after an initial slight
decrease with 2 machines, increases the speed-up to 1.96×
with 8 machines.

Insights. For queries that move large amounts of data, the
network can become the bottleneck and reduce the benefits
obtained from the WIN+MEM design. The use of multiple
database worker instances makes it easy to use multiple NICs
within a single machine, increasing bandwidth and reducing
this bottleneck.

VI. DISCUSSION

In this section, we discuss the impact of other system
parameters and justify their configuration in our experiments.

Hyper-threading. The goal of hyper-threading is to hide high
memory accesses latencies. We evaluate the impact of using
hyperthreading for analytical workflows. It is clear from the
previous experiments that the WIN+MEM design is the one
that provides the largest performance benefits. Therefore, for
this experiment, we use Presto to evaluate the WIN+MEM
design over the WIM+FT with and without hyper-threading.

Figure 17 shows the results. In general, the speed-up
achieved by the WIN+MEM design over the WIM+FT design
is about 2.5× in both cases. On a query basis, half of the TPC-
H queries show a higher speed-up when executed with hyper-
threading disabled; the other half shows a slight improvement
in speed-up with hyper-threading.

From the results, we can conclude that hyper-threading
mitigates the benefits of the WIM+MEM design for the queries
most affected by the negative effects of NUMA. This is
due to a performance increase in the WIM+FT design when
enabling hyper-threads. On the other hand, the rest of the
queries show more benefits in using the WIN+MEM design.
Thus, the use of hyper-threading does not have an impact on
the overall performance benefits achieved by the WIN+MEM
design compared to WIM+FT.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22
0

1

2

3

4

5

6

S
p
ee
du
p

(a) TPC-H query speed-up

0

1

2

3

4

N
or
m
al
iz
ed

sp
ee
du
p

64 Cores

128 Cores

(b) Normalised
speed-up

Fig. 17: WIN+MEM speed-up over WIM-FT with/without
hyper-threading

Based on the previous results, we decide to only use
the physical cores. Enabling hyper-threading raises additional
questions related to the contention on the computing resources
inside a CPU core. The caches shared by the hyper-threads
generate high contention, and data is loaded from main
memory more frequently. Our study evaluates the computing
resource utilisation at a per-core level and focuses on the
correct data placement at the DRAM level.

Automatic NUMA balancing. We evaluate the impact of
automatic NUMA balancing during data processing. We use
Presto in two different design configurations (WIM and WIN)
and evaluate the response times when enabling and disabling
balancing. During the experiment, we use the First-Touch data
allocation policy.

Figure 18 shows Presto’s speed-up achieved by disabling
automatic NUMA balancing for both designs. It reveals that
both designs do not achieve a significant improvement in
response time: both speed-ups are close to one. Interestingly,
Figure 18a shows that several queries improve performance by
disabling automatic balancing, albeit slightly. Since the results
show that using or not using this capability does not have a
significant impact, we therefore decide not to change the OS
configuration by keeping it enabled.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 22
0

1

2

3

S
p
ee
du
p

(a) TPC-H query speed-up

0

1

2

3

4
N
or
m
al
iz
ed

sp
ee
du
p

WIM+FT

WIN+MEM

(b) Normalised
speed-up

Fig. 18: Speedup by disabling automatic NUMA balancing for
WIM+FT and WIN+MEM

10



VII. RELATED WORK

A. NUMA-awareness in query processing

Some studies have evaluated the performance of dis-
tributed databases when running on modern multiprocessor
machines [25], [26], [37]. Porobic et al. [37] focus on de-
termining the right trade-off between shared-everything and
shared-nothing deployments in multiprocessor systems mea-
suring the impact of distributed transactions and skewed
requests on different OLTP workloads. Salomie et al. [26]
propose to partition a multicore machine and replicate the
existing databases as if the machine were a distributed system.
These projects focus highly on transactional workflows and do
not explicitly address the NUMA-awareness.

