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Abstract. We present Offload, a programming model for offloading parts of a
C++ application to run on accelerator cores in a heterogeneous multicore system.
Code to be offloaded is enclosed in an offload scope; all functions called indi-
rectly from an offload scope are compiled for the accelerator cores. Data defined
inside/outside an offload scope resides in accelerator/host memory respectively,
and code to move data between memory spaces is generated automatically by
the compiler. This is achieved by distinguishing between host and accelerator
pointers at the type level, and compiling multiple versions of functions based on
pointer parameter configurations using automatic call-graph duplication. We dis-
cuss solutions to several challenging issues related to call-graph duplication, and
present an implementation of Offload for the Cell BE processor, evaluated using
a number of benchmarks.

1 Introduction

In this paper, we contribute towards the goal of programming heterogeneous multi-
core processors like the Cell Broadband Engine (BE) [1] using a familiar threading
paradigm. To this end, we present Offload, a programming model and implemented
system for offloading portions of large C++ applications to run on accelerator cores.
Code to be offloaded is wrapped in an offload block, indicating that the code should
be compiled for an accelerator, and executed asynchronously as a separate thread. Call
graphs rooted in an offload block are automatically identified and compiled for the
accelerator; data movement between host and accelerator memories is also handled au-
tomatically. The Offload approach allows the development of portable multi-threaded
applications for homogeneous and heterogeneous platforms: the language extensions
we propose are minimal, and preprocessor macros can be used to select between, for
example, a POSIX thread and an Offload thread on a homogeneous or heterogeneous
platform respectively. The advantages to this approach are evident: large source bases
can be incrementally migrated to heterogeneous platforms with relatively little change;
portability across heterogeneous and homogeneous platforms is possible, and the bur-
den of writing data movement and accelerator start-up and clear-down code is lifted
from the programmer.

After discussing the challenges of heterogeneous multicore programming we make
the following contributions. We present the Offload language extensions, and describe
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automatic call-graph duplication, where multiple versions of a function1 are compiled
for an accelerator, based on the contexts in which the function is called. We then dis-
cuss our solutions to challenging problems associated with call-graph duplication in
the presence of pointer types for separate memory spaces, function pointers and virtual
methods, and multiple compilation units. Finally, we present experimental results for a
Cell BE implementation of Offload, evaluated using several benchmarks.

2 Programming Heterogeneous Multicore Processors

Processor manufacturers are increasingly opting to deliver performance improvements
by implementing processors consisting of multiple cores due to problems in obtaining
further performance increases from single core processors. Multicore processors may
be homogeneous, consisting of n identical cores, or heterogeneous, where some or all of
the cores differ in specialisation. In principle, a homogeneous multicore processor with
n cores connected to shared memory can offer a factor of n-times execution speedup
over a single-core processor at the same clock rate. However, contention for access
to shared memory may lead to a performance bottleneck, known as the memory wall,
where adding further cores quickly leads to diminishing returns.

The memory wall problem has led to a recent mainstream shift towards heteroge-
neous multicore processors in the host with accelerators pattern, where a host core con-
nected to main memory coordinates a number of possibly diverse processing element
(PE) cores each equipped with private “scratch-pad” memory. Independent calculations
can be processed in parallel by separate cores with reduced contention for shared mem-
ory. The PE cores need only access shared main memory via direct memory access
(DMA) to read input data, write results, and communicate with one another. The Cell
BE [1] is one such processor design, consisting of a Power Processor Element (PPE)
host with 8 Synergistic Processor Element (SPE) accelerator cores.

The use of scratch-pad memories can boost performance, but increases the complex-
ity of concurrent programming. The programmer can no longer rely on the hardware
and operating system to seamlessly transfer data between levels of the memory hierar-
chy, and must manually orchestrate data movement using DMA. Experience writing and
debugging industrial software for heterogeneous multicore processors has identified the
following key problems:

Separate programs are required for different cores. Distinct cores may have entirely
different instruction set architectures, making it necessary to write, compile and main-
tain separate versions of functions for each type of core, as well as platform-specific
“glue” code, to start up and clear down accelerator threads.

