
Symmetry Reduction for Probabilistic Model

Checking Using Generic Representatives

Alastair F. Donaldson� and Alice Miller

Department of Computing Science
University of Glasgow

Glasgow, Scotland
{ally,alice}@dcs.gla.ac.uk

Abstract. Generic representatives have been proposed for the effective
combination of symmetry reduction and symbolic representation with
BDDs in non-probabilistic model checking. This approach involves the
translation of a symmetric source program into a reduced program, in
which counters are used to generically represent states of the original
model. Symmetric properties of the original program can also be trans-
lated, and checked directly over the reduced program. We extend this
approach to apply to probabilistic systems with Markov decision process
or discrete time Markov chain semantics, represented as MTBDDs. We
have implemented a prototype tool, GRIP, which converts a symmetric
PRISM program and PCTL property into reduced form. Model checking
results for the original program can then be inferred by applying PRISM,
unchanged, to the smaller model underlying the reduced program. We
present encouraging experimental results for two case studies.

1 Introduction

Symmetry reduction techniques can be effective at combatting the state space
explosion problem for model checking [4,5,9,12,13,22]. Replication in the struc-
ture of a distributed system can give rise to symmetries, or automorphisms, of
a Kripke structure modelling the system: bijections of the states of the struc-
ture which preserve its transition relation. The most common type of Kripke
structure automorphisms are component symmetries – permutations of the set
of component identifiers which preserve the transition relation when applied to
all states. A group of automorphisms gives rise to a partition of the states of a
structure into equivalence classes, or orbits, and a quotient Kripke structure can
be constructed by choosing a single representative from each orbit. If the group
is non-trivial this structure is smaller than the original, and they are bisimilar.
Thus temporal logic properties which are symmetrically invariant can be checked
over the smaller quotient structure.

The obvious approach to combining symmetry reduction techniques with sym-
bolic representation is to represent the quotient Kripke structure using a binary

� Supported by the Carnegie Trust for the Universities of Scotland.

S. Graf and W. Zhang (Eds.): ATVA 2006, LNCS 4218, pp. 9–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

10 A.F. Donaldson and A. Miller

decision diagram (BDD). However, this approach requires a BDD to be con-
structed for the orbit relation — for a symmetry group G this is the set of
pairs of symmetrically equivalent states under G. It has been shown that for
a large class of commonly occurring symmetry groups construction of such a
BDD representation is intractable [6]. A promising approach which avoids com-
puting the orbit relation for the case of full component symmetry uses generic
representatives [12]. Here an equivalence class of states is represented by a state
which counts the number of components in each local state, ignoring the spe-
cific component identities. This state is a generic representative. Using mutual
exclusion as a canonical example, if the local state of a component belongs to
{N, T, C} (Non-critical, Trying and Critical), the global states for a 4-component
model include (N, T, N, C), (C, T, N, N) and (N, C, N, T), which are symmetri-
cally equivalent and are all represented generically by (2N, 1T, 1C). The attrac-
tion of this approach is that symmetry can be exploited at the source code level:
a fully symmetric source program and fully symmetric property can be trans-
lated into a reduced program and property. The Kripke structure for the reduced
program is isomorphic to the quotient structure of the original under full sym-
metry, and the generic property is equivalent to the original. Thus the benefits
of symmetry reduction can be obtained by applying standard symbolic model
checking algorithms to the reduced program.

Recently there has been much interest in probabilistic model checking
[1,18,25], and some work on extending symmetry reduction techniques to a prob-
abilistic setting [8,20]. In this paper we extend the generic representatives ap-
proach to apply to symbolic model checking of probabilistic systems. We define
a symmetric subset of the PRISM modelling language, SP, and show how SP
programs with Markov decision process (MDP) or discrete time Markov chain
(DTMC) semantics, together with symmetric PCTL properties, can be trans-
lated into a reduced form. As in the non-probabilistic case, the time complexity
of this translation is polynomial in the size of the input program. We describe
a software tool, GRIP, which automates the translation of an SP program to
generic form, and illustrate our approach using two case studies.

2 Background

2.1 Symmetry Reduction for Non-probabilistic Model Checking

We use a simple model to represent the computation of a system comprised of n
communicating components, interleaving concurrently [11]. Let I = {1, 2, . . . , n}
be the set of component identifiers, and for some k ≥ 0, let L = {0, 1, 2, . . . , k}
denote the possible local states of the components. A Kripke structure is a pair
K = (S, R), where S ⊆ Ln, is a non-empty set of states, and R ⊆ S×S is a total
transition relation. The usual lexicographical ordering of vectors provides a total
ordering on S. If s = (l1, l2, . . . , ln) ∈ S then we use s(i) to denote li, the local
state of component i. Communication between components is via inspection of
local states.

