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Preface

This volume contains the proceedings of the SymNet Workshopon Approximate Sym-
metry in Search, held during January 10–11, 2005, in New Lanark, Scotland, UK. The
aim of the workshop was to allow a small number of reserachersinterested in symmetry
and search problems to congregate in an informal setting, for discussion and presenta-
tion of reserach ideas. We feel that the workshop succeeded in this aim, with a series
of talks and discussions involving contributions from the constraint satisfaction, model
checking, and planning communities.

The workshop was organised jointly by the department of Computing Scince, Uni-
versity of Glasgow, and the department of Computer and Information Sciences, Univer-
sity of Strathclyde, as part of SymNet, and EPSRC funded network. We would like to
thank the attendees of this workshop for making the event thegreat success it was. We
would also like to thank Ian Gent for his encouragement, the EPSRC for their financial
support, the members of SymNet for their interest in readingthese proceedings, and Jon
Ritchie for arranging for the proceedings to be printed.

An electronic version of this document is available from theSymNet website, lo-
cated athttp://symnet.dcs.st-and.ac.uk/ .
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(Editors)
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Concrete Applications of Almost-Symmetry

Peter Gregory1 and Alastair Donaldson2

1 University of Strathclyde
Glasgow, UK

2 University of Glasgow
Glasgow, UK

Abstract. It seems intuitive that approximate symmetries occur in many real-
world problems. Many of the examples that can be thought of quickly could be
modelled in such a way as to reveal all of the symmetry. The more interesting
examples occur when the aspect of the problem that has to be abstracted out is
relevant to the solution.
Are these interesting examples pervasive throughout different search domains?
The aim of this section is to describe real-world problems that contain approx-
imate symmetries, and to discuss whether or not these problems could be ab-
stracted to reveal symmetries without compromising solution correctness.

1 Chemical Plant Operation

In the 2004 International Planning Competition, one of the problem domains was the
PipesWorld domain [1]. This domain models an oil-refinery that has to pipe certain
materials to different places. There is a range of differentoil-derived chemicals to pipe
between different locations. It is sometimes possible to transport more than one type of
chemical down the same pipe, given that the chemicals are compatible with each other
(i.e., do not mix or react).

Fig. 1. A chemical refinery pumping three different types of chemicals (A, B and C) to two
different locations (X and Y). The arrows on the refinery refer to the locations that the chemicals
need to be pumped to. The grid shows which chemicals may be placed in the same pipe safely.

Each type of chemical could be considered symmetric if they each had the same
compatibility relations to the other chemicals. Typically, they do not, their compatibility
relations are often just similar. Consider the situation inFigure 1. The refinery must
pump chemicals A and B to location X and chemical C to locationY. Chemical A is



2

compatible with C, whilst B is not. Other than this fact, A andB are indistinguishable.
In this situation, it is clear that this piece of information(compatibility with Chemical
C) can be abstracted out. A and B are almost-symmetric with respect to the abstraction.

In general, the compatibilities of the chemicals could be modified to increase the
symmetry of the problem, as could properties of pipes and locations. The amount of
abstraction performed would clearly affect the usefulnessof the abstraction in terms of
solving the original problem.

2 Concurrent System with Priorities

Model checking [5] is a popular technique for the verification of concurrent systems. To
verify a system by model checking, the system must first be converted (usually by hand)
into a finite state model. Properties of the system are then verified by exhaustive search
of this model. The application of model checking is limited due to the state-space explo-
sion problem—as the number of components in a concurrent system increases, the size
of the state-space of a model associated with this system grows combinatorially, quickly
becoming too large to feasibly check. A lot of research in model checking concentrates
on techniques to alleviate this problem. A popular technique is symmetry reduction.
This involves exploiting the replicated structure of a concurrent system. Replication of
identicalprocesses in the system results in replicated portions of the state-space associ-
ated with this system. If known before search, this symmetryin the state-space can be
exploited, and a smallerquotientstate space can be searched instead, saving both time
and memory.

In practice, concurrent systems may bealmostsymmetric, but not fully symmetric.
For example, a system may be comprised of a set of processes competing for access
to a shared resource [8]. These processes are identical, except that each process has
an integer priority level. Access to the resource will be granted to a process with the
highest priority level if several processes request accesssimultaneously.

The state graph of such a system will have a smaller group of symmetries than
that of a system without priority levels. Thus the savings available through standard
symmetry reduction techniques may be modest. However, whenverifying a general
property of the system, such as deadlock freedom, or the mutual exclusion property (the
resource is always accessed by at most one process), the priority levels do not affect the
truth or falsity of the property. In such cases it may be possible to abstract away from
process priority levels and assume that thereis full symmetry between components, in
order to verify such properties over a small quotient structure with respect to a larger
group of symmetries.

3 Constrained Latin Square

A Latin Square is ann�n grid in whichn tiles of n different colours are placed such
that no colour appears more than once in each row and column. These mathematical
artifacts have application in experimental design. RatherthananyLatin Square, often a
Latin Square with distinct properties is required. For example, Figure 2(a) shows a 4�4
Latin Square. If the numbers (which represent colours) in the Latin Square correspond
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(a) Unconstrained
Latin Square

(b) Latin Square in
which 3 and 4 must
never be placed to-
gether on any row.

Fig. 2. Two Latin Squares.

to different drugs in a medical trial, the columns refer to weeks, and the rows to test
subjects, then we can see that Patient 1 takes drugs 1, 2, 3 and4 in their respective
weeks.

However, the people at our ethical drug-trial lab know that taking drugs 3 and 4 in
consecutive weeks can be dangerous, and so to find a schedule of trials, extra constraints
must be placed on the Latin Square. In this case that 3,4 or 4,3must not occur in any
row (An example is shown in Figure 2(b)). This new problem hasless symmetry than
the original Latin Square problem. Thus symmetry breaking techniques for arbitrary
Latin Squares may not be applicable when searching for constrained Latin Squares.

Intuitively, the constrained Latin Square ’almost’ has thesame symmetries as the
unconstrained one. This relationship between unconstrained and constrained Latin Squ-
ares is discussed later in these proceedings [2]. For more information on the Latin
Square and Design Theory in general see [3] on the web.

4 Balanced Academic Curriculum Problem

The difficulty of University timetabling problems is well-known (cite). The Balanced
Academic Curriculum Problem (BACP) [4] schedules a set of courses across a certain
number of periods for a complete degree programme. Each class requires a different
amount of effort and therefore to distribute the classes uniformly would lead to varia-
tions in the effort required for individual periods. The problem is to balance this effort
optimally between the periods. The problem is made more difficult by the fact that some
courses have prerequisites. The problem can be defined by thefollowing factors:

– CoursesThe list of courses available. Every course must be taken (atsome point)
by each student;

– Number of Periods The number of distinct time-periods in which to study. For
example, in a 3-year degree with two semesters per year, the number of periods
would be six;
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– Academic Load The effort required, or academic credits achievable, for taking
each course;

– PrerequisitesThe courses that must be studied in order to study each course;
– Min. Academic Load The minimum academic credits that each period should

yield;
– Max. Academic LoadThe maximum realistic academic credits achievable by any

one student;
– Min. and Max. Number of Courses The minimum and maximum number of

courses required in each period.

The problem is to assign each course a period, such that the periods are optimally
balanced.

Symmetry in this problem arises when different courses are equivalent to one an-
other. However, the prerequisites of the courses will typically break this symmetry. Two
courses with different prerequisites are now asymmetric, even if those prerequisites are
non-interfering. Clearly these courses are still equivalent at some abstraction of the
problem, but we cannot abstract the prerequisites out of themodel as they are relevant
constraints of the problem. Thus the BACP exhibits almost-symmetry.

There are two things we can do to increase the symmetry in thismodel. The first
is to loosen the constraints by removing prerequisites. Thesecond is to tighten the
constraints by adding prerequisites to courses (to make them equivalent to more con-
strained courses). The almost-symmetry in the problem can be revealed by either of
these approaches. Solving the problem using the first abstraction would lead to infeasi-
ble solutions and any solver would have to keep track of the true constraints to preserve
soundness. Using the second abstraction may yield a sub-optimal solution since the
added constraints will compromise completeness, again thesolver will have to com-
pensate for this.

Without solvers that can deal with almost-symmetry, it is difficult to say which
alternative approach is best.

5 Automated Manufacture

Martin and Weihe [6], with industrial partners, have studied a problem involving the
design of schedules for circuit-board assembly. The application is described in further
detail in these proceedings [7].

The problem deals with a conveyor-belt with PCBs and severalrobotic arms that
can place components. These arms can only operate in small windows on the belt and
can only have access to a small number of different components. The problem is to
assign components to different arms to optimise a schedule.

The arms are clearly not symmetric, since their location andviewing-window are
important to the solution and cannot be ignored. However, interchanging two arms will
affect only the quality of the solution, not its feasibility.
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Restoring Symmetries in Almost Symmetric Graph
Structures

Derek Long and Maria Fox?
University of Strathclyde, Glasgow, UK

Abstract. The concept of symmetries in graphs is well understood: a symme-
try of a graph is simply an automorphism of the graph. There are well-known
techniques for finding graph automorphisms [2], based on partitioning of nodes
according to their out-degrees. It is not uncommon for a graph to exhibit structure
that isalmostsymmetric. That is, the graph would contain high degrees of sym-
metry were it not for minor blemishes in the structure: missing edges or excess
edges. In this paper, we propose and briefly examine techniques for identifying
the edges that lead to the breakdown in symmetries. The work described in this
paper is still at an early stage of development, so we outlinethe directions in
which we intend to progress our exploration.

1 Introduction

Symmetries have been an important subject of research for decades, forming the basis
for the development of group theory. They arise in many areasof science, providing
an elegant theoretical tool for interpreting many phenomena. Computer science is no
exception, offering a fertile ground for exploitation of symmetries in a wide range of
problems. In a similar way, graphs have proved a powerful abstract formalism for rep-
resenting a huge range of problems in computer science. It istherefore no surprise that
symmetries and graphs have been studied in conjunction. Symmetries in graphs are
graph automorphisms and they are an abstraction of a very powerful idea that arises in
many areas of computer science. Finding graph automorphisms is a problem that sits on
the edge of tractability: efficient algorithms are known, although none has been proved
polynomial. NAUTY [2] is one of the best known implementations of an algorithm for
finding graph automorphisms.

Many graphs arise in contexts in which symmetries would be useful, but the graphs
exhibit little or no useful symmetry. This can often be the consequence of comparatively
minor blemishes in the structure of the graphs, since a single missing or excess edge can
break a very large collection of potential symmetries of a graph. For example, consider
a 5 clique, which has 120 automorphisms: if a single edge is removed then this drops
to just 12 automorphisms! In this paper we consider the problem of finding the best
possible modifications to a graph that restore (or create) symmetries.? The authors also with to acknowledge the contributions of Julie Porteous in discussions leading

to the work reported here.
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2 Graph Automorphisms

It is helpful to briefly review the most common algorithmic process by which graph au-
tomorphisms are identified. The algorithm begins by partitioning the nodes of the graph
according to their outdegrees (the numbers of edges connecting to each of the nodes).
Then, in an iterative process, these partitions are furthersub-partitioned by considering
the outdegrees of the nodes within one partition when restricted to edges that link the
nodes to nodes in another partition. Once no partition further partitions according to
this criterion, then the partitions represent the seeds of agroup of automorphisms. An
exhaustive search procedure can be applied in which each of the partitions is split, in
all possible ways, by the removal of one node from the partition. The new partition-
ing of the nodes created in this way is then examined, as before, for further implied
partitionings, until it is stable. The search is pursued depth-first until all partitions are
singletons. On backtracking through the search tree and expanding alternative choices,
the algorithm will generate different orderings of the nodes in the partitioned graph and
each such different ordering is automorphic with the original ordering.

A

B C

D

E
G

H

F

Fig. 1.Simple graph example.

An example will help to clarify this procedure. Consider thegraph show in figure 1.
This partitions into the collection:fADEjHjBFGjCg, in ascending order of outdegrees,
from 1 to 4. Now, considering the first and fourth partitions,we see that D has outdegree
1 (the edge to C), while A and E have 0 (no edges to C). Hence, we refine the partition
collection into:fAEjDjHjBFGjCg. Similarly, if we consider the partition containing B
against that containing C, we find that B and G have outdegree 1, while F has 0. This
leads to the partitions:fAEjDjHjFjBGjCg. Comparing A and E withfBGg we further
divide into: fEjAjDjHjFjBGjCg and finally, comparing B and G with A, we obtain:fEjAjDjHjFjGjBg. Since no partition ends up with more than one element, this graph
has no non-trivial automorphisms.

A key observation to be made about this process is that potential symmetries of the
graph are lost whenever a collection of vertices is split into two or more partitions: the
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splitting necessarily prevents any symmetry between pairsof vertices each of which
appears in a separate partition.

3 Almost Symmetries of Graphs

We now attempt to formalise the definition of an almost symmetry of a graph. This
idea is closely related to the concept of almost symmetries in planning problems, in-
troduced in [1]. The intuition is that symmetries arise as a consequence of abstractions.
For example, to claim that two solutions of the n-queens problem are symmetrical, we
will usually need to abstract out the underlying checkerboard pattern of colours and
the physical locations of the queens (as opposed to the relative locations on the board).
Thus, to increase the degree of symmetry in a structure we must apply some abstraction
to it. The abstraction will remove the sources of differentiation between elements of the
structure and allow more opportunities for symmetry to arise. This intuition motivates
the following definitions:

Definition 1. A graph abstraction relationis any binary relation on graphs,., such that
G.H only if G and H have the same set of nodes.

Definition 2. Given a graph G, a graph abstraction relation., then for any graph H
such that G.H, any automorphism of H is analmost symmetryof G, with respect to..

