
Automatic Symmetry Detection for Model
Checking Using Computational Group Theory

A.F. Donaldson� and A. Miller

Department of Computing Science,
University of Glasgow,

Glasgow, Scotland
{ally, alice}@dcs.gla.ac.uk

Abstract. We present an automatic technique for the detection of struc-
tural symmetry in a model directly from its Promela specification. Our
approach involves finding the static channel diagram of the model, a
graphical representation of channel-based system communication; com-
puting the group of symmetries of this diagram; and computing the
largest possible subgroup of these symmetries which induce automor-
phisms of the underlying model. We describe a tool, SymmExtractor,
which, for a given model and LTL property, uses our approach to find
a group of symmetries of the model which preserve the property. This
group can then be used for symmetry reduction during model check-
ing using existing quotient-based methods. Unlike previous approaches,
our method can detect arbitrary structural symmetries arising from the
communication structure of the model.

Keywords: Promela/SPIN; symmetry reduction; model checking; com-
municating processes; distributed systems; formal modelling; GAP; con-
currency.

1 Introduction

Model checking [5] is an increasingly popular technique for the formal verification
of concurrent systems. The application of model checking is limited due to the
state-space explosion problem—as the number of components represented by a
model increases, the size of the associated state-space grows exponentially. As
such, models of realistic systems are often too large to feasibly check. Symmetry
reduction techniques [3, 7, 15] can be used to combat this problem for models
of systems with many replicated components. Symmetry in a system can result
in portions of the state-space of a model of the system being equivalent up to
rearrangement of component ids. If symmetry is known to be present in a model
then model checking of certain properties can be performed over a quotient state-
space, which is generally smaller than the full state-space of the model. Most

� Supported by the Carnegie Trust for the Universities of Scotland.

J.S. Fitzgerald, I.J. Hayes, and A. Tarlecki (Eds.): FM 2005, LNCS 3582, pp. 481–496, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

482 A.F. Donaldson and A. Miller

work on exploiting symmetry during model checking assumes that symmetries
of a model are either known a priori [7], or are coded into the model through
the use of special keywords [3, 15]. Both approaches require the modeller to
provide information on the presence of symmetry in a model. This is potentially
error prone, and compromises the automation of model checking, which is one
of its main strengths as a verification technique. The challenge of automatic
symmetry detection is to infer symmetries of the state-space underlying a model
without explicitly constructing the state-space. The inferred symmetries must
be guaranteed to be valid, otherwise the results of symmetry-reduced model
checking are untrustworthy.

In this paper we present a method for the automatic detection of symmetry
directly from the source code of a model, requiring no additional input from
the user. Our approach applies to models written using the Promela specifica-
tion language (used as input to the SPIN model checker [14]). Given a Promela
model, generators for a group of candidate symmetries are found by analysing
the static channel diagram of the model. These generators are checked indi-
vidually against the model to see if they induce valid automorphisms of the
underlying state-graph. Starting with the set of candidate generators which are
valid, the largest possible subgroup of candidate symmetries which are all valid
is computed. Unlike previous approaches to specifying symmetry using scalarsets
[3, 15], our method can detect arbitrary structural symmetries arising from the
communication structure of a model. A scalarset can only be used to specify
full symmetry between a set of components of a model. The symmetry group
computed using our approach is, by construction, an invariance group for a
specified linear temporal logic (LTL) formula (contained within the Promela
model). As such, the group can be used safely for symmetry reduction during
model checking. Static channel diagrams were introduced in previous work [11].
The significant additional contributions of this paper include some detailed the-
oretical results to determine valid automorphisms, and the implementation of
our approach via a tool, SymmExtractor, which makes use of the computational
group theory package GAP [13]. We provide experimental results for a variety of
models, and discuss how our approach can be extended. We conclude by briefly
discussing some of the issues which will be involved in future work, implementing
symmetry reduction techniques into SPIN based on our approach to symmetry
detection.

2 Preliminaries

Model checking involves checking the correctness of a temporal logic formula
φ over a Kripke structure M = (S,R,L, s0) and a set of atomic propositions
AP , where S is a finite set of states, R ⊆ S × S is a total transition relation,
L : S → 2AP labels each state with the propositions that are true at the state,
and s0 ∈ S is an initial state. The Kripke structure M represents a model of a
concurrent system. In practice M is obtained from a high level specification P
written in a language such as Promela [14].

Automatic Symmetry Detection for Model Checking 483

2.1 Promela

Promela (Process meta language) is a high level specification language for mod-
elling concurrent, distributed systems, and Promela programs are used as input
to the SPIN model checker [14]. A Promela program consists of a series of proc-
type definitions, global variable and channel declarations, an init process (used
to initialise the model), and (optionally) a never claim process (used to verify a
LTL formula). A proctype defines a parameterised process type, of which multi-
ple copies can be instantiated by the init process. A proctype definition has the
form proctype name(param_list) {body}. The body of a proctype consists of
local variable declarations, as well as expressions and statements over local and
global variables, and channels. A statement of the form

if :: seq_1
:: seq_2

...
:: seq_m

fi

is used to model nondeterministic branching (branching in which any executable
sequence seq_i may be chosen). Similarly, a do...od statement is used to model
repeated nondeterministic branching.

