
Validating Database System Isolation Level
Implementations with Version Certificate Recovery

Jack Clark
Imperial College London
jack.clark1@imperial.ac.uk

Alastair F. Donaldson
Imperial College London

alastair.donaldson@imperial.ac.uk

John Wickerson
Imperial College London

j.wickerson@imperial.ac.uk

Manuel Rigger
National University of Singapore

rigger@nus.edu.sg

Abstract
Transactions are a key feature of database systems and iso-
lation levels specify the behavior of concurrently executing
transactions. Ensuring their correct behavior is crucial. Re-
cently, many isolation anomalies have been found in produc-
tion database systems. Checkers can be used to validate that
a particular execution conforms to a desired isolation level.
However, state-of-the-art checkers cannot handle predicate
operations, which are both common in real-world workloads
and essential for distinguishing between the repeatable read
and serializable isolation levels. In this work, we address this
issue by proposing an efficient white-box checker, Emme.
Our key idea is to use information that is easily provided
by database systems to efficiently check the isolation level
of a given transaction history. We present version certificate
recovery, a method of recovering the version order and each
operation’s version from the database system under test. For
efficiency, we also propose the concept of an expected serial-
ization order, which obviates the need to define and recover a
version certificate for many serializable concurrency control
protocols. We have implemented version certificate recov-
ery for three widely used database systems—PostgreSQL,
CockroachDB, and TiDB. We demonstrate that Emme is 1.2–
3.6× faster than Elle, a state-of-the-art checker. Using the
expected serialization order, we obtain a further speedup of
34–430× compared to Emme when checking histories con-
taining predicate operations. We show that our approach can
identify invalid histories that cannot be detected by Elle and
also show that it can find realistic bugs purposely introduced
by an engineer.

This work is licensed under a Creative Commons Attribution International
4.0 License.
EuroSys ’24, April 22–25, 2024, Athens, Greece
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0437-6/24/04.
https://doi.org/10.1145/3627703.3650080

ACM Reference Format:
Jack Clark, Alastair F. Donaldson, John Wickerson, and Manuel
Rigger. 2024. Validating Database System Isolation Level Imple-
mentations with Version Certificate Recovery. In Nineteenth Eu-
ropean Conference on Computer Systems (EuroSys ’24), April 22–25,
2024, Athens, Greece. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3627703.3650080

1 Introduction
A core feature of many database systems is grouping opera-
tions into transactions [16]. The extent to which operations
within a transaction interact with operations from other
concurrent transactions is defined by an isolation level. Data-
base systems offer a range of isolation levels [2, 3, 5, 7, 13],
with each level providing different guarantees to client ap-
plications. The guarantees that an isolation level offers are
typically defined in terms of anomalies that any possible
execution history—a record of the operations submitted to
and the results received from the database system—must not
contain [3, 5, 7]. It is vital that database systems provide the
isolation guarantees that they claim, because bugs leading
to weaker guarantees can corrupt application state [24] and
cause significant security vulnerabilities [48].

Automated testing approaches have found a wide variety
of bugs in the implementation of various database systems’
isolation levels [22]. This includes bugs in widely used and
stable systems such as PostgreSQL [35], which had a bug in
the implementation of its serializable isolation level [34]. De-
spite the success of these approaches, it would be desirable
to obtain more confidence that isolation-level guarantees
are met. Formal verification approaches for mature database
systems and their isolation levels are still out of reach [27]. In
contrast, so-called checkers [4, 10, 45] enable validating that
a particular execution history conforms to the isolation level
that the database system claims to support. In other words,
such checkers enable approaching the problem through a
translation validation [29, 32] lens, allowing clients to verify
that the operations performed by the database system con-
form to the desired isolation level. However, these checkers
suffer from at least one of two major problems.
Problem 1: high run-time overhead. For important iso-
lation levels such as serializability and snapshot isolation,

754

https://orcid.org/0000-0003-3886-7657
https://orcid.org/0000-0002-7448-7961
https://orcid.org/0000-0001-6735-5533
https://doi.org/10.1145/3627703.3650080
https://doi.org/10.1145/3627703.3650080
https://doi.org/10.1145/3627703.3650080
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627703.3650080&domain=pdf&date_stamp=2024-04-22

𝑇1 : 𝑤1 (𝑥, 1)
𝑇2 : 𝑤2 (𝑦, 2)
𝑇3 : 𝑟3 (< 5, {𝑥}), 𝑟3 (< 5, {𝑥, 𝑦})

Figure 1. This non-serializable history has three committed
transactions. 𝑇3 contains a phantom read. It issues two iden-
tical predicate operations that read all objects in the database
whose value is less than five. The first operation returns the
object 𝑥 , but the second one returns both 𝑥 and 𝑦.

checking whether a history is valid is an NP-complete prob-
lem [9, 10, 31]. Efficiently supporting large and highly con-
current histories is important because many randomized
testing approaches rely on executing large numbers of trans-
actions from many clients. Checkers in prior work either use
workload-specific optimizations to improve the size of histo-
ries they support [45] or scale poorly as the concurrency in
the history increases [10]. The exception, Elle [4], a checker
for histories produced by the Jepsen testing framework [21],
relies on an encoding scheme that works efficiently only if
all writes in the history are atomic list-append operations;
a requirement that some database systems (e.g., TiKV [46])
cannot fulfill. Furthermore, even in systems that do support
atomic list-append operations, there is no guarantee that
exclusive use of these operations can catch bugs in the im-
plementation of other operations.
Problem 2: lack of support for predicate operations.
Predicate operations, such as the SQL statement SELECT *

FROM t0 WHERE c0 > 7, return all rows that satisfy a given pred-
icate (c0 > 7 in this case). They are widely used in most data-
base systems, enabling more complex features such as scans,
joins, and aggregates. These features typically require ad-
ditional implementation complexity and potentially more
complex concurrency control mechanisms such as predicate
locking [16]. Predicate operations can cause unique types of
anomalies in histories, known as predicate anomalies, that
simple key-value reads and writes cannot cause. For example,
the history shown in Fig. 1 contains a phantom read anom-
aly [16]. These unique predicate anomalies have been ob-
served in production database systems [28]. In fact, predicate
anomalies are the sole means by which the industry-standard
Adya model [3] distinguishes between serializability and the
weaker repeatable read isolation level. Therefore the inability
of current checkers to detect predicate anomalies is a severe
limitation: they cannot distinguish between these isolation
levels for histories containing predicate operations.
Our contributions. We address these problems through
a white-box checking approach. Although our checker is
white-box, we show that after a small amount of initial work
from someone familiar with the database system, the infor-
mation needed by the checker can be exposed via a black-box
API. This enables clients to use the checker in a fully black-
box manner. This is particularly valuable in a cloud setting

where vendors may not want to reveal proprietary imple-
mentation details. Our checker has the following unique
features:

1. It supports efficient checking of large and highly con-
current histories by recovering a version certificate
from the database system via a simple interface, with-
out requiring support for atomic list-append opera-
tions (or any other particular operation).

2. It is the first checker capable of supporting histories
containing predicate operations. As a result, it is the
only checker able to check the serializability of histo-
ries resulting from common database workloads.

Our core insight is that it is possible to use the invariant(s)
that guarantee the correctness of a database system’s con-
currency control protocol to define and recover a so-called
version certificate. A version certificate consists of an expected
version order and, for every predicate operation in the his-
tory, an expected version set. Roughly, the expected version
order is a per-object total order on writes to the database,
while the expected version set of a predicate operation is
the set of values over which it will evaluate its predicate.
A checker based on the Adya model [3] of isolation levels
can then use the version certificate to certify that the cor-
responding execution history conforms to a given isolation
level or reject it.

• The checker will accept a history as valid if the ex-
pected version order and expected version sets form a
valid version certificate to show that the history meets
the requirements of the desired isolation level. Since
the certificate was derived from the invariants that
guarantee the correctness of the concurrency control
protocol, we provide stronger guarantees than existing
checkers: our checker will confirm a history as valid
only if the history meets the desired isolation level
by design. A history that meets the desired isolation
coincidentally—despite violating these invariants—will
be flagged as invalid, uncovering defects in the imple-
mentation of the protocol that would otherwise go
unnoticed.

• The checker will reject the history as invalid if the
version certificate cannot be used to show that the
desired isolation level has been met. In this case, there
might nevertheless exist some version certificate that
could be used to validate the history. However, the
fact that the certificate did not lead to confirmation
that the required isolation level had been met implies
that either (a) the invariants of the concurrency con-
trol protocol were violated during execution or (b) the
invariants were insufficiently strong to provide the
required isolation level. Both of these cases indicate er-
rors in the database system. Therefore, from the point
of view of a database developer, we argue that it is ir-
relevant that the history could be certified using some

755

other certificate and it is valuable that the checker can
demonstrate these defects by rejecting the history.