Data movement is untyped and unsafe. Low level data movement primitives operate
on untyped bytes and data words. Mistakes in interpretation of untyped data or misuse
of DMA primitives can lead to nondeterministic bugs that are hard to reproduce and fix.

Furthermore, many large applications have already been successfully parallelized for
homogeneous multicore processors using POSIX or Windows threads. In this case the
problem is not to find potential parallelism, but rather exploit already identified potential

1 We use function to refer to functions and methods in general.
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by offloading threads to accelerator cores with minimal disruption to an existing code-
base. The Offload approach aims to ease the programming of heterogeneous multicore
systems via a conservative extension to the C++ language.

We focus on systems where there is one type of accelerator core, equipped with a
small scratch-pad memory, and with sufficient functionality to be programmed in C.
The approach could be naturally extended to support multiple types accelerator.

3 Offload Language Extensions

3.1 Offload Scopes

The central construct of the Offload system is the offload block, a block prefixed by the
offload keyword. Code outside an offload block executes on the coordinating host
core; code inside an offload block executes on an accelerator core in a separate thread.

Offload blocks extend the syntax of C++ expressions as follows:

Expr ::= . . . || offload Domain? Args? { Compound -Stmt }

Args ::= ( list of variable names ) Domain ::= ( list of function names )

An offload block evaluates to a value of type offload_handle_t, an opaque type
defined in header files supplied with the Offload system. The expression has the side-
effect of launching a thread on an accelerator core. This offload thread executes
Compound -Stmt , with standard sequential semantics. Host execution continues in par-
allel. The host can wait for the offload thread to complete by calling library function
offload_join, passing as an argument the handle obtained on creating the offload
thread. Multiple offload threads can be launched to run in parallel, either via multiple
offload blocks, or by enclosing an offload block in a loop.

An offload thread can access global variables, as well as variables in the scope en-
closing the associated offload block. Additionally, an offload block may be equipped
with an argument list – a comma-separated list of variables names from the enclosing
scope. Each variable in this list is copied to a local variable in the offload thread with the
same name; references to this name inside the offload block refer to the local variable.
An offload block may also be equipped with a domain, which we discuss in §5.2.

These concepts are illustrated by the following example:
int main() {

int x = ...;
int y = ...;
offload_handle_t handle = offload(y) {

// runs on accelerator, ’y’ passed by value
... = x; x = ...; // ’x’ accessed in enclosing scope
... = y; y = ...; // local copy of ’y’ accessed

};
... // host runs in parallel with accelerator
y = ...; // changes to ’y’ do not affect offload thread
...
offload_join(handle); // wait for offload thread

}
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For brevity, we omit details of parameters and handles in the examples that follow.
The offload keyword can also be used as a function qualifier. A function with the

offload qualifier is called an offload function, and function names can be overloaded
using offload. We refer to offload functions and offload blocks as offload scopes.
Offload functions can only be called from offload scopes, but it is permissible to call a
non-offload function from an offload scope; this is discussed in detail in §4. We illustrate
offload functions using the following example:

void f() { ... } // (1)
offload void f() { ... } // (2)
offload void g() { ... } // (3)
void h() { ... } // (4)

int main() {
f(); // calls (1) on host
g(); // error, ’g’ is an offload function
offload {

f(); // calls (2) on accelerator
g(); // calls (3) on accelerator
h(); // calls (4) on accelerator

}
}

3.2 Outer Pointers and Data Movement

Data declared inside an offload scope resides in accelerator memory. We distinguish
pointers to local memory from pointers to host memory, referring to the latter as outer
pointers. An additional qualifier for pointers and references,2 the outer qualifier, spec-
ifies that a pointer refers to host memory. Pointers outside an offload scope have the
outer qualifier by default. Assignment between outer and non-outer pointers is illegal;
this ensures that an outer/non-outer pointer does not refer to data residing in accelera-
tor/host memory.

