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ABSTRACT
GPUVerify is a static analysis tool for verifying that GPU
kernels are free from data races and barrier divergence. It is
intended as an automatic tool, but its usability is impaired
by the fact that the user must explicitly supply the kernel
source code, the number of work items and work groups, and
preconditions on key kernel arguments. Extracting this in-
formation from non-trivial OpenCL applications is laborious
and error-prone.

We describe an extension to GPUVerify, called KernelIn-
terceptor, that automates the extraction of this information
from a given OpenCL application. After recompiling the
application having included an additional header file, and
linking with an additional library, KernelInterceptor is able
to detect each dynamic kernel launch and record the values
of the various parameters in a series of log files. GPUVerify
can then be invoked to examine these log files and verify each
kernel instance. We explain how the interception mechanism
works, and comment on the extent to which it improves the
usability of GPUVerify.

1. INTRODUCTION
GPUVerify is a tool for verifying that GPU kernels, writ-

ten in either CUDA1 or OpenCL,2 are free from data races
and barrier divergence [2]. The analysis is performed stati-
cally ; that is, GPUVerify does not actually run the kernel,
but merely examines its source code. GPUVerify is useful
for discovering defects in kernels, but can also go further
than any testing tool can: it is able to certify that a given
kernel is free from these classes of defect under any execu-
tion schedule. GPUVerify has already proved itself to be
of practical use when applied to non-trivial OpenCL and
CUDA kernels [2]. For instance, it is able to verify, without
user intervention, 49 of the 70 kernels in the AMD Acceler-

1http://www.nvidia.com/object/cuda_home_new.html
2http://www.khronos.org/opencl/
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ated Parallel Processing SDK (version 2.6).3

GPUVerify is intended as a completely-automatic tool, re-
quiring minimal expertise and minimal effort from its users.
However, assembling all of the necessary inputs to GPUVer-
ify is a significant manual effort. The user must examine the
source code of their application, and supply to GPUVerify:

‚ the source code of each kernel,

‚ the precise number of work items and work groups that
will execute each kernel,

‚ constraints on the values of selected kernel arguments
(where necessary for kernel correctness), and

‚ barrier invariants [3] and loop invariants (where nec-
essary for successful verification).

In this paper we describe an extension to GPUVerify, called
KernelInterceptor, that automates the extraction of the first
three items above from a given OpenCL application. The
fourth item, invariant discovery, remains a challenging re-
search topic, as discussed in Section 4. Nevertheless, Kernel-
Interceptor marks a significant step toward fully automated
verification of GPU kernels.

KernelInterceptor is used as follows.

1. The user prepares an application for intercep-
tion. Small modifications must be made to the source
code and build process of the OpenCL application to
be analysed.

2. The user executes the application. As the ap-
plication executes, KernelInterceptor intercepts each
kernel launch and records the kernel’s source code and
the parameters passed.

3. The user executes GPUVerify. GPUVerify presents
a list of intercepted kernels. The user can then ask
GPUVerify to try to verify all or some of these ker-
nels.

In the remainder of this paper, we describe how Kernel-
Interceptor is used (Section 2) and how it is implemented
(Section 3). Section 4 evaluates KernelInterceptor’s limita-
tions and the extent to which it improves the usability of
GPUVerify, and also discusses related and future work.

3http://developer.amd.com/sdks/amdappsdk



 
Benchmark 
The demo includes a benchmark mode that export a comma separated file (for Excel)  
bin/App_Bullet3_OpenCL_Demos_clew_vs2010 --benchmark 
You can use the F1 key to create a screenshot and the Escape key will terminate the demo. 
 
Feedback 
Although the new Bullet 3.x OpenCL rigid body work is still work-in-progress, it can already be useful for 
VFX projects that need to simulate a large amount of bodies on a single desktop computer.  
 
If you have any feedback about the software, please contact the author at erwin.coumans@gmail.com 
or visit the Bullet physics forums at http://bulletphysics.org 
 
 
 
 
 

Figure 1: The Bullet rigid body simulator in ac-
tion, simulating hundreds of thousands of bodies and
their collisions, all in real-time. Picture credit: Er-
win Coumans [6].

2. USAGE
This section explains how KernelInterceptor works from

the user’s perspective. As a running example, we use an
OpenCL application that simulates collisions of rigid bod-
ies [6]. This application is part of the open source Bullet
Physics library (version 3)4 and the code is available on-
line.5 The capabilities of the simulator are demonstrated in
Fig. 1.

2.1 Instrumenting the source code
To use KernelInterceptor, the user must first download

GPUVerify, with which the KernelInterceptor header file
(cl_interceptor.h) and library (cl_interceptor.cpp) are
shipped.