Symmetry Reduction for Probabilistic Model Checking 11

The set of all permutations of I forms a group under composition of mappings,
denoted Sn (the symmetric group on n points). Let K = (S, R) be a Kripke
structure, and let α ∈ Sn. Then α acts on a state s = (l1, l2, . . . , ln) ∈ S in the
following way: α(s) = (lα−1(1), lα−1(2), . . . , lα−1(n)). If (α(s), α(t)) ∈ R ∀ (s, t) ∈
R, α is an automorphism of K. The set of all automorphisms of K forms a group
Aut(K) ≤ Sn under composition of mappings.

A subgroup G of Aut(K) induces an equivalence relation θ = {(s, α(s)) : s ∈
S, α ∈ G} on the states of K. The equivalence class under θ of a state s ∈ S,
denoted [s], is called the orbit of s under the action of G, and θ is the orbit
relation. The smallest element of [s] under the total ordering described above is
denoted min[s]. The quotient Kripke structure for K with respect to G is a pair
K = (S, R) where S = {min[s] : s ∈ S}, and R = {(min[s], min[t]) : (s, t) ∈ R}.
If G is non-trivial K is a smaller structure than K, but K and K are equivalent
in the sense that they satisfy the same set of temporal logic properties which
are invariant under the group G. Thus by choosing a suitable symmetry group
G, model checking can be performed over K instead of K, potentially resulting
in considerable savings in memory and verification time.

2.2 Symmetry Reduction and Symbolic Representation

Our definition of a quotient structure in the previous section involves the selec-
tion of the smallest state of an equivalence class as a representative. However, any
representative function which maps all elements of a class on to the same unique
representative could be used. Symmetry reduction techniques can in principle be
combined with symbolic representation by constructing a BDD for such a rep-
resentative function, and applying the function during fixpoint iterations. This
is described in detail in [6], and summarised in [12]. Unfortunately, constructing
the representative function requires a BDD for the orbit relation which, for many
commonly occurring symmetry groups, has size exponential in min(k+1, n) [6].

Several alternative approaches to combining symmetry reduction and sym-
bolic model checking have been proposed, including the use of multiple repre-
sentatives [5]; under-approximation [3]; dynamic symmetry reduction [13]; and
generic representatives [11,12,14]. Summaries of these approaches can be found
in [20,22]. In this paper, we restrict our attention to the generic representatives
approach, which we now describe.

In order to avoid constructing a BDD for the orbit relation when exploiting full
component symmetry, a fully symmetric source program can be translated into a
reduced program, which can be checked using standard symbolic model checking
algorithms and has a state space isomorphic to the symmetric quotient structure
of the model underlying the original program. A program with n components
and k + 1 local states per component is translated into a program with k + 1
counter variables, each with domain I∪{0} [11]. A state of this program indicates
how many processes are in each local state of the original program, but does not
refer to individual processes (see the mutual exclusion example in Section 1).
This approach is extended [12] to include systems with global shared variables.
The translation of a program into reduced form is polynomial in the length of

12 A.F. Donaldson and A. Miller

the program and the approach compares well to those using unique or multiple
representatives.

Details of the translation of a fully symmetric program into reduced form can
be found in [12], and the approach is similar to the one we present for fully
symmetric PRISM programs with MDP semantics in Section 5. The approach
is limited as it only applies to fully symmetric systems and requires a somewhat
restrictive input language. However, full component symmetry is the most com-
mon kind of symmetry in model checking problems, and promises the best state
space reduction of any kind of symmetry.

3 Symmetry Reduction for Probabilistic Models

We now consider systems comprised of n stochastic components which interleave
concurrently. Once again, communication between components is achieved by in-
spection of local states. Let I and L be as before. A Markov decision process
(MDP) is a pair M = (S, Steps), where S ⊆ Ln, and Steps : S → 2Dist(S)

maps each state s to a finite, non-empty set of probability distributions over S.
A discrete time Markov chain (DTMC) is a pair D = (S, P) where S is as for
an MDP, and P : S × S → [0, 1] is a transition probability matrix. An MDP can
model systems which exhibit both nondeterminism and probabilistic behaviour
(e.g. nondeterministic scheduling of processes in a randomised distributed algo-
rithm), whereas DTMCs can be used to model purely probabilistic systems.

For either type of model, a total ordering on states is provided as before by
the usual lexicographic ordering on vectors, and the action of a permutation
α ∈ Sn on states is the same as that described in Section 2.1. Recall that
Kripke structure automorphisms preserve the transition relation of the structure.
Automorphisms of probabilistic structures preserve the probabilistic transition
relation. The following definitions are adapted from [20].

Definition 1. Let M = (S, Steps) and M′ = (S′, Steps′) be MDPs, and let
α : S → S′ be a bijection. Suppose that for all s ∈ S and for all μ ∈ Steps(s),
there exists μ′ ∈ Steps(α(s)) such that, for all t ∈ S, μ(t) = μ′(α(t)). Then α is
an isomorphism from M to M′, and M and M′ are said to be isomorphic. If
M = M′, α is an automorphism of M.