Dereferencing an outer pointer in an offload scope causes data to be moved between
host and accelerator memory. Data movement may be achieved via direct memory ac-
cess (DMA). However, unless synchronization primitives are used to guard access to
host memory, non-volatile data can be cached locally, so data movement may be im-
plemented using a software cache, or via double-buffered streaming DMA if accesses
have a regular pattern. Our Cell BE implementation (see §6) uses a software cache by
default, and provides library functions to flush or invalidate the cache. These functions
can be used in conjunction with mutexes to allow sharing of data between host and
offload threads.

Consider the following listing, where a -> b indicates data movement from a to b:

offload void f(outer float * p) {

*p = *p + 42.0f; // host -> accelerator, accelerator -> host
}

2 Henceforth we will only talk about pointers; everything we say about pointers applies to ref-
erences also.
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Fig. 1. Examples illustrating the outer qualifier for pointers

float a;

int main() {
offload {

outer float * p = &a;
float b = *p; // host -> accelerator

*p = b + 42.0f; // accelerator -> host
float c = a; // host -> accelerator
a = c; // accelerator -> host
p = &b; // error! ’&b’ is not outer
f(p); // legal function call
f(&b); // error! ’&b’ is not outer

}
}

Taking the address of global variable a obtains an outer pointer p, through which
data can be transferred between host and accelerator memory. Accessing host variable
a directly from an offload scope also results in data movement. The listing illustrates
illegal assignment between outer and non-outer pointers.

Outer pointers allow data transfers to be expressed without exposing the programmer
to low-level, non-portable operations. By regarding outer and local pointers as incom-
patible, the compiler is able to ensure that transfers are well typed. Fig. 1 provides
further illustration of the use of outer pointers in memory-space separation.

C++ permits overloading on the basis of const and volatile qualifiers. The Of-
fload language extends this to the outer qualifier, allowing functions to be overloaded
with different combinations of outer pointers. For an instance method on a class, the
outer qualifier can be applied to the this pointer by placing outer after the closing
bracket of the parameter list for the method; an example of this is given in §4.1.

4 Call-Graph Duplication

Suppose we require that only offload functions can be called from offload scopes. We
call this the strict requirement. In this case, the compiler knows exactly which func-
tions to compile for the accelerator (the offload functions) and host (the non-offload
functions). Furthermore, the pointer signature for an offload function specifies exactly
those pointers for which dereferences correspond to data movement operations (the
outer pointers). The drawback is that the programmer may have to manually dupli-
cate functionality to match the contexts in which a function is called. We illustrate the
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process of manual function duplication with the strict requirement, then show how au-
tomatic call-graph duplication can be used to handle programs that do not satisfy this
requirement.

4.1 Manual Function Duplication

Consider the following class:
class SecretKeeper {

int[SIZE] secrets;
public:

int getSecret(int * p) const { return secrets[*p]; }
};

Listing 1. A simple C++ “secret keeper” class.

The following listing declares a SecretKeeper object both outside and inside an
offload block, and calls the getSecret method on each object with a combination of
outer and local pointers:

int main() { ...
SecretKeeper outKeeper;
int x; ...
// normal method call on host
int secretSum = outKeeper.getSecret(&x);
offload {

SecretKeeper inKeeper;
int y; ...
secretSum +=
inKeeper.getSecret(&y) // (1) local ’this’, local ’p’

+ inKeeper.getSecret(&x) // (2) local ’this’, outer ’p’
+ outKeeper.getSecret(&y) // (3) outer ’this’, local ’p’
+ outKeeper.getSecret(&x) // (4) outer ’this’, outer ’p’

}; ...
}

Listing 2. Calling getSecret with various pointer configurations.

To satisfy the strict requirement, the programmer must define additional offload ver-
sions of getSecret for the four contexts in which the method is called inside the
offload block:

class SecretKeeper {
// as before, with additional methods:
offload int getSecret(int * p) {

return secrets[*p]; // matches context (1)
}
offload int getSecret(outer int * p) {

return secrets[*p]; // matches context (2)
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}
offload int getSecret(int * p) outer {

return secrets[*p]; // matches context (3)
}
offload int getSecret(outer int * p) outer {

return secrets[*p]; // matches context (4)
}

};

Listing 3. Manually duplicating the getSecret method.

