
SPIN-to-GRAPE: A Tool for Analysing

Symmetry in Promela Models

Alastair Donaldson, Alice Miller, Muffy Calder

Department of Computing Science, University of Glasgow, Scotland
{ally,alice,muffy}@dcs.gla.ac.uk

Abstract

We provide two examples of Promela models of concurrent, distributed systems, whose associated
Kripke structures have more complex symmetry groups than those of models commonly cited in
the literature. We present a tool, SPIN-to-GRAPE, which allows the state-graph of a Promela model
to be manipulated using the group-theoretic package GAP and its graph-theoretic add on, GRAPE.
Through studying these examples we show a correspondence between the symmetry group of the
channel diagram of a system and the symmetry group of the Kripke structure associated with the
system. We then identify some general classes of systems and describe the symmetry groups of the
associated models. Finally we discuss ways in which symmetry reduction techniques incorporated
within SPIN, e.g. the SymmSpin package, could be extended to exploit symmetry in such models.

Keywords: Reactive systems; concurrency; formal modelling and verification; symmetry
reduction; distributed systems; Promela/SPIN; GAP/GRAPE; nauty

1 Introduction

Model checking is a technique whereby properties of a system can be checked
by building an abstract model of the system and, by exploring all possible
execution paths, checking whether the model satisfies the properties. Often
models exhibit high degrees of symmetry, and this can be exploited, to re-
duce the cost of the search. The SPIN model checker [12] is an explicit state,
on-the-fly model checker, designed primarily for the verification of communi-
cations protocols. Verification models for use with SPIN are written using the
specification language Promela (Process meta language).

Recently attempts have been made to incorporate symmetry reduction
techniques within the SPIN model checker [2]. In particular, the SymmSpin

Electronic Notes in Theoretical Computer Science 139 (2005) 3–23

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.09.007

http://www.elsevier.com/locate/entcs


package has been shown to give very large factors of reduction when applied
to models with many replicated components which are fully symmetric. The
symmetry reduction techniques employed by SymmSpin are based on the ap-
proach of Ip and Dill using the notion of the scalarset [14]—a special data
type with restricted, symmetry-preserving operations. In addition to SPIN,
scalarsets have also been used to add symmetry reduction to other verifica-
tion systems such as UPPAAL [11] and Murϕ [6]. Scalarsets are an ideal means
by which to exploit symmetry in models with many replicated components if
there is full symmetry between these components. For example, scalarsets
could be effectively used to gain symmetry reductions when verifying a model
of a network of identical processes with the complete topology. Ip and Dill
also note that the scalarset type could be modified to work with other kinds
of symmetry, e.g. rotational symmetry in a system with a ring topology.

However, although symmetry reduction is currently a hot topic, few exam-
ples are available to (a) illustrate the fundamental concepts and (b) generalise
the results to more realistic systems. In this paper we provide some concrete
examples of models which have more complicated symmetry groups than those
of examples commonly cited in the literature, symmetries which cannot be
exploited currently by the scalarset approach. Our models are of distributed
systems which exhibit both concurrency and non-determinism. We show that
the symmetry groups of our models are isomorphic to the symmetry groups of
the channel diagrams associated with the models, and describe the structure
of these groups in terms of basic permutation groups. Through these examples
we identify some more general classes of systems and predict the symmetry
present in the associated models. We describe a technique by which the group
theoretic package GAP [9] is used to investigate the automorphism groups of
Promela models, and present a software tool, SPIN-to-GRAPE, which allows
the state-graph of a Promela model to be loaded into GAP and manipulated
using GRAPE, a graph-theoretic package for GAP. Finally we propose some
extensions to the scalarset data type which could be used to apply symmetry
reduction techniques to a larger class of Promela models than is currently
possible with SymmSpin.

2 Preliminaries

In section 2.1 we give some mathematical definitions which will be used
throughout. The application of symmetry reduction to model checking is
briefly discussed in section 2.2, and we give an outline of the GAP package in
section 2.3.

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–234



2.1 Basic group theory and automorphisms of graphs

Definition 2.1 Let G be a non-empty set, and let ◦ : G×G → G be a binary
operation. We say that (G, ◦) is a group if G is closed under ◦; ◦ is associative;
G has an identity element 1G; and for each element x ∈ G there is an inverse
element x−1 ∈ G such that x ◦ x−1 = x−1 ◦ x = 1G.

We call the operation ◦ multiplication in G. When it is clear what the
binary operation is, we simply refer to a group as G rather than (G, ◦). Let
H be a non-empty subset of a group G. If H is a group in its own right under
the binary operation of G, i.e. it satisfies definition 2.1, then we call H a
subgroup of G and write H ≤ G.

Let G be a group, and let g1, g2, . . . , gn ∈ G. The set of elements of G

obtained by multiplying together (in any order and allowing repetition) any
of the elements g1, g2, . . . , gn, g−1

1 , g−1
2 , . . . , g−1

n is denoted by 〈g1, g2, . . . , gn〉.
This set is a subgroup of G, called the subgroup generated by g1, g2, . . . , gn.

Consider the set [n] = {1, 2, . . . , n}. A permutation of [n] is a bijection
from [n] to [n]. We use disjoint cycle form [19] to represent permutations
of [n]. The set of all permutations of [n] forms a group under composition
of mappings. This group is called the symmetric group on n points, and is
denoted Sn.

Definition 2.2 Let (G, ◦) and (H, ∗) be groups, and let θ : G → H be a
mapping. We say that θ is an isomorphism from G to H if it is bijective and
satisfies the following condition:

∀g, h ∈ G . θ(g ◦ h) = θ(g) ∗ θ(h).

In this case the inverse mapping θ−1 is also an isomorphism from H to G, and
we say that G and H are isomorphic, denoted G ∼= H .

