
Just Fuzz It: Solving Floating-Point Constraints
using Coverage-Guided Fuzzing

Daniel Liew
dan@su-root.co.uk

Imperial College London
United Kingdom

Cristian Cadar
c.cadar@imperial.ac.uk
Imperial College London

United Kingdom

Alastair F. Donaldson
afd@imperial.ac.uk

Imperial College London
United Kingdom

J. Ryan Stinnett
jryans@gmail.com

Mozilla
United States

ABSTRACT

We investigate the use of coverage-guided fuzzing as a means of
proving satisfiability of SMT formulas over finite variable domains,
with specific application to floating-point constraints.We show how
an SMT formula can be encoded as a program containing a location
that is reachable if and only if the program’s input corresponds to
a satisfying assignment to the formula. A coverage-guided fuzzer
can then be used to search for an input that reaches the location,
yielding a satisfying assignment. We have implemented this idea
in a tool, Just Fuzz-it Solver (JFS), and we present a large experi-
mental evaluation showing that JFS is both competitive with and
complementary to state-of-the-art SMT solvers with respect to
solving floating-point constraints, and that the coverage-guided
approach of JFS provides significant benefit over naive fuzzing in
the floating-point domain. Applied in a portfolio manner, the JFS
approach thus has the potential to complement traditional SMT
solvers for program analysis tasks that involve reasoning about
floating-point constraints.

CCS CONCEPTS

· Theory of computation → Constraint and logic program-

ming; · Software and its engineering→ Software testing and

debugging.

KEYWORDS

Constraint solving, feedback-directed fuzzing

ACM Reference Format:

Daniel Liew, Cristian Cadar, Alastair F. Donaldson, and J. Ryan Stinnett. 2019.
Just Fuzz It: Solving Floating-Point Constraints using Coverage-Guided
Fuzzing. In Proceedings of the 27th ACM Joint European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering

(ESEC/FSE ’19), August 26ś30, 2019, Tallinn, Estonia. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3338906.3338921

1 INTRODUCTION

Satisfiability modulo theories (SMT) solvers have made tremendous
progress over the last decade [25] and now underpin many im-
portant software engineering tools, including symbolic execution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338921

engines (e.g. [14, 28, 29, 50, 57]), program verifiers (e.g. [18, 39])
and program synthesis frameworks (e.g. [31, 32]).

Despite these advances, SMT solvers often exhibit limited scal-
ability on large problems [48], and solving can be challenging for
certain underlying theories. Scalable SMT solving in the theory of
floating-point arithmetic is a particular challenge, and the subject
of a lot of recent and ongoing work [3, 11, 35, 42].

An unrelated technology, coverage-guidedmutation-based fuzzing,
is widely used to automatically find inputs to a system under test
(SUT) that expose crashes and potentially exploitable undefined
behaviours [40, 45]. For an SUT that has been instrumented to
record coverage information, a coverage-guided mutation-based
fuzzer takes an initial corpus of inputs and uses genetic algorithms
to synthesise further inputs by mutating and combining elements
of the corpus. Inputs that cover new parts of the SUT are added
to the corpus, under the hypothesis that via further manipulation
they may yield inputs that provide even more coverage, and that
aiming for high coverage is a good strategy for triggering bugs.

In this paper, we present an in-depth investigation into the po-
tential for coverage-guided mutation-based fuzzing to be used to
solve SMT formulas. Our idea is to transform an SMT formula
into a program whose input corresponds to an assignment to the
free variables of the formula, containing a statement, target, that is
reachable if and only if the input corresponds to a satisfying assign-
ment. A coverage-guided fuzzer aims to find inputs that maximise
coverage, so when applied to this program it will search relentlessly
for an input that reaches target, i.e. for a satisfying assignment to
the formula. Our hypothesis is that this technique may sometimes
be able to rapidly find satisfying assignments for formulas that are
challenging for general-purpose solvers. The method we propose
does not intend to help in proving unsatisfiability of formulas.

We present JFS (Just Fuzz it Solver), a prototype constraint solver
based on coverage-guided mutation-based fuzzing. JFS is sound:
a SAT result can be trusted. However, it is incomplete: JFS could
time out and, as discussed above, unsatisfiability cannot be proven.
We envision JFS would be run in parallel with a complete solver to
form a portfolio solver. JFS was inspired by the limited scalability
we have observed for state-of-the-art SMT solvers with respect to
floating-point constraints, and currently supports the combination
of boolean, bitvector, and floating-point theories, but our idea of
SMT solving via coverage-guided fuzzing should be straightforward
to adapt to any SMT theory over finite-domain variables.

We present a large experimental evaluation comparing JFS with
seven floating-point-capable SMT solvers, over a set of 1344 bench-
marks from three different SMT-COMP [58] suites. Our evaluation
aims to answer the following research questions:

521

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3338906.3338921
https://doi.org/10.1145/3338906.3338921

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia D. Liew, C. Cadar, A. F. Donaldson, and J. R. Stinnett

RQ1 To what extent is coverage-guided mutation-based fuzzing
superior to naive random input generation for SMT solving?

RQ2 To what extent can JFS be accelerated via łsmart seedsž de-
rived from the formula under analysis and/or the associated
SMT theory?

RQ3 How does the execution time of JFS compare with state-of-
the-art SMT solvers when applied to satisfiable formulas
over Boolean, bitvector, and floating-point variables?

Our main finding is that JFS is competitive with state-of-the-art
solvers such as MathSAT5 and Z3 on floating-point constraints,
complementing these solvers both in terms of number of solved
benchmarks and execution time. By contrast, it is uncompetitive
on bitvector-only constraints. In terms of design features, we found
coverage-guided mutation-based fuzzing superior to naive random
input generation, and the use of smart seeds to be beneficial.

We qualify the relative success of JFS with respect to floating-
point constraints by acknowledging that solver support for floating
point, as well as available evaluation benchmarks, are relatively
recent, while traditional solvers are very mature for bitvector-only
constraints, and the benchmarks available for this theory are known
to be challenging.

In summary, our main contributions are:

(1) The idea of leveraging coverage-guidedmutation-based fuzzing
to find satisfying assignments to SMT formulas (illustrated
concretely via a worked example in §3);

(2) JFS, a sound, incomplete solver for floating-point and bitvec-
tor constraints based on this idea (§4);

(3) An evaluation comparing JFSwith seven floating-point-capable
SMT solvers over 1344 SMT-COMP benchmarks, addressing
the above research questions (§5).

After covering relevant background (§2), we give an overview
of JFS (§3), discuss the design and implementation of the approach
and tool (§4), and present a detailed experimental evaluation (§5).
We then discuss related work (§6), and ideas for future research
directions (§7). Throughout the paper we discuss the limitations of
JFS and threats to the validity of our approach.

2 BACKGROUND

We provide relevant background on coverage-guided fuzzing (§2.1)
and some brief notes on floating-point arithmetic (§2.2).

2.1 Coverage-Guided Mutation-Based Fuzzing

Mutation-based fuzzing starts with a set of existing seed inputs,
known to already exercise the SUT in some depth, and generates
further inputs by mutating and combining seeds. Intuitively, the
resulting inputs are much more likely to exercise the SUT in inter-
esting ways compared with inputs generated in a purely random
fashion. If code coverage data for the SUT can be obtained, through
compile-time or binary instrumentation, a fuzzer can operate in a
coverage-guided manner. Code covered by an input can be used as
a proxy for measuring how interesting that input is, with an input
that covers new code being deemed interesting.

Coverage-guided mutation-based fuzzing combines these ideas:
starting from an initial corpus, SUT inputs are generated via muta-
tion. An input that covers new code is added to the corpus to be
considered as a seed for future mutation. Typical mutations include

making small changes to an input in isolation, and performing
łcrossoverž, where multiple inputs are combined into one. This ap-
proach is essentially an evolutionary algorithm [33] where an input
is considered fit if it covers new code. An evolutionary algorithm
used in this context is part of a broader research area known as
search-based test case generation [2].

Two popular coverage-guided mutation-based fuzzers, AFL [45]
and LibFuzzer [40] (on which JFS is based) have found numerous
bugs in real-world software [41, 44].

2.2 Floating-Point Arithmetic

A motivating use case for our work is SMT formulas that contain
constraints over floating-point variables. We recap here a few terms
and concepts that will be used later on.

Single- and double-precision floating-point numbers are repre-
sented in SMT-LIB [8] by the Float32/Float64 types, which corre-
spond to the IEEE-754 binary32/binary64 types [34]. The semantics
of most floating-point operations match the process of performing
the operation with real number semantics then rounding the result
to a nearby floating-point number. Several rounding modes can be
used, including rounding to the nearest floating-point number with
ties favouring an even binary representation (RNE), and rounding
towards positive infinity (RTP). The set of floating-point bit pat-
terns includes special patterns to represent infinities, as well as łnot
a numberž (NaN), which handles the results of computations for
which no numerical representation makes sense (such as 0/0).

3 OVERVIEW OF JFS

In brief, JFS uses the following method to find a satisfying assign-
ment to a formula Q presented as a conjunction of constraints:1

A program P is constructed such that:

• P takes a sequence of variables as input, with each variable
corresponding to a free variable in Q .

• P contains a sequence of constraint branches, one per con-
straint in Q , each of which is an if statement whose condi-
tion corresponds exactly to the associated constraint.

