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ABSTRACT

Randomised compiler testing techniques require a means of gener-
ating programs that are free from undefined behaviour (UB) in order
to reliably reveal miscompilation bugs. Existing program generators
such as Csmith heavily restrict the form of generated programs
in order to achieve UB-freedom. We hypothesis that the idiomatic
nature of such program limits the test coverage they can offer. Our
idea is to generate less restricted programs that are still UB-free—
programs that get closer to the edge of UB, but that do not quite
cross the edge. We present preliminary support for our idea via a
prototype tool, CsmithEdge, which uses simple dynamic analysis
to determine where Csmith has been too conservative in its use
of safe math wrappers that guarantee UB-freedom for arithmetic
operations. By eliminating redundant wrappers, CsmithEdge was
able to discover two new miscompilation bugs in GCC that could
not be found via intensive testing using regular Csmith, and to
achieve substantial differences in code coverage on GCC compared
with regular Csmith.
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1 INTRODUCTION

Randomised testing tools (fuzzers) have proven successful at finding
bugs in mature compilers [4, 10, 14–17, 20]. To find miscompila-
tion bugs—where a compiler silently generates wrong code—such
fuzzers typically employ cross-checking: comparing the behaviour
of a program after compilation by distinct compilers, or the be-
haviour of multiple equivalent programs built by a single compiler.
Result mismatches point to miscompilation bugs that can be inves-
tigated. Cross-checking avoids the oracle problem [1]: the approach
flags up differences in results that are expected to be the same, and
does not require knowing which (if any) result is correct.
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Avoiding the oracle problem in this manner when testing C and
C++ compilers relies on a source of programs that are free from
undefined behaviour (UB). Examples of UB in C include using unini-
tialised variables, accessing invalid pointers, overflow of signed
integer arithmetic operations, division by zero, and unsequenced
accesses to variables [6]. A program that exhibits UB has arbitrary
semantics, so optimising compilers are free to assume that input
programs are free from undefined behaviour (UB-free) and opti-
mize them based on that assumption. In practice, compilers do take
advantage of UB to generate efficient code [19].

If a program has UB, the results of cross-checking between com-
pilers are meaningless because the program can legitimately yield
any result when executed. Similarly, it is meaningless to cross-check
a single compiler against multiple related programs if one of the
programs exhibits UB.

To counter this, compiler fuzzers go to great lengths to generate
UB-free programs. In the case of e.g. signed integer addition, a
compiler fuzzer could (1) limit the form of generated programs so
that it is feasible to track the possible values of all program variables
at all program points, and use this tracking to ensure that generated
instances of signed addition do not overflow, or (2) avoid limiting
the overall form of generated programs, but guard every instance
of a signed addition operation with an overflow check that only
performs the addition if it does not overflow.

The problem with such strategies is that generated programs
have a restricted, idiomatic form, which can limit the extent to
which they exercise the compiler under test. For example, certain
peephole optimisations on arithmetic operations may be inappli-
cable if every arithmetic operation is enclosed in a conservative
check for potential UB.

In this idea paper, we propose investigating ways to generate
programs that get “closer to the edge” of UB: methods that are less
restrictive in the measures taken to avoid UB, while still achieving
such avoidance. We have two ideas in this regard: (a) modifying
programs post-generation to make them less restricted, guided by
dynamic analysis, and (b) relaxing generation-time restrictions so
that programs that exhibit UB can sometimes be generated, and
using dynamic analysis to detect and discard those that do.

We provide preliminary experimental evidence in support of idea
(a), in the context of the Csmith compiler fuzzer [20] and the pop-
ular GCC compiler. We present a prototype tool, CsmithEdge, that
uses a simple dynamic analysis to identify and eliminate redundant
safety checks for UB on arithmetic operations in Csmith-generated
programs. We show that CsmithEdge-generated programs can
reach parts of the compiler that cannot be reached with extensive
testing using Csmith. CsmithEdge has already discovered two new
miscompilation bugs in GCC—a compiler that has been extremely
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well-tested by several compiler fuzzing tools for many years—which
were promptly fixed by the GCC developers after we reported them.

