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Abstract

Much of the literature on symmetry reductions for model checking assumes a simple model of computation
where the local state of each component in a concurrent system can be represented by an integer, and where
components do not hold references to one another. Symmetry reduction techniques for model checking
usually require a solution to the NP-hard Constructive Orbit Problem (COP)–computing the minimum
element in the equivalence class of a given state under a symmetry group. Polynomial time strategies to
solve instances of the COP under the simple model of computation are known for a large class of symmetry
groups. We show that these strategies are not directly applicable when the model of computation is
extended to allow components to hold references to one another, and present an approach to their extension,
resulting in tractable, memory optimal symmetry reduction techniques for a realistic model of computation.
Experimental results using the TopSPIN symmetry reduction package for the SPIN model checker illustrate
the effectiveness of our techniques.

Keywords: Model checking, symmetry, computational group theory, concurrency, Promela/SPIN,
distributed systems, GAP

1 Introduction

Over the last decade there has been a lot of interest in using symmetry reduc-

tion techniques to combat the state space explosion problem for model checking.

Symmetry reduction techniques exploit the fact that a concurrent system often has

replicated structure, in which case temporal properties of a model of the system

can be checked over a quotient state space, thus avoiding redundant checking of

equivalent behaviours induced by the replication. Symmetries of a model are typ-

ically induced by a group of component identifier permutations, which give rise to

automorphisms of the state space when lifted to states. The standard approach

to exploiting symmetry in explicit state model checking involves converting each
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state encountered during search to a unique representative in its equivalence class

before storing it. Then when an equivalent state is reached, it will be converted to

the same representative (resulting in a transition to a previously reached state) and

search can backtrack.

The standard approach to computing equivalence class representatives is, given

a total ordering � on states, to take rep(s) = min�[s]G, where s is a state and

[s]G is the equivalence class, or orbit of s under the group G of symmetries. The

problem of computing min�[s]G under a simple model of computation, where the

local state of each component is an integer value, components do not hold references

to one another and � is the usual lexicographic ordering on vectors, is called the

constructive orbit problem (COP), and is NP -hard [4]. For certain classes of symme-

try groups, including fully symmetric groups and groups which can be decomposed

as a disjoint/wreath product of subgroups, the COP can be solved in polynomial

time [4,8]. However, rich specification languages such as Promela [11] allow compo-

nents of a system to hold references to one another, and realistic models of software

systems depend on this feature.

We present the Constructive Orbit Problem with References (COPR), and show

that polynomial time strategies proposed in [4,8] for COP under the simple model

of computation used in e.g. [4,9] do not directly extend to solve COPR. We then

present a computational group theoretic approach which extends any strategy for

solving the COP to a solution for COPR. This extension is based on the segmented

strategy used by the SymmSpin package for the SPIN model checker [1], which is

a special case of our approach for full symmetry groups. Although our extension

results in exact symmetry reduction at the expense of losing a polynomial time

solution, experimental results using the TopSPIN package for the SPIN model checker

[7] with various configurations of two Promela examples demonstrate that in practice

our approach is significantly more efficient than enumerating [s]G to compute the

minimum. We show that COPR is polynomial time equivalent to COP, and discuss

the relationship between these problems and the computational group theoretic

problem of finding the smallest image of a set under a group [14].

2 Models of Computation

We use component to refer to a process, channel or shared variable in a concurrent

system. Let I = {1, 2, . . . , n} be the set of component identifiers for such a system.

Suppose that the local state of a component is comprised of two parts, its control

state and its reference state.

The control state of a component is determined by the values of all local variables

of that component which are not references to other components, e.g. a program

counter or boolean flag. Without loss of generality, we can represent a local control

state abstractly as an integer in the set Lc = {0, 1, 2, . . . , k} for some k ≥ 0.

On the other hand, the reference state of a component is determined by the

values of all local variables which are references to other components. For exam-

ple, components in a leader election protocol may require a reference variable to
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(eventually) hold the identity of the leader; a user in a model of telephony may

hold a reference to its current partner. Thus a reference state is a tuple in the set

Lr = (I ∪ {0})m for some m ≥ 0. Here m is the number of references held by

a component, and 0 is used as a default value (e.g. to represent that the leader

is unknown). Without loss of generality we can assume that all components have

exactly m ≥ 0 reference local variables.