• P contains a target statement that returns 1 if and only if all
the true branches of the constraint branches are traversed.

JFS then passes the program P to a coverage-guided mutation-
based fuzzer, which repeatedly runs P with different inputs until an
input that reaches the target is found (corresponding to a satisfying
assignment to Q), or the fuzzer reaches a given time limit. The
intuition behind applying a coverage-guided fuzzer is that it will
relentlessly try to generate inputs that cover new code. In particular,
the program location that returns 1 is a target for the fuzzer.

As an illustration of this idea, consider the example constraints
in Listing 1, shown in SMT-LIBv2.5 format [8]. Free variables a
and b, of type Float64 (see §2.2), are declared on lines 1 and 2
respectively. On lines 3 and 4, variables div_rne and div_rtp are
defined to be the division of a by b using the rounding to nearest,
ties to even (RNE) and rounding toward positive infinity (RTP)
rounding modes, respectively.

The satisfiability problem captured by the example is the conjunc-
tion of the constraints specified in the five assert statements. The

1Any formula can be transformed to an equisatisfiable formula in conjunctive form,
e.g, by using the linear-time Tseytin transformation [65].

522

JFS: Solving FP Constraints using Coverage-Guided Fuzzing ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

Listing 1: An example conjunction of floating-point con-

straints in the SMT-LIBv2.5 format.

1 (declare-fun a () Float64)

2 (declare-fun b () Float64)

3 (define-fun div_rne () Float64 (fp.div RNE a b))

4 (define-fun div_rtp () Float64 (fp.div RTP a b))

5 (assert (not (fp.isNaN a)))

6 (assert (not (fp.isNaN b)))

7 (assert (not (fp.isNaN div_rne)))

8 (assert (not (fp.isNaN div_rtp)))

9 (assert (not (fp.eq div_rne div_rtp)))

10 (check-sat)

Listing 2: A translation of the constraints in Listing 1 to a

C++ program.

1 int FuzzOneInput(const uint8_t* data , size_t size) {

2 double a = makeFloatFrom(data , size , 0, 63);

3 double b = makeFloatFrom(data , size , 64, 127);

4 if (! isnan(a)) {} else return 0;

5 if (! isnan(b)) {} else return 0;

6 double a_b_rne = div_rne(a, b);

7 double a_b_rtp = div_rtp(a, b);

8 if (! isnan(a_b_rne)) {} else return 0;

9 if (! isnan(a_b_rtp)) {} else return 0;

10 if (a_b_rne != a_b_rtp) {} else return 0;

11 return 1; // TARGET REACHED

12 }

first four constraints state that none of a, b, div_rne and div_rtp

are NaN; the last states that div_rne is not equal to div_rtp.
These constraints are satisfiable. Using C++ hexfloat notation,

one satisfying assignment has a set to 0x0.410815d750e65p-1022
(≈ 5.65235×10−309) and b to 0x1.021c1b000e7cp+28 (≈ 2.70648×
108). Dividing a by b rounding to nearest (ties to even) yields
0x0.0000000408001p-1022 (≈ 2.088452 × 10−317) and rounding
toward positive infinity results in 0x0.0000000408002p-1022 (≈
2.088453 × 10−317).

A possible translation of these constraints into a C++ program
is shown in Listing 2, where the guard of each if statement corre-
sponds to a constraint. The fuzzerwill repeatedly call FuzzOneInput
(line 1), each time passing an input of size bytes via the data buffer.
If 1 is returned, the input corresponds to a satisfying assignment,
otherwise the fuzzer proceeds to try another input.

The program first constructs the free variables from the input
buffer data. Variables a and b correspond directly to the free vari-
ables a and b in Listing 1 and are constructed on lines 2 and 3 from
the data buffer using bits 0 to 63 (a), and bits 64 to 127 (b).

An if statement checks whether a is NaN (line 4), encoding the
constraint on line 5 of Listing 1. Whether b is NaN is handled analo-
gously (line 5). Variable a_b_rne corresponds to the div_rnemacro
on line 3 of Listing 1, and is set to the result of calling div_rne(a,
b) (line 6). This performs floating-point division rounding the result
to the nearest value (ties to even). The assignment to a_b_rtp is
analogous, with rounding towards positive infinity.

The checks for whether a_b_rne and a_b_rtp and NaN are han-
dled similarly to the checks for whether a and b are NaN (lines 8 and
9). The comparison of a_b_rne and a_b_rtp (line 10) corresponds
to the constraint on line 9 of Listing 1.

Finally, on line 11 the function returns 1, which tells the fuzzer
that a satisfying assignment has been found. Note that this line is
only reachable if all previously evaluated constraints were true.

There are multiple ways of encoding constraints as a program.
Listing 2 uses the fail-fast encoding, discussed further in §4.3.

4 DESIGN AND IMPLEMENTATION OF JFS

JFS is written in C++11 and builds on several existing projects:
the constraint language and API of Z3 [24] is used for in-memory
constraint representation, allowing reuse of Z3’s parser and con-
straint simplification tactics; Clang and LLVM are used to compile
generated C++ code [36]; and the coverage-guided mutation-based
fuzzer LibFuzzer [40] is used to fuzz the resulting binary.

JFS accepts an SMT-LIBv2 [8] formula consisting of a conjunction
of top-level constraints. Program analysis toolsÐsuch as those based
on dynamic symbolic execution [15], but not only [66]Ðgenerate
such conjunctions directly, and as mentioned in §3, any formula
can be transformed to an equisatisfiable formula in conjunctive
form, e.g, by using the linear-time Tseytin transformation [65].

The design of JFS in principle supports finding satisfying as-
signments to any theory using finite data types. Our current im-
plementation supports combinations of the Core (i.e. Boolean),
FixedSizeBitVectors, and FloatingPoint SMT-LIBv2 theories,
over Float32 and Float64 floating-point variables, and bitvector
variables of arbitrary widths up to 64 bits.

We now discuss practical issues related to the design of JFS,
covering simplification of formulas pre-fuzzing (§4.1); the mapping
of formula variables to the program input buffer (§4.2); choices for
how to encode the formula as a program (§4.3); and the injection
of łsmart seedsž to guide the fuzzer (§4.4). We also briefly discuss
JFS’s runtime library (§4.5).

4.1 Formula Simplification

To make the C++ program that JFS will ultimately generate more
friendly to LibFuzzer, JFS first applies the simplification passes
detailed in Table 1, in order, to the input formula. The table indicates
which passes were already available via calls into the Z3 library, vs.
which we implemented using the Z3 API. These passes represent
various cheap ways to simplify formulas that we observed to be
useful useful during early prototyping of JFS. We remark briefly on
the And hoisting pass: JFS uses Z3 to parse constraints, and parsing
always returns a single conjunct; the AND hosting pass simply
splits this into independent conjuncts.

If after simplification the formula is syntactically equivalent to
false, JFS immediately reports UNSAT without invoking LibFuzzer.

4.2 Input Buffer Preparation

Having simplified the formula, JFS must decide how to represent
free variables of the formula in the program’s input buffer.

First, an equality extraction pass is used to partition the free
variables and constants appearing in the formula into equivalence
classes based on syntactic equalities, such that members of the same
equivalence class are guaranteed to be constrained to be equal. Each
resulting class contains at most one constant: if multiple distinct
constants were constrained to be equal, JFS would have reported
the formula as trivially UNSAT after formula simplification (§4.1).

Each equivalence class is then considered. If a class contains
a constant c then there is no need to reserve space for variable
of the class in the input buffer: each variable is declared in the

523

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia D. Liew, C. Cadar, A. F. Donaldson, and J. R. Stinnett

Table 1: The ordered set of simplifying passes run by JFS on a formula before program generation

Simplification Description Already in Z3?

And hoisting Separates the constraint (and a b) into two separate constraints No
Constant propagation Apply Z3’s propagate-values tactic to propagate constants Yes
Duplicate constraint elimination Removes duplicate constraints from the constraint set No
Expression simplification Invokes Z3’s expression simplifier, which performs e.g. constant folding Yes
Simplify contradictions Replaces (and a (not a)) with false No
True elimination Removes constraints of the form true from the constraint set No

Listing 3: Example constraints used to illustrate equality ex-

traction.

1 (declare-fun a () (_ FloatingPoint 11 53))

2 (declare-fun b () (_ FloatingPoint 11 53))

3 (declare-fun c () (_ FloatingPoint 11 53))

4 (declare-fun d () (_ FloatingPoint 11 53))

5 (assert (= a b))

6 (assert (= b c))

7 (assert (= d (_ +zero 11 53)))

8 (assert (not (fp.isNaN (fp.add RNE c d))))

9 (check-sat)

program and initialized to c . Otherwise, k bits of the input buffer
are allocated to represent the common value of all free variables
in the class, where k is the width of the associated data type (e.g.
k = 32 for Float32 variables). The variables are all declared locally
in the program and initialized via the same k bits of the input buffer.