Definition 2. Let D = (S, P) and D′ = (S′, P ′) be DTMCs, and let α : S → S′

be a bijection. Suppose that for all s, t ∈ S, P (s, t) = P ′(α(s), α(t)). Then α
is an isomorphism from D to D′, and D and D′ are said to be isomorphic. If
D = D′, α is an automorphism of D.

In both cases, the set of all automorphisms forms a group under composition,
denoted Aut(D) or Aut(M), and a subgroup of this group induces orbits on the
state space as before. Taking the minimum element of each orbit as a representa-
tive, a quotient DTMC/MDP can be defined analogously to the non-probabilistic
case [20].

The quotient DTMC D = (S, P) is defined by S = {min[s] : s ∈ S}, and
P (min[s], min[t]) =

∑
x∈[t] P (min[s], x). For a quotient MDP M = (S, Steps),

Symmetry Reduction for Probabilistic Model Checking 13

S is defined similarly and, if min[s] ∈ S then μ ∈ Steps(min[s]) iff there is some
μ ∈ Steps(min[s]) such that, for all min[t] ∈ S, μ(min[t]) =

∑
x∈[t] μ(x). It is

easy to show using results on probabilistic bisimulation [21,26] that, as in the
non-probabilistic case, the quotient models preserve the truth of temporal prop-
erties which are invariant under symmetry. This means that for each maximal
propositional subformula f of a property φ, and for all α ∈ G, s |= f ⇔ α(s) |= f .
To express properties of MDPs or DTMCs we use PCTL (Probabilistic Com-
putation Tree Logic) [17].

Theorem 1. Let φ be a PCTL property which is invariant under G. Then, for
all s ∈ S,

M, s |= φ ⇔ M, min[s] |= φ.

Formulas in the sub-logic SPCTL, described in Section 4.1, are invariant under
full symmetry.

The following theorem establishes a correspondence between properties of
isomorphic MDPs under an appropriate transformation of atomic propositions.
We omit the proof, which is straightforward using induction on the structure of
PCTL formulas.

Theorem 2. Let M = (S, Steps) and M′ = (S′, Steps′) be MDPs, F and
F ′ sets of propositions over the local states of components of M and M′ re-
spectively, and γ : F → F ′ a bijection. For a PCTL formula φ with maximal
propositional subformulas taken from F , γ(φ) is the PCTL formula with maxi-
mal propositional subformulas taken from F ′, obtained from φ by replacing every
subformula f with γ(f). Let δ be an isomorphism from M to M′ such that, for
all s ∈ S and f ∈ F , s |= f ⇔ δ(s) |= γ(f). Then for any PCTL formula φ
over F and s ∈ S,

M, s |= φ ⇔ M′, δ(s) |= γ(φ).

Analogous versions of Theorems 1 and 2 hold for DTMCs.
As with non-probabilistic symbolic model checking, construction of a quotient

model as a multi-terminal BDD (MTBDD) is intractable for commonly occurring
symmetry groups. We now define a subset of the PRISM modelling language for
specification of fully symmetric MDP or DTMC models. In Section 5 we show
how the generic representatives approach of [11,12] can be extended to exploit
the symmetry inherent in these models.

4 Symmetric PRISM

We now define an input language for specifying fully symmetric programs. The
language defined is a subset of the PRISM modelling language, which we call
Symmetric PRISM (SP). An SP program consists of a module process1, and
n − 1 renamed copies of this module, denoted process2,. . . , processn. Each
module has a single variable, si, which has domain L and is initialised to 0. For
ease of presentation, we sometimes refer to si rather than si. Every statement
of a module consists of a compound guard, followed by a probabilistic choice of

14 A.F. Donaldson and A. Miller

spec ::= nondeterministic main module other modules |
probabilistic main module other modules

main module ::= module process1

s1 : [0..k] init l; statements
endmodule (l ∈ L)

statements ::= statement | statement statements
statement ::= [] local guard & guard -> stochastic update;
local guard ::= s1=j (j ∈ L)

stochastic update ::= λ1:(s1’=j1) + λ2:(s1’=j2) + . . . + λv:(s1’=jv)

(v > 0, λi ∈ [0, 1], ji ∈ L)
other modules ::= module process2 = process1 [s1=s2, s2=s1] endmodule

...
module processn = process1 [s1=sn, sn=s1] endmodule

Fig. 1. Syntax of Symmetric PRISM

updates to si (a stochastic update). The compound guard is a conjunction of a
local guard, which has the form si=j, for some j ∈ L, and an optional guard over
the variables s1,s2,. . . ,sn.

The core grammar of SP is given in Figure 1, while the form of optional guards
is presented in Table 1. The generic form column of Table 1 will be explained in
Section 5. For conciseness, the quantifiers ∀ and ∃ are used to denote conjunctions
and disjunctions over all (or all but one) components. For example, the guard
(s1=j & s2=j & . . .& sn=j) is denoted by ∀i si=j in the table. The last four forms
of guard in Table 1, together with module renaming, allow conditions on just the
state of other modules than that in which the guard appears. This extends the
form of guards allowed in [11,12], and requires more complex rules for translation
into generic form (see Section 5). In Figure 1, the keywords nondeterministic
and probabilistic indicate that the underlying model is an MDP or DTMC
respectively, and we say that P is a nondeterministic or probabilistic program,
using M(P)/D(P) to denote the model. Each statement in an SP program
consists of a guard followed by a stochastic update. The stochastic update is a
probabilistic choice over local updates of the form λi:(s1’=ji), where λi ∈ [0, 1]
is the probability of this local update being chosen, and

∑v
i=1 λi = 1. Note that

SP programs cannot include multiple local variables in modules, multiple module
types, or communication by synchronisation.