Where the abstraction we are using is clear from the context,we will not make it
explicit in referring to almost symmetries of a graph. It is clear that these definitions
allow a very broad form for almost symmetries of a graph. The crucial constraint is
from the graph abstraction relation we consider. In general, we will only be interested
in graph abstractions that maintain a close relationship between the two graphs. If we
were to apply an abstraction that simply throws away all the edges of the original graph
then we would end up with a very high degree of almost symmetry(all the vertices then
become symmetric with each other, so there will be a completepermutation symmetry
on them). Of course, this abstraction is unlikely to be of much interest, since it throws
away too much of the structure of the original graph. Instead, we will want to exploit
abstractions that eliminate small parts of a graph, while retaining most of what makes
the graph interesting. The abstractions we are most interested in take the following basic
form:

Definition 3. Given a positive integer, d, the subgraph abstraction to distance d,.d is
the relation such that G.d H iff H is a subgraph of G containing all the nodes of G and
in which G has at most d more edges than H. H is called asubgraph abstraction ofG
at a distanced from G.

Candidate subgraph abstractions of a graph at a given distance,d, away are easy
to construct, since they simply involve removing subsets ofd edges from the graph. In
practice, we are not interested in removing large sets of edges andd will be restricted
to a small number. How small is not yet clear: it is possible that the number of edges we
could consider removing should be measured as a proportion of the size of the graph
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being abstracted, but the complexity of a naive search for suitable subgraph abstractions
is exponential ind and this is likely to forced to remain modest.

An alternative abstraction involves adding edges to a graph, G, but this is easily
handled using subgraph abstraction by taking the complement of G and then applying
subgraph abstraction to it, since the edges removed from thecomplement correspond
to edges added to the original graph. More extensive abstractions, such as addition and
removal of edges, remain outside the scope of the current work.

4 Finding Almost Symmetries in Graphs

Now that we have defined what we are looking for, we consider how we can find it.
The simplest algorithm is to take the original graph, systematically remove edges from
it (incrementing the number of edges to be removed as the set of abstracted graphs at
the current distance is exhausted), applying NAUTY to each candidate subgraph. This
algorithm is obviously naive and impossibly expensive for finding good abstractions at
any significant distance from the original graph. In addition, it will simply enumerate
all possible almost symmetries without any discrimination. In general, we will be able
to identify better or worse kinds of almost symmetry according to the way in which
they relate different vertices in the original graph. We arestill examining ways to eval-
uate candidates, but we have considered the following heuristics: sets of vertices that
we would be happy to see made symmetric can be assigned rewardvalues — the more
vertices of such a set that are drawn into a symmetry, the better the symmetry. Similarly,
edges can be assigned costs — the more edges we remove the morestructure we lose
from the original graph and often some edges are of much more importance in preserv-
ing the integrity of the original graph than others. Therefore, the cost of an abstraction
can be measured according to the sum of the costs of the edges removed, while the
benefit can be measured according to the sum of the rewards forvertices that are drawn
into the almost symmetries the abstraction generates.

Another factor appears to be important: in certain contextsit is important to identify
almost symmetries that relate the largest possible substructures of the original graph.
For example, in figure 2 the almost symmetry between the two sub-structures indicated
could be more interesting than the more local symmetries created by the alternative
abstraction proposed. In other contexts it might be of more use to find the local sym-
metries, since local symmetries are more robust to subsequent operations on the graph.
This means that if, for instance, a search is being carried out across structures repre-
sented by the graph, then as choices are made that affect the roles of the vertices in the
search space, more of the local symmetries will remain active and might be exploited
in reducing subsequent branches of the search than would be the case for large-scale
symmetries. It is possible to heuristically estimate the potential degree of additional
symmetry in an abstraction. If we consider the first level of partitioning performed by
the partition-based automorphism identification algorithm described in section 2, then
a heuristic measure of the potential number of automorphisms is the product of the fac-
torials of the sizes of each of the partition sizes. This is based on the possibility that
all vertices in a partition could be symmetric with one another, independently of the
symmetries on the vertices in other partitions. This is therefore a maximum possible
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A B C

D E F

G H I

J K L

Fig. 2.Almost symmetries in a graph: if the edge FH is removed then the two identified structures
are symmetric. On the other hand, if BF is removed then there is more local symmetry, since the
vertices A and C are symmetric, while DEF and JKL are symmetric and G and I are symmetric,
giving three independent 2-fold symmetries.

number of automorphisms, but it gives a guide to which candidate partitions should be
favoured when considering which edges to remove in a subgraph abstraction. The other
measurement of interest is the sum of the sizes of the partitions, each taken modulok,
for some integerk. If this sum is multiplied byk then it indicates the maximum number
of nodes that might be involved in a structural symmetry of orderk.

Consider the graph shown in figure 3: the sizes of the initial partitions are shown
in table 1, along with the sizes of the partitions that are possible after the removal of
one edge. Alongside these we show the factorial products forthe corresponding po-
tential abstractions and the sum of partition sizes modulok for different values ofk. It
is of considerable interest to note that in this case the 3-fold symmetry offers the best
scope for large-scale symmetry, with removal of an edge in partition fB;E;F;H;Mg,
while the removal of an edge in the partitionfC;G;Lg offers the best scope for local
symmetries. The former case can be achieved by removal of edge EF (and it is the
only choice), which does indeed restore full 3-fold symmetry to the resulting graph.
The latter case cannot be achieved for this example, so removal of the same edge, EF,
offers next best scope for local symmetries. After that, removal of an edge between par-
tition fA;D; I ;J;K;N;Og and partitionfC;G;Lg (line labelled 101 in the table) offers
best scope. This option leads to discovery that KL or LO wouldoffer separate 2-fold
symmetries for the two resulting graph components.

The next question is how to determine which edges might be removed. When an
edge is removed, it affects the outdegrees of both ends. As a consequence, we are
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BA C

D
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GHI

J

K
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O

Fig. 3. Example of a graph with 3-fold almost symmetry (discovered by removal of edge EF).

Graph OutdegreeFactorial k� Sum modulok
0 1 2 3 product 2 3 4

Original 0 7 5 3 3628800 12 12 8
200 2 5 5 3 172800 12 9 8
110 1 7 4 3 725760 12 12 8
101 1 6 6 2 1036800 14 12 8
020 0 9 3 3 1036368012 15 8
011 0 8 5 2 976800 14 9 12
002 0 7 7 1 2540160012 12 8

Table 1.Table of heuristic symmetry measurements for the graph in figure 3. The initial partitions
of the original graph are:fA;D; I ;J;K;N;Og, fB;E;F;H;Mg andfC;G;Lg. The entries at the left
indicate where vertices move out of a partition (for outdegrees 1, 2 and 3 respectively) and one
position left. They sum to 2 because one edge is being considered for removal here.
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looking for pairs of vertices that should both move into different partitions in order
to improve the symmetry of the abstracted graph. This process can be modelled as a
search for a matching between certain pairs of vertices. Because a single vertex might
lose more than one edge in the abstraction, we must constructa new graph in which
vertices are duplicated according to the number of possibleedges we are considering
removing and then we search for maximal matchings in this newgraph. The new graph
will contain only those vertices in the partitions that havebeen identified as candidates
for edge-removal. So, for example, in the graph in figure 2, having identified the pos-
sibility of removing one edge in partitionfB;E;F;H;Mg, we need only build a graph
containing these vertices and edges between them in the original graph. If we want to
weight the edges to represent relative costs for their removal we will then be looking
for a minimum cost matching of sized in the subgraph. This problem is a version of
well-known matching problems for graphs and algorithms exist to perform it efficiently,
particularly when we are restricting the size of the matching to small values ofd. There
are complications whend is larger than 1, since there is no constraint that edges thatare
removed should each link distinct pairs of vertices. For this reason, we construct a sepa-
rate graph in which to identify candidate matchings. This graph,S(G) contains only the
candidate vertices and edges between them, from the original graphG. However, each
vertex appears inS(G) as many times as we are prepared to consider reducing its outde-
gree. For example, if we are searching withd = 2 and are examining a single partition,fA;B;C;Dg, say, then each vertex in the partition may have its outdegree reduced by 2
(assuming that we do not allow self-looping edges). Thus, weconsider two copies of
each vertexfA1;A2;B1;B2;C1;C2;D1;D2g and create edges between pairs of instances
of each vertex if there is an edge between the corresponding vertices inG. This allows
us to find matchings that use a given vertex multiply often, but it also allows us to find
matchings that use single edges multiply often, which is notuseful to us. We are still
examining ways to overcome this problem.

Once the matching is identified and removed from the graph, the resulting subgraph
must be tested for automorphisms. We believe that there should be opportunities to
capture information from the subsequent partitioning process to enable us to refine the
decision about which matching is likely to offer better almost symmetries. In particular,
when a partition is bound to further subdivide, regardless of removal of a small number
of edges, then there is no point in attempting to improve the symmetries associated with
that partition.

5 Future Work and Conclusions

The work described in this paper is still at an early stage. Weare in the process of ex-
ploring alternative search strategies for the identification of the best edges to remove in
order to identify good abstractions leading to almost symmetries. There remain, too, im-
portant questions about the exploitation of almost symmetries. We have already shown
that almost symmetries can play a useful role in planning [1]. It seems plausible that
similar possibilities can arise in other search problems. In addition, we believe that the
abstract forms of symmetry and almost symmetry that arise inconsidering graph struc-
tures could have a much wider application. For example, symmetry of molecules is an
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important area of research in chemistry [4] and the concept of approximate molecular
symmetries has already been considered as part of the Pluto tool [3].
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Almost-Symmetry Research in Planning: A Review

Peter Gregory

University of Strathclyde
Glasgow, UK

Abstract. How can the almost-symmetry in planning problems be exploited?
One method is to assume a more symmetric state than is actually true then attempt
to fix the resulting ‘solution’. This approach is interesting but as yet unimple-
mented. Recent results show that almost-symmetry can be exploited in forward-
search planners, specifically the Fast Forward (FF) planning system.
This paper surveys the progress made in planning relating toalmost-symmetries.

1 Introduction

Two approaches to exploiting almost-symmetry in planning are discussed here. The first
is introduced in [1], this approach assumes the initial state is actually more symmetric
than it is. The hope is that after a solution is found, a prefix can be added to the plan
that will restore the validity of the solution. This approach has not been exploited in
practice.

A different way of exploiting the almost-symmetry in problems (by way of a prop-
erty abstraction) is described in [2, 3]. Modifications are made to the FF planner [4] (a
heuristic forward-search planner) to prefer choices symmetric to those chosen earlier in
the plan. Results have shown this approach to be statistically beneficial in a number of
planning domains.

2 Plan Prefixes

Space exploration is a very active research area in the planning community. Imagine a
situation where several planetary rovers are exploring in an on-line environment. The
rovers could be performing many different tasks; rock/soilsampling, atmospheric test-
ing, taking photos, etc. In this complex environment, it is likely that soon after the start
of the mission there will be a general asymmetry between the rovers; for example, their
instruments will be calibrated differently, they will be exploring different locations.

If the environment is very complex then it may be infeasible to explore the asym-
metric problem. If the rovers were symmetric, however, the problem may again become
solvable. The problem is now split into two sub-problems. Firstly, find a highly symmet-
ric state that is reachable for only a small cost and secondly, solve the new symmetric
problem.

Planning to a symmetric state explicitly could be difficult,not least because the
goal would be difficult to specify. So, the supposed best current idea is to assume a
symmetric state and then attempt to create a prefix later. This gives more flexibility
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to the planner for the second stage. In our planetary rovers example we might assume
that all of the instruments start in the same calibration configuration, as it should be
quite inexpensive to turn off all of the experimentation instruments for example; thus
increasing the symmetry in the problem.

This approach to handling almost-symmetry has not been explored in current plan-
ners. This is probably because the benchmark instances are not currently large enough
to warrant such an approach. With small plan makespans, the negative aspects of this
technique are much more obvious (i.e. the plan is rarely optimal because of the intro-
duction of a plan prefix.

3 Forward-Search Property Abstraction

3.1 The Fast-Forward Planning System

The FF planner [4] has been one of the most competitive planners of recent years. It
works with a simple relaxation of planning domains, combined with Enforced Hill-
Climbing local search. FF’s heuristic works by computing a relaxed plan-graph by ig-
noring the delete effects of actions. The length of the extracted relaxed plan forms the
heuristic to guide the search.

FF will only consider actions that came from the first level ofthe relaxed plan, these
are called helpful actions.

3.2 The Property Abstraction

One way to abstract a planning problem is, for each object, only consider the type of
relations an object has and not actually to which other objects it is bound by those
relations. Thus, a rover at some location with a soil sample is symmetric to any other
rovers at locations with a soil sample, even though the locations and soil samples have
different identities.

3.3 Using the Property Abstraction

This abstraction can be used to further inform the search of FF [2]. When FF chooses
which action to apply from its useful action set, the choice is arbitrary. If the useful ac-
tion set becomes large then the choice becomes less informed. The property abstraction
gives us more information about the action choices.

If there was an action applied earlier in the plan that is almost-symmetric to one
we are considering in the useful action set, then we can assume it best to apply that
action now. This is the only change made to FF’s search, to prefer symmetric choices
in the search. From the domains studied, for two metrics (time and states visited), this
approach is shown to out-perform FF, to a statistical significance of> 95%.
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4 Conclusion

Two interesting ways of exploiting the almost-symmetry in planning problems are to
introduce symmetry explicitly in the solution, and to use abstractions to implicitly de-
scribe the symmetry in the problem. When introducing symmetry explicitly, the solu-
tions will have the overhead of that introduction, this willbe significant in some cases,
not in others. When using abstractions, there must be a clearreason to believe that the
abstraction will contribute useful information to the problem and not just add to the
complexity of the problem. One way to ensure this is by only considering actions that
would have been considered anyway (as is done in [2]).

The interested reader is encouraged to follow all of the references in this brief review
of the almost-symmetry research in planning.
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Abstract. Symmetry reduction techniques have been shown to be successful in
combatting the state-space explosion problem for model checking. We provide a
brief survey of techniques which extend the application of symmetry reduction to
partially symmetric systems.