This process is illustrated by the formula of Listing 3 (where
(_ + zero 11 53) denotes the 64-bit positive zero constant) and the
associated program in Listing 4. The equivalence classes are {a,b, c}
and {d, 0.0}. As a result, the input buffer data requires 8 bytes in
order to store the double-precision value common to a, b and c . The
makeFloatFromData function initializes a via this buffer, and the
value of a is then copied into b and c . Variable d does not require
associated space in the buffer: it is initialized with the constant value
0.0. Because this process fully accounts for equality constraints
between variables and constants, such constraints do not need to
be modelled in the control flow of the generated program.

Equality extraction both reduces the size of the input buffer, and
alleviates LibFuzzer from the onerous task of guessing equality
between certain sets of variables.

The input buffer is tightly packed, so that the chunks of data
associated with variables need not be aligned to word or even byte
boundaries. Chunks are ordered by the order they appear while
traversing the input formula. This makes the order deterministic
(useful for reproducibility) but arbitrary. Non-aligned accesses make
reading from the buffer sub-optimal, but avoids padding bits that
have no impact on program behaviour. Such bits would be detri-
mental to LibFuzzer as it would waste time attempting to mutate
those bits to increase coverage. With additional engineering effort
we could adapt JFS to make LibFuzzer aware of padding bits and
instruct it not to mutate them, allowing the performance benefits
associated with better alignment.

4.3 Program Encodings

We have experimented with two ways to encode an SMT formula
as a program: fail-fast and try-all.

Listing 4: A translation of the constraints in Listing 3 to a

C++ program based on the equality extraction pass.

1 int FuzzerTestOneInput(const uint8_t* data , size_t size) {

2 double a = makeFloatFrom(data , size , 0, 63);

3 double b = a;

4 double c = a;

5 double d = 0.0;

6 double c_plus_d = add_rne(c, d);

7 if (! isnan(c_plus_d)) {} else return 0;

8 return 1; // TARGET REACHED

9 }

Listing 5: A translation of the constraints in Listing 1 to a

C++ program using the try-all encoding.

1 int FuzzerTestOneInput(const uint8_t* data , size_t size) {

2 double a = makeFloatFrom(data , size , 0, 63);

3 double b = makeFloatFrom(data , size , 64, 127);

4 size_t counter = 0;

5 if (! isnan(a)) ++ counter;

6 if (! isnan(b)) ++ counter;

7 double a_b_rne = div_rne(a, b);

8 double a_b_rtp = div_rtp(a, b);

9 if (a_b_rne != a_b_rtp) ++ counter;

10 if (! isnan(a_b_rne)) ++ counter;

11 if (! isnan(a_b_rtp)) ++ counter;

12 if (counter != 5)

13 return 0;

14 return 1; // TARGET REACHED

15 }

With the fail-fast encoding (Listings 2 and 4) the program exits
as soon as an unsatisfied conjunct is found, without evaluating the
remaining conjuncts. A satisfying assignment is found if and only
if the end of the program is reached. With the try-all encoding
(Listings 1 and 5) all n conjuncts of the input formula are evaluated,
and a zero-initialised counter is incremented each time a conjunct
is found to hold. A satisfying assignment is found if and only if the
counter equals n at the end of the program.

The potential advantage of try-all is that evaluating every con-
straint provides rich coverage information: if an input satisfies
some previously-unsatisfied conjunct, coverage will increase and
the coverage-guided fuzzer will store the input to be considered for
further mutation. The potential advantage of fail-fast is that it does
not waste time further evaluating an input once it is known that
it does not satisfy some constraint. Experimentally we have found
that fail-fast enables JFS to solve significantly more benchmarks
than try-all, thus we only consider the fail-fast encoding in our
evaluation (§5).

524

JFS: Solving FP Constraints using Coverage-Guided Fuzzing ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

4.4 Smart Seeds

As discussed in §2.1, a coverage-guided mutation-based fuzzer relies
on a corpus of initial seed inputs, which in the case of JFS are initial
valuations of the input buffer. We have experimented with two
modes for selecting seeds.

In naive seeds mode, JFS generates two seeds: a buffer of all zeros
and a buffer of all ones, which at least provide LibFuzzer’s crossover
mutator with a pair of diverse inputs to work with.

In smart seeds mode, seeds are generated as follows. For each
distinct data type associated with a free variable (e.g. Float64, bv32,
etc.), we construct a set consisting of (1) special values for that type,
such as positive/negative zero, infinities, and NaN bit patterns for
floating-point types (see §2.2), and bit patterns encoding 0, 1 and
-1 for bitvector types; and (2) values of constants of the given type
that appear in the input formula. We then construct a seed by
randomly sampling from the space of possible input permutations
that can be generated from these sets. The number of seeds selected
is configurable and set to 100 by default.

Our hypotheses for why smart seeds may be valuable are that
(1) special values are often important for particular data types
(e.g. a floating-point formula that looks unsatisfiable on first sight
often turns out to be satisfiable due to the subtle semantics of
NaN values), and (2) the satisfiability of constraints is more likely
to depend on values equal or similar to values appearing in the
formula than on arbitrary values (with mutations of seeds being
likely to yield said similar values). We evaluate the benefits of smart
seeds experimentally in §5.

4.5 Runtime Library

The program that JFS generates calls into a runtime library that im-
plements the semantics of relevant FloatingPoint and BitVector
types from the SMT-LIBv2 standard, handling rounding modes that
are natively supported by the x86_64 architecture (all modes except
round to nearest, ties to away from zero).

5 EVALUATION

We now turn to the evaluation of JFS, comparing it against seven
state-of-the-art SMT solvers that support solving floating-point
constraints. We discuss the benchmark selection process (§5.1), the
solvers and how we configured them (§5.2), and our experimental
setup (§5.3). We then present the results of the experiments (§5.4), in
the context of the research questions identified in §1. We have made
the source code of JFS and all our data sets publicly available.2,3

5.1 Benchmark Selection

Table 2 summarises the QF_FP, QF_BVFP and QF_BV SMT-LIB suites
from which we have drawn benchmarks for our experiments. A
subset of these suites are used in SMT-COMP, the annual SMT solver
competition. All benchmarks are quantifier-free (QF), beyond which
the suites are built over floating-point (QF_FP), bitvector (QF_BV),
and a combination of bitvector and floating-point (QF_BVFP) types.

For each suite, the Suite column provides a reference to the git
repository and SHA-1 hash associated with the version of the suite
that we used. The SAT and UNSAT columns under Unpruned

2https://github.com/mc-imperial/jfs
3https://github.com/mc-imperial/jfs-fse-2019-artifact

show the total number of benchmarks in each suite either already
labelled SAT or UNSAT, or that were unlabelled but could be clas-
sified empirically as SAT or UNSAT by either MathSAT5 or Z3
within 900 seconds seconds on our test platform. The UNKNOWN

and Total columns show the number of benchmarks that remained
unlabelled, and the total number of benchmarks, respectively.

Since JFS is not designed to prove unsatisfiability, we pruned all
benchmarks labelled UNSAT. We also pruned all benchmarks for
which the pre-processing steps performed by JFS (§4.1) reduced the
benchmark to contain only constants. We believe it was important
to remove such trivial benchmarks to focus our evaluation on the
effectiveness of fuzzing for constraint solving, rather than the ef-
fectiveness of these well-known pre-processing steps. The pruned
benchmarks are summarized under Non-trivial, no UNSAT in
Table 2. Notice that many SAT benchmarks were found to be trivial,
including the vast majority of the QF_FP suite.

The large numbers of remaining QF_BVFP and QF_BV benchmarks
would require prohibitive computation resources for our experi-
ments. Therefore, in a final step, we sampled a subset of these
benchmarks. To make sure we include benchmarks of varying dif-
ficulty, we performed stratified random sampling [4] based on the
performance of bothMathSAT5 and Z3. That is, for each benchmark
suite, we computed two histograms (one for MathSAT5 and one for
Z3) of solver execution time with five-second-wide bins. To select
a benchmark, first a histogram is selected (round-robin), then a his-
togram bin is selected (random), and then a benchmark is selected
from that bin (random). This process was repeated until the desired
number of benchmarks were selected. We selected 5% of the bench-
marks from each of the pruned QF_BVFP and QF_BV suites, using the
pruned QF_FP suite in its entirety. Details of the final benchmark
subsets are summarised under Final subsets in Table 2, which we
refer to as QF_BVFPfs , QF_FPfs and QF_BVfs , respectively (where fs
stands for łfinal subsetž).

5.2 Solver Configurations

We compare JFS against seven state-of-the art constraint solvers
for floating-point constraints. For each solver, Table 3 summarizes
the version (v) or revision (r) used, and the main technique on
which the solver is based. We also include a synthetic portfolio
solver (JFS+MathSAT5) to aid discussions of using JFS in a portfolio
setting. JFS+MathSAT5 models a complete portfolio solver that runs
both JFS-LF-SS and MathSAT5 in parallel and returns the answer
from which ever solver answers first. It is synthetic because solving
time is computed as the minimum of the solving times of existing
runs of JFS-LF-SS and MathSAT5. JFS-LF-SS and MathSAT5 are
combined because they are the best performing JFS configuration
(§5.4.1) and solver for QF_FPfs (§5.4.2) respectively.

We acknowledge that some of these solvers are capable of prov-
ing UNSAT as well as SAT, while JFS is only capable of proving SAT.
This might appear to give JFS an advantage, but we are not aware
of any way to configure those solvers to only focus on SAT, hence
we believe there is no fairer way of performing the comparison.