We illustrate the syntax of SP by modelling a minimum space shared memory
leader election protocol [7]. The protocol is carried out by a set of n proces-
sors, each with a single-writer multi-reader binary register (the leader register).
Eventually, all of these registers apart from one will be set to zero (the elec-
tion condition will be satisfied). The process for whom the associated register is
non zero is chosen as the leader. At each stage of the protocol, if the election
condition is not satisfied then for each processor Pi such that Pi has associated
register value 1, or Pi has register value 0 and every other processor also has
register value 0, Pi updates its register to 0 or 1 with equal probability.

Symmetry Reduction for Probabilistic Model Checking 15

Table 1. Forms of guard, with their generic versions, where the associated SP state-
ment has local guard s1=i (for some i ∈ L)

guard ::= generic form ̂guard

(guard) (̂guard)

!guard !̂guard

guard1 & guard2
̂guard1 & ̂guard2

guard1 | guard2
̂guard1 | ̂guard2

∀i si=j no j=n
∀i si!=j no j=0
∃i si=j no j > 0
∃i si!=j no j <n

∃i (si=j & (∀k �=i sk!=j)) no j=1

j = i j �= i

∀i>1 si=j no j=n no j =n − 1
∀i>1 si!=j no j=1 no j=0
∃i>1 si=j no j >1 no j >0
∃i>1 si!=j no j <n no j <n − 1

To model all possible initial configurations, in our specification processors
start in default state 2, from which they move to state 0 or 1 nondeterministically.
The protocol begins once all processors have state 0 or 1. Below we give the SP
specification for a system of 3 processors.

nondeterministic
module process1
s1 : [0..2] init 2;
[] s1=2 -> 1:(s1’=0);
[] s1=2 -> 1:(s1’=1);
[] s1=0 & (s1!=2 & s2!=2 & s3!=2) & (s1=0 & s2=0 & s3=0) ->

0.5:(s1’=0) + 0.5:(s1’=1);
[] s1=0 & (s1!=2 & s2!=2 & s3!=2) & (s2=1 | s3=1) -> 1:(s1’=0);
[] s1=1 & (s1!=2 & s2!=2 & s3!=2) & (s2=1 | s3=1) ->

0.5:(s1’=0) + 0.5:(s1’=1);
[] s1=1 & (s1!=2 & s2!=2 & s3!=2) & (s2=0 & s3=0) -> 1:(s1’=1);

endmodule

module process2 = process1 [s1 = s2, s2 = s1] endmodule
module process3 = process1 [s1 = s3, s3 = s1] endmodule

We now show that if M(P) is the MDP associated with a nondeterministic SP
program P then any permutation of components is an automorphism of M(P)
when lifted to states. Note that if t ∈ S then t(i) is the value of variable si.
The proof of the following lemma (which applies to both MDPs and DTMCs)
is straightforward, using structural induction on the form of guards given in
Table 1.

16 A.F. Donaldson and A. Miller

Lemma 1. Let σ be a statement in module processi of an SP program P (1 ≤
i ≤ n), let t be a state in the associated MDP or DTMC and let α ∈ Sn. If σ′

is the corresponding statement in module processα(i) then σ is executable in
t ⇔ σ′ is executable in α(t).

Theorem 3. Let P be a nondeterministic SP program. Then Aut(M(P)) = Sn.

Proof. By definition, Aut(M(P)) ⊆ Sn. Let α ∈ Sn and μ ∈ Steps(t) for some
t ∈ S. By the definition of an MDP automorphism (Definition 1), we must show
that α(t) ∈ S, and there exists μ′ ∈ Steps(α(t)) such that μ(u) = μ′(α(u)) for
all u ∈ S. Suppose first that t = t0, the initial state of M(P). Since each variable
si is initialised to l for some 0 ≤ l ≤ k, t0 = (l, l, . . . , l), so clearly α(t0) = t0.

Now let t be arbitrary in S, and suppose that α(t) ∈ S. The distribution μ
arises from the stochastic update of a statement, σ say, in module processi,
for some i ∈ I, in which the value of si is updated. Module processα(i) is
a renaming of processi where si and sα(i) are interchanged, so processα(i)
has a corresponding statement σ′ in which sα(i) is updated. By Lemma 1, σ′ is
executable in α(t).