1 Introduction

Model checking [3] is an increasingly popular technique forthe formal verification of
concurrent systems. The application of model checking is limited due to the state-space
explosion problem—as the number of components representedby a model increases,
the size of the associated state-space grows exponentially. As such, models of realistic
systems are often too large to feasibly check. Symmetry reduction techniques [2, 4,
13] can be used to combat this problem for models of systems with many replicated
components. Symmetry in a system can result in portions of the state-space of a model
of the system beingequivalentup to rearrangement of component ids. If symmetry
is known to be present in a model then model checking of certain properties can be
performed over a quotient state-space, which is generally smaller than the full state-
space of the model.

In practice, a concurrent system may consist of many similar, but not identical,
processes. For example, processes in a system may be distinguished by a set of priority
levels. In this case the state-space underlying a model of the system will not exhibit full
symmetry. However, in certain cases, it is safe to assume that processesare identical,
and perform model checking over a reduced state-space with respect to thispartial
symmetry. In this paper we overview the theory of symmetry inmodel checking, then
provide a brief survey of techniques for handling partiallysymmetric systems.

2 Symmetry in Model Checking

Model checking involves checking the correctness of a temporal logic formulaφ over a
Kripke structureM = (S;R;L) and a set of atomic propositionsAP, whereS is a finite
set of states,R� S�S is a total transition relation, andL : S! 2AP labels each state
with the propositions that are true at the state. The Kripke structureM represents a
model of a concurrent system. In practiceM is obtained from a high level specification
written in a language such as Promela [12].

Let M = (S;R;L) be a Kripke structure. Anautomorphismof M is a bijection
α : S! Swhich satisfies the following condition:
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– 8s; t 2 S; (s; t) 2 R) (α(s);α(t)) 2 R;
In a model of a concurrent system with many replicated processes, Kripke structure
automorphisms usually involve the permutation of process identifiers of identical pro-
cesses throughout all states of a model. The set of all automorphisms of the Kripke
structureM forms a group under composition of mappings. This group is denoted
Aut(M ). A subgroupG of Aut(M ) induces an equivalence relation�G on the states of
M thus:s�G t , s= α(t) for someα 2G. The equivalence class under�G of a state
s2 S, denoted[s℄, is called theorbit of s under the action ofG. The orbits can be used
to construct aquotientKripke structureMG as follows:

Definition 1. The quotient Kripke structureMG ofM with respect to G is a tupleMG =(SG;RG;LG) where:

– SG = f[s℄ : s2 Sg (the set of orbits of S under the action of G),
– RG = f([s℄; [t℄) : (s; t) 2 Rg,
– LG([s℄) = L(rep([s℄)) (where rep([s℄) is a unique representative of[s℄).

In generalMG is a smaller structure thanM , butMG andM are equivalent in the
sense that they satisfy the same set of logic properties which areinvariant under the
groupG (that is, properties which are “symmetric” with respect toG). For a proof of
the following theorem, together with details of the temporal logic CTL�, see [3].

Theorem 1. Let M be a Kripke structure, G a subgroup of Aut(M ) and φ a CTL�
formula. Ifφ is invariant under the group G then

M ;s j= φ,MG; [s℄ j= φ

Thus by choosing a suitable symmetry groupG, model checking can be performed over
MG instead ofM , often resulting in considerable savings in memory and verification
time [2, 4].

3 Virtual Symmetry

Virtual symmetry [9] is a general condition for a modelM and a groupG, which, if
satisfied, means that model checking of symmetric properties can be performed over
the quotient modelMG, even ifG is not a group of automorphisms ofM . The intuition
behind virtual symmetry is as follows. IfG is a group which permutes the components
of the modelM , then althoughG is not necessarily a symmetry group forM , if M is
virtually symmetricwith respect toG then there is an abstractionM G ofM such thatG
is a symmetry group forM G. Essentially, the modelM G is obtained by adding edges
toM in such a way thatG preserves the resulting transition relation.

Before giving the definition of virtual symmetry, for the sake of completeness we
give two previous notions of partial symmetry—near automorphismsandrough sym-
metry[8]. Although virtual symmetry subsumes these notions, they are helpful in un-
derstanding the definition of virtual symmetry, which is quite abstract.
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Near automorphisms: SupposeM is a model of a system, andI the set of process
identifiers associated withM . A permutationθ 2 Sym mathcalIacts on a states of M
by permuting the components ofs. A permutationθ 2 SymI is said to be a near auto-
morphism ofM if, for every transitions! t of M , eitherθ(s)! θ(t) is a transition
of M or s is totally symmetric with respect toAut(M ). (That is,s is invariant under
Aut(M ).) The modelM is said to be nearly symmetric with respect toG if G is a group
of near automorphisms forM .

Rough symmetry: If, on the other hand,G is a subgroup ofSymI thenM is roughly
symmetric with respect toG if for every pair of statess ands0 wheres�G s0, any tran-
sition froms is matched by a transition froms0 provided the associated local transition
(from s0) would involve a process with the highest priority.

If M is a nearly (roughly) symmetric model with respect to groupG then, despite
the lack of complete symmetry, the quotient modelMG is bisimilar to the original model
M . It follows that symmetry reduction preserves all symmetricCTL� properties, thus a
symmetricCTL� property can be safely checked overMG.

Virtual symmetry: The notions of near and rough symmetry [8] are subsumed by the
notion ofvirtual symmetry [9]. The symmetrizationRG of a transition relationR by a
groupG is defined by

RG = fα(s)! α(t) : α 2G ands! t 2 Rg:
Intuitively, symmetrizing a transition relation can be thought of as the process of adding
transitions which are missing due to asymmetry in the system.

Definition 2. A structureM is virtually symmetric with respect to a group G acting on
S if for any s! t 2 RG, there existsα 2G such that s! α(t) 2 R.

If a Kripke structureM is virtually symmetric with respect to a groupG, thenM is
bisimilar to the quotient modelMG, and model checking of symmetric properties can
be performed overMG. A method of demonstrating the virtual symmetry of a structure
by counting missing arcs of the structure has been proposed [9]. However, it is unclear
how virtual symmetry can be detected from the source text of amodel.

The results on near-automorphisms, rough symmetry and virtual symmetry [8, 9]
are proved, for simplicity, in the case where models do not involve shared variables or
channels.

4 Guarded Annotated Quotient Structures

The problem of applying symmetry reduction to systems with little or no symmetry is
also considered in [14]. The notion of an annotated quotientstructure [10, 7, 11] is ex-
tended to aguarded annotated quotient structure. SupposeM is the Kripke structure of
a system, andM 0�M is obtained fromM by adding transitions (in a similar manner to
the process of symmetrization described above [9]), so thatM 0 has more symmetry than
M . Then a guarded annotated quotient structure forM can be viewed as an annotated
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quotient structure forM 0, with edges labelled with guards to indicate which processes
can make each transition, so that the original edges ofM can be recovered from the
representation ofM 0 [14]. A temporal formulaf can be checked over the guarded an-
notated quotient structure by unwinding the structure, even if f is not symmetric with
respect to the automorphisms used for reduction. This approach potentially allows large
factors of reduction to be obtained since a larger group of automorphisms than would
usually be possible using standard quotient structure reduction can be employed. En-
couraging experimental results using the SMC model checker[15] are reported. Once
again, no indication is given as to how the kind of asymmetry handled by this approach
can be detected from the source text of a program.

5 Other Approaches

Ajami et al. [1] show that standard approaches to symmetry reduction inCTL� model
checking [4, 5, 10], which simultaneously exploit symmetries of both the system and
the property, fail to capture symmetries inLTL path subformulae. They investigate an
approach to symmetry reduction using a quotient structure for the synchronous product
of the Büchi automaton of aLTL formula and the global state transition graph. The
approach exploits local symmetries of the Büchi automaton. They present algorithms
showing that model checking can be efficiently performed over this quotient structure,
and claim to have implemented these algorithms, but do not provide any experimental
results.

6 Conclusions

We have surveyed various approaches to alleviating the state-space explosion problems
for systems which are partially symmetric. An interesting problem for future research
will be automatically detecting partial symmetries from system descriptions. Current
approaches assume that information about partial symmetries is knowna priori. Per-
haps existing techniques for symmetry detection [6] could be extended to handle par-
tially symmetric systems.
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Abstract. Symmetry in constraint satisfaction problems can give riseto redun-
dant search. The aim in symmetry breaking is to avoid such redundancy by ex-
cluding all but one example of each equivalence class of solutions. Two methods
that have been developed to do this dynamically are SymmetryBreaking Dur-
ing Search and Symmetry Breaking via Dominance Detection. Modelling in CP
means to move from a natural language specification of a problem, to a CSP
formulation. This paper presents two case studies on the interaction between dy-
namic symmetry breaking and modelling.

1 Introduction

Combinatorial search is arguably the most fundamental aspect of Artificial Intelligence
(AI) [2]. It is an extremely active research area, and has become very important com-
mercially, through Constraint Programming (CP). Softwarepackages such as ECLiPSe

from IC-Parc [4] and ILOG Solver [17] are widely used on problems such as work force
management at BT, resulting in savings of many millions for the companies concerned.

A Constraint Satisfaction Problem (CSP) consists of a set ofvariables each of which
has a domain of values, and a set of constraints on the variables and values: a solution is
an allocation of values to variables consistent with the constraints. A constraint solver
searchesfor this solution by alternating phases ofbranchingand inferenceto find an
assignment of values to a set of variables which satisfies theconstraints. The branching
phase selects a variable and a possible value for it and seeksa solution in which it has
that value. If no solution is found, then another value is tried. Branching thus causes
the system to explore a tree of possible partial assignments, seeking one that can be
completed. In the Inference phase, the solver attempts to deduce consequences of the
constraint and the current partial assignment.

Modelling in CP means to move from a natural language specification of a prob-
lem, into a CSP instance consisting only of variables, values and constraints. It may be
possible to find more than one model of a problem, in which casea model is sought that
can efficiently lead to a solution through CSP solving techniques. This is where variable
and value ordering heuristics fit into modelling process. This paper concentrates on the
interaction of modelling and search with symmetry.

Constraint Satisfaction Problems (CSPs) are often highly symmetric. Symmetries
may be inherent in the problem, as in placing queens on a chessboard that may be
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rotated and reflected. Additionally the modelling of a real problem as a CSP can intro-
duce extra symmetry: problem entities which are indistinguishable may in the CSP be
represented by separate variables leading ton! symmetries betweenn variables.

Definition of Symmetry Given a CSP L, with a set of constraints C, a symme-
try of L is a bijective function f which maps a representationof a search state
α to another search state, so that the following holds:
1. If α satisfies the constraints C, then so does f(α).
2. Similarly, if α is a no-good, then so too is f(α). [18]

Symmetries can give rise to redundant search, while searching for solutions a partial
assignment may be considered which is symmetric to one previously examined. If a
partial assignment does not lead to a solution, neither willany symmetric assignment,
and if it does lead to a solution, the new solution is symmetrically equivalent to one
already found. To avoid this redundant search constraint programmers try to exclude all
but one in each equivalence class of solutions. Many methodshave been developed for
this purpose. These symmetry exclusion methods can be divided into two classes:static
anddynamic. Static symmetry breaking methods operate before search commences, and
dynamic symmetry breaking methods operate during search.

In some classes of problems, the symmetry can be removed by remodelling the
problem. For example, the golfers problem is:32 golfers want to play in 8 groups of
4 each week, in such a way that any two golfers play in the same group at most once.
How many weeks can they do this for?This problem is highly symmetric. A possible
model for this problem decides which group each player is assigned to in each week:
the groups and the weeks (as well as the players) can be interchanged. By remodelling
this problem using set variables, much of the symmetry can beremoved [21].

Another static symmetry breaking method, involves adding constraints to the ba-
sic model. For instance, many problems (including the golfers problem above), have
symmetry due to indistinguishable variables. Often, this symmetry can be removed by
adding constraints that the value of these variables must bein ascending order. Craw-
ford, Ginsberg, Luks and Roy developed a technique for constructing symmetry break-
ing ordering constraints for more general symmetries. It involves listing all possible
permutations for each symmetry, then creating appropriateordering constraints which
allow only the first permutation to remain [5]. This technique affects the CP model both
by the addition of constraints, and by fixing the variable ordering to be used during
search.

In more recent years, Fleneret al. have concentrated on symmetry constraints for
matrix models; where ”a matrix model is a constraint program that containsone or more
matrices of decision variables” [7]. For example the golfers problem can be modelled
as a 3-d boolean matrix whose dimensions correspond to weeks, players and groups. A
variablexi jk = 1 iff in week i, player j plays in groupk [21]. The orderings constraints
which are proposed deal withrow andcolumnsymmetries, where arow (column)sym-
metry of a 2-d matrix is a bijection between the variables of two of its rows (columns)
that preserve solutions and non-solutions. Two rows(columns) areindistinguishableif
their variables are pairwise indistinguishable due to a row(column) symmetry. A matrix
model hasrow (column) symmetryiff all the rows (columns) of one of its matrices are
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indistinguishable. In the above matrix model of the golfersproblem, the groups, weeks
and the players are all indistinguishable, this results in row (column) symmetries.

In contrast to static symmetry breaking methods, dynamic symmetry breaking meth-
ods operate during the search process. The two dynamic symmetry breaking methods
we will concentrate on in this paper are, symmetry breaking during search [1, 13], and
symmetry breaking via dominance detection [6, 8]. More recently, computational group
theoretic versions of these methods have been devised, namely GAP-SBDS [12] and
GAP-SBDD [14].

Symmetry breaking during search(SBDS), was developed by Gent and Smith [13],
having been introduced by Backofen and Will [1]. The search tree is built from deci-
sion points, where a decision point has two possible choices; either assign a value to
a variable, or do not assign that value to that variable. Whena decision point is first
reached during search a value is assigned to a variable; if ata later stage in search the
decision point is revisited then a constraint is imposed that the variable should not have
the previously assigned value. SBDS operates by taking a list of symmetry functions
(provided by the user) and placing related constraints whenbacktracking to a decision
point and taking the second branch.