The relation ∼= is an equivalence relation on groups [19], so if groups G

and H are isomorphic they are equivalent in group theoretic terms. In fact
they are algebraically indistinguishable. Hence isomorphic groups are often
regarded as equal since they have exactly the same structure. If a group H is
isomorphic to a subgroup of a group G we just say that H is a subgroup of
G.

For neatness, and the ability to compare structural properties of different
groups, we often identify a group G as being isomorphic to a product of
permutation groups H and K. For example as a direct product (denoted
H ×K), a semi-direct product (denoted H.K), or a wreath product (denoted
H � K). We do not provide definitions of these products here, for details see
[19].

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–23 5



Definition 2.3 Let Γ = (V, E) be a directed, uncoloured graph, where V is a
non-empty set of vertices and E ⊆ V ×V is a set of edges. An automorphism
of Γ is a bijection α from V to V which satisfies the following condition:

∀x, y ∈ V . (x, y) ∈ E ⇔ (α(x), α(y)) ∈ E.

If Γ is a coloured graph with a colouring C (C maps each element of V to
exactly one colour taken from some non-empty set) then an automorphism of
Γ must satisfy the additional condition:

∀x ∈ V . C(x) = C(α(x)).

For a directed graph Γ (coloured or uncoloured), let Aut(Γ) denote the set of
all automorphisms of Γ. It can be shown that Aut(Γ) forms a group under
composition of mappings. We call Aut(Γ) the automorphism group of Γ.

2.2 Symmetry and model checking

Throughout this section let P = p1 ‖ p2 ‖ · · · ‖ pn be a concurrent program,
where p1, p2, . . . , pn are processes running in parallel for some n ≥ 1, and AP

a set of atomic propositions for the program P. The set of communication
channels associated with P is denoted by {cn+1, cn+2, . . . , cn+k} for some k ≥ 0.

Definition 2.4 The Kripke structure M over AP associated with P is a
quadruple M = (S, R, L, s0) where:

(i) S is a non-empty, finite set of states

(ii) R ⊆ S × S is a total transition relation, that is for each s ∈ S ∃ t ∈ S

such that (s, t) ∈ R

(iii) L : S → 2AP is a mapping that labels each state in S with the set of
atomic propositions true in that state

(iv) s0 ∈ S is an initial state.

The Kripke structure M gives the formal semantics of the program P.
An automorphism of the Kripke structure M is an automorphism of the un-
coloured, directed graph with vertex set S and edge set R (see definition 2.3).
The group of automorphisms of a Kripke structure M is denoted Aut(M). A
subgroup G of Aut(M) induces an equivalence relation ≡G on the states of
M by the rule s ≡G t ⇔ s = α(t) for some α ∈ G. The equivalence class
under ≡G of a state s ∈ S, denoted [s], is called the orbit of s under the action
of G. The orbits can be used to construct a quotient Kripke structure MG as
follows:

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–236



Definition 2.5 The quotient Kripke structure MG of M with respect to G

is a quadruple MG = (SG, RG, LG, [s0]) where:

(i) SG = {[s] : s ∈ S} (the set of orbits of S under the action of G)

(ii) RG = {([s], [t]) : (s, t) ∈ R}

(iii) LG([s]) = L(rep([s])) (where rep([s]) is a unique representative of [s])

(iv) [s0] ∈ SG (the orbit of the initial state s0 ∈ S).

In general MG is a smaller structure than M, but MG and M are equiv-
alent in the sense that they satisfy the same set of logic properties which are
invariant under the group G (that is, properties which are “symmetric” with
respect to G). Thus by choosing a suitable symmetry group G, model checking
can be performed over MG instead of M, often resulting in considerable sav-
ings in memory and verification time. For more details of quotient structures
and symmetry reduced model checking see for example [5].

It would be possible in principle to construct a quotient Kripke structure
by constructing the original structure, finding its automorphism group, and
identifying the orbits of the structure under this group. However, finding
automorphisms of a graph is a hard problem, for which no polynomial time
algorithm is known [18]. In addition, a quotient Kripke structure cannot be
found using this method if the original structure is intractable. Thus any
useful symmetry reduction method must allow us to find automorphisms of a
Kripke structure without explicitly building the structure.

It is well known that automorphisms of a Kripke structure often arise as a
result of symmetry in the architecture or network topology of the concurrent
system being modelled [4]. We show in this paper that, in some cases, such
symmetries can be detected by looking at the channel diagram [20] of the
system.

Definition 2.6 The channel diagram corresponding to the concurrent pro-
gram P is a directed, coloured graph C(P) = (V, E, C) where: V = VP ∪ VC

and VP = {1, . . . , n}, VC = {n + 1, . . . , n + k} are the set of indices of pro-
cesses and channels in the system respectively; for i, j ∈ V, (i, j) ∈ E if and
only if i ∈ VP , j ∈ VC and process pi can send a message on channel cj,
or i ∈ VC , j ∈ VP and process pj can receive a message on channel ci; the
mapping C assigns each process or channel to a process type or channel type
respectively (where process types and channel types are disjoint).

In Figure 2 we give an example of the channel diagram of a distributed
system, where processes are represented by ovals, channels by rectangles, and
types by textual labels. Indices are indicated beside each oval or rectangle.

Definition 2.6 is specific to the message passing computation paradigm. In

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–23 7



[4], a similar definition is made for a shared variable computation paradigm—
the coloured hypergraph corresponding to the concurrent program P. Un-
der certain restrictions, each automorphism of the coloured hypergraph cor-
responds to an automorphism of the underlying Kripke structure associated
with the system. An automorphism α of the hypergraph is applied to a state
of the Kripke structure by permuting the shared variables and local variables
of processes according to the permutation of process indices by α.