Although the bodies of these methods are syntactically identical, their compilation
results in different data movement code. For example, in case (2), dereferencing outer
pointer p results in a host-to-accelerator data movement operation, while indexing into
local member secrets is a normal array lookup; in case (4) both dereferencing p and
indexing into secrets require host-to-accelerator data movement operations: the outer
this pointer means that the secrets member is located in host memory.

Manual function duplication with the strict requirement is time-consuming and re-
sults in many similar versions of the same function, which must all be maintained.
However, when a program satisfies the strict requirement it can be compiled appro-
priately for the host and accelerator cores. We now show how a program that does not
satisfy the strict requirement can be automatically translated into a form where the strict
requirement is satisfied, from which it can be successfully compiled.

4.2 Automating the Duplication Process

Suppose a function f has been declared with the following signature:

T0 f(T1 p1, . . . , Tn pn) { body }
Note that f is not an offload function. Now suppose f is invoked from an offload scope,
violating the strict requirement, in the following context:

e0 = f(e1, . . . , en);

For 0 ≤ i ≤ n, let Ui denote the type of expression ei (where e0 evaluates to an lvalue),
and suppose that Ui and Ti are identical if outer qualifiers are ignored. In other words,
the function application is well-typed if we ignore outer pointers. Then we can generate
an overloaded version of f as follows:

offload U0 f(U1 p1, . . . , Un pn) { body }
Let f ′ denote the newly generated version of f . Functions f and f ′ are identical, except
that f ′ has the offload qualifier, and pointer parameters of f ′ may have the outer

qualifier if they are passed outer pointers as actual arguments. The call to f from the
offload scope now obeys the strict requirement, since it refers to the offload version of
f , i.e. f ′.

If body itself contains calls to non-offload functions then function duplication will
be applied to these calls, with respect to the version of body appearing in f ′, so that f ′
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only calls offload functions. This process continues until function duplication has been
applied to all call-graphs rooted in offload scopes, hence the term automatic call-graph
duplication. The result is a program which obeys the strict requirement, and can thus be
compiled appropriately for the host and accelerators. Compilation may fail if duplicated
functions misuse outer pointers, as in the following example:

void f(int * x, int * y) { x = y; ... }

int main() {
int a = 5;
offload {

int b; f(&a, &b); // ’&a’ is outer, ’&b’ is not
}

}

Function duplication produces a duplicate of f where the first parameter is an outer
pointer. However, this duplicate is not well-typed as it makes an assignment between an
outer pointer and a non-outer pointer:

offload void f(outer int * x, int * y)
{ x = y; ... } // type error! ’x’ is outer, ’y’ is not

If outer pointers are used correctly then, in the absence of other general errors, all
duplicated functions can be compiled for the accelerators, with data movement code
generated corresponding to accesses via outer pointers.

Note that a function is only duplicated with a given signature at most once, meaning
that call-graph duplication works in the presence of recursion. Also note that duplication
is performed on demand: although a function with n pointer parameters has 2n possible
duplicates, only those actually required by an application will be generated. The above
discussion explains how call-graph duplication works for functions; the approach easily
extends to instance methods with a this pointer. In particular, the code of Listing 1 can
be compiled with respect to the class definition of Listing 2; the duplicated methods of
Listing 3 are generated automatically.

We have presented call-graph duplication as a source-to-source translation, followed
by regular compilation. In a practical implementation the technique would most likely
be implemented at the call-graph level – this is the case with our implementation (§6).
In particular, the programmer never needs to see the duplicated functions generated by
the compiler.

4.3 Offload Functions Are Still Useful

If a function should behave differently on the accelerator with a particular configuration
of outer pointers, the required variant can be explicitly overloaded using the offload
keyword. Suppose the getSecret method of §4.1 should return a pre-defined error
constant when called on an outer this pointer with an outer pointer parameter. This
can be specified by adding an offload version of getSecret to the secretKeeper

class of Listing 1:
offload int getSecret(outer int * p) outer { return ERR; }

This version of getSecret will be called whenever the method is invoked on an
outer object with an outer pointer parameter; otherwise call-graph duplication will be
used to compile the standard version of the method appropriately.
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A common use of offload functions is to allow specialised versions of performance-
critical functions to be tuned in an accelerator-specific manner, e.g. to exploit accelera-
tor features such as SIMD instructions.