A benefit of our core approach is that it is very general:
it works for a wide range of isolation levels and database
systems due to the central role that both the version order
and version sets play in defining isolation levels in the widely
used Adya model. As an additional contribution, we present
a more specialized approach that is even more effective for
many serializable concurrency control protocols. This ap-
proach defines an expected serialization order—a total order
on committed transactions such that they must be serializ-
able in that order—that can be used to certify a history. This
approach avoids the need to define and recover a version cer-
tificate and allows significantly faster checking, particularly
for histories containing predicate operations.
We have implemented the version certificate recovery

interface for three diverse and widely used systems: Post-
greSQL [35], CockroachDB [44], and TiDB [20]. We have also
implemented a practical checker, Emme, which supports seri-
alizability and snapshot isolation. Despite the distinct concur-
rency control protocols used by these systems, we show that
it takes no more than a few hundred lines of Python code to
implement the interface for each system. To demonstrate the
effectiveness of version certificate recovery, we show that
it can detect a faulty history caused by a known bug in an
old version of PostgreSQL’s serializable isolation level. Addi-
tionally, Cockroach Labs supported our work by introducing
three bugs of their own choosing into a fork of CockroachDB
that affect its serializability guarantees. We demonstrate that
version certificate recovery expectedly rejects invalid histo-
ries caused by all three bugs. We also show that our approach
can detect predicate-only anomalies in histories produced
by running PostgreSQL at the read committed isolation level,
and that Elle—a state-of-the-art checker—is unable to detect
these anomalies and will incorrectly validate these histories
as serializable.
We compare the checking performance of Emme against

Elle and find that for histories without predicate operations,
Emme has up to 4× better performance. For histories con-
taining predicate operations, we demonstrate that Emme
can check histories of 2500 transactions in under two min-
utes, making Emme the first checker able to support pred-
icate operations for non-trivial histories. Finally, we show
that the more specialised expected serialization order tech-
nique significantly outperforms both Elle and Emme, with
a speedup ranging from 34x to 430x compared to Emme on
non-predicate histories, and a speedup ranging from 53x to
120x for predicate histories. Furthermore, we show that the
expected serialization order technique scales significantly
better than Emme for histories containing predicate opera-
tions allowing much larger histories to be supported.

2 Example-Driven Overview
Our approach consists of version certificate recovery—the
technique for recovering sufficient information from the data-
base system to enable efficient checking—and our checker,
Emme. We imagine a scenario where a proprietary cloud
database company has tasked an engineer with a) ensuring
that their system correctly implements its isolation level
guarantees and b) providing clients with a means of validat-
ing these guarantees.
To this end, the engineer can use our approach based

on three steps: (1) defining the expected version order and
expected version sets that will form the version certificate, (2)
implementing mechanisms to retrieve any information from
the database system that is necessary to recover the expected
version order and version sets, and (3) implementing the
black-box API that outputs the version certificate. Finally,
for validation, both the engineer and client can retrieve the
version certificate from the black-box API and input it along
with the recorded execution history into our checker to verify
that the history complies with the required isolation level.
Let us assume the database system uses a multiversion

concurrency control timestamp ordering protocol (MVTO) to
guarantee serializability [38]. In such a protocol, each trans-
action is assigned a unique timestamp which is associated
with all of its operations. Additionally, each version of an ob-
ject is assigned the timestamp of the transaction that created
it. The correctness of the protocol depends on the invariant
that ordering the operations of committed transactions in
ascending timestamp order will produce an equivalent serial
history that is serializable. It follows that choosing a ver-
sion order consistent with timestamp order will guarantee a
serializable history in any correct execution. A further impli-
cation of the timestamp order invariant is that it must always
be possible for a transaction to execute its operations using
the version of each object with the greatest timestamp that
is less than or equal to its own. These facts should already
be clear to a developer implementing the protocol, however,
if a different developer is deriving the version certificate,
then they can discover these facts by consulting a standard
textbook describing MVTO [9].

With the knowledge above, it is clear that the expected ver-
sion order should be defined as the total order resulting from
sorting versions in ascending timestamp order (where ver-
sions written by the same transaction appear in transaction
order). Each operation’s expected version set can be defined
to contain the version of each object with the greatest time-
stamp that is less than the predicate operation’s timestamp,
or if the operation’s transaction has modified an object, the
latest version of the object modified by the transaction.

To recover the expected version order and version sets for
any particular execution history, the engineer needs to re-
cover the timestamps associated with each transaction (and

756

𝑇1 : 𝑤1 (𝑥, 1)
𝑇2 : 𝑤2 (𝑦, 2)
𝑇3 : 𝑟3 (> 0, {𝑥, 𝑦})

Figure 2. A history that is serializable in ascending time-
stamp order. Transaction identifiers act as timestamps.

𝑇1 : 𝑤1 (𝑥, 1)
𝑇2 : 𝑤2 (𝑦, 2)
𝑇3 : 𝑟3 (> 0, {𝑥})

Figure 3. A history for which ordering transactions by their
timestamps (T1 → T2 → T3) does not produce a serializable
order. There is another order (T1 → T3 → T2) that is serial-
izable, however, it contradicts the timestamp order. Transac-
tion identifiers act as timestamps.

therefore each operation). In our experience, most timestamp-
ordering database systems include this in the transaction
metadata. Therefore, the engineer can use this metadata to
automatically recover the timestamp associated with each
transaction, generate the version certificate, and make it
available via a black-box API. This is the last step that re-
quires any knowledge of the database system internals.
Finally, the engineer or client can recover the version

certificate via the black-box API and provide it as input along
with the history to Emme, which will use the certificate to
check that the history is serializable. Fig. 2 contains a history
that Emme will verify as serializable using the trivial version
order that arises from a singlewrite to each object in a history,
and the expected version set {𝑥, 𝑦} for r3 . In the examples
within this section, the transaction identifiers are also their
timestamps, for example, T1 has timestamp 1. Since both
the version order and version set have been derived from
the timestamp order, we can be sure that the history is not
only serializable, but respects the key timestamp ordering
invariant of the MVTO protocol.
Fig. 3 demonstrates a history that does not form a serial-

izable serial order when arranged in timestamp order. The
expected version set of r3 is {𝑥, 𝑦}, however, r3 only reads 𝑥
despite 𝑦 also matching the predicate condition (> 0). Clearly,
this should never happen in a database system using the
MVTO protocol. However, black-box checkers will verify this
history as serializable using the serial order T1 → T3 → T2 ,
despite the fact that this violates the timestamp order invari-
ant, as they have no knowledge of the underlying protocol
used. In contrast, Emme will reject this history as it recog-
nizes that the invariant used to derive the version certificate
has been broken, indicating either an implementation error
in the database system, or the use of an incorrect invariant.
This is a valuable feature of our checker, as it can detect de-
fects in concurrency control protocols that would otherwise
be missed by black-box checkers.

It is also possible to derive an expected serialization or-
der for the MVTO protocol. An expected serialization order
is a total ordering of transactions such that they must be
serializable in that order. For the MVTO protocol, this is sim-
ply ascending timestamp order. There are many benefits to
using the expected serialization order approach compared
to generating a version certificate. Firstly, an engineer only
needs to derive an expected serialization order, rather than
both an expected version order and the expected version sets,
which is typically much easier. Secondly, there is no need
to implement version certificate recovery for the database
system. Finally, as demonstrated in Section 7, the checking
performance and scalability of Emme are vastly improved
when using an expected serialization order, particularly for
histories containing many predicate operations.
We highlight, both through this MVTO example and the

examples in Section 5, that the invariants required by our
approach are high level and can be derived from the proof
of correctness or formal specification of a protocol. This is
particularly useful for distributed database systems, where
it is becoming more common to formally specify the invari-
ants of a concurrency control protocol in a language such as
TLA+ [25]. Furthermore, the invariants do not require anal-
ysis of the database system code and are robust to changes
in implementation details that do not affect the correctness
proof of the protocol.

3 Adya Model
Our checker uses the isolation level model introduced by
Adya et al. [3], so this section provides an overview of the
model to aid in understanding how our checker works, and
also demonstrates the theoretical basis for checking histories
containing predicate operations.
An Adya history 𝐻 comprises a set of operations per-

formed by transactions and a version order (≪). The data-
base consists of a set of abstract objects and operations act
on a particular version of each object. Write operations in-
troduce a new version of an object and read operations read
a particular version of an object. The version order (≪) is
defined as a per-object total order over committed versions.
𝑥𝑖 ≪ 𝑥 𝑗 means that 𝑥𝑖 appears before 𝑥 𝑗 in the version order.

The Adya model also defines predicate operations, which
operate on versions matching a particular predicate condi-
tion 𝑃 . Since many versions of a particular object may exist,
the database system conceptually chooses a single version
of each object over which to evaluate the predicate. This is
called the version set, Vset (𝑃), of the predicate operation.

Isolation levels are defined within the Adya model by the
different types of anomalies that are allowed to occur. The
Adya model defines two non-cyclic anomalies, aborted reads
and intermediate reads that are disallowed in every isolation
level other than the read uncommitted (PL-1) isolation level.