Thus a global state s ∈ (Lc × Lr)
n has the form:

s = (l1, (r1,1, r1,2, . . . , r1,m), l2, (r2,1, r2,2, . . . , r2,m), . . . , ln, (rn,1, rn,2, . . . , rn,m)),

where li ∈ Lc represents the control state of component i, and ri,j ∈ I ∪ {0} is the

value of the jth reference variable of component i (i ∈ I, 1 ≤ j ≤ m).

In the special case where m = 0, i.e. when components do not hold references to

one another, Lr consists of a 0-tuple, and can thus be ignored. A state s ∈ Ln
c then

has the form s = (l1, l2, . . . , ln). We refer to models of computation where m > 0

and m = 0 as a model of computation with and without references, respectively.

A Kripke structure is a pair M = (S,R), where S ⊆ (Lc × Lr)
n is a non-empty

set of states, and R ⊆ S × S is a total transition relation. A Kripke structure

expresses the semantics of the specification of a concurrent system written in a high

level language such as Promela. Statements of the specification determine which

transitions are possible from a given state of the Kripke structure, and the complete

structure can be constructed by following all paths from some initial state.

3 Symmetry Reduction in Model Checking

3.1 Group Theoretic Notation

We assume some knowledge of basic group theory, but recap some notation here. Let

G be a group, and let α1, α2, . . . , αn ∈ G. The smallest subgroup of G containing the

elements α1, . . . , αn is denoted 〈α1, α2, . . . , αn〉, and is called the subgroup generated

by α1, α2, . . . , αn. The elements αi (1 ≤ i ≤ n) are called generators for this

subgroup. Let X = {α1, . . . , αn} be a finite subset of G. Then we use 〈X〉 to

denote 〈α1, . . . , αn〉, the subgroup generated by X. The set of all permutations of

I forms a group under composition of mappings, denoted Sn (the symmetric group

on n points). If J ⊆ I and α ∈ Sn, then α(J) = {α(i) : i ∈ J}, and the set stabiliser

of J in G is the subgroup stabG(J) = {α ∈ G : α(J) = J}. If H is a subgroup

of G we write H ≤ G (note that we also use ≤ to denote lexicographic ordering of

vectors).

3.2 Automorphisms and Quotient Structures

In a model of computation without references, α ∈ Sn acts on s = (l1, l2, . . . ,

ln) ∈ Ln
c by simply permuting control states: α(s) = (lα−1(1), lα−1(2), . . . , lα−1(n)).

Now let s ∈ (Lc × Lr)
n be as in Section 2, and α ∈ Sn. The application of

α to s can be considered as a two-stage process. For each i, first the local state

(li, (ri,1, ri,2, . . . , ri,m)) of component i is replaced by the local state of component
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α−1(i). Then α is applied to each reference variable of component i (with α(0) = 0).

Thus:

α(s) = ( lα−1(1), (α(rα−1(1),1), α(rα−1(1),2), . . . , α(rα−1(1),m)),

lα−1(2), (α(rα−1(2),1), α(rα−1(2),2), . . . , α(rα−1(2),m)), . . . ,

lα−1(n), (α(rα−1(n),1), α(rα−1(n),2), . . . , α(rα−1(n),m)) ).

For example, consider a system comprised of 4 components, where the state

of each component consists of its control state and one reference variable. In

this case n = 4, m = 1 and Lr = {0, 1, 2, 3, 4}1 = {0, 1, 2, 3, 4}. Suppose that

Lc = {0, 1, 2}. Let s = (1, 4,2, 3,0, 0,0, 4) ∈ (Lc × Lr)
4 (control states are distin-

guished by bold type). If α = (3 4) then α(s) = (1, α(4),2, α(3),0, α(4),0, α(0)) =

(1, 3,2, 4,0, 3,0, 0).