Let μ′ ∈ Steps(α(t)) be the probability distribution associated with σ′. Since
σ only updates si, for any u ∈ S, if t(j) �= u(j) for some i �= j then μ(u) = 0.
As α(t)(j) �= α(u)(j), by a similar argument μ′(α(u)) = 0. Now suppose that
t(j) = u(j) for all j �= i. Suppose u(i) = k ∈ L. Then μ(u) is the probability of
updating si to k in σ, and μ′(u) is the probability of updating sα(i) to k in σ′.
Thus μ(u) = μ′(α(u)).

Finally, for any t ∈ S, we must have α(t) ∈ S, since if t0, t1, . . . , t is a path
from the initial state to t, by the above argument there is a corresponding path
t0 = α(t0), α(t1), . . . , α(t) from the initial state to α(t).

The proof of the analogous result for probabilistic SP programs is similar.

Theorem 4. Let P be a probabilistic SP program. Then Aut(D(P)) = Sn.

4.1 Symmetric PCTL

The temporal logic PCTL (probabilistic computation tree logic), presented in
detail in [25], can be used to specify properties of MDP and DTMC models
which can be verified using the PRISM model checker.

We define SPCTL, a subset of PCTL for reasoning about SP programs. A
symmetric guard is a guard of the form described in Table 1 which does not
include sub-expressions of the last four forms in the table. A symmetric guard g
has the property that, if α ∈ Sn, the guard α(g) obtained by replacing si with
sα(i) is identical to g (modulo order of operands to commutative operators). A
PCTL property φ is in SPCTL iff every maximal propositional subformula of φ
is a symmetric guard. Formulas of SPCTL are, by construction, invariant under
full symmetry.

For the leader election example, the property

P≥1 [true U(((s1=1 & s2!=1 & s3!=1) | (s2=1 & s1!=1 & s3!=1) | (1)
(s3=1 & s1!=1 & s2!=1)) & (s1!=2 & s2!=2 & s3!=2))]

Symmetry Reduction for Probabilistic Model Checking 17

is in SPCTL, and asserts that with probability 1 a leader will eventually be
elected.

5 Symmetry Reduction by Counter Abstraction

We now show how a nondeterministic SP program P can be translated into a
reduced program P̂ and an SPCTL formula φ into a reduced formula φ̂. The
translation process is polynomial in the size of P . We then show that M(P) and
M(P̂) are isomorphic, and apply Theorem 2 to show that SPCTL properties
of M(P) can be inferred by checking reduced properties of M(P̂). As M(P)
and M(P) are bisimilar (Theorem 1), PCTL properties of the original model
can be inferred in this way. As M(P) and M(P̂) are isomorphic, the state space
reduction associated with model checking over M(P̂) is the same as that gained
by building a quotient structure.

5.1 Translating SP into Generic Form

Let P be an SP program. The corresponding reduced program P̂ consists of a
single module, generic process. Recall that each module processi of P has
a local variable si with domain L = {0, 1, . . . , k}, for some k ≥ 0. The module
generic process has k+1 local variables, no 0, no 1,. . . ,no k, each with domain
I ∪ {0}, where no j indicates the number of components of the original system
which are in local state j ∈ L. For any j ∈ L, no j is initialised to n if j is the
initial value of the variable s1 in the original program, and to 0 otherwise.

For nondeterministic programs, the generic process module has one state-
ment corresponding to each statement of process1 in P . Suppose a statement
of P has the following form:

[] s 1=j & guard -> λ1:(s1’=j1) + λ2:(s1’=j2) + . . . + (2)
λv:(s1’=jv);

where guard is a guard of the form specified in Table 1. Then the corresponding
statement of generic process is as follows:

[] no j>0 & ̂guard -> λ1:(no j’=no j-1)&(no j1’=no j1+1) (3)
+ λ2:(no j’=no j-1)&(no j2’=no j2+1)

...
+ λv:(no j’=no j-1)&(no jv’=no jv+1);

with the exception that if one of the ji in the original stochastic update equals
j, the corresponding component of the generic update is (no ji’=no ji) (other-
wise the update would be (no ji’=no ji-1)&(no ji’=no ji+1), which intuitively
should have the same effect, but is not legal in PRISM). The guard ̂guard in P̂
is the generic form of guard. Details of the translation of guards are given in the

18 A.F. Donaldson and A. Miller

generic form column of Table 1. Note that, for the last four forms of guard in
the table, the translation to generic form depends on the local guard associated
with the statement.

Translation of statements is less straightforward for probabilistic programs,
due to the absence of nondeterminism. Let update denote the right hand side of
-> in (3). The probability of some module executing their copy of statement (2)
in a given state is proportional to the number of modules for which this statement
is executable. Thus, in the reduced program, statement (2) is translated to n
statements as follows:

[] no j>0 & ̂guard -> update

[] no j>1 & ̂guard -> update
...

[] no j> n − 1 & ̂guard -> update

Thus if d modules can execute a statement equivalent to (2) in a given state
of the original model (0 ≤ d ≤ n), exactly d of the statements above will be
executable in the corresponding state of the reduced model.