757

𝑇1 : 𝑤1 (𝑥1 = 4)
𝑇2 : 𝑤2 (𝑥2 = 6)
𝑇3 : 𝑟3 (< 5 : 𝑥2) {}, 𝑟3 (𝑥1 = 4)
Version Order : 𝑥1 ≪ 𝑥2

Figure 4. A non-serializable Adya history consisting of four
operations.𝑇3 contains two operations—a predicate read that
reads anything less than five, has 𝑥2 in its version set, and
an empty result set, followed by a normal read of 𝑥1.

𝑇1 𝑇2

𝑇3

𝑤𝑤

𝑤𝑟 𝑟𝑤

Figure 5. An item-DSG built from the history shown in
Fig. 4.

In addition to the non-cyclic anomalies, there are also anom-
alies that are defined by the cycles that can occur in a Direct
Serialization Graph.
Given an Adya history 𝐻 , it is possible to build a Direct

Serialization Graph, DSG(𝐻). The nodes of the DSG(𝐻) con-
sist of the committed transactions in 𝐻 and edges between
transactions occur due to dependencies that arise from op-
erations within the history. The Adya formalism introduces
two types of dependencies—item dependencies and predicate
dependencies. Three types of item dependencies exist (write-
read, write-write, and read-write) that occur whenever a
version of a single object is read or written. Let us call a
DSG(𝐻) that includes only the item dependencies in 𝐻 the
item-DSG(𝐻). Fig. 5 shows the item-DSG that results from
the Adya history in Fig. 4. The history contains three transac-
tions, 𝑇1, 𝑇2 and 𝑇3. Transactions 𝑇1 and 𝑇2 each write a new
version of 𝑥 . The third transaction,𝑇3, issues two operations—
a predicate read operation and a read of 𝑥 . The predicate
read operation—𝑟3 (< 5 : 𝑥2) {}—tries to read any versions
less than 5. It has a version set consisting of only 𝑥2 and an
empty result set (since 𝑥2 is greater than 5).

An Adya history 𝐻 is serializable if the resulting DSG(𝐻)
is acyclic when both item dependency edges and predicate
dependency edges are considered. Notice that the history
is not serializable, yet the item-DSG(𝐻) is acyclic. Since the
item-DSG(𝐻) includes only item dependency edges, it is
insufficient for checking serializability. Existing checkers
that use the Adya model only build an item-DSG(𝐻) and thus
cannot check serializability as defined in the Adya model.
Predicate Dependencies. A central concept for defining
predicate dependencies in the Adya model is the notion of
changing the matches of a predicate operation. A version 𝑥𝑖
changes the matches of a predicate operation rj (P : Vset (P))
if 𝑥𝑖 matches the predicate condition and the version 𝑥ℎ im-
mediately preceding 𝑥𝑖 in the version order does not match

𝑇1 𝑇2

𝑇3

𝑤𝑤

𝑤𝑟

𝑝𝑟𝑒𝑑 𝑤𝑟

𝑟𝑤

𝑝𝑟𝑒𝑑 𝑤𝑟

Figure 6. The DSG that is built when including predicate
dependencies from the predicate operation 𝑟3 (< 5 : 𝑥2) {}.

the condition or vice versa. Two types of predicate depen-
dencies exist in the Adya model:

1. A predicate read dependency (pred wr), which oc-
curs from 𝑇𝑖 to 𝑇𝑗 when 𝑇𝑗 issues a predicate read
rj (P : Vset (P)), 𝑥𝑘 ∈ Vset (𝑃), 𝑖 = 𝑘 or 𝑥𝑖 ≪ 𝑥𝑘 , and
𝑥𝑖 changes the matches of rj (P : Vset (P)).

2. A predicate anti-dependency (pred rw), which oc-
curs from 𝑇𝑖 to 𝑇𝑗 when 𝑇𝑗 overwrites a predicate read
operation 𝑟𝑖 (𝑃 : Vset (𝑃)). 𝑇𝑗 overwrites an operation
ri (P : Vset (P)) if 𝑇𝑗 installs 𝑥 𝑗 such that 𝑥𝑘 belongs
to Vset (𝑃), 𝑥𝑘 ≪ 𝑥 𝑗 and 𝑥 𝑗 changes the matches of
ri (P : Vset (P)).

Recall the Adya history in Fig. 4. The correspondingDSG(𝐻)
is shown in Fig. 6 once predicate dependencies have been
added. The predicate read dependency from 𝑇2 to 𝑇3 occurs
because𝑤2 (𝑥2) is observed in the version set of the predicate
read in 𝑇3 and it would not match the predicate condition,
whereas the previous version in the version order 𝑥1 would
have matched, therefore it changes the matches. This is the
dependency that makes the graph cyclic and therefore vio-
lates serializability.
Imagine instead of 𝑥2, 𝑥1 was in the version set of the

predicate operation in the history in Fig. 4. This results in
the DSG shown in Fig. 7. This DSG is acyclic, despite the
history not being serializable. This is because the Adyamodel
assumes that if a version in the version set matches the
predicate, it must be in the result set. However, this is not
something a checker can assume, since the system may have
an error. This requires us to add an additional anomaly to
the Adya model, which we call a result set mismatch, which
occurs when a version in the version set should have been
included in the result set but was not or vice versa.

As well as predicate reads, the Adya model allows updates
based on a predicate condition (predicate updates). Predicate
updates are modelled as predicate reads followed by a se-
quence of item write operations that create a new version
𝑣𝑛𝑒𝑤 for each version 𝑣𝑜𝑙𝑑 that matched the predicate read.
This captures common operations such as UPDATE table SET

c0 = 20, c1 = 20 WHERE c1 >= 0 AND c1 <= 10.

4 Emme
We now describe our checker, Emme, which, given an Adya
history and an isolation level, is responsible for determining
if the history satisfies a given isolation level. Our checker
supports multiple isolation levels, including serializability

758

𝑇1 𝑇2

𝑇3

𝑤𝑤

𝑤𝑟

𝑟𝑤

𝑝𝑟𝑒𝑑 𝑟𝑤

Figure 7. The DSG that is built when including predicate
dependencies from the predicate operation 𝑟3 (< 5 : 𝑥1) {}.

Algorithm 1: The main checking function.
1 Def check(history, vo, isolation_spec):
2 txns = get_committed_txns (ℎ𝑖𝑠𝑡𝑜𝑟𝑦)
3 deps = set ()
4 for txn ∈ txns do
5 for op ∈ txn.ops do
6 item_deps = get_item_deps (op, vo)
7 pred_deps = get_pred_deps (op, vo)
8 deps = deps ∪ item_deps ∪ pred_deps

9 dsg = build_dsg (deps)
10 return ¬dsg.has_cycle (isolation_spec)

and snapshot isolation. It is easy to modify our checker to
support additional isolation levels, as long as they can be
expressed using the Adya model.
Algorithm 1 gives a high-level overview of the checking

process, which involves two steps: (1) computing depen-
dencies and (2) checking the resulting DSG. The process of
computing dependencies is separated into computing item
dependencies which is handled by get_item_deps (see Sec-
tion 4.1) and predicate dependencies which is handled by
get_pred_deps (see Section 4.2). These functions also detect
all non-cyclic anomalies introduced by the Adya model [3],
such as intermediate and aborted reads. In practice, database
systems can exhibit anomalies that violate the assumptions
of the Adya model, so we also check for the non-cyclic anom-
alies introduced by Elle [4] and for the result set mismatch
anomaly that we introduced in Section 3.
Once Emme has computed all dependencies, it builds a

DSG and checks it for cycles. Emme’s cycle-detection algo-
rithm takes the isolation level specification as input, since
isolation levels differ in the types of cycles they allow. Addi-
tional dependencies exist that need to be computed for some
isolation levels, for example, start-dependencies for snapshot
isolation. Emme does support snapshot isolation, however,
we omit these details from our general checking algorithm
for simplicity.

4.1 Item Dependencies
The algorithm for computing the item dependencies of an
operation is shown in Algorithm 2. In addition to computing
the item dependencies, the algorithm must also detect all
non-cyclic anomalies, such as aborted reads, that can occur

from read and write operations. Our algorithm handles reads
and writes separately.
Read operations are handled by get_read_deps. The

is_anomalous_read function tries to detect four non-cyclic
anomalies: (1) aborted reads and (2) intermediate reads which
are defined in the Adya model, and (3) garbage reads and (4)
internally inconsistent reads which are defined by Elle [4]. If
there are no non-cyclic anomalies, then read dependencies
and anti-dependencies are computed. A read dependency
is created with the add_read_dep function, which creates
a dependency from the transaction that wrote the version
to the transaction that read it. The add_anti_dependency
function creates an anti-dependency from the transaction
that issued the read to the transaction that writes the next
version in the version order after the version read.

Write operations are handled by get_write_deps. There
is only one non-cyclic anomaly that can occur due to a write
operation, which is a duplicate write. A duplicate write oc-
curs when two separate write operations each create a new
version of an object and both versions have the same value.
Since we restrict versions to be uniquely identifiable through
a combination of their object identifier and their value, a
duplicate indicates something has gone wrong internally. Fi-
nally, a write dependency is created between the transaction
that wrote the previous version in the version order and the
transaction that issued the write operation with the current
version.