A feature of SBDS is that it only breaks symmetries which are not already broken
in the current partial assignment: this avoids placing unnecessary constraints. A sym-
metry is broken when the symmetric equivalent of the currentpartial assignment is not
consistent with that assignment. The following expressionexplains how SBDS works:

A & g(A) & var 6= val ) g(var 6= val)
whereA is the partial assignment made so far during search,g(A) is the symmetric
equivalent ofA andg(var 6= val) is the symmetrical equivalent to this failed assign-
ment. If A is the current partial assignment and it has been established thatvar 6= val,
it needs to be ensured that an unbroken symmetry is being dealt with, so a check is
undertaken thatg(A) still holds. Then to ensure that the symmetrically equivalent sub-
tree to the current subtree will not be explored, the constraint g(var 6= val) is placed.
An SBDS library is now available in the ECLiPSe constraint programming system [4].
As previously mentioned, SBDS requires a function for each symmetry in the problem
describing its effect on the assignment of a value to a variable. If these symmetry func-
tions are correct and complete, all the symmetry will be broken; as a result of this only
non-isomorphic solutions will be produced. Although SBDS has been successfully used
with a few thousand symmetry functions, many problems have too many symmetries to
allow a separate function for each.

To allow SBDS to be used in situations where there are too manysymmetries to
allow a function to be created for each, Gentet. al.[12] have linked SBDS in ECLiPSe

with GAP (Groups, Algorithms and Programming) [10], a system for computational
algebra and in particularcomputational group theory(CGT). Group theory is the math-
ematical study of symmetry. GAP-SBDS allows the symmetry group rather than its in-
dividual elements to be described. GAP is used when a value isassigned to a variable, at
a decision point, to find thestabiliserof the current partial assignment, i.e. the subgroup
which leaves it unchanged. Then if the decision point is revisited on backtracking, the
constraints are dynamically calculated from the stabiliser and placed accordingly. GAP-
SBDS allows the symmetry to be handled more efficiently than in SBDS; the elements
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of the group are not explicitly created which is akin to what the symmetry functions rep-
resent in SBDS. However, there is an overhead in communication necessitated between
GAP and ECLiPSe.

Symmetry Breaking via Dominance Detection(SBDD) [6, 8] performs a check at
every node in the search tree to see if it is dominated by a symmetrically equivalent sub-
tree already explored, and if so prunes this branch. In SBDD,the dominance detection
function is based on the problem symmetry and is hard-coded for each problem. This
means in practice SBDD can be difficult to implement, as the design of the dominance
detection function may be complicated; the user has to ensure that all the symmetry of
the problem is incorporated within the function to enforce full symmetry breaking.

Gentet. al. [14] have recently developed GAP-SBDD, a generic version ofSBDD
that uses the symmetry group of each problem rather than an individual dominance de-
tection function and links SBDD (in ECLiPSe) with GAP. At each node in the search
tree, ECLiPSe communicates the details of that node to GAP, and GAP returnsfalse
if dominance has been detected and that branch can be pruned,or true otherwise. Oc-
casionally full dominance is not detected but there are variable/value pairs which are
easily detected as being eligible for domain deletion; at which point GAP returns true
followed by a list of variable/value pairs for which this is the case. ECLiPSe removes
these values from the corresponding variables domains before search continues.

It is clear that static symmetry breaking methods affect thechoice of model for a
CSP. This situation is less clear for dynamic symmetry breaking methods. In general,
dynamic symmetry breaking methods do not fix the CSP model, the only proviso is that
the symmetry should be definable in terms of the search variables. This paper presents
two cases studies which show how dynamic symmetry breaking and modelling tech-
niques can interact. The first study shows that by considering both the model of the
problem and the chosen symmetry breaking method an efficientmethod can be derived.
The second study shows how the model chosen for a given problem can affect the choice
of most efficient dynamic symmetry breaking method.

2 Case Study: SBDS and ‘Peaceable Armies of Queens’

Robert Bosch introduced the “Peaceably Coexisting Armies of Queens” problem in his
column in Optima in 1999 [3]. It is a variant of a class of problems requiring pieces
to be placed on a chessboard, with requirements on the numberof squares that they
attack: Martin Gardner [11] discusses more examples of thisclass. In the “Armies of
Queens” problem, we are required to place two equal-sized armies of black and white
queens on a chessboard so that the white queens do not attack the black queens (and
necessarily v.v.) and to find the maximum size of two such armies. Bosch asked for an
integer programming formulation of the problem and how manyoptimal solutions there
would be for a standard 8� 8 chessboard.

A straightforward model of the problem has a variablesi j to represent a square on
row i, column j of the board:
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si j = 1 if there is a white queen on square(i; j)= 2 if there is a black queen on square(i; j)= 0 otherwise

If M is the region that may be attacked by a given square, then we can express the
‘non-attacking’ constraints as:

si1 j1 = 1) si2 j2 6= 2

andsi1 j1 = 2) si2 j2 6= 1 for all ((i1; j1);(i2; j2)) 2M

or more compactly as:

si1 j1 +si2 j2 6= 3 for all ((i1; j1);(i2; j2)) 2M

Tests in ECLiPSe show that, the single constraint gives the same number of back-
tracks as the two implication constraints, but is faster.

Constrained variablesw, b count the number of white and black queens respectively
(using the counting constraint:occurrences, provided in ECLiPSe). The last constraint
is w= b, and the objective is to maximisew. This is achieved by adding a lower bound
on w whenever a solution is found, so that future solutions must have a larger value of
w; when there are no more solutions, the last one found has beenproved optimal.

The model hasn2 search variables and approximately 4n3 binary constraints, as well
as the counting constraints which have arityn2, wheren is the number of rows in the
board.

Finding Optimal Finding All Optimal Solutions
No. of Backtracks Total Optimal Number Number

to find first Number ofNumber of Time of of Time
n optimal solution Backtracks Queens (secs) BacktracksSolutions (secs)
2 0 1 0 0.0 1 1 0.0
3 1 2 1 0.0 17 16 0.0
4 4 28 2 0.01 149 112 0.02
5 190 265 4 0.16 383 18 0.20
6 1344 4998 5 3.63 9623 560 5.24
7 21882 93532 7 87.95 189013 304 132.99
8 802255 2716158 9 3215.2 - - -

Table 1.Results: Basic Model with no Symmetry Breaking

Table 1 gives results for finding the optimal number of queensand proving that it is
optimal, as well as for finding all optimal solutions. These experiments were run with a
simple static variable ordering heuristic which searches the board: top row, left to right,
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then second row, left to right, and so on. The value ordering heuristic is the standard
ECLiPSe one, which assigns values in numerical order starting with the smallest. The
result for finding all solutions whenn= 8 are missing as this result was not obtainable
within the cut-off imposed of 1 hour.

2.1 SBDS in ‘Armies of Queens’

The ‘Armies of Queens’ problem has the usual symmetry of the chessboard (reflection
in the horizontal, vertical and both diagonal axes, and rotations through 90Æ, 180Æ and
270Æ and the identity); in addition, in any solution we can swap all the white queens for
all the black queens, and we can combine these two kinds of symmetry. Hence the prob-
lem has 16 symmetries. SBDS is ideal for problems such as thissince it only requires
a simple function to describe the effect of each symmetry (other than the identity) on
the assignment of a value to a variable. Hence, in this case, just 15 such functions are
required.

The seven chessboard symmetry functions are labelledx, y, d1,d2, r90,r180,r270.
The function which interchanges black and white is labelledBW; and the functions
which combine the chessboard symmetries with interchanging black and white, are
labelled as the board symmetries prefixed withBW. The symmetry functions take a
variable,si j and a possible value for this variable,v before returning the symmetric
variable and the symmetric value as:

x : si j ;v! si;n+1� j ;v
y : si j ;v! sn+1�i; j ;v

d1 : si j ;v! sj ;i ;v
d2 : si j ;v! sn+1� j ;n+1�i;v

r90 : si j ;v! sj ;n+1�i;v
r180 :si j ;v! sn+1�i;n+1� j ;v
r270 :si j ;v! sn+1� j ;i;v

bw : si j ;v! si; j ; [i f v = 0 then0 else3�v℄
bwx: si j ;v! si;n+1� j ; [i f v = 0 then0 else3�v℄
bwy: si j ;v! sn+1�i; j ; [i f v = 0 then0 else3�v℄

bwd1 : si j ;v! sj ;i ; [i f v = 0 then0 else3�v℄
bwd2 : si j ;v! sn+1� j ;n+1�i; [i f v = 0 then0 else3�v℄

bwr90 : si j ;v! sj ;n+1�i; [i f v = 0 then0 else3�v℄
bwr180 :si j ;v! sn+1�i;n+1� j ; [i f v = 0 then0 else3�v℄
bwr270 :si j ;v! sn+1� j ;i; [i f v = 0 then0 else3�v℄

Suppose thatn = 8 and the first assignment places a white queen in the top left
corner:s1;1 = 1. The symmetric assignments are:x : s1;8 = 1, y : s8;8 = 1, d1 : s1;1 = 1,
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d2 : s8;1 = 1, r90 :s1;8 = 1, r180 :s8;8 = 1, r270 :s8;1 = 1, bw : s1;1 = 2, bwx: s1;8 = 2,
bwy : s8;1 = 2, bwd1 : s1;1 = 2, bwd2 : s8;8 = 2, bwr90 : s1;8 = 2, bwr180 :s8;8 = 2,
bwr270 :s8;1 = 2. All the symmetries which swap black and white, apart frombware in-
consistent withs1;1 = 1, because the symmetrically equivalent assignment would place
a black queen in one of the corners where it could be attacked by the first assignment,
so these symmetries are no longer considered on this branch.On backtracking to the
first choice point, wheres1;1 = 1 is set, and taking the alternative branch ofs1;1 6= 1, the
symmetry functions are used to calculate the symmetric variables (SymVar) and values
(SymVal). Lastly constraints of the formSymVar6= SymValare placed in order to stop
the subtree symmetric to this from ever being explored. Thisprocess ensures that if a
white queen can not be placed in the top corner, then a queen isnever placed in any of
the corners.

Finding Optimal All Solutions
No. of Backtracks Total Optimal Number Number

to find first Number ofNumber of Time of of Time
n optimal solution Backtracks Queens (secs) BacktracksSolutions (secs)
2 0 1 0 0.1 1 1 0.0
3 1 2 1 0.03 2 1 0.03
4 4 9 2 0.10 16 10 0.10
5 68 70 4 0.60 64 3 0.52
6 462 886 5 7.30 1286 35 9.19
7 6994 15538 7 138.16 24106 19 181.310
8 298235 473141 9 4454.45 - - -

Table 2.Results: Basic Model with SBDS

Table 2 shows the empirical results when SBDS is integrated into the simple CP
model outlined in Section 2. Comparing this with Table 1 shows that SBDS gives a fac-
tor greater than 5 improvement in number of backtracks for then= 8 case. However, the
runtime increases when SBDS is used. This is because the firstvalue chosen by the value
ordering heuristic represents an empty square on the chessboard. The symmetry break-
ing constraints placed by SBDS when backtracking from theseassignments, will forbid
placing an empty square in a symmetrically equivalent position. These constraints occur
an overhead and are not useful in steering search towards improved solutions. In fact
as better, solutions with more queens on the board are found they become redundant.
Later on in search, when leaving empty squares has been tried, values 1 then 2 will be
allocated, which relate to placing white and black queens respectively. When SBDS is
triggered through backtracking past failed cases of these assignments more useful con-
straints are returned. These constraints are the ones that operate to reduce the number
of backtracks so significantly. In general, when trying to anticipate the effect of SBDS
on a given model, it is worth considering the variable and value ordering heuristics. If
these heuristics will lead to placing constraints early in search which, will have little
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effect at the time, then become vacuous at a later stage of search, it is worth considering
if a better heuristic can be found.

2.2 Value Ordering and SBDS

The value ordering heuristic which places empty squares first can also hinder the opti-
misation process. The first solution to be found has 0 allocated to every square, which is
equivalent to an empty board. This gives a lower bound of 0 forthe maximum number
of white queens which can be placed on the board. A constraintis then posted which
says that the next number of white queens must be greater thanthis lower bound which
in this case would be> 0. The process continues by increasing the lower bound in in-
teger increments until the optimum number (m) is found. At this point, the program
searches for a solution with maximum number of white queensm+1; on failing to find
one it has proven thatm is indeed the optimum. If instead of allocating empty squares
in the initial stages, queens are placed on squares first, theearliest solution found gives,
a better lower bound for the optimum. In this case the programcommences by placing
as many white queens as possible then as many black queens as possible, only allocat-
ing empty squares when no queens can be placed. The lower bound then becomes the
number of black or white queens (there is a constraint to ensure they are equal) on the
board (p). Optimisation continues as before, by setting a constraint which states that
the next value found must be greater thanp. This value ordering heuristic is also poten-
tially a good heuristic with respect to SBDS. The first decisions made relate to placing
queens on the board, if these decisions are backtracked pastat a later stage, than SBDS
can place constraints which state that a queen should not be placed in the given square.
These constraints are useful in directing search. In optimisation problems, by consid-
ering the best heuristic for a problem through knowledge of the optimisation process,
a good heuristic for SBDS may also be derived, as the extra information given to the
optimisation process can relate to SBDS placing more informative symmetry breaking
constraints. In general, by considering the best heuristics for a given problem, a good
heuristic will also be found with respect to SBDS, as the heuristic chosen will build a
search tree which starts by trying the mostly likely value for a variable, this relates to
the scope of constraints that SBDS can place.

It is possible to implement this new strategy as a value ordering heuristic which
tries 1 before 2, before 0; hence it implements allocating queens to squares on the board
before leaving them empty. However, this heuristic does have a time overhead as a
decision process has to be undertaken at each search variable to see which value should
be allocated. A less complex approach is to reassign the values so that 0= white queen,
1= black queenand 2= empty square. Then allocate 0 before 1, before 2 as before. In
SBDS this approach does necessitate a minor change to the symmetry functions which
interchange black and white queens.

