Alastair F. Donaldson
Peter Gregory

(Eds.)

Almost-Symmetry in Search

SymNet Workshop
New Lanark, Scotland, 10-11 January 2005
Proceedings

Supported by SymNet, an EPSRC Funded Network of Excellence

V.
ORH
[2 m
ﬂ =
- - (N :
UNIVERSITY “, § NIVERSITY OF
o RIS TRATHCLYDE
GLASGOW et IN GLASGOW

Department of Computing Science Technical Report: TR-2005-201

University of Glasgow May 2005
Glasgow G12 8QQ

Scotland

Preface

This volume contains the proceedings of the SymNet Worksimofspproximate Sym-
metry in Search, held during January 10-11, 2005, in New tlarscotland, UK. The
aim of the workshop was to allow a small number of reseradh&rgested in symmetry
and search problems to congregate in an informal settimgli$oussion and presenta-
tion of reserach ideas. We feel that the workshop succeedtsi aim, with a series
of talks and discussions involving contributions from tlo@straint satisfaction, model
checking, and planning communities.

The workshop was organised jointly by the department of Qaing Scince, Uni-
versity of Glasgow, and the department of Computer and in&tion Sciences, Univer-
sity of Strathclyde, as part of SymNet, and EPSRC funded arétviVe would like to
thank the attendees of this workshop for making the evengitbat success it was. We
would also like to thank lan Gent for his encouragement, tR8IEC for their financial
support, the members of SymNet for their interest in reattirge proceedings, and Jon
Ritchie for arranging for the proceedings to be printed.

An electronic version of this document is available from 8yanNet website, lo-
cated atittp://symnet.dcs.st-and.ac.uk/

May 2005 Alastair Donaldson
Peter Gregory
(Editors)

Table of Contents

Discussion Session Summary

Concrete Applications of Almost-Symmetry. 1
Peter Gregory, Alastair Donaldson

Almost-Symmetry in Planning and Model Checking

Restoring Symmetries in Almost Symmetric Graph Structures. 6
Derek Long and Maria Fox

Almost-Symmetry Research in Planning: AReview. 14
Peter Gregory

Partial Symmetry in Model Checking. 17

Alastair Donaldson

Symmetry and Almost-Symmetry in Constraint
Programming

Modelling and Dynamic Symmetry Breaking in Constraint Resgming. 22
Karen E. Petrie

Approaches to Symmetry Breaking for Weak Symmetries. 37
Roland Martin

Symmetric Relaxation Techniques for Constraint Programgmi. 50
Warwick Harvey

Discussion Session Summary

Conclusions of the SymNet Workshop on Almost-Symmetry. 60
Peter Gregory, Alastair Donaldson

Concrete Applications of Almost-Symmetry

Peter Gregoryand Alastair Donaldscn

1 University of Strathclyde
Glasgow, UK
2 University of Glasgow
Glasgow, UK

Abstract. It seems intuitive that approximate symmetries occur in ynaal-
world problems. Many of the examples that can be thought afkiyucould be
modelled in such a way as to reveal all of the symmetry. Theenmteresting
examples occur when the aspect of the problem that has tosteeted out is
relevant to the solution.

Are these interesting examples pervasive throughoutrdiftesearch domains?
The aim of this section is to describe real-world problenat ttontain approx-
imate symmetries, and to discuss whether or not these pnsbteuld be ab-
stracted to reveal symmetries without compromising sofutiorrectness.

1 Chemical Plant Operation

In the 2004 International Planning Competition, one of thebpem domains was the

PipesWorld domain [1]. This domain models an oil-refinergtthas to pipe certain

materials to different places. There is a range of diffecdirtlerived chemicals to pipe

between different locations. It is sometimes possiblegndport more than one type of
chemical down the same pipe, given that the chemicals ar@atiohe with each other

(i.e., do not mix or react).

X | = A,B B

Refinery A \/ \/
v

C%

NXx (S o

cl/ |3

Fig. 1. A chemical refinery pumping three different types of cheisidq@, B and C) to two
different locations (X and Y). The arrows on the refinery reethe locations that the chemicals
need to be pumped to. The grid shows which chemicals may loegla the same pipe safely.

Each type of chemical could be considered symmetric if thaghehad the same
compatibility relations to the other chemicals. Typicathey do not, their compatibility
relations are often just similar. Consider the situatiorrigure 1. The refinery must
pump chemicals A and B to location X and chemical C to locaWohemical A is

compatible with C, whilst B is not. Other than this fact, A e@re indistinguishable.
In this situation, it is clear that this piece of informatif@ompatibility with Chemical
C) can be abstracted out. A and B are almost-symmetric wihaet to the abstraction.

In general, the compatibilities of the chemicals could balifired to increase the
symmetry of the problem, as could properties of pipes andtions. The amount of
abstraction performed would clearly affect the usefulrddbe abstraction in terms of
solving the original problem.

2 Concurrent System with Priorities

Model checking [5] is a popular technique for the verificatid concurrent systems. To
verify a system by model checking, the system must first beerded (usually by hand)
into a finite state model. Properties of the system are thefiadeby exhaustive search
of this model. The application of model checking is limitadedo the state-space explo-
sion problem—as the number of components in a concurretdrsyiacreases, the size
of the state-space of a model associated with this systewsgrombinatorially, quickly
becoming too large to feasibly check. A lot of research in elatiecking concentrates
on techniques to alleviate this problem. A popular techaiggusymmetry reductian
This involves exploiting the replicated structure of a asment system. Replication of
identicalprocesses in the system results in replicated portionseddtéte-space associ-
ated with this system. If known before search, this symmietihe state-space can be
exploited, and a smalleuotientstate space can be searched instead, saving both time
and memory.

In practice, concurrent systems mayadimostsymmetric, but not fully symmetric.
For example, a system may be comprised of a set of processgseting for access
to a shared resource [8]. These processes are identicalptettat each process has
an integer priority level. Access to the resource will benged to a process with the
highest priority level if several processes request acsiesslitaneously.

The state graph of such a system will have a smaller group ofrsstries than
that of a system without priority levels. Thus the savingailable through standard
symmetry reduction techniques may be modest. However, whefying a general
property of the system, such as deadlock freedom, or theahexalusion property (the
resource is always accessed by at most one process), thigydeieels do not affect the
truth or falsity of the property. In such cases it may be gaedgio abstract away from
process priority levels and assume that thisfell symmetry between components, in
order to verify such properties over a small quotient strteetvith respect to a larger
group of symmetries.

3 Constrained Latin Square

A Latin Square is am x n grid in whichn tiles of n different colours are placed such
that no colour appears more than once in each row and coluhmselmathematical
artifacts have application in experimental design. Ratth@nanyLatin Square, often a
Latin Square with distinct properties is required. For eglanFigure 2(a) shows ax44
Latin Square. If the numbers (which represent colours) énLtiitin Square correspond

1
2
3

—_ W
(\ORE R NN

|
3
2

=W

_ S0 DN

—_ N
—_ N |

4 2|3 41213

(&) Unconstrained (b) Latin Square in

Latin Square which 3 and 4 must
never be placed to-
gether on any row.

Fig. 2. Two Latin Squares.

to different drugs in a medical trial, the columns refer toek® and the rows to test
subjects, then we can see that Patient 1 takes drugs 1, 2, 8 entheir respective
weeks.

However, the people at our ethical drug-trial lab know tla&trig drugs 3 and 4 in
consecutive weeks can be dangerous, and so to find a schéttidéspextra constraints
must be placed on the Latin Square. In this case that 3,4 ands3 not occur in any
row (An example is shown in Figure 2(b)). This new problem leas symmetry than
the original Latin Square problem. Thus symmetry breakeahhiques for arbitrary
Latin Squares may not be applicable when searching for @inet Latin Squares.

Intuitively, the constrained Latin Square 'almost’ has #ane symmetries as the
unconstrained one. This relationship between unconsii@nd constrained Latin Squ-
ares is discussed later in these proceedings [2]. For mdoenation on the Latin
Square and Design Theory in general see [3] on the web.

4 Balanced Academic Curriculum Problem

The difficulty of University timetabling problems is welkkbwn (cite). The Balanced
Academic Curriculum Problem (BACP) [4] schedules a set afrses across a certain
number of periods for a complete degree programme. Each cdgsiires a different
amount of effort and therefore to distribute the classefoumiy would lead to varia-
tions in the effort required for individual periods. The pkem is to balance this effort
optimally between the periods. The problem is made morediffby the fact that some
courses have prerequisites. The problem can be defined fyllihweing factors:

— CoursesThe list of courses available. Every course must be takesofae point)
by each student;

— Number of Periods The number of distinct time-periods in which to study. For
example, in a 3-year degree with two semesters per year,uimber of periods
would be six;

— Academic Load The effort required, or academic credits achievable, fkinta
each course;

— PrerequisitesThe courses that must be studied in order to study each gourse

— Min. Academic Load The minimum academic credits that each period should
yield;

— Max. Academic Load The maximum realistic academic credits achievable by any
one student;

— Min. and Max. Number of Courses The minimum and maximum number of
courses required in each period.

The problem is to assign each course a period, such that tieelpare optimally
balanced.

Symmetry in this problem arises when different courses guavalent to one an-
other. However, the prerequisites of the courses will gihydoreak this symmetry. Two
courses with different prerequisites are now asymmetvien & those prerequisites are
non-interfering. Clearly these courses are still equivabt some abstraction of the
problem, but we cannot abstract the prerequisites out afnidigel as they are relevant
constraints of the problem. Thus the BACP exhibits almgstraetry.

There are two things we can do to increase the symmetry immbidel. The first
is to loosen the constraints by removing prerequisites. §éeond is to tighten the
constraints by adding prerequisites to courses (to maka #wuivalent to more con-
strained courses). The almost-symmetry in the problem earebealed by either of
these approaches. Solving the problem using the first aistnavould lead to infeasi-
ble solutions and any solver would have to keep track of thedonstraints to preserve
soundness. Using the second abstraction may yield a sualolution since the
added constraints will compromise completeness, agaisdher will have to com-
pensate for this.

Without solvers that can deal with almost-symmetry, it ifficlilt to say which
alternative approach is best.

5 Automated Manufacture

Martin and Weihe [6], with industrial partners, have stadéproblem involving the
design of schedules for circuit-board assembly. The aatitin is described in further
detail in these proceedings [7].

The problem deals with a conveyor-belt with PCBs and sevetaitic arms that
can place components. These arms can only operate in snmalbws on the belt and
can only have access to a small number of different compen&he problem is to
assign components to different arms to optimise a schedule.

The arms are clearly not symmetric, since their location aading-window are
important to the solution and cannot be ignored. Howevégramanging two arms will
affect only the quality of the solution, not its feasibility

References

1. Edelkamp, S., Hoffmann, J.: International planning cetitjon.
http://Is5-www.cs.uni-dortmund.de/"edelkamp/ipc-4/ (2004)

. Harvey, W.: Symmetric relaxation techniques for constgarogramming. In: SymNet Work-
shop on Almost-Symmetry in Search, New Lanark. (2005)

. Queen Mary, U.o.L.: Design theotttp://designtheory.org/

. Castro, C., Manzano, S.: Variable and value ordering vaudving balanced academic cur-
riculum problems. In: Proceedings of 6th Workshop of the BR®/G on Constraints. (2001)
. Edmund M. Clarke, Orna Grumberg, and Doron Pelbthdel Checking The MIT Press,
Cambridge, Masachusetts, 1999.

. Martin, R., Weihe, K.: Breaking weak symmetries. In: Rredings of the 4th International
Workshop on Symmetry and Constraint Satisfaction Probl¢a@94)

. Martin, R.: Approaches to symmetry breaking for weak sytrias. In: SymNet Workshop
on Almost-Symmetry in Search, New Lanark. (2005)

. A. Prasad Sistla and Patrice Godefroid. Symmetry andceztisymmetry in model checking.
ACM Transactions on Programming Languages and Syst2h(4):702—734, July 2004.

Restoring Symmetries in Almost Symmetric Graph
Structures

Derek Long and Maria Fdx

University of Strathclyde, Glasgow, UK

Abstract. The concept of symmetries in graphs is well understood: arsgm
try of a graph is simply an automorphism of the graph. Theeeveell-known
techniques for finding graph automorphisms [2], based otitipaing of nodes
according to their out-degrees. It is not uncommon for algtapxhibit structure
that isalmostsymmetric. That is, the graph would contain high degreeywis
metry were it not for minor blemishes in the structure: nrigsedges or excess
edges. In this paper, we propose and briefly examine techsifpr identifying
the edges that lead to the breakdown in symmetries. The wesgrithed in this
paper is still at an early stage of development, so we outlieedirections in
which we intend to progress our exploration.

1 Introduction

Symmetries have been an important subject of research éadés, forming the basis
for the development of group theory. They arise in many acdazience, providing
an elegant theoretical tool for interpreting many phencamé&omputer science is no
exception, offering a fertile ground for exploitation ofrsgnetries in a wide range of
problems. In a similar way, graphs have proved a powerfutrabisformalism for rep-
resenting a huge range of problems in computer sciencethiéiefore no surprise that
symmetries and graphs have been studied in conjunctionnf&ries in graphs are
graph automorphisms and they are an abstraction of a vergnfahidea that arises in
many areas of computer science. Finding graph automorghssaproblem that sits on
the edge of tractability: efficient algorithms are knowrthaligh none has been proved
polynomial. NAUTY [2] is one of the best known implementaisoof an algorithm for
finding graph automorphisms.

Many graphs arise in contexts in which symmetries would féulsbut the graphs
exhibit little or no useful symmetry. This can often be thasequence of comparatively
minor blemishes in the structure of the graphs, since asimggsing or excess edge can
break a very large collection of potential symmetries ofapyr. For example, consider
a 5 clique, which has 120 automorphisms: if a single edgenmvwed then this drops
to just 12 automorphisms! In this paper we consider the probbdf finding the best
possible modifications to a graph that restore (or creatapsstries.

* The authors also with to acknowledge the contributions I Rorteous in discussions leading
to the work reported here.

2 Graph Automorphisms

Itis helpful to briefly review the most common algorithmiopess by which graph au-
tomorphisms are identified. The algorithm begins by partitig the nodes of the graph
according to their outdegrees (the numbers of edges cangedoteach of the nodes).
Then, in an iterative process, these partitions are fughbpartitioned by considering
the outdegrees of the nodes within one partition when odsttito edges that link the
nodes to nodes in another partition. Once no partition &rrffartitions according to
this criterion, then the partitions represent the seedsgrbap of automorphisms. An
exhaustive search procedure can be applied in which eadtegfartitions is split, in
all possible ways, by the removal of one node from the partitThe new partition-
ing of the nodes created in this way is then examined, as &efor further implied
partitionings, until it is stable. The search is pursuedtiadipst until all partitions are
singletons. On backtracking through the search tree analnelipg alternative choices,
the algorithm will generate different orderings of the n@dethe partitioned graph and
each such different ordering is automorphic with the oagjordering.

A D

Fig. 1. Simple graph example.

An example will help to clarify this procedure. Consider graph show in figure 1.
This partitions into the collectio{:ADE|H|BFG|C}, in ascending order of outdegrees,
from 1 to 4. Now, considering the first and fourth partitions,see that D has outdegree
1 (the edge to C), while A and E have 0 (no edges to C). Henceefiveerthe partition
collection into:{AE|D|H|BFG|C}. Similarly, if we consider the partition containing B
against that containing C, we find that B and G have outdegresile F has 0. This
leads to the partition§.AE|D|H|F|BG|C}. Comparing A and E wit{ BG} we further
divide into: {E|A|D|H|F|BG|C} and finally, comparing B and G with A, we obtain:
{E|A|D|H|F|G|B}. Since no partition ends up with more than one element, tiaipty
has no non-trivial automorphisms.

A key observation to be made about this process is that patsgtnmetries of the
graph are lost whenever a collection of vertices is spli imto or more partitions: the

splitting necessarily prevents any symmetry between pdirgertices each of which
appears in a separate partition.