Computing all item dependencies has time complexity
proportional to the number of read and write operations in
the history since it is necessary to iterate over all read and
write operations.

4.2 Predicate Dependencies
Algorithm 3 outlines how predicate dependencies are com-
puted. It starts by checking for a result set mismatch anomaly.
As defined in Section 3, a result set mismatch anomaly occurs
when the actual result set of an operation does not equal the
result set returned when evaluating the predicate on the ver-
sion set. Therefore, computing the expected results requires
a predicate evaluation oracle, which we call the matches ora-
cle. Given a test version and a predicate, the matches oracle
returns true if the test version matches the predicate. We
have designed two matches oracles with different tradeoffs.
The database matches oracle is the most basic oracle, as

it uses the database system itself to evaluate the predicate.
First, the test version replaces the version of the same object
that was in the version set. Then, this modified version set
is loaded into the database. Finally, the predicate is executed
by the database and the oracle returns true if the test version
is in the result set. The advantage of this approach is its sim-
plicity and ease of implementation. However, it does require
inserting a potentially large version set into the database for
each call to the oracle, which can be expensive. The data-
base matches oracle also assumes that the non-transactional

759

Algorithm 2: Compute the item dependencies from
an operation.

1 Def get_item_deps(𝑜𝑝, 𝑣𝑜):
2 if op.is_read then
3 return 𝑔𝑒𝑡_𝑟𝑒𝑎𝑑_𝑑𝑒𝑝𝑠 (𝑜𝑝, 𝑣𝑜)
4 else
5 return 𝑔𝑒𝑡_𝑤𝑟𝑖𝑡𝑒_𝑑𝑒𝑝𝑠 (𝑜𝑝, 𝑣𝑜)

6

7 Def get_read_deps(op, vo):
8 deps = set ()
9 if is_anomalous_read (result) then
10 raise read_anomaly ()
11 add_read_dep (deps, op.result .tid, op.tid)
12 next_write = vo.get_subsequent_write (result)
13 if next_write ≠ null then
14 add_anti_dep (deps, op.tid, next_write.tid)
15 return deps

16

17 Def get_write_deps(op, vo):
18 deps = set ()
19 if is_duplicate_write (op.result) then
20 raise duplicate_write_anomaly ()
21 prev_write = vo.get_previous_write (op.result)
22 add_write_dep (deps, prev_write.tid, op.tid)
23 return deps

query evaluation part of the database is correct, but it does
not assume that the concurrency control protocol imple-
mentation is correct. In practice, these parts of the database
system implementation have little overlap. We believe this
is reasonable as there are existing techniques [1, 6, 39–43]
to validate the correctness of the query evaluator/optimizer
and the focus of this work is on finding bugs in the imple-
mentation of concurrency control protocols.
The second matches oracle, which we call the interpreter

oracle, uses a SQL interpreter to evaluate the predicate. Us-
ing a SQL interpreter instead of the database matches oracle
makes the evaluation of each predicate significantly more
efficient because the interpreter can evaluate the predicate
without communicating with the database system. A major
downside of this approach is the cost to implement the in-
terpreter, which scales with the number of database features
it needs to support, and also the ongoing maintenance re-
quired to keep the implementation in sync with any changes
to the specification of the database system. This approach is
inspired by pivoted query synthesis [41], which uses a data-
base system specific SQL interpreter to execute a predicate
condition to determine if a given row would match the pred-
icate. This has been successfully applied to find hundreds of
query evaluation bugs and implementations exist for many
systems. We believe the use of a SQL interpreter for other
database testing approaches demonstrates that the cost of
implementing the SQL interpreter is worth it and can bene-
fit various different testing approaches. We implemented a

Algorithm 3: Compute the predicate dependencies
from an operation.

1 Def get_pred_deps(op, vo):
2 deps = set ()
3 expected_results = compute_results (op.query, op.version_set)
4 if expected_results ≠ op.results then
5 raise result_set_mismatch_anomaly ()
6 objects = vo.get_all_objects ()
7 for object ∈ objects do
8 vset_version = op.version_set .get (object)
9 for version ∈ object .versions do
10 prev = vo.previous_version(version)
11 if ¬changes_matches (op.query, version, prev) then
12 continue
13 if vo.succeeds (version, vset_version) then
14 add_pred_anti_dep (deps, op.tid, version.tid)
15 else
16 add_pred_read_dep (deps, version.tid, op.tid)

17 return deps

18

19 Def compute_results(query, version_set):
20 results = set ()
21 for version ∈ version_set do
22 if matches (query, version) then
23 results.add (version)
24 return results

25

26 Def changes_matches(query, version, prev_version):
27 prev_matches = matches (query, prev_version)
28 curr_matches = matches (query, version)
29 return prev_matches ≠ curr_matches

basic query evaluator that consists of roughly 100 lines of
Python code, which we reused across each database system.
Once the matches oracle has been used to confirm that

the result set matches the expected result set, it is necessary
to iterate over all versions ever written in order to determine
whether that version could change the matches of the predi-
cate operation. If a version does not, then no dependencies
exist for that version. If a version does change the matches,
then the type of dependency created depends on where that
version lies in the version order compared to the version
from the same object in the version set. If the version comes
after the version in the version set, then a predicate anti-
dependency is added and if it is equal to or comes before
the version set version in the version order, then a predicate
read dependency is created.
Algorithm 3 computes the predicate dependencies for a

single predicate operation. To compute all predicate depen-
dencies, the algorithm is repeated for every predicate oper-
ation. This makes the predicate dependency computation
expensive compared to item dependency computation. The
cost is intrinsic to the Adya model’s [3] data-driven def-
initions. The item dependency computation runs in time

760

𝑂 (𝑊 + 𝑅) where𝑊 and 𝑅 are the number of read and write
operations in the history. The predicate computation runs in
𝑂 (𝑃 ·𝑊) where 𝑃 is the number of predicate operations in the
history. This is exacerbated by predicate update operations
causing additional individual write operations.

4.3 Black-box Checking
The Adya model assumes the existence of a version order
and the required version sets. Furthermore, both are defined
abstractly in terms of objects and versions. Therefore, once
the version order and version sets have been recovered from
the database, they can be usedwithout any knowledge of how
they were produced or of the underlying database system.
This makes it possible to abstract away the version order
and version set derivation and recovery process behind an
API and work with them in a purely black-box fashion.

Working with the version order and version sets in a black-
box fashion has two key advantages. Firstly, testers can be
oblivious to the internals of the systems that they are writing
tests for. This is particularly useful when testers are separated
from the team that implemented the concurrency control
protocol. Furthermore, regardless of who writes the tests, the
test code itself need not be tied to the implementation details
of either the version certificate recovery process or the con-
currency control protocol. Secondly, this enables users of the
database to gain assurance about the correctness of the sys-
tem without needing access to its source code or knowledge
of the concurrency control protocol used. This is particu-
larly important when interacting with proprietary database
systems and is a key motivation for the Cobra checker [45].
It is sufficient for the database system, perhaps through a
verification interface, to output the version certificate, which
the client can then input into our checker to validate that the
database is upholding its contract. For isolation levels where
checking is NP-complete, clients also obtain the guarantee
that faking a version certificate, that is, outputting a version
certificate that passes checking but in reality using one that
does not, would require solving an NP-complete problem
efficiently. We view this as a certificate of correctness from
the database system.

5 Version Certificate Recovery
In order to check that an execution history conforms to some
isolation level specification, it is necessary to first define the
version certificate, which consists of both the expected ver-
sion order and expected version sets, and then to recover it
from the database system under test. To demonstrate that
version certificate recovery is feasible in practice, we have im-
plemented version certificate recovery for three real-world
database systems: CockroachDB [44], TiDB [20], and Post-
greSQL [35]. We chose these three systems because they
are a mix of distributed and single-node systems and they

each use a different concurrency control protocol. We did
not modify any of the systems to enable our approach.

5.1 CockroachDB
CockroachDB is a distributed database system offering the
serializable isolation level. CockroachDB assigns each trans-
action a unique hybrid logical clock timestamp [15] and guar-
antees that arranging transactions and their operations in
ascending timestamp order will provide a valid serialization
order. This is identical to the guarantees of the timestamp
ordering protocol discussed in Section 2, so the expected ver-
sion order can be defined as ascending timestamp order. The
expected version set of an operation consists of the version
of each object with the greatest timestamp less than or equal
to the timestamp assigned to the reading transaction, or if
the operation’s transaction has modified an object, the latest
version of the object modified by the transaction.

With the version certificate defined, it is necessary to
recover it from the database. We leverage CockroachDB’s
CHANGEFEED mechanism to recover the versions written to
the database along with their timestamps. The CHANGEFEED
mechanism is implemented by aggregating information from
each node’s write-ahead log and providing it in any easy-to-
consume format. Recovering information from a database
system’s write-ahead log is a common way of implementing
some, if not all of version certificate recovery. Additionally,
with the increasing popularity of change data capture as
a general technique for recovering information from data-
base systems, more and more systems are implementing this
functionality, which makes implementing version certificate
recovery significantly easier.