5 Issues Raised by Call-Graph Duplication

While call-graph duplication is conceptually simple, its implementation is challenging
in the presence of the full complexity of C++. We discuss the way type inference can
increase the extent to which call-graph duplication can be automatically applied (§5.1)
and our solutions to the issues raised by function pointers and virtual methods (§5.2),
and multiple compilation units (§5.3).

5.1 Type Inference for Outer Pointers

The driving factor in the design of Offload is the extent to which existing code can
be offloaded to an accelerator without modification. Disallowing assignments between
inner and outer pointers in the type system provides a useful degree of type-checking
across the host/accelerator boundary. However, when applying call-graph duplication
to large examples, it is convenient to design the type system so that the outer qualifier
is automatically applied in two circumstances:

– When a pointer variable p is initialised upon declaration to an outer pointer, p is
given the outer qualifier

– If a cast is applied to an outer pointer then the destination type in the cast is auto-
matically given the outer qualifier

We present two small examples to illustrate why these methods of inferring outer point-
ers are useful. The following example finds the smallest element in a list of non-negative
integers, where the list is terminated by the value -1:

int findMin(int * intList) {
int result = *intList;
for(int * p = intList+1; *p != -1; p++)

if( *p < result ) result = *p;
return result;

}

int arrayOfIntegers[100] = { ... };

offload { int smallest = findMin(arrayOfIntegers); ... }

Because findMin is invoked with the outer pointer arrayOfIntegers, the com-
piler will attempt to compile a version of findMin which accepts an outer pointer.
Without type inference, the compiler would reject the input program for attempting to
assign an outer pointer intList+1 to an inner pointer p and the call-graph duplication
attempt would fail. With type inference, the initialisation of p to an outer pointer means
that p is given the outer qualifier implicitly.

The following function, which returns the floating point number corresponding to a
machine word given by a pointer, illustrates type inference with casts:
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float reinterpretInt(int * i) { return *((float *)i); }

Without type inference, if reinterpretInt is called from an offload scope with an
outer pointer, the program would be rejected for attempting to cast an outer pointer into
an inner pointer. Automatically adding the outer qualifier to the cast means that the
code compiles un-problematically.

Inference of outer pointers minimizes the extent to which the outer keyword prop-
agates throughout a large base of source code; in many practical examples, code can be
enclosed in an offload block with no outer annotations whatsoever.

5.2 Function Pointers and Virtual Methods

Consider the following type definition for functions which accept an integer argument
and return no value:

typedef void (* int_to_void) (int);

Assuming multiple functions have been declared with this type, consider a function
pointer variable in host memory, followed by an offload block which makes a call via
the function pointer:

int_to_void f_ptr;
...
offload { f_ptr(25); }

The problem is that, assuming f_ptr has been initialised to a valid address, the call
via f_ptr invokes some function matching the function type int_to_void, but we do
not know which one until run-time. For the call to succeed, it is necessary for a version
of the function to which f_ptr is assigned to have been compiled for the accelerator,
and loaded into local store. A similar problem applies when virtual methods are invoked
from an offload scope.

In general, statically determining the precise set of functions to which a given func-
tion pointer may refer is intractable. A safe over-approximation would be to compile all
functions matching the int_to_void signature for the accelerator. This would, how-
ever, significantly increase compile time and accelerator code size.

Our solution is to use function domains – annotations to an offload block listing the
names of functions that the block may invoke via function pointers or virtual calls.
A domain for an offload block may be specified immediately following the offload

keyword, as shown in the grammar of §3.1.
Function domains are implemented on the accelerator by a lookup table. The value of

the function pointer is used to obtain the address of the corresponding duplicated routine
on the accelerator, which is then invoked in place of the host routine whose address
was taken by the function pointer. An attempt to invoke a function not specified in the
domain results in a run-time error and diagnostic message. There is scope for extending
the compiler with heuristics to deduce domains automatically in many practical cases.