At the time experiments were run, XSat had not been officially
released; we use a version of the solver uploaded to STAR-EXEC4

for the 2017 SMT-COMP competition.

4https://www.starexec.org/

525

https://github.com/mc-imperial/jfs
https://github.com/mc-imperial/jfs-fse-2019-artifact
https://www.starexec.org/

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia D. Liew, C. Cadar, A. F. Donaldson, and J. R. Stinnett

Table 2: Summary of the SMT-LIB benchmark suites we use as a basis for our experiments.

Unpruned Non-trivial, no UNSAT Final subset (f s)
Suite SAT UNSAT UNKNOWN Total SAT UNKNOWN Total SAT UNKNOWN Total

QF_FP [61] 20,125 20,142 35 40,302 125 35 160 125 35 160
QF_BVFP [60] 14,033 3179 3 17,215 14,033 3 14,036 699 3 702

QF_BV [59] 11,283 20,991 133 32,407 9495 133 9628 466 16 482

Table 3: The solvers compared in our experiments.

Solver Version Technique

COLIBRI [13] r1572 Interval solving
CORAL [62] v0.7 Meta-heuristic search
CVC4 [7] v1.6 Bit-blasting
goSAT [9] rb5a423c Mathematical optimisation
JFS (this paper) r5ceecd1 Coverage-guided fuzzing
MathSAT5 [17] v5.5.1 Bit-blasting
XSat [26] See text Mathematical optimisation
Z3 [24] v4.6.0 Bit-blasting

The CORAL, goSAT and XSat solvers do not support bitvector
reasoning, thus we can only apply them to the QF_FPfs benchmark
suite. Instead of the SMT-LIBv2.5 format, CORAL uses its own
constraint language that only supports a subset of the semantics of
the QF_FP theory. To allow a best-effort comparison with CORAL,
we have implemented a tool to convert SMT-LIBv2.5 constraints
into this language.

We run each solver using its default configuration, edited if nec-
essary to enable floating-point reasoning and to enforce SMT-LIB
compliance. Exceptions are CORAL, which we run using options
suggested by the developers as we were unsure how to best invoke
the solver, and MathSAT5, which comes with a file describing pre-
ferred options for each benchmark suite (smtcomp2015_main.txt).

We runCORAL in two distinctmodes: alternating variablemethod
(CORAL-AVM) and particle swarm optimisation (CORAL-PSO). We
run JFS in three modes: using LibFuzzer with naive seeds (JFS-LF-
NS), using LibFuzzer with smart seeds (JFS-LF-SS), and using purely
naive random input generation, i.e. without LibFuzzer (JFS-NR). In
all cases the fail-fast encoding is used (see §4.3).

Where solvers support setting a random seed, we use a fixed
per-solver seed to try to ensure reproducible results.

5.3 Experimental Setup

We ran the 11 configurations (eight solvers, with CORAL in two
and JFS in three configurations respectively) on a machine with
two Intel® Xeon® E5-2450 v2 CPUs (8 physical cores each) with
256GiB of RAM running Ubuntu 16.04LTS. Each solver was run
five times per benchmark with a timeout of 900 seconds per run
and with a fixed random seed (if supported). The repeat runs of a
solver are used to compute average execution time and observe non-
deterministic behaviour. To allow experiments to complete within
a reasonable time-frame, each solver was executed in parallel over
the set of benchmarks, with at most 13 benchmarks running in
parallel.

Each time a solver is run on a benchmark we record a result
label. If solver reports UNKNOWN, crashes, or hits the memory or

time limit, the result is labelled as UNKNOWN. If the solver reports
SAT (UNSAT) and that matches the expected satisfiability of the
benchmark or the expected satisfiability is UNKNOWN then the
result is labelled as SAT (UNSAT). If the solver reports SAT (UNSAT)
and the expected satisfiability of the benchmark is UNSAT (SAT)
then the result is labelled as WRONG.

We combined results labels for repeat runs of a solver on a bench-
mark as follows: If at least one label is SAT (UNSAT) and all labels
are either SAT (UNSAT) or UNKNOWN, the combined label is SAT
(UNSAT). If at least one label is WRONG or the labels include a
mixture of SAT and UNSAT, the combined label is WRONG. Oth-
erwise, in the case where all labels are UNKNOWN, the combined
label is UNKNOWN.

To combine the execution times (wall clock time), the arithmetic
mean and confidence intervals (99.9%) are computed. Mean execu-
tion times are only considered distinguishable between solvers if
their confidence intervals do not overlap.

5.4 Results

We now present and discuss our experimental results, relating
them to the research questions identified in §1. In §5.4.1 we address
RQ1 and RQ2 by comparing different JFS configurations. Then in
§5.4.2 we compare the overall best JFS configuration found in §5.4.1
against other solvers in order to address RQ3.

To visualise solver performance we use quantile plots (e.g. Fig-
ure 1). Each curve on a plot corresponds to a solver configuration. A
curve is plotted by computing a score for each run on a benchmark
(1 for correct, −1 for wrong, and 0 for unknown), sorting correct

results by solver execution time and then plotting accumulating
score against solver execution time. An extra leftmost point is then
added to the curve and all other points are offset along the x-axis by
this value. The x value of this point is the sum of negative scores.

The resulting quantile plot has the following properties: (1) the
x-value of the leftmost point on a curve indicates the number of
incorrect solver answers (e.g. a value of −5 on the x-axis indicates
the solver incorrectly reported satisfiability on five benchmarks);
therefore, the x-value of the leftmost points can be compared be-
tween curves (ranked by least number of wrong answers); (2) the
x-value of the right-most point on a curve is the difference between
the number of correct vs. incorrect solver answers; therefore, the
x-value of the rightmost points can be compared between curves
(ranked by total solver score); (3) the total execution time of a
solver on correctly solved benchmarks is equal to the area under
the curve. We cannot compare the points with the same y-value
between curves because the points do not necessarily refer to the
same benchmark. However, we can compare the general shapes of
curves. The quantile plots that follow are best viewed in colour.

526

JFS: Solving FP Constraints using Coverage-Guided Fuzzing ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

0 20 40 60 80 100 120
Accumulated score

0
100

101

102

Ru
nt

im
e

(s
)

JFS-NR JFS-LF-NS JFS-LF-SS

Figure 1: Comparing JFS configurations over QF_FPfs .

0 100 200 300 400 500 600
Accumulated score

0
100

101

102

Ru
nt

im
e

(s
)

JFS-NR JFS-LF-NS JFS-LF-SS

Figure 2: Comparing JFS configurations over QF_BVFPfs .

5.4.1 JFS Configuration Comparison. We compare JFS in three
different configurations JFS-LF-NS, JFS-LF-SS, JFS-NR (§5.2) on the
three benchmark suites.

On the QF_BVfs suite, all JFS configurations performed poorly:
95.44% of the benchmarks could not be solved by any configuration,
with very little difference in performance between the configura-
tions. We discuss the poor performance of JFS on this suite in §5.4.2,
restricting our attention to QF_FPfs and QF_BVFPfs for the remainder
of this subsection.

The quantile plots of Figures 1 and 2 summarise the perfor-
mance of the JFS configurations over the QF_FPfs and QF_BVFPfs
benchmarks, respectively. The zero leftmost x-values of all curves
indicates that no incorrect results were produced (this also holds
for QF_BVfs).

For QF_FPfs (Figure 1), the right-most x-value of each curve
shows that JFS-LF-SS solved the most benchmarks (114), followed
by JFS-LF-NS (110), and finally by JFS-NR (91), providing positive
support for RQ1 and RQ2. The shape of the curves shows that JFS-
LF-SS is generally faster than both JFS-LF-NS and JFS-NR (smaller
area under curve if curve widths are normalised), further supporting
RQ2. However, upon investigation we noticed that JFS-LF-SS was

Table 4: JFS-LF-SS vs. other JFS configurations over QF_FPfs .

Solver Both Only LF-SS Only other Neither

JFS-LF-NS 108 (67.50%) 6 (3.75%) 2 (1.25%) 44 (27.50%)

JFS-NR 90 (56.25%) 24 (15.0%) 1 (0.62%) 45 (28.12%)

All above 108 (67.50%) 6 (3.75%) 3 (1.88%) 43 (26.88%)

the fastest configuration for 22 benchmarks, JFS-LF-NS for 6, and
JFS-NR for 24. For the remaining benchmarks, it was not possible
to determine which configuration was fastest, either because the
solver execution time confidence intervals overlapped or because
none of the solvers reported SAT. It is expected that JFS-NR might
sometimes be faster because it has lower overhead than the other
configurations (e.g. no coverage instrumentation, no seeds to read).

For QF_BVFPfs , Figure 2 shows that JFS-LF-NS solved the most
benchmarks (685), followed by JFS-LF-SS (684) and finally JFS-NR
(656). We can see that the shape of the curves for the LibFuzzer
configurations are similar, suggesting little difference in overall per-
formance between them. However, the naive random configuration
is clearly worse. These results provide positive support for RQ1,
and are inconclusive with respect to RQ2.