The line

#include "/path/to/cl_interceptor.h"

must be added to each .cpp file that includes the OpenCL
headers (cl.h or opencl.h). In the case of the Bullet simu-
lator, the only relevant file is b3OpenCLInclude.h.

The user must modify their build process so that it com-
piles cl_interceptor.cpp and links it against their appli-
cation. In the case of the Bullet simulator, it suffices to add
cl_interceptor.o as a build target in the relevant make-
files.

The application can now be built and run as normal. The
interception process records entire kernel texts and writes
them to disk on every kernel invocation, which may incur
nontrivial runtime overhead. We therefore recommend en-
abling KernelInterceptor only as part of a debug build.

2.2 Inspecting the intercepted kernels
The user can view information about the intercepted ker-

nels using the command

gpuverify --show-intercepted.

4http://bulletphysics.org
5https://github.com/erwincoumans/bullet3

[0] Name: AddOffsetKernel
File: .gpuverify/AddOffsetKernel001.cl
local_size=128 global_size=12544
args=0x7f4b000000800000006300006271
Built at b3OpenCLUtils.cpp:880
Run at b3LauncherCL.h:117

[1] Name: AddOffsetKernel
File: .gpuverify/AddOffsetKernel002.cl
local_size=128 global_size=12544
args=0x7f4b000000800000006300006271
Built at b3OpenCLUtils.cpp:880
Run at b3LauncherCL.h:117

[2] Name: AddOffsetKernel
File: .gpuverify/AddOffsetKernel003.cl
local_size=128 global_size=896
args=0x7f4b000000080000000800000780
Built at b3OpenCLUtils.cpp:880
Run at b3LauncherCL.h:117

...

Figure 2: Abridged output obtained from the com-
mand gpuverify --show-intercepted

After running KernelInterceptor on the Bullet simulator,
this command produces the output shown in Fig. 2.

Each kernel instance is identified by a number, which is
given in brackets. For each instance, the command reports:

‚ the name of the kernel;

‚ the file that contains the kernel’s source code;

‚ the work group size (local_size) and the total num-
ber of work items (global_size);

‚ the hexadecimal values of the kernel’s scalar arguments
(see remark below);

‚ the position in the application’s source code where this
kernel was compiled; and

‚ the position in the application’s source code where this
kernel was invoked.

We remark that KernelInterceptor does not record non-
scalar arguments (i.e. array or pointer arguments), since
they tend not to affect the correctness of the kernel. In-
deed, GPUVerify ignores the values of such arguments as
part of its abstraction. Scalar values are stored in hexadec-
imal format because GPUVerify deals only with untyped
bitvectors.

Reporting where each kernel instance was compiled and
where it was invoked is valuable to users because tracing
the origin of a kernel obtained by KernelInterceptor can be
tricky: the kernel’s source code may not be simply read
from a file, but pieced together from multiple files and string
constants at runtime, and possibly configured based on user
input.

2.3 Verifying the intercepted kernels
Having inspected the intercepted kernels, the user can now

ask GPUVerify to check their correctness.
The command

gpuverify --check-all-intercepted



GPUVerify kernel analyser checked 37 kernels.
Successfully verified 35 kernels.
Failed to verify 2 kernels.

Successes:
[0] Verification of AddOffsetKernel

(.gpuverify/AddOffsetKernel001.cl) succeeded with:
local_size=128 global_size=12544 args=3

...
Failures:
[13] Verification of scatterKernel

(.gpuverify/scatterKernel003.cl) failed with:
local_size=12 global_size=256 args=14,8

[27] Verification of SubtractKernel
(.gpuverify/SubtractKernel020.cl) failed with:
local_size=12 global_size=24 args=7

Run ‘gpuverify --check-intercepted=<number>’ for
more details.

Figure 3: Abridged output obtained from the com-
mand gpuverify --check-all-intercepted

instructs GPUVerify to attempt to verify all of the kernel
instances. In an effort to maintain readability when there
are many kernel instances, the output from GPUVerify is
abbreviated, so as to identify only those kernels that failed
to verify. These kernels can then be examined and re-verified
individually. An illustrative output is shown in Fig. 3.

The command

gpuverify --check-intercepted=2

instructs GPUVerify to attempt to verify the kernel instance
identified as number 2. In this case, GPUVerify outputs a
message that it has verified the kernel, which implies that
there are no data races and no instances of barrier diver-
gence. Had GPUVerify detected the potential for any of
these defects, it would have directed the user to the rele-
vant line(s) in the AddOffsetKernel003.cl file. The third
possible result from running GPUVerify is a timeout, which
occurs when GPUVerify is unable to prove or to disprove
the kernel’s correctness.