2.3 Variable Ordering and SBDS

In the previous experiments in Section 2.1, a static variable ordering heuristic was used
which assigned the top row of the board from left to right followed by the second row
from left to right until all the variables were assigned. If constraints were being used
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to break the symmetry this static ordering may be mandatory,as often the variable
order must be defined before search commences, in order to ensure these methods are
complete and no solutions are lost. If SBDS is the symmetry breaking method chosen,
this information is not needed before search commences, so the use of dynamic variable
ordering is permitted, and can be easily integrated with theSBDS library. A dynamic
variable ordering chooses the next variable to be allocatedduring search, according to
the search decisions and the resulting propagation to that point. A common and well
proven heuristic is smallest domain first (SDF), which allocates the next variable to be
assigned a value to be the one with the smallest number of entries in its domain.

2.4 Experimental Results of Combining Variable and Value Ordering Heuristics
with SBDS

Table 3 contains the results of combining the value orderingheuristic outlined in Sec-
tion 2.2 and SDF variable ordering as discussed in Section 2.3 with SBDS.

Finding Optimal All Solutions
Lower Optimum No. of Bt. to Total

bound on No. of find first Number of Time Number Time
n optimum Queens optimal solution Bt. (secs) of Bt. (secs)
2 0 0 0 1 0.0 1 0.0
3 1 1 0 2 0.02 2 0.0
4 2 2 0 4 0.05 12 0.05
5 3 4 3 12 0.17 23 0.22
6 4 5 1 153 1.79 405 3.16
7 5 7 9 2231 21.23 5186 47.90
8 6 6 266 46894 406.39 106940 752.11

Table 3.Results: SBDS with SDF Variable Ordering & Value Ordering heuristic

Comparing the previous results for the basic model with SBDSshown in Table 2
with the more advanced model results shown in Table 3, shows alarge reduction in time
for all cases. ForN = 8 the reduction in time is 10 fold to find the optimal number of
queens that can be placed on the board. The reduction in the total number of backtracks
for N = 8 is equally impressive at 10 fold again, but the most impressive reduction
comes in the number of backtracks to find the first optimal solution which is reduced
by a factor greater than 1000 for theN = 8 case. This means that good lower bounds
for the optimum are being found early in search. In theN = 8 case it can be seen that
the lower bound is 6 for the new value ordering, whereas it was0 in the original case,
the actual optimal value is 9 so 6 is a good approximation.

Turning to finding all the solutions to the problem it can be seen that there is a
great reduction in both backtracks and time, between the original model and the current
model. It is possible to prove that there are 71 non-isomorphic results forN = 8, with
the approved variable and value ordering heuristic, this isa new result.
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Fig. 1. Graceful labelings ofK5�P2 and the Double WheelDW5

Looking back at the results without SBDS (Table 1) it can be seen that these new
results outperform those, both in terms of time and backtracks, in all cases. This shows
that the combination of modelling techniques and the SBDS library can be very power-
ful in efficiently solving problems.

3 Case Study: SBDS versus SBDD and ‘Graceful Graphs’

There is limited past work comparing GAP-SBDS and GAP-SBDD.Harvey [15] stud-
ied the algorithms theoretically and concluded that SBDS and SBDD are closely related,
the difference being where in the search tree, and how, symmetry breaking is enforced.
Gentet al. [14] applied GAP-SBDS and GAP-SBDD to instances of the balanced in-
complete block design (BIBD) problem and showed that GAP-SBDD could solve much
larger problems, and was faster than GAP-SBDS on the smallerproblems which both
could solve. They surmised that this was due to the communication overhead between
GAP and ECLiPSe, since the overhead in GAP-SBDD, which usually returns onlya
Boolean answer, is less than in GAP-SBDS, where a set of constraints is returned.

On the other hand, Petrie and Smith [19] found that inGraceful Graphsproblems,
GAP-SBDS outperformed GAP-SBDD on all instances studied. In the next section, the
reason for this difference in performance is identified.

3.1 Graceful Graphs

A labeling f of the vertices of a graph withq edges isgracefulif f assigns to each vertex
a unique label fromf0;1; :::;qg and, when each edgexy is labeled withj f (x)� f (y)j, the
edge labels are all different [9]. (Hence, the edge labels are a permutation of 1;2; :::;q.)
Figure 1 shows an example.

Lustig and Puget [16] give a constraint model for finding a graceful labeling of a
graph. A basic CSP model has a variable for each nodex1;x2; :::;xn, each with domainf0;1; :::;qg and a variable for each edged1;d2; :::;dq, each with domainf1;2; :::;qg.
The constraints of the problem are: if edgek joins nodesi and j thendk = jxi � x j j;
x1;x2; :::;xn are all different; andd1;d2; :::;dq are all different.

ECLiPSe provides two different levels of propagation for thealldifferentconstraint.
It can either be treated as a clique of binary6= constraints or as aglobal alldifferent
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BT ECLiPSe GAP Total
time time time

GAP- K3�P2 13 0.23 0.50 0.73
SBDD K4�P2 173 7.18 2.72 9.90

K5�P2 4402 337.69 88.20 426.89
GAP- K3�P2 9 0.20 0.33 0.53
SBDS K4�P2 165 7.15 1.35 8.50

K5�P2 4390 352.10 36.61 388.71

Table 4. Comparison of GAP-SBDS and GAP-SBDD showing backtracks (bt) and the time (in
seconds) for finding all graceful labelings ofK3�P2, K4�P2, K5�P2.

which does more propagation. We use theglobal alldifferenton the edge variables and
the binary 6= version on the node variables. They are treated differentlybecause the
values assigned to the edge variables form a permutation andhence give more scope
for domain pruning than the node variables, which have more possible values than vari-
ables. The node variables are used as the search variables. More information on the
modeling of this problem and the symmetry group is given by [19].

The graphK5�P2, shown in Figure 1, consists of two copies ofK5, with corre-
sponding vertices in the two cliques forming the vertices ofa pathP2. The symmetries
of K5�P2 are: first, any permutation of the 5-cliques which act on bothin the same way.
Second, inter-clique symmetry: all the node labels in the first clique can be interchanged
with the labels of the adjacent nodes in the second. Third, complement symmetry: ev-
ery vertex labelxi can be replaced by its complementq� xi . The graph symmetries
and the complement symmetry can be combined with each other.Hence, the size of the
symmetry group is 5!�2�2. In general,Km�P2 graphs have a symmetry group of
sizem!�2�2. This study concentrates on symmetry breaking in 3 such graphs, with
m= 3, 4 and 5. The results of finding all graceful labelings of these graphs using either
GAP-SBDS or GAP-SBDD can be found in Table 1. (All experiments in the paper were
run on a 1.6GHz Pentium 4 processor with 512MB of memory, using ECLiPSe version
5.7 and GAP version 4.2.) From Table 4, it can be seen that GAP-SBDD is slower than
GAP-SBDS for all instances. This is also true for other graphs, as shown by [20].

3.2 Analysis

To explain why GAP-SBDS is faster than GAP-SBDD for finding graceful labelings of
graphs with symmetry, we have analysed the behaviour of GAP-SBDS and GAP-SBDD
for the three graphsK3�P2, K4�P2 andK5�P2. The reasons for the differences in
search are consistent, but for simplicity only the results for K3�P2 are presented here.

It should be noted that Table 1 gives the number ofdeep backtracks. We use the term
deep backtrack when the search has progressed beyond a decision point, but then later
has to revisit it. Ashallow backtrackoccurs when propagating the constraintvar= val
on the left branch of a decision point causes a failure, and thevar 6= val branch is taken
instead. Most constraint programming systems count the number of deep backtracks,
but in this case it does not accurately reflect differences insearch. In GAP-SBDS,



33

symmetry-breaking constraints can be added whenever the left (var 6= val) branch is
followed, including after a shallow backtrack.

Figure 3 shows the search trees created by GAP-SBDS and GAP-SBDD in finding
all graceful labelings ofK3�P2, from the point where the first difference occurs, which
is after the first two solutions (from 4 in total) have been found. The variable namesA to
E in Figure 3 correspond to the nodes shown in Figure 2; the edges and corresponding
edge variables are named by a pair of letters corresponding to the nodes defining the
edge.

After assigningC = 5, GAP-SBDS immediately reverses from this decision to fol-
low theC 6= 5 branch (a shallow backtrack), whereas GAP-SBDD continues, setting
E = 1, before returning to take theC 6= 5 branch later in search (a deep backtrack).
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A= 0

BC= 3

AD= 9

D= 9

DE = f1;4;6;7;8g
E = f1;3;6;7;8gCF = f1;4;6;7;8g

F = f1;3;6;7;8gEF = f1;4;6;7;8g
C= 5

AC= 5

DF = f1;4;6;7;8g
BE= f1;4;6gB= 2

AB= 2

Fig. 2. The domains of the node and the edge variables after propagating C = 5, using GAP-
SBDD

The difference in the search trees is due to differences in constraint propagation.
GAP-SBDD arrives at the search state shown in Figure 2. One ofthe edges must be
labeled 9 (the number of edges in the graph) and the adjacent nodes must be labeled
0 and 9. At this stageA = 0 andB andC are labeled with values other than 9; hence
D, the only other node adjacent toA, must take the value 9, and this inference is made
by constraint propagation. Figure 2 shows the variable domains at this point. Because
there are already edges labeled 2 (AB) and 3 (BC), the edgesDE andDF cannot have
those values, and henceE andF cannot have the values 6 or 7. Using GAP-SBDS, the
domains of the variables are also reduced by symmetry-breaking constraints previously
added on this branch. Those that are relevant in this case aresymmetric equivalents of
B 6= 1, namelyE 6= 1, F 6= 1, E 6= 8 andF 6= 8. (Because of the graph symmetry, nodes
E andF are symmetric to nodeB, and the value 8 is symmetric to the value 1 because
of the complement symmetry.) The only remaining value in thedomains of bothE and
F is 3, and since these variables must have different values, this branch fails.

Most of this propagation cannot occur in GAP-SBDD. GAP just returns a boolean
to indicate whether the current node is dominated or not, andpossibly a list of values
to prune from the domains of specific search variables. In thecurrent implementation, a
variable/value pair is returned for domain pruning if its assignment would cause dom-
inance to be detected. In this caseE/1, F /1, E/8 andF/8 are not returned. Although
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C 6= 5

C 6= 3C= 3

B= 2

B 6= 1

A= 0

C= 5 C 6= 5 C= 5

decision made due to propagation, deep-backtrack commences above

a deep-backtrack was made at this point

Key:

GAP-SBDS GAP-SBDD

C= 7

C 6= 6C= 6

E = 1

D= 9

C= 7

C 6= 6C= 6

C 6= 3C= 3

B= 2

B 6= 1

A= 0

Fig. 3. The search tree branch where GAP-SBDS and GAP-SBDD differ

GAP-SBDD successfully breaks the symmetry (in this case by detecting dominance
when the assignmentE = 1 is tried) posting SBDS constraints at an earlier stage can
clearly lead to earlier pruning.

The reason this difference between GAP-SBDS and GAP-SBDD ishighlighted by
experimentation on this problem, as opose to on the other problems consider by Gent
et al. [14], relates directly to the model of the problem; specifically to the fact that the
search variables are not the most constrained variables with the model. GAP-SBDS
breaks symmetry by placing constraints, these constraintscan propogate with all the
variables within the model. GAP-SBDD provides no information which could be related
to the variables not directly involved in search.

4 Conclusion

Symmetry exclusion methods can be divided into two classes:static and dynamic. Static
symmetry breaking methods operate before search commences, whereas dynamic sym-
metry breaking methods operate during search. Static symmetry breaking methods gen-
erally require a fixed model with static variable and value ordering heuristics. Dynamic
symmetry breaking methods leave the CP practitioner with more freedom as to which
model to chose; the only proviso is that it must be possible todefine the symmetry in
terms of the search variables.

In this paper, through the use of two case studies, we have shown how the CP model
can interact with dynamic symmetry breaking methods. The first case study illustrated
how dynamic symmetry breaking and modelling can interact toprovide an efficient
method for solving a problem. The second case study shows howthe model chosen for
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a given problem, can affect the choice of most efficient dynamic symmetry breaking
method.

This paper represents a preliminary study, showing that, bycombining modelling
techniques and dynamic symmetry breaking, more efficient solving techniques can be
derived than by considering either of these aspects individually. Further work in this
area is needed if the exact relationship between symmetry breaking and modelling is to
be fully understood.

Acknowledgements

The author would like to thank Barabara Smith, Ian Gent, Tom Kelsey and Steve Linton
for their continuing encouragement and interest. I am also very grateful to Warwick Har-
vey for his technical assistance with ECLiPSe, and Alex Ferguson for offering his expert
Latex knowledge. This work was supported partially by EPSRCgrant GR/R29673, and
Science Foundation Ireland grant 00/PI.1/C075.

References

1. R. Backofen and S.Will. Excluding symmetries in constraint-based search. In Joxan Jaffar,
editor,Proc. of CP’99, LNCS 1713, pages 73–87. Springer, 1999.

2. Roman Bartak. Guide to Constraint Programming. Technical report, Charles University
Prague, 1998.

3. Robert A. Bosch. Peaceably coexisting armies of queens.Optima (Newsletter of the Mathe-
matical Programming Society), 62:6–9, 1999.

4. A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf, K. Shen,and M. G. Wallace. ECLiPSe:
An introduction. Technical Report IC-Parc-03-1, IC-Parc,2003. www.icparc.ic.ac.uk/
eclipse/ .

5. James Crawford, Matthew L. Ginsberg, Eugene Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In Luigia Carlucci Aiello, Jon Doyle, and Stu-
art Shapiro, editors,KR’96: Principles of Knowledge Representation and Reasoning, pages
148–159. Morgan Kaufmann, San Francisco, California, 1996.

6. Torsten Fahle, Stefan Schamberger, and Meinolf Sellmann. Symmetry breaking. In Toby
Walsh, editor,Proc. of CP’01, LNCS 2239, pages 93–107. Springer, 2001.