Recall that the states of M(P)/D(P) are a subset of Ln. Clearly for the
MDP/DTMC M(P̂) = (Ŝ, ̂Steps)/D(P̂) = (Ŝ, P̂), we have Ŝ ⊆ Ik+1.

Below we give the generic form of the leader election example introduced in
Section 4.

nondeterministic module generic_process
no_0 : [0..3] init 0;
no_1 : [0..3] init 0;
no_2 : [0..3] init 3;
[] no_2>0 -> 1:(no_2’=no_2-1)&(no_0’=no_0+1);
[] no_2>0 -> 1:(no_2’=no_2-1)&(no_1’=no_1+1);
[] no_0>0 & no_2=0 & no_0=3 -> 0.5:(no_0’=no_0) +

0.5:(no_0’=no_0-1)&(no_1’=no_1+1);
[] no_0>0 & no_2=0 & no_1>0 -> 1:(no_0’=no_0);
[] no_1>0 & no_2=0 & no_1>1 -> 0.5:(no_1’=no_1-1)&(no_0’=no_0+1)

+ 0.5:(no_1’=no_1);
[] no_1>0 & no_2=0 & no_0=2 -> 1:(no_1’=no_1);

endmodule

5.2 Translation of SPCTL Properties

Since the states of M(P)/D(P) relate to the local states of components, whereas
those of M(P̂)/D(P̂) relate to how many components are in each local state, it
is necessary to convert an SPCTL formula φ into a reduced form.

Let φ be an SPCTL formula. Recall from Section 4.1 that the maximal propo-
sitional subformulas of φ are symmetric guards. The reduced form of φ, denoted

Symmetry Reduction for Probabilistic Model Checking 19

φ̂, is identical to φ except that every maximal propositional formula g occurring
in φ is replaced with ĝ, using the translation rules of Table 1.

The generic form of the election property (property (1) in Section 4.1) is

P≥1 [true U(no 1=1 & no 2=0)].

Note that this concise property is independent of the number of processors par-
ticipating in the protocol, whereas in the unreduced program, a variant of (1) is
required for every protocol configuration.

5.3 Relationship Between M(P) and M(P̂)

Recall that S = {min[s] : s ∈ S}. Since components of P are fully interchange-
able, S = {s ∈ S : i < j ⇒ s(i) ≤ s(j)}. Then a state s ∈ S has the form

s = (0, 0, . . . , 0
︸ ︷︷ ︸

m0

, 1, 1, . . . , 1
︸ ︷︷ ︸

m1

, . . . , k, k, . . . , k
︸ ︷︷ ︸

mk

),

where mi denotes the number of entries equal to i, and
∑k

i=0 mi = n. With
s ∈ S as above, define a mapping δ : S → Ŝ by δ(s) = (m0, m1, . . . , mk).

Lemma 2. The mapping δ is an isomorphism from M(P) to M(P̂).

Let SG be the set of all symmetric guards. The translation rules of Table 1 define
a bijection ̂ : SG → SG′, where SG′ is the set of reduced forms of symmetric
guards.

Lemma 3. Let g ∈ SG be a symmetric guard. Then, for all s ∈ S, s |= g ⇔
δ(s) |= ĝ.

Proof. Suppose g =(s1=d & s2=d & . . . & sn=d) for some d ∈ L. Then ĝ =
no d=n. Clearly g only holds at the state t = (d, d, . . . , d), and ĝ only holds at
the state

δ(t) = (0, 0, . . . , 0
︸ ︷︷ ︸

d

, n, 0, . . . , 0
︸ ︷︷ ︸
k−(d+1)

).

The other base cases are similar, and the result follows by structural induction
on the form of symmetric guards.

We can now apply Theorem 2 to deduce:

Theorem 5. For any SPCTL property φ and s ∈ s,

M, s |= φ ⇔ M(P̂), δ(s) |= φ̂.

Further, combining Theorem 1 and Theorem 5 we get

Corollary 1. For any SPCTL property φ and s ∈ S,

M, s |= φ ⇔ M, min[s] |= φ ⇔ M(P̂), δ(min[s]) |= φ̂.

It is thus possible to infer SPCTL properties ofM(P) by checking corresponding
reduced properties of M(P̂). Analogous results to those in this section hold for
probabilistic programs.

20 A.F. Donaldson and A. Miller

6 Experimental Results for Case Studies

We have implemented GRIP (Generic Representatives In PRISM), a Java tool
which takes an SP program as input, and outputs the corresponding reduced
version. A parser for SP was generated using SableCC [15]. In this section we
present experimental results for two case studies – the leader election protocol
from [7] which we have used as a running example within this paper, and a
probabilistic mutual exclusion protocol adapted from a case study supplied with
the PRISM distribution [23], and analysed in [24].

Proving property (1) of Section 4.1 for the leader election example requires the
imposition of fairness constraints. It is well known for non-probabilistic model
checking that fairness and symmetry reductions cannot be directly combined
since the path of an individual process cannot be traced in the quotient structure
[10]. Thus for this example we use PRISM to prove that the maximum probability
of a leader being elected is 1, using the original specification and its generic form.
Expressing the mutual exclusion protocol in SP required some straightforward
syntactic modifications to the original PRISM code. The property here is that
the maximum probability of the critical section becoming clear once occupied
approaches 1.