A great deal of effort has been put into improving
NUMA-awareness at the OS level. Operating systems such
as Mach [81], exokernel [80] and Barrelfish [52] implement
message passing to facilitate the development of NUMA-
aware systems, because communication between threads is
done explicitly through messages in a NUMA-aware way. In
addition to not being specific to database systems, all of these
proposals would require substantial changes to the database
engine.

B. Black-box approaches

Several papers propose black-box approaches to improve
NUMA awareness. Dashti et al. propose an algorithm that
work at the OS level to define a placement of threads and
data that minimizes the level of congestion on the interconnect
between processors [27]. Their algorithm, called Carrefour,
uses global traffic congestion observations and obtains up to
3 times higher performance, but it is highly dependent on
the presence of hardware performance monitoring. In a cloud
environment though, containers do not expose performance
counters, making this solution challenging to apply.

Calciu et al. have developed a black-box method for defining
competing NUMA-aware data structures [19]. Despite the
high level of generality of the proposed solution, NUMA-
aware tailor-made data structures are able to achieve better
performance and scalability. Another transparent approach is
the Linux’s automatic NUMA balancing, which monitors per-
formance metrics to move threads closer to the memory they
need to access. In our study, we show that this functionality
leads to sub-optimal results.

A more effective approach is presented by Giceva et al. [41].
The authors propose a deployment algorithm to multicore sys-
tems based on the behaviours of individual database operators
and dataflow information.

C. Data and thread placement

Memory allocation and data partitioning or replication
strategies must be implemented to benefit from the distributed
nature of the NUMA architecture. Some research helps by
showing advantages and disadvantages in choosing strategies
for data placement in the main memory. The work done by
Yang et al. [42] highlights how a shared resource distribution

policy can benefit the performance of multiprocessor plat-
forms. In our study, we evaluate this policy and show that
shared use of resources does not lead to optimal performance.
Psaroudakis et al. [43] test different data distribution strategies
with SAP HANA and state that the physical partitioning
strategy to the available NUMA domains achieves the best
performance.

There are a few database systems that have chosen to
consider NUMA awareness as one of the design principles
in implementing their system. Kissinger et al. [44] build an
in-memory database engine (ERIS) that can reduce NUMA-
related problems by applying partitioning approaches based
on platform topology. ERIS executes tera-scale analytical
workloads entirely in main memory using an adaptive par-
titioning approach that exploits the topology of the underlying
NUMA platform and significantly reduces NUMA-related
issues. BatchDB by Makreshanski et al. [45] is another
database system designed to minimize the resource interfer-
ence between analytical and transactional engines on NUMA
systems. One of the main aspects of this work is that the
implicit isolation of hardware resources has a major impact on
performance by avoiding the high synchronization overheads
over the interconnect.

D. Cloud-containers resource allocation

Container resource allocation is a key factor for cloud
providers. Several studies propose resource management tech-
niques to minimise energy consumption [46]–[48]. Other
studies propose resource allocation models based on prior-
ity [49], [83]. These approaches focus more on load-balancing
problems for specific cloud providers. None of these studies
target maximising the use of hardware resources in modern
multiprocessor systems. Jebalia et al. [82] propose a resource
allocation approach based on neural networks. The study
exploits a genetic algorithm to maximise the use of resources,
but it is mainly efficient in cases without resource contention.

VIII. CONCLUSION

We investigated the performance impact of different de-
ployment policies of distributed query engines over multicore
NUMA machines. We showed that deploying a database
worker instance per NUMA domain with a corresponding
memory binding policy guarantees increased performance
compared to other designs, a high multicore scalability and
good horizontal scalability. Our proposed guidelines directly
apply to on-premise distributed query engines, enabling them
to maximize their resource utilisation without requiring signif-
icant changes to the engine. In the case of engines deployed in
the cloud, our insights may enable better future provisioning
and assignment of hardware resources. Overall, we conclude
that treating NUMA machines as distributed systems is a an
effective way to get the most out of the underlying hardware
resources.