CockroachDB’s CHANGEFEEDmechanism provides only the
final version of each object that is written by a transaction.
If an object is updated twice within the same transaction, we
will not recover the version resulting from the first update.
This has no impact on checking item-only histories, as every
item-only write operation can record which version it is
writing, so it is possible to associate a timestamp with these
writes regardless of whether or not we can recover them.
However, for predicate updates, there is no way of knowing
which versions were created due to the update as it depends
on the versions that match the predicate condition.

Missing versions due to predicate updates can cause false
positives in the general case due to the way the version set of
an operation is computed. Therefore, to ensure that we can
always recover all versions and their timestamps, we restrict
CockroachDB transactions to only contain a predicate update
if it contains no other write operations. This ensures that
every version written by the predicate update must be the
final version of an object written within the transaction and
therefore will be reported by CockroachDB’s CHANGEFEED
mechanism. There are alternative strategies for dealing with
this, such as scanning the entire contents of the database after
each predicate update. Of course, it may still be possible to

761

modify CockroachDB to report intermediate writes, however,
we wanted to demonstrate that it is possible to get a useful
test setup with minimal effort.

The version certificate recovery implementation consists
of roughly 200 lines of Python code, demonstrating the sim-
plicity of the implementation.

5.2 TiDB
TiDB is a distributed hybrid transactional/analytical pro-
cessing database system that offers snapshot isolation as its
primary isolation level. For systems supporting snapshot iso-
lation, such as TiDB, the version order is always chosen as
the commit order of transactions [18]. The intuition for this
is that updates in any snapshot isolation scheme are handled
in one of two ways: (1) the first committer wins or (2) the
first updater wins. Either scheme ensures a total order on
versions that matches the commit order. This means that
we can define the expected version order to be equal to the
commit order of transactions.

To define the expected version sets, it is important to un-
derstand how snapshot isolation performs reads. In a system
supporting snapshot isolation, all reads are performed at a
start time 𝑠𝑡𝑎𝑟𝑡 (𝑇𝑖). We can use 𝑠𝑡𝑎𝑟𝑡 (𝑇𝑖) to define the ex-
pected version set of every operation in 𝑇𝑖 . The expected
version set of an operation performed at 𝑠𝑡𝑎𝑟𝑡 (𝑇𝑖) is the set
containing the version of each object whose timestamp is
greatest and also less than or equal to 𝑠𝑡𝑎𝑟𝑡 (𝑇𝑖), or the latest
write by an operation in 𝑇𝑖 if such an operation exists. Care
has to be taken to use the correct timestamp for 𝑠𝑡𝑎𝑟𝑡 (𝑇𝑖)
as TiDB supports two transaction models that use different
timestamps to perform reads: (1) optimistic, where transac-
tions are rolled back only when there is a conflict, which
defines a timestamp start_ts to act as 𝑠𝑡𝑎𝑟𝑡 (𝑇𝑖) for reads,
and (2) pessimistic, where transactions take locks during exe-
cution and start committing only after ensuring a transaction
can be successfully executed, which uses the for_update_ts
timestamp for reads. We set 𝑠𝑡𝑎𝑟𝑡 (𝑇𝑖) to be either start_ts
or for_update_ts depending on which model is used.

With both the expected version order and expected version
sets defined, it is necessary to recover all versions written to
the system, along with the start_ts for optimistic transac-
tions and for_update_ts for pessimistic transactions. TiDB
makes it easy to recover this information as it is exposed by
an HTTP debugging API that will list each version and its
timestamp. It does this by scanning the underlying multi-
version concurrency control (MVCC) data store, a technique
that we call heap-scanning. Similar to CockroachDB, TiDB’s
HTTP API reports only the final version of each object that
is modified within a transaction, therefore, we also restrict a
transaction to contain a predicate update only if there are no
other writes within it. Alternatively, it is possible to recover
version information using the TiDB change data capture tool,
which operates on the write-ahead log (WAL) of each node
in TiDB, similar to CockroachDB’s CHANGEFEED mechanism.

Our TiDB heap-scanning implementation of version certifi-
cate recovery consists of roughly 150 lines of Python, which
demonstrates again the simplicity of the technique.

5.3 PostgreSQL
PostgreSQL is anMVCC RDBMS that supports multiple isola-
tion levels. We focus on its serializable isolation level, which
it provides using serializable snapshot isolation (SSI) [11, 33].
SSI is based on snapshot isolation, and uses the same under-
lying mechanisms as snapshot isolation, however, it adds an
additional level of checks to prevent a transaction from com-
mitting if certain dangerous dependency structures [11] are
present between transactions. These dependency structures
are known to lead to serializability violations, so by prevent-
ing these, in addition to the properties provided by snapshot
isolation, all histories produced are serializable.
Like snapshot isolation, picking the commit order of ver-

sions as the version order guarantees a serializable DSG in a
correct execution [17]. This is because the checks introduced
by SSI may prevent certain transactions from committing,
but they do not alter the ordering of transactions once they
have committed. Therefore, it is possible to define the ex-
pected version order as the commit order of transactions. To
recover the version order, we leverage PostgreSQL’s logical
streaming replication and the Debezium change data capture
tool. The primary benefit of using Debezium’s CDC tool is
that it abstracts the low-level details of PostgreSQL’s WAL
format and integrates with its logical replication protocol.
This significantly reduces the effort required to implement
version certificate recovery, with the implementation only
just exceeding 300 lines of Python code.

In addition to recovering the version order, our approach
also requires recovering the version set of each predicate
operation. PostgreSQL uses an MVCC scheme along with a
snapshot mechanism to determine the set of versions visible
to an operation. At the serializable isolation level, each trans-
action uses a single snapshot to determine the set of visible
versions for its operations. PostgreSQL defines a snapshot
in three parts:

1. The smallest transaction ID, Tmin, that is still active.
The versions written by transactions with a smaller ID
than Tmin are visible (modulo issues with wraparound,
which we do not discuss here, but can be handled).

2. The largest transaction ID, Tmax , that is still active. The
versions written by transactions with an ID greater
than or equal to Tmax are therefore not visible.

3. A list of active transaction IDs, active_txs, between
Tmin and Tmax , whose versions are not visible.

PostgreSQL represents these snapshots in a con-
densed form of Tmin : Tmax : active_txs. The snapshot
100 : 104 : 100, 102means that 100 is the smallest active trans-
action ID, 104 is the largest active transaction ID and finally,

762

that transactions with ID 100 and 102 are active, so their
versions are not visible.

In general, the visibility rules of PostgreSQL are complex.
It is well-known that PostgreSQL does not support arbitrary
logical time-travel queries, that is, the ability to ask for a
consistent view of the database from the point of view of a
historical transaction ID. However, we can simulate this for
our specific use case of recovering an expected version set by
using PostgreSQL’s pg_current_snapshot() function [36].

For each predicate operation we record the snapshot used
by calling the pg_current_snapshot() function. Then, a
new transaction, which we call the shadow transaction, is
started that shares the same snapshot using PostgreSQL’s
SET TRANSACTION SNAPSHOT command. To recover the ver-
sion set, we then query all rows to see the latest visible
version. While this is simple to implement, it requires run-
ning an additional transaction for every predicate operation
in the history.

5.4 Generality
With some exceptions, concurrency control protocols can
be grouped into categories of similar approaches [9, 49, 50].
There are arguably four main categories: (1) locking, (2) time-
stamp ordering, (3) optimistic concurrency control, and (4)
certifier-based approaches. We have tried to cover as many
of these as possible in our three implementations. TiDB uses
locking in its pessimistic mode and optimistic concurrency
control in its optimistic mode; PostgreSQL uses SSI which
can be considered a certifier based approach; and finally,
CockroachDB’s core invariant is equivalent to that of a time-
stamp ordering protocol. We believe this shows that our
approach is general. There will of course be differences be-
tween concurrency control protocols even within the same
family, however, we expect that the above approaches can
be adapted to cover most variations.

5.5 Limitations
Primarily, the goal of using version certificate recovery to test
a system is to increase confidence in its correctness. Version
certificate recovery does not aim to provide a guarantee that
a system is free from bugs. As well as recognizing the benefits
of version certificate recovery it is important to understand
its limitations.

There were some practical limitations that we found when
applying version certificate recovery to real systems. The
first limitation that we encountered was that both Cock-
roachDB and TiDB only report the last written version of
each object within a transaction. This meant that we had to
disallow any other write operations in transactions that con-
tained a predicate update operation. The second limitation
came from the decision to leverage existing functionality
to recover some aspects of the version certificate. As a re-
sult of this, we rely on this functionality to be correct in
order for our results to be valid. We believe this is a sensible

Algorithm 4: Check the expected serialization order
of the recorded transactions.