Global variables, and variables local to a proctype can be declared of type
bit, byte, short, int, pid, chan, or mtype. A variable of type chan refers to a
system channel, which has the form [x] of {field_1,field_2,...,field_m},
where x ≥ 0 is the capacity of the channel, m > 0 is the number of fields
which a message must contain to be sent on the channel, and for 1 ≤ i ≤ m,
field i ∈ {bit, byte, short, int, pid, chan,mtype} specifies the type of the ith field
of a message. A send operation on channel c is denoted c!msg, where msg is a
list of values or variables, one for each field of the message. Similarly, a receive
operation on channel c is denoted c?msg. Variables of type pid should only be
assigned values that correspond to the instantiation number (process id) of an
executing process. Each process has a predefined, read-only, local variable pid
which stores its instantiation number The value 0 may be used as a default value
for variables of type pid. This is the instantiation number of the init process.

In this paper we consider models where all processes are instantiated simul-
taneously by the init process, and where processes do not themselves instantiate
child processes (we discuss the implications of this in Section 5.5). In such models
the init process has the form

init { atomic { run proctypename_1(params_1);
... run proctypename_m(params_m) } }

The keyword atomic ensures that the statements enclosed in the pair of braces
immediately following the keyword are executed in sequence as a single transition
of the system (provided that the statements do not block). In a Promela model,
the init process is assigned process id 0 by default, and the other processes are
assigned process ids in order, starting from 1. Two processes have the same

484 A.F. Donaldson and A. Miller

chan box_1 = [1] of {pid,pid}; chan box_2 = [1] of {pid,pid};
chan box_3 = [1] of {pid,pid}; chan box_4 = [1] of {pid,pid};
chan box_5 = [1] of {pid,pid}; chan network = [5] of {pid,pid};
pid received_from

proctype mailer(chan in) {
 pid source, dest;
 pid blocked_client = 3;
 chan out;
 do :: in?source,dest;
 if :: source==blocked_client -> skip
 :: else ->
 if :: dest==1 -> out = box_1 :: dest==2 -> out = box_2
 :: dest==3 -> out = box_3 :: dest==4 -> out = box_4
 :: dest==5 -> out = box_5
 fi;
 out!source,dest
 fi
 od
}

proctype client(chan in) {
 pid source, dest;
 do :: in?source,dest; assert(dest==_pid); received_from = source
 :: atomic { nfull(network) -> source = _pid;
 if :: dest = 1 :: dest = 2 :: dest = 3 :: dest = 4 :: dest = 5 fi;
 network!source,dest }
 od
}

init {
 atomic {
 run client(box_1); run client(box_2); run client(box_3);
 run client(box_4); run client(box_5); run mailer(network)
 }
}

never { /* !([] (received_from!=3)) */
T0_init:
 if :: (! (received_from!=3)) -> goto accept_all
 :: (1) -> goto T0_init
 fi;
accept_all: skip }

(1)

(2)

(3)

(4)

(5)

Fig. 1. Promela model of an email system

process type if they are instantiations of the same proctype. To verify an LTL
property, SPIN converts the negation of the property into a Büchi automaton,
expressed as a never-claim. A never-claim is an additional process in the Promela
model, specifying system behaviour that should never occur [14], i.e. behaviour
which violates the given property.

Figure 1 shows Promela code for a model of an email system, adapted from
[4]. The system consists of 5 instantiations of a parameterised client process,
running in parallel with a mailer process. The client processes can send messages
to each other via the mailer process, but all messages sent by the process with
id 3 are blocked by the mailer process. Labels (1)—(5) have been added to the
code for explanatory reasons and should otherwise be ignored. An example LTL
property of interest for this model is:

Automatic Symmetry Detection for Model Checking 485

Property 1. [](received from �= 3)

which states that no client ever receives a message from client 3. Note that
received from is a global variable which is reset by a client process each time
a message is received. The never-claim for Property 1 has been included at the
end of the Promela code shown in Figure 1. As properties are included within
the model in this way, the automorphism groups computed by our approach to
symmetry detection are, by construction, property preserving (see Section 2.2).

Let P be a Promela program. Let Loc be the set of local variables, Glob
the set of global variables, and Chan the set of channels of P. Let D be the
set of data values for the program. To denote a local variable of a process with
process id i we write xi where x is the name of the variable. For example, in the
email example, sourcei denotes the local variable source of a client process with
process id i. If xi is a local variable of process i, and if processes i and j have
the same process type, then xj is the corresponding local variable of process j.