A permutation α ∈ Sn is an automorphism of a Kripke structure M = (S,R)

if α preserves the transition relation R. That is, for each transition (s, t) ∈ R,

(α(s), α(t)) ∈ R. The set of all automorphisms of M forms a group under composi-

tion of mappings, denoted Aut(M). If G is a subgroup of Aut(M) then G induces

an equivalence relation on S, where the equivalence class or orbit of s ∈ S is the

set [s]G = {α(s) : α ∈ G}. If rep is a function which maps every state to a unique

representative from its equivalence class, then the quotient Kripke structure of M
by G can be defined as follows: MG = (SG, RG) where SG = {rep(s) : s ∈ S},
RG = {(rep(s), rep(t)) : (s, t) ∈ R}. In general MG is a smaller structure than

M, but MG and M are equivalent in the sense that they satisfy the same set of

logic properties which are invariant under the group G (that is, properties which

are “symmetric” with respect to G). For a proof of the following theorem, together

with details of the temporal logic CTL∗, see [5].

Theorem 3.1 Let M be a Kripke structure, G a subgroup of Aut(M) and φ a

CTL∗ formula. If φ is invariant under G then

M, s |= φ iff MG, rep(s) |= φ

3.3 Constructive Orbit Problems

Let � be a total ordering on S. Then for any s ∈ S, rep(s) can be taken as min�[s]G,

the smallest element of [s]G with respect to the ordering �. If M = (S,R) has initial

state s0, Algorithm 1 (adapted from [12]) can be used to explore MG. The efficiency

of the algorithm depends on the complexity of computing min�[s]G. Assuming a

model of computation without references, so that S ⊆ Ln
c , we can take � to be ≤,

the usual lexicographic ordering on vectors. 4 Then we have

Definition 3.2 The Constructive Orbit Problem (COP) [4] Given a group

G ≤ Sn and a state s ∈ Ln
c , find min≤[s]G, the lexicographically least element in

the orbit of s under G.

4 Note that choosing rep(s) = min≤[s]G is only one convenient way to choose a representative, but it is a
method that is commonly used. Using another distinguished element would be equivalent, but would not
allow us to adapt existing algorithms without conversion.
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Theorem 3.3 [4] The COP is NP-hard.

Despite this discouraging result, for a large class of commonly occurring sym-

metry groups, it is possible to solve the COP in polynomial time. We outline these

special cases in Section 4.1. Additionally, an approximate solution to the COP has

been proposed, and shown to be effective [8].

We now turn to the more realistic model of computation where references are

permitted. In order to define a total ordering 
 on S ⊆ (Lc × Lr)
n, we de-

fine two projection mappings, ctrl and ref , projecting a state on to its control

and reference parts respectively. For a state s = (l1, (r1,1, r1,2, . . . , r1,m), l2, (r2,1,

r2,2, . . . , r2,m), . . . , ln, (rn,1, rn,2, . . . , rn,m)), ctrl(s) = (l1, l2, . . . , ln) and ref (s) =

(r1,1, r1,2, . . . , r1,m, . . . . . . , rn,m).

Definition 3.4 For s, t ∈ S, s 
 t if either s = t; ctrl(s) < ctrl(t); or ctrl(s) =

ctrl(t) and ref (s) < ref (t). Here ref (s) and ref (t) are compared using the usual

lexicographic ordering on vectors (similarly ctrl(s) and ctrl(t)).

It is clear that 
 is a total ordering on states. We write s ≺ t if s 
 t and s �= t.

We now extend the COP to the model of computation with references:

Definition 3.5 The COP with References (COPR) Given a group G ≤ Sn

and a state s ∈ (Lc × Lr)
n, find min�[s]G, the 
-least element in the orbit of s

under G.

It is clear that COPR is a generalisation of COP – in the special case where m = 0

COP and COPR are identical. Since COP is NP-hard (Theorem 3.3), COPR is NP -

hard by restriction. In fact, the two problems can be shown to be polynomial time

equivalent. An instance of COP is trivially an instance of COPR, and an instance

of COPR can be converted, in quadratic time, to an instance of COP. The latter

is achieved by replacing each component id reference ri,j by a vector of n binary

values, which are all 0 unless ri,j = l > 0, in which case the binary value l places

from the right is 1. For example, if n = 8 and ri,j = 5, the value of ri,j is converted to

the binary sequence 0, 0, 0︸ ︷︷ ︸
n−5

, 1, 0, 0, 0, 0︸ ︷︷ ︸
5

. The variables introduced to hold these values

are modelled as components with binary valued local state. If convert denotes a

function which performs this conversion, then placing the value 1 l places to the

right ensures that, for states s and t, s 
 t iff convert(s) ≤ convert(t). Elements of

the symmetry group G must also be transformed appropriately, so that if s is a state

and α ∈ G, the transformed element α′ must satisfy convert(α(s)) = α′(convert(s)).