3 Almost Symmetries of Graphs

We now attempt to formalise the definition of an almost synmnef a graph. This
idea is closely related to the concept of almost symmetrigdanning problems, in-
troduced in [1]. The intuition is that symmetries arise as@asequence of abstractions.
For example, to claim that two solutions of the n-queensleralare symmetrical, we
will usually need to abstract out the underlying checkerbgattern of colours and
the physical locations of the queens (as opposed to théveelatations on the board).
Thus, to increase the degree of symmetry in a structure weappsy some abstraction
to it. The abstraction will remove the sources of differatitin between elements of the
structure and allow more opportunities for symmetry toearighis intuition motivates
the following definitions:

Definition 1. A graph abstraction relatida any binary relation on graphs, such that
G»>H only if G and H have the same set of nodes.

Definition 2. Given a graph G, a graph abstraction relatiof) then for any graph H
such that G H, any automorphism of H is ammost symmetrpf G, with respect to.

Where the abstraction we are using is clear from the contextyill not make it
explicit in referring to almost symmetries of a graph. It isar that these definitions
allow a very broad form for almost symmetries of a graph. Theial constraint is
from the graph abstraction relation we consider. In genearalwill only be interested
in graph abstractions that maintain a close relationshiyésen the two graphs. If we
were to apply an abstraction that simply throws away all thges of the original graph
then we would end up with a very high degree of almost symn{attyhe vertices then
become symmetric with each other, so there will be a completasutation symmetry
on them). Of course, this abstraction is unlikely to be of minterest, since it throws
away too much of the structure of the original graph. Insteawill want to exploit
abstractions that eliminate small parts of a graph, whil@ineng most of what makes
the graphinteresting. The abstractions we are most inteté@stake the following basic
form:

Definition 3. Given a positive integer, d, the subgraph abstraction tdegtise d >4 is
the relation such that &4 H iff H is a subgraph of G containing all the nodes of G and
in which G has at most d more edges than H. H is calleilagraph abstraction &

at a distancel from G.

Candidate subgraph abstractions of a graph at a given destdpaway are easy
to construct, since they simply involve removing subsetd efiges from the graph. In
practice, we are not interested in removing large sets oéedgdd will be restricted
to a small number. How small is not yet clear: it is possiblg the number of edges we
could consider removing should be measured as a proportithresize of the graph

being abstracted, but the complexity of a naive search ftatde subgraph abstractions
is exponential ird and this is likely to forcel to remain modest.

An alternative abstraction involves adding edges to a gré&plbut this is easily
handled using subgraph abstraction by taking the compleafed and then applying
subgraph abstraction to it, since the edges removed fromndhmplement correspond
to edges added to the original graph. More extensive albising¢c such as addition and
removal of edges, remain outside the scope of the currerik.wor

4 Finding AlImost Symmetries in Graphs

Now that we have defined what we are looking for, we consider Wwe can find it.
The simplest algorithm is to take the original graph, systiérally remove edges from
it (incrementing the number of edges to be removed as thef sdtstracted graphs at
the current distance is exhausted), applying NAUTY to eaatdaate subgraph. This
algorithm is obviously naive and impossibly expensive fodiing good abstractions at
any significant distance from the original graph. In additit will simply enumerate
all possible almost symmetries without any discriminationgeneral, we will be able
to identify better or worse kinds of almost symmetry accogdio the way in which
they relate different vertices in the original graph. We stit examining ways to eval-
uate candidates, but we have considered the following g1 sets of vertices that
we would be happy to see made symmetric can be assigned realaes — the more
vertices of such a set that are drawn into a symmetry, thertdbtt symmetry. Similarly,
edges can be assigned costs — the more edges we remove thetraotere we lose
from the original graph and often some edges are of much myertance in preserv-
ing the integrity of the original graph than others. Therefahe cost of an abstraction
can be measured according to the sum of the costs of the edgeved, while the
benefit can be measured according to the sum of the rewardsrtizes that are drawn
into the almost symmetries the abstraction generates.

Another factor appears to be important: in certain contiéidgsmportant to identify
almost symmetries that relate the largest possible suttates of the original graph.
For example, in figure 2 the almost symmetry between the tlestwctures indicated
could be more interesting than the more local symmetrieatedeby the alternative
abstraction proposed. In other contexts it might be of m@eeto find the local sym-
metries, since local symmetries are more robust to subséqperations on the graph.
This means that if, for instance, a search is being carriecowwss structures repre-
sented by the graph, then as choices are made that affeciéiseof the vertices in the
search space, more of the local symmetries will remain aend might be exploited
in reducing subsequent branches of the search than woultebeate for large-scale
symmetries. It is possible to heuristically estimate théeptial degree of additional
symmetry in an abstraction. If we consider the first level aftpioning performed by
the partition-based automorphism identification alganitthescribed in section 2, then
a heuristic measure of the potential number of automorphisiine product of the fac-
torials of the sizes of each of the partition sizes. This iseloaon the possibility that
all vertices in a partition could be symmetric with one amotlindependently of the
symmetries on the vertices in other partitions. This isdfame a maximum possible

10

Fig. 2. Almost symmetries in a graph: if the edge FH is removed thenwlo identified structures

are symmetric. On the other hand, if BF is removed then tieenmgore local symmetry, since the
vertices A and C are symmetric, while DEF and JKL are symmaeinid G and | are symmetric,
giving three independent 2-fold symmetries.

number of automorphisms, but it gives a guide to which caatdigartitions should be
favoured when considering which edges to remove in a subgrgtraction. The other
measurement of interest is the sum of the sizes of the peariteach taken modulg
for some integek. If this sum is multiplied byk then it indicates the maximum number
of nodes that might be involved in a structural symmetry ofieok.

Consider the graph shown in figure 3: the sizes of the initatifjons are shown
in table 1, along with the sizes of the partitions that aresitids after the removal of
one edge. Alongside these we show the factorial productthforcorresponding po-
tential abstractions and the sum of partition sizes moHdty different values ok. It
is of considerable interest to note that in this case thd@gdpmmetry offers the best
scope for large-scale symmetry, with removal of an edge ititjgan {B,E,F,H,M},
while the removal of an edge in the partiti¢@,G,L} offers the best scope for local
symmetries. The former case can be achieved by removal & E&ig(and it is the
only choice), which does indeed restore full 3-fold symmétr the resulting graph.
The latter case cannot be achieved for this example, so @nbthe same edge, EF,
offers next best scope for local symmetries. After that,oxemhof an edge between par-
tition {A,D,1,J,K,N,O} and partition{C,G,L} (line labelled 101 in the table) offers
best scope. This option leads to discovery that KL or LO waffdr separate 2-fold
symmetries for the two resulting graph components.

The next question is how to determine which edges might bevech When an
edge is removed, it affects the outdegrees of both ends. Asnsequence, we are

11

A B
e o
| H
e o
K
N M L
e o o

Fig. 3. Example of a graph with 3-fold almost symmetry (discovergddmoval of edge EF).

Graph |OutdegreeFactoriallkx Sum moduld
0/1|2| 3 | product|2|3 4

Originall0|7|5| 3 | 3628800|12/12 8

200 2|5|5 3 | 172800 (12| 9 8

110 1|7|4] 3 | 725760 |12(12] 8

101 1/6|6| 2 |1036800(14{12 8

020 0[9|3| 3 1036368q)12 15 8

011 0(8/5| 2 | 976800 |14 9 12

002 0[7|7| 1 |2540160012/12] 8

Table 1. Table of heuristic symmetry measurements for the graph imdig. The initial partitions
of the original graph arg/A,D,1,J,K,N, 0O}, {B,E,F,H,M} and{C,G,L}. The entries at the left
indicate where vertices move out of a partition (for outéegrl, 2 and 3 respectively) and one
position left. They sum to 2 because one edge is being caesider removal here.

12

looking for pairs of vertices that should both move into eliéint partitions in order
to improve the symmetry of the abstracted graph. This psocaa be modelled as a
search for a matching between certain pairs of verticesal®ea single vertex might
lose more than one edge in the abstraction, we must constmetv graph in which
vertices are duplicated according to the number of possitiges we are considering
removing and then we search for maximal matchings in thisgraph. The new graph
will contain only those vertices in the partitions that haseen identified as candidates
for edge-removal. So, for example, in the graph in figure 2jrwpidentified the pos-
sibility of removing one edge in partitiofB,E,F,H,M}, we need only build a graph
containing these vertices and edges between them in thiaargraph. If we want to
weight the edges to represent relative costs for their ranee will then be looking
for a minimum cost matching of siz#t in the subgraph. This problem is a version of
well-known matching problems for graphs and algorithmstexi perform it efficiently,
particularly when we are restricting the size of the matghamsmall values ofl. There
are complications whedhis larger than 1, since there is no constraint that edgesthat
removed should each link distinct pairs of vertices. Fas thason, we construct a sepa-
rate graph in which to identify candidate matchings. Thapiy,S(G) contains only the
candidate vertices and edges between them, from the drigriaphG. However, each
vertex appears i8(G) as many times as we are prepared to consider reducing its-outd
gree. For example, if we are searching wdth- 2 and are examining a single partition,
{A,B,C,D}, say, then each vertex in the partition may have its outdegréuced by 2
(assuming that we do not allow self-looping edges). Thusc@aresider two copies of
each verteXAq,A2,B1,B2,C1,C,D1,D2} and create edges between pairs of instances
of each vertex if there is an edge between the corresponeiniges inG. This allows
us to find matchings that use a given vertex multiply often itoaiso allows us to find
matchings that use single edges multiply often, which isusetful to us. We are still
examining ways to overcome this problem.

Once the matching is identified and removed from the gragrdbulting subgraph
must be tested for automorphisms. We believe that thereldhmmiopportunities to
capture information from the subsequent partitioning pesdo enable us to refine the
decision about which matching is likely to offer better akhsymmetries. In particular,
when a partition is bound to further subdivide, regardléssimoval of a small number
of edges, then there is no point in attempting to improve yinesetries associated with
that partition.

5 Future Work and Conclusions

The work described in this paper is still at an early stage avéein the process of ex-
ploring alternative search strategies for the identifaratf the best edges to remove in
order to identify good abstractions leading to almost symnie® There remain, too, im-
portant questions about the exploitation of almost symiestkVe have already shown
that almost symmetries can play a useful role in planninglfldeems plausible that
similar possibilities can arise in other search problemsddition, we believe that the
abstract forms of symmetry and almost symmetry that arisemsidering graph struc-
tures could have a much wider application. For example, sgimnof molecules is an

13

important area of research in chemistry [4] and the conckeppproximate molecular
symmetries has already been considered as part of the Balt3}.

6 Acknowledgements

The authors wish to thank colleagues in the Symmetry in 8eBRSRC Network of
Excellence for interesting discussions on symmetriespaiisymmetries and automor-
phisms in graphs, all of which have contributed to the workodded here. Thanks
are also due to Peter Gregory and Alastair Donaldson fomisiey a very inspiring
workshop and forcing us to think enough about these ideasite them down.

References

1. M. Fox, D. Long, and J. Porteous. Abstraction-based actidering in planning. liProceed-
ings of IJCAI'05 2005.

2. B.D. McKay. Nautyuser’s guide 1.5. Technical Report TR-CS-90-02, ANU, Carzhd 990.

3. W. D. Samuel Motherwell, Gregory P. Shields, and Frank lerA Visualization and charac-
terization of non-covalent networks in molecul ar crystalgomated assignment of graph-set
descriptors for asymmetric molecu lescta Crystallographica Section, 55(6):1044—-1056,
Dec 1999.

4. Jing Wen Yao, Jason C. Cole, Elna Pidcock, Frank H. Allewitd A. K. Howard, and
W. D. Samuel Motherwell CSDSymmetrythe definitive database of point-group and space-
gr oup symmetry relationships in small-molecule crystalcttres. Acta Crystallographica
Section B58(4):640-646, Aug 2002.

Almost-Symmetry Research in Planning: A Review

Peter Gregory

University of Strathclyde
Glasgow, UK

Abstract. How can the almost-symmetry in planning problems be exgiiit
One method is to assume a more symmetric state than is gdtugithen attempt
to fix the resulting ‘solution’. This approach is interegtibut as yet unimple-
mented. Recent results show that almost-symmetry can beitexpin forward-
search planners, specifically the Fast Forward (FF) plansystem.

This paper surveys the progress made in planning relatinfmost-symmetries.

1 Introduction

Two approaches to exploiting almost-symmetry in planniegiiscussed here. The first
is introduced in [1], this approach assumes the initiaksimBctually more symmetric
than it is. The hope is that after a solution is found, a predin be added to the plan
that will restore the validity of the solution. This apprbatas not been exploited in
practice.

A different way of exploiting the almost-symmetry in proyie (by way of a prop-
erty abstraction) is described in [2, 3]. Modifications arad® to the FF planner [4] (a
heuristic forward-search planner) to prefer choices sytrim® those chosen earlier in
the plan. Results have shown this approach to be statlgtlmaheficial in a number of
planning domains.

2 Plan Prefixes

Space exploration is a very active research area in the iplgieommunity. Imagine a
situation where several planetary rovers are exploringriorxline environment. The
rovers could be performing many different tasks; rock/saihpling, atmospheric test-
ing, taking photos, etc. In this complex environment, iikgly that soon after the start
of the mission there will be a general asymmetry betweendahers; for example, their
instruments will be calibrated differently, they will be®ring different locations.

If the environment is very complex then it may be infeasilbl@xplore the asym-
metric problem. If the rovers were symmetric, however, ttabfem may again become
solvable. The problem is now split into two sub-problemssthy, find a highly symmet-
ric state that is reachable for only a small cost and secordlye the new symmetric
problem.

Planning to a symmetric state explicitly could be difficulgt least because the
goal would be difficult to specify. So, the supposed bestaniridea is to assume a
symmetric state and then attempt to create a prefix lates gikies more flexibility

15

to the planner for the second stage. In our planetary rovensple we might assume
that all of the instruments start in the same calibrationfigomation, as it should be
quite inexpensive to turn off all of the experimentationtinments for example; thus
increasing the symmetry in the problem.

This approach to handling almost-symmetry has not beeroegbin current plan-
ners. This is probably because the benchmark instancesticeimently large enough
to warrant such an approach. With small plan makespans, eatine aspects of this
technique are much more obvious (i.e. the plan is rarelyrmdtbecause of the intro-
duction of a plan prefix.

3 Forward-Search Property Abstraction

3.1 The Fast-Forward Planning System

The FF planner [4] has been one of the most competitive plaroferecent years. It
works with a simple relaxation of planning domains, comdingth Enforced Hill-
Climbing local search. FF's heuristic works by computingkaxed plan-graph by ig-
noring the delete effects of actions. The length of the extdrelaxed plan forms the
heuristic to guide the search.

FF will only consider actions that came from the first levettef relaxed plan, these
are called helpful actions.

3.2 The Property Abstraction

One way to abstract a planning problem is, for each objedy, @msider the type of

relations an object has and not actually to which other abjgds bound by those

relations. Thus, a rover at some location with a soil samrgpky/mmetric to any other
rovers at locations with a soil sample, even though the loeatand soil samples have
different identities.

3.3 Using the Property Abstraction

This abstraction can be used to further inform the search-dF When FF chooses
which action to apply from its useful action set, the chogarbitrary. If the useful ac-
tion set becomes large then the choice becomes less infolithegbroperty abstraction
gives us more information about the action choices.

If there was an action applied earlier in the plan that is aisymmetric to one
we are considering in the useful action set, then we can as#ubest to apply that
action now. This is the only change made to FF’s search, tepsymmetric choices
in the search. From the domains studied, for two metricse(timd states visited), this
approach is shown to out-perform FF, to a statistical sigaifte of> 95%.

16

4 Conclusion

Two interesting ways of exploiting the almost-symmetry larming problems are to
introduce symmetry explicitly in the solution, and to usetadctions to implicitly de-
scribe the symmetry in the problem. When introducing symynetplicitly, the solu-
tions will have the overhead of that introduction, this vaidl significant in some cases,
not in others. When using abstractions, there must be adaaon to believe that the
abstraction will contribute useful information to the pladn and not just add to the
complexity of the problem. One way to ensure this is by onlysidering actions that
would have been considered anyway (as is done in [2]).