We now define the set AP of atomic propositions for a Promela program.
Let APlocal = {(xi = val) : xi ∈ Loc, val ∈ D}, the set of propositions relating
to local variables, and define APglobal and APchannel, the set of propositions
relating to global variables and channels respectively, similarly. Then AP =
APlocal ∪APglobal ∪APchannel. The underlying Kripke structure M over AP for
the program P is generated by exploring all possible behaviours of P. States of
M are uniquely identified by a labelling of atomic propositions, and transitions
between states are derived from the statements of the program. Note that each
process in P has its own program counter variable which indicates the statements
which may be executed in the next transition. Thus two states, for which all other
variables are assigned identical values, may be distinguished due to assignments
of the associated program counters.

We say that two programs P1 and P2 are equivalent, and write P1 ≡ P2,
if they are the same up to rearrangement of: options in if...fi and do..od
statements; operands to commutative operators; and run statements within the
init{atomic{...}} block. Equivalent programs have identical behaviour, and
thus the underlying Kripke structures for equivalent programs are the same.

2.2 Group Theory and Symmetry in Model Checking

Let G be a group, and let α1, α2, . . . , αn ∈ G. The smallest subgroup of G
containing the elements α1, . . . , αn is denoted 〈α1, α2, . . . , αn〉, and is called the
subgroup generated by α1, α2, . . . , αn. The elements αi (1 ≤ i ≤ n) are called
generators for this subgroup. Let X = {α1, . . . , αn} be a finite subset of G. Then
we use 〈X〉 to denote 〈α1, . . . , αn〉, the subgroup generated by X.

Let H be a subgroup of G, and let α ∈ G. The set Hα = {βα : β ∈ H} is
called a right coset of H in G. The set of all right cosets of H in G partitions G
into disjoint equivalence classes. In particular, for α ∈ H, we have Hα = H [16].

Let M = (S,R,L, s0) be a Kripke structure. An automorphism of M is a
bijection α : S → S which satisfies the following conditions:

486 A.F. Donaldson and A. Miller

– ∀s, t ∈ S, (s, t) ∈ R ⇒ (α(s), α(t)) ∈ R,
– α(s0) = s0

In a model of a concurrent system with many replicated processes, Kripke struc-
ture automorphisms usually involve the permutation of process identifiers of
identical processes throughout all states of a model. The set of all automorphisms
of the Kripke structure M forms a group under composition of mappings. This
group is denoted Aut(M). A subgroup G of Aut(M) induces an equivalence
relation ≡G on the states of M thus: s ≡G t ⇔ s = α(t) for some α ∈ G. The
equivalence class under ≡G of a state s ∈ S, denoted [s], is called the orbit of
s under the action of G. The orbits can be used to construct a quotient Kripke
structure MG as follows:

Definition 1. The quotient Kripke structure MG of M with respect to G is a
tuple MG = (SG, RG, LG, [s0]) where:

– SG = {[s] : s ∈ S} (the set of orbits of S under the action of G),
– RG = {([s], [t]) : (s, t) ∈ R},
– LG([s]) = L(rep([s])) (where rep([s]) is a unique representative of [s]),
– [s0] ∈ SG (the orbit of the initial state s0 ∈ S).

In general MG is a smaller structure than M, but MG and M are equivalent in
the sense that they satisfy the same set of logic properties which are invariant
under the group G (that is, properties which are “symmetric” with respect to
G). For a proof of the following theorem, together with details of the temporal
logic CTL∗, see [5].

Theorem 1. Let M be a Kripke structure, G a subgroup of Aut(M) and φ a
CTL∗ formula. If φ is invariant under the group G then

M, s |= φ ⇔ MG, [s] |= φ

Thus by choosing a suitable symmetry group G, model checking can be per-
formed over MG instead of M, often resulting in considerable savings in mem-
ory and verification time [3, 7]. Consider Property 1 for our email example. The
property explicitly refers to the id of client 3, so an invariance group for this
property is any subgroup of Aut(M) which fixes client 3.

If automorphisms of a Kripke structure can be identified in advance, then
a quotient structure can be incrementally constructed using an algorithm given
in [15]. This means that it may be possible to construct the quotient structure
even if the original structure is intractable. In the next section we show that
symmetries of the Kripke structure associated with a Promela program can be
detected by analysing the static channel diagram of the program.

3 Finding Automorphisms via Static Channel Diagrams

In this section we define the static channel diagram C(P) associated with a
Promela program P, and show how automorphisms of the corresponding Kripke
structure M can be obtained by finding the automorphisms of C(P).

Automatic Symmetry Detection for Model Checking 487

box_5box_4box_3box_2box_1

client_1 client_2 client_3 client_4 client_5

network

mailer_6
[5] of {pid,pid}

[1] of {pid,pid}

Key to channel types:

init_0

Fig. 2. Channel diagram of the message passing model

3.1 Static Channel Diagrams

Let P be a Promela program. A static channel of P is a channel which is declared
globally, out of the scope of any proctype definition. Let VP be the set of process
identifiers for P, and let VC be the set of names of static channels of P. For
i ∈ VP let proctype(i) be the name of type proctype of which process i is an
instantiation, and for i ∈ VC let chantype(i) denote the type of channel i (see
Section 2.1).