The following games-related example (derived from industrial source code) uses an
array of function pointers for collision response between game entities, and illustrates
that domains occur naturally in practical examples:

typedef void (* collisionFunction_t) (Entity *, Entity *);
collisionFunction_t collisionFunctions[3][3] =
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Fig. 2. Example of call-graph duplication over multiple compilation units

{ fix_fix, fix_mov, ..., dead_dead }; // 2d function table
...
// domain annotation on offload block
offload [ fix_fix, fix_mov, ..., dead_dead ] {

for(...i, j...)
// apply appropriate function according to status
collisionFunctions [status[i]] [status[j]] (...);

}

Each entity has a status: fix, mov or dead, for fixed, moving or dead entities re-
spectively. The array collisionFunctions provides a collision response function
for each combination of object statuses, e.g. function fix_mov is invoked for collision
response between a fixed and a moving object. By equipping the offload block with
a named list of collision functions, the call via the collisionFunctions array will
succeed.

5.3 Multiple Compilation Units

Automatic call-graph duplication depends on the compiler having access to the source
code for all invoked functions. For large applications this is not the case, as source code
is split into multiple files for separate compilation. Suppose source code is not available
for method collides, called from an offload scope in compilation unit Physics.cpp.
The compiler cannot perform call-graph duplication and simply generates code to call
collides with the pointer signature required by the call site. Suppose collides is
implemented in compilation unit Box.cpp. The programmer must mark the implemen-
tation with a duplication obligation, so that when Box.cpp is processed the compiler
will duplicate the required version of collides, even if collides is not called from
an offload scope in Box.cpp. This is illustrated in Fig. 2.

Annotating source code with duplication obligations is not too onerous – if the
collides method of Box calls other functions that are defined in Box.cpp then since
Box::collides is marked for duplication, these functions will be automatically du-
plicated appropriately. Thus, programmer annotations for duplication obligations are
restricted to the boundaries of compilation units.
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6 A Cell BE Implementation of Offload

We have implemented Offload for the Cell BE processor under Linux.3 A C++ appli-
cation with offload blocks is compiled to intermediate C program text targeting the
PPE and SPE cores. A makefile and linker script are also generated; these use the PPE
and SPE GCC compilers to generate a Cell Linux PPE executable with embedded SPE
modules, one per offload block.

A small run-time system implements the target-specific glue code required to use
an accelerator, such as handling the transfer of parameters from the host and setup
of a software cache through which access to the host memory is provided. The run-
time also permits offloaded code to invoke routines on the host, e.g. to call malloc/free
on host pointers, and for mutex-based synchronization via the POSIX threads API.
Our implementation includes header files with definitions of SPE-specific intrinsics,
allowing their use in programs where some SPE hand-tuning is desired.

Given a multi-threaded C++ application, we propose the following method for of-
floading threads to run on SPEs:

1. Profile application to identify a computationally expensive host thread
2. Replace this thread with an offload block, adding outer pointer annotations, func-

tion domains and duplication obligations where necessary for correctness
3. Replace performance-critical functions with offload functions, specialised with

SPE-specific optimizations where necessary for performance
4. Repeat this process until all appropriate host threads are offloaded

By (2) we mean that a call to create a thread running function f should be replaced with
an offload block which calls f. It is straightforward to define thread creation macros that
allow an application to use either POSIX or offload threads, depending on the available
support for a particular platform.

Basic offloading achieves the goal of getting code to run on SPEs, freeing the PPE to
perform other useful work. This can provide a performance benefit even if performance
of offloaded code is non-optimal. To achieve higher performance, it may be necessary
to write offload versions of performance-critical functions, hand-optimized for SPEs.
The main barrier to performance for the Cell BE is data movement. The Offload system
includes a set of header files to optimize access of contiguous data in host memory.
These header files define templated iterator classes, to be used in offload functions,
that optimize reading/writing of data from/to host memory using double-buffering. The
compiler generates advice messages, based on static analysis, to guide the programmer
towards refactorings to improve performance.