The interested reader is encouraged to follow all of theegfees in this brief review

of the almost-symmetry research in planning.

References

1. Fox, M., Long, D.: Symmetries in planning problems. Iro¢&edings of the 3rd International
Workshop on Symmetry and Constraint Satisfaction Probl¢2@93)

2. Fox, M., Long, D., Porteous, J.: Abstaction-based aati@ering in planning. In: Interna-
tional Joint Conference on Al (IJCAI). (2005)

3. Porteous, J., Long, D., Fox, M.: The identification andleiation of almost symmetry in
planning problems. In Brown, K., ed.: Proceedings of thal23K Planning and Scheduling
SIG. (2004)

4. Hoffmann, J., Nebel, B.: The FF planning system: Fast gkameration through heuristic
search. Journal of Artificial Intelligence Reseaf@h(2001) 253-302

Partial Symmetry in Model Checking

Alastair Donaldson

University of Glasgow,
Glasgow, UK

Abstract. Symmetry reduction techniques have been shown to be staciss
combatting the state-space explosion problem for modelkihg. We provide a
brief survey of techniques which extend the applicatiornyafimetry reduction to
partially symmetric systems.

1 Introduction

Model checking [3] is an increasingly popular techniquetfar formal verification of
concurrent systems. The application of model checkingrigdid due to the state-space
explosion problem—as the number of components represégtedmodel increases,
the size of the associated state-space grows exponerfialuch, models of realistic
systems are often too large to feasibly check. Symmetryatemutechniques [2, 4,
13] can be used to combat this problem for models of systertis many replicated
components. Symmetry in a system can result in portionseo$tite-space of a model
of the system beingquivalentup to rearrangement of component ids. If symmetry
is known to be present in a model then model checking of cepedperties can be
performed over a quotient state-space, which is generaibiler than the full state-
space of the model.

In practice, a concurrent system may consist of many similar not identical,
processes. For example, processes in a system may be diistiad by a set of priority
levels. In this case the state-space underlying a modeeafythtem will not exhibit full
symmetry. However, in certain cases, it is safe to assumetbaesseare identical,
and perform model checking over a reduced state-space esfect to thigartial
symmetry. In this paper we overview the theory of symmetrgnodel checking, then
provide a brief survey of techniques for handling partiafynmetric systems.

2 Symmetry in Model Checking

Model checking involves checking the correctness of a tealpagic formulag over a
Kripke structuren = (S R,L) and a set of atomic propositioAd, whereSis a finite
set of statesR C Sx Sis a total transition relation, and: S— 24P labels each state
with the propositions that are true at the state. The Krigkectureas represents a
model of a concurrent system. In practizeis obtained from a high level specification
written in a language such as Promela [12].

Let # = (SR L) be a Kripke structure. Amutomorphisnof 4/ is a bijection
o : S— Swhich satisfies the following condition:

18

—VstesS (st) e R= (a(s),a(t)) €R,

In a model of a concurrent system with many replicated pseE®sKripke structure
automorphisms usually involve the permutation of procdsestifiers of identical pro-
cesses throughout all states of a model. The set of all aufghisms of the Kripke
structurear forms a group under composition of mappings. This group isotkd
Aut(a). A subgroupG of Aut(a/) induces an equivalence relatiesg on the states of
M thusis=gt < s=a(t) for somea € G. The equivalence class undeg of a state
se S, denotedsd|, is called theorbit of sunder the action o&. The orbits can be used
to construct ajuotientKripke structurexg as follows:

Definition 1. The quotient Kripke structurerc of ¢ with respectto G is a tuplerg =
(S, Ra, Lg) where:

— S ={[g:s€ S} (the set of orbits of S under the action of G),
- Re={([s;[th: (st) eR},
— Lg([g]) = L(rep([d])) (where ref]s]) is a unique representative ().

In generalarg is a smaller structure tham', but g and 4 are equivalent in the
sense that they satisfy the same set of logic propertieshadrieinvariant under the
groupG (that is, properties which are “symmetric” with respecGp For a proof of
the following theorem, together with details of the temptgic CT L*, see [3].

Theorem 1. Let a¢ be a Kripke structure, G a subgroup of Aot) and@ a CTL*
formula. If @is invariant under the group G then

M Sk Q& Mg,[d =@

Thus by choosing a suitable symmetry gr@gjpmodel checking can be performed over
Mg instead ofaf , often resulting in considerable savings in memory andfication
time [2, 4].

3 Virtual Symmetry

Virtual symmetry [9] is a general condition for a model and a groups, which, if
satisfied, means that model checking of symmetric proecé® be performed over
the quotient moded(g, even ifG is not a group of automorphisms of . The intuition
behind virtual symmetry is as follows. @ is a group which permutes the components
of the modelas , then althougl is not necessarily a symmetry group far, if 9 is
virtually symmetrianith respect taG then there is an abstraction © of 4/ such thats

is a symmetry group foss ©. Essentially, the modeir © is obtained by adding edges
to & in such a way tha® preserves the resulting transition relation.

Before giving the definition of virtual symmetry, for the saéf completeness we
give two previous notions of partial symmetryzear automorphismandrough sym-
metry[8]. Although virtual symmetry subsumes these notionsy e helpful in un-
derstanding the definition of virtual symmetry, which istglabstract.

19

Near automorphisms: Supposem is a model of a system, andthe set of process
identifiers associated with/ . A permutatior® € Sym mathcalblcts on a stateof ar
by permuting the components afA permutatior® € Symr is said to be a near auto-
morphism ofas if, for every transitions — t of a7, eitherB(s) — 6(t) is a transition
of a¢ or sis totally symmetric with respect tAut(#/). (That is,s is invariant under
Aut(a).) The modebv is said to be nearly symmetric with respec@df G is a group
of near automorphisms fov .

Rough symmetry: If, on the other handG is a subgroup oSymr thenas is roughly
symmetric with respect t@ if for every pair of states ands wheres ~g S, any tran-
sition fromsis matched by a transition fros) provided the associated local transition
(from &) would involve a process with the highest priority.

If ar is a nearly (roughly) symmetric model with respect to gr@ithen, despite
the lack of complete symmetry, the quotient moslg] is bisimilar to the original model
M . It follows that symmetry reduction preserves all symnos®T L* properties, thus a
symmetricCT L* property can be safely checked oveg.

Virtual symmetry: The notions of near and rough symmetry [8] are subsumed by the
notion ofvirtual symmetry [9]. The symmetrizatioR® of a transition relatiorR by a
groupG is defined by

RC ={a(s) » a(t):a € Gands—t € R}.

Intuitively, symmetrizing a transition relation can be tigit of as the process of adding
transitions which are missing due to asymmetry in the system

Definition 2. A structureas is virtually symmetric with respect to a group G acting on
S if for any s— t € RC, there exist®t € G such that s+ a(t) € R.

If a Kripke structureas is virtually symmetric with respect to a grow thenas is
bisimilar to the quotient modei/g, and model checking of symmetric properties can
be performed oves . A method of demonstrating the virtual symmetry of a streestu
by counting missing arcs of the structure has been prop&eHdwever, it is unclear
how virtual symmetry can be detected from the source textobeel.

The results on near-automorphisms, rough symmetry andavisymmetry [8, 9]
are proved, for simplicity, in the case where models do natlire shared variables or
channels.

4 Guarded Annotated Quotient Structures

The problem of applying symmetry reduction to systems wiitlelor no symmetry is
also considered in [14]. The notion of an annotated quosigntture [10,7, 11] is ex-
tended to guarded annotated quotient structu@upposev is the Kripke structure of
asystem, ands’ D a is obtained fromms by adding transitions (in a similar manner to
the process of symmetrization described above [9]), saiHdias more symmetry than
M . Then a guarded annotated quotient structureMfocan be viewed as an annotated

20

quotient structure fons ', with edges labelled with guards to indicate which processe
can make each transition, so that the original edge® ofan be recovered from the
representation afs ' [14]. A temporal formulaf can be checked over the guarded an-
notated quotient structure by unwinding the structurenefd is not symmetric with
respect to the automorphisms used for reduction. This @ghrpotentially allows large
factors of reduction to be obtained since a larger group tdraarphisms than would
usually be possible using standard quotient structurectemucan be employed. En-
couraging experimental results using the SMC model ched&grare reported. Once
again, no indication is given as to how the kind of asymmetnydied by this approach
can be detected from the source text of a program.

5 Other Approaches

Ajami et al. [1] show that standard approaches to symmettyagon inCT L* model
checking [4, 5, 10], which simultaneously exploit symmedrof both the system and
the property, fail to capture symmetriesliii L path subformulae. They investigate an
approach to symmetry reduction using a quotient structurthe synchronous product
of the Buchi automaton of &TL formula and the global state transition graph. The
approach exploits local symmetries of the Blichi automaidwey present algorithms
showing that model checking can be efficiently performed ¢ivis quotient structure,
and claim to have implemented these algorithms, but do rasighe any experimental
results.

6 Conclusions

We have surveyed various approaches to alleviating the-space explosion problems
for systems which are partially symmetric. An interestimglgem for future research
will be automatically detecting partial symmetries fronstm descriptions. Current
approaches assume that information about partial symeseatiknowna priori. Per-
haps existing techniques for symmetry detection [6] coddktended to handle par-
tially symmetric systems.

References

1. K. Ajami, S. Haddad, and J. llie. Exploiting symmetry indar time temporal logic model
check ing: One step beyond. In B. Steffen, edierpceedings of the 4th International
Conference on Tools and Algorithms for Construction and lysia of Systems (TACAS
‘98), volume 1384 of_ecture Notes in Computer Sciengages 52-67, Lisbon, Portugal,
March/April 1998. Springer-Verlag.

2. D. Bosnacki, D. Dams, and L. Holenderski. Symmetric Spinternational Journal on
Software Tools for Technology Transfé(1):65—-80, 2002.

3. E. M. Clarke, O. Grumberg, and D. Pelebllodel Checking The MIT Press, Cambridge,
Masachusetts, 1999.

4. E. Clarke, R. Enders, T. Filkhorn, and S. Jha. Exploitymmmetry in temporal logic model
checking.Formal Methods in System Desid#(1-2):77-104, 1996.

10.

11.

12.

13.

14.

15.

21

E. Clarke, T. Filkorn, and S. Jha. Exploiting symmetryémporal logic model checking.
In C. Courcoubetis, editoRroceedings of the Fifth International Conference on Corapu
Aided Verification (CAV ‘93)volume 697 oL ecture Notes in Computer Scienpages 450—
461, Elounda,Greece, June/July 1993. Springer-Verlag.

. A. F. Donaldson and A. Miller. Automatic symmetry deteatifor model checking using

computational group theory. To appeaHroceedings of the 13th International Symposium
on Formal Methods (FM’'05)Lecture Notes in Computer Sciend¢ewcastle Upon Tyne,
UK, July 2005. Springer-Verlag.

. E. A. Emerson and A. P. Sistla. Utilizing symmetry when elechecking under fairness

assumptions: An automata-theoretic approa&CM Trans. on Programming Languages
and Systemd9(4):617-638, July 1997.

. E. A. Emerson and R. J. Trefler. From asymmetry to full sytmméNew techniques for

symmetry reduction in model checking. In L. Pierre and T.reditors,Proceedings of

the 10th IFIP WG 10.5 Advanced Research Working Conferencgoorect Hardware De-

sign and Verification Methods (CHARME ‘9Q9plume 1703 oL ecture Notes in Computer
Sciencepages 142-156, Bad Herrenalp, Germany, September 1988g&8pVerlag.

. E. A. Emerson, J. W. Havlicek, and R. J. Trefler. Virtual syatry reduction. IfProceedings

of the fifteenth Annual IEEE Symposium on Logic in Computem8e pages 121-131,
Santa Barbara, California, USA, June 2000. IEEE ComputereBoPress.

E. A. Emerson and A. P. Sistla. Symmetry and model chgcliaormal Methods in System
Design 9(1-2):105-131, August 1996.

V. Gyuris and A. Sistla. On-the-fly model checking undsrrfess that exploits symmetry.
Formal Methods in System Desjdkb(3):217-238, November 1999.

G. J. HolzmannThe SPIN model checker: primer and reference manAaldison Wesley,
Boston, 2003.

C. N. Ip and D. Dill. Better verification through symmetriformal Methods in System
Design 9:41-75, 1996.

A. P. Sistla and P. Godefroid. Symmetry and reduced syrygrmemodel checking. ACM
Transactions on Programming Languages and Syst@6(g):702—734, July 2004.

A. P. Sistla, V. Gyuris, and E. A. Emerson. SMC: A symmditaged model checker for
verification of safety and liveness propertieSCM Transactions on Software Engineering
and Methodology9:133-166, 2000.

Modelling and Dynamic Symmetry Breaking
in Constraint Programming

Karen E. Petrie

Cork Constraint Computation Center
University College Cork
Cork, Ireland
k.petrie@4c.ucc.ie

Abstract. Symmetry in constraint satisfaction problems can give téseedun-

dant search. The aim in symmetry breaking is to avoid suchneaghcy by ex-
cluding all but one example of each equivalence class otisolsl Two methods
that have been developed to do this dynamically are Symniregking Dur-

ing Search and Symmetry Breaking via Dominance Detectiavdéing in CP

means to move from a natural language specification of a gmobto a CSP
formulation. This paper presents two case studies on teesiction between dy-
namic symmetry breaking and modelling.

1 Introduction

Combinatorial search is arguably the most fundamentakagpdrtificial Intelligence
(Al) [2]. It is an extremely active research area, and ha®bexvery important com-
mercially, through Constraint Programming (CP). Softwaaiekages such as EQS
from IC-Parc [4] and ILOG Solver [17] are widely used on peabk such as work force
management at BT, resulting in savings of many millions lier¢companies concerned.

A Constraint Satisfaction Problem (CSP) consists of a seddfibles each of which
has a domain of values, and a set of constraints on the vasiabd values: a solution is
an allocation of values to variables consistent with thest@ints. A constraint solver
searchedor this solution by alternating phases lmfanchingandinferenceto find an
assignment of values to a set of variables which satisfiesdhstraints. The branching
phase selects a variable and a possible value for it and ses)stion in which it has
that value. If no solution is found, then another value isdriBranching thus causes
the system to explore a tree of possible partial assignmsegking one that can be
completed. In the Inference phase, the solver attemptsdoadeconsequences of the
constraint and the current partial assignment.

Modelling in CP means to move from a natural language spatiific of a prob-
lem, into a CSP instance consisting only of variables, \&hred constraints. It may be
possible to find more than one model of a problem, in which easedel is sought that
can efficiently lead to a solution through CSP solving teghas. This is where variable
and value ordering heuristics fit into modelling processs Paper concentrates on the
interaction of modelling and search with symmetry.

Constraint Satisfaction Problems (CSPs) are often higytynsetric. Symmetries
may be inherent in the problem, as in placing queens on a dieessl that may be

23

rotated and reflected. Additionally the modelling of a re@ltpem as a CSP can intro-
duce extra symmetry: problem entities which are indistisigable may in the CSP be
represented by separate variables leading symmetries betweenvariables.

Definition of Symmetry Given a CSP L, with a set of constraints C, a symme-
try of L is a bijective function f which maps a representatida search state
o to another search state, so that the following holds:

1. If a satisfies the constraints C, then so do¢s)f

2. Similarly, ifa is a no-good, then so too igd). [18]

Symmetries can give rise to redundant search, while seaydbi solutions a partial
assignment may be considered which is symmetric to one quslji examined. If a
partial assignment does not lead to a solution, neitheramyl symmetric assignment,
and if it does lead to a solution, the new solution is symroaliy equivalent to one
already found. To avoid this redundant search constraagnammers try to exclude all
but one in each equivalence class of solutions. Many methads been developed for
this purpose. These symmetry exclusion methods can beedivido two classestatic
anddynamic Static symmetry breaking methods operate before searshmemces, and
dynamic symmetry breaking methods operate during search.