11



REFERENCES

[1] Binnig, C., Crotty, A., Galakatos, A., Kraska, T., & Zamanian, E.
(2016). “The End of Slow Networks: It’s Time for a Redesign.” ArXiv,
abs/1504.01048.

[2] Chen, J., Jindel, S., Walzer, R., Sen, R., Jimsheleishvilli, N., & Andrews,
M. (2016). “The MemSQL Query Optimizer: A modern optimizer for
real-time analytics in a distributed database.” Proc. VLDB Endow., 9,
1401-1412. https://doi.org/10.14778/3007263.3007277

[3] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun, N.
Yegitbasi, H. Jin, E. Hwang, N. Shingte, and C. Berner. “Presto: SQL
on Everything.” In 2019 IEEE 35th International Conference on Data
Engineering (ICDE). 1802–1813.

[4] Armbrust, M., Xin, R., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng,
X., Kaftan, T., Franklin, M.J., Ghodsi, A., & Zaharia, M.A. (2015).
“Spark SQL: Relational Data Processing in Spark.” Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data.
https://doi.org/10.1145/2723372.2742797

[5] Armenatzoglou, N., Basu, S., Bhanoori, N., Cai, M., Chainani, N.,
Chinta, K., Govindaraju, V., Green, T.J., Gupta, M., Hillig, S., Hotinger,
E., Leshinksy, Y., Liang, J., McCreedy, M., Nagel, F., Pandis, I.,
Parchas, P., Pathak, R., Polychroniou, O., Rahman, F., Saxena, G.,
Soundararajan, G., Subramanian, S., & Terry, D. (2022). “Amazon
Redshift Re-invented.” Proceedings of the 2022 International Conference
on Management of Data. https://doi.org/10.1145/3514221.3526045

[6] Pandis, I. (2021). “The evolution of Amazon Redshift.” Proc. VLDB
Endow., 14, 3162-3163. https://doi.org/10.14778/3476311.3476391

[7] Amazon Web Services, Inc. “Amazon Redshift clusters.” 2022.
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-
clusters.html

[8] Gupta, A., Agarwal, D.K., Tan, D., Kulesza, J., Pathak, R., Ste-
fani, S., & Srinivasan, V. (2015). “Amazon Redshift and the
Case for Simpler Data Warehouses.” Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data.
https://doi.org/10.1145/2723372.2742795

[9] Aguilar-Saborit, J., & Ramakrishnan, R. (2020). “POLARIS: The Dis-
tributed SQL Engine in Azure Synapse.” Proc. VLDB Endow., 13, 3204-
3216. https://doi.org/10.14778/3415478.3415545

[10] Fernandes, S., & Bernardino, J. (2015). “What is BigQuery?” In Pro-
ceedings of the 19th International Database Engineering & Applications
Symposium (IDEAS ’15). Association for Computing Machinery, New
York, NY, USA, 202–203. https://doi.org/10.1145/2790755.2790797

[11] Amazon Web Services, Inc. “Amazon Athena.” 2022.
https://docs.aws.amazon.com/whitepapers/latest/big-data-analytics-
options/amazon-athena.html

[12] Oracle. “Oracle Exadata database machine X8-2.” 2017.
https://www.oracle.com/technetwork/database/exadata/exadata-x8-2-
ds-5444350.pdf

[13] Teradata. “Teradata Vantage™ - SQL Fundamentals.”
2022. https://docs.teradata.com/r/Teradata-VantageTM-SQL-
Fundamentals/June-2022/Introduction-to-SQL-Fundamentals

[14] Apache Software Foundation, 2010. “Hadoop”, Available at:
https://hadoop.apache.org.