In the remainder of the paper we describe how Csmith avoids
UB (§2) and our CsmithEdge approach to avoiding redundant UB
checks on arithmetic operations, with experiments showing the
increased bug finding ability and more thorough compiler code
coverage that this brings to GCC (§3). We conclude with future
ideas for our broader vision in this area (§4).

2 CSMITH AND UB AVOIDANCE

Csmith [2, 20] generates deterministic C programs that are free
from undefined and unspecified behaviour. This makes them well-
suited to compiler testing approaches based on cross-checking. A
Csmith program takes no input, and on termination prints a single
value obtained by hashing the final values of the program’s global
variables. A Csmith–generated program thus has a single path;
this is an important property that we take advantage of in our case
study (§3).

Csmith achieves UB-freedom via a combination of generation-
time analysis and runtime checks. For example, a generation-time
pointer analysis is used to ensure that accesses via non-null pointers
are to valid data, and runtime checks are used to avoid dereferencing
null pointers.

Runtime checks are also used to avoid UB related to integer
arithmetic. This is achieved via safe math wrappers. Instead of
directly issuing an integer arithmetic expression 𝑎 ◦ 𝑏 (for some
operator ◦), Csmith instead invokes a safe math wrapper for the
operation. The wrapper returns 𝑎◦𝑏 if there would be no associated
UB, and otherwise returns some safe value (in practice, the value
𝑎). More formally, a safe math wrapper for an operation 𝑎 ◦ 𝑏 has
the form:

unsafe(𝑎, 𝑏, ◦) ? 𝑎 : 𝑎 ◦ 𝑏
where unsafe(𝑎, 𝑏, ◦) is an unsafe check that returns true if and only
if the operation 𝑎 ◦ 𝑏 would trigger UB.

Csmith offers safe math wrappers in the form of functions, e.g.
(for signed integer division):
i n t 3 2 _ t s a f e _ d i v ( i n t 3 2 _ t X , i n t 3 2 _ t Y ) {

r e t u r n ( Y == 0 ? X : (X / Y ) ) ;
}

and macros, e.g. (again for signed integer division, and simplified
for readability):
# d e f i n e i n t 3 2 _ t s a f e _ d i v ( _X , _Y ) \

( { i n t 3 2 _ t X = ( _X ) ; i n t 3 2 _ t Y = ( _Y ) ; \
Y == 0 ? X : X / Y ; } )

The user of Csmith can decide which to use by including an
appropriate header file. The function and macro forms of these
wrappers are intended to be semantically equivalent.Our under-
standing from talking to the Csmith developers is that the function
wrappers (the default) are preferred because they are simpler to
maintain. However, unless functions are fully inlined, they may
inhibit compiler optimisations; a problem that the macros do not
suffer from.

3 RELAXING SAFE MATH CHECKS

Using safe math wrappers eliminates arithmetic UB in a simple way.
The price for this is that arithmetic operators that are potentially

UB-prone never appear in a Csmith-generated program in a raw
form. They are always enclosed in a safe wrapper, as the third argu-
ment to a conditional (ternary) operator of the form “?. . . :”. As the
conditional operator introduces control flow (due to short-circuit
evaluation), the rather prescriptive program format arising from
this blanket use of conditionals may bias the optimizations that a
compiler applies to Csmith-generated programs, possibly reducing
the extent to which Csmith can find bugs in other optimisations.

3.1 Identifying Redundant Checks

A safe math check in a Csmith-generated program is redundant
if the program is still free from UB after removing the check. To
identify and eliminate redundant safe math checks in a generated
program, we temporarily replace the 𝑖th occurrence of a safe math
wrapper of the form unsafe(𝑎, 𝑏, ◦) ? 𝑎 : 𝑎 ◦ 𝑏 with:

unsafe(𝑎, 𝑏, ◦) ? WARN(𝑖), 𝑎 : 𝑎 ◦ 𝑏

where, if executed, WARN(𝑖) prints a message indicating that the
𝑖th safe math wrapper is truly necessary. The semantics of the C
comma operator means that in the case where WARN(𝑖) is executed,
the entire ternary expression evaluates to 𝑎, just as it would if
WARN(𝑖) were not present.