3. IMPLEMENTATION
We now discuss some of the technical details of the im-

plementation of KernelInterceptor. We continue to use the
Bullet simulator as a running example.

3.1 Intercepting kernel launches
Relevant OpenCL host functions, such as clSetKernelArg

or clBuildProgram, are intercepted at the source level, such
that, for example, a call to clSetKernelArg in the host code
actually calls our wrapper function, clSetKernelArg_hook.
The wrapper functions log the relevant information and then
pass the parameters to the original functions, as normal.

3.2 Logging kernel parameters
Each time a kernel is invoked, KernelInterceptor creates

a file, whose name is formed from the name of the kernel,
followed by a unique identifier to avoid name clashes. These
files are stored in a .gpuverify directory, which Kernel-
Interceptor creates in either the application’s main direc-
tory, or in a directory specified by the environment variable
GPUV_KI_DIR. In the case of the Bullet simulator, when ex-

1 // --local_size=128 --global_size=896 ê

--kernel-args=AddOffsetKernel,ê

0x00007f4b000000080000000800000780

2 // Built at ../../src/Bullet3OpenCL/ê

Initialize/b3OpenCLUtils.cpp:880

3 // Run at ../../src/Bullet3OpenCL/ê

ParallelPrimitives/b3LauncherCL.h:117

. . .
94 __kernel

95 void AddOffsetKernel(__global u32 *dst,ê

__global u32 *blockSum, uint4 cb)

96 {

. . .
106 }

Figure 4: Data logged in AddOffsetKernel003.cl for
the third instance of the AddOffsetKernel kernel

ecuted for a few seconds on several of the standard demon-
strations, over a thousand such files were created, corre-
sponding to the invocations of 44 different kernels.

Let us now consider one of these files, AddOffsetKernel-
003.cl, which is created when KernelInterceptor intercepts
the third launch of the kernel called AddOffsetKernel. Its
contents is shown in Fig. 4. The file contains the kernel’s
source code, preceded by three commented lines. The first of
these records the work group size and total number of work
items, plus the hexadecimal value of AddOffsetKernel’s sole
scalar argument (which is named cb). The second and third
lines record the positions in the source code where the kernel
was compiled and invoked, respectively.

3.3 Passing kernel arguments to GPUVerify
We have extended GPUVerify to accept a --kernel-args

flag through which values for the arguments of a given kernel
can be provided.

If K is the name of a kernel, and K’s scalar arguments
are x1, . . . , xn, then

--kernel-args=K,v1,...,vn

instructs GPUVerify to assume the precondition

__requires(xi==vi)

for each 0 ă i ď n, when verifying the kernel K. The order
of the values provided to --kernel-args matches the order
in which K’s scalar arguments are declared.

An argument can be left unconstrained by inserting an
asterisk. For instance, if K accepts three scalar arguments,
a, b and c, then the flag

--kernel-args=binning_kernel,*,0x42,*

will insert the single precondition

__requires(b==0x42).

It is allowable to pass several --kernel-args flags to GPU-
Verify, each providing arguments for a different kernel in the
same .cl file. By default, GPUVerify seeks to verify all the
kernels in a given file, but we arrange that when one or more
--kernel-args flags are provided, GPUVerify only checks
those kernels that are named in those flags. A .cl file may
contain a large number of kernels, only some of which are



used by an application; our arrangement ensures that GPU-
Verify seeks to verify only those kernels that are actually
invoked.

3.4 Caching verification results
When multiple kernel instances share the same source

code, launch parameters and kernel arguments, the results
of attempting to verify them will be the same. To avoid re-
dundant calls to GPUVerify, we arrange that the results of
successful verification attempts are written to a cache file,
whose path is specified using the command-line flag

--cache=<path>.

The cache file is consulted before each verification attempt,
and if there is a match, the cached result is displayed. Failed
verification attempts are not cached, since such attempts
might become successful when a more capable version of
GPUVerify becomes available.

4. DISCUSSION
In this section, we comment on the usability of our tool,

discuss related work, consider some limitations of our tool,
and suggest some future lines of enquiry.

4.1 Usability of KernelInterceptor
The GPUVerify team used KernelInterceptor to assist with

the verification of the Parboil benchmark suite [12]. This
suite consists of 12 programs and 25 unique kernels, some
programmatically generated.

KernelInterceptor accelerated the process of extracting
kernel source, compiler options, and valid local and global
sizes. We observe that some kernels, such as those in the
stencil benchmark, are only race free when given certain
arguments; this would have been difficult to infer without
the data provided by KernelInterceptor.

Using KernelInterceptor required adding just a handful of
lines to the benchmark source and makefiles. It removed a
significant amount of labour in the preparation of a recent
conference paper [1].