[15] The kernel development community. “ Documentation for
/proc/sys/kernel/.” 2022. https://www.kernel.org/doc/html/latest/admin-
guide/sysctl/kernel.html#numa-balancing

[16] The kernel development community. “ Numa policy hit/miss statistics.”
2022. https://www.kernel.org/doc/html/latest/admin-guide/numastat.html

[17] Lepers, B., Quéma, V., & Fedorova, A. (2015). “Thread and Memory
Placement on NUMA Systems: Asymmetry Matters.” USENIX Annual
Technical Conference.

[18] Pusukuri, K.K., Gupta, R., & Bhuyan, L.N. (2012). “Thread Tranquil-
izer: Dynamically reducing performance variation.” ACM Trans. Archit.
Code Optim., 8, 46:1-46:21. https://doi.org/10.1145/2086696.2086725

[19] Calciu, I., Sen, S., Balakrishnan, M., & Aguilera, M.K. (2017). “Black-
box Concurrent Data Structures for NUMA Architectures.” Proceed-
ings of the Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operating Systems.
https://doi.org/10.1145/3037697.3037721

[20] Barthels, C., Alonso, G., Hoefler, T., Schneider, T., & Müller, I. (2017).
“Distributed Join Algorithms on Thousands of Cores.” Proc. VLDB
Endow., 10, 517-528. https://doi.org/10.14778/3055540.3055545

[21] Daly, H., Hassan, A., Spear, M.F., & Palmieri, R. “NUMASK: High
Performance Scalable Skip List for NUMA”. DISC (2018).

[22] Lang, H., Leis, V., Albutiu, MC., Neumann, T., Kemper, A. “Massively
Parallel NUMA-Aware Hash Joins.” In: Jagatheesan, A., Levandoski, J.,
Neumann, T., Pavlo, A. (eds) In Memory Data Management and Anal-
ysis. IMDM IMDM 2013 2014. Lecture Notes in Computer Science(),
vol 8921. Springer, Cham. https://doi.org/10.1007/978-3-319-13960-9 1

[23] Albutiu, M., Kemper, A., & Neumann, T. (2012). “Massively Parallel
Sort-Merge Joins in Main Memory Multi-Core Database Systems.” Proc.
VLDB Endow., 5, 1064-1075.

[24] Li, Y., Pandis, I., Müller, R., Raman, V., & Lohman, G.M. “NUMA-
aware algorithms: the case of data shuffling.” CIDR (2013).

[25] Kiefer, T., Schlegel, B., & Lehner, W. “Experimental Evaluation of
NUMA Effects on Database Management Systems.” BTW (2013).

[26] Salomie, T., Subasu, I.E., Giceva, J., & Alonso, G. (2011). “Database
engines on multicores, why parallelize when you can distribute?”
EuroSys ’11.

[27] Dashti, M., Fedorova, A., Funston, J.R., Gaud, F., Lachaize, R., Lepers,
B., Quéma, V., & Roth, M. (2013). “Traffic management: a holistic
approach to memory placement on NUMA systems.” ASPLOS ’13.

[28] Gaud, F., Lepers, B., Funston, J.R., Dashti, M., Fedorova, A., Quéma, V.,
Lachaize, R., & Roth, M. (2015). “Challenges of memory management
on modern NUMA systems.” Communications of the ACM, 58, 59 - 66.

[29] SingleStore, Inc. “SingleStore Documentation.” 2022.
https://docs.singlestore.com/v7.3/introduction/documentation-overview/

[30] Greenplum Database. “Introduction to Greenplum.” 2022.
https://docs.greenplum.org/6-10/install guide/preinstall concepts.html

[31] Greenplum. “About this Documentation.” 2022.
https://docs.greenplum.org/6-12/common/gpdb-features.html

[32] Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S.B.,
Jones, E.P., Madden, S., Stonebraker, M., Zhang, Y., Hugg, J., & Abadi,
D.J. “H-store: a high-performance, distributed main memory transaction
processing system.” Proc. VLDB Endow., 1, 1496-1499.