4 Symmetry Reduction Strategies

Let S ⊆ Ln
c , and let G ≤ Sn. A symmetry reduction strategy for a group G ≤ Sn is a

function f : S → S with the property that f(s) = min≤[s]G [1]. Application of such

a function typically involves repeated application of elements from G (the product
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Algorithm 1 Algorithm to explore a quotient Kripke structure, given total ordering

� on states.

reached := {min�[s0]G};
unexplored := {min�[s0]G};
while unexplored �= ∅ do

remove a state s from unexplored;

for all successor states t of s do

if min�[t]G is not in reached then

add min�[t]G to reached;

add min�[t]G to unexplored;

end if

end for

end while

of which is an element of G). We can equivalently define a symmetry reduction

strategy with respect to a group G as follows:

Definition 4.1 An (exact) COP strategy for G ≤ Sn is a function f : S → G such

that, for all s ∈ S, if α = f(s) then α(s) = min≤[s]G.

In other words, f applied to s yields an element of G which minimises s.

Because of the difficulty of solving COP, some symmetry reduction approaches

map states to a small number of representatives rather than a single representative

[1,4]. This is known as the multiple orbit representatives approach. COP strategies

which use multiple orbit representatives are said to be approximate [8].

Definition 4.2 An approximate COP strategy for G ≤ Sn is a function f : S → G

such that, for all s ∈ S, if α = f(s) then α(s) ≤ s.

A good approximate strategy yields elements of G which map the orbit [s]G on to a

small number of representatives. Exact and approximate strategies for the COPR

are defined analogously, using the total ordering 
.

4.1 Summary of Polynomial Time Exact Strategies

Enumeration If |G| is polynomial in n (e.g. when G is a cyclic or dihedral group

arising from a uni/bi-directional ring network topology), f(s) can be computed by

enumerating the elements of G and returning an element α such that α(s) ≤ β(s)

for all β ∈ G [4]. Clearly this strategy is not feasible if |G| is exponential in n.

Symmetric groups When G = Sn, f(s) can be taken to be any permu-

tation which sorts s in increasing order [1,4]. For example, if G = S4 and

s = (5, 2, 4, 3) ∈ {0, 1, . . . , 5}4, sorting s gives min≤[s]G = (2, 3, 4, 5). Since sorting

can be performed in polynomial time, this leads to a polynomial time exact COP

strategy for Sn. Algorithm 2 gives such a strategy based on selection sort. The

idea of solving COP by sorting is generalised in [8] to a class of groups which are

isomorphic to Sm for some m ≤ n.

Disjoint/wreath products If G is the disjoint product of subgroups H and K,
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and h and k are polynomial time strategies for COP for H and K respectively, then

the strategy f defined by f(s) = k(s)h(s) is a polynomial time strategy for G [4]. In

other words, COP can be solved for G by applying in sequence permutations which

minimise s with respect to H and K respectively. Disjoint product groups occur

frequently in practice when there is full symmetry between multiple component

types in a system. A similar approach can be used to obtain a polynomial time

COP strategy when G is the wreath product of subgroups for which polynomial

time strategies are available [4]. Wreath product groups typically occur when a

system has a tree topology.

Algorithm 2 A COP strategy for Sn based on selection sort.

α := id

for all i ∈ [1, . . . , n − 1] do

β := id

for all j ∈ [i + 1, . . . , n] do

if (i j)α(s) < βα(s) then

β := (i j)

end if

end for

α := βα

end for

return α

4.2 Problems With References

The strategies summarised above were proposed for a model of computation without

references. Clearly the strategy based on enumeration extends immediately to a

model of computation with references, if |G| is polynomial in n. However, the other

strategies are not immediately applicable. We show this for the COP strategy where

G = Sn and representatives are computed by sorting. Similar arguments can be

applied for the other strategies.