Definition 2. The static channel diagram of P is a coloured, bipartite digraph
C(P) = (V,E,C), where:

– V = VP ∪ VC ;
– For i ∈ VP , j ∈ VC , (i, j) ∈ E iff process i has a send statement j!msg,

(j, i) ∈ E iff process i has a receive statement j?msg;
– For x ∈ V , C(x) = proctype(x) if x ∈ VP , and C(x) = chantype(x) if

x ∈ VC .

The static channel diagram of a program represents the potential communication
links that can be detected from the program by considering only static channels.
Figure 2 illustrates the static channel diagram for the email model of Figure 1.
Processes are represented by ovals and channels by rectangles. The type of a
process is indicated by the name preceding its process id in the diagram. The
type of a channel is indicated by the shading of the rectangle. Note that although
the mailer process sends messages to the client processes, it does so using its
local channel, out, which is not a static channel. Thus this communication is not
indicated in the static channel diagram.

An automorphism of the static channel diagram C(P) is a bijection α : V → V
which satisfies the following conditions:

– ∀i, j ∈ V, (i, j) ∈ E ⇒ (α(i), α(j)) ∈ E
– ∀i ∈ V, C(i) = C(α(i))

488 A.F. Donaldson and A. Miller

Note that the second condition ensures that channels can only be mapped on to
one another if they have the same capacity. It can be shown that the set of auto-
morphisms of a static channel diagram C(P) forms a group under composition of
mappings. We denote this group Aut(C(P)). Although our technique exploits the
static communication declared within a Promela model, dynamic communication
(in which messages are passed on channels whose names are received by other
processes during program execution) which cannot be determined statically, is
still permissible. This is because, if processes i and j are otherwise shown to
be symmetrically equivalent (via static analysis), any dynamic communication
involving process i will be reflected by corresponding dynamic communication
involving process j.

Consider the static channel diagram for our email example, shown in Fig-
ure 2. Let α = (1 2)(box 1 box 2), the mapping which swaps client 1 with
client 2, and simultaneously swaps box 1 with box 2 in the diagram. Clearly
α is an automorphism of C(P). In fact any permutation of the client pro-
cesses and their incoming channels which leaves box i connected to client i is
an automorphism of C(P). The group Aut(C(P)) can be generated by the set
{(1 2)(box 1 box 2), (2 3)(box 2 box 3), (3 4)(box 3 box 4), (4 5)(box 4 box 5)}.

We now show how the elements of Aut(C(P)) act on the source text of the
Promela program P, and on the Kripke structure underlying the program.

3.2 Action of Aut(C(P)) on P
Let P be a Promela program with static channel diagram C(P), let n > 0
be the number of processes instantiated by P, and let α ∈ Aut(C(P)). The
program α(P) is the same as P, except that every applied occurrence of a static
channel name c is replaced by the static channel name α(c), and every assignment
statement of the form x = val, boolean expression of the form x == val or
val == x, where type(x) = pid and val ∈ {1, . . . , n}, is replaced by x = α(val),
x == α(val) or α(val) == x respectively.

Consider the element α = (1 2)(box 1 box 2) ∈ Aut(C(P)) where P is our
email example. Applying α to the code given in Figure 1 results in an identi-
cal program, except for the ordering of the options at labels (2) and (3), and
the ordering of the run statements at label (4). Therefore P ≡ α(P). If we
take the element α = (2 3)(box 2 box 3) then the programs P and α(P) are
not equivalent, since the statement blocked client = 3 in P shown at label (1)
of Figure 1 is replaced by the statement blocked client = 2 in α(P). Neither
statement appears in both programs. Similarly, applying α to the expression
(!(received from ! = 3)) shown at label (5) of Figure 1 results in the expression
(!(received from ! = 2)). This inconsistency between P and α(P) shows that
the given LTL property is not invariant under α.

For an element α ∈ Aut(C(P)), we say that α is valid (for P) if α(P) ≡ P.
We say that a subgroup H of Aut(C(P)) is valid (for P) if every α ∈ H is valid.

3.3 Action of Aut(C(P)) on M
For an element α ∈ Aut(C(P)) we define a corresponding mapping α∗ which
is a permutation of the Kripke structure M underlying P. For any s ∈ S, let

Automatic Symmetry Detection for Model Checking 489

L(α∗(s)) = {α(p) : p ∈ L(s)}. For a proposition p ∈ AP , the proposition α(p) is
defined as follows:

If p = (xi = val) ∈ APlocal for some xi ∈ Loc, and type(xi) ∈ {pid, chan}
then α(p) = (xα(i) = α(val)), otherwise α(p) = (xα(i) = val). If p = (x = val) ∈
APglobal for some x ∈ Glob, and type(x) ∈ {pid, chan} then α(p) = (x = α(val)),
otherwise α(p) = p. If p = (c[i] = msg) ∈ APchannel for some c ∈ Chan, i.e.
msg is at position i on channel c, then α(p) = (α(c)[i] = α(msg)). Here α acts
on msg by permuting the value of each field of msg which has type pid or chan,
and leaving all other fields unchanged.

The following theorem shows that in certain cases the permutation α∗ of M
defined by an element α ∈ Aut(C(P)) is an automorphism of M.