Because a Csmith program takes no input and thus exhibits
a single execution path, running the transformed program once
immediately reveals the subset of safe math wrappers that are
actually needed. We then prune all but these wrappers from the
original program. This yields a program that is still free from UB,
because all the necessary safe math wrappers are in place, but that
may have significantly fewer safe math wrappers overall, because
all the redundant safe math wrappers are gone, meaning that its
use of arithmetic is correspondingly less constrained.

As an example, consider the following contrived program, which
is similar in spirit to (though much smaller than) a program that
Csmithmight generate, where safe_lshift, safe_add, safe_div
and safe_mul are safe math wrappers for the signed integer opera-
tors «, +, / and *, respectively:
i n t main ( ) {

i n t s = 5 ;
i n t t = 2 1 4 7 4 8 3 6 4 6 ;
s = s a f e _ l s h i f t ( s , 1 4 ) ; / / ( i ) r edundant
f o r ( i n t k = 8 ; k >= −8 ; k−−) {

s = s a f e _ add ( s , k ) ; / / ( i i ) r edundant
t = s a f e _ d i v ( t , k ) ; / / ( i i i ) n e c e s s a r y

}
t = sa f e_mul ( s a f e_mul ( s , t ) , s ) ; / / ( i v ) i nne r

/ / redundant , ou t e r n e c e s s a r y
p r i n t f ( hash ( s , t ) ) ;

}

Our approach identifies the wrappers at locations (i) and (ii) to be
redundant and the wrapper at (iii) to be necessary (because the
divisor k passes through 0). The inner wrapper at location (iv) is
redundant, because s and t are small enough that their product
does not overflow, but multiplying this product again by s would
lead to overflow so that the outer wrapper at (iv) is necessary.

Specifically, execution of this program with our modification
lists two locations with UB: the safe_div call in the loop (for the
iteration when k is 0) and the outer safe_mul call after the loop
(when attempting to compute 81920 ∗ 81920). These two safe math
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wrappers are thus kept, and all others are removed (e.g., location
(ii) becomes s = s + k;).

3.2 Preliminary Evaluation

We have implemented our approach in a prototype tool called
CsmithEdge, as a set of bash scripts on top of Csmith [11], and
available at [12]. For a given integer seed,CsmithEdge runsCsmith
to produce a C program, and uses the approach described in §3.1
to obtain a version of this program where all redundant safe math
wrappers have been replaced with explicit arithmetic operations.
We refer to the program that Csmith generated and the program
after removal of redundant wrappers as the original and relaxed
programs. Because safe math wrappers can be instantiated via
functions or macros, a single integer seed yields four distinct con-
crete programs: Csmith-funs: the original program using func-
tions for safe math wrappers; Csmith-macros: the original pro-
gram using macros for safe math wrappers; CsmithEdge-funs:
the relaxed program using functions for safe math wrappers; and
CsmithEdge-macros: the relaxed program using macros for safe
math wrappers.

These four programs can be used to cross-check a C compiler:
they should all yield the same results when their compiled binaries
are executed.1 (Being free from UB, we could also use them for
cross-checking with respect to multiple distinct compilers, or the
same compiler at different optimisation levels, but we have not
experimented with this yet.)

Evaluation. We evaluatedCsmithEdge using a number of virtual
machines running Ubuntu 18.04.4 LTS 𝑥86_64, eachwith two virtual
CPU cores (2 Sockets, 1 Core) and 8 GB RAM. Each virtualisation
host had two Intel Xeon CPU E5-2690 v3 CPUs per host, running
at 2.6GHz, with 24 cores/48 threads per CPU.