Quantile plots do not tell the complete story. Tables 4 and 5
show JFS-LF-SS similarity, complementarity, and limitations for
the QF_FPfs and QF_BVFPfs benchmarks, compared to the other JFS
configurations. In each table, the Both column states the number
of benchmarks shown to be satisfiable by both JFS-LF-SS and the
other JFS configuration. The Only LF-SS (Only other) column
shows the number of benchmarks that were shown to be satisfiable
by JFS-LF-SS (other configuration) and not by the other config-
uration (JFS-LF-SS). The Neither column shows the number of
benchmarks that were shown to be satisfiable by neither JFS-LF-SS
nor the other configuration. Each row of the table corresponds to
the other solver (specified by the Solver column). The łAll abovež
row has a special meaning and is a combination of all the above
results. For the łAll abovež row: the Both table cell is the union of
all benchmarks that both JFS-LF-SS and another JFS configuration
managed to solve (i.e. it is a union of intersections, not an intersec-
tion of intersections); the Only LF-SS table cell is the number of
benchmarks found satisfiable by JFS-LF-SS and none of the other
configurations; the Only other table cell is the union of all bench-
marks found to be satisfiable by another configuration and not
JFS-LF-SS; and the Neither table cell is the number of benchmarks
not found satisfiable by any JFS configuration.

For QF_FPfs , Table 4 shows that JFS-LF-SS and JFS-LF-NS are
quite similar (67.50% of the benchmarks solved by both and 27.50%
by neither); perhaps unsurprising given that they only differ in
the seeds fed to LibFuzzer. By contrast, JFS-NR is less similar, with
15.0% of benchmarks solved only by JFS-LF-SS.

In terms of complementarity, JFS-LF-SS always solved bench-
marks that the other configurations did not. Although the converse
is true (other configurations solving benchmarks that JFS-LF-SS
did not) it is less frequent. Looking at limitations, 26.88% of the
benchmarks were not solved by any JFS configuration.

For QF_BVFPfs , while the quantile plot of Figure 2 suggests that
JFS-LF-NS performs slightly better than JFS-LF-SS due to the num-
ber of benchmark solved, Table 5 shows that there are two bench-
marks that only JFS-LF-SS solved and three that only JFS-LF-NS

527

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia D. Liew, C. Cadar, A. F. Donaldson, and J. R. Stinnett

Table 5: JFS-LF-SS vs. other JFS configurations over QF_BVFPfs .

Solver Both Only LF-SS Only other Neither

JFS-LF-NS 682 (97.15%) 2 (0.28%) 3 (0.43%) 15 (2.14%)

JFS-NR 655 (93.30%) 29 (4.13%) 1 (0.14%) 17 (2.42%)

All above 682 (97.15%) 2 (0.28%) 3 (0.43%) 15 (2.14%)

solved, showing that neither configuration is strictly superior to
the other on this benchmark suite. Regarding limitations, the JFS
configurations performed collectively well on this suite, with only
2.14% not solved by any JFS configuration.

Overall, for formulas involving floating-point constraints, the
results of this subsection show that using coverage-guided fuzzing
over naive random input generation offers benefit, supporting RQ1.
The results also partially support RQ2 in this domain, showing that
smart seeds improve the performance of JFS over QF_FPfs . While the
performance results for JFS-LF-SS and JFS-LF-NS over QF_BVFPfs do
not reveal a clear winner, we use JFS-LF-SS as the JFS configuration
for comparison against other solvers in §5.4.2 due to its superior
performance on the QF_FPfs suite.

5.4.2 JFS Compared with Other Solvers. We now address RQ3 by
comparing the JFS-LF-SS configuration of JFS against seven solvers
on the QF_FPfs benchmarks and four on the QF_BVFPfs and QF_BVfs
benchmarks.

Comparison over QF_FPfs . The quantile plot of Figure 3 sum-
marises performance results for the eight non-portfolio solvers plus
JFS+MathSAT5 over QF_FPfs benchmarks. The leftmost points for
XSat and COLIBRI indicate that they gave 34 and 5 wrong answers,
respectively. In all cases this was due to UNSAT being reported for
a SAT-labelled benchmark.

In terms of the number of benchmarks found to be satisfiable,
JFS+MathSAT5 was the most successful (126) followed by Math-
SAT5 (125), JFS (114), CVC4 (110), COLIBRI (104), Z3 (102), goSAT
(91), XSat (69), CORAL-PSO (60), and finally CORAL-AVM (31).
Even though JFS does not rank the highest by number of bench-
marks solved, we can see from the shape of the curves that JFS’s
total solving time is significantly smaller than MathSAT5’s which
solved the most benchmarks out of the non-portfolio solvers. The
JFS+MathSAT5 synthetic portfolio solver illustrates that a portfo-
lio combination of JFS-LF-SS and MathSAT5 would perform well
because it would solve the most benchmarks and in less time on
average.

Table 6 shows JFS’s capability, complementarity, and limitations
for the QF_FPfs benchmarks. The columns and special All above
row have the samemeaning as discussed for Table 4 in §5.4.1. Table 6
shows great deal of similarity (Both column) between MathSAT5
and JFS, followed by COLIBRI and CVC4, and then Z3. The similarity
with the other search-based solvers (CORAL-AVM, CORAL-PSO,
goSAT, and XSat) is somewhat lower.

JFS complements every other non-portfolio solver, i.e. there is at
least one benchmark that JFS can solve and the other solver cannot.
However, every benchmark solved by JFS can be solved by at least
one other solver. For the search-based solvers (CORAL, goSAT, JFS,
and XSat) JFS finds many benchmarks to be satisfiable that the other
solver does not. This shows that out of the all the search-based
solvers, JFS is the most competitive on the QF_FPfs benchmark suite.

−40 −20 0 20 40 60 80 100 120
Accumulated score

0100

101

102

Ru
nt

im
e

(s
)

COLIBRI
CORAL-AVM
CORAL-PSO
CVC4

goSAT
JFS
MathSAT5

XSat
Z3
JFS+MathSAT5

Figure 3: Quantile plot comparing the performance of

solvers on the QF_FPfs benchmarks

Table 6: JFS compared to other solvers over QF_FPfs .

Solver Both Only JFS Only other Neither

COLIBRI 98 (61.25%) 16 (10.00%) 6 (3.75%) 40 (25.00%)

CORAL-AVM 31 (19.38%) 83 (51.88%) 0 (0.00%) 46 (28.75%)

CORAL-PSO 59 (36.88%) 55 (34.38%) 1 (0.62%) 45 (28.12%)

CVC4 98 (61.25%) 16 (10.00%) 12 (7.50%) 34 (21.25%)

goSAT 86 (53.75%) 28 (17.50%) 5 (3.12%) 41 (25.62%)

MathSAT5 113 (70.62%) 1 (0.62%) 12 (7.50%) 34 (21.25%)

XSat 62 (38.75%) 52 (32.50%) 7 (4.38%) 39 (24.38%)

Z3 96 (60.00%) 18 (11.25%) 6 (3.75%) 40 (25.00%)

All above 114 (71.25%) 0 (0.00%) 21 (13.12%) 25 (15.62%)

In terms of limitations, every solver except CORAL-AVMfinds some
benchmarks to be satisfiable that JFS does not (i.e. most solvers
are able to complement JFS). There are also some benchmarks that
neither JFS, nor another solver manage to show as satisfiable.

JFS is also complementary in terms of execution time. Figures 4
and 5 show scatter plots comparing the execution time of JFS against
MathSAT5 and CVC4 respectively. We show MathSAT5 and CVC4
here because these are the solvers that found the highest number
of benchmarks to be satisfiable that JFS did not. On these plots,
each point represents a benchmark. A diagonal line (y = x) is
drawn, upon which a benchmark would lie if both solvers solved
the benchmark in an identical amount of time. Points that appear
below the diagonal are cases where JFS was faster, and points above
the line are cases where the other solver was faster. The number
of points where this is the case (and where confidence intervals
do not overlap) are shown on the figures along with annotation
indicating how many points are cases where both solvers reached
a timeout. These plots only show cases where both solvers either
reported SAT or reached a timeout because it does not make sense
to compare execution times if one of the solvers crashed. The plots
show that the solvers are highly complementary, with JFS being
faster for 86 benchmarks in each case, while MathSAT5 was faster
for 27 benchmarks and CVC4 for 24.

In relation to RQ3, these results show that JFS is very competi-
tive with other solvers on the QF_FPfs benchmarks and is able to
complement every solver considered.

528

JFS: Solving FP Constraints using Coverage-Guided Fuzzing ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

0 100 200 300 400 500 600 700 800 900
MathSAT5 execution time (s)

0

100

200

300

400

500

600

700

800

900

JF
S

ex
ec

ut
io

n
tim

e
(s

)

27

86

34 dual timeouts

160 benchmarks, 160 jointly SAT or timeout

Figure 4: Scatter plot comparing the execution time ofMath-

SAT5 and JFS on the QF_FPfs benchmark.

0 100 200 300 400 500 600 700 800 900
CVC4 execution time (s)

0

100

200

300

400

500

600

700

800

900

JF
S

ex
ec

ut
io

n
tim

e
(s

)

24

86

28 dual timeouts

160 benchmarks, 151 jointly SAT or timeout

Figure 5: Scatter plot comparing the execution time of CVC4

and JFS on the QF_FPfs benchmark.