Theorem 2. Let P be a Promela program with static channel diagram C(P)
and associated Kripke structure M. Let α ∈ Aut(C(P)). If α is valid for P then
α∗ ∈ Aut(M).

For a proof of this theorem see [11]. The theorem shows that automorphisms of
the Kripke structure underlying a Promela program can be obtained by finding
symmetries of the static channel diagram for the program. Note that for any LTL
property φ under investigation, the never claim for φ is included with a model
(see Section 2.1). It follows that φ is invariant under all valid automorphisms
constructed in this way. Thus, by Theorem 1, the set of valid automorphisms is
suitable for checking the property φ over a quotient structure.

The static channel diagram of a program is typically a small graph which
can be easily extracted from the program. Additionally, checking for an ele-
ment α of Aut(C(P)) whether or not α(P) ≡ P, can be implemented effi-
ciently (see Section 5.2). Thus, using Theorem 2, it is possible to quickly ob-
tain a group of Kripke structure automorphisms, generated by the set {α∗ :
α ∈ S, α(P) ≡ P}, where S is the set of generators for Aut(C(P)). How-
ever, this group may not be as large as possible. Consider the generating set
for Aut(C(P)) given in Section 3.1, where P is the Promela description of the
email example. The generators (2 3)(box 2 box 3) and (3 4)(box 3 box 4) are
clearly not valid for P. Let G be the group generated by the remaining gener-
ators. Thus G = 〈(1 2)(box 1 box 2), (4 5)(box 4 box 5)〉. Consider the group
G′ = 〈(1 2)(box 1 box 2), (2 4)(box 2 box 4), (4 5)(box 4 box 5)〉. Each generator
of G′ is valid for P, and G ⊂ G′ since (2 4)(box 2 box 4) /∈ G. Thus G is not the
largest valid subgroup of Aut(C(P)).

4 Finding the Largest Valid Subgroup of Aut(C(P))

In this section we establish that, for a Promela program P, there is a unique,
largest valid subgroup of Aut(C(P)). We then present an algorithm to find this
subgroup. First we state some preliminary results, omitting the (very straight-
forward) proofs for space reasons.

Lemma 1. Let α, β ∈ Aut(C(P)). Suppose α and β are both valid for P. Then
αβ is valid for P.

490 A.F. Donaldson and A. Miller

Corollary 1. Let S be a set of generators for Aut(C(P)). Let S′ = {α ∈ S :
α is valid for P}. Then 〈S′〉 is valid for P.

Corollary 2. Suppose H ≤ Aut(C(P)) is valid for P. Let α ∈ Aut(C(P)), α /∈
H be valid for P. Then 〈H ∪ {α}〉 is valid for P.

Using Lemma 1 we can prove that there is a unique largest valid subgroup of
Aut(C(P)).

Theorem 3. There is a group K ≤ Aut(C(P)) such that K is valid for P, and
for any H ≤ Aut(C(P)) which is also valid for P, H ≤ K.

Proof. Let X be the set of all valid subgroups of Aut(C(P)). Since Aut(C(P))
is finite, Aut(C(P)) has a finite number of subgroups, therefore X is finite. Let
K = 〈⋃H∈X H〉. Since every generator of K is valid for P, it follows by Lemma 1
that K is valid for P. Clearly H ≤ K for every H ∈ X , i.e. H ≤ K for every
valid subgroup H of Aut(C(P)).

Our algorithm for finding the largest valid subgroup of Aut(C(P)) involves start-
ing with a known valid subgroup H of Aut(C(P)), and adding valid coset repre-
sentatives to the generators of H to obtain successively larger valid subgroups.
The following lemma is used to determine when the largest possible valid sub-
group has been found.

Lemma 2. Suppose H ≤ Aut(C(P)) and H is valid for P. Let {α1, α2 . . . , αk}
be a set of right coset representatives for H in Aut(C(P)), where α1 ∈ H, αi ∈
Aut(C(P)) \ H for 2 ≤ i ≤ k and k = |Aut(C(P))|/|H|. Suppose α2, . . . , αk are
not valid for P. Then H is the unique largest valid subgroup of Aut(C(P)).

Proof. Let K be the unique, largest valid subgroup of Aut(C(P)). By Theorem 3,
H ≤ K. Suppose H ⊂ K. Then there exists α ∈ K with α /∈ H. So Hα is a
right coset of H in Aut(C(P)), Hα �= H, and αi ∈ Hα for some 2 ≤ i ≤ k. By
hypothesis, αi is not valid for P. However, Hα ⊆ K and αi ∈ Hα, so we have
αi ∈ K. This is a contradiction since K is valid for P. Hence H = K.

Algorithm 1 shows how the unique largest valid subgroup of Aut(C(P)) can be
computed.

Theorem 4. Algorithm 1 computes the largest valid subgroup of Aut(C(P)).

Proof. By Corollaries 1 and 2, the group H computed by Algorithm 1 is valid
for P. The group H is the largest subgroup of Aut(C(P)) which is valid for P
by Lemma 2.