An analogous result holds for the message passing paradigm. An automor-
phism of a channel diagram C(P) = (V, E, C) is a graph automorphism (see
definition 2.3) of C(P) considered as a directed, coloured graph. Elements
of Aut(C(P)) permute both the set VP of process indices and the set VC of
channel indices, and can therefore be applied to states of a Kripke structure
as follows. Let us refer to the set of variables whose domains are process iden-
tifiers as I-variables. The labelling function L of the Kripke structure labels
each state s with a set of assignments to local variables and channels of P. If
vi is a local variable of process pi, then, since α maps the process index i to the
index of a process with the same process type as pi, there is a corresponding
local variable vα(i) of process pα(i). The labelling of local variables in the state
α(s) is therefore defined by the following rules:

(vi = x) ∈ L(s) ⇒ (vα(i) = x) ∈ L(α(s)) if vi is not an I-variable

and

(vi = x) ∈ L(s) ⇒ (vα(i) = α(x)) ∈ L(α(s)) if vi is an I-variable

The automorphism α permutes the contents of channels in P in a similar way.
Under certain restrictions, an automorphism α ∈ Aut(C(P)) corresponds to
an automorphism α′ ∈ Aut(M), and we have:

Lemma 2.7 If P is a concurrent program satisfying a set of restrictions R,
M is the Kripke structure associated with P, and C(P) is the channel diagram
corresponding to P, then Aut(C(P)) ≤ Aut(M).

The set of restrictions R are similar to those associated with the scalarset
approach, described in section 7, in that they apply to the subset of the
variables associated with P which are I-variables. In this case, statements in
P involving an I-variable x are restricted to those of the form xΔy, where Δ
is ‘=’, ‘==’ or ‘�=’, and y is an I-variable; chan?x (read x from channel with
name chan); or chan!x (write x to channel with name chan).

Although straightforward, for space reasons we do not provide a proof
of Lemma 2.7 here. However, we do prove the result for specific examples

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–238



in sections 4 and 5. Lemma 2.7 enables us to find automorphisms of an
intractably large Kripke structure by analysing the channel diagram of the
system, which is typically a small graph.

2.3 GAP and GRAPE

GAP (Groups, Algorithms and Programming) [9], is a computational group
theory package which consists of an imperative programming language, a type
system for working with algebraic structures, and an extensive library of func-
tions for computing with these structures. GAP provides a rich set of functions
for computing with groups, but on its own provides little support for graph the-
oretic computation. GRAPE (GRaph Algorithms using PErmutation groups)
[23] consists of a set of functions which can be imported into GAP. Among the
functions which GRAPE provides is a function to compute the automorphism
group of a directed, coloured graph. This function interfaces to the nauty (no
automorphisms, yes) program [17], which uses the most efficient algorithm
currently known for finding the automorphism group of a graph [18].

Full details of GAP and GRAPE can be found on the GAP website [9]. In
this paper we make use of the following two functions:

• AutGroupGraph(Γ[,C])—Returns the automorphism group of the directed
graph Γ. The optional argument C allows a colouring on the vertices of Γ
to be specified, and only automorphisms which preserve this colouring will
be returned.

• IsomorphismGroups(G,H)—Computes an isomorphism between the groups
G and H if they are isomorphic (see definition 2.2), and returns fail other-
wise.

3 The SPIN-to-GRAPE tool

Among the options which SPIN provides for running verifications on Promela
models is the -DVERBOSE compile-time directive. This option causes every step
of a verification to be recorded, and once completed, saved to a file. Running a
verification to search for invalid end-states on a deadlock-free model with the
-DVERBOSE option, and no partial order reduction (an algorithm ensuring that
only one representative from a set of equivalent paths is searched), effectively
causes the whole of the corresponding Kripke structure to be output. In order
to manipulate the states and transitions of the Kripke structure associated
with a model using GAP and GRAPE we have designed a tool, SPIN-to-GRAPE,
which takes relevant verbose output and produces a graph which can be input
to GAP.

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–23 9



The SPIN-to-GRAPE tool consists of a PERL program based on Algorithm 1
below, which re-traces the steps taken by SPIN when performing the state-
space search. The algorithm uses a separate stack for each process in the
model. Every time a line in the input file indicates that a process has executed
a statement, the current state number is added to the stack of that process.
When a line of input indicates that a process has reversed, a value is popped
from the stack of that process, and the current state number is set to this
value. This is how the algorithm keeps track of the current state number
when processing the input file. Every time a line of input is found which
specifies that a new or old state has been found, the algorithm writes a line of
GRAPE code to the output file, specifying that a transition should be added
to the state graph. The file produced as output from SPIN-to-GRAPE can be
loaded into GAP, and the AutGroupGraph() function of GRAPE can be called
to find the automorphism group of the state graph, using the nauty algorithm.
The PERL code listing is available on our website [3].

Algorithm 1 Algorithm used by SPIN-to-GRAPE to construct the state-space
of a model from a SPIN output file

open input and output files
current state := 1
find the number of states n of the model
output GAP lines to create a null graph K with n vertices
for each line l in the input file do

if l signifies a new state s then

output line to add to K an edge from current state to s

current state := s

else if l signifies an old state s then

output line to add to K an edge from current state to s

else if l indicates that process p executes then

push current state on to process stack of process p

else if l indicates that process p reverses then

pop a state s from stack of process p

current state := s

end if

end for

close input and output files

Though the SPIN-to-GRAPE tool is extremely useful for working with sim-
ple Promela models, it has limitations. Use of the -DVERBOSE option greatly
increases the time taken for a full state-space search, since SPIN displays on-
screen every step involved. It would be preferable if the tool were incorporated

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–2310



into SPIN, so that as the state-space of a model is explored, SPIN could out-
put a file containing the GAP and GRAPE commands required to build the
state-graph, rather than the entire verbose output.