[33] Kemper, A., & Neumann, T. “HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots.” 2011
IEEE 27th International Conference on Data Engineering, 195-206.

[34] Transaction Processing Performance Council (TPC). “TPC Bench-
mark H, (Decision Support) Standard Specification Revision 2.18.0.”
http://www.tpc.org/

[35] Boncz, P.A., Anadiotis, A.G., & Kläbe, S. (2017). JCC-H:
Adding Join Crossing Correlations with Skew to TPC-H. TPCTC.
https://ir.cwi.nl/pub/27429/27429.pdf

[36] Kleen, A. (2005). “A numa api for linux.” Novel Inc.
[37] Porobic, D., Pandis, I., Branco, M., Tözün, P., & Ailamaki, A. (2012).

“OLTP on Hardware Islands.” Proc. VLDB Endow., 5, 1447-1458.
[38] Hwang, J., Ramakrishnan, K.K., & Wood, T. (2015). “NetVM: High Per-

formance and Flexible Networking Using Virtualization on Commodity
Platforms.” IEEE Transactions on Network and Service Management,
12, 34-47.

[39] Balkesen, C., Teubner, J., Alonso, G., & Özsu, M.T. (2013). “Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hard-
ware.” 2013 IEEE 29th International Conference on Data Engineering
(ICDE), 362-373.

[40] Teubner, J., & Müller, R. (2011). “How soccer players would do stream
joins.” SIGMOD ’11.

[41] Giceva, J., Alonso, G., Roscoe, T., & Harris, T.L. (2014). “Deployment
of Query Plans on Multicores.” Proc. VLDB Endow., 8, 233-244.

[42] Yang, M., Huang, W., & Chen, J. (2019). “Resource-Oriented Par-
titioning for Multiprocessor Systems with Shared Resources.” IEEE
Transactions on Computers, 68, 882-898.

[43] Psaroudakis, I., Scheuer, T., May, N., Sellami, A., & Ailamaki, A.
(2015). “Scaling Up Concurrent Main-Memory Column-Store Scans:
Towards Adaptive NUMA-aware Data and Task Placement.” Proc.
VLDB Endow., 8, 1442-1453.

[44] Kissinger, T., Kiefer, T., Schlegel, B., Habich, D., Molka, D., & Lehner,
W. (2014). “ERIS: A NUMA-Aware In-Memory Storage Engine for
Analytical Workload.” ADMS@VLDB.

[45] Makreshanski, D., Giceva, J., Barthels, C., & Alonso, G. (2017).
“BatchDB: Efficient Isolated Execution of Hybrid OLTP+OLAP Work-
loads for Interactive Applications.” Proceedings of the 2017 ACM
International Conference on Management of Data.

[46] Bermejo, B., Guerrero, C., Lera, I., & Juiz, C. (2016). “Cloud Resource
Management to Improve Energy Efficiency Based on Local Nodes
Optimizations.” ANT/SEIT.

[47] Geronimo, G.A., Werner, J., Westphall, C.M., & Defenti, L. (2013).
“Provisioning and Resource Allocation for Green Clouds.”

12



[48] Srikantaiah, S., Kansal, A., & Zhao, F. (2008). “Energy aware consoli-
dation for cloud computing.“ CLUSTER 2008.

[49] Pawar, C.S., & Wagh, R.B. (2012). “Priority based dynamic resource
allocation in Cloud computing with modified waiting queue.” 2013
International Conference on Intelligent Systems and Signal Processing
(ISSP), 311-316.

[50] Verbitski, A., Gupta, A., Saha, D., Brahmadesam, M., Gupta, K.K.,
Mittal, R., Krishnamurthy, S., Maurice, S., Kharatishvili, T., & Bao, X.
(2017). “Amazon Aurora: Design Considerations for High Throughput
Cloud-Native Relational Databases.” Proceedings of the 2017 ACM
International Conference on Management of Data.