7. P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh. Breaking
row and column symmetries in matrix models. In P. Van Hentenryck, editor,Proc. of CP’02,
LNCS 2470, pages 462–476. Springer, 2002.

8. Filippo Focacci and Michela Milano. Global cut frameworkfor removing symmetries. In
Toby Walsh, editor,Proc of CP’01, LNCS 2239, pages 77–92. Springer, 2001.

9. J.A. Gallian. A Dynamic Survey of Graceful Labeling. InThe Electronic Journal of Combi-
natronics, 2002. (http://www.combinatorics.org/Surveys) .

10. The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.2, 2000.
(http://www.gap-system.org) .

11. Martin Gardner. Chess queens and maximum unattacked cells. Math Horizon, pages 12–16,
November 1999.

12. I. P. Gent, W. Harvey, and T. Kelsey. Groups and constraints: Symmetry breaking during
search. In P. Van Hentenryck, editor,Proc. of CP’02, LNCS 2470, pages 415–430. Springer,
2002.



36

13. I. P. Gent and B. M. Smith. Symmetry breaking in constraint programming. InProc. of
ECAI-2002, pages 599–603. IOS Press, 2000.

14. Ian P. Gent, Warwick Harvey, Tom Kelsey, and Steve Linton. Generic SBDD Using Com-
putational Group Theory. In Francesca Rossi, editor,Proc. of CP’03, LNCS 2833, pages
333–347. Springer, 2003.

15. Warwick Harvey. Symmetry Breaking and the Social GolferProblem. InProc. SymCon-01:
Symmetry in Constraints, pages 9–16, 2001.

16. I.J.Lustig and J.-F. Puget. Program Does Not Equal Program: Constraint Programming and
Its Relationship to Mathematical Programming. InINTERFACES, volume 31(6), pages 29–
53, 2001.

17. ILOG. ILOG Solver 5.0 User’s Manual, 2001.
18. I. McDonald and B. M. Smith. Partial symmetry breaking. In Proc. of CP’02, LNCS 2470,

pages 431–445. Springer, 2002.
19. K. E. Petrie and B. M. Smith. Symmetry breaking in graceful graphs. InProc. of CP’03,

LNCS 2833, pages 930–934. Springer, 2003.
20. Karen Petrie. Why SBDD can be worse than SBDS. InProc. SymCon-03: Symmetry in

Constraints, pages 168–176, 2003.
21. Barbara M. Smith. Reducing Symmetry in a Combinatorial Design Problem. Technical

report, School of Computer Studies, University of Leeds, January 2001.



Approaches to Symmetry Breaking for Weak
Symmetries

Roland Martin

Algorithmics Group
Darmstadt University of Technology

64283 Darmstadt, Germany
martin@algo.informatik.tu-darmstadt.de

Abstract. In this paper we consider a kind of symmetry, which we callweak
symmetry.
Weak symmetries occur in different application fields like planning, scheduling
and model checking as well as in extensions of classical problems.
In contrast to a proper symmetry, a weak symmetry of a constraint satisfaction
problem acts only on a subset of the variables and preserves the feasibility state
only with respect to a subset of the constraints.
We discuss a reformulation concept where we use additional variables which we
call SymVar (Symmetry Variable). These variables enable us to exploit weak sym-
metries and achieve symmetry breaking on the symmetric variables of the prob-
lem without losing solutions.
Roughly speaking by using SymVars we rearrange the search tree in a way such
that all symmetric solutions of an equivalence class are arranged under a specific
node.
We also present results for a relaxed real-world problem from the automated man-
ufacturing. Therefore, we compared our approach to a standard approach for the
problem.

1 Introduction

Symmetries of a constraint satisfaction problem transforma (partial) solution into a
symmetric (partial) solution and preserve the state of feasibility: no-goods are tran-
formed into symmetric no-goods while feasible solutions are transformed into symmet-
ric feasible solutions. Therefore, symmetries decompose the search space into classes
of symmetric solutions, whereby each class either containsfeasible solutions only or
infeasible solutions only.

When searching for all solutions to a problem it is sufficientto find only one solu-
tion in each class of solutions. The symmetric equivalents can be derived by applying
the symmetry function exhaustively to each class after the search process. Therefore
symmetries should be excluded from the search space to speedup the search.

1 In cooperation with Philips/Assembléon,Netherlands
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Various techniques have been proposed for symmetry handling. In general it is done
by reformulation of the model, excluding the symmetry up-front via constraints, break-
ing it during the search or by a combination thereof.

Weak symmetries act only on a subset of the variables and respect only a subset
of the constraints of the problem. Therefore, weak symmetries preserve the state of
feasibility only with respect to the subset of variables they act on and only for the
constraints they respect. That means that if two solutions are symmetric under the weak
symmetry they yield different full solutions. As a consequence weak symmetries do not
decompose the search space into classes of symmetric solutions.

But weak symmetries cannot be simply be excluded, since thiswould result in a loss
of solutions that cannot be derived afterwards. Nonetheless we will present a technique
that enables us to deal with weak symmetries such that they can be broken without
losing solutions.

The above mentioned kinds of symmetry handling are also possible for weak sym-
metries once they are dealt with accordingly.

Weak symmetries occur in many fields of applications and are already discovered
and identified in planning, scheduling and model checking. (See [1], [2] and [3], [4]).
Also extensions to classical problems like the rack configuration problem (see [5] and
[6]) contain weak symmetries. To our best knowledge up to nowthere is no practical
approach that tackles the problem and shows results.

This article introduces a reformulation strategy that addresses the problem. The ben-
efit in solving the problem by reformulation is that it can be applied without changing
or adjusting the used solver for the problem or write furthercode to tackle the prob-
lem. Furthermore one is not bound to a specific solver when using the reformulation
approach. And as mentioned before all other kinds of symmetry handling are possible
in conjunction with this approach.

Throughout the paper we will consider then-queens problem as a small example
to explain our ideas. In then-queens problem the task is to placen chess queens on an
n�n chessboard such that no two queens can attack another.

The results presented are obtained from two scenarios of a relaxed real-world prob-
lem from the fields of automated manufacturing.

Section 2 states the definitions and consequences of weak symmetry and SymVars.
The benefit and tradeoff of using SymVars for weak symmetry breaking are discussed
in Section 3. Section 4 states the problem description and results of the scenario we use
to investigate weak symmetries. Also the results are discussed in this section. Section 5
concludes with an outlook to further work.
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2 Weak Symmetry Description

2.1 Prerequisites

We characterize a satisfaction problem byP= (X;C), wherebyX = fx1; : : : ;xng is the
set of variables andC= fc1; : : : ;cmg is the set of constraints.

For an optimisation problem we just extend this formulationtoP=(X;C; f ), whereby
X andC are defined like above andf = f (x1; : : : ;xn) is the objective function.2

A solution toP is denoted bysP = (X). This means that each variable inX is as-
signed a variable of its corresponding domain.

As mentioned before, we will consider a variation of then-queens problem. The
variation is that each field of the chessboard yields a certain weight. Wanted is ann-
queen placement such that the sum of the weights achieved by this placement is max-
imised.

Variables and additional data:

– wi j ;(i; j 2 f1; : : : ;ng) weights on the board
– q1; : : : ;qn (variables for the queens)
– ob j (variable for the objective value)

Constraints:

– alldi f f erent(q1; : : : ;qn) (no two queens in the same column)
– qi + i 6= q j + j (for any anti-diagonal: no two queens can attack each other)
– qi � i 6= q j � j (for any diagonal: no two queens can attack each other)
– ob j= ∑i2f1::ngwi;qi (the objective function)

A simple example would be to evaluate all white fields with 0 and the black fields with
1. This would imply to maximise the number of queens on black fields.

2.2 Weak Symmetry Definition

Weak symmetries act on problems with special properties. Tocharacterize weak sym-
metries we first define weakly decomposable problems.

Definition 1 (Weakly Decomposable Problem)
A problem P= (X;C) is weakly decomposableif it decomposes into two subproblems
P1 = (X1;C1) and P2 = (X2;C2) with the following properties:

X1\X2 6= /0 (1)

X1[X2 = X (2)

C1[C2 = C (3)

C1\C2 = /0 (4)

C2 6= /0 (5)

2 Note thatf can be also represented as a constraint and the objective value can be modelled as
a variable.
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The first property states thatP1 andP2 contain a subset of shared variables (namely
X1\X2). These variables have to assume the same values in both subproblems to deliver
a feasible solution toP. Therefore they link both problems. Without that restriction the
problem would be properly decomposable. The second and third property states that
none of the variables and constraints of the original problem P are lost. Furthermore
(3) and (4) state thatC1 andC2 is a partition ofC. Basically this is not necessary for
feasibility. A constraint could be in both subsets (if defined onX1\X2 only) but would
be redundant for one of the problems because the solution to the other subproblem
would already satisfy this constraint. Therefore, this is just a question of efficiency.
The last property states thatP2 is not allowed to be unconstrained. But note that this
restriction does not hold forP1.

An example (besides the weightedn-queens problem) for a weakly decomposable
problem is also the magic knight tour. (See [7] and [8]). In this problem a knight tour
on a chessboard is sought for where the numbers of the moves constitutes a magic
square. The weakly decomposition is thatP1 consists of the magic square problem and
P2 constitutes that when following the numbers 1 ton2 this is a knight tour.

In the weightedn-queens problem:
The weightedn-queens problem is weakly decomposable.
P1 (placement of the queens):

– X1 = fq1; : : : ;qng
– C1 = falldi f f erent(q1; : : : ;qn);qi + i 6= q j + j;qi � i 6= q j � j;g

P2 (determining the objective value):

– X2 = fob j;q1; : : : ;qng
– C2 = fob j= ∑i2f1::ngwiqig

A symmetry that acts on the subproblemP1 (but not onP2) is considered a weak sym-
metry.

Definition 2 (Weak Symmetry)
Given a weakly decomposable problem P with a decomposition(P1;P2).
A symmetry S is called aweak symmetry on P with respect to the decomposition(P1;P2) iff S acts on P1 but not on P2.

The intention of the decomposition of the problem is thatX1 contains all symmetric
variables (and only these) andX2 contains all variables.

The gain is that we get a subproblem that is not affected by theweak symmetry (P2)
and a subproblem where the weak symmetry affects all variables and all constraints
(P1). Therefore, the weak symmetry acts like a common symmetry on P1.

In the weightedn-queens problem:
The weak symmetries acting on the problem are the 8 symmetries of the chessboard. For
convenience we just consider one symmetry exemplarily: theflip on the anti-diagonal.
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A feasible placement of the queens is also feasible if we flip the board as proposed.
Therefore the symmetry acts onP1.

But since the weights of the fields are different and not symmetric the two solutions
lead to different objective values. Therefore, the symmetry does not act onP2 and the
symmetry is weak onP with the respect to the decomposition(P1;P2).
2.3 Weak Symmetry Breaking

Since the weak symmetry does not affect the whole problem it cannot be broken on the
whole problem. But it can be broken inP1 (where it acts as a proper symmetry). That
means that in the search tree equivalent solutions ofP1 are identified with each other.
On the other hand we would lose the symmetric solutions by breaking the symmetry.
Therefore we need a way to represent these solutions explicitly because they are needed
in order to solveP2 which delivers a full solution forP.

Note that the solving order just reflects the variable ordering. The problem is not ex-
plicitely split. The weakly decomposable problem propertyjust yields that a symmetry
is weak and helps us to separate symmetric from asymmetric variables.

In order to represent these symmetric solutions we introduce additional variables
calledSymVars. These variables state the symmetric equivalents of a solution.

Notation 1 Let P be a weakly decompoasable problem with a decomposition(P1;P2),
P1 = (X1;C1);P2 = (X2;C2). Let Xsym= fy1; : : : ;y`g be a set of SymVars that consitute
the variables of the subproblem Psym.

A solution to P1 is denoted by sP1 = (X1).
A solution to Psym is denoted by sPsym= (X1;Xsym) = (sP1;Xsym)
A solution to P2 is denoted by sP2 = (X1;Xsym;X2) = (sPsym;X2).
A solution to P2 is automatically a solution to P.
Let sP1 = (v1; : : : ;vn) be a solution to P1, whereby vi is a value of the corresponding

domain of xi , i 2 f1; : : : ;ng.
A solution sPsym = (sP1;v01; : : : ;v0̀ ) is a symmetric solution to sP1, whereby v0j is a

value of the corresponding domain of yj , j 2 f1; : : : ; `g
The solving order now is to search a solutionsP1 to P1, determine a symmetric

equivalentsPsym in Psymand use this solution to determine a solution toP2 which already
states a solution toP.

Consequences:

– Every feasible value assignment to the SymVars constitutes a symmetric solution
to sP1

– None of the values inX1 have to be reconsidered to receive a symmetric equivalent
– The symmetry can be broken inP1 because all symmetric solutions toP1 are ex-

pressed bysPsym

In the weightedn-queens problem:
For each queen a SymVar is introduced. Each SymVar represents a symmetric value

for its corresponding queen. In the case of an assignmentqi = j and the symmetry
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of the anti-diagonal flip the corresponding SymVar assumes the valuessymq j = i and
symqi = j (the identity).

Psym(considering a symmetric placement):

– Xsym= fX1;symq1; : : : ;symqng
– Csym= n�8i 2 f1; : : : ;ng : qi = j ) symqi = j

�_�8i 2 f1; : : : ;ng : q j = i ) symqi = j
�o

Note that there is not necessarily one SymVar for each variable in X1. Often it holds
thatjXsymj< jX1j.

To solveP we consider the partial solutionsPsym. When a solution is found the
search backtracks and reconsiders values for the SymVars todetermine a new solution.
All these solutions are symmetric equivalents to the solutionsP1. Only when the search
backtracks and reconsiders variables inX1 a solution for a different equivalence class
can be found.

By using SymVars we can break the symmetry inP1 but do not lose any symmetric
solution in an equivalence class.