7 Experimental Results

We have developed a set of examples to investigate the performance improvement over
serial code which can be achieved using Offload for the Cell BE processor, and the ease
with which the language extensions can be applied:

3 In addition, an implementation of Offload for Sony PlayStation 3 consoles is available to SCE-
licensed game developers.
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Fig. 3. Scaling of SphereFlake offload across multiple SPEs

– A Mandelbrot fractal generator, generating a 640 × 480 pixel image
– SphereFlake: a ray tracer generating a 1024× 1024 pixel image [2]
– A set of five image processing filters operating on a 512 × 512 pixel image, per-

forming: embossing, noise reduction, sharpening, Laplacian edge detection, and
greyscale conversion

Experiments are performed on a Sony PlayStation 3 console, for which 6 SPEs are
available to the programmer. We compare the performance of the computations as fol-
lows. The original code executing on a single hardware thread of the Cell PPE is used
as a baseline against which to compare successive versions where computation is of-
floaded to between 1 and 6 SPEs. For a configuration with N SPEs, the benchmarks
are multi-threaded to spawn N offload threads, each of which computes 1/N of the
problem size.

Mandelbrot. The generator computes the Mandelbrot set value for each pixel using
scalar operations. Offloading this sequential computation on to a single SPE yields a
1.6× performance increase over the PPE baseline. When 6 SPEs are utilised the per-
formance increase is 13.5×. By hand-optimizing the offloaded code to buffer output
pixels, writing back to the host a line at a time, a performance increase of 14× over
the serial baseline is achieved. This modest improvement over the non-optimized case
indicates the program is compute bound.

SphereFlake. SphereFlake [2] is a fractal ray tracer for generating and ray tracing a
procedural model of spheres. We have applied Offload to this third party application,
offloading parts of the ray tracer to run in parallel across Cell SPEs. Thanks to auto-
matic call-graph duplication, it was possible to use the core of the ray tracer without
modification. We applied some modest refactorings to improve performance, ensuring
that procedural model generation is performed in SPE local store, and buffering output
pixel values in local store, to be written to main memory by DMA a row at a time.

We benchmark the ray tracer with and without support for shadows. Performance
scales linearly with the number of SPEs used, as shown in Fig. 3. With one SPE, perfor-
mance is around 0.5× that of the PPE baseline; with two SPEs, performance slightly ex-
ceeds that of the PPE. Maximum performance is achieved with six SPEs, with speedups
of 3.47× and 3.16× PPE performance with and without shadows respectively.

Image processing filters. Fig. 4 shows the performance of our image processing fil-
ters, offloaded using either a single SPE, or all six available SPEs. For each offloaded
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Filter Emboss Noise Sharpen Laplacian Greyscale
no manual opt. no manual opt. buffered output buffered I/O fully optimized

Speedup: 1 SPE 0.6× 0.85× 0.76× 3.13× 3.06×
Speedup: 6 SPEs 3.27× 2.76× 2.96× 6.51× 3.44×

Fig. 4. Speedups for offloaded image processing filters, with one and six SPEs

benchmark, the figure indicates whether we have performed no additional manual op-
timization, optimizations to buffer output, input and output, or extensive manual opti-
mizations, including vectorization.

For the Laplacian filter, which computes output pixels using a 5 × 5 kernel, we
find significant improvements can be gained by avoiding use of the software cache via
explicit pre-fetching of input data. By using explicit DMA intrinsics to maintain a copy
of five rows of input pixels in SPE local store, and buffering output for transfer to main
memory a row at a time, offloading to a single SPE out-performs the PPE version by
3.13×. The price for this is increased source code complexity, and loss of portability.
However, we were able to apply these manual optimizations incrementally, starting with
a simple, non-optimized offload and gradually working towards a finely tuned version.

Performance scales only modestly for the greyscale benchmark as SPEs are added,
due to the lightweight nature of the computation. This is an example where offloading
a single thread to an accelerator can provide a useful speedup.