We discuss the implementation and efficiency of Algorithm 1 in Section 5.3.

5 The SymmExtractor Tool

Given a Promela program P, the SymmExtractor tool finds the largest subgroup
of Aut(C(P)) which is valid for P. By Theorem 2 this group induces a group

Automatic Symmetry Detection for Model Checking 491

Algorithm 1 Algorithm to find the largest valid subgroup of Aut(C(P))
S := generators of Aut(C(P))
H := 〈{α ∈ S : α is valid for P}〉
C := representatives of right cosets of H in Aut(C(P)) except H
while C �= ∅ do

C := C \ {α}
if α is valid for P then

H := 〈H ∪ {α}〉
if |Aut(C(P))|/|H| < |C| then

C := representatives of right cosets of H in Aut(C(P)) except H
end if

end if
end while

of automorphisms of the underlying Kripke structure which can be used for
symmetry reduction while model checking.

Our tool parses a Promela model and stores its abstract syntax tree using a
set of Java classes generated by the SableCC compiler generation tool [12]. The
grammar for Promela given in [14] was used as input to SableCC, and the SPIN

source distribution was used to resolve ambiguities in this grammar.
SymmExtractor operates in four stages. In the first stage the given program

is type-checked to ensure that variables of type pid and chan are used appropri-
ately: for example that pid variables should only be assigned to, or compared
for equality with, other pid variables or values. These restrictions are similar
to those applied to variables of type scalarset in previous work on symmetry
[15]. In the second stage the static channel diagram C(P) is constructed. In the
third stage, the saucy program [9] is used to compute a set of generators for
Aut(C(P)). Finally each generator α is checked for validity. Using Algorithm 1,
the largest valid subgroup of Aut(C(P)) is computed.

5.1 Obtaining Static Channel Diagram Automorphisms from a
Promela Program

Extracting the static channel diagram from a Promela program is straightfor-
ward, and involves one pass over the abstract syntax tree. Each time a proctype
definition appears in the program, the formal names of outgoing and incom-
ing channels for that proctype are recorded. A new channel node is added to
the static channel diagram for each static channel in the program. For each
run statement, a new process node is added to the static channel diagram. The
formal parameters of the proctype for the new process are substituted for the
actual parameters provided in the run statement, and edges between processes
and channels are added to the channel diagram according to the substituted
outgoing and incoming channel names for the proctype.

Generators for Aut(C(P)) are computed using saucy [9]. The saucy program
has been specifically designed for finding automorphisms of sparse graphs which
correspond to instances of satisfiability problems. Since static channel diagrams
are relatively sparse, the performance of saucy is generally very good.

492 A.F. Donaldson and A. Miller

5.2 Checking the Validity of an Element of Aut(C(P))

Applying a channel diagram automorphism α to P as described in Section 3.2
is trivial. Determining whether or not P ≡ α(P) requires the use of a nor-
malisation function. Recall that programs P1 and P2 are equivalent if they are
identical up to rearrangement of: options in choice statements; operands to com-
mutative operators; and run statements within the init{atomic{...}} block.
The function normalise sorts the options in a choice statement, the operands
of a commutative operator, and the sequence of run statements of the init pro-
cess, using the natural ordering on strings. It is clear that if two programs are
equal after normalisation then they are equivalent. The notions of equivalence
and normalisation which we use here are basic but practical. It is easy to con-
struct an example of an obscure program P such that an element α ∈ Aut(C(P))
would not be deemed valid for the program, but would actually induce a valid
automorphism of the Kripke structure for the program. However, for all Promela
programs our lightweight approach to checking symmetries is safe and very fast,
and is sufficient for sensibly written programs.

Checking the validity of an element α against P involves two passes over the
abstract syntax tree for the program: one to apply the permutation, and one
to normalise the program after the symmetry has been applied. The original
program only needs to be normalised once when checking a set of generators.

5.3 Using GAP to Compute the Largest Valid Subgroup

The computational group theory package GAP is used to implement Algorithm 1.
The Java and GAP components of the tool communicate using redirected stan-
dard input and output. Given a group G and a subgroup H of G, GAP provides
a function to efficiently compute right coset representatives of H in G. The num-
ber of generators of Aut(C(P)) is typically small, and so initial generators for
the valid group H are found quickly by checking each generator of Aut(C(P))
for validity against the program P.