[51] Dageville, B., Cruanes, T., Zukowski, M., Antonov, V.N., Avanes, A.,
Bock, J., Claybaugh, J., Engovatov, D., Hentschel, M., Huang, J.,
Lee, A.W., Motivala, A., Munir, A., Pelley, S., Povinec, P., Rahn, G.,
Triantafyllis, S., & Unterbrunner, P. (2016). “The Snowflake Elastic
Data Warehouse.” Proceedings of the 2016 International Conference on
Management of Data.

[52] Baumann, A., Barham, P., Dagand, P., Harris, T.L., Isaacs, R., Peter, S.,
Roscoe, T., Schüpbach, A., & Singhania, A. (2009). “The multikernel:
a new OS architecture for scalable multicore systems.” SOSP ’09.

[53] Wentzlaff, D., & Agarwal, A. (2009). “Factored operating systems (fos):
the case for a scalable operating system for multicores.” ACM SIGOPS
Oper. Syst. Rev., 43, 76-85.

[54] Boyd-Wickizer, S., Chen, H., Chen, R., Mao, Y., Kaashoek, M.F.,
Morris, R.T., Pesterev, A., Stein, L., Wu, M., Dai, Y., Zhang, Y., &
Zhang, Z. (2008). “Corey: An Operating System for Many Cores.”
OSDI.

[55] Hashem, I.A., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A.B., & Khan,
S.U. (2015). “The rise of ”big data” on cloud computing: Review and
open research issues.” Inf. Syst., 47, 98-115.

[56] Mishra, V., Benjamin, J.L., & Zervas, G.S. (2021). “MONet: heteroge-
neous Memory over Optical Network for large-scale data center resource
disaggregation.” IEEE/OSA Journal of Optical Communications and
Networking, 13, 126-139.

[57] Liu, W., Cai, J., Chen, Q.C., & Wang, Y. (2021). “DRL-R: Deep
reinforcement learning approach for intelligent routing in software-
defined data-center networks.” J. Netw. Comput. Appl., 177, 102865.

[58] Roozbeh, A. (2019). “Toward Next-generation Data Centers : Principles
of Software-Defined “Hardware” Infrastructures and Resource Disag-
gregation.”

[59] Mars, J., Tang, L., Hundt, R., Skadron, K., & Soffa, M.L. (2011).
“Bubble-up: Increasing utilization in modern warehouse scale computers
via sensible co-locations.” 2011 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 248-259.

[60] Wang, L., & Ranjan, R. (2015). “Processing Distributed Internet of
Things Data in Clouds.” IEEE Cloud Computing, 2, 76-80.

[61] Novakovic, S., Daglis, A., Bugnion, E., Falsafi, B., & Grot, B. (2014).
“Scale-out NUMA.” Proceedings of the 19th international conference on
Architectural support for programming languages and operating systems.

[62] Grolinger, K., Higashino, W.A., Tiwari, A., & Capretz, M.A. (2013).
“Data management in cloud environments: NoSQL and NewSQL data
stores.” Journal of Cloud Computing: Advances, Systems and Applica-
tions, 2, 1-24.

[63] Wu, J., Wang, J., & Zaniolo, C. (2022). “Optimizing Parallel Recursive
Datalog Evaluation on Multicore Machines.” Proceedings of the 2022
International Conference on Management of Data.

[64] Agarwal, S., Milner, H., Kleiner, A., Talwalkar, A.S., Jordan, M.I.,
Madden, S., Mozafari, B., & Stoica, I. (2014). “Knowing when you’re
wrong: building fast and reliable approximate query processing systems.”
Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data.

[65] Awada, U., & Barker, A. (2017). “Improving Resource Efficiency of
Container-Instance Clusters on Clouds.” 2017 17th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID),
929-934.

[66] Bermejo, B., Filiposka, S., Juiz, C., Gómez, B., & Guerrero, C. (2017).
“Improving the Energy Efficiency in Cloud Computing Data Centres
Through Resource Allocation Techniques.” Research Advances in Cloud
Computing.