Table 2. Experimental results for various configurations of the leader election (leader)
and mutual exclusion (mutex) protocols

original reduced

system states nodes build check states nodes build check

leader 20 3.5×109 5300 0.4 1 231 1144 0.1 0.04

leader 40 1.2×1019 20240 2 26 861 2563 0.2 0.2

leader 60 4.2×1028 44780 4 109 1891 3735 0.4 0.2

leader 80 1.5×1038 78920 10 669 3321 5706 0.7 0.5

leader 100 5.2×1047 122660 19 2754 5151 7054 1 0.7

leader 120 1.8×1057 176888 30 o/m 7381 8378 1 1

leader 140 6.3×1066 238940 53 o/m 10011 11133 2 2

mutex 4 26600 3591 0.7 0.2 1691 4069 1 0.2

mutex 12 4.9×1012 40687 22 14 892542 25670 5 2

mutex 20 7.1×1020 114647 137 86 3.3×107 59202 18 7

mutex 28 9.4×1028 225471 552 499 4.2×108 90381 64 20

mutex 36 1.2×1037 373159 14,003 3262 3.1×109 138006 322 44

mutex 44 - - o/t - 1.6×1010 175990 604 112

mutex 52 - - o/t - 6.3×1010 214045 1805 162

Table 2 shows, for various configurations of each case study, the number of
states (states) and MTBDD nodes (nodes) for each model. Time taken (in sec-
onds) for model building (build) and checking the associated SPCTL property
(check) are given for each case. Cases where PRISM did not complete model
building within 24 hours, and where our memory limit (500 Mb) was exceeded,

Symmetry Reduction for Probabilistic Model Checking 21

are denoted by o/t and o/m respectively. All experiments were performed us-
ing a PC with a 2.4 GHz Intel Pentium 4 processor, running PRISM version
3.0.beta1 under Red Hat Linux.

Symmetry reduction with generic representatives works particularly well for
the leader election example, with significant reductions in both state space and
MTBDD sizes, and much shorter times for model building and checking. This is
expected, as the approach has been shown to work well in the non-probabilistic
case when there are a small number of local states. Here there are 3 local states,
and the number of reachable states is reduced from 3n to 1

2 (n + 1)(n + 2) – the
theoretical maximum factor of reduction.

Results for the mutual exclusion case study show a saving in MTBDD nodes
for larger configurations, but the original model for 4 processes actually requires
fewer nodes than the generic version (there are 16 process local states so the
generic program always uses 16 variables, whereas a configuration with 4 pro-
cesses only uses 4 variables). It is unsurprising that the benefit of symmetry
reduction is not as striking here as there are more local states. Nevertheless,
larger configurations exhibit an encouraging reduction in time for both model
building and checking, and GRIP enabled us to verify configurations which were
previously intractable.

GRIP, together with PERL scripts to generate SP programs and SPCTL
properties for both case studies, can be downloaded from our website [16].

7 Related Work

Generic representatives and fully symmetric program transformations were first
proposed in [11]. This approach is extended to programs which include global
variables [12] and optimised using techniques from compiler optimisation (static
reachability analysis and dead variable elimination) in [14], where a prototype
generic model checker, UTOOL is described. Preliminary results on extending
these ideas to probabilistic model checking were presented in [8].

Another approach to combining symmetry reduction with symbolic represen-
tation is proposed in [13], where representative states are determined dynami-
cally during fixpoint iterations. This approach has some advantages over using
generic representatives (including fewer restrictions on the form of of input pro-
grams), but requires significant modifications to a symbolic model checking algo-
rithm. A related approach has been used for symmetry reduction in the PRISM
model checker [20]. Here the state space explosion problem is partially avoided:
construction of an MTBDD for the full model is still required, but probabilistic
temporal properties can be checked over a quotient structure. This approach is
useful as, in many cases, it is possible to represent a very large model as an
MTBDD, but not to check properties of this model. The problem of combin-
ing symmetry reduction with fairness assumptions is discussed in [10], where
an automata theoretic approach applicable to explicit state model checking is
presented. To our knowledge, the problem of combining symmetry, fairness and
symbolic representation has not been investigated.

22 A.F. Donaldson and A. Miller

Other methods for combining symmetry reduction with non-probabilistic sym-
bolic model checking are given in [3,6]. Numerous approaches for exploiting sym-
metry in non-probabilistic explicit state model checking have been proposed (see
[22] for a recent survey), but the application of these techniques to probabilistic
explicit state model checking [1] has not been investigated.

8 Conclusions and Future Work

We have shown that an approach to symmetry reduction for non-probabilistic
symbolic model checking, based on generic representatives, can be applied in
the probabilistic setting. Our techniques are applicable to symmetric PRISM
programs with MDP or DTMC semantics, and the translation of an SP program
to its reduced form is implemented by the GRIP tool. Experimental results for
two protocol case studies – minimum space leader election and mutual exclusion
– show that the technique can be effective.