The algorithm performs badly if the initial group H is small, and Aut(C(P))
is very large. In such cases the number of right coset representatives to consider
is, in the worst case, |Aut(C(P))|/|H|. Our implementation includes a heuristic
which can be applied to try to combat this problem. If the size of the initial valid
subgroup H can be increased, fewer coset representatives need to be considered.
An initial approach involved taking a set X of random elements of Aut(C(P))\H
and checking the validity of each element of X against P, adding the valid ones
to the generators of H. However, when Aut(C(P)) is large, the probability of a
random element being valid for P may be small. In this case a better approach
is, for each β ∈ X and each generator α of H, to check the validity of the
element β−1αβ (the conjugate of α by β), adding each valid element β−1αβ to
the generators of H. Adding random conjugates to the generators of H works
well in practice, because discarding invalid generators of Aut(C(P)) may result
in a group which can permute disjoint sets of processes and channels, but cannot
permute processes/channels which are in different sets. For example, if P is the
email model, we found in Section 3.3 that the valid generators of Aut(C(P))

Automatic Symmetry Detection for Model Checking 493

are (1 2)(box 1 box 2) and (4 5)(box 4 box 5). The group generated by these
elements can swap processes 1 and 2, and processes 4 and 5 (similarly channels
box 1, box 2 and box 4, box 5), but cannot swap e.g. process 2 with process 4
and box 2 with box 4, even though this permutation is valid for P. The element
(2 4)(box 2 box 4) is a valid element of Aut(C(P)) which bridges the gap between
processes 1, 2 and 4, 5 (and their associated channels). While a random element
drawn from Aut(C(P)) is unlikely to bridge this gap, a random conjugate of
(1 2)(box 1 box 2) (for example) is more likely to do so, since a conjugate of
an element which exchanges two processes (and associated channels) will also
exchange two processes (and associated channels).

5.4 Applying SymmExtractor to the Email Example

Running SymmExtractor with our email example as input yields the following
output:
>symmextractor email.pml

Program is well typed.
Finding the static channel diagram C(P).
Computing the group Aut(C(P)) using saucy.

Aut(C(P)) = <(box2 box4)(2 4),(5 4)(box4 box5),(box2 box3)(3 2),(3 1)(box3 box1)>
H = <(box2 box1)(2 1),(5 4)(box4 box5),(box2 box4)(2 4)>

is a valid group for symmetry reduction.

The generators of Aut(C(P)) found by SymmExtractor agree with our discussion
in Section 3.1. Observe that the generator (2 3)(box 2 box 3) which we identified
to be unsuitable for symmetry reduction in Section 3.2 does not belong to the
group H of valid symmetries.

5.5 Extending SymmExtractor

As discussed in Section 2.1, our current approach only applies to models where
all processes are instantiated by the init process: processes do not themselves
instantiate child processes. Large classes of distributed systems can be mod-
elled without dynamic process creation, so this restriction is not too limiting.
However, the modelling of multi-threaded software applications often requires
dynamic processes to model dynamic thread creation. Extending our approach
to handle dynamic process creation will be challenging since the definition of a
static channel diagram assumes a constant set of running processes. (Note that
our approach can handle systems with dynamic communication structures, see
Section 3.1.)

SymmExtractor cannot detect data symmetries, which arise as a result of
indistinguishable data values in a protocol. We do not see this as a practical lim-
itation. It is common practice when designing a verification model to abstract
away from data [8] and to model only control messages. Indeed, a verification
model which allows a range of data values to be communicated between pro-
cesses, but for which the behaviour of processes is independent of the data values
communicated, is usually a badly designed model [14].

Structural symmetries arising due to channel-based communication are de-
tected by SymmExtractor. Promela also allows communication by shared vari-
ables. To capture symmetry between shared variables, the definition of a static

494 A.F. Donaldson and A. Miller

channel diagram can be extended to include additional nodes for shared vari-
ables. In this case we add an edge from a process node to a variable node for
each process that may write to the variable; and an edge from a variable node
to a process node for each process that may read from the variable. The group
Aut(C(P)) then indicates permutations of processes, channels, and shared vari-
ables which preserve the communication structure of the program P. The check
for validity described in Section 5.2 can be extended to deal with shared variables
in a straightforward manner, and the group-theoretic approach of Section 4 can
be used to find the largest valid subgroup of Aut(C(P)).

6 Experimental Results

We have tested SymmExtractor on a variety of Promela models of distributed
systems in addition to the email example described earlier. These models include:
a token ring network [18]; a client-server system with load balancing [2]; control
flow in a three-tiered architecture [18]; and a resource allocation system with
two priority levels [17]. Table 1 shows the time taken for symmetry detection
in each model, and the size of the resulting symmetry group. Experiments were
performed on a PC with a 2.4GHz Intel Xenon processor, 3Gb of available main
memory, running Linux (2.4.18), with GAP version 4.3. In all cases, the time
taken for symmetry detection would be an acceptable overhead before search.
All models have non-trivial symmetry groups of significant order. The theoret-
ical maximum factor of reduction which may be obtained through symmetry
reduction with a group G is |G|, since the orbit of a state s under G may have
at most |G| elements. The results of Table 1 show that the theoretical maximum
factors of reduction for the models we have tested are large, though the results
do not indicate the factors of reduction which will be achieved in practice.

There is no clear relationship between the time taken for symmetry detection
and the number of symmetries detected. This is because the approach to sym-
metry detection depends on the number of generators of Aut(C(P)) rather than
on the size of Aut(C(P)), and there is no direct relationship between the size of
a group and the size of its generating set. Symmetry detection for the resource
allocator example took longer than for the other models due to asymmetry in the
model resulting from priority levels. Applying our “random conjugates” heuristic
for this model reduced the time for symmetry detection to 4.4s. The overhead
of launching GAP in each experiment was less than 1s.