1 Def check_expected_order(txns):
2 txns = sort_in_expected_order (txns)
3 parent_state = {}
4 for txn ∈ txns do
5 for op ∈ txn.ops do
6 if op.is_read then
7 if ¬expected_results_match(parent_state, op) then
8 return False
9 else
10 new_writes = evaluate (parent_state, op)
11 for write ∈ new_writes do
12 parent_state[write.key] = write.value

13 return True

14

15 Def expected_results_match(parent_state, op):
16 expected_results = compute_results (op.query, parent_state)
17 return op.results == expected_results

trade-off as using this functionality significantly reduced the
amount of effort necessary to implement version certificate
recovery and also helps to decouple the version certificate
recovery implementation from low-level details such as the
WAL format.

In addition to the practical limitations, both Emme’s sound-
ness and completeness rely on a valid version certificate be-
ing presented. If the version certificate is created incorrectly
then both false positives and false negatives can occur. This
can happen either because of bugs in the mechanisms used to
recover the version certificate e.g. a bug in CockroachDB’s
CDC functionality, or because the version certificate was
specified incorrectly e.g. creating the version order in time-
stamp order for a serializable snapshot isolation system.

6 Expected Serialization Order
As discussed in Section 4, a fundamental issue with using
Adya’s model as the basis for a checker is the 𝑂 (𝑃 ·𝑊)
cost of computing predicate dependencies. Furthermore, any
checker using the Adya model needs to know both the ver-
sion order and version sets associated with a history. This
is not exposed by database systems, so the version certifi-
cate recovery approach presented in Section 5 is required
to recover this information. While we argue the effort to
achieve this is modest, for some serializable concurrency
control protocols we can do better.

For many serializable protocols, it is possible to define an
expected total order on transactions such that for any exe-
cution of the protocol, arranging transactions in that order
ensures that they are serializable. We call this an expected
serialization order. For example, Section 2 shows a timestamp
ordering protocol that guarantees transactions will always
be serializable in ascending timestamp order. Commitment

763

ordering protocols [37], such as strong strict two-phase lock-
ing, have an expected serialization order equal to the commit
ordering. For optimistic protocols, it is possible to define an
expected serialization order by arranging transactions in
the order of their validation timestamps. However, there are
some serializable protocols, such as serializable snapshot
isolation (SSI) where it is not possible, at least by default, to
define an expected serialization order. Nevertheless, it is pos-
sible to modify many variants of SSI to record a serializable
ordering if required [30].

We implement the expected serialization order approach
for CockroachDB. CockroachDB guarantees that arranging
transactions in ascending timestamp order will guarantee
serializability, therefore we can define the expected serial-
ization order this way. Notice that this is much simpler than
defining an expected version order and expected version sets.
All that is needed to recover the expected serialization order
is to recover each transaction’s timestamp. For CockroachDB,
we modified the test client to have each transaction record
its own timestamp. Finally, we can sort transactions by their
timestamp and pass them to Emme for verification.

Checking an expected serialization order. Intuitively,
to check that the history is serializable when arranged in the
expected serialization order, we should be able to replay each
transaction and check that the results of any read operations
match those that were observed in the history. Crooks et
al. [13] formalize this idea and define serializability in terms
of first-order logic predicates over a total order of transac-
tions. Effectively, to check that a total order of transactions
is serializable, a “current state” of the database is maintained
and each transaction is replayed, with write operations up-
dating the “current state”. Each read operation is checked
to ensure that it is valid at the “current state”. If not, then
that particular transaction ordering is rejected. Their for-
malization does not contain predicate operations, however,
it can naturally be extended for serializability by handling
predicate updates and reads in the same way as normal reads
and writes, and their proof sketch can be modified to include
predicate dependencies without changing its structure.
We extended Emme to enable checking an expected se-

rialization order based on Algorithm 4. As with Emme’s
Adya-based checker, we require a matches oracle to evaluate
predicates. We use our interpreter described in Section 4. The
time complexity of checking is reduced as it is only required
to evaluate each predicate on the writes in the “current state”
rather than on every write. As Section 7 shows, this signif-
icantly improves both the performance and scalability of
checking histories with predicate operations, and is a major
advantage of the expected serialization order approach.
Whilst we have focused on serializable protocols in this

section, Crooks et al. [13] define weaker isolation levels in
terms of first-order logic predicates that must hold over some

total order of transactions, so it may also be possible to define
an expected total order for some weaker protocols too.

7 Evaluation
We evaluate (1) the effectiveness and performance of three
implementations of version certificate recovery for Post-
greSQL, TiDB, and CockroachDB; (2) the performance of our
checker Emme on histories produced from PostgreSQL; and
(3) the performance of the expected serialization technique
on histories produced from CockroachDB. All experiments
are carried out on a machine with a hexa-core Ryzen 1600
processor, 32 GB RAM, a WD Blue SN570 2 TB SSD, and an
Ubuntu 20.04 LTS operating system. We use PostgreSQL 13.3
and run it on a single node. We use TiDB 5.3.0 and use the
recommended cluster topology (three PD nodes, three TiKV
nodes, and two TiDB nodes). We use CockroachDB v21.2.17
and run three nodes.

7.1 Version Certificate Recovery
In this subsection, we evaluate the effectiveness and perfor-
mance of the version certificate recovery implementations
described in Section 5. We considered all three version cer-
tificate recovery implementations: (1) log-based change data
capture (CDC) for CockroachDB using their CHANGEFEED
mechanism, (2) log-based CDC for PostgreSQL using the
Debezium CDC tool [14], and (3) heap-scanning for TiDB.
Effectiveness. We demonstrate that version certificate re-
covery can find known bugs in existing systems. Firstly, we
were able to demonstrate that version certificate recovery
could find a known error in PostgreSQL 12.3’s serializable iso-
lation level [34]. The error is a well-known isolation anomaly
that can occur in serializable snapshot isolation implemen-
tations [33]. Secondly, we asked a CockroachDB engineer
to create three versions of CockroachDB [44], each with a
bug that would violate its serializability guarantee. To avoid
biases, we avoided inspecting the changes to CockroachDB
before attempting to find each bug. Version certificate recov-
ery was able to detect all three bugs. This shows that version
certificate recovery is effective at detecting isolation level
anomalies in real-world database systems. Finally, we demon-
strate that our approach can find predicate-only anomalies
that Elle—a state-of-the-art checker—cannot. To do this, we
executed patterns of transactions that are highly likely to
produce predicate-only anomalies when run at the read com-
mitted isolation level. We executed these using PostgreSQL
and tried to validate them at the serializable isolation level.
Emme was able to detect these predicate-only anomalies
and rejected them as invalid, however, Elle could not detect
these and accepted them as serializable histories. This clearly
shows the importance of being able to check histories for
predicate anomalies.
Performance. For each version certificate recovery imple-
mentation, we measured the execution time of both the test

764

0 20000 40000 60000 80000 100000
Transactions

0

20

40

60

80

100

120

140

160

R
un

ti
m
e
(s
)

PostgreSQL checking time vs history length,
for non-predicates

Emme
Elle

Figure 8. Comparison of history size and the execution
time of item dependency verification in the Emme and Elle
verifiers. Each transaction executed five non-predicate oper-
ations.

client and the version certificate recovery process to confirm
that the time spent recovering the version certificate was
less than the history generation time. This demonstrates
that it is possible to hide the cost of version certificate re-
covery behind that of the test client. However, for ease of
implementation, all version certificate recovery implementa-
tions recover the version order and version sets after the test
clients finish executing. Nevertheless, it would be possible
to have an implementation of version certificate recovery
that runs alongside the test client execution.

7.2 Performance Characteristics of Emme
To examine the performance characteristics of Emme, we
carried out two experiments. The first compares the perfor-
mance of Emme and Elle on histories containing only non-
predicate operations and the second demonstrates the perfor-
mance of Emme on histories containing predicate operations.
All experiments use a single table with three columns. Insert
operations use an ON CONFLICT ... DO UPDATE clause, which
will update a key if it already exists in the table. Increment op-
erations are implemented as a read operation followed by an
update operation, which captures a read-modify-write pat-
tern that is common in real transactions. Predicate histories
contain basic range queries such as SELECT c0, c1 FROM table

WHERE c1 >= 0 AND c1 <= 10, as well as aggregate operations
min and max.

Fig. 8 compares how both Emme and Elle scale with the
history size when verifying histories without predicate op-
erations. The execution time is solely comprised of the ver-
ification time. The experiment used a mix of 30% updates,
40% reads, 20% increments, and 10% inserts, which gives a
50/50 read/write ratio. We limit the number of keys inserted
to 1000. Emme performs similarly to Elle for smaller history
sizes, but then starts to outperform Elle as the history size
increases. We believe this is due to Elle’s requirement to

0 500 1000 1500 2000 2500
Transactions

0

10

20

30

40

50

60

70

80

R
un

ti
m
e
(s
)

PostgreSQL checking time vs transactions,
for predicates

predicate/non-predicate ratio
0/100

10/90

20/80

30/70

40/60

50/50

Figure 9. Comparison of history size and the execution
time of mixed item and predicate dependency verification in
the Emme verifier. Each transaction executed a mix of five
predicate and non-predicate operations. Different ratios of
predicate to non-predicate operations were chosen.

use list-append operations, which causes all reads to con-
tain their full version order history as a list. As the history
increases in size, each key accumulates increasingly many
versions, which makes processing each read progressively
more expensive.