The proof that the COP for G = Sn can be solved by sorting a state s is based

on the following lemma.

Lemma 4.3 In the simple model of computation, there are no i1, j1, i2, j2 ∈ I where

i1 < j1, i2 < j2, (i2 j2)(s) < s and (i1 j1)(s) ≥ s, but (i2 j2)(i1 j1)(s) < (i2 j2)(s).

However, this result does not hold in the presence of references.

Lemma 4.4 Lemma 4.3 does not hold for the model of computation with references

where the ordering ≤ is replaced with 
.

Proof. We prove Lemma 4.4 by counterexample. Suppose n = 3, and consider

s = (1, 0,0, 2,0, 2). Take i1 = 2, j1 = 3, i2 = 1 and j2 = 3. Then we have

(i2 j2)(s) = (0, 2,0, 2,1, 0) ≺ s, (i1 j1)(s) = (1, 0,0, 3,0, 3) � s. But (i2 j2)(i1 j1) =

(1 3 2), and (1 3 2)(s) = (0, 1,0, 1,1, 0) ≺ (i2 j2)(s). �
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This counterexample for the case n = 3 can be extended to give a counterex-

ample for any n ≥ 3 – consider i1, j1, i2 and j2 as above, and s = (1, 0,0, 2,0, 2,

0, 0, . . . ,0, 0).

Applying Algorithm 2 with ≤ replaced by 
 to s = (1, 0,0, 2,0, 2) gives the

element (1 3) which does not minimise s, whereas enumeration of S3 gives (1 3 2),

which does. Thus this adaptation of Algorithm 2 does not yield an exact COPR

strategy.

Suppose G ≤ Sn is a symmetry group and G′ ≤ Sn′ is the group isomorphic to

G obtained by the conversion of a COPR instance to a COP instance discussed in

Section 3.3 (here n′ ≥ n is the number of components used in the representation of

converted states). A polynomial time COP strategy for G does not in general yield

a corresponding COPR strategy for G′, as the action of G′ on {1, 2, . . . , n′} may

be fundamentally different to that of G on {1, 2, . . . , n}. For example, if G is the

disjoint product of subgroups H and K then G′ is the direct product of subgroups

H ′ and K ′, but it may not be the case that H ′ and K ′ act disjointly on {1, 2, . . . , n′}.

We now show how a polynomial time exact COP strategy can be extended to

an exact COPR strategy. The result is not a polynomial time strategy, but may be

significantly more efficient than the enumeration strategy if G is large.

5 Segmentation: Extending Strategies to a Model of

Computation With References

Our approach to extending a strategy for COP to one for COPR works by con-

structing a partition of I from a given state, and enumerating the stabiliser of this

partition.

5.1 Partitions and Stabilisers

A partition of I is a set X = {I1, I2, . . . , Id}, where d > 0, Ij ⊆ I (1 ≤ j ≤ d),

I =
⋃d

j=1 Ij , and Ii ∩ Ij = ∅ for 1 ≤ i �= j ≤ d.

Definition 5.1 Let X be a partition of I, and let G ≤ Sn. The (partition) stabiliser

of X in G is the subgroup stabG(X ) =
⋂

J∈X stabG(J).

5.2 Segmenting a State

We define a subset of [s]G whose elements have minimal control states.

Definition 5.2 Let smallG(s) = {t ∈ [s]G : ctrl(t) ≤ ctrl(u) ∀ u ∈ [s]G}.

Clearly min�[s]G ∈ smallG(s). Given a state s, the vector ctrl(s) can be viewed

as a state under a model of computation without references. The following result

is a consequence of this observation and Definition 5.2:

Lemma 5.3 For s ∈ S, t ∈ smallG(s) ⇔ ctrl(t) = min≤[ctrl(s)]G.
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For 0 ≤ i ≤ k, let s(i) = {j ∈ I : lj = i}, i.e. the set of indices of components

which have control state i in s. Define the function seg acting on states by

seg(s) = {s(0), s(1), . . . , s(k)}.

Then clearly, for any state s, seg(s) is a partition of I.