Future work includes extending the approach to allow model checking of CSL
properties over continuous time Markov chain models, and using techniques pro-
posed in [14] to allow a less restrictive input language for symmetric programs.
It will also be useful to carry out an experimental comparison with alternative
symmetry reduction techniques for PRISM [20] based on dynamic symmetry
reduction [13].

Acknowledgements. The authors would like to thank Douglas Graham for
many useful discussions relating to this work, and Dave Parker for providing an
advance copy of [20].

References

1. C. Baier, F. Ciesinski and M. Größer. ProbMela and verification of Markov decision
processes. SIGMETRICS Performance Evaluation Review, 32(4): 22-27, 2005.

2. C. Baier, M. Kwiatkowska. Model checking for a probabilistic branching time logic
with fairness. Distributed Computing, 11:125–155, 1998.

3. S. Barner and O. Grumberg. Combining symmetry reduction and under-
approximation for symbolic model checking. Formal Methods in System Design,
27(1–2):29–66, 2005.

4. D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin. International Journal
on Software Tools for Technology Transfer, 4(1):65–80, 2002.

5. E.M. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry reductions in model
checking. In CAV’98, LNCS 1427, pages 147–158. Springer, 1998.

6. E.M. Clarke, R. Enders, T. Filkhorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. Formal Methods in System Design, 9(1–2):77–104, 1996.

7. S. Dolev, A. Israeli and S. Moran. Analysing expected time by scheduler-luck
games. IEEE Transactions on Software Engineering, 21(5):429–439, 1995.

8. A.F. Donaldson and A. Miller Symmetry reduction for probabilistic systems. In
Proc. 12th Workshop on Automated Reasoning, pages 17–18, 2005.

Symmetry Reduction for Probabilistic Model Checking 23

9. A.F. Donaldson and A. Miller Exact and approximate strategies for symmetry
reduction in model checking. In FM’06, LNCS 4085, pages 541–556. Springer,
2006.

10. E.A. Emerson and A.P. Sistla. Utilizing symmetry when model-checking under
fairness assumptions: an automata-theoretic approach. ACM Transactions on Pro-
gramming Languages and Systems, 19(4):617–638, 1997.

11. E.A. Emerson and R.J. Trefler. From asymmetry to full symmetry: new techniques
for symmetry reduction in model checking. In CHARME’99, LNCS 1703, pages
142–156. Springer, 1999.

12. E.A. Emerson and T. Wahl. On combining symmetry reduction and symbolic
representation for efficient model checking. In CHARME’03, LNCS 2860, pages
216–230. Springer, 2003.

13. E.A. Emerson and T. Wahl. Dynamic symmetry reduction. In TACAS’05, LNCS
3440, pages 382–396. Springer, 2005.

14. E.A. Emerson and T. Wahl. Efficient reduction techniques for systems with many
components. Electronic Notes in Theoretical Computer Science, 130:379–399, 2005.

15. E. Gagnon and L. J. Hendren. SableCC, an object-oriented compiler framework.
In TOOLS’98, pages 140–154. IEEE Computer Society Press, 1998.

16. GRIP website. http://www.dcs.gla.ac.uk/people/personal/ally/grip/.
17. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6(4):512–535, 1994.
18. A. Hinton, M. Kwiatkowska, G. Norman and D. Parker. PRISM: a tool for au-

tomatic verification of probabilistic systems. In TACAS’06, LNCS 3920, pages
441–444. Springer, 2006.

19. C.N. Ip and D.L. Dill. Better verification through symmetry. Formal Methods in
System Design, 9(1/2): 41–75, 1996.

20. M. Kwiatkowska, G. Norman and D. Parker. Symmetry reduction for probabilistic
model checking. To appear in CAV’06, LNCS. Springer, 2006.

21. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94: 1–28, 1991.

22. A. Miller, A. Donaldson and M. Calder. Symmetry in temporal logic model check-
ing. To appear in Computing Surveys, 2006.

23. PRISM website. http://www.cs.bham.ac.uk/∼dxp/prism/.
24. A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis-

tributed Computing, 1(1):53–72, 1986.
25. J.J.M.M. Rutten, M. Kwiatkowska, G. Norman and D. Parker. Mathematical

Techniques for Analyzing Concurrent and Probabilistic Systems. CRM Monograph
Series 23. American Mathematical Society 2004.

26. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

	Introduction
	Background
	Symmetry Reduction for Non-probabilistic Model Checking
	Symmetry Reduction and Symbolic Representation

	Symmetry Reduction for Probabilistic Models
	Symmetric PRISM
	Symmetric PCTL

	Symmetry Reduction by Counter Abstraction
	Translating SP into Generic Form
	Translation of SPCTL Properties
	Relationship Between M(P) and M(P"0362P)

	Experimental Results for Case Studies
	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