In some classes of problems, the symmetry can be removednbydedling the
problem. For example, the golfers problem3& golfers want to play in 8 groups of
4 each week, in such a way that any two golfers play in the sameat most once.
How many weeks can they do this farRis problem is highly symmetric. A possible
model for this problem decides which group each player igyaesd to in each week:
the groups and the weeks (as well as the players) can behateged. By remodelling
this problem using set variables, much of the symmetry caefv@ved [21].

Another static symmetry breaking method, involves addiogstraints to the ba-
sic model. For instance, many problems (including the gslfgoblem above), have
symmetry due to indistinguishable variables. Often, thimmetry can be removed by
adding constraints that the value of these variables must Bscending order. Craw-
ford, Ginsberg, Luks and Roy developed a technique for cootihg symmetry break-
ing ordering constraints for more general symmetries.Jvolves listing all possible
permutations for each symmetry, then creating appropoiatering constraints which
allow only the first permutation to remain [5]. This techrécpffects the CP model both
by the addition of constraints, and by fixing the variableewinlg to be used during
search.

In more recent years, Flenet al. have concentrated on symmetry constraints for
matrix modelswhere "a matrix model is a constraint program that contairesor more
matrices of decision variables” [7]. For example the galferoblem can be modelled
as a 3-d boolean matrix whose dimensions correspond to welelyers and groups. A
variablex;jx = 1 iff in weeki, playerj plays in grougk [21]. The orderings constraints
which are proposed deal witbw andcolumnsymmetries, where @w (column)sym-
metry of a 2-d matrix is a bijection between the variablesaaf bf its rows (columns)
that preserve solutions and non-solutions. Two rows(cak)rareindistinguishabléf
their variables are pairwise indistinguishable due to a(@umn) symmetry. A matrix
model hagow (column) symmetriff all the rows (columns) of one of its matrices are

24

indistinguishable. In the above matrix model of the golfensblem, the groups, weeks
and the players are all indistinguishable, this result®wn fcolumn) symmetries.

In contrast to static symmetry breaking methods, dynamiusgtry breaking meth-
ods operate during the search process. The two dynamic syynbreaking methods
we will concentrate on in this paper are, symmetry breakimgnd) search [1, 13], and
symmetry breaking via dominance detection [6, 8]. More ndlgecomputational group
theoretic versions of these methods have been devised \n&A&-SBDS [12] and
GAP-SBDD [14].

Symmetry breaking during sear(BBDS), was developed by Gent and Smith [13],
having been introduced by Backofen and Will [1]. The searekb ts built from deci-
sion points, where a decision point has two possible chpaidser assign a value to
a variable, or do not assign that value to that variable. Wdéecision point is first
reached during search a value is assigned to a variableaifeaér stage in search the
decision point is revisited then a constraint is imposedtttievariable should not have
the previously assigned value. SBDS operates by taking aflsymmetry functions
(provided by the user) and placing related constraints wiasktracking to a decision
point and taking the second branch.

A feature of SBDS is that it only breaks symmetries which aeatready broken
in the current partial assignment: this avoids placing gessary constraints. A sym-
metry is broken when the symmetric equivalent of the curpantial assignment is not
consistent with that assignment. The following expressigulains how SBDS works:

A& g(A) & var #val = g(var # val)

whereA is the partial assignment made so far during seag¢h) is the symmetric
equivalent ofA andg(var # val) is the symmetrical equivalent to this failed assign-
ment. If Ais the current partial assignment and it has been establtstagvar # val,

it needs to be ensured that an unbroken symmetry is being \dih| so a check is
undertaken thag(A) still holds. Then to ensure that the symmetrically equinetib-
tree to the current subtree will not be explored, the comgtgivar # val) is placed.
An SBDS library is now available in the EGRS’ constraint programming system [4].
As previously mentioned, SBDS requires a function for eaechraetry in the problem
describing its effect on the assignment of a value to a veridthese symmetry func-
tions are correct and complete, all the symmetry will be brglas a result of this only
non-isomorphic solutions will be produced. Although SB¥S been successfully used
with a few thousand symmetry functions, many problems hawertany symmetries to
allow a separate function for each.

To allow SBDS to be used in situations where there are too rsgmmetries to
allow a function to be created for each, Gental.[12] have linked SBDS in ECPS
with GAP (Groups, Algorithms and Programming) [10], a syst®r computational
algebra and in particulmomputational group theorfCGT). Group theory is the math-
ematical study of symmetry. GAP-SBDS allows the symmetougrrather than its in-
dividual elements to be described. GAP is used when a vahssigned to a variable, at
a decision point, to find thetabiliserof the current partial assignment, i.e. the subgroup
which leaves it unchanged. Then if the decision point issiead on backtracking, the
constraints are dynamically calculated from the staliibsel placed accordingly. GAP-
SBDS allows the symmetry to be handled more efficiently tmaBBDS; the elements

25

of the group are not explicitly created which is akin to wiet symmetry functions rep-
resentin SBDS. However, there is an overhead in commuaitagcessitated between
GAP and ECLPS.

Symmetry Breaking via Dominance Detect{@BDD) [6, 8] performs a check at
every node in the search tree to see if it is dominated by a stnwally equivalent sub-
tree already explored, and if so prunes this branch. In SBB®dominance detection
function is based on the problem symmetry and is hard-coaledsch problem. This
means in practice SBDD can be difficult to implement, as ttegeof the dominance
detection function may be complicated; the user has to erthat all the symmetry of
the problem is incorporated within the function to enforek §ymmetry breaking.

Gentet. al.[14] have recently developed GAP-SBDD, a generic versioBBDD
that uses the symmetry group of each problem rather thardaridonal dominance de-
tection function and links SBDD (in ECRS’) with GAP. At each node in the search
tree, ECIPS communicates the details of that node to GAP, and GAP refialas
if dominance has been detected and that branch can be pramtede otherwise. Oc-
casionally full dominance is not detected but there areatdeivalue pairs which are
easily detected as being eligible for domain deletion; attvipoint GAP returns true
followed by a list of variable/value pairs for which this tstcase. ECIPS removes
these values from the corresponding variables domainséeséarch continues.

It is clear that static symmetry breaking methods affectaheice of model for a
CSP. This situation is less clear for dynamic symmetry hirepknethods. In general,
dynamic symmetry breaking methods do not fix the CSP modebity proviso is that
the symmetry should be definable in terms of the search \agabhis paper presents
two cases studies which show how dynamic symmetry breakidgnaodelling tech-
niques can interact. The first study shows that by consigdsath the model of the
problem and the chosen symmetry breaking method an effitietitod can be derived.
The second study shows how the model chosen for a given pnatzle affect the choice
of most efficient dynamic symmetry breaking method.

2 Case Study: SBDS and ‘Peaceable Armies of Queens’

Robert Bosch introduced the “Peaceably Coexisting Armi€3ueens” problem in his

column in Optima in 1999 [3]. It is a variant of a class of pmk requiring pieces
to be placed on a chessboard, with requirements on the nuofilsgluares that they
attack: Martin Gardner [11] discusses more examples ofdliss. In the “Armies of

Queens” problem, we are required to place two equal-sizeiearof black and white

queens on a chessboard so that the white queens do not déablatk queens (and
necessarily v.v.) and to find the maximum size of two such esmBosch asked for an
integer programming formulation of the problem and how maptymal solutions there
would be for a standard 8 8 chessboard.

A straightforward model of the problem has a varia®jeto represent a square on
row i, columnj of the board:

26

sj = lif there is a white queen on squdigj)
= 2 if there is a black queen on squdigj)
= 0 otherwise

If M is the region that may be attacked by a given square, then wexgaess the
‘non-attacking’ constraints as:

Sijp = 1= Sziz #2
ands,j, =2=s,j, # Lforall ((i1, j1),(i2,j2)) €M

or more Compactly as:
Syjy T Ssi2 # 3forall ((ila jl), (iZ, JZ)) eM

Tests in ECIPS show that, the single constraint gives the same number d&ébac
tracks as the two implication constraints, but is faster.

Constrained variables, b count the number of white and black queens respectively
(using the counting constrairdccurrences, provided in ECELPS). The last constraint
isw = b, and the objective is to maximise This is achieved by adding a lower bound
onw whenever a solution is found, so that future solutions maseta larger value of
w; when there are no more solutions, the last one found hasgregad optimal.

The model has? search variables and approximatehy &inary constraints, as well
as the counting constraints which have arify wheren is the number of rows in the
board.

Finding Optimal Finding All Optimal Solutions
No. of Backtracks Total Optimal Number | Number

to find first |Number ofNumber of Time of of Time
n| optimal solution|Backtracks Queens | (secs)BacktracksSolutions (secs)
2 0 1 0 0.0 1 1 0.0
3 1 2 1 0.0 17 16 0.0
4 4 28 2 0.01 149 112 0.02
5 190 265 4 0.16 383 18 0.20
6 1344 4998 5 3.63 | 9623 560 5.24
7 21882 93532 7 87.95| 189013 304 | 132.99
8 802255 2716158 9 3215. - - -

Table 1. Results: Basic Model with no Symmetry Breaking

Table 1 gives results for finding the optimal number of quesrdsproving that it is
optimal, as well as for finding all optimal solutions. Thegp&riments were run with a
simple static variable ordering heuristic which searchedbard: top row, left to right,

27

then second row, left to right, and so on. The value orderegristic is the standard
ECL'PS one, which assigns values in numerical order starting ighsmallest. The
result for finding all solutions when= 8 are missing as this result was not obtainable
within the cut-off imposed of 1 hour.

2.1 SBDS in ‘Armies of Queens’

The ‘Armies of Queens’ problem has the usual symmetry of tessboard (reflection
in the horizontal, vertical and both diagonal axes, andtiaria through 90, 180 and
270 and the identity); in addition, in any solution we can swdjted white queens for
all the black queens, and we can combine these two kinds ah&grg. Hence the prob-
lem has 16 symmetries. SBDS is ideal for problems such asitiig it only requires
a simple function to describe the effect of each symmetrygiothan the identity) on
the assignment of a value to a variable. Hence, in this caselp such functions are
required.

The seven chessboard symmetry functions are labeligdil, d2,r90,r180,r270.
The function which interchanges black and white is labeBdd; and the functions
which combine the chessboard symmetries with interchanglack and white, are
labelled as the board symmetries prefixed vBW. The symmetry functions take a
variable,s; and a possible value for this variablepefore returning the symmetric
variable and the symmetric value as:

X1 Sj,V = Snt1-j,V
Yy S§j,V—= St1-ij,V
dil:sj,v—sj,V
d2:sj,V— Sp1-jnt1-i,V
r90:sj,v— Sjny1i,V
ri80:sj,v— S1-int1-j,v
r270:sj,V— Shy1-j,i,V
bw: sj,v—sj,[if v=0thenOelse3 -]
bwx: sj,v— S nt1-j,[if v=0then0else3—V]
bwy: sj,V— shy1-i,j,[if v=0then0 else3 -]
bwdl: sj,v— sj;,[if v=0thenOelse3—V]
bwd2 : s,V — Sht1-jn+1-i,[if v=0then0 else3 -]
bwr90: i,V — Sjns1-i,[if v=0thenOelse3—V]
bwrl80:sj,V— Snt1-in+1-j,[if v=0then0 else3 -]
bwr270:sj,v— Sit1-j,, [if v=0thenOelse3—v]

Suppose thah = 8 and the first assignment places a white queen in the top left
corner:s; 1 = 1. The symmetric assignments axes; g =1,y:sgg=1,d1:51 =1,

28

d2:581=1,r90:518=1,r180:588 =1,r270:581 =1,bw: 517 =2, bwx: 518 =2,
bwy:sg1=2,bwdl:s 1 =2, bwd2:sgg =2, bwr90 : 518 = 2, bwrl80 : 558 = 2,
bwr270 :sg 1 = 2. All the symmetries which swap black and white, apart flamare in-
consistent witts; ; = 1, because the symmetrically equivalent assignment wdalsep
a black queen in one of the corners where it could be attackelebfirst assignment,
so these symmetries are no longer considered on this br@mchacktracking to the
first choice point, where; 1 = 1 is set, and taking the alternative branclsof # 1, the
symmetry functions are used to calculate the symmetriabées SymVaj and values
(SymVa). Lastly constraints of the forrBymVar£ SymValare placed in order to stop
the subtree symmetric to this from ever being explored. phigess ensures that if a
white queen can not be placed in the top corner, then a quemvés placed in any of
the corners.

Finding Optimal All Solutions
No. of Backtracks Total Optimal Number | Number
to find first |Number ofNumber of Time of of Time
n| optimal solution|Backtracks Queens | (secs)|BacktracksSolutions (secs)
2 0 1 0 0.1 1 1 0.0
3 1 2 1 0.03 2 1 0.03
4 4 9 2 0.10 16 10 0.10
5 68 70 4 0.60 64 3 0.52
6 462 886 5 7.30 1286 35 9.19
7 6994 15538 7 138.16| 24106 19 181.31q
8 298235 473141 9 4454.4 - - -

Table 2. Results: Basic Model with SBDS

Table 2 shows the empirical results when SBDS is integrattxithe simple CP
model outlined in Section 2. Comparing this with Table 1 shthat SBDS gives a fac-
tor greater than 5 improvementin number of backtracks fentk 8 case. However, the
runtime increases when SBDS is used. This is because thedliustchosen by the value
ordering heuristic represents an empty square on the abessirhe symmetry break-
ing constraints placed by SBDS when backtracking from taesggnments, will forbid
placing an empty square in a symmetrically equivalent posiThese constraints occur
an overhead and are not useful in steering search towardswexgb solutions. In fact
as better, solutions with more queens on the board are fdweydtecome redundant.
Later on in search, when leaving empty squares has beenvekees 1 then 2 will be
allocated, which relate to placing white and black queesapeetively. When SBDS is
triggered through backtracking past failed cases of thesigaments more useful con-
straints are returned. These constraints are the onesphgdte to reduce the number
of backtracks so significantly. In general, when trying tti@pate the effect of SBDS
on a given model, it is worth considering the variable andieairdering heuristics. If
these heuristics will lead to placing constraints earlyearsh which, will have little

29

effect at the time, then become vacuous at a later stage mbséds worth considering
if a better heuristic can be found.

2.2 Value Ordering and SBDS

The value ordering heuristic which places empty squardscins also hinder the opti-
misation process. The first solution to be found has 0 alémttt every square, which is
equivalent to an empty board. This gives a lower bound of @fermaximum number
of white queens which can be placed on the board. A constisathen posted which
says that the next number of white queens must be greatetttisdower bound which
in this case would be- 0. The process continues by increasing the lower bound in in-
teger increments until the optimum numbaen) (is found. At this point, the program
searches for a solution with maximum number of white quae#sl; on failing to find
one it has proven thah is indeed the optimum. If instead of allocating empty sgsare
in the initial stages, queens are placed on squares firgatfiest solution found gives,
a better lower bound for the optimum. In this case the programmences by placing
as many white queens as possible then as many black queeossitsg, only allocat-
ing empty squares when no queens can be placed. The lowed iloeim becomes the
number of black or white queens (there is a constraint torenthey are equal) on the
board). Optimisation continues as before, by setting a constraltich states that
the next value found must be greater thmf his value ordering heuristic is also poten-
tially a good heuristic with respect to SBDS. The first dexisimade relate to placing
queens on the board, if these decisions are backtrackedtmkiter stage, than SBDS
can place constraints which state that a queen should ndabedin the given square.
These constraints are useful in directing search. In opétitn problems, by consid-
ering the best heuristic for a problem through knowledgehefdptimisation process,
a good heuristic for SBDS may also be derived, as the extoarirdtion given to the
optimisation process can relate to SBDS placing more in&bikra symmetry breaking
constraints. In general, by considering the best heusi$tica given problem, a good
heuristic will also be found with respect to SBDS, as the lsiarchosen will build a
search tree which starts by trying the mostly likely valuedovariable, this relates to
the scope of constraints that SBDS can place.