Fig. 9 shows how the ratio of predicate and non-predicate
operations in a history affects Emme’s checking performance.
The experiment used an operations mix of 10% insert op-
erations and a 50/50 ratio of reads and updates for both
key-value and predicate operations. The number of keys was
set to a maximum of 100. Predicate checking has 𝑂 (𝑃 ∗𝑉)
complexity, where 𝑃 is the number of predicates in the his-
tory and𝑉 is the total number of versions. The graph shows
this empirically, with both the number of transactions (and
therefore the number of versions) and the number of pred-
icate operations causing an increase in execution time as
they themselves increase. This highlights the performance
limitations of predicate checking due to the Adya model’s
data-driven definitions of predicate anomalies. Nevertheless,
Emme is still able to verify moderately large histories in a
time frame that is acceptable for testing.

7.3 Expected Serialization Order
We extended Emme to support checking using the expected
serialization order technique and refer to this mode as the
Expected SER checker. To demonstrate that the Expected SER
checker is as effective as Emme, we ensured that it could de-
tect all three errors in the modified versions of CockroachDB.

Performance. A key benefit of using Expected SER check-
ing is its superior performance. Fig. 10 compares the perfor-
mance of the Expected SER checker to that of Elle and Emme
using item-only histories generated from CockroachDB. Al-
though the Expected SER checker still scales linearly with
the history size, its execution time grows significantly slower
than that of both Elle and Emme. The Expected SER checker

765

0 20000 40000 60000 80000 100000
Transactions

0

25

50

75

100

125

150

175

200

R
un

ti
m
e
(s
)

CockroachDB checking time vs history length,
for non-predicates

Emme
Elle
Expected SER

Figure 10. Comparison of history size and checking time
for the Elle, Emme, and the Expected SER checkers using
item-only histories. The same mix of operations as Fig. 8 was
used.

0 500 1000 1500 2000 2500
Transactions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
un

ti
m
e
(s
)

CockroachDB checking time vs transactions,
for predicates

predicate/non-predicate ratio
0/100

10/90

20/80

30/70

40/60

50/50

Figure 11. Comparison of the effect of both increasing his-
tory size and increasing the mix of predicate operations on
the checking time of the Expected SER checker for histories
produced from CockroachDB.

verifies a 100, 000 transactions history in only 1.7 seconds
compared to 98.3 seconds it takes Emme, and 184.2 seconds
it takes Elle.
The Expected SER checker has the most pronounced

speedup for histories containing predicate operations. It
checks a history containing 2500 transactions in only 0.6
seconds, compared to 76.2 seconds taken by Emme. Fig. 11
shows how the execution time of the Expected SER checker
changes as both the history size and proportion of predicate
operations changes. Unlike Emme’s predicate checking per-
formance (Fig. 9), the Expected SER checker’s performance
scales linearly with the history size when holding the propor-
tion of predicate operations constant. This makes it suitable
for checking large histories containing predicate operations.

8 Related Work
Formal models of isolation levels. ANSI SQL-92 [5] for-
mally defines four transaction isolation levels that compliant
systems can offer: read uncommitted, read committed, repeat-
able read, and serializable. These levels are defined in terms of

the presence of three phenomena: dirty reads, non-repeatable
reads, and phantom reads. Building on previous work [19]
Berenson et al. [7] show that the absence of the three phe-
nomena defined in ANSI SQL does not guarantee serializable
execution. They define stricter versions of the ANSI SQL phe-
nomena and formalize two additional isolation levels called
cursor stability and snapshot isolation. Bernstein [8, 9] defines
serializability in terms of dependency graphs and a version
order. Adya et al. [2, 3] extend this model to support a wider
range of isolation levels and systems. Departing from depen-
dency graphs, recent work has moved away from defining
isolation levels in terms of ordering low-level operations and
instead focuses on more declarative definitions [12, 13, 47].

Testing and Verification of Isolation Levels. Her-
mitage [23] provides a set of fixed test cases that demonstrate
the behavior of various database systems at different isola-
tion levels. PostgreSQL [35] uses a tool called Isolationtester
to run a select set of interleavings for manually-written tests
to find bugs in its implementation of various isolation levels.
In general, serializability checking is NP-Complete [31].

Biswas and Enea [10] provide exponential-time checkers
for prefix consistency, snapshot isolation, and serializability,
whilst providing polynomial-time checkers for read commit-
ted and casual consistency. Cobra [45] is an SMT solver based
approach for verifying the serializability of key-value histo-
ries. It uses various heuristics to optimize checking speed on
certain workloads, however, in the worst case still has expo-
nential running time. Elle [4] is a checker based on the Adya
model of isolation levels. It supports a variety of isolation
levels and has successfully found bugs in real-world systems.
To work efficiently, Elle requires the database system to sup-
port atomic list-append operations. Histex [26] is a gray-box
approach to testing isolation level implementations. To the
best of our knowledge, Histex is the only system—other than
ours—that can check histories that include predicate opera-
tions. However, these histories must have been produced by
a single-version system running a locking protocol, so Histex
only works for a very narrow set of systems, and therefore,
we do not compare our checker against it.

9 Conclusion
We have shown that it is possible to define and recover a
version certificate consisting of an expected version order
and set of expected version sets for three widely used data-
base systems—TiDB, PostgreSQL, and CockroachDB. Our
checker Emme, supports checking both the serializability
and snapshot isolation of execution histories using the re-
covered version certificate, which makes Emme the first
general-purpose checker that can check histories containing
predicate operations. We have shown that version certificate
recovery is an effective validation method by demonstrating
that it can identify invalid histories caused by a known bug

766

in an older version of PostgreSQL’s serializability implemen-
tation and caused by three bugs in a fork of CockroachDB’s
serializability implementation that were introduced purpose-
fully by a CockroachDB engineer. Finally, we introduced
the notion of an expected serialization order and described
how it can be applied to a range of serializable concurrency
control protocols without needing to define and recover a ver-
sion certificate. Furthermore, using the expected serialization
order technique leads to faster checking performance and
better scalability for checking histories with predicate oper-
ations. We demonstrate this by implementing the technique
for CockroachDB and finding that it can check predicate
histories 53×–120× faster than Emme.

Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd Annette Bieniusa for their insightful and valuable
comments that helped us improve this paper. We’d also like
to thank Nathan Vanbenschoten for enabling a part of our
evaluation by introducing three bugs into a fork of Cock-
roachDB. This work was supported by the EPSRC IRIS Pro-
gramme Grant (EP/R006865/1).

References
[1] Shadi Abdul Khalek and Sarfraz Khurshid. Automated SQL query gen-

eration for systematic testing of database engines. In Proceedings of the
25th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE ’10, page 329–332, New York, NY, USA, 2010. Association
for Computing Machinery.

[2] A. Adya. Weak Consistency: A Generalized Theory and Optimistic
Implementations for Distributed Transactions. Technical report, Mas-
sachusetts Institute of Technology, USA, 1999.

[3] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Generalized Isolation
Level Definitions. In David B. Lomet and Gerhard Weikum, editors,
Proceedings of the 16th International Conference on Data Engineering,
San Diego, California, USA, February 28 - March 3, 2000, pages 67–78.
IEEE Computer Society, 2000.

[4] Peter Alvaro and Kyle Kingsbury. Elle: Inferring Isolation Anomalies
from Experimental Observations. Proc. VLDB Endow., 14(3):268–280,
2020.

[5] ANSI X3.135-1992, American National Standard for Information Sys-
tems — Database Language — SQL, November 1992.

[6] Jinsheng Ba and Manuel Rigger. Testing Database Engines via Query
Plan Guidance. In Proceedings of the 45th International Conference on
Software Engineering, ICSE ’23, page 2060–2071. IEEE Press, 2023.

[7] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.
O’Neil, and Patrick E. O’Neil. A Critique of ANSI SQL Isolation Levels.
In Michael J. Carey and Donovan A. Schneider, editors, Proceedings
of the 1995 ACM SIGMOD International Conference on Management of
Data, San Jose, California, USA, May 22-25, 1995, pages 1–10. ACM
Press, 1995.

[8] P.A. Bernstein, D.W. Shipman, and W.S. Wong. Formal Aspects of
Serializability in Database Concurrency Control. IEEE Transactions on
Software Engineering, SE-5(3):203–216, 1979.

[9] Philip A. Bernstein and Nathan Goodman. Concurrency Control in
Distributed Database Systems. ACM Comput. Surv., 13(2):185–221, jun
1981.

[10] Ranadeep Biswas and Constantin Enea. On the complexity of
checking transactional consistency. Proc. ACM Program. Lang.,
3(OOPSLA):165:1–165:28, 2019.

[11] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. Serializable Isolation
for Snapshot Databases. ACM Trans. Database Syst., 34(4), dec 2009.