Comparison overQF_BVFPfs . Figure 6 shows a quantile plot com-
paring JFS against JFS+MathSAT5 and the other three non-portfolio
solvers that support the QF_BVFPfs suite. The plot shows that the
none of the solvers report incorrect answers and that they all re-
port a similar number of benchmarks as satisfiable. JFS+MathSAT5,
CVC4, MathSAT5 and Z3 report 699 benchmarks as satisfiable, fol-
lowed by JFS with 684, and COLIBRI with 666. The figure also shows
that for every solver, over 600 benchmarks were solved in under a
second. This suggests that the benchmark suite (despite our best
efforts during stratified sampling) is not well balanced in terms of
difficulty and may not accurately reflect the kind of constraints
that might be encountered in practice. Table 7 shows the similarity,
complementarity, and limitations of JFS on this benchmark com-
pared to other non-portfolio solvers. The table shows a high degree
of similarity between the solvers and that JFS is only able to com-
plement COLIBRI. Every solver is able to solve benchmarks that
JFS is unable to solve. However, if we make scatter plots comparing
the execution time of JFS with that of other solvers, we find in
each case a significant number of benchmarks where JFS solves the
constraints faster (56 faster than CVC4, 27 faster than COLIBRI, 55
faster than MathSAT5, and 69 faster than Z3). We omit these plots
for brevity but they look very similar to Figures 4 and 5.

0 100 200 300 400 500 600 700
Accumulated score

0
100

101

102

Ru
nt

im
e

(s
)

COLIBRI
CVC4

JFS MathSAT5 Z3 JFS+MathSAT5

Figure 6: Quantile plot comparing the performance of

solvers on the QF_BVFPfs benchmarks.

Table 7: JFS compared to other solvers over QF_BVFPfs .

Solver Both Only JFS Only other Neither

COLIBRI 661 (94.16%) 23 (3.28%) 5 (0.71%) 13 (1.85%)

CVC4 684 (97.44%) 0 (0.00%) 15 (2.14%) 3 (0.43%)

MathSAT5 684 (97.44%) 0 (0.00%) 15 (2.14%) 3 (0.43%)

Z3 684 (97.44%) 0 (0.00%) 15 (2.14%) 3 (0.43%)

All above 684 (97.44%) 0 (0.00%) 15 (2.14%) 3 (0.43%)

With reference to RQ3, these results show that JFS is compet-
itive over QF_BVFPfs , complementing COLIBRI in the number of
benchmarks solved, and all other solvers in terms of execution time.
However, as discussed the results across all solvers suggest that
QF_BVFPfs may not be an especially challenging suite.

Comparison over QF_BVfs . JFS is not competitive on the QF_BVfs
suite, finding only 22 benchmarks satisfiable, compared to e.g. 419
for Z3 and 344 for MathSAT5. (We omit the associated quantile plot
for space reasons.) However, for each solver except CVC4, there are
always cases where JFS is able to solve some benchmarks faster.

We suspect two main reasons for the poor performance of JFS
on the bitvector-only theory, compared to the theories involving
floating point. First, floating-point constraints result in much more
complex circuits, which often blow-up the underlying SAT solvers
used by state-of-the-art SMT solvers. As a result, a more lightweight
approach like the one used by JFS is competitive on these theories.

Second, bitvector solvers have been available for over a decade,
which has allowed a set of difficult and challenging benchmarks to
be developed over a long period of time. These benchmarks likely
evolved in difficulty as bitvector solvers gradually increased their
capability. On the other hand, solvers for floating-point constraints
are comparatively new and have had much less time to develop.
As a consequence, the available floating-point benchmarks are
a reflection of the relatively immature floating-point constraint
solvers currently available.

It is also worth drawing an analogy with coverage-guided fuzzers
applied to bug finding (their usual domain). These fuzzers are typi-
cally good at finding shallow bugs, and can only excel at finding
deep bugs with a large amount of compute time, good seeds, or

529

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia D. Liew, C. Cadar, A. F. Donaldson, and J. R. Stinnett

domain-specific knowledge. It could be the case that the floating-
point benchmarks currently available in SMT-LIB are the equivalent
of shallow programs, where bugs are easy for a fuzzer to find.

In summary, with respect to RQ3: the results across all three
benchmark suites show that JFS is highly competitive on two suites
(both involving floating point), and uncompetitive on the bitvector
benchmark suite.

6 RELATED WORK

There is a large body of existing work that seeks to improve solv-
ing floating-point constraints. The CORAL [62] and FloPSy [35]
solvers apply meta-heuristic search techniques to try to find sat-
isfying assignments to floating-point constraints. Like JFS, these
methods are incomplete because they can only show satisfiability.
All solvers construct a fitness function which they attempt to max-
imise. JFS’s fitness function is coarseÐthe number of new branches
coveredÐin contrast to CORAL’s and FloPSy’s fitness functions,
which gradually change as candidate solutions get closer to a satis-
fying assignment. Despite the coarseness of JFS’s fitness function,
our results show that JFS performs better overall than CORAL, both
in terms of the number of benchmarks it can show to be satisfiable,
and in execution time. We could not easily compare with FloPSy
due to its tight integration with Pex [64], the symbolic execution
tool it is designed to work with.

CORAL supports using an interval solver to improve the quality
of its initial candidate inputs. It’s likely we could apply a similar
approach in JFS to generate higher quality seeds for the fuzzer.

The goSAT [9] and XSat [26] solvers both reformulate finding a
satisfying assignment as a mathematical optimisation problem and
apply existing mathematical optimisation algorithms to try to find a
global minimum. This is similar in spirit to JFS, FloPSy and CORAL
in that the functions that goSAT and XSat seek to minimise are
essentially fitness functions. The difference is in the algorithms used
to perform the search. Like JFS, this strategy is incomplete. Again,
despite JFS’s coarser fitness functions, the experimental evaluation
found JFS to perform better on those benchmarks.

CVC4 [6], MathSAT5 [17], SONOLAR [51] and Z3 [24] solve
floating-point constraints by transforming floating-point opera-
tions into bitvector circuits and then bit-blasting these into a SAT
problem. This problem is then solved using a SAT solver. Unlike
JFS, these solvers are complete, but they can end up generating very
large SAT problems, which are difficult to solve. Like JFS, these
solvers support a combination of the bitvector and floating-point
SMT-LIBv2.5 theories. Our comparison with CVC4, MathSAT5 and
Z3 indicates that the approaches are complementary, particularly
for the floating-point benchmarks, suggesting these solvers would
likely benefit from incorporating a JFS-style search-based strategy
with their existing strategies, to form a portfolio solver. We did not
compare JFS with SONOLAR, but given that its design is similar
to that of SAT based solvers, we do not expect such experiments
to change our main conclusions. A prior study comparing SAT-
based solving with random and heuristic solvers also found that a
portfolio approach performs best [63].

COLIBRI [13] and FPCS [46] use interval solving as a complete
method for solving floating-point constraints. As for the comparison
with SAT based solvers, our comparison with COLIBRI showed

complementarity, suggesting that these solvers could also benefit
from incorporating a search-based strategy. We did not compare
against FPCS because it is not publicly available.

REALIZER [38] tries to solve floating-point constraints by trans-
forming (in an equisatisfiable manner) floating-point constraints
into constraints over reals, using Z3 as a back-end to solve these
constraints. REALIZER’s strategy is particularly suitable for work-
ing with constraints that check the accuracy of floating-point ex-
pressions compared to their real counterparts. JFS cannot do this
because it cannot handle constraints over reals. We have not yet
had time to compare JFS with REALIZER.

More generally, floating-point constraint solving has gathered a
lot of attention from the research community, with several tools
based on symbolic execution, model checking, abstract interpreta-
tion, etc. using it to perform test-case generation, precision tuning,
verification, equivalence checking, peephole optimizations, branch
instability assessment, etc. involving floating-point code [1, 3, 5, 10ś
12, 16, 19ś23, 27, 30, 35, 37, 42, 43, 47, 49, 52ś56].

7 CONCLUSION

Wehave investigated using coverage-guidedmutation-based fuzzing
to prove satisfiability of SMT formulas over finite variable domains,
and floating-point constraints in particular, via a prototype solver,
JFS. Our main experimental findings are that in the domain of
floating-point constraints, solving via coverage-guided fuzzing out-
performs solving via naive fuzzing, and performance can be further
improved by generating initial seeds in a smartmanner; JFS is highly
competitive with and complementary to all solvers we compared
with in the floating-point domain; and JFS is much less effective
when applied to the domain of bitvectors. Our synthetic portfolio
solving results indicate that JFS’s complementary nature would
make it a useful component in a portfolio solver.

In future work, we would like to better understand the properties
of benchmarks that dictate whether JFS performs well, with a view
to developing heuristics to help decide when it would be beneficial
to apply JFS. A first step in this direction would be to use model
counting solvers to understand whether suitability for solving via
fuzzing relates to number of solutions. A practical problem here is
that model counting suffers from limited scalability.

Regarding our smart seeds, smarter seeds could be generated
based on domain-specific knowledge about the context in which JFS
is being used. For example, if JFS were integrated with a symbolic
execution engine, seeds encoding knowledge about feasible paths
(and thus feasible inputs) could be communicated from the symbolic
execution engine to JFS. We also envisage several improvements
to the fuzzing component of JFS: designing mutators tailored to
the context of SMT formulas would likely be beneficial; the fuzzer
could be made aware of data flow, using information about the bytes
that caused a constraint to become satisfied to guide mutations;
and candidates for mutation could be prioritised according to the
number of constraints they satisfy, which we hypothesise would
lead to faster synthesis of satisfying assignments.