It is possible to implement this new strategy as a value anddreuristic which
tries 1 before 2, before 0; hence it implements allocatinggms to squares on the board
before leaving them empty. However, this heuristic doeshatime overhead as a
decision process has to be undertaken at each search gadasle which value should
be allocated. A less complex approach is to reassign thesalithat 6= white queen
1 =black queerand 2= empty squareThen allocate 0 before 1, before 2 as before. In
SBDS this approach does necessitate a minor change to theetyyrfunctions which
interchange black and white queens.

2.3 Variable Ordering and SBDS

In the previous experiments in Section 2.1, a static vagiabdlering heuristic was used
which assigned the top row of the board from left to rightdaled by the second row
from left to right until all the variables were assigned. tihstraints were being used

30

to break the symmetry this static ordering may be mandatmyeften the variable
order must be defined before search commences, in ordertoecth@se methods are
complete and no solutions are lost. If SBDS is the symmetegking method chosen,
this information is not needed before search commenceleasse of dynamic variable
ordering is permitted, and can be easily integrated withSB8&S library. A dynamic
variable ordering chooses the next variable to be allocdteithg search, according to
the search decisions and the resulting propagation to tiat.pA common and well
proven heuristic is smallest domain first (SDF), which ales the next variable to be
assigned a value to be the one with the smallest number eégimrits domain.

2.4 Experimental Results of Combining Variable and Value Odering Heuristics
with SBDS

Table 3 contains the results of combining the value ordenmgyistic outlined in Sec-
tion 2.2 and SDF variable ordering as discussed in Sectwizh SBDS.

Finding Optimal All Solutions
Lower |Optimum No. of Bt. to Total

bound on No. of find first ~ |Number of Time |Number Time
n|optimum| Queens|optimal solutio Bt. (secs) of Bt. | (secs)

2l O 0 0 1 0.0 1 0.0

3 1 1 0 2 0.02 2 0.0
4 2 2 0 4 0.05| 12 | 0.05
5 3 4 3 12 0.17| 23 | 0.22
6 4 5 1 153 1.79| 405 | 3.16
7 5 7 9 2231 |21.23| 5186 |47.90
8 6 6 266 46894 |406.39106940752.1

Table 3.Results: SBDS with SDF Variable Ordering & Value Orderingitigtic

Comparing the previous results for the basic model with SBB&wn in Table 2
with the more advanced model results shown in Table 3, shaargareduction in time
for all cases. FoON = 8 the reduction in time is 10 fold to find the optimal number of
queens that can be placed on the board. The reduction intdietonber of backtracks
for N = 8 is equally impressive at 10 fold again, but the most imgvessduction
comes in the number of backtracks to find the first optimaltsmuwhich is reduced
by a factor greater than 1000 for thE= 8 case. This means that good lower bounds
for the optimum are being found early in search. Inthe: 8 case it can be seen that
the lower bound is 6 for the new value ordering, whereas it Qvassthe original case,
the actual optimal value is 9 so 6 is a good approximation.

Turning to finding all the solutions to the problem it can bers¢hat there is a
great reduction in both backtracks and time, between tiggnalimodel and the current
model. It is possible to prove that there are 71 non-isomion@sults forN = 8, with
the approved variable and value ordering heuristic, thésrisw result.

31

Fig. 1. Graceful labelings oKs5 x P, and the Double Whed\W\s

Looking back at the results without SBDS (Table 1) it can benghat these new
results outperform those, both in terms of time and backgan all cases. This shows
that the combination of modelling techniques and the SBDi&itiy can be very power-
ful in efficiently solving problems.

3 Case Study: SBDS versus SBDD and ‘Graceful Graphs’

There is limited past work comparing GAP-SBDS and GAP-SBHEBrvey [15] stud-
ied the algorithms theoretically and concluded that SBDSSBDD are closely related,
the difference being where in the search tree, and how, symimesaking is enforced.
Gentet al. [14] applied GAP-SBDS and GAP-SBDD to instances of the baddrin-
complete block design (BIBD) problem and showed that GAB®BRould solve much
larger problems, and was faster than GAP-SBDS on the snmatdylems which both
could solve. They surmised that this was due to the commtioicaverhead between
GAP and ECIPS, since the overhead in GAP-SBDD, which usually returns anly
Boolean answer, is less than in GAP-SBDS, where a set of reomist is returned.

On the other hand, Petrie and Smith [19] found thaBnaceful Graphgroblems,
GAP-SBDS outperformed GAP-SBDD on all instances studiethé next section, the
reason for this difference in performance is identified.

3.1 Graceful Graphs

A labeling f of the vertices of a graph witthedges igracefulif f assigns to each vertex
aunique label frord 0,1, ...,q} and, when each edggis labeled with f (x) — f(y)|, the
edge labels are all different [9]. (Hence, the edge lab&sgrermutation of 2, ...,q.)
Figure 1 shows an example.

Lustig and Puget [16] give a constraint model for finding acgfal labeling of a
graph. A basic CSP model has a variable for each xede, ..., x,, each with domain
{0,1,...,q} and a variable for each edgk,d,...,dq, each with domaif{1,2,...,q}.
The constraints of the problem are: if edgins nodes and j thendyx = |x — Xj|;
X1,X2,...,Xn are all different; andly, do, ..., dq are all different.

ECL'PS provides two different levels of propagation for tkdifferentconstraint.
It can either be treated as a clique of binatyconstraints or as global alldifferent

32

BT ECL'PS GAP Total
time time time
GAP- K3 x P,| 13 0.23 050 0.73
SBDDKyx P, 173 7.18 2.72 9.90
Kg x P,{4402 337.69 88.20 426.89
GAP- K3 xPy| 9 0.20 0.33 0.53
SBDSKy xP,[165 7.15 1.35 8.5(¢
Ks x P,[4390 352.10 36.61 388.71

Table 4. Comparison of GAP-SBDS and GAP-SBDD showing backtracksgil the time (in
seconds) for finding all graceful labelingski x P, K4 x P2, Kg x Py.

which does more propagation. We use tthabal alldifferenton the edge variables and
the binary# version on the node variables. They are treated differdraglyause the
values assigned to the edge variables form a permutatiomamcke give more scope
for domain pruning than the node variables, which have mossiple values than vari-
ables. The node variables are used as the search varialdes.iormation on the
modeling of this problem and the symmetry group is given 19}.[1

The graphKs x P, shown in Figure 1, consists of two copiestf, with corre-
sponding vertices in the two cliques forming the verticea pathP,. The symmetries
of Ks x P, are: first, any permutation of the 5-cliques which act on lthe same way.
Second, inter-cligue symmetry: all the node labels in thst iique can be interchanged
with the labels of the adjacent nodes in the second. Thinthpdement symmetry: ev-
ery vertex labek; can be replaced by its complement x;. The graph symmetries
and the complement symmetry can be combined with each ¢thace, the size of the
symmetry group is 5k 2 x 2. In generalKy, x P> graphs have a symmetry group of
sizem! x 2 x 2. This study concentrates on symmetry breaking in 3 sugbhgravith
m= 3, 4 and 5. The results of finding all graceful labelings okthgraphs using either
GAP-SBDS or GAP-SBDD can be found in Table 1. (All experinsgntthe paper were
run on a 1.6GHz Pentium 4 processor with 512MB of memory,giBiBL' PS version
5.7 and GAP version 4.2.) From Table 4, it can be seen that GBBD is slower than
GAP-SBDS for all instances. This is also true for other geapis shown by [20].

3.2 Analysis

To explain why GAP-SBDS is faster than GAP-SBDD for findingagful labelings of
graphs with symmetry, we have analysed the behaviour of GSBBS and GAP-SBDD
for the three graphks x Py, K4 x P, andKs x P». The reasons for the differences in
search are consistent, but for simplicity only the resut¥g x P, are presented here.
It should be noted that Table 1 gives the numbetexp backtrackdVe use the term
deep backtrack when the search has progressed beyond m@cimt, but then later
has to revisit it. Ashallow backtracloccurs when propagating the constraiat = val
on the left branch of a decision point causes a failure, a@ddh# val branch is taken
instead. Most constraint programming systems count thebeumof deep backtracks,
but in this case it does not accurately reflect differencesearch. In GAP-SBDS,

33

symmetry-breaking constraints can be added whenever fthe/és # val) branch is
followed, including after a shallow backtrack.

Figure 3 shows the search trees created by GAP-SBDS and GAB $ finding
all graceful labelings oK3 x P>, from the point where the first difference occurs, which
is after the first two solutions (from 4 in total) have beenrfduThe variable namésto
E in Figure 3 correspond to the nodes shown in Figure 2; thessdige corresponding
edge variables are named by a pair of letters correspondititetnodes defining the
edge.

After assigningC = 5, GAP-SBDS immediately reverses from this decision to fol-
low the C # 5 branch (a shallow backtrack), whereas GAP-SBDD continsetting
E = 1, before returning to take tt@@+ 5 branch later in search (a deep backtrack).

DE = {1,4,6,7,8}

CF={1,46.78} E ={1,3.6,7,8}

EF ={1,4,6,7,8}
F—1{1,36,7,8}

Fig. 2. The domains of the node and the edge variables after prapgdat= 5, using GAP-
SBDD

The difference in the search trees is due to differences listcaint propagation.
GAP-SBDD arrives at the search state shown in Figure 2. Orleeoédges must be
labeled 9 (the number of edges in the graph) and the adjaceiesmmust be labeled
0 and 9. At this stag& = 0 andB andC are labeled with values other than 9; hence
D, the only other node adjacent £9 must take the value 9, and this inference is made
by constraint propagation. Figure 2 shows the variable diosra this point. Because
there are already edges labeled®B) and 3 BC), the edge®E andDF cannot have
those values, and henBeandF cannot have the values 6 or 7. Using GAP-SBDS, the
domains of the variables are also reduced by symmetry-brgaknstraints previously
added on this branch. Those that are relevant in this casgyammetric equivalents of
B #1, namelyE # 1,F # 1,E # 8 andF # 8. (Because of the graph symmetry, nodes
E andF are symmetric to nodB, and the value 8 is symmetric to the value 1 because
of the complement symmetry.) The only remaining value indbmains of botte and
F is 3, and since these variables must have different valoisshtanch fails.

Most of this propagation cannot occur in GAP-SBDD. GAP jesurns a boolean
to indicate whether the current node is dominated or not,parsdibly a list of values
to prune from the domains of specific search variables. letineent implementation, a
variable/value pair is returned for domain pruning if itsigament would cause dom-
inance to be detected. In this caSAL, F/1, E/8 andF/8 are not returned. Although

GAP-SBDS GAP-SBDD

ffffffff decision made due to propagation, deep-backtrack comraehoye
— 5 deep-backtrack was made at this point

Fig. 3. The search tree branch where GAP-SBDS and GAP-SBDD differ

GAP-SBDD successfully breaks the symmetry (in this case digaling dominance
when the assignmeiit = 1 is tried) posting SBDS constraints at an earlier stage can
clearly lead to earlier pruning.

The reason this difference between GAP-SBDS and GAP-SBDiytdighted by
experimentation on this problem, as opose to on the othdrigmes consider by Gent
et al.[14], relates directly to the model of the problem; specificen the fact that the
search variables are not the most constrained variabléstiét model. GAP-SBDS
breaks symmetry by placing constraints, these constraamigpropogate with all the
variables within the model. GAP-SBDD provides no inforroativhich could be related
to the variables not directly involved in search.

4 Conclusion

Symmetry exclusion methods can be divided into two classac and dynamic. Static
symmetry breaking methods operate before search commeviveeas dynamic sym-
metry breaking methods operate during search. Static symimeaking methods gen-
erally require a fixed model with static variable and valugeoing heuristics. Dynamic
symmetry breaking methods leave the CP practitioner withenfreedom as to which
model to chose; the only proviso is that it must be possibletine the symmetry in
terms of the search variables.

In this paper, through the use of two case studies, we havershow the CP model
can interact with dynamic symmetry breaking methods. Tis¢ dase study illustrated
how dynamic symmetry breaking and modelling can interagtrtavide an efficient
method for solving a problem. The second case study showsh®model chosen for

35

a given problem, can affect the choice of most efficient dyicaymmetry breaking
method.

This paper represents a preliminary study, showing thatdmbining modelling
techniques and dynamic symmetry breaking, more efficientraptechniques can be
derived than by considering either of these aspects indalig Further work in this
area is needed if the exact relationship between symmetgkbrg and modelling is to
be fully understood.

Acknowledgements

The author would like to thank Barabara Smith, lan Gent, Tats&y and Steve Linton
for their continuing encouragement and interest. | am adsp grateful to Warwick Har-
vey for his technical assistance with E®S’, and Alex Ferguson for offering his expert
Latex knowledge. This work was supported partially by EP$fR&t GR/R29673, and
Science Foundation Ireland grant 00/PI1.1/C075.

References

1. R. Backofen and S.Will. Excluding symmetries in constirdiased search. In Joxan Jaffar,
editor,Proc. of CP’99 LNCS 1713, pages 73-87. Springer, 1999.

2. Roman Bartak. Guide to Constraint Programming. Techméggort, Charles University
Prague, 1998.

3. Robert A. Bosch. Peaceably coexisting armies of que@ptima (Newsletter of the Mathe-
matical Programming Society$2:6—9, 1999.

4. A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf, K. Stz M. G. Wallace. ECLiPSe:
An introduction. Technical Report IC-Parc-03-1, IC-P&@03. www.icparc.ic.ac.uk/
eclipse/

5. James Crawford, Matthew L. Ginsberg, Eugene Luks, andtsttha Roy. Symmetry-
breaking predicates for search problems. In Luigia Carlééello, Jon Doyle, and Stu-
art Shapiro, editorkR’'96: Principles of Knowledge Representation and Reaspmiages
148-159. Morgan Kaufmann, San Francisco, California, 1996

6. Torsten Fahle, Stefan Schamberger, and Meinolf Sellm&@ymmetry breaking. In Toby
Walsh, editorProc. of CP’01 LNCS 2239, pages 93-107. Springer, 2001.

7. P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, Bearson, and T. Walsh. Breaking
row and column symmetries in matrix models. In P. Van Hemntekreditor,Proc. of CP’02
LNCS 2470, pages 462-476. Springer, 2002.

8. Filippo Focacci and Michela Milano. Global cut framewdok removing symmetries. In
Toby Walsh, editorProc of CP’01 LNCS 2239, pages 77-92. Springer, 2001.

9. J.A. Gallian. A Dynamic Survey of Graceful Labeling.The Electronic Journal of Combi-
natronics 2002. (http://www.combinatorics.org/Surveys)

10. The GAP Group. GAP — Groups, Algorithms, and Programmlng, Version, 2200.
(http:/www.gap-system.org)

11. Martin Gardner. Chess queens and maximum unattackisd ideith Horizon pages 12-16,
November 1999.

12. 1. P. Gent, W. Harvey, and T. Kelsey. Groups and conggaBymmetry breaking during
search. In P. Van Hentenryck, editBroc. of CP’02 LNCS 2470, pages 415-430. Springer,
2002.

36

13.

14.

15.

16.

17.

18.

19.

20.

21.

I. P. Gent and B. M. Smith. Symmetry breaking in constrpiogramming. InProc. of
ECAI-2002 pages 599-603. 10S Press, 2000.

lan P. Gent, Warwick Harvey, Tom Kelsey, and Steve LintGeneric SBDD Using Com-
putational Group Theory. In Francesca Rossi, edRooc. of CP’03 LNCS 2833, pages
333-347. Springer, 2003.

Warwick Harvey. Symmetry Breaking and the Social GdHesblem. InProc. SymCon-01:
Symmetry in Constraintpages 9-16, 2001.

I.J.Lustig and J.-F. Puget. Program Does Not Equal Bmg€onstraint Programming and
Its Relationship to Mathematical Programming.IINTERFACESvolume 31(6), pages 29—
53, 2001.

ILOG. ILOG Solver 5.0 User's ManuaR001.

I. McDonald and B. M. Smith. Partial symmetry breakingProc. of CP’02 LNCS 2470,
pages 431-445. Springer, 2002.

K. E. Petrie and B. M. Smith. Symmetry breaking in gratgfaphs. InProc. of CP’03
LNCS 2833, pages 930-934. Springer, 2003.