We chose GCC version 10.0.1 (commit 613c932) as a compiler to
test; GCC is one of the most widely-used C compilers, and has been
extensively tested by compiler fuzzing tools in the past, so we felt
it would be an adequately challenging target in which to find bugs.
We used 100,000 distinct seeds to generate Csmith programs. For
each seed, we obtained a 4-tuple of equivalent concrete programs
as described above. We compiled each concrete program with GCC
using the standard -O2 optimisation level, executed all four com-
piled programs and compared their results, flagging up any result
mismatches. We also collected coverage information in the GCC
codebase (which was compiled without optimisation and with gcov
instrumentation), separately for each of Csmith-funs, Csmith-
macros, CsmithEdge-funs and CsmithEdge-macros programs,
respectively. When running a program, we imposed a timeout of
500s—this is important because Csmith-generated programs are
not guaranteed to terminate in general. Approximately 15k out
100k programs hit the timeout.

1One might ask whether it would be worth considering a fifth program variant in
which all safe math wrappers are removed and replaced with explicit arithmetic
operations. However, this would not make sense: removing any of the safe math
wrappers that are necessary means that the program will trigger UB. Such programs
cannot be used for finding miscompilation bugs by cross-checking compilers, because
it is perfectly legitimate for two compilers to compile such programs into binaries that
yield completely different results when executed, since a program that exhibits UB
can behave in an arbitrary manner.

Discussion of Bugs in GCC. We found and reported two com-
piler bugs with normal importance (P2) in GCC-10 in the tree-
optimisation component, which caused the generation of wrong
code [8, 9].

GCC Bug #1: Skipping Tree-Side-Effect Evaluation of Operator’s
Second Argument [9]. When evaluating an expression, any side
effects have to be computed even when their evaluation is not
required for the evaluation of the expression. However, GCC had
a bug that sometimes caused it to generate code that incorrectly
ignored side effects. The following example contains the core of
the generated program that exposes the bug.

Example 1. In the following program:
t y p e d e f i n t i n t 3 2 _ t ;
i n t main ( ) {

i n t a = 0 ;
i n t 3 2 _ t b = 0 ;
( a > 0 ) ∗ ( b | = 2 ) ;
p r i n t f ( "%d \ n " , b ) ;

}

(𝑎 > 0) evaluates to 0 and as a result, the multiplication evaluates
to 0. Due to bug #1, 𝑏 is never set to 2 because the second argument
evaluation is wrongly skipped, hence the program incorrectly prints 0
instead of 2.

After our report, developers promptly fixed the bug. The fix was
done in match.pd, which contains a series transformation patterns
that GCC employs.

The bugwas found only byCsmithEdge-macros-style programs.
CsmithEdge found the bug in 290 out of the 100,000 generated
programs (288 miscompilations and 2 runtime crashes)—we base
this on the fact that these programs ceased to misbehave when re-
compiled with a fixed version of GCC. To understand why the bug
was only found by CsmithEdge-macros, we measured the line cov-
erage of all locations related to the patch (in files: gimple-match.c
and generic-match.c, where match.pd is actually used). In file
gimple-match.c the coverage was high with all four versions,
but in generic-match.c, the coverage was 0 with all versions but
CsmithEdge-macros. Therefore, we suspect that the reason regular
Csmith cannot find this bug is indeed due to the extra restrictions it
imposes in the generated programs. We believe CsmithEdge-funs
doesn’t find the bug due to its many function calls inhibiting the
buggy optimisation.

GCC Bug #2: Skipping Tree-Side-Effects on Internal Calls [8]. The
second bug we found was also related to incorrectly skipped side
effects, but this time in a sequence of statements. The following
example contains the core of the program exposing the bug.