ACKNOWLEDGEMENTS

This research was generously sponsored by the UK EPSRC through
grants EP/N007166/1, EP/P010040/1 and EP/R006865/1.

530

JFS: Solving FP Constraints using Coverage-Guided Fuzzing ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia

REFERENCES
[1] Merav Aharoni, Sigal Asaf, Laurent Fournier, Anatoly Koyfman, and Raviv Nagel.

2003. FPgen - a test generation framework for datapath floating-point verification.
In Eighth IEEE International High-Level Design Validation and Test Workshop 2003,
San Francisco, CA, USA, November 12-14, 2003. 17ś22.

[2] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege. 2010. A Systematic
Review of the Application and Empirical Investigation of Search-Based Test Case
Generation. IEEE Transactions on Software Engineering 36, 6 (Nov. 2010), 742ś762.
https://doi.org/10.1109/TSE.2009.52

[3] R. Bagnara, M. Carlier, R. Gori, and A. Gotlieb. 2013. Symbolic Path-Oriented Test
Data Generation for Floating-Point Programs. In Proc. of the IEEE International
Conference on Software Testing, Verification, and Validation (ICST’13).

[4] Vic Barnett. 2009. Sample Survey Principles and Methods (3 ed.). John Wiley &
Sons, Chapter 4.

[5] Earl T. Barr, Thanh Vo, Vu Le, and Zhendong Su. 2013. Automatic detection of
floating-point exceptions. In The 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,
2013. 549ś560.

[6] Clark Barrett, Haniel Barbosa, Martin Brain, Duligur Ibeling, Tim King, Paul
Meng, Aina Niemetz, Andres Nötzli, Mathias Preiner, Andrew Reynolds, and
Cesare Tinelli. 2018. CVC4 at the SMT Competition 2018. CoRR abs/1806.08775
(2018). arXiv:1806.08775

[7] Clark Barrett, Christopher Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In Proc.
of the 23rd International Conference on Computer-Aided Verification (CAV’11).

[8] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2015. The SMT-LIB Standard:
Version 2.5. Technical Report. Department of Computer Science, The University
of Iowa. Available at www.SMT-LIB.org.

[9] M Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. 2017. goSAT:
Floating-point Satisfiability as Global Optimization. In Proceedings of Formal
Methods in Computer-Aided Design (FMCAD’17). 11ś14. https://doi.org/10.23919/
FMCAD.2017.8102235

[10] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. 2003. A Static
Analyzer for Large Safety-critical Software. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation (PLDI ’03).
ACM, New York, NY, USA, 196ś207. https://doi.org/10.1145/781131.781153

[11] Mateus Borges, Marcelo d’Amorim, Saswat Anand, David Bushnell, and Corina S.
Pasareanu. 2012. Symbolic Execution with Interval Solving and Meta-heuristic
Search. In Proceedings of the 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation (ICST ’12). IEEEComputer Society,Washington,
DC, USA, 111ś120. https://doi.org/10.1109/ICST.2012.91

[12] Bernard Botella, Arnaud Gotlieb, and Claude Michel. 2006. Symbolic Execution of
Floating-point Computations. Softw. Test. Verif. Reliab. 16, 2 (June 2006), 97ś121.
https://doi.org/10.1002/stvr.v16:2

[13] Bruno Marre and FranÃğois Bobot and Zakaria Chihani. 2017. Real Behavior of
Floating Point Numbers. In Proc. of the 15th International Workshop on Satisfiabil-
ity Modulo Theories (SMT’17). http://smt-workshop.cs.uiowa.edu/2017/papers/
SMT2017_paper_21.pdf

[14] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In Proc. of the 8th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’08).

[15] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:
Three Decades Later. Communications of the Association for Computing Machinery
(CACM) 56, 2 (2013), 82ś90.

[16] Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh
Gopalakrishnan, and Zvonimir Rakamarić. 2017. Rigorous Floating-point Mixed-
precision Tuning. In Proceedings of the 44th ACM SIGPLAN Symposium on Princi-
ples of Programming Languages (POPL 2017). ACM, New York, NY, USA, 300ś315.
https://doi.org/10.1145/3009837.3009846

[17] Alessandro Cimatti, Alberto Griggio, Bastiaan Schaafsma, and Roberto Sebastiani.
2013. The MathSAT5 SMT Solver. In Proceedings of TACAS (LNCS), Nir Piterman
and Scott Smolka (Eds.), Vol. 7795. Springer.

[18] Edmund Clarke and Daniel Kroening. 2003. Hardware Verification using ANSI-
C Programs as a Reference. In Proc. of the 8th Asia and South Pacific Design
Automation Conference (ASP-DAC’03).

[19] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking
ANSI-C Programs. In Proc. of the 10th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’04).

[20] Hélène Collavizza, Claude Michel, Olivier Ponsini, and Michel Rueher. 2014. Gen-
erating test cases inside suspicious intervals for floating-point number programs.
In Proceedings of the 6th International Workshop on Constraints in Software Testing,
Verification, and Analysis, CSTVA 2014, Hyderabad, India, May 31, 2014. 7ś11.

[21] Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2011. Symbolic Cross-
checking of Floating-Point and SIMDCode. In Proc. of the 6th European Conference
on Computer Systems (EuroSys’11).

[22] Peter Collingbourne, Cristian Cadar, and Paul H.J. Kelly. 2011. Symbolic Testing
of OpenCL Code. In Proc. of the Haifa Verification Conference (HVC’11).

[23] Marc Daumas, Laurence Rideau, and Laurent Théry. 2001. A Generic Library
for Floating-Point Numbers and Its Application to Exact Computing. In Theorem
Proving in Higher Order Logics, Richard J. Boulton and Paul B. Jackson (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 169ś184.

[24] Leonardo deMoura andNikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In Proc.
of the 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’08).

[25] Leonardo De Moura and Nikolaj Bjùrner. 2011. Satisfiability modulo theories:
introduction and applications. Communications of the Association for Computing
Machinery (CACM) 54, 9 (Sept. 2011), 69ś77.

[26] Zhoulai Fu and Zhendong Su. 2016. XSat: A Fast Floating-Point Satisfiability Solver.
Springer International Publishing, Cham, 187ś209. https://doi.org/10.1007/978-
3-319-41540-6_11

[27] Zhoulai Fu and Zhendong Su. 2017. Achieving High Coverage for Floating-point
Code via Unconstrained Programming. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2017).
ACM, New York, NY, USA, 306ś319. https://doi.org/10.1145/3062341.3062383

[28] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Auto-
mated Random Testing. In Proc. of the Conference on Programing Language Design
and Implementation (PLDI’05).

[29] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated
Whitebox Fuzz Testing. In Proc. of the 15th Network and Distributed System
Security Symposium (NDSS’08).

[30] Yijia Gu, Thomas Wahl, Mahsa Bayati, and Miriam Leeser. 2015. Behavioral Non-
portability in Scientific Numeric Computing. In Euro-Par 2015: Parallel Processing
- 21st International Conference on Parallel and Distributed Computing, Vienna,
Austria, August 24-28, 2015, Proceedings. 558ś569.

[31] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011.
Synthesis of Loop-free Programs. In Proc. of the Conference on Programing Lan-
guage Design and Implementation (PLDI’11).

[32] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis.
Foundations and Trends in Programming Languages 4, 1-2 (2017), 1ś119. https:
//doi.org/10.1561/2500000010

[33] J.H. Holland. 1975. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. University
of Michigan Press.

[34] IEEE 754-2008 2008. IEEE Standard for Floating-Point Arithmetic. Standard.
Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/IEEESTD.
2008.4610935

[35] Kiran Lakhotia, Nikolai Tillmann, Mark Harman, and Jonathan de Halleux. 2010.
FloPSy - Search-Based Floating Point Constraint Solving for Symbolic Execu-
tion. In Testing Software and Systems: 22nd IFIP WG 6.1 International Conference,
ICTSS 2010, Natal, Brazil, November 8-10, 2010. Proceedings, Alexandre Petrenko,
Adenilso Simão, and José Carlos Maldonado (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 142ś157. https://doi.org/10.1007/978-3-642-16573-3_11

[36] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proc. of the 2nd International
Symposium on Code Generation and Optimization (CGO’04).

[37] Wen-Chuan Lee, Tao Bao, Yunhui Zheng, Xiangyu Zhang, Keval Vora, and Rajiv
Gupta. 2015. RAIVE: Runtime Assessment of Floating-point Instability by Vec-
torization. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2015). ACM, New York, NY, USA, 623ś638. https://doi.org/10.1145/2814270.
2814299

[38] M. Leeser, S. Mukherjee, J. Ramachandran, and T. Wahl. 2014. Make it real:
Effective floating-point reasoning via exact arithmetic. In 2014 Design, Automation
Test in Europe Conference Exhibition (DATE). 1ś4. https://doi.org/10.7873/DATE.
2014.130

[39] K. Rustan M. Leino. 2009. Dafny: An Automatic Program Verifier for Functional
Correctness. In Proceedings of the 16th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR’10). 348ś370.