Another problem with the tool is that the size of input file which GAP

can accept is limited due to a bug in GAP (version 4.3). The “current line”
counter of an input file is held in a variable of type short, and this counter
wraps back to 0 if the number of lines of an input file exceeds the capacity of
a short variable. We have reported this bug and it will be fixed in the next
release of GAP. Currently it is possible to modify and recompile GAP to solve
the problem, or to split a large input into several smaller files. In addition, the
nauty algorithm only works for graphs of size ≤ 215−3 (although theoretically
this bound can be raised via recompilation). More crucially, the complexity
of the nauty algorithm means that it performs badly on large graphs, and its
use is not generally feasible for graphs of more than around 15,000 vertices.

To accompany the SPIN-to-GRAPE tool we have written a GAP function,
QuotientKripke(). This function takes the states and transitions of a Kripke
structure M (as a directed graph) together with a subgroup G of Aut(M),
and returns the directed graph consisting of the states and transitions of the
quotient Kripke structure MG. This function allows us to determine the
potential factors of reduction available through the use of symmetry for small
models. The code for the QuotientKripke() function is also available on our
website [3].

In the following sections we describe two Promela models, and show how
the SPIN-to-GRAPE tool allows us to analyse the symmetry present in both
the state-graphs and the channel diagrams of these models.

4 Three-tiered architecture model

A common software engineering design pattern for distributed systems is the
three-tiered architecture. Components in such an architecture are separated
into three layers, a layer of clients, a layer of servers and a layer of data storage
systems. The typical flow of messages for such a system is shown in figure 1
(adapted from [24]). This pattern is common in the e-business domain, where
customers buy products or make bookings over the Internet. A set of servers
at various geographical locations deal with customers’ (clients’) requests and
communicate with a central (possibly replicated) database.

Our first model is of a simple three-tiered system consisting of three process
types: client, server and database. Each client process is parameterised by its
id and a channel name associated with a server process. The server processes
are parameterised by two channel names. The first of these channels is used

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–23 11



to receive requests from client processes, and the second to send queries to
the database. A client process loops continuously, sending a request message
to the server to which it is connected, and waiting until a result message is
received on its incoming channel. Similarly each server process continuously
repeats the actions of receiving a request from a client, sending a query to the
database and receiving data, then sending a result back to the client. The
database process continuously receives queries from the servers and returns
data. For each server process there is an array of channels—one channel for
each client associated with that server. The database also uses an array of
channels, one for each of the servers. All the channels in the model are syn-
chronous. The channel diagram of a system with a database, three servers
and eight clients is illustrated in Figure 2. Each channel is annotated with
the type of messages it accepts. A message type consists of one or more field
types enclosed in curly braces. The field types used here are byte, and mtype,
which is an enumerated type used to represent control instructions. The type
of a channel also depends on the length of the channel, i.e. the number of
messages it can hold. Since all channels in the model are synchronous (and so
have length 0), lengths are not indicated on the diagram. The code for this
configuration of the three-tiered model is available on our website [3]

Analysis of symmetry in the three-tiered model

In order to analyse the symmetry in the model of a three-tiered architecture
we use the configuration shown in Figure 2 as a case-study. Let P denote a
system with this configuration, with channel diagram C(P) and associated
Kripke structure M. The configuration is suitable as it has multiple servers
as well as multiple clients, and the tree of processes is not perfectly balanced,
a feature which we would expect to be reflected in the symmetry present in
the Kripke structure. The resulting state-space of the configuration is small
enough to allow comprehensive symmetry analysis using our automated setup.

User interface
(presentation)

Application
server

Database
server

Request
operation

Request data

Wait for data

Return data

Return
result

Wait for result

Time

Fig. 1. Flow of control in a three-tiered architecture system

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–2312



Cl Cl Cl Cl Cl Cl Cl Cl

Se Se Se

Db

{mtype}

{mtype,byte}

{mtype} {mtype} {mtype}

{mtype,byte}

{mtype} {mtype} {mtype} {mtype} {mtype} {mtype} {mtype}

{mtype,byte} {mtype,byte}

5 6 7 8 9 10 11 12

1

2 3 4

13

14 15 16

17 18
19

20 21 22 23 24 25 26 27

Fig. 2. Channel diagram of a three-tiered architecture model with one database (Db), three servers
(Se) and eight clients (Cl).

Inputting the channel diagram of Figure 2 to GAP (specifying a colouring
according to process types), and calling the GRAPE function AutGroupGraph()
to find the group of channel diagram automorphisms shows that

Aut(C(P)) = 〈(5 6)(20 21), (6 7)(21 22), (8 9)(23 24), (9 10)(24 25),

(5 8)(6 9)(7 10)(20 23)(21 24)(22 25)(2 3)(17 18)(14 15), (11 12)(26 27)〉

We can see from Figure 2 that the first generator of this group, the permu-
tation (5 6)(20 21) is an automorphism of the channel diagram since, clearly,
swapping clients 5 and 6, and simultaneously swapping channels 20 and 21,
leaves the structure of the channel diagram unchanged. Since clients 5 and
6 have the same process type, and channels 20 and 21 have the same chan-
nel type, the permutation preserves the colouring of the channel diagram.
The other generators act on the channel diagram similarly. The elements of
Aut(C(P)) act on states of the Kripke structure M as we described in the dis-
cussion preceding Lemma 2.7 in section 2.2. Since channels in the model are
synchronous, no swapping of channel contents is necessary in this case. The
three-tiered model focusses on control flow rather than data flow, so we would
expect all symmetries of the Kripke structure M to be structurally induced.