Example 2. In the following program:
i n t main ( ) {

i n t a = 0 ;
un s i gn e d l o ng l o ng one = 1 ;
( ( 1 8 4 4 6 7 4 4 0 7 3 7 0 9 5 5 1 6 1 5 UL / one ) < a ++ , one ) ;
p r i n t f ( "%d \ n " , a ) ;

}

The statement on line 4 contains two expressions separated by a
comma, and returns the last expression. The evaluation of a++ is
incorrectly ignored and the program incorrectly prints 0 instead of 1
when the buggy compiler is used.
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Figure 1: Line coverage in the GCC-10.0.1 compiler achieved

by the four different generation methods.

This bug was also promptly fixed by the developer, with the
patch in gcc/tree.c for GCC-10.1. The bug was similarly only
found by CsmithEdge-macros, with a single program triggering
it. We measured the coverage for the lines related to the patch
for each method. The number of line-hits was 0 with Csmith-
funs and Csmith-macros, 8 with CsmithEdge-funs, and 458 with
CsmithEdge-macros. Therefore, we suspect again that the reason
regular Csmith cannot find this bug is indeed due to the extra re-
strictions it imposes in the generated programs. Since CsmithEdge-
funs also covers some lines in the patch, it is possible that it could
also find it with a larger population of generated programs.

Discussion of GCCCode Coverage. Figure 1 reports the cumulative
coverage achieved in the GCC codebase by the four different sets
of 100K programs (Csmith-funs, Csmith-macros, CsmithEdge-
funs and CsmithEdge-macros). We measured the coverage every
5, 000 programs. We used the gcov-based tool gfauto, from the
GraphicsFuzz project [5, 13], to aggregate results from all machines
and generate the coverage results in a human-readable format.

Figure 1 shows that the largest line coverage was achieved by
CsmithEdge-macros, and the second-largest by CsmithEdge-
funs. After 100k programs are compiled, CsmithEdge-macros
covers around 5K more lines than the rest.

To understand how complementary the different sets of gener-
ated programs are, Figure 2 presents a Venn diagram of the lines
covered after compiling all 100k programs in each set. All sets cov-
ered a common set of 240,678 lines in the GCC codebase. Numbers
with a black label show the unique lines covered by each set: 96 for
Csmith-funs, 272 for CsmithEdge-funs, 166 for Csmith-macros
and 3,924 for CsmithEdge-macros.2 The other numbers show the
numbers of lines covered only by two or three of the sets. Over-
all, we see that while CsmithEdge-macros covers most additional
lines of code, there is nevertheless complementarity between the
methods.

2See [3, 12] for a breakdown of the lines covered uniquely by CsmithEdge-macros.

Figure 2: Venn diagram of comparison between (clock-wise,

top-left)Csmith-funs,CsmithEdge-funs,Csmith-macros,

and CsmithEdge-macros of line-coverage after compiling

100,000 test-cases.

4 FUTURE DIRECTIONS

In this idea paper, we presented promising empirical evidence that
lifting some of the restrictions introduced by compiler fuzzers to
generate UB-free programs can find compiler bugs that would be
otherwise out of reach.

Immediate future work could include relaxing more runtime
checks (e.g., for null-pointer dereferences), trying different compil-
ers (e.g., LLVM or Microsoft Visual Studio), and crosschecking the
generated programs across multiple compilers. We would also like
to further understand the impact of using function calls vs. macros
for the safe math checks. Given the complementary compiler cover-
age achieved by the function and macro-based versions, it would be
interesting to explore a version mixing both functions and macros.

We also plan to explore the idea of relaxing the methods used
during program generation so that programs exhibiting UB can
sometimes be generated, and then using dynamic analysis to de-
tect and discard such programs. For instance, with Csmith, array
indexes are forced to be in bounds, and gotos are forbidden from
spanning initialisation code. These and other checks could be re-
laxed or omitted with low probability during generation, in the
hope that the generated program still has a high chance of being
UB-free. Program analysers such as ASan [18] or FramaC [7] could
be used to discard programs that do turn out to exhibit UB, and the
programs that remain could be used for cross-checking multiple
compilers, their less idiomatic form perhaps leading to the discov-
ery of bugs in previously under-tested parts of the compiler under
test.
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