[67] Moreno, I.S., Yang, R., Xu, J., & Wo, T. (2013). “Improved energy-
efficiency in cloud datacenters with interference-aware virtual machine
placement.” 2013 IEEE Eleventh International Symposium on Au-
tonomous Decentralized Systems (ISADS), 1-8.

[68] Zhang, Q., Cai, Y., Chen, X., Angel, S.G., Chen, A., Liu, V., & Loo, B.T.
(2020). “Understanding the effect of data center resource disaggregation
on production DBMSs.” Proceedings of the VLDB Endowment, 13,
1568 - 1581.

[69] Jiang, D., Pierre, G., & Chi, C. (2009). “EC2 Performance Analysis for
Resource Provisioning of Service-Oriented Applications.” ICSOC/Ser-
viceWave Workshops.

[70] Chai, L., Hartono, A., & Panda, D.K. (2006). “Designing High Per-
formance and Scalable MPI Intra-node Communication Support for
Clusters.” 2006 IEEE International Conference on Cluster Computing,
1-10.

[71] Milic, U., Villa, O., Bolotin, E., Arunkumar, A., Ebrahimi, E., Jaleel,
A., Ramı́rez, A., & Nellans, D.W. (2017). “Beyond the Socket: NUMA-
Aware GPUs.” 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), 123-135.

[72] Marcus, R., Negi, P., Mao, H., Zhang, C., Alizadeh, M., Kraska, T.,
Papaemmanouil, O., & Tatbul, N. (2019). “Neo: A Learned Query
Optimizer.” Proc. VLDB Endow., 12, 1705-1718.

[73] Wu, C., Jindal, A., Amizadeh, S., Patel, H., Le, W., Qiao, S., & Rao,
S. (2018). “Towards a Learning Optimizer for Shared Clouds.” Proc.
VLDB Endow., 12, 210-222.

[74] Lee, K., & Liu, L. (2013). “Efficient data partitioning model for
heterogeneous graphs in the cloud.” 2013 SC - International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), 1-12.

[75] Nehme, R.V., & Bruno, N. (2011). “Automated partitioning design in
parallel database systems.” SIGMOD ’11.

[76] Dreseler, M., Boissier, M., Rabl, T., & Uflacker, M. (2020). “Quantifying
TPC-H choke points and their optimizations.” Proceedings of the VLDB
Endowment, 13, 1206 - 1220.

[77] Lübcke, A. (2017). Automated query interface for hybrid relational
architectures.

[78] Bui, V.Q., Mvondo, D., Teabe, B., Jiokeng, K., Wapet, P.L., Tchana, A.,
Thomas, G., Hagimont, D., Muller, G., & Palma, N.D. (2019). “When
eXtended Para - Virtualization (XPV) Meets NUMA.” Proceedings of
the Fourteenth EuroSys Conference 2019.

[79] Pacheco, P.S. (2011). An Introduction to Parallel Programming.
[80] Engler, D.R., Kaashoek, M.F., & O’Toole, J.W. (1995). “Exokernel:

an operating system architecture for application-level resource man-
agement.” Proceedings of the fifteenth ACM symposium on Operating
systems principles.

[81] Accetta, M.J., Baron, R.V., Bolosky, W.J., Golub, D.B., Rashid, R.F.,
Tevanian, A., & Young, M. (1986). “Mach: A New Kernel Foundation
for UNIX Development.” USENIX Summer.

[82] Jebalia, M., LETAIFA, A.B., Hamdi, M., & Tabbane, S. (2013). “A
Comparative Study on Game Theoretic Approaches for Resource Allo-
cation in Cloud Computing Architectures.” 2013 Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises, 336-341.

[83] Dinesh, K., Poornima, G.R., & Kiruthika, K. (2012). “Efficient Re-
sources Allocation for Different Jobs in Cloud.” International Journal
of Computer Applications, 56, 30-35.

13