[40] libfuzzer [n.d.]. LibFuzzer. http://llvm.org/docs/LibFuzzer.html.
[41] libfuzzerbugs [n.d.]. LibFuzzer trophies. http://llvm.org/docs/LibFuzzer.html#

trophies.
[42] Daniel Liew, Daniel Schemmel, Cristian Cadar, Alastair Donaldson, Rafael ZÃďhl,

and Klaus Wehrle. 2017. Floating-Point Symbolic Execution: A Case Study in
N-version Programming. In Proc. of the 32nd IEEE International Conference on
Automated Software Engineering (ASE’17).

[43] David Menendez, Santosh Nagarakatte, and Aarti Gupta. 2016. Alive-FP: Au-
tomated Verification of Floating Point Based Peephole Optimizations in LLVM.
Springer Berlin Heidelberg, Berlin, Heidelberg, 317ś337. https://doi.org/10.1007/
978-3-662-53413-7_16

[44] Michal Zalewski. [n.d.]. AFL łbug-o-ramaž trophy case. http://lcamtuf.coredump.
cx/afl/#bugs.

531

https://doi.org/10.1109/TSE.2009.52
http://arxiv.org/abs/1806.08775
https://doi.org/10.23919/FMCAD.2017.8102235
https://doi.org/10.23919/FMCAD.2017.8102235
https://doi.org/10.1145/781131.781153
https://doi.org/10.1109/ICST.2012.91
https://doi.org/10.1002/stvr.v16:2
http://smt-workshop.cs.uiowa.edu/2017/papers/SMT2017_paper_21.pdf
http://smt-workshop.cs.uiowa.edu/2017/papers/SMT2017_paper_21.pdf
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1007/978-3-319-41540-6_11
https://doi.org/10.1007/978-3-319-41540-6_11
https://doi.org/10.1145/3062341.3062383
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1007/978-3-642-16573-3_11
https://doi.org/10.1145/2814270.2814299
https://doi.org/10.1145/2814270.2814299
https://doi.org/10.7873/DATE.2014.130
https://doi.org/10.7873/DATE.2014.130
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html#trophies
http://llvm.org/docs/LibFuzzer.html#trophies
https://doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.1007/978-3-662-53413-7_16
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs

ESEC/FSE ’19, August 26ś30, 2019, Tallinn, Estonia D. Liew, C. Cadar, A. F. Donaldson, and J. R. Stinnett

[45] Michal Zalewski. [n.d.]. Technical łwhitepaperž for afl-fuzz. http://lcamtuf.
coredump.cx/afl/technical_details.txt.

[46] C. Michel, M. Rueher, and Y. Lebbah. 2001. Solving Constraints over Floating-
Point Numbers. In Principles and Practice of Constraint Programming Ð CP 2001,
Toby Walsh (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 524ś538.

[47] Andres Nötzli and Fraser Brown. 2016. LifeJacket: Verifying Precise Floating-point
Optimizations in LLVM. In Proceedings of the 5th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis (SOAP 2016). ACM, New York,
NY, USA, 24ś29. https://doi.org/10.1145/2931021.2931024

[48] Hristina Palikareva and Cristian Cadar. 2013. Multi-solver Support in Symbolic
Execution. In Proc. of the 25th International Conference on Computer-Aided Verifi-
cation (CAV’13). http://srg.doc.ic.ac.uk/files/papers/klee-multisolver-cav-13.pdf

[49] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock.
2015. Automatically Improving Accuracy for Floating Point Expressions. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’15). ACM, New York, NY, USA, 1ś11. https:
//doi.org/10.1145/2737924.2737959

[50] Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter
Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: integrating symbolic
execution with model checking for Java bytecode analysis. Automated Software
Engineering 20, 3 (01 Sept. 2013), 391ś425.

[51] Jan Peleska, Elena Vorobev, and Florian Lapschies. 2011. Automated Test Case
Generation with SMT-Solving and Abstract Interpretation. In NASA Formal
Methods, Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 298ś312.

[52] Sylvie Putot, Eric Goubault, and Matthieu Martel. 2003. Static Analysis-Based
Validation of Floating-Point Computations. In Numerical Software with Result
Verification, International Dagstuhl Seminar, Dagstuhl Castle, Germany, January
19-24, 2003, Revised Papers. 306ś313.

[53] Minghui Quan. 2016. Hotspot Symbolic Execution of Floating-Point Programs.
In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE 2016). ACM, New York, NY, USA, 1112ś1114.
https://doi.org/10.1145/2950290.2983966

[54] Jaideep Ramachandran, Corina S. Pasareanu, and Thomas Wahl. 2015. Symbolic
Execution for Checking the Accuracy of Floating-Point Programs. ACM SIGSOFT
Software Engineering Notes 40, 1 (2015), 1ś5.

[55] Cindy Rubio-González, Cuong Nguyen, Benjamin Mehne, Koushik Sen, James
Demmel, William Kahan, Costin Iancu, Wim Lavrijsen, David H. Bailey, and

David Hough. 2016. Floating-point Precision Tuning Using Blame Analysis. In
Proceedings of the 38th International Conference on Software Engineering (ICSE ’16).
ACM, New York, NY, USA, 1074ś1085. https://doi.org/10.1145/2884781.2884850

[56] C. Rubio-GonzÃąlez, Cuong Nguyen, HongDiep Nguyen, J. Demmel,W. Kahan, K.
Sen, D. H. Bailey, C. Iancu, andD. Hough. 2013. Precimonious: Tuning assistant for
floating-point precision. In 2013 SC - International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). 1ś12. https://doi.org/10.1145/
2503210.2503296

[57] Koushik Sen, DarkoMarinov, and Gul Agha. 2005. CUTE: A Concolic Unit Testing
Engine for C. In Proc. of the joint meeting of the European Software Engineering
Conference and the ACM Symposium on the Foundations of Software Engineering
(ESEC/FSE’05).

[58] SMT-COMP Competition 2006 2006. SMT-COMP Competition 2006. http://
smtcomp.sourceforge.net/2006/.

[59] SMT-LIB. 2018. QF_BV benchmarks. https://clc-gitlab.cs.uiowa.edu:2443/SMT-
LIB-benchmarks/QF_BV.git, revision f7e691bf.

[60] SMT-LIB. 2018. QF_BV_FP benchmarks. https://clc-gitlab.cs.uiowa.edu:2443/
SMT-LIB-benchmarks/QF_BVFP.git, revision 57d0c730.

[61] SMT-LIB. 2018. QF_FP benchmarks. https://clc-gitlab.cs.uiowa.edu:2443/SMT-
LIB-benchmarks/QF_FP.git, revision 3346ad7a.

[62] Matheus Souza,Mateus Borges, Marcelo d’Amorim, and Corina S. Păsăreanu. 2011.
CORAL: Solving Complex Constraints for Symbolic Pathfinder. In Proceedings of
the Third International Conference on NASA Formal Methods (NFM’11). Springer-
Verlag, Berlin, Heidelberg, 359ś374. http://dl.acm.org/citation.cfm?id=1986308.
1986337

[63] Mitsuo Takaki, Diego Cavalcanti, Rohit Gheyi, Juliano Iyoda, Marcelo d’Amorim,
and Ricardo B. C. Prudêncio. 2010. Randomized constraint solvers: a comparative
study. Innovations in Systems and Software Engineering 6, 3 (01 Sept. 2010),
243ś253. https://doi.org/10.1007/s11334-010-0124-1

[64] Nikolai Tillmann and Jonathan De Halleux. 2008. Pex: white box test generation
for .NET. In Proc. of the 2nd International Conference on Tests and Proofs (TAP’08).

[65] G. S. Tseytin. 1970. On the complexity of derivation in propositional calculus.
Constructive Mathematics and Mathematical Logic (1970), 115ś125.

[66] Xi Wang, Nickolai Zeldovich, Frans Kaashoek, and Armando Solar-Lezama. 2013.
Towards Optimization-Safe Systems: Analyzing the Impact of Undefined Behavior.
In Proc. of the 24th ACM Symposium on Operating Systems Principles (SOSP’13).

532

http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://doi.org/10.1145/2931021.2931024
http://srg.doc.ic.ac.uk/files/papers/klee-multisolver-cav-13.pdf
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1145/2950290.2983966
https://doi.org/10.1145/2884781.2884850
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/2503210.2503296
http://smtcomp.sourceforge.net/2006/
http://smtcomp.sourceforge.net/2006/
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV.git
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BV.git
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BVFP.git
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_BVFP.git
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP.git
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP.git
http://dl.acm.org/citation.cfm?id=1986308.1986337
http://dl.acm.org/citation.cfm?id=1986308.1986337
https://doi.org/10.1007/s11334-010-0124-1

	Abstract
	1 Introduction
	2 Background
	2.1 Coverage-Guided Mutation-Based Fuzzing
	2.2 Floating-Point Arithmetic

	3 Overview of JFS
	4 Design and Implementation of JFS
	4.1 Formula Simplification
	4.2 Input Buffer Preparation
	4.3 Program Encodings
	4.4 Smart Seeds
	4.5 Runtime Library

	5 Evaluation
	5.1 Benchmark Selection
	5.2 Solver Configurations
	5.3 Experimental Setup
	5.4 Results

	6 Related work
	7 Conclusion
	References