We prove that the automorphism groups of the Kripke structure and the
channel diagram are isomorphic, and identify them as being in turn isomorphic
to a product of symmetric groups:

Lemma 4.1 For the configuration of the three-tiered model described above,

Aut(M) ∼= Aut(C(P)) ∼= (S3 � S2) × S2

We have used our combination of SPIN, SPIN-to-GRAPE, GAP and GRAPE

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–23 13



to prove this lemma. The SPIN-to-GRAPE tool was used to input to GAP

the state-graph of the Kripke structure M. The automorphism group of this
state-graph was then found using the AutGroupGraph() function.

We used GAP to construct a group G = (S3 �S2)×S2 (GAP provides func-
tions to compute the direct product and wreath product of two groups). The
IsomorphismGroups() function was used to show that Aut(C(P)) ∼= Aut(M),
and again to show that Aut(M) ∼= G.

The original Kripke structure has 4,393 states. We have used our Quo-
tientKripke() function to compute the quotient structure with respect to the
group Aut(M), finding it to have 281 states. This is a significant factor of
reduction which, for realistic sizes of model, could prove extremely effective
in combatting the problem of state-space explosion.

Generalisation: Intuitively, the group Aut(C(P)) is isomorphic to the group
(S3 �S2)×S2 since there are two blocks of three client processes (giving rise to
the subgroup S3 �S2), and a single block of two client processes (giving rise to
the subgroup S2). Consider an arbitrary configuration P of the three-tiered
model. Let M be the Kripke structure associated with P and let K be the
maximum number of clients that any server in the configuration is connected
to. Let mi denote the number of servers which are connected to i clients for
each i, 1 ≤ i ≤ K. The above discussion and result clearly generalises to give:

Aut(M) ∼= Aut(C(P)) ∼=
∏

1≤i≤K
mi �=0

(Si � Smi
),

where
∏

denotes the direct product over i. In [15], Jha shows how the auto-
morphism group of an arbitrary rooted tree can be found. His approach could
be used to generalise the above argument to systems with more than three
tiers.

5 Model of message routing in a hypercube

A popular topology used in the implementation of switch-based multicom-
puters is the hypercube [24]. The following definition is adapted from [25]:

Definition 5.1 The n-dimensional hypercube is a graph G = (V, E) where

V = {(b1, . . . , bn) : bi = 0, 1}

and
E = {((b1, . . . , bn), (c1, . . . , cn)) : b and c differ in one bit}

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–2314



Algorithm 2 Basic algorithm for message routing in a hypercube network

while true do

receive message destined for node x

if id = x then

choose a new destination x

end if

determine neighbours which are closer than current node to node x

forward message to one of these neighbours
end while

The 4-dimensional hypercube can be represented in 3-dimensions using
two cubes, as shown in figure 3. In a switch-based multicomputer using a
hypercube topology, messages are routed between the processors. As our sec-
ond example we model the routing of messages in a hypercube network using
Algorithm 2 (below), which is a simplified version of an algorithm described
in [8].

Our model defines a parameterised node process. To ensure that the state-
space of the model is small enough to analyse we only consider one message
being passed through the network at a time. Global variables record the
destination and current position of the message. Communication is achieved
through an array of channels, one for each node in the hypercube, and the init
process (the process in which initial values of arrays, channels etc. are set)
sends the first message to a non-deterministically chosen node.

To decide which neighbours are suitable to forward a given message on to,
a node process first computes the bitwise exclusive-or of its own position and
the message destination. Each bit of this result is then considered. If there is
a 1 in position m of the result then the neighbour of the current node whose
coordinates differ in only position m is closer to the message destination than
the current node. The node process non-deterministically chooses one such
suitable neighbour. Again, Promela code for the model is available on our
website [3].

(0,0,0,0) (0,0,0,1)

(0,0,1,0) (0,0,1,1)

(0,1,0,0) (0,1,0,1)

(0,1,1,0) (0,1,1,1)

(1,0,0,0) (1,0,0,1)

(1,0,1,0) (1,0,1,1)

(1,1,0,0) (1,1,0,1)

(1,1,1,0) (1,1,1,1)

Fig. 3. Topology of a 4-dimensional hypercube

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–23 15



Analysis of symmetry in the hypercube model

The automorphism group of an n-dimensional hypercube is well under-
stood, and is derived in [10]. The nodes of a hypercube can be represented by
binary vectors of the form (x1, x2, . . . , xn). For any permutation α in Sn, define
the action of α on (x1, . . . , xn) by α((x1, . . . , xn)) = (xα(1), . . . , xα(n)). For each
i define the i-th complementation permutation ci by ci((x1, . . . , xi . . . , xn)) =
(x1, . . . ,¬xi, . . . , xn). Let Kn = 〈c1, . . . , cn〉, the group generated by all com-
binations of the ci. The automorphism group of the n-dimensional hypercube
is the semi-direct product of Sn and Kn, denoted Sn.Kn.

When analysing the nature of the symmetry in our hypercube model we
would have liked to have used a configuration with at least four dimensions as
a case study. However, the state-space of even the 4-dimensional configuration
proved too large to analyse using our setup—1.6 × 107 states—so we restrict
ourselves to the 3-dimensional configuration (a cube). This problem demon-
strates the rapid explosion of a state-space, and hence the need for techniques
such as symmetry reduction.

Let P denote the 3-dimensional configuration of the hypercube message-
routing system, with channel diagram C(P) and associated Kripke structure
M. The topology of the system is a cube, so we have Aut(C(P)) = S3.K3.
Since the node processes in P are all identical, we expect any automorphism
of the cube topology to correspond to an automorphism of the underlying
Kripke structure. Again, all symmetry is likely to be structurally induced.