In the following we will only consider optimisation problems whereP1 is the ba-
sic problem, andP2 imposes additional constraints for optimisation. That isX2nX1 is
just the optimisation variable andC2 just contains the optimisation constraint (i.e. the
optimisation function). The weightedn-queens problem is such a problem.

Then the search tree looks like in Figure 1.

(3)(2)(1)

Weak Symmetry

BreakingBreaking

SymmetryStandard

s11
s11s11 s12 s13

s14

s?s1 s2 s3 s4
s1s2s3s4

P1

P2

Fig. 1. Optimisation Problem:s11 to s14 represent symmetric solutions toP1 while s1 to s4 rep-
resent the objective value of these solutions. The numeration yields just the order in which the
solutions are found. (1) shows a class of solutions in the search tree without symmetry breaking,
whereby the solutions have different objective values. Standard symmetry breaking would lead
to a the search tree (2), where solutions with different objective values are identified ins1i which
is the solution not excluded in this class. In (3) the symmetry is broken but the different solutions
are preserved by using SymVars fors11.
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2.4 Applying SymVars

Figure 1 gives insights to the search tree. In (3) the idea of using SymVars can be seen.
In practice the path from the choice points1i to the solutionss1; : : : ;s4 can consist of
more than one decision. This depends on the representation of the symmetry and the
number of SymVars. For geometrical symmetries (like in then-queens problem) it is
possible to determine values for all SymVars at the same time. For a permutation the
values are determined successively and therefore assigning the SymVars is represented
by an own search subtree. For the scenario we investigate throughout this article that
means that the leaves of this search tree are the solutions toP2 (in general these leaves
are only the roots for the subproblemP2).

The SymVars cannot attain any values. Since they represent the symmetry of the
problem there are certain constraints which state the symmetry.

The complete weightedn-queens problem modellingP:

– X = fq1; : : : ;qn;symq1; : : : ;symqn;ob jg
– C = f� alldi f f erent(q1; : : : ;qn);qi + i 6= q j + j;qi � i 6= q j � j;� n�8i 2 f1; : : : ;ng : qi = j ) symqi = j

�_�8i 2 f1; : : : ;ng : q j = i ) symqi = j
�o� ob j= ∑i2f1::ngwi;symqi

– Objective: maxob j

3 Benefit and Tradeoff

Breaking weak symmetries does not automatically lead to a speed-up in search. Basi-
cally it depends on the scenario as well as the instance that is considered.

3.1 General Observations

Although the symmetry can be broken inP1 which reduces the breadth of the search
tree we spend more variables which extends the search tree. Therefore we cannot tell
up-front whether we speed up the search.

There are several facts that have to be taken into account:

– gain of symmetry breaking
– additional search for the SymVars
– propagation during the search

Basically these facts determine whether this approach is useful or not. While the
first leads to a speed up the latter, two basically means an increase in the search time.
For the second fact this can be seen immediately. The drawback with the propagation
is, that during the search inP1 there is no possibility to propagate on the current partial
solution. This is due to the fact thatP2 can only compute an objective value when the
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SymVars are determined as well. That means that no propagation on the objective value
is done inP1. But when determining a symmetric equivalent inPsym propagation can
be used. Therefore, in most cases not all solutions in an equivalence class have to be
considered.

Again, it is not possible to tell whether the symmetry breaking outweighs the addi-
tional variables and the lack of propagation. This has to be determined empirically.

3.2 Scenario-driven Observations

Much of the efficiency in breaking weak symmetries depends also on the scenario that
is considered.

We identified these facts that have to be taken into account:

– the ratio ofjXsymjjX1j
– the boundedness of the problem

Basically breaking weak symmetries is more efficient when there is just a small
number of SymVars in contrast to a larger number of variablesin P1. This is due to the
fact that with just a view assignments a new symmetric equivalent can be found and the
subproblemPsym is relatively small compared toP1.

The boundedness of the problem is another indicator. Consider a problem where
every variable assignment is a solution. In this case the time for consideringPsymcould
be too costly. On the other hand consider a problem that is really tight-fit which means
there are just very few feasible solutions in contrast to a huge number of infeasible
solutions. Consider further that these solutions are all belonging to one class of solutions
(but that is not known by the user). As soon as the first solution is found the SymVars
find all solutions.

4 Results

We will use a relaxation of a real world problem from the automated manufacturing of
PC Boards. (See [9] and [10]).

The scenario we are regarding is optimisation within a giventime interval. This is
due to the fact that solving the problem entirely would take too much time (days or even
weeks of computing for a single instance).

4.1 Problem Description

The original task (in short) is to optimize the throughput rate of a mounting machine
(which consists of several workstations) that mounts PC boards. In the relaxed version
we maximise the possibility to place components on the PC boards. Basically a setup
has to be determined for the machine (more specifically a setup to each workstation) and
this setup states which and how many components could be mounted. In more detail the
combination workstation and assigned setup determines thefeasibility for mounting a
component.
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Basically the problem can be modelled as a matrix problem. (See [11] – [14] for
matrix problems). The task is to assign given items of specific types to the cells of the
matrix such that certain constraints are fulfilled. There isa profit for each tuple (column
i,item j) that is achieved when an item of typej is located in the columni. The task is
to search a distribution of the items to the matrix such that the resulting sum of profits
is maximised. More formally:

Given:

– m;n2 N, (the dimensions of the variable matrix)
– K = f1; : : : ;kg, (the set of different item types)
– t1; : : : ; tk 2 N, ∑k

i=1 ti = m�n, (the item quantity per type)
– s1; : : : ;sc � K, s1[̇ : : : [̇sc = K, (the sets of compatible item types)
– Vn�k;vi j 2 N; i 2 f1; : : : ;ng; j 2 f1; : : : ;kg, (the profit achieved when an item of

type j is placed in columni)

Wanted:

– Am�n, ai j 2 K; i 2 f1; : : : ;mg; j 2 f1; : : : ;ng, (a distribution of the items)
– maxob j, (maximise the achieved profits)

Constraints:

– 8 j 2 f1; : : : ;ng9d : fa1 j ; : : : ;am jg � sd, (all items in a row must be in the same
compatibility set)

– 8k2 K : ∑i2f1;:::;mg; j2f1;:::;ng(ai j = k) = tk, (each item is assigned)
– ob j= ∑i2f1;:::;mg; j2f1;:::;ng vi(ai j ), (the sum of all profits achieved)

Weakly Decomposable Problem:
This problem is weakly decomposable since the distributionof the items formsP1

while considering the objective value formsP2.

Weak Symmetry:
Since it doesn’t matter for the objective value in which row an item is located,

the row symmetry is a normal symmetry and can be broken without consequences.
But identical item types achieve different weights for different columns. Therefore the
column symmetry is weak.

Weak Symmetry Breaking:
We introduce for each column of the matrix a SymVar. The domain of the SymVars

is the number of columns. An assignmentSymVar[i℄ = j means that thei� th column
is permuted to thej� th column. Therefore the numbers assigned to columni by P1 are
considered to be assigned on columnj for determining the objective value.
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The Decomposition:
The problem is decomposed and solved as follows:
P1 = (X1;C1), with X1 = fAm�ng
Psym= (Xsym;Csym is now defined byXsym= fpos1; : : : ; posng and

Csym= falldi f f erent(pos1; : : : ; posn)g
P2 = (X2;C2), with X2 = fX1;Xsym;ob jg
The solving order (in terms of variable ordering) isP1 – Psym– P2.

4.2 Models for Comparison

We compare two models. The first one doesn’t break the weak symmetry while the
second one uses SymVars to break the weak symmetry. The results are very promising.

We use the same search heuristic in both models to get comparable results.
In the standard model whenever a solution toP1 is found the objective value is

immediately computed and the search backtracks for a new solution. Propagation on
the objective value for a partial assignment can take place.

In the weak symmetry model whenever a solution toP1 is found a permutation is
determined byPsym and the objective value for the permuted solution is determined.
That means for each solution inP1 the whole equivalence class is considered before a
new solution is determined byP1. The gain is that as soon asP1 delivers a solutionn!
solutions can be evaluated. Basically that means that in this approach more solutions
are considered in the same amount of time compared to the standard model.

The difference is even more drastic if the problem is really tight fit. That means
there are very few feasible solutions.

4.3 Alternative Approaches

Since the problem has not been tackled before it is not possible to compare the approach
with techniques other than standard approaches.

An intuitive and simple approach would be to split the problem into two models(P1;P2) and solve them successively. More specifically the symmetryis broken onP1

and all solutions are stored. AfterP1 is solved exhaustively for each solution inP1 its
equivalence class is computed. Successively for these solutions the objective value is
determined (or in more general applications these solutions are input toP2).

In this approach the symmetry is broken and there is no time tospend for additional
variables. But also there will be no propagation on the objective value in this approach
since it is computed afterP1 is solved exhaustively.

The two drawbacks in this approach are that all the solutionshave to be stored to
generate all symmetric solutions afterward and the whole problem has to be solved ex-
haustively before the first objective value is returned. Thefirst drawback is only severe
in problems with a huge number of solutions (which is very likely for real-world probl-
ems) and could in the worst-case lead to a crash of the computer. The second drawback
is severe if solving the problem exhaustively takes too long(even with symmetry break-
ing). For real-world problems this is unfortunately ”state-of-the-art”. Mostly the time
we can spend on searching a solution is just a fraction of the time it takes to solve the
problem exhaustively.
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So this approach cannot be chosen for comparison since we would not receive a
solution in the given time interval.

4.4 Results

We generated various instances of the problem size 8�6 and 20�8. These instances of
the first problem size are rather small but can be solved in a small amount of time. The
larger instances correspond to a real-world job in terms of the variables to assign. There
are 80 types of items and the weights range from one to nine. The instances differ from
each other by the number of items per type that are to be assigned.

We chose a time-limit of 10 minutes (which is just a fraction of the solving time
for the larger scenario). This is basically the amount of time that could be spend in a
real-world scenario. We used ILOG OPL Studio 3.7 (see [15]) for the computation on
a laptop computer equipped with a Pentium 4 with 3.2 GHz and 512 MB RAM.

For the problem size 8� 6 we show the first solution and the corresponding time
as well as the best solution and the corresponding time. We also indicate whether an
optimum has been found and what time it took to solve the instance exhaustively. All
time values are in seconds.

InstanceStrategy First SolSolv Time Best SolSolv Time Opt foundTime to Prove
1 Standard 226 0.032 261 95.4 yes 148

Weak 226 0.313 261 0.39 yes 93.9
2 Standard 214 0.047 260 307 yes 428

Weak 221 0.531 260 0.6 yes 166
3 Standard 209 0.031 259 299 yes 419

Weak 221 0.375 259 2.14 yes 162
4 Standard 214 0.047 261 305 yes 425

Weak 226 0.359 261 2.12 yes 163
5 Standard 216 0.031 261 291 yes 407

Weak 228 0.344 261 0.41 yes 160

For the problem size 20�8 we show the first solution and the corresponding time
as well as the best solution and the corresponding time. Since none of the instances
can be solved exhaustively we indicate at which time the weaksymmetry approach
outperforms the standard approach.
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InstanceStrategy First SolSolv Time Best SolSolv Time Weak outperforms
1 Standard 786 0.469 817 306 –

Weak 758 1.188 841 210 1.250
2 Standard 766 0.859 825 299 –

Weak 766 1.203 852 566 1.250
3 Standard 766 0.391 825 305 –

Weak 766 1.171 844 200 1.937
4 Standard 767 0.359 826 301 –

Weak 767 1.187 846 197 1.953
5 Standard 763 0.406 821 238 –

Weak 763 1.235 838 211 1.344
6 Standard 764 0.422 817 306 –

Weak 764 2.750 848 513 2.860

4.5 Conclusions

We showed just a small selection of the instances we generated since they all yield the
same results.

In both scenarios the weak symmetry approach finds its first solution later than the
the standard approach does. This is due to the fact that more variables and constraints
have to be considered. But also in both scenarios weak symmetry very soon outperforms
the standard approach. In the smaller scenario the weak symmetry approach finds an
optimum within one or two seconds while in the standard approach an optimum is found
within about one hundred and three hundred seconds. To provethe optimum took the
weak symmetry less time than it took the standard approach tofind an optimum in all
cases.

In the larger scenario none of the solutions could find an optimum. Again the weak
symmetry approach finds its first solution later than the standard approach does. But
within one to three seconds the weak symmetry approach outperforms the standard
approach. And the best solution within the time-limit also outperforms the result of the
standard approach.

Although the weak symmetry approach has to spend more time ineach choice point
(due to the additional variables and constraints) it outperforms the standard approach
clearly in these scenarios.

5 Outlook

We defined weak symmetries and introduced a modelling approach that enables us to
break weak symmetries by using SymVars. Also we presented very encouraging results
for several instances of a real-world problem.

Still there is much to investigate on weak symmetry breaking. One direction is the
efficiency when the problemP2 is more general. That means that there is a whole sub-
problem that has to be solved.

The definition of weakly decomposable problems can iteratively be applied to de-
composeP even further toP= (P1; : : : ;Pn) and on several of them act a different weak
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symmetry. It would be interesting to investigate such problems. Also the case that a
problem yields two or more weak symmetries on the same subproblem seems very in-
teresting. In our scenario this would be the case if the row symmetry would also be
weak. In this case two different sets of SymVars would have tobe used.
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Symmetric Relaxation Techniques for Constraint
Programming

Warwick Harvey

IC-Parc, Imperial College London

Abstract. We present several techniques that can be used to allow the application
of symmetry-breaking techniques in constraint programming to problems that are
“not quite” symmetric. We do this through the concept of asymmetric relaxation.

1 Introduction

Significant attention has been devoted recently to techniques for dealing with constraint
satisfaction problems that exhibit a high degree of symmetry; for example: [1, 2, 4–6, 8–
10, 13–17]. A range of techniques have been developed, many of which have been quite
successful. There are some problems however that are “not quite” symmetric, where
some constraints — or perhaps an optimisation objective function — do not respect
some or all of the symmetries. There is also a school of thought that “symmetries do
not really occur in the real world” — e.g. even if an airline has a fleet of identical
aircraft, those aircraft will have different maintenance histories, and thus are not really
fully interchangeable in a schedule. For such problems, current approaches to handling
symmetry cannot be applied, or can only be applied in a limited fashion.