Karen Petrie. Why SBDD can be worse than SBDS Pioc. SymCon-03: Symmetry in
Constraints pages 168-176, 2003.

Barbara M. Smith. Reducing Symmetry in a Combinatoriasibn Problem. Technical
report, School of Computer Studies, University of Leedauday 2001.

Approaches to Symmetry Breaking for Weak
Symmetries

Roland Martin

Algorithmics Group
Darmstadt University of Technology
64283 Darmstadt, Germany
martin@algo.informatik.tu-darmstadt.de

Abstract. In this paper we consider a kind of symmetry, which we gatlak
symmetry

Weak symmetries occur in different application fields likanming, scheduling
and model checking as well as in extensions of classical@nubh

In contrast to a proper symmetry, a weak symmetry of a canstsatisfaction
problem acts only on a subset of the variables and presdredsasibility state
only with respect to a subset of the constraints.

We discuss a reformulation concept where we use additiarahles which we
call SymVar (Symmetry Variabléljhese variables enable us to exploit weak sym-
metries and achieve symmetry breaking on the symmetrialias of the prob-
lem without losing solutions.

Roughly speaking by using SymVars we rearrange the searetirtra way such
that all symmetric solutions of an equivalence class asmnged under a specific
node.

We also present results for a relaxed real-world problem fiee automated man-
ufacturing. Therefore, we compared our approach to a stdrafgproach for the
problem.

1 Introduction

Symmetries of a constraint satisfaction problem transfar(partial) solution into a
symmetric (partial) solution and preserve the state ofilidig: no-goods are tran-
formed into symmetric no-goods while feasible solutioresteainsformed into symmet-
ric feasible solutions. Therefore, symmetries decompleseséarch space into classes
of symmetric solutions, whereby each class either confaiasible solutions only or
infeasible solutions only.

When searching for all solutions to a problem it is sufficientind only one solu-
tion in each class of solutions. The symmetric equivaleatsleze derived by applying
the symmetry function exhaustively to each class after dzech process. Therefore
symmetries should be excluded from the search space to spdbd search.

1 In cooperation with Philips/Assembléon,Netherlands

38

Various techniques have been proposed for symmetry handitigeneral it is done
by reformulation of the model, excluding the symmetry upafrvia constraints, break-
ing it during the search or by a combination thereof.

Weak symmetries act only on a subset of the variables an@écesply a subset
of the constraints of the problem. Therefore, weak symmetpreserve the state of
feasibility only with respect to the subset of variablesytlaet on and only for the
constraints they respect. That means that if two solutiomsyammetric under the weak
symmetry they yield different full solutions. As a consenqoeweak symmetries do not
decompose the search space into classes of symmetricssluti

But weak symmetries cannot be simply be excluded, sincevitigd resultin a loss
of solutions that cannot be derived afterwards. Nonetkeleswill present a technique
that enables us to deal with weak symmetries such that theypearoken without
losing solutions.

The above mentioned kinds of symmetry handling are alsolpledsr weak sym-
metries once they are dealt with accordingly.

Weak symmetries occur in many fields of applications and keady discovered
and identified in planning, scheduling and model checkiBge([1], [2] and [3], [4]).
Also extensions to classical problems like the rack conéiion problem (see [5] and
[6]) contain weak symmetries. To our best knowledge up to tiwwve is no practical
approach that tackles the problem and shows results.

This article introduces a reformulation strategy that addes the problem. The ben-
efit in solving the problem by reformulation is that it can gpked without changing
or adjusting the used solver for the problem or write furtbede to tackle the prob-
lem. Furthermore one is not bound to a specific solver whemgusie reformulation
approach. And as mentioned before all other kinds of symntetndling are possible
in conjunction with this approach.

Throughout the paper we will consider thequeens problem as a small example
to explain our ideas. In the-queens problem the task is to platehess queens on an
n x n chessboard such that no two queens can attack another.

The results presented are obtained from two scenarios ¢dxekereal-world prob-
lem from the fields of automated manufacturing.

Section 2 states the definitions and consequences of weakelyynand SymVars.
The benefit and tradeoff of using SymVars for weak symmeteaking are discussed
in Section 3. Section 4 states the problem description aswdteeof the scenario we use
to investigate weak symmetries. Also the results are désmlis this section. Section 5
concludes with an outlook to further work.

39

2 Weak Symmetry Description

2.1 Prerequisites

We characterize a satisfaction problemmy: (X,C), wherebyX = {x1,...,X,} is the
set of variables an@ = {ci,...,Cn} is the set of constraints.

For an optimisation problem we just extend this formulatmi = (X,C, f), whereby
X andC are defined like above arfd= f(xy,...,%) is the objective functior?

A solution toP is denoted bys = (X). This means that each variableXnis as-
signed a variable of its corresponding domain.

As mentioned before, we will consider a variation of tirgueens problem. The
variation is that each field of the chessboard yields a centaight. Wanted is an-
queen placement such that the sum of the weights achievddsglacement is max-
imised.

Variables and additional data:

- Wij, (i,j € {1,...,n}) weights on the board
— 0,---,qn (variables for the queens)
— obj (variable for the objective value)

Constraints:

— alldif ferent(qs,...,qn) (N0 two queens in the same column)

— gi+i#dj+ j (for any anti-diagonal: no two queens can attack each other)
— g —i #qj— j (for any diagonal: no two queens can attack each other)

— 0bj= Yic(1.n) Wi (the objective function)

A simple example would be to evaluate all white fields with @ #me black fields with
1. This would imply to maximise the number of queens on blaeki§i.

2.2 Weak Symmetry Definition

Weak symmetries act on problems with special propertieshBvacterize weak sym-
metries we first define weakly decomposable problems.

Definition 1 (Weakly Decomposable Problem)
A problem P= (X,C) is weakly decomposabléf it decomposes into two subproblems
P. = (X1,C1) and B = (X,,C,) with the following properties:

Xi N X # 0 1)
X1UXo =X (2
CGuC =C €))
CinC; =0 4)
C2#0 (5)

2 Note thatf can be also represented as a constraint and the objective cah be modelled as
a variable.

40

The first property states thBf andP, contain a subset of shared variables (namely
X1NXz). These variables have to assume the same values in bottobidips to deliver
a feasible solution t®. Therefore they link both problems. Without that restdotthe
problem would be properly decomposable. The second and phaperty states that
none of the variables and constraints of the original protfeare lost. Furthermore
(3) and (4) state that; andC; is a partition ofC. Basically this is not necessary for
feasibility. A constraint could be in both subsets (if defirma X, N Xz only) but would
be redundant for one of the problems because the solutionetother subproblem
would already satisfy this constraint. Therefore, thisustja question of efficiency.
The last property states thBs is not allowed to be unconstrained. But note that this
restriction does not hold fd?;.

An example (besides the weightadjueens problem) for a weakly decomposable
problem is also the magic knight tour. (See [7] and [8]). lis fhroblem a knight tour
on a chessboard is sought for where the numbers of the mowvesitates a magic
square. The weakly decomposition is tRatconsists of the magic square problem and
P, constitutes that when following the numbers Ifdhis is a knight tour.

In the weighted n-queens problem:
The weightedh-queens problem is weakly decomposable.
P1 (placement of the queens):

-_ Xlz{ql,...,qn}
- Cy = {alldif ferent(q,...,0n);gi +i A qj+ ;G —i #Qqj — J; }

P, (determining the objective value):

— X2 = {Obj:,qj_, c ,qn}
— Ca={0bj= Ficq1.n} Wig; }

A symmetry that acts on the subprobl&mn(but not onP,) is considered a weak sym-
metry.

Definition 2 (Weak Symmetry)

Given a weakly decomposable problem P with a decomposEgR).

A symmetry S is called weak symmetry on P with respect to the decomposition
(P1,P,) iff S acts on PPbut not on B.

The intention of the decomposition of the problem is #atontains all symmetric
variables (and only these) aid contains all variables.

The gain is that we get a subproblem that is not affected bwek symmetryf,)
and a subproblem where the weak symmetry affects all vaasadhd all constraints
(P1). Therefore, the weak symmetry acts like a common symmetig; o

In the weighted n-queens problem:
The weak symmetries acting on the problem are the 8 symmetrtbe chessboard. For
convenience we just consider one symmetry exemplarilyflifnen the anti-diagonal.

41

A feasible placement of the queens is also feasible if weligptoard as proposed.
Therefore the symmetry acts &y

But since the weights of the fields are different and not sytmimthe two solutions
lead to different objective values. Therefore, the symyneétres not act o, and the
symmetry is weak of® with the respect to the decomposititia, P,).

2.3 Weak Symmetry Breaking

Since the weak symmetry does not affect the whole probleamihot be broken on the
whole problem. But it can be broken i (where it acts as a proper symmetry). That
means that in the search tree equivalent solutiorfd @fre identified with each other.
On the other hand we would lose the symmetric solutions bgking the symmetry.
Therefore we need a way to represent these solutions ekplieccause they are needed
in order to solveP, which delivers a full solution foP.

Note that the solving order just reflects the variable ordgrThe problem is not ex-
plicitely split. The weakly decomposable problem propgust yields that a symmetry
is weak and helps us to separate symmetric from asymmetiables.

In order to represent these symmetric solutions we intrecadditional variables
calledSymVarsThese variables state the symmetric equivalents of aisolut

Notation 1 Let P be a weakly decompoasable problem with a decompos$RigR,),
Pr = (X1,C1),P> = (X2,C2). Let Xsym= {y1,...,Yyr} be a set of SymVars that consitute
the variables of the subproblengy

A solution to R is denoted by = (Xy1).

A solution to Bymis denoted byrg,,, = (X1, Xsym) = (Spy, Xsym)

A solution to R is denoted by = (X1, Xsym X2) = (Spgym X2)-

A solution to B is automatically a solution to P.

Let , = (v1,...,Vn) be a solution to I, whereby vis a value of the corresponding
domainofx i€ {1,...,n}.

A solution sy, = (Sp,V,...,V)) IS @ symmetric solution toes whereby ¥ is a
value of the corresponding domain qf y € {1,...,¢}

The solving order now is to search a solutigs to Py, determine a symmetric
equivalents.:»syrn in Psymand use this solution to determine a solutiof{avhich already
states a solution tB.

Consequences:

— Every feasible value assignment to the SymVars constitaitgymmetric solution
to sp,
— None of the values iX; have to be reconsidered to receive a symmetric equivalent
— The symmetry can be broken i because all symmetric solutions B are ex-
pressed b,

In the weighted n-queens problem:
For each queen a SymVar is introduced. Each SymVar repseaesymmetric value
for its corresponding queen. In the case of an assignmentj and the symmetry

42

of the anti-diagonal flip the corresponding SymVar assurhes/aluessymy, =i and
symy, = j (the identity).
Psym(considering a symmetric placement):

— Xsym= {Xl,Serql,...,Symln}
= Csym= {(Vi e{l,...,n}:q=j=>symy =]) Vv

(Vi€ {s,....n}b gy =i=symy =)

Note that there is not necessarily one SymVar for each Varialx;. Often it holds
that|Xsym| < |Xa].

To solve P we consider the partial solutiowsym. When a solution is found the
search backtracks and reconsiders values for the SymVdeteomine a new solution.
All these solutions are symmetric equivalents to the soigp, . Only when the search
backtracks and reconsiders variablesina solution for a different equivalence class
can be found.

By using SymVars we can break the symmetryPirbut do not lose any symmetric
solution in an equivalence class.

In the following we will only consider optimisation problemvhereP; is the ba-
sic problem, andP, imposes additional constraints for optimisation. ThaXi§X; is
just the optimisation variable ar@ just contains the optimisation constraint (i.e. the
optimisation function). The weightedqueens problem is such a problem.

Then the search tree looks like in Figure 1.

(1) (2)

3)

S B S AR E N s M
P S 530 Oy S
SESE
Standard Symmetry Weak Symmetry
Breaking Breaking

Fig. 1. Optimisation Problemsy, to s1, represent symmetric solutions B while s; to s4 rep-
resent the objective value of these solutions. The nuneeraiields just the order in which the
solutions are found. (1) shows a class of solutions in thechdgeee without symmetry breaking,
whereby the solutions have different objective valuesn&ed symmetry breaking would lead
to a the search tree (2), where solutions with differentetbje values are identified igy, which

is the solution not excluded in this class. In (3) the symygnistbroken but the different solutions
are preserved by using SymVars fay.

43

2.4 Applying SymVars

Figure 1 gives insights to the search tree. In (3) the ideaibiguSymVars can be seen.
In practice the path from the choice pogit to the solutionss,...,s can consist of
more than one decision. This depends on the representdtitie gymmetry and the
number of SymVars. For geometrical symmetries (like intbgueens problem) it is
possible to determine values for all SymVars at the same. thoea permutation the
values are determined successively and therefore asgigrerSymVars is represented
by an own search subtree. For the scenario we investigaiaghout this article that
means that the leaves of this search tree are the solutidhgito general these leaves
are only the roots for the subproble®y).

The SymVars cannot attain any values. Since they represergyimmetry of the
problem there are certain constraints which state the syrgme

The complete weightech-queens problem modelling P:

— X={01,...,0n,Symy,,-..,Symy,,obj}
-c={

o alldif ferent(,...,0n);di +i#Qj +j;0i —i #0j — J;
o {(Vi e{l,...,n}:q=j=>symy = J)\/

(Vie{1,...,n}:q; =i = sym :j)}

e 0bj=ic(1.ny Wisym,
— Objective: maxbj

3 Benefit and Tradeoff

Breaking weak symmetries does not automatically lead tceadsup in search. Basi-
cally it depends on the scenario as well as the instancegicanisidered.

3.1 General Observations

Although the symmetry can be brokenka which reduces the breadth of the search
tree we spend more variables which extends the search theeefdre we cannot tell
up-front whether we speed up the search.

There are several facts that have to be taken into account:

— gain of symmetry breaking
— additional search for the SymVars
— propagation during the search

Basically these facts determine whether this approachefulisr not. While the
first leads to a speed up the latter, two basically means aadge in the search time.
For the second fact this can be seen immediately. The drdwhitic the propagation
is, that during the search B there is no possibility to propagate on the current partial
solution. This is due to the fact thB can only compute an objective value when the

44

SymVars are determined as well. That means that no projagatithe objective value
is done inPy. But when determining a symmetric equivalentiy, propagation can
be used. Therefore, in most cases not all solutions in arvalguice class have to be
considered.

Again, it is not possible to tell whether the symmetry bregloutweighs the addi-
tional variables and the lack of propagation. This has todierchined empirically.

3.2 Scenario-driven Observations

Much of the efficiency in breaking weak symmetries depensis ah the scenario that
is considered.
We identified these facts that have to be taken into account:

— the ratio of2&m!
[Xq]

— the boundedness of the problem

Basically breaking weak symmetries is more efficient whesrahs just a small
number of SymVars in contrast to a larger number of variaipl€s. This is due to the
fact that with just a view assignments a new symmetric edgmtaan be found and the
subproblenPsymis relatively small compared t®.

The boundedness of the problem is another indicator. Censigroblem where
every variable assignment is a solution. In this case the tomconsiderindgsymcould
be too costly. On the other hand consider a problem that iky téght-fit which means
there are just very few feasible solutions in contrast to gehnumber of infeasible
solutions. Consider further that these solutions are #&iiggng to one class of solutions
(but that is not known by the user). As soon as the first soludound the SymVars
find all solutions.

4 Results

We will use a relaxation of a real world problem from the audded manufacturing of
PC Boards. (See [9] and [10]).

The scenario we are regarding is optimisation within a gituere interval. This is
due to the fact that solving the problem entirely would tad@ruch time (days or even
weeks of computing for a single instance).

4.1 Problem Description

The original task (in short) is to optimize the throughpueraf a mounting machine
(which consists of several workstations) that mounts PGdmdn the relaxed version
we maximise the possibility to place components on the PCdso8asically a setup
has to be determined for the machine (more specifically g4eteach workstation) and
this setup states which and how many components could betathun more detail the
combination workstation and assigned setup determinefe#siility for mounting a

component.