5.3 Symmetry Reduction via Segmentation

Lemma 5.4 If t ∈ smallG(s) and α(t) < t for some α ∈ G then α ∈ stabG(seg(t)).

Proof. Since t ∈ smallG(s) and α(t) < t, by Definition 5.2 clearly ctrl(t) =

ctrl(α(t)) and ref(t) > ref(α(t)). Since ctrl(t) = ctrl(α(t)), t(i) = α(t)(i) for

1 ≤ i ≤ k, i.e. seg(t) = seg(α(t)). Thus α preserves seg(t), i.e. α ∈ stabG(seg(t)).�

Thus, if a state t ∈ smallG(s) is not the smallest element in [s]G under 
 then

search for a minimising element of G can be restricted to stabG(seg(t)). Note that

if component indices i, j ∈ X ∈ seg(t), it is still necessary to consider elements of

G which map i to j. Thus we cannot treat the elements of seg(t) as sequences and

compute their pointwise stabiliser (which would be computationally easier).

Suppose that we have an exact COP strategy f for G. Let β = f(ctrl(s)), so

that β(ctrl(s)) = min≤[ctrl (s)]G. Clearly β(ctrl(s)) = ctrl(β(s)), and therefore by

Lemma 5.3, β(s) ∈ smallG(s). By Lemma 5.4, the group H = stabG(seg(β(s)))

can now be enumerated to find an element α such that αβ(s) 
 δβ(s) for all δ ∈ H.

Thus we have proved the following:

Theorem 5.5 Let s ∈ S, G ≤ Aut(M), and let f be an exact COP strategy for G.

Then Algorithm 3 is an exact COPR strategy for G.

Algorithm 3 Extending an exact COP strategy f for a group G to an exact COPR

strategy.

β := f(ctrl(s))

H := stabG(seg(β(s)))

α = id

for all δ ∈ H do

if δβ(s) ≺ αβ(s) then

α := δ

end if

end for

return αβ

Figure 1 illustrates graphically the relationship between [s]G (represented by

the outer ellipse) and its subset smallG(s) (represented by the inner ellipse), and

the process of computing an element of G which minimises s. We illustrate the

approach further with an example.

Let n, m, Lc and Lr and G be as in the example in Section 4.2. Let

s = (1, 2,0, 1,0, 1,2, 1). Then ctrl(s) = (1, 0, 0, 2), and applying Algorithm 2,
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β(s) αβ(s)
= min�[s]G

s

α ∈ H

β = f(ctrl(s))

smallG(s) = [β(s)]H

[s]G

ctrl(β(s)) = min≤[ctrl(s)]G H = stabG(seg(β(s)))

Fig. 1. Symmetry reduction by segmentation.

we find that β = (1 3) satisfies β(ctrl(s)) = min≤[ctrl(s)]G. Applying β to s gives

t = (0, 3,0, 3,1, 2,2, 3), and seg(t) = {{1, 2}, {2}, {3}}. It is easy to check that

stabG(seg(t)) = 〈(1 2)〉, a group of order 2, and that applying (1 2) to t gives

min�[s]G = (0, 3,0, 3,1, 1,2, 3). For this example, the application of 6 group ele-

ments is required by Algorithm 2, followed by enumeration of a group of order 2.

Computing min�[s]G by basic enumeration would have required the application of

all 24 elements of G to s.

6 Efficiency

Assuming that f can be computed in polynomial time (using strategies described

in [4,8]), the efficiency of Algorithm 3 is dominated by computation of and iteration

over H.

Computing H = stabG(seg(s)) is equivalent to computing the stabiliser of a set

in a group. The most efficient algorithms available for computing set stabilisers

involve backtrack search of the group using a base and strong generating set [2,16].

Typically this search can be heavily pruned using both problem-independent heuris-

tics, and heuristics based on properties of set stabilisers. Thus, despite the fact that

no polynomial time algorithm is known for computing set stabilisers, the associated

overhead is not large. Furthermore, as the experimental results of Section 7.1 show,

the set {seg(s) : s ∈ S} of all partitions of I which must be considered during

search, is often much smaller than the number of possible partitions of I. 5 Thus,

re-computation of partition stabilisers can be avoided by caching partition-stabiliser

pairs.