Lemma 5.2 For the 3-dimensional configuration of the hypercube model de-
scribed above,

Aut(M) ∼= Aut(C(P)) = S3.K3

We have proved this lemma using SPIN-to-GRAPE, GAP and GRAPE as we
did for Lemma 4.1.

The original Kripke structure has 15,409 states. Using our QuotientKripke()
function as for the three-tiered model, we find that the resulting quotient
structure has 411 states. Again the factor of reduction gained is encouraging.

Lemma 5.2 is interesting since our model of message routing in a hypercube
does not satisfy the restrictions we discussed following Lemma 2.7: process ids
are used as operands in bitwise exclusive-or operations in order to determine
how the packet should be routed. This shows that the restrictions associated
with Lemma 2.7 are sufficient, but not necessary for the Lemma to hold. It
would be interesting to try to identify general cases where process ids can be
used as operands to arithmetic expressions without breaking symmetry.

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–2316



Generalisation: Let P be a configuration of the hypercube model with n

dimensions for some n ≥ 1. Let M be the Kripke structure associated with
P, and let C(P) be the channel diagram corresponding to P. It would seem
likely, from the previous discussion, that the above result generalises to give

Aut(M) ∼= Aut(C(P)) = Sn.Kn

We would intuitively expect this generalised result to hold for any model of a
distributed algorithm on an n-dimensional hypercube of identical processes.

6 Applying SPIN-to-GRAPE to less symmetric models

In our analysis so far we have used SPIN-to-GRAPE, together with GAP and
GRAPE, to prove for certain model configurations that the automorphism
group of the Kripke structure associated with the model is isomorphic to
the automorphism group of the channel diagram corresponding to the model.
In this section we make slight alterations to each of the models to make them
less symmetric, and use SPIN-to-GRAPE to detect the changes in symmetry
which these alterations cause.

6.1 Mixed modes of communication in the three-tiered model

In our model of the three-tiered architecture illustrated by Figure 2, all com-
munication is modelled using synchronous channels, so that messages are
passed via a handshake between sender and recipient, with no buffering. We
modify our model by making one of the channels a one place buffer (i.e. an
asynchronous channel with length 1)—the channel which clients with process
ids 5, 6 and 7 use to send requests to the server with process id 2. The rest
of the model is unchanged.

For the Kripke structure M of the original model we have Aut(M) ∼=
(S3 � S2)× S2. Let M′ be the Kripke structure of the altered model. Analysis
using SPIN-to-GRAPE reveals that Aut(M′) ∼= S3×S3×S2, which is a smaller
group than (S3 � S2) × S2. Clearly this is because the altered communication
channel means that it is no longer possible to permute the servers with process
ids 2 and 3. This shows that it is not only the behaviour of processes and the
presence of connections between processes that affects the structural symmetry
of a model: the exact nature of the communication links is also crucial. Our
approach to finding symmetry by looking at the channel diagram of a system
handles this kind of asymmetry well, since changing the length of a channel
changes the type of that channel. This is reflected in the symmetry of the

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–23 17



channel diagram, and thus the corresponding change in the symmetry of the
Kripke structure is also detected.

The Kripke structure M′ has 14,995 states, and using the QuotientKripke()
function we find that the resulting quotient structure has 1115 states. The
factor of reduction is smaller than the factor of reduction before alterations to
the model were made. This is clearly due to the change in symmetry of the
model.

6.2 Message routing in a hypercube with a fixed initiator

In the hypercube model described in section 5, the packet is first sent non-
deterministically by the init process on one of the channels in the system.
Such non-determinism in a model can often lead to a blow up of states, and
a common approach when attempting to write an efficient verification model
would be to remove such non-determinism. We alter the model so that the
packet is always first sent on the channel associated with the node with an id
of 0. A state-space search using SPIN reveals that the altered model has 8,866
states, in comparison to 15,409 states of the original model.

SPIN-to-GRAPE shows that the resulting automorphism group of the al-
tered model is isomorphic to a subgroup of the automorphism group of a cube.
Let G = S3.K3 be the automorphism group of a cube, and let M′ be the
Kripke structure for the altered model. Then we have Aut(M′) ∼= stabG(0) =
{α ∈ G : α(0) = 0}, the subgroup of G which fixes node 0 (the stabiliser of
node 0 in G). This shows that for a model consisting of identical processes
connected as a given topology, symmetries of the underlying Kripke structure
which correspond to symmetries of the topology will not necessarily be present
if the init process does not behave symmetrically with respect to all processes.
Again, our approach would detect such a change in symmetry: in the original
model there would be an edge in the channel diagram from the init process
to every channel in the system. In the altered model there would only be an
edge from the init process to the channel associated with node 0. This would
cause a change in symmetry in the channel diagram, and the corresponding
change in symmetry of the underlying Kripke structure would be detected.

Interestingly, the QuotientKripke() function shows that the quotient struc-
ture corresponding to the altered model has size 1,669. The quotient structure
corresponding to the model with no alterations has size 411. In this case, al-
though removing non-determinism from the model results in a reduction of
size in the Kripke structure, the corresponding reduction in symmetry means
that the quotient structure of the altered model is actually larger than the
quotient structure of the model with no alterations.

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–2318



7 Extending symmetry reduction in SPIN

In [14], Ip and Dill proposed a special scalarset data type which could be added
to a system description language to make it easy to detect and exploit symme-
tries of the system. A scalarset is an integer subrange with restricted opera-
tions which ensures that consistent permutation of scalarset values throughout
all states of a Kripke structure result in an automorphism of the Kripke struc-
ture. The restrictions prevent scalarset values being compared with each other
by ordering relations, or used as operands in arithmetic expressions. The ids
of equivalent processes in a system could be modelled using scalarsets, indi-
cating that applying a permutation of the ids throughout the Kripke structure
would lead to a valid automorphism of the structure.