45

Basically the problem can be modelled as a matrix probleme (1] — [14] for
matrix problems). The task is to assign given items of spetjfies to the cells of the
matrix such that certain constraints are fulfilled. There sofit for each tuple (column
i,item j) that is achieved when an item of typés located in the column The task is
to search a distribution of the items to the matrix such thatresulting sum of profits
is maximised. More formally:

Given:

— m,n € N, (the dimensions of the variable matrix)

— K={1,...,k}, (the set of different item types)

—t1,.., k€N, z}‘zlti = m-n, (the item quantity per type)

- 5,...,% CK,5U...Us. = K, (the sets of compatible item types)

- VK v e Nji € {1,...,n},j € {1,...,k}, (the profit achieved when an item of
type j is placed in columi)

Wanted:

- A™N a; eK,ie{l,...,m},je{1,...,n}, (adistribution of the items)
— maxobj, (maximise the achieved profits)

Constraints:

-Vje{l,...,n}3d: {asj,...,amj} C sy, (all items in a row must be in the same
compatibility set)

- VKeK: Yicr1,..mjef1,...,np (@) = K) =, (each item is assigned)

—0obj=ici1,..mhje{L,..n} Vi) (the sum of all profits achieved)

Weakly Decomposable Problem:
This problem is weakly decomposable since the distributiibtihe items formd$>;
while considering the objective value forRs

Weak Symmetry:

Since it doesn’'t matter for the objective value in which rowitem is located,
the row symmetry is a normal symmetry and can be broken witbonsequences.
But identical item types achieve different weights for éi#nt columns. Therefore the
column symmetry is weak.

Weak Symmetry Breaking:

We introduce for each column of the matrix a SymVar. The dorméihe SymVars
is the number of columns. An assignm&ymVafi] = j means that the—th column
is permuted to thg — th column. Therefore the numbers assigned to colubynP; are
considered to be assigned on coluinfior determining the objective value.

46

The Decomposition:
The problem is decomposed and solved as follows:
P1 = (X1,C1), with X3 = {Amxn}
Psym= (Xsym Csymis now defined byXsym= {pos,...,pos} and
Ceym= {alldif ferent(pos,...,pos)}
P, = (X2,Cp), with Xp = {Xj_,Xsym Obj}
The solving order (in terms of variable orderingPs— Psym— P».

4.2 Models for Comparison

We compare two models. The first one doesn’t break the weakngtmg while the
second one uses SymVars to break the weak symmetry. Thésraseilvery promising.

We use the same search heuristic in both models to get cobipaesults.

In the standard model whenever a solutionPjois found the objective value is
immediately computed and the search backtracks for a newtiaol Propagation on
the objective value for a partial assignment can take place.

In the weak symmetry model whenever a solutiorPids found a permutation is
determined byPsym and the objective value for the permuted solution is deteeohi
That means for each solution i the whole equivalence class is considered before a
new solution is determined bB§:. The gain is that as soon & delivers a solutiom!
solutions can be evaluated. Basically that means that snapproach more solutions
are considered in the same amount of time compared to thésthmodel.

The difference is even more drastic if the problem is reatifttfit. That means
there are very few feasible solutions.

4.3 Alternative Approaches

Since the problem has not been tackled before it is not pedsikompare the approach
with techniques other than standard approaches.

An intuitive and simple approach would be to split the problato two models
(P1,P,) and solve them successively. More specifically the symmistbyoken onP;
and all solutions are stored. AftéX is solved exhaustively for each solutiony its
equivalence class is computed. Successively for theséiawduthe objective value is
determined (or in more general applications these solsi@wa input td>).

In this approach the symmetry is broken and there is no tinspénd for additional
variables. But also there will be no propagation on the dbjewalue in this approach
since it is computed aftdé? is solved exhaustively.

The two drawbacks in this approach are that all the solutimve to be stored to
generate all symmetric solutions afterward and the whalelpm has to be solved ex-
haustively before the first objective value is returned. fits¢ drawback is only severe
in problems with a huge number of solutions (which is verglykfor real-world probl-
ems) and could in the worst-case lead to a crash of the comptiesecond drawback
is severe if solving the problem exhaustively takes too i@vgn with symmetry break-
ing). For real-world problems this is unfortunately "statethe-art”. Mostly the time
we can spend on searching a solution is just a fraction ofithe it takes to solve the
problem exhaustively.

47

So this approach cannot be chosen for comparison since wklwotireceive a
solution in the given time interval.

4.4 Results

We generated various instances of the problem sizé 8nd 20« 8. These instances of
the first problem size are rather small but can be solved inadl s/mount of time. The
larger instances correspond to a real-world job in termb@f/ariables to assign. There
are 80 types of items and the weights range from one to nineiridtances differ from
each other by the number of items per type that are to be a&skign

We chose a time-limit of 10 minutes (which is just a fractidrtlee solving time
for the larger scenario). This is basically the amount ogtitmat could be spend in a
real-world scenario. We used ILOG OPL Studio 3.7 (see [1&]}ie computation on
a laptop computer equipped with a Pentium 4 with 3.2 GHz arzd\8B RAM.

For the problem size 8 6 we show the first solution and the corresponding time
as well as the best solution and the corresponding time. ¥¢éeintlicate whether an
optimum has been found and what time it took to solve the m&taxhaustively. All
time values are in seconds.

InstanceStrategy|First So|Solv Timg|Best So|Solv Time|Opt foundTime to Prove
1 |Standard 226 0.032 261 95.4 yes 148
Weak | 226 0.313 261 0.39 yes 93.9
2 |Standard 214 0.047 260 307 yes 428
Weak | 221 0.531 260 0.6 yes 166
3 |Standarg 209 0.031 259 299 yes 419
Weak 221 0.375 259 2.14 yes 162
4 |Standarg 214 0.047 261 305 yes 425
Weak | 226 0.359 261 2.12 yes 163
5 |Standarg 216 0.031 261 291 yes 407
Weak | 228 0.344 261 0.41 yes 160

For the problem size 20 8 we show the first solution and the corresponding time
as well as the best solution and the corresponding time eSione of the instances
can be solved exhaustively we indicate at which time the wsakmetry approach
outperforms the standard approach.

48

InstanceStrategy|First SolSolv Time|Best So|Solv Time|Weak outperforms
1 |Standarg 786 0.469 817 306 -
Weak || 758 1.188 841 210 1.250
2 |Standard 766 0.859 825 299 -
Weak | 766 1.203 852 566 1.250
3 |Standard 766 0.391 825 305 -
Weak 766 1.171 844 200 1.937
4 |Standarg 767 0.359 826 301 -
Weak || 767 1.187 846 197 1.953
5 |Standarg 763 0.406 821 238 -
Weak || 763 1.235 838 211 1.344
6 |Standarg 764 0.422 817 306 -
Weak | 764 2.750 848 513 2.860

45 Conclusions

We showed just a small selection of the instances we gekesatee they all yield the
same results.

In both scenarios the weak symmetry approach finds its fitatiso later than the
the standard approach does. This is due to the fact that naoiebles and constraints
have to be considered. But also in both scenarios weak symieely soon outperforms
the standard approach. In the smaller scenario the weak symnapproach finds an
optimum within one or two seconds while in the standard apgi@n optimum is found
within about one hundred and three hundred seconds. To heveptimum took the
weak symmetry less time than it took the standard approatthdan optimum in all
cases.

In the larger scenario none of the solutions could find amayta. Again the weak
symmetry approach finds its first solution later than theddash approach does. But
within one to three seconds the weak symmetry approach datpes the standard
approach. And the best solution within the time-limit alsgperforms the result of the
standard approach.

Although the weak symmetry approach has to spend more tim&dh choice point
(due to the additional variables and constraints) it oditwers the standard approach
clearly in these scenarios.

5 Outlook

We defined weak symmetries and introduced a modelling appriteat enables us to
break weak symmetries by using SymVars. Also we presentgtevieouraging results
for several instances of a real-world problem.

Still there is much to investigate on weak symmetry break®ge direction is the
efficiency when the probler® is more general. That means that there is a whole sub-
problem that has to be solved.

The definition of weakly decomposable problems can iteghtibe applied to de-
composeP even further td® = (P4, ..., Py) and on several of them act a different weak

49

symmetry. It would be interesting to investigate such peoid. Also the case that a
problem yields two or more weak symmetries on the same sbbgroseems very in-
teresting. In our scenario this would be the case if the romrsgtry would also be
weak. In this case two different sets of SymVars would haveetased.

References

1. Peter GregoryAlmost—Symmetry in Plannin@ymNet Workshop on Almost-Symmetry in
Search, New Lanark, 2005

2. Alastair DonaldsonPartial Symmetry in Model CheckingymNet Workshop on Almost-
Symmetry in Search, New Lanark, 2005

3. Warwick Harvey Symmetric Relaxation Techniques for Constraint Programym8ymNet
Workshop on Almost-Symmetry in Search, New Lanark, 2005

4. Warwick HarveyThe Fully Social Golfer ProblerSBymCon’03: Third International Workshop
in Constraint Satisfaction Problems, Kinsale, Ireland)20

5. Z.Kiziltan, B. HnichProb031: Rack Configuration Problem
http://4c.ucc.ie/ tw/csplib/prob031

6. |. Gent, T. Walsh, B. Selma@SPLib: a problem library for constraints
http://4c.ucc.ie/ tw/csplib

7. Hosted by Guenter Stertenbri@domputing Magic Knight Tourkttp://magictour.free.fr

8. Compiled by George Jelligénight's Tour Noteshttp://www.ktn.freeuk.com

9. Rico GaudlitzOptimization Algorithms for Complex Mounting Machines i@ Board Man-
ufacturing Diploma Thesis, Darmstadt University of Technology, 2004

10. Siamak Tazar$olving a core scheduling problem in modern assembly-laterizing Tech-
nical Report, Darmstadt University of Technology, OktoBe63

11. B. Smith Modelling a Permutation Problenin: Proceedings of ECAI 2000 Workshop on
Modelling and Solving Problems with Constraints, 2000

12. B. Smith, I. Gent Reducing Symmetry in Matrix Models: SBDS v. Constraihtsid on
SymCon’01, 2001

13. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, WalshMatrix Modellling: Exploiting
Common Patterns in Constraint Programmitg; Proceedings of the International Workshop
on Reformulating Constraint Satisfaction Problems, 2002

14. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, Bearson, T.WalshBreaking Row
and Column Symmetries in Matrix Modédls: 8th International Conference on Principles and
Practices of Constraint Programming (CP-2002), Sprir{¥2

15. V. Hentenryck, I. LustigrThe OPL Optimization Programming Languagée MIT Press

16. Krzysztof AptPrinciples of Constraint Programmin@ambridge University Press,2003

17. R. Backofen and S. WilExcluding Symmetries in Constraint-Based SealrthPrinciples
and Practice of Constraint Programming, pp. 73-87,1999

18. 1. Gent, B. SmitlSymmetry Breaking During Search in Constraint Programm&utool of
Computing Research Report 99.02, University of Leeds, 1999

19. 1. Gent, B. SmittSymmetry Breaking in Constraint ProgrammilmgHorn, W., ed.: Proceed-
ings of the 14th European Conference on Atrtificial Inteltige, pp. 599-603, 2000

20. J.-F. PugeBymmetry Breaking Using StabilizérsRossi, F., ed.: Proceedings of 9th Interna-
tional Conference on Principles and Practice of ConstRingramming (CP2003), Springer,
2003

21. Roland Martin, Karsten Weih8reaking Weak SymmetrieSymCon’04: 4th International
Workshop of Symmetry and Constraint Satisfaction Probj&rosonto, Canada, 2004

Symmetric Relaxation Techniques for Constraint
Programming

Warwick Harvey

IC-Parc, Imperial College London

Abstract. We present several techniques that can be used to allowphieatjon
of symmetry-breaking techniques in constraint prograngnirproblems that are
“not quite” symmetric. We do this through the concept sfyaametric relaxation

1 Introduction

Significant attention has been devoted recently to teclasiépr dealing with constraint
satisfaction problems that exhibit a high degree of symynéir example: [1, 2, 4-6, 8—
10,13-17]. Arange of techniques have been developed, nfavlyich have been quite
successful. There are some problems however that are “fief’ gymmetric, where
some constraints — or perhaps an optimisation objectivetfom — do not respect
some or all of the symmetries. There is also a school of thbtigt “symmetries do
not really occur in the real world” — e.g. even if an airlinesha fleet of identical
aircraft, those aircraft will have different maintenanégtdries, and thus are not really
fully interchangeable in a schedule. For such problemseatiapproaches to handling
symmetry cannot be applied, or can only be applied in a larfiéshion.

We present several methods for applying the extensive bamk that has been
developed for handling fully symmetric problems to probégimat are “not quite” sym-
metric. We do this through the use ofgmmetric relaxatiorthat is, a relaxed version
of the problem that is symmetric in the way that we want, anavbith we can apply
standard symmetry-breaking methods.

The aim is to broaden the set of problems to which symmetsgtbanethods can be
applied beyond purely symmetric problems. Since there @mgle symmetry-breaking
technique that is best in all circumstances (they all hasngths and weaknesses and
the technique of choice depends on the problem being soiwedpcus on methods
that are not tied to any one particular symmetry-breakichneue for the relaxed
(symmetric) problem.

In the rest of this section we present some background rabseril further illustrate
the concept of a symmetric relaxation. In Section 2 we preseveral techniques for
exploiting symmetric relaxations, and in Section 3 we adslthe issue of implementa-
tion.

1.1 Symmetric Relaxations

The use of relaxations is a standard problem-solving tegtei

51

Definition 1. ArelaxationR of a problem P is a weakening of the constraints of P such
that any solution of P is a solution of R.

For example, two common relaxations are omitting integyralbnstraints and omitting
non-linear constraints.

The relaxatiorR should be such that it is (generally) much easier to solve Eha
and solvingR in some fashion helps in solvirfg

Definition 2. A symmetric relaxatioSR of a problem P is a relaxation of P such that
SR has more symmetry than P.

Note that a solutio®s of SRrepresents a set pbssiblesolutions ofP, namely the set
SC whereG is the symmetry group @R SolvingP then decomposes into two related
problems: finding a solutioB of SRand finding an element & that is a solution of
P.

Determining what a good candid&®®is for any givenP is an interesting problem
in its own right, but beyond the scope of this paper. Howawamjmum criteria for it to
be useful are:

— the extra symmetry dBRmakes it easier to solve th&h and
— there is an efficient way to find any elementsBfthat are solutions d®.

In this paper we consider two ways to obt&Rfrom P: relaxing constraints that do
not respect all the symmetry we want, and relaxing an opétitie objective function
that does not respect all the symmetry we want.

1.2 Example: Diagonal Latin Squares

In this section we consider an example of a problem and qooreting symmetric
relaxation.

Definition 3. Alatin squareof order n is an nx n array where each row or columnis a
permutation ofL...n.

See Figure 1(a) for an example. Let Inppe the problem of finding latin squares of
ordern. The symmetries of L3 are:

— permute the rows;

— permute the columns;

— permute the values; and

— permute the dimensions (rows, columns and values).

That is, applying any of the above operations to a solutioh®fn) yields another
solution of LSf).

Definition 4. Adiagonal latin squaref order n is a latin square where the main leading
and trailing diagonals are permutations of..n.

52

(a) latin square (non-diagonal) (b) diagonal latin square

Fig. 1. Example latin squares of order 6

See Figure 1(b) for an example. Let Dlrppe the problem of finding diagonal latin
squares of ordan. The symmetries of DL3Y are:

rotate or reflect the square as a whole;

swap the first and last rows and the first and last columnsHigere 2);
cycle the first and lagin/2| rows and columns (see Figure 3); and
permute the values.