In the worst case, H may have size |G| (e.g. when |seg(s)| = 1), and |G| may

5 The number of such partitions is Bn, the nth Bell number, which is defined recursively by B0 = 1 and
Bn =

P
n−1

k=0

`
n

k

´
Bk for n > 0 [15].
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be as large as n! (in the case where G = Sn). However, if the number of distinct

component control states is reasonably large, many states s will have the property

that |seg(s)| = n, in which case stabG(seg(s)) is the trivial group.

7 Implementation for the SPIN Model Checker

We have implemented the approach presented in this paper as an addition to

TopSPIN [7], a symmetry reduction package for the SPIN model checker [11]. Com-

putation of partition stabilisers during search is performed via the computational

algebra system GAP [10]. Given a Promela specification, SPIN produces C code

for a corresponding executable verifier. TopSPIN automatically detects component

symmetries from the Promela specification, and (using a method similar to that of

SymmSpin [1]) adds symmetry reduction algorithms to the verifier according to one

of 4 options specified by the user.

If the enumerate option is selected then memory optimal symmetry reduction

will be applied during verification, with a runtime overhead proportional to the size

of the symmetry group G (so this is useful only for small groups, or for comparison

with more efficient options). If the fast or segment option is chosen then TopSPIN

uses GAP to analyse the structure of G in an attempt to find a polynomial time

exact COP strategy, as described in [8]. With the fast option, such a strategy will

be used directly. This results in memory optimal verification if components of the

specification do not hold references to one another; otherwise model checking may

involve the use of multiple representatives from each orbit. Choosing the segment

option means that the COP strategy will be extended to a memory optimal COPR

strategy using the method presented in this paper. In this case, the verifier must

currently be instantiated from within the GAP system. Finally, the hillclimbing

option can be selected, in which case an approximate symmetry reduction strategy

based on hillclimbing local search will be applied [8]. This strategy will be used by

default if no polynomial time COP strategy for G can be found with the fast or

segment options.

7.1 Experimental Results

We illustrate the variation in memory requirements and verification time for the

enumerate, fast and segment strategies using various configurations of two Promela

examples: an email system, and a loadbalancer which forwards requests from a pool

of clients to a pool of servers in a fair manner.

The email example is adapted from [3], and is used as a case study for symmetry

reduction in [8]. A configuration of the system consists of p client processes, which

communicate by sending messages to a mailer process via a network channel compo-

nent. The client components are instantiations of the same parameterised process

and thus behave identically, so there is full symmetry between clients. Components

in a Promela specification of the system use reference variables to keep track of the

sender and recipient of a given message. A configuration of the email example with

p clients is denoted email p. Components in a configuration of the loadbalancer

A.F. Donaldson, A. Miller / Electronic Notes in Theoretical Computer Science 185 (2007) 63–76 73



system states time |G| states time time ptns states time

orig orig red enum seg fast fast

email 3 23256 0.1 6 3902 0.8 0.2 5 3908 0.2

email 4 852641 9 24 36255 6 4 7 38560 2

email 5 3.04×107 3576 120 265315 253 71 9 315323 40

email 6 - - 720 1.7 × 106 13523 1600 11 2.3 × 106 576

email 7 - - 5040 9.3×106 - 50970 13 1.53 × 107 6573

lb 2/6 2.37×107 1585 1440 23474 265 28 94 31066 5

lb 2/7 - - 10080 44137 4376 266 259 61245 16

lb 3/6 - - 4320 125126 5024 271 330 256204 57

lb 3/7 - - 30240 293657 - 2722 451 685167 213

lb 4/6 - - 17280 527548 - 2378 884 1.7×106 487

lb 4/7 - - 120960 1.2×106 - 29779 1296 3.7×106 1583

Table 1
Experimental results for configurations of the email and loadbalancer (lb) specifications.

example are a set of p server and q client processes with associated communication

channels, and a loadbalancer process (with a dedicated input channel). The load of

a server is the number of messages queued on its input channel. Client processes

send requests to the loadbalancer, and if some server channel is not full, the load-

balancer forwards a request nondeterministically to one of the least loaded server

queues. Each request contains a reference to the input channel of its associated

client process, and the server designated by the loadbalancer uses this channel to

service the request. A configuration with p clients and q is denoted p/q. There is

full symmetry between the p servers and also between the q clients, thus a p/q con-

figuration has a disjoint product symmetry group of order p!q!. For both examples,

we verify safety properties embedded in the specification as assertions.