4.2 Limitations

Discovery of invariants.
Although this work increases the degree of automation in

GPU kernel verification, we should point out that completely
automatic verification requires significant further research,
due to the problem of discovering invariants for verifying
barrier statements [3] and loop statements. Many kernels
cannot be verified without these invariants, and although
much progress has been made in using heuristics to infer
these automatically, the task of supplying them often falls
back to the user.

Dependence on particular kernel parameters.
Note that because the parameters are extracted from a

particular execution of the OpenCL application, we cannot
claim every kernel to be ‘fully verified’: the kernel may not
be correct when launched with different parameters. What
we can claim is that with these parameters, the kernel is
correct under any execution schedule.

4.3 Future directions

Generalising parameters.
As noted above, a successfully verified kernel is only guar-

anteed to be defect-free when launched with specific parame-
ters. In future work, we plan to investigate how to generalise
these parameters, in order to strengthen the verification re-
sult.

Consider SubtractKernel, one of the kernels from the
Bullet simulator. Starting from a successful verification with
parameters

--local_size=64 --global_size=256 ê

--kernel-args=SubtractKernel,0x000065f4,0x00000100

one could greedily unconstrain values, by setting them to
“*”, until a minimal set of constraints is obtained. We find
that the correctness of this particular kernel does not depend
on the kernel arguments, so the constraints

--local_size=64 --global_size=256 ê

--kernel-args=SubtractKernel,*,*

are sufficient.
When there are many kernel instances to check, this pa-

rameter generalisation technique may lead to fewer calls to
GPUVerify being required. For instance, all instances of
SubtractKernel where local_size is 64 and global_size

is 256 can now be considered verified, regardless of the other
parameters, since the stronger result has already been proven.

We also plan to investigate other ways to unconstrain ker-
nel parameters. Constraints such as ‘this parameter must be
a power of 2’ or ‘that parameter must not exceed 1024’ could
reasonably be conjectured by a tool such as Daikon [7], and
then checked.

Run-time instrumentation.
We are considering implementing an alternative mecha-

nism that operates solely at run-time. This would be even
less intrusive to the user than the current mechanism, be-
cause no recompilation would be necessary. However, it
would require additional work on our part to ensure com-
patibility with all platforms and drivers.

In the case of a Linux environment, we would make use
of the LD_PRELOAD environment variable. This identifies a
directory of libraries that should, at run-time, be linked be-
fore any other. By pointing this variable to our library of
wrappers for the relevant OpenCL host functions, we can
attain run-time interception.

Support for other kernel programming languages.
We plan to extend our kernel interception technique to

support kernels that have been pre-compiled to the SPIR6

intermediate representation. GPUVerify has direct support
for the LLVM7 intermediate representation [5], of which
SPIR is a dialect, so this should prove quite straightfor-
ward. We plan also to support kernels written in CUDA,
but we note that the run-time linking trick described above
would not work in a CUDA setting, where host programs
are typically linked statically.

6http://www.khronos.org/spir
7http://llvm.org/



Static analysis.
We plan to investigate the use of static analysis on the

host program as an alternative way to discover kernel pa-
rameters. This would mean that the OpenCL application
would not need to be executed at all; our tool would simply
examine the application’s source code. An advantage of an
approach based on static analysis is that the correctness of
the kernel can be guaranteed for all possible executions of
the application, rather than just a particular execution. A
disadvantage, however, is that the kernel verification is more
likely to fail. It may, for instance, be understood that the
application is only to be provided with positive inputs, but
unless this requirement is codified as an explicit precondi-
tion in the source code, the static analysis will be ignorant
of this and report that the kernel is incorrect in general.

4.4 Related work
There has been significant interest recently in methods for

analysing and verifying GPU kernels.
Li and Gopalakrishnan’s PUG analyser shares the prob-

lem of requiring the user to supply kernel arguments and the
number of work items manually [10]. Our technique for ad-
dressing this problem only applies to OpenCL kernels, and
hence is not directly applicable to PUG, which analyses only
CUDA kernels.

The GKLEE [11] and KLEE-CL [4] tools, which are based
on dynamic symbolic execution, do not have this problem
because they execute symbolically both host and device code.
However, although these tools seek to discover data races,
they do not attempt to verify their absence as GPUVerify
does.

The technique of Leung et al. [9] for verifying race-freedom
of CUDA kernels is based on dynamic analysis and thus al-
ready exploits information about thread configurations and
kernel arguments.

Huisman and Mihelčić have developed a technique to allow
functional verification of GPU kernels without the need to fix
the number of work items [8]. We observe that many kernels
require some constraints on the number of work items (such
as ‘must be a power of 2’ or ‘must not exceed 1024’) in order
to be correct. The KernelInterceptor concept could therefore
prove useful in this setting.
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