Though in many cases it has been shown to be effective [2,6,11], in general
symmetry reduction using scalarsets is limited as it only allows the specifi-
cation and exploitation of total symmetries. It can certainly not be applied
to our examples. Our analysis of the three-tiered model shows that automor-
phisms of a Kripke structure may not always correspond to the permutation of
the ids of just one process type: in a model with a tree-like structure they may
be due to combining permutations of the ids of many process types. Similarly
our analysis of the hypercube model shows that in networks of identical pro-
cesses the presence of symmetry is dependent on the network topology. The
application of scalarsets is currently limited to very simple topologies such as
stars and cliques. We propose two ways in which the scalarset data type could
be extended to the kinds of models that we have described. We extend the
notation used in [14] in which scalarsets are declared thus:

type 〈name〉 : Scalarset[size]

7.1 Associated scalarsets

An associated scalarset would allow the symmetry of tree-structures to be
described in a model specification. An associated scalarset is declared as
usual with a specified size N . The declaration also requires that a list of N

scalarset types is specified. This list associates each of the N elements of the
associated scalarset with another scalarset. It is safe to permute process ids
i and j of an associated scalarset type if the scalarset types associated with
both i and j are the same (and are permuted). For example:

type server id : AssocScalarset(3, [Scalarset(3), Scalarset(3), Scalarset(2)]);

specifies an associated scalarset type of size 3, where elements 1 and 2 are
associated with ‘standard’ scalarsets of size 3, and element 3 is associated with

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–23 19



a ‘standard’ scalarset of size 2. This associated scalarset type could be applied
to the configuration of the three-tiered system shown in Figure 2, assuming
that the client processes were declared using appropriate scalarset ids. The
idea of association could be applied recursively to describe tree-structures with
greater depth.

7.2 Topology-based scalarsets

When specifying a network of identical processes, symmetry between processes
may be exploited if the network topology is known. A topology-based scalarset
is declared with a given size, and a specified topology which must also be
described in some standardised way. For example:

type node id : TopologyScalarset(8, cube) where cube :=

1 → {2, 3, 5}, 2 → {1, 4, 6}, 3 → {1, 4, 7}, 4 → {2, 3, 8},

5 → {1, 6, 7}, 6 → {2, 5, 8}, 7 → {3, 5, 8}, 8 → {4, 6, 7};

specifies a topology-based scalarset type for nodes in a cube network, such
as the one we considered in section 5. The definition of the cube topology
indicates, for each node, which other nodes that node is connected to. Any
automorphism of the specified topology could be safely applied to a topology-
based scalarset, and GRAPE could be used to find the group of all such auto-
morphisms.

The application of symmetry reduction to model checking using SPIN could
be enhanced by extending the SymmSpin package to support these new types.
In order to do this it would be necessary to define symmetry preserving oper-
ations on elements of these types, i.e. operations which ensure that symmetry
can safely be exploited. It would also be necessary to devise algorithms to
make efficient use of the new scalar set type symmetries during model check-
ing. The SPIN-to-GRAPE tool and the automated setup presented here would
prove useful during the development of these extensions, to test the validity
of symmetry reductions on specific models.

8 Related work

The SymmSpin package [2] has been shown to give very large factors of re-
duction when applied to models with many replicated components which are
fully symmetric. SymmSpin uses the scalarset type introduced by Ip and Dill
in [14]; scalarsets have also been used recently to add symmetry reduction
techniques to the real-time model checking tool UPPAAL [11].

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–2320



Emerson et al. have investigated the role of symmetry reduction in par-
tially symmetric systems, including systems which involve priority levels which
vary between otherwise identical processes [7]. The SMC tool [22], a symmetry-
based model checker which allows safety and liveness properties to be verified,
has been designed to handle fairness constraints, which cannot be handled
by standard symmetry reduction techniques. Results on partial symmetry by
Sistla and Gyuris [21] have also been implemented in the SMC tool.

In [16] the application of GAP to the problem of identifying symmetries in
digital circuits is considered. No other paper on symmetry and model checking
attempts to exploit GAP, or indeed any computational algebra package. Aloul
et al. [1] use GAP, and in particular the nauty algorithm [17], to implement
efficient symmetry breaking techniques for boolean satisfiability. In [15], the
symmetries of various common architectures, including hypercubes and rooted
trees are discussed. However, no concrete examples of models which use these
architectures are provided and the problem of finding these automorphisms
automatically is not investigated.

9 Conclusions and Further work

We have presented a result indicating that automorphisms of a Kripke struc-
ture associated with a concurrent system P can be determined by finding
the automorphisms of the associated channel diagram C(P). Additionally,
we have presented a software tool, SPIN-to-GRAPE, which allows us to anal-
yse the symmetry present in simple Promela models of concurrent, distributed
systems using the group theoretic package GAP and its graph theoretic add-on,
GRAPE. We have described two Promela models, used SPIN-to-GRAPE to anal-
yse the symmetry present in the Kripke structures of certain configurations
of these models, and suggested generalisations of our results to arbitrary con-
figurations. Our analysis has shown that symmetry in the channel diagrams
of our models corresponds to symmetry in the associated Kripke structures.
Further, our analysis has identified kinds of symmetry which cannot currently
be exploited by the SPIN symmetry reduction package SymmSpin. We have
proposed some extensions to the scalarset data type which could be used to
extend the capabilities of SymmSpin.

We aim to develop the SymmSpin package by implementing the extensions
to the scalarset data type which we have proposed. In particular, this will
involve the identification of symmetry preserving operations for each new type,
as well as algorithms to make efficient use of such symmetries during model
checking. We are currently investigating how the SPIN-to-GRAPE tool could
be incorporated into SPIN, to avoid having to generate verbose output in order

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–23 21



to investigate the associated state-graph.