Table 1 contains experimental results for various configurations of the email and

loadbalancer examples. For each configuration, we give the number of model states

without symmetry reduction (orig), with memory optimal symmetry reduction via

the enumerate or segment options (red), and with symmetry reduction via the fast

option (fast). The use of state compression, an option provided by SPIN, is indicated

by the number of states in italics. This option was selected for two configurations

to allow verification without symmetry reduction by storing states more efficiently,

with an associated time overhead. Verification times (in seconds) are given for the

enumerate (enum), segment (seg) and fast (fast) options, as well as for the case

where symmetry reduction is not applied (orig). The size of the symmetry group

(|G|) and the number of partitions which arise using the segment option (ptns)

are also given. Verification attempts which exceed available resources, or do not

terminate within 15 hours, are indicated by ‘-’. All experiments are performed on

a PC with a 2.4GHz Intel Xeon processor, 3Gb of available main memory, running

SPIN version 4.2.3.

For both examples, and especially for the loadbalancer, the use of symmetry

reduction techniques allows the verification of larger configurations – even using

state compression, memory requirements were quickly exceeded when symmetry

reduction was not applied. When G is large, enumeration is not a feasible technique,
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but with the segment option it was possible to perform model checking over quotient

structures using unique representatives. Although this is slower than using the fast

option, the reduction in states for large configurations of the loadbalancer example

is encouraging. As discussed in Section 6, this time overhead is mostly due to the

final step of minimising a state, which involves enumeration of a (potentially large)

subgroup of G.

8 Related Work

The COP for symmetry reduction in model checking was investigated in [4], and

polynomial time strategies for certain classes of groups, summarised in Section 4.1,

were proposed.

The problem of performing symmetry reduction in the presence of inter-

component references is investigated in [1], where the segmented strategy provides

memory optimal symmetry reduction. This strategy applies when G = Sn, and is

informally described as the process of applying every possible permutation which

sorts the main array of a state, and selecting the permutation which results in the

smallest image. The main array of a state s is analogous to ctrl(s). We have for-

malised this approach using the ideas of partitions and stabilisers, and generalised

the method to apply to arbitrary subgroups of Sn. An approximate strategy for

fully symmetric groups – the sorted strategy – is also proposed, and experimental re-

sults using the SymmSpin symmetry reduction package for SPIN illustrate the same

trade-off between memory and verification time as observed in Section 7.1. An-

other approach to exploiting symmetry in the SPIN model checker handles reference

variables by adding keywords to the Promela language [6].

A recent approach to symmetry breaking in constraint programming requires a

solution to a problem related to COP [13]. During search, symmetry breaking is

performed by determining whether the partial assignment of variables at a given

node is lexicographically least in its orbit under a symmetry group G. If not, search

backtracks. The approach relies on a variant of an algorithm for finding the smallest

image of a set under a permutation group [14]. This problem can be shown to be

polynomial time equivalent to COP.

9 Conclusions and Future Work

We have presented an approach to extending symmetry reduction strategies which

provide memory optimal reduction under a simple model of computation, so that

memory optimality is maintained under a realistic model of computation where

components hold references to one another. This approach formalises and gen-

eralises the segmented strategy employed by the SymmSpin model checker, and

applies to arbitrary symmetry groups for which a polynomial time COP strategy

can be found. We have implemented our techniques within the TopSPIN symmetry

reduction package for SPIN, using GAP to perform group theoretic computations.

Experimental results using two Promela examples show that the approach results
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in a significant speedup over symmetry reduction by enumeration, and illustrate

the trade off between memory and verification time associated with the choice of

an exact or approximate symmetry reduction strategy.

The main bottleneck of the approach is the enumeration of the partition sta-

biliser after a polynomial time COP strategy has been applied. Future work includes

implementing a canonicalisation algorithm presented in [14] within TopSPIN to al-

leviate this problem.
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