Table 1. Symmetry detection results for some example models

model time (s) |G|
Token ring 2.52 10

Load balancer 2.70 432

Three-tiered 3.56 144

Resource allocator 7.44 576

Automatic Symmetry Detection for Model Checking 495

7 Related Work

The SymmSpin package [3] implements symmetry reduction techniques for SPIN

based on an approach using scalarsets [15]. Symmetry reduction techniques for
SPIN have also been implemented by adding extra keywords to the Promela lan-
guage [10]. Neither approach to symmetry reduction can automatically detect
symmetries of a model—the user needs to identify symmetry and annotate the
model to indicate what symmetry is present. Our approach to symmetry detec-
tion is fully automatic. Deriving symmetry from the communication structure
of a shared variable concurrent program is proposed, but not automated, in [6].
The idea of detecting symmetries by finding graph automorphisms has also been
applied to boolean satisfiability problems [1].

In certain cases, partial symmetries of a model can be safely exploited to
combat state-explosion during model checking [17]. Our tool cannot currently
detect these partial symmetries.

8 Conclusions and Future Work

We have described an approach for detection of structural symmetry in Promela
models, and presented a tool, SymmExtractor, to detect these symmetries auto-
matically. Although our approach is specific to models specified in Promela, it
can clearly be generalised to any graph-based modelling method.

Future work includes the implementation of symmetry reduction techniques
based on these structural symmetries for the SPIN model checker. Although
symmetry reduction packages for SPIN exist [3, 10], they are limited with respect
to the kinds of symmetry they can exploit. Since our detection method can
handle systems with arbitrary structural symmetries, it will be necessary to
write a new symmetry reduction package for SPIN. In particular, techniques
for efficiently computing orbit representatives during model checking will be
required for arbitrary symmetry groups. The SymmSpin tool [3] makes use of
various heuristics in systems where there is full symmetry between components.
We plan to use a computational group theory package such as GAP to classify the
symmetry group of a model so that a suitable heuristic for symmetry reduction
can be chosen.

Acknowledgments

The authors would like to thank Simon Gay, Warwick Harvey and Colva Roney-
Dougal for their useful comments on this work.

References

1. F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Solving difficult SAT instances
in the presence of symmetry. IEEE Transactions on Computer Aided Design,
22(9):1117–1137, 2003.

496 A.F. Donaldson and A. Miller

2. J. Balasubramanian, D. Schmidt, L. Dowdy, and O. Othman. Evaluating the
performance of middleware load balancing strategies. In EDOC’01, pages 135–
146. IEEE Computer Society Press, 2004.

3. D. Bosnacki, D. Dams, and L. Holenderski. Symmetric Spin. International Journal
on Software Tools for Technology Transfer, 4(1):65–80, 2002.

4. M. Calder and A. Miller. Generalising feature interactions in email. In Feature
Interactions in Telecommunications and Software Systems VII, pages 187–205. IOS
Press, 2003.

5. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
6. E. Clarke, E. Emerson, S. Jha, and A. Sistla. Symmetry reductions in model-

checking. In CAV’98, LNCS 1427, pages 147–158. Springer-Verlag, 1998.
7. E. Clarke, R. Enders, T. Filkhorn, and S. Jha. Exploiting symmetry in temporal

logic model checking. Formal Methods in System Design, 9(1–2):77–104, 1996.
8. E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. In

POPL’92, pages 343–354. ACM Press, 1992.
9. P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov. Exploiting structure

in symmetry detection for CNF. In DAC’04, pages 530–534. ACM Press, 2004.
10. F. Derepas and P. Gastin. Model checking systems of replicated processes with

Spin. In SPIN’01, LNCS 2057, pages 235–251. Springer-Verlag, 2001.
11. A. Donaldson, A. Miller, and M. Calder. Finding symmetry in models of concurrent

systems by static channel diagram analysis. In AVoCS’04, ENTCS 128(6), pages
161–177. Elsevier Science Publishers B.V, 2005.

12. E. Gagnon and L. J. Hendren. SableCC, an object-oriented compiler framework.
In TOOLS’98, pages 140–154. IEEE Computer Society Press, 1998.

13. The Gap Group. GAP–Groups Algorithms and Programming, Version 4.2. Aachen,
St. Andrews, 1999. http://www-gap.dcs.st-and.ac.uk/˜gap.

14. G. J. Holzmann. The SPIN model checker: primer and reference manual. Addison
Wesley, 2003.

15. C. Ip and D. Dill. Better verification through symmetry. Formal Methods in System
Design, 9:41–75, 1996.

16. J. Rose. A Course in Group Theory. Dover Publications, 1964.
17. A. P. Sistla and P. Godefroid. Symmetry and reduced symmetry in model checking.

ACM Transactions on Programming Languages and Systems, 25(4):702–734, 2004.
18. A. S. Tanenbaum and M. van Steen. Distributed Systems Principles and Paradigms.

Prentice Hall, 2002.