We present several methods for applying the extensive body work that has been
developed for handling fully symmetric problems to problems that are “not quite” sym-
metric. We do this through the use of asymmetric relaxation; that is, a relaxed version
of the problem that is symmetric in the way that we want, and onwhich we can apply
standard symmetry-breaking methods.

The aim is to broaden the set of problems to which symmetry-based methods can be
applied beyond purely symmetric problems. Since there is nosingle symmetry-breaking
technique that is best in all circumstances (they all have strengths and weaknesses and
the technique of choice depends on the problem being solved)we focus on methods
that are not tied to any one particular symmetry-breaking technique for the relaxed
(symmetric) problem.

In the rest of this section we present some background material and further illustrate
the concept of a symmetric relaxation. In Section 2 we present several techniques for
exploiting symmetric relaxations, and in Section 3 we address the issue of implementa-
tion.

1.1 Symmetric Relaxations

The use of relaxations is a standard problem-solving technique.
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Definition 1. A relaxationR of a problem P is a weakening of the constraints of P such
that any solution of P is a solution of R.

For example, two common relaxations are omitting integrality constraints and omitting
non-linear constraints.

The relaxationR should be such that it is (generally) much easier to solve than P
and solvingR in some fashion helps in solvingP.

Definition 2. A symmetric relaxationSR of a problem P is a relaxation of P such that
SR has more symmetry than P.

Note that a solutionSof SRrepresents a set ofpossiblesolutions ofP, namely the set
SG whereG is the symmetry group ofSR. SolvingP then decomposes into two related
problems: finding a solutionSof SRand finding an element ofSG that is a solution of
P.

Determining what a good candidateSRis for any givenP is an interesting problem
in its own right, but beyond the scope of this paper. However,minimum criteria for it to
be useful are:

– the extra symmetry ofSRmakes it easier to solve thanP; and
– there is an efficient way to find any elements ofSG that are solutions ofP.

In this paper we consider two ways to obtainSRfrom P: relaxing constraints that do
not respect all the symmetry we want, and relaxing an optimisation objective function
that does not respect all the symmetry we want.

1.2 Example: Diagonal Latin Squares

In this section we consider an example of a problem and corresponding symmetric
relaxation.

Definition 3. A latin squareof order n is an n�n array where each row or column is a
permutation of1: : :n.

See Figure 1(a) for an example. Let LS(n) be the problem of finding latin squares of
ordern. The symmetries of LS(n) are:

– permute the rows;
– permute the columns;
– permute the values; and
– permute the dimensions (rows, columns and values).

That is, applying any of the above operations to a solution ofLS(n) yields another
solution of LS(n).

Definition 4. A diagonal latin squareof order n is a latin square where the main leading
and trailing diagonals are permutations of1: : :n.
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Fig. 1. Example latin squares of order 6

See Figure 1(b) for an example. Let DLS(n) be the problem of finding diagonal latin
squares of ordern. The symmetries of DLS(n) are:

– rotate or reflect the square as a whole;
– swap the first and last rows and the first and last columns (seeFigure 2);
– cycle the first and lastbn=2
 rows and columns (see Figure 3); and
– permute the values.

Clearly, LS(n) is a symmetric relaxation of DLS(n): every solution of DLS(n) is
a solution of LS(n), and LS(n) has more symmetry than DLS(n). Interestingly, while
DLS(7) has 1832 unique solutions, LS(7) only has 147. That is, LS(7), with weaker
constraints, has fewer solutions because it has more symmetry.

1.3 Related Work

Some of the ideas in this paper first appeared in [11].
Roland Martin has been pursuing a similar line of research [12], but from a some-

what different perspective.
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There is also the obvious dual of symmetric relaxation: symmetric tightening. This
is where the constraints are tightened in order to make the problem more symmetric;
any solution of the tightening is a solution to the original problem, but some (hopefully
not all!) solutions may be lost because they do not satisfy the tightened constraints.

Another technique, often used in work on combinatorial designs, is to constrain the
solutionsof a highly symmetric problem to have a certain set of symmetries. Exploit-
ing such an assumed automorphism group allows solutions to be found to much larger
problems than would be possible otherwise, but of course only solutions which possess
the assumed symmetry are found. The technique is of course not restricted to combina-
torial design problems; it has been used, for example, to findsolutions to the maximum
density still life problem [3].

2 Techniques for Exploiting Symmetric Relaxations

We now present our techniques for exploiting symmetric relaxations.

2.1 The Two-Phase Method

As noted earlier, when using a symmetric relaxation, solving a problemP decomposes
into finding a solutionSof SRand finding an element ofSG that is a solution ofP. One
obvious way of solvingP is to solve these two problems sequentially; we call this the
two-phase method.

If it is the constraints of the problem that we are relaxing, the algorithm looks like
this:

1. Find a solutionSof SR
2. Search forg2G such thatSg is a solution ofP

– Backtrack if no suitableg exists

Figure 4 shows a solution of LS(7), with an example of a set of permutations from
LS(7)’s symmetry group that maps it to a solution of DLS(7).

If we are relaxing an objective function, the algorithm looks a little different:
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Fig. 4. Mapping a solution of LS(7) to a solution of DLS(7)

1. Find a solutionSof SR
2. Search forg2G such thatf (Sg) is optimal

This must be repeated for all solutions ofSR, with the final solution being anSg that is
globally optimal.

The two-phase method has obvious advantages: it is simple, has a clear separation
of concerns, and does not impose any restrictions at all on the method(s) used to find
solutions ofSR. However, it also has an obvious disadvantage: the omitted/relaxed con-
straints (resp. relaxed objective function) cannot prune the search for solutions ofSR,
even when the current state cannot possibly lead to a solution (resp. optimal solution)
of P. The two-phase method is expected to be suitable when:

– SRhas few solutions;
– it is likely that someSg is a solution ofP; or
– a bound on the objective function will not prune much anyway.

2.2 The Switching Method

The second method we examine is called the switching method.Consider first the case
where we are relaxing constraints.

Conceptually, we explore search trees forSRandP simultaneously, maintaining a
mappingg2 G such thatP is not infeasible. Whenever infeasibility is detected forP,
we try to switch to a differentg that repairs the problem (see Figures 5 and 6). If no
suchg exists, we backtrack inSR.

There are several approaches possible for implementing such a scheme. One choice
to be made is with respect to the variables used forP. If SR’s extra symmetry with
respect toP is just variable symmetry, then the variables ofP can be the variables of
SR, rearranged according to the currentg. In this case, the relaxed constraints are simply
checked for infeasibility against the rearranged variables.
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Fig. 5. Change ofg with the switching method’s concurrent search trees
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Alternatively, one can have a separate copy of the variablesfor P. In this case, one
can either use the full set of constraints forP (effectively mirroring the entire computa-
tion in both trees, with the choices made at each decision point in SRmapped toP using
the currentg), or one can use forP just those constraints that have been relaxed, with
one-way propagation from the variables ofSRto those ofP. If SRhas value symmetry
not present inP, then the former option may be easier, since it is just the decisions that
need to be mapped through a value symmetry, rather than the domains of all variables
affected by propagation during the computation.

Obviously, these alternatives all have different implementation costs, and different
pruning power; which one is best may depend on the problem.

For a relaxed objective function, the approach is similar, but extra work is needed
when a solution is found (f is the objective function):

– Whenever the current state ofP is infeasible or cannot lead to an improved optimal
value, search for a newg� Backtrack if no suitableg exists

– Whenever we find a solutionSof SR, search forg2G such thatf (Sg) is optimal
– Return best solutionSg found

The switching method has the advantage that the relaxed constraints or relaxed ob-
jective function can prune the search inSR. However, any inferences made inP cannot
propagate back toSR(i.e. the state ofP cannot cause domain reductions inSR, only the
failure of the current branch). Also, using the objective function to guide the search (a
common technique) may not be useful since the objective function we have is just one
representative objective function, and a promising direction for this objective function
may not coincide with what is good for the other possible objective functions. Finally,
there needs to be some way to handle the non-monotonicity that occurs inP whenever
we switch to a newg.

2.3 The Variable Mapping Method

Most of the drawbacks of the switching method can be avoided if we do not use a
sequence of fixedgs, but instead use a singlevariable g throughout. As the search
progresses, the domain ofg can be reduced to exclude elements that cannot lead to
feasible or optimal solutions ofP. Since the variableg characterises all possible feasible
mappings, it will also be possible to use it to propagate inferences fromP back toSR.
(We assume the use of separate variables forSRandP.)

This approach obviously has its own drawbacks. The main problem is implement-
ing the variableg, and doing so efficiently and effectively. This is explored further in
Section 3.

3 Implementing the Required Group Operations

In the previous section we have repeatedly said things alongthe lines of “Search for
g 2 G such that . . . ” and even “use a variableg” — without giving any indication of
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how this might be done. These are not a trivial problems, and their efficiency is vital to
the success of the methods described in this paper.

For the “Search forg2 G such that . . . ” problems, it is quite possible to develop a
bespoke solution based on the symmetry group using existingtools. Modelling a vari-
able g using existing constraint solvers is harder, but one could use, for example, a
vector of finite domain variables indicating how variables,values, or variable-value
pairs are mapped fromSRto P. This works as long as one can come up with suitable
constraints to ensure that the only feasible assignments are those that correspond to el-
ements of the appropriate symmetry group, and as long as one can infer and propagate
useful information betweenSRandP.

Alternatively, one could use a constraint solver that directly supports variables with
domains being elements of a group, which would mean that one implementation of the
techniques presented in this paper could work for all symmetry groups. Unfortunately,
to the best of our knowledge, a good and efficient full-featured Group Constraint Solver
is still some way off. We have implemented a very basic prototype (usingGAP [7]
and ECLiPSe [18]), but it does not have all the features required to implement all the
techniques presented here, and we expect it to need both morefeatures and smarter
algorithms in order to implement even the simplest of the problems here efficiently
and effectively. A full discussion of the design and implementation of such a solver is,
however, beyond the scope of this paper.

Note that whichever technique is used, there is likely to be agood deal of symmetry
involved in the mapping problem. For example, for the two-phase method where we
have a solutionSof SRand we are trying to map this ontoP such that all the constraints
are satisfied, there are two potential sources of symmetry. First, P may have some sym-
metry, even if it is much less than that ofSR. In this case there is no need to try any
mappings that will result in something symmetrically equivalent (inP) to the result of
a previously tried mapping. That is, we only need to try one mapping from each left
coset of the symmetry group ofP. Second, ifSRis highly symmetric then there is a
good chance thatShas automorphisms. In this case, each element of a right coset of the
automorphism group will mapS to exactly the same candidate solution inP; thus we
only need to try one element from each such coset.

4 Conclusions and Further Work

We presented the concept of a symmetry relaxation, and described several ways in
which it could be used to solve problems that are “not quite” symmetric. None of the
techniques presented are tied to any particular symmetry-breaking technique for solv-
ing the symmetric relaxation, which means that any of the many approaches to handling
symmetry can be used for this part of the problem.

While a number of the presented techniques could be implemented now on a problem-
by-problem basis, it seems that much work needs to be done before we can have an
efficient, effective and general tool for solving problems in this way. The path to such a
tool seems to be through the development of a Group Constraint Solver, an interesting
and challenging task in its own right.

Beyond issues of implementation, there are several open questions:
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– Which problems could benefit through the use of these techniques?
– How does one identify a good symmetric relaxation to use?
– How does one choose which technique to use for a given problem and relaxation?
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1 Defining Almost-Symmetry

One of the specific aims of this workshop, and of the EPSRC Network that supports
it, is to find commonalities in how symmetry is researched andexploited throughout
the spectrum of different search communities. The first stepto achieving this is to use
terminology in a consistent way. Having looked at how different people view almost-
symmetry we provide a definition that is hopefully general enough to encompass all
view-points, but specific enough to remain meaningful.

Definition 1. Let P be a problem with symmetry group Aut(P). Let P0 be an abstraction
of P such that Aut(P)� Aut(P0). Then P is almost-symmetric with respect to Aut(P0).

Everybody’s intuition about almost-symmetry reasoned about an abstracted prob-
lem that had more symmetry than the original problem. Two types of abstraction were
discussed: the first being a new problem that was ‘less constrained’ than the original,
the second being a new problem that is ‘more constrained’ than the original. There is
a trade-off when defining the abstraction. Whilst the aim is to increase the symmetry
in the model, removing too much information from the model renders the abstraction
meaningless.

Definition 1 covers both types of abstraction where the ‘constraints’ on the problem
are either loosened or tightened, because in both of these cases the aim is to increase
the symmetry in the problem.

Note that whenconstraintsare mentioned, we are talking generally about any prob-
lem, not just CP. Constraints in this context also refers to an optimisation function, since
relaxing/tightening the optimisation function was noted as a useful abstraction.

2 Conclusion

Is almost-symmetry pervasive throughout search domains? Can we redefine our models
to remove almost-symmetry? Examples throughout these proceedings demonstrate that
almost-symmetry is pervasive. We certainly can’t redefine our models in every circum-
stance to ‘reveal’ the underlying symmetry, the information that yields the asymmetry
is often important to the solution.
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Research into almost-symmetry is still in its infancy, these proceedings are sug-
gestive of the benefits we will gain from further research. Wehave seen applications
of almost-symmetry, interesting approaches for almost-symmetry detection and several
suggestions for the exploitation of almost-symmetry.

The study of almost-symmetry is suggestive of a positive trend in symmetry re-
search. All of the approaches introduce symmetry by way of anabstraction. The premise
being, that current symmetry-breaking techniques can solve this highly-symmetric ab-
straction easily and quickly yield a true solution. The factthat we can realistically make
this claim is very encouraging indeed.