In this paper we have not searched for symmetries when a temporal logic
property is present in the model, nor have we attempted any sort of sym-
metry reduction. Our purpose here was to create a tool that could identify
symmetries in simple models and to investigate ways in which the SymmSpin
approach could be extended. However, we intend to extend our approach to
address both of the issues above.

References

[1] F.A. Aloul, A. Ramani, I.L. Markov, and K.A. Sakallah. Solving difficult SAT instances in
the presence of symmetry. IEEE Transactions on Computer Aided Design, 22(9):1117–1137,
September 2003.

[2] Dragan Bosnacki, Dennis Dams, and L. Holenderski. Symmetric Spin. In Klaus Havelund,
John Penix, and Willem Visser, editors, Proceedings of the 7th SPIN Workshop (SPIN 2000),
volume 1885 of Lecture Notes in Computer Science, pages 1–19, Stanford, California, USA,
September 2000. Springer-Verlag.

[3] M. Calder and A. Miller. Veriscope publications website:
http://www.dcs.gla.ac.uk/research/veriscope/publications.html.

[4] E.M. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry reductions in model-checking.
In Hu and Vardi [13], pages 147–158.

[5] E.M. Clarke, R. Enders, T. Filkhorn, and S. Jha. Exploiting symmetry in temporal logic model
checking. Formal Methods in System Design, 9(1–2):77–104, 1996.

[6] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a hardware design
aid. IEEE International Conference on Computer Design: VLSI in Computers and Processors,
pages 522–525, 1992.

[7] E. Allen Emerson, John W. Havelick, and Richard J. Trefler. Virtual symmetry reduction. In
Proceedings of the Fifteenth Annual IEEE Symposium on Logic in Computer Science (LICS’00),
pages 121–131, Santa Barbara, California, USA, 1995. IEEE Computer Society Press.

[8] A. Ferreira. Parallel and Communication Algorithms for Hypercube Multiprocessors. In
A. Zomaya, editor, Handbook of Parallel and Distributed Computing, chapter 19, pages 568–589.
McGraw-Hill, New York (USA), 1996.

[9] The Gap Group. GAP– Groups Algorithms and Programming, Version 4.2. Aachen, St.
Andrews, 1999. http://www-gap.dcs.st-and.ac.uk/˜gap.

[10] F. Harary. The automorphism group of a hypercube. Journal of Universal Computer Science,
6(1):136–138, 2000.

[11] M. Hendriks, G. Behrmann, K. Larsen, P. Niebert, and F. Vaandrager. Adding symmetry
reduction to UPPAAL. In K.G. Larson and P. Niebert, editors, Proceedings of the 1st
International Workshop on Formal Modelling and Analysis of Timed Systems (FORMATS
2003), volume 2791 of Lecture Notes in Computer Science, pages 46–59, Merseille, France,
September 2003. Springer-Verlag.

[12] Gerard J. Holzmann. The SPIN model checker: primer and reference manual. Addison Wesley,
Boston, 2003.

[13] Alan J. Hu and Moshe Y. Vardi, editors. Proceedings of the tenth International Conference on
Computer-aided Verification (CAV ‘98), volume 1427 of Lecture Notes in Computer Science,
Vancouver, BC, Canada, June/July 1998. Springer-Verlag.

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–2322



[14] C.Norris Ip and D. Dill. Better verification through symmetry. Formal Methods in System
Design, 9:41–75, 1996.

[15] Somesh Jha. Symmetry and Induction in Model Checking. PhD thesis, School of Computer
Science, Carnegie Mellon University, October 1996.

[16] Gurmeet Singh Manku, Ramin Hojati, and Robert Brayton. Structural symmetry and model
checking. In Hu and Vardi [13], pages 159–171.

[17] B.D. McKay. nauty user’s guide (version 1.5). Technical Report TR-CS-90-02, Australian
National University, Computer Science Department, 1990.

[18] Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.

[19] John Rose. A Course in Group Theory. Dover Publications, 1964.

[20] Peter Saffrey. Optimising Communication Structure for Model Checking. PhD thesis,
Department of Computing Science, University of Glasgow, July 2003.

[21] A. Prasad Sistla and Patrice Godefroid. Symmetry and reduced symmetry in model checking.
In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proceedings of the thirteenth
International Conference on Computer-aided Verification (CAV 2001), volume 2102 of Lecture
Notes in Computer Science, pages 91–103, Paris, France, July 2001. Springer-Verlag.

[22] A. Prasad Sistla, Viktor Gyuris, and E. Allen Emerson. SMC: A symmetry-based model
checker for verification of safety and liveness properties. ACM Transactions on Software
Engineering and Methodology, 9:133–166, 2000.

[23] L.H. Soicher. Grape: a system for computing with graphs and groups. DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, 11:287–291, 1991.

[24] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems Principles and Paradigms.
Prentice Hall, 2002.

[25] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 1994.

A. Donaldson et al. / Electronic Notes in Theoretical Computer Science 139 (2005) 3–23 23


	Introduction
	Preliminaries
	Basic group theory and automorphisms of graphs
	Symmetry and model checking
	GAP and GRAPE

	The SPIN-to-GRAPE tool
	Three-tiered architecture model
	Model of message routing in a hypercube
	Applying SPIN-to-GRAPE to less symmetric models
	Mixed modes of communication in the three-tiered model
	Message routing in a hypercube with a fixed initiator

	Extending symmetry reduction in SPIN
	Associated scalarsets
	Topology-based scalarsets

	Related work
	Conclusions and Further work
	References