Clearly, LS§) is a symmetric relaxation of DL8]: every solution of DLS({) is
a solution of LSA), and LSQ) has more symmetry than DL$(Interestingly, while
DLS(7) has 1832 unique solutions, LS(7) only has 147. That$7), with weaker
constraints, has fewer solutions because it has more syyimet

1.3 Related Work

Some of the ideas in this paper first appeared in [11].
Roland Martin has been pursuing a similar line of researeh, Jut from a some-
what different perspective.

Fig. 2. Swapping first and last rows and columns

53

Fig. 3. Cycling first and lastn/2] rows and columns

There is also the obvious dual of symmetric relaxation: sytnimtightening. This
is where the constraints are tightened in order to make tblggm more symmetric;
any solution of the tightening is a solution to the originedipem, but some (hopefully
not all') solutions may be lost because they do not satisghtitthtened constraints.

Another technique, often used in work on combinatorial glesj is to constrain the
solutionsof a highly symmetric problem to have a certain set of symiagtExploit-
ing such an assumed automorphism group allows solutions found to much larger
problems than would be possible otherwise, but of coursgsmilitions which possess
the assumed symmetry are found. The technique is of coutsestdcted to combina-
torial design problems; it has been used, for example, tosihations to the maximum
density still life problem [3].

2 Techniques for Exploiting Symmetric Relaxations

We now present our techniques for exploiting symmetricxagians.

2.1 The Two-Phase Method

As noted earlier, when using a symmetric relaxation, sghamproblenP decomposes
into finding a solutiorS of SRand finding an element & that is a solution oP. One
obvious way of solvindP is to solve these two problems sequentially; we call this the
two-phase method.

If it is the constraints of the problem that we are relaxitg, &lgorithm looks like
this:

1. Find a solutiorsof SR
2. Search fog € G such tha¥? is a solution ofP
— Backtrack if no suitablg exists

Figure 4 shows a solution of LS(7), with an example of a seterfutations from
LS(7)'s symmetry group that maps it to a solution of DLS(7).
If we are relaxing an objective function, the algorithm lscklittle different:

54

Fig. 4. Mapping a solution of LS(7) to a solution of DLS(7)

1. Find a solutiorsof SR
2. Search fog € G such thatf (S?) is optimal

This must be repeated for all solutionsSR with the final solution being ag? that is
globally optimal.

The two-phase method has obvious advantages: it is simgdea lclear separation
of concerns, and does not impose any restrictions at all @emi&thod(s) used to find
solutions ofSR However, it also has an obvious disadvantage: the omiglecked con-
straints (resp. relaxed objective function) cannot primeesearch for solutions @R
even when the current state cannot possibly lead to a sol(résp. optimal solution)
of P. The two-phase method is expected to be suitable when:

— SRhas few solutions;
— itis likely that somes? is a solution ofP; or
— a bound on the objective function will not prune much anyway

2.2 The Switching Method

The second method we examine is called the switching me@adsider first the case
where we are relaxing constraints.

Conceptually, we explore search trees &andP simultaneously, maintaining a
mappingg € G such thatP is not infeasible. Whenever infeasibility is detected Ror
we try to switch to a differeng that repairs the problem (see Figures 5 and 6). If no
suchg exists, we backtrack iBR

There are several approaches possible for implementingasscheme. One choice
to be made is with respect to the variables used™olf SRs extra symmetry with
respect tdP is just variable symmetry, then the variablesfotan be the variables of
SR rearranged according to the currgnin this case, the relaxed constraints are simply
checked for infeasibility against the rearranged varigable

55

SR P

(@) P infeasible

SR P
(b) P’s feasibility restored

Fig. 5. Change ofy with the switching method’s concurrent search trees

(a) P infeasible

(b) P's feasibility restored

Fig. 6. lllustration of the switching method when solving DLS(6)

56

Alternatively, one can have a separate copy of the varidbteB. In this case, one
can either use the full set of constraints Rofeffectively mirroring the entire computa-
tion in both trees, with the choices made at each decisiamt ppSRmapped td® using
the current), or one can use fdP just those constraints that have been relaxed, with
one-way propagation from the variablesSRto those ofP. If SRhas value symmetry
not present irP, then the former option may be easier, since it is just thésaets that
need to be mapped through a value symmetry, rather than thaids of all variables
affected by propagation during the computation.

Obviously, these alternatives all have different impletagan costs, and different
pruning power; which one is best may depend on the problem.

For a relaxed objective function, the approach is similat,dxtra work is needed
when a solution is foundf(is the objective function):

— Whenever the current state®fs infeasible or cannot lead to an improved optimal
value, search for a neg
e Backtrack if no suitablg exists
— Whenever we find a solutidhof SR search fog € G such thatf (S?) is optimal
— Return best solutio&? found

The switching method has the advantage that the relaxedraonis or relaxed ob-
jective function can prune the search9R However, any inferences madeRrcannot
propagate back t8R(i.e. the state o cannot cause domain reductionsSR only the
failure of the current branch). Also, using the objectivedtion to guide the search (a
common technique) may not be useful since the objectivetimeve have is just one
representative objective function, and a promising dioector this objective function
may not coincide with what is good for the other possible ctdje functions. Finally,
there needs to be some way to handle the non-monotonicitptcars inP whenever
we switch to a nevg.

2.3 The Variable Mapping Method

Most of the drawbacks of the switching method can be avoifleetido not use a
sequence of fixeds, but instead use a singlariable gthroughout. As the search
progresses, the domain gfcan be reduced to exclude elements that cannot lead to
feasible or optimal solutions &. Since the variablg characterises all possible feasible
mappings, it will also be possible to use it to propagatereriees fromP back toSR
(We assume the use of separate variableSRandP.)

This approach obviously has its own drawbacks. The mainlenols implement-
ing the variabley, and doing so efficiently and effectively. This is exploredttier in
Section 3.

3 Implementing the Required Group Operations

In the previous section we have repeatedly said things aleadines of “Search for
g € Gsuch that ...” and even “use a varialgfe— without giving any indication of

57

how this might be done. These are not a trivial problems, hail &fficiency is vital to
the success of the methods described in this paper.

For the “Search fog € G such that ...” problems, it is quite possible to develop a
bespoke solution based on the symmetry group using exisiolg. Modelling a vari-
able g using existing constraint solvers is harder, but one coslkl for example, a
vector of finite domain variables indicating how variablealues, or variable-value
pairs are mapped frof8Rto P. This works as long as one can come up with suitable
constraints to ensure that the only feasible assignmeathase that correspond to el-
ements of the appropriate symmetry group, and as long asasniafer and propagate
useful information betweeSRandP.

Alternatively, one could use a constraint solver that diyesupports variables with
domains being elements of a group, which would mean thatraptementation of the
techniques presented in this paper could work for all symyrggbups. Unfortunately,
to the best of our knowledge, a good and efficient full-feadGroup Constraint Solver
is still some way off. We have implemented a very basic pyget(usingGAP [7]
and ECLIPS [18]), but it does not have all the features required to imp@at all the
techniques presented here, and we expect it to need both femitees and smarter
algorithms in order to implement even the simplest of thebfgms here efficiently
and effectively. A full discussion of the design and implertation of such a solver is,
however, beyond the scope of this paper.

Note that whichever technique is used, there is likely to bead deal of symmetry
involved in the mapping problem. For example, for the twags#method where we
have a solutiors of SRand we are trying to map this onffssuch that all the constraints
are satisfied, there are two potential sources of symmatst, P may have some sym-
metry, even if it is much less than that 8R In this case there is no need to try any
mappings that will result in something symmetrically eglént (inP) to the result of
a previously tried mapping. That is, we only need to try ongpirgg from each left
coset of the symmetry group & Second, ifSRis highly symmetric then there is a
good chance th&has automorphisms. In this case, each element of a right abise
automorphism group will maf to exactly the same candidate solutionPinthus we
only need to try one element from each such coset.

4 Conclusions and Further Work

We presented the concept of a symmetry relaxation, and idedcseveral ways in

which it could be used to solve problems that are “not quitehetric. None of the

techniques presented are tied to any particular symmetgking technique for solv-
ing the symmetric relaxation, which means that any of theynagproaches to handling
symmetry can be used for this part of the problem.

While a number of the presented techniques could be impl&deow on a problem-
by-problem basis, it seems that much work needs to be domeebefe can have an
efficient, effective and general tool for solving problemstiis way. The path to such a
tool seems to be through the development of a Group Cont8aluer, an interesting
and challenging task in its own right.

Beyond issues of implementation, there are several opestiqus:

58

— Which problems could benefit through the use of these tgaiesi?
— How does one identify a good symmetric relaxation to use?
— How does one choose which technique to use for a given prostel relaxation?

5 Acknowledgments

The author would like to thank Steve Linton for his contirgiiguidance on compu-
tational group theory and the GAP system, and for discussionhow to implement
a Group Constraint Solver. The author would also like to khdmachim Schimpf for
coining the expression “symmetric relaxation” to descrilieat we were trying to do.
Finally, the author would like to thank the other particitsaf the SymNet workshop
at New Lanark for many interesting discussions.

References

1. Rolf Backofen and Sebastian Will. Excluding symmetriesdonstraint-based search. In
Joxan Jaffar, editolCP’'99: Proceedings of the 5th International Conference aimétples
and Practice of Constraint ProgrammingNCS 1713, pages 73-87. Springer, 1999.

2. Nicolas Barnier and Pascal Brisset. Solving the Kirkrag®¢hoolgirl Problem in a few
seconds. In Pascal Van Hentenryck, edi@#,2002: Proceedings of the Eighth International
Conference on Principles and Practice of Constraint Pragraing LNCS 2470, pages 477—
491. Springer-Verlag, 2002.

3. Robert Bosch and Michael Trick. Constraint programmindj laybrid formulations for three
life designs. In Narendra Jussien and Francois Laburthigrs, Proceedings of the Fourth
International Workshop on Integration of Al and OR Techefgjin Constraint Programming
for Combinatorial Optimisation Problems (CP-Al-OR'Qppges 77-91, 2002.

4. Torsten Fahle, Stefan Schamberger, and Meinolf Sellm&ymmetry breaking. In Toby
Walsh, editorCP 2001: Proceedings of the 7th International Conferenc&dnciples and
Practice of Constraint ProgrammingNCS 2239, pages 93-107, 2001.

5. Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Keml, lan Miguel, Justin Pearson,
and Toby Walsh. Breaking row and column symmetries in matrodels. In Pascal Van
Hentenryck, editorCP 2002: Proceedings of the Eighth International Confegean Princi-
ples and Practice of Constraint ProgrammindNCS 2470, pages 462—-476. Springer-Verlag,
2002.

6. Filippo Focacci and Michaela Milano. Global cut framelwéor removing symmetries. In
Toby Walsh, editorCP 2001: Proceedings of the 7th International Conferenc®onciples
and Practice of Constraint ProgrammingNCS 2239, pages 77-92, 2001.

7. The GAP Group. GAP — Groups, Algorithms, and Programming, Version, £2802.
(http:/www.gap-system.org)

8. lan P. Gent, Warwick Harvey, and Tom Kelsey. Groups andtcaimts: Symmetry breaking
during search. In Pascal Van Hentenryck, edi@®, 2002: Proceedings of the Eighth Inter-
national Conference on Principles and Practice of Consird&rogramming LNCS 2470,
pages 415-430. Springer-Verlag, 2002.

9. lan P. Gent, Warwick Harvey, Tom Kelsey, and Steve Lint@eneric SBDD using com-
putational group theory. In Francesca Rossi, ed@#,2003: Proceedings of the 9th Inter-
national Conference on Principles and Practice of Constrd&rogramming LNCS 2833,
pages 333-347. Springer-Verlag, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

59

lan P. Gent and Barbara M. Smith. Symmetry breaking irsttaimt programming. In
W. Horn, editor,Proceedings of ECAI-200@ages 599-603. I0S Press, 2000.

Warwick Harvey. The fully social golfer problem. In Barh M. Smith, lan P. Gent, and
Warwick Harvey, editorsProceedings of SymCon’03: The Third International Worlgsbo
Symmetry in Constraint Satisfaction Problemages 75-85, 2003.

Roland Martin. Approaches to symmetry breaking for waakmetries. In Alastair Donald-

son and Peter Gregory, editoRroceedings of the SymNet Workshop on Almost-Symmetry

in Search, New Lanark005.

lain McDonald and Barbara M. Smith. Partial symmetryakieg. In Pascal Van Henten-
ryck, editor,CP 2002: Proceedings of the Eighth International Confeeeon Principles and
Practice of Constraint ProgrammindgtNCS 2470, pages 431-445. Springer-Verlag, 2002.
Pedro Meseguer and Carme Torras. Exploiting symmetriggn constraint satisfaction
search Artificial Intelligence 129:133-163, 2001.

lan Miguel, Chris Jefferson, and Alan Frisch. Constssfior breaking more row and column
symmetries. In Francesca Rossi, edi@®, 2003: Proceedings of the 9th International Con-
ference on Principles and Practice of Constraint ProgramgnLNCS 2833, pages 318-332.
Springer-Verlag, 2003.

Jean-Francois Puget. Symmetry breaking revisited?atal Van Hentenryck, editdCP
2002: Proceedings of the Eighth International ConferenoePRuinciples and Practice of
Constraint ProgrammingLNCS 2470, pages 446—461. Springer-Verlag, 2002.
Jean-Francois Puget. Symmetry breaking for matrixetsoasing stabilizers. In Francesca
Rossi, editorCP 2003: Proceedings of the 9th International Conferencédnciples and
Practice of Constraint ProgrammindtNCS 2833, pages 585-599. Springer-Verlag, 2003.
Mark G. Wallace, Stefano Novello, and Joachim Schim@LiSe : A platform for const-
raint logic programmingICL Systems Journal2(1):159-200, May 1997.

Conclusions of the SymNet Workshop on
Almost-Symmetry

Peter Gregoryand Alastair Donaldscn

1 University of Strathclyde
Glasgow, UK
2 University of Glasgow
Glasgow, UK

1 Defining Almost-Symmetry

One of the specific aims of this workshop, and of the EPSRC bigtithat supports
it, is to find commonalities in how symmetry is researched exploited throughout
the spectrum of different search communities. The first &iegrhieving this is to use
terminology in a consistent way. Having looked at how d#fgrpeople view almost-
symmetry we provide a definition that is hopefully generabuggh to encompass all
view-points, but specific enough to remain meaningful.

Definition 1. Let P be a problem with symmetry group ARix. Let P be an abstraction
of P such that AUtP) C Aut(P’). Then P is almost-symmetric with respect to (.

Everybody’s intuition about almost-symmetry reasonedualam abstracted prob-
lem that had more symmetry than the original problem. Twes$ypf abstraction were
discussed: the first being a new problem that was ‘less @insti’ than the original,
the second being a new problem that is ‘more constrained' the original. There is
a trade-off when defining the abstraction. Whilst the ainpisntrease the symmetry
in the model, removing too much information from the modelders the abstraction
meaningless.

Definition 1 covers both types of abstraction where the ‘tr@nsts’ on the problem
are either loosened or tightened, because in both of thesss ¢he aim is to increase
the symmetry in the problem.

Note that whertonstraintsare mentioned, we are talking generally about any prob-
lem, not just CP. Constraints in this context also refersitogtimisation function, since
relaxing/tightening the optimisation function was notsdiauseful abstraction.

2 Conclusion

Is almost-symmetry pervasive throughout search domaiaa?¥@ redefine our models
to remove almost-symmetry? Examples throughout theseepiegs demonstrate that
almost-symmetry is pervasive. We certainly can’t redefimeroodels in every circum-
stance to ‘reveal’ the underlying symmetry, the informatibat yields the asymmetry
is often important to the solution.

61

Research into almost-symmetry is still in its infancy, thgsoceedings are sug-
gestive of the benefits we will gain from further research. Nsge seen applications
of almost-symmetry, interesting approaches for almostregtry detection and several
suggestions for the exploitation of almost-symmetry.

The study of almost-symmetry is suggestive of a positivadrin symmetry re-
search. All of the approaches introduce symmetry by way afestraction. The premise
being, that current symmetry-breaking techniques caredbié highly-symmetric ab-
straction easily and quickly yield a true solution. The thett we can realistically make
this claim is very encouraging indeed.