[12] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A Frame-
work for Transactional Consistency Models with Atomic Visibility. In
Luca Aceto and David de Frutos Escrig, editors, 26th International Con-
ference on Concurrency Theory (CONCUR 2015), volume 42 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 58–71, Dagstuhl,
Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[13] Natacha Crooks, Youer Pu, Lorenzo Alvisi, and Allen Clement. Seeing
is Believing: A Client-Centric Specification of Database Isolation. In
Elad Michael Schiller and Alexander A. Schwarzmann, editors, Pro-
ceedings of the ACM Symposium on Principles of Distributed Computing,
PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 73–82. ACM,
2017.

[14] Debezium. https://debezium.io. Accessed: 2022-11-07.
[15] Murat Demirbas, Marcelo Leone, Bharadwaj Avva, Deepak Madeppa,

and Sandeep S. Kulkarni. Logical Physical Clocks and Consistent
Snapshots in Globally Distributed Databases. 2014.

[16] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The Notions
of Consistency and Predicate Locks in a Database System. Commun.
ACM, 19(11):624–633, November 1976.

[17] Alan D. Fekete. Serializable Snapshot Isolation. In Ling Liu and
M. Tamer Özsu, editors, Encyclopedia of Database Systems, Second
Edition. Springer, 2018.

[18] Alan D. Fekete. Snapshot Isolation. In Ling Liu and M. Tamer Özsu,
editors, Encyclopedia of Database Systems, Second Edition. Springer,
2018.

[19] Jim Gray, Raymond A. Lorie, Gianfranco R. Putzolu, and Irving L.
Traiger. Granularity of Locks and Degrees of Consistency in a Shared
Data Base. In G. M. Nijssen, editor,Modelling in Data Base Management
Systems, Proceeding of the IFIPWorking Conference on Modelling in Data
Base Management Systems, Freudenstadt, Germany, January 5-8, 1976,
pages 365–394. North-Holland, 1976.

[20] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu,
Li Shen, Liu Tang, Yuxing Zhou, Menglong Huang, WanWei, Cong Liu,
Jian Zhang, Jianjun Li, XuelianWu, Lingyu Song, Ruoxi Sun, Shuaipeng
Yu, Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang. TiDB: A
Raft-Based HTAP Database. Proc. VLDB Endow., 13(12):3072–3084, aug
2020.

[21] Jepsen testing framework. https://github.com/jepsen-io/jepsen. Ac-
cessed: 2022-12-03.

[22] Kyle Kingsbury. Jepsen analyses. https://jepsen.io/analyses, 2013.
[23] Martin Kleppmann. Hermitage: Testing transaction isolation levels,

November 2014. https://github.com/ept/hermitage.
[24] H. T. Kung and C. H. Papadimitriou. An Optimality Theory of Concur-

rency Control for Databases. In Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’79, page
116–126, New York, NY, USA, 1979. Association for Computing Ma-
chinery.

[25] Leslie Lamport, John Matthews, Mark Tuttle, and Yuan Yu. Specifying
and Verifying Systems with TLA+. In Proceedings of the 10th Workshop
on ACM SIGOPS European Workshop, EW 10, page 45–48, New York,
NY, USA, 2002. Association for Computing Machinery.

[26] Dimitrios Liarokapis, Elizabeth O’Neil, and Patrick O’Neil. HISTEX
HISTory EXerciser : A tool for testing the implementation of Iso-
lation Levels of Relational Database Management Systems. CoRR,
abs/1903.00731, 2019.

[27] Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wis-
nesky. Toward a Verified Relational Database Management System. In
Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’10, page 237–248, New
York, NY, USA, 2010. Association for Computing Machinery.

[28] MySQL phantom read bug report. https://bugs.mysql.com/bug.php?
id=27197. Accessed: 2023-04-11.

767

https://debezium.io
https://github.com/jepsen-io/jepsen
https://jepsen.io/analyses
https://github.com/ept/hermitage
https://bugs.mysql.com/bug.php?id=27197
https://bugs.mysql.com/bug.php?id=27197

[29] George C. Necula. Translation Validation for an Optimizing Compiler.
In Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, PLDI ’00, page 83–94, New York,
NY, USA, 2000. Association for Computing Machinery.

[30] Elizabeth J. O’Neil and Patrick E. O’Neil. Determining serialization
order for serializable snapshot isolation. Information Systems, 58:14–23,
2016.

[31] Christos H. Papadimitriou. The serializability of concurrent database
updates. J. ACM, 26(4):631–653, 1979.

[32] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In
Bernhard Steffen, editor, Tools and Algorithms for the Construction and
Analysis of Systems, pages 151–166, Berlin, Heidelberg, 1998. Springer
Berlin Heidelberg.

[33] Dan R. K. Ports and Kevin Grittner. Serializable Snapshot Isolation in
PostgreSQL. Proc. VLDB Endow., 5(12):1850–1861, aug 2012.

[34] PostgreSQL commit that fixes an error in its serializable isolation
level. https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=
5940ffb221316ab73e6fdc780dfe9a07d4221ebb. Accessed: 2022-11-30.

[35] PostgreSQL. https://www.postgresql.org. Accessed: 2022-11-30.
[36] PostgreSQL pg_current_snapshot() documentation. https:

//www.postgresql.org/docs/13/functions-info.html#FUNCTIONS-
PG-SNAPSHOT. Accessed: 2022-11-30.

[37] Yoav Raz. The Principle of Commitment Ordering, or Guaranteeing Se-
rializability in a Heterogeneous Environment of Multiple Autonomous
Resource Managers Using Atomic Commitment. In Li-Yan Yuan, ed-
itor, 18th International Conference on Very Large Data Bases, August
23-27, 1992, Vancouver, Canada, Proceedings, pages 292–312. Morgan
Kaufmann, 1992.

[38] David P. Reed. Implementing Atomic Actions on Decentralized Data.
ACM Trans. Comput. Syst., 1(1):3–23, February 1983.

[39] Manuel Rigger and Zhendong Su. Detecting Optimization Bugs in
Database Engines via Non-Optimizing Reference Engine Construction.
In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2020, page 1140–1152, New York, NY, USA,
2020. Association for Computing Machinery.

[40] Manuel Rigger and Zhendong Su. Finding Bugs in Database Sys-
tems via Query Partitioning. Proc. ACM Program. Lang., 4(OOPSLA),

November 2020.
[41] Manuel Rigger and Zhendong Su. Testing Database Engines via Piv-

oted Query Synthesis. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pages 667–682. USENIX
Association, November 2020.

[42] Donald R. Slutz. Massive Stochastic Testing of SQL. In Proceedings
of the 24rd International Conference on Very Large Data Bases, VLDB
’98, page 618–622, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

[43] Andreas Seltenreich. 2019. SQLSmith. https://github.com/anse1/
sqlsmith.

[44] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jor-
dan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin,
Raphael Poss, Paul Bardea, Amruta Ranade, Ben Darnell, BramGruneir,
Justin Jaffray, Lucy Zhang, and Peter Mattis. CockroachDB: The Re-
silient Geo-Distributed SQL Database. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’20, page 1493–1509, New York, NY, USA, 2020. Association for Com-
puting Machinery.

[45] Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Walfish. Cobra:
Making Transactional Key-Value Stores Verifiably Serializable. In 14th
USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2020, Virtual Event, November 4-6, 2020, pages 63–80. USENIX
Association, 2020.

[46] TiKV. https://tikv.org/. Accessed: 2022-11-30.
[47] Paolo Viotti and Marko Vukolić. Consistency in Non-Transactional

Distributed Storage Systems. ACM Comput. Surv., 49(1), jun 2016.
[48] Todd Warszawski and Peter Bailis. ACIDRain: Concurrency-Related

Attacks on Database-Backed Web Applications. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD
’17, page 5–20, New York, NY, USA, 2017. Association for Computing
Machinery.

[49] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An
Empirical Evaluation of In-Memory Multi-Version Concurrency Con-
trol. Proc. VLDB Endow., 10(7):781–792, mar 2017.

[50] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and
Michael Stonebraker. Staring into the Abyss: An Evaluation of Con-
currency Control with One Thousand Cores. Proc. VLDB Endow.,
8:209–220, nov 2014.

768

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=5940ffb221316ab73e6fdc780dfe9a07d4221ebb
https://git.postgresql.org/gitweb/?p=postgresql.git;a=commit;h=5940ffb221316ab73e6fdc780dfe9a07d4221ebb
https://www.postgresql.org
https://www.postgresql.org/docs/13/functions-info.html#FUNCTIONS-PG-SNAPSHOT
https://www.postgresql.org/docs/13/functions-info.html#FUNCTIONS-PG-SNAPSHOT
https://www.postgresql.org/docs/13/functions-info.html#FUNCTIONS-PG-SNAPSHOT
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://tikv.org/

	Abstract
	1 Introduction
	2 Example-Driven Overview
	3 Adya Model
	4 Emme
	4.1 Item Dependencies
	4.2 Predicate Dependencies
	4.3 Black-box Checking

	5 Version Certificate Recovery
	5.1 CockroachDB
	5.2 TiDB
	5.3 PostgreSQL
	5.4 Generality
	5.5 Limitations

	6 Expected Serialization Order
	7 Evaluation
	7.1 Version Certificate Recovery
	7.2 Performance Characteristics of Emme
	7.3 Expected Serialization Order

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