Discussion of performance. Our investigation of the performance of offloaded code
identifies three categories of benchmarks, distinguished by the ease with which perfor-
mance increases are obtained, and the steps required to achieve such increases. Compu-
tationally intensive algorithms, such as Mandelbrot and SphereFlake, result in increased
performance by offloading, requiring little programmer effort, as execution times are
dominated by computation rather than data access. Less straightforward are applica-
tions such as our image filter examples, that perform relatively little computation per
data item on a large volume of data, but access contiguous data using a regular stride.
In this case, basic offloading typically results in a performance decrease, which can
easily be ameliorated using simple DMA operations which can be hidden in templated
classes. A third category of applications, for which we do not present results, access
large volumes of input data in an unpredictable manner, or in a manner not amenable to
efficient DMA operations. This type of application may require significant restructuring
for high performance to be achieved.

8 Related Work

Programming models. Of the recent wealth of programming models for multicore ar-
chitectures, closest to Offload are Sequoia [3] and CellSs [4]. The Sequoia language
abstracts both parallelism and communication through side-effect free methods known
as tasks, which are distributed through a tree of system memory modules. When a task
is called on a node, input data is copied to the node’s address space from the parent’s
address space, and output is copied back on task completion. This provides a clean way
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to distribute algorithms that operate on regularly-structured data across heterogeneous
multicore processors. However, tasks to be accelerated must be re-written using the be-
spoke Sequoia language, and the approach is only applicable when the data required by
a task (its working set) is known statically. The latter requirement has its advantages,
allowing aggressive data movement optimizations. CellSs is similar to Sequoia, involv-
ing the identification of tasks to be distributed across SPEs, and requiring the working
set for a task to be specified upfront.

The idea of optimizing data movement based on regularly structured data is the ba-
sis for stream programming languages such as StreamIt [5] and Brook [6], and more
recently HMPP [7] and OpenCL [8]. These models encourage a style of programming
where operations are described as kernels – special functions operating on streams of
regularly structured data – and are particularly suitable for programming compute de-
vices such as GPUs. As with Sequoia and CellSs, exploiting regularity and restricting
language features allows effective data movement optimizations. The drawback is that
these languages are only suitable for accelerating special-purpose kernels that are fea-
sible to re-write in a bespoke language. In contrast, Offload allows portions of general
C++ code to be offloaded to accelerator cores in a heterogeneous system with few modi-
fications. The flexible notion of outer pointers does not place restrictions on the working
set of an offload thread. The price for this flexibility is that it is difficult to automatically
optimize data movement for offload threads.

Call-graph duplication. Our notion of call-graph duplication is related to function
cloning [9], used by modern optimizing compilers for inter-procedural constant propa-
gation [10], alignment propagation [11], and optimization of procedures with optional
parameters [12]. Automatic call-graph duplication applies function cloning in a novel
setting, to handle multiple memory spaces in heterogeneous multicore systems. Call-
graph duplication is related to C++ template instantiation, and faces some of the same
challenges. Call-graph duplication across compilation units (§5.3) is similar to template
instantiation across compilation units, which is allowed in the C++ standard via the
export keyword, but supported by very few compilers.

Memory-space qualifiers. The idea of using qualifiers to distinguish between shared
and private memory originated in SIMD array languages [13], and is used in PGAS
languages such as Titanium [14], Co-array Fortran and Unified Parallel C [15]. Similar
storage qualifiers are used by CUDA and OpenCL to specify data locations in acceler-
ators with hierarchical memory.

9 Conclusions and Future Work

Our experimental evaluation with a Cell BE implementation of Offload give a promis-
ing indication that the techniques presented in this paper allow performance benefits
of accelerator cores to be realised with relative ease, requiring few modifications to
existing code bases.

While Offload is more flexible than alternative approaches for programming het-
erogeneous systems, this flexibility means data movement for offload threads is hard
to optimize. We plan to extend Offload with facilities for annotating an offload block
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with information about expected data usage, which the compiler can use to apply more
aggressive optimizations.

Call-graph duplication can potentially lead to a significant blow-up in code size, if
a function with several pointer arguments is called with many configurations of lo-
cal/outer pointers. This can be problematic when accelerator memory is limited. We
plan to investigate tool support for providing feedback as to the extent to which call-
graph duplication is required, and opportunities for reducing duplication.
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