
Synchronisation in Language-level Symmetry
Reduction for Probabilistic Model Checking

Ivaylo Valkov1[0000−0003−1116−875X],
Alastair F. Donaldson2[0000−0002−7448−7961], and Alice

Miller1[0000−0002−0941−1717]

1 University of Glasgow, UK
2064491v@student.gla.ac.uk, alice.miller@glasgow.ac.uk

2 Imperial College London, UK
alastair.donaldson@imperial.ac.uk

Abstract. The generic representatives (or counter abstraction) ap-
proach has been shown to be an effective symmetry reduction method
for model checking. This method was extended to a probabilistic
setting via a specialised language, Symmetric Probabilistic Specification
Language (SPSL) and an associated tool, GRIP, for use with the PRISM
model checker. However, SPSL does not support synchronisation-based
communication, making this method inapplicable to systems that
require synchronisation. We show how synchronisation can be added
to SPSL, and develop new counter abstraction translation rules for
synchronous statements. We extend GRIP accordingly and demonstrate
the feasibility and effectiveness of the new abstraction rules via a range
of examples. This extends the applicability of the generic representatives
technique to the wide class of probabilistic systems that rely on
synchronisation. Experimental results show that our approach works
well for systems that are composed of a large number of simple sym-
metric modules that feature a small amount of synchronisation-based
communication.

Keywords: Probabilistic model checking · Symmetry reduction ·
Generic representatives · Counter abstraction · Synchronisation ·
PRISM.

1 Introduction

Model checking [8, 26, 9] is an automatic technique for verifying hardware and
software systems by checking temporal logic properties against a finite state
model of a system. Explicit state model checkers [21] such as SPIN [20] store
each state individually, whereas symbolic model checkers such NuSMV [7] use a
symbolic representation of states, typically through the use of Binary Decision
Diagrams (BDDs) [3, 4]. Probabilistic model checkers, such as PRISM [24] and
Storm [19] incorporate probabilities and quantitative aspects into the (symbolic)
verification process by using Multi-terminal Binary Decision Diagrams (MTB-
DDs) [10] to store vectors of probabilities.



2 I. Valkov et al.

Model checking suffers from the so-called state-space explosion problem—
the number of states increases exponentially with the number of components
in a system. The symbolic approach goes some way to address this issue [5].
However, in many cases replicated components in the system under analysis can
lead to large portions of the state-space that are symmetric, and a symbolic
representation does nothing to avoid redundancy in analysis arising from this
symmetry.

Symmetry reduction [11, 16, 25, 28] is a technique that was originally intro-
duced for explicit state model checking to combat state-space explosion arising
from this kind of replication of components. Symmetries of the system are used
to partition the state-space into equivalence classes. The model checker then
only needs to explore one representative state from each equivalence class. The
construction of the equivalence classes is done by identifying a suitable relation
known as the orbit relation.

Working with the orbit relation can be challenging—especially in the case of
symbolic model checking where it has been shown that a BDD encoding of the
orbit relation has size exponential in the number of replicated components [11].
An alternative approach using generic representatives [16, 17], also known as
counter abstraction, allows symmetry reduction to be applied without the con-
struction of the orbit relation. A system specification is translated into a reduced
form known as generic form. In the generic form, the full set of individual local
variables is replaced by a much smaller set of variables called counters, which
record the number of components in each local state. Both the reduced specifi-
cation and resulting model can be significantly smaller than the original.

Symmetry reduction tools have been developed for a variety of model checkers
[18, 2, 14]. In the probabilistic context there have been two notable tools: PRISM-
symm [23] and GRIP (Generic Representatives In PRISM) [12, 15]. PRISM-
symm uses an efficient algorithm for the construction of quotient models from an
original, non-reduced model. Property checking on the reduced model can then
be performed more efficiently in comparison to property checking on the non-
reduced model. However, this approach depends on it being feasible to construct
the non-reduced model in the first place. In contrast, the GRIP tool is based on
an extension of the generic representatives approach to the probabilistic setting.
While PRISM-symm can work well for model specifications that consist of a small
number of complex modules, GRIP excels in the context of a large number of
relatively simple modules.

The extension of generic representatives to a probabilistic setting on which
GRIP is based leverages a specialised language, Symmetric Probabilistic Specifi-
cation Language (SPSL) [13]. This allows for the specification of a probabilistic
system comprising multiple communicating modules in such a way that the ap-
plicability of the generic representatives technique is guaranteed. An algorithm
for direct translation of SPSL specifications of symmetric multi-module proba-
bilistic systems into generic form is also provided [13].

A major limitation of SPSL and the associated GRIP tool is that they only
support symmetric systems in which modules communicate with one another



Generic Representatives with Synchronisation 3

through the use of shared variables. An alternative, widely-used communication
mechanism involves synchronisation, where when multiple modules are ready to
take a particular named action they all execute a statement related to this action
simultaneously, in a synchronous fashion. This limitation means that there is a
large class of systems to which SPSL and GRIP cannot be applied. This problem
is more than just a tooling limitation: as we explain in this paper, the problem
of how to encode inter-module synchronisation using generic representatives is
difficult and—to our knowledge—has not been studied before.

In this paper we show how SPSL and the associated translation algorithm [13]
can be extended to include synchronisation. To allow experimenting with the fea-
sibility of the translation in practice, we have extended the GRIP tool to use
our new translation method, and present experimental results comparing our
updated version of GRIP with PRISM-symm (which already supports synchro-
nisation) on three case studies that rely on inter-module synchronisation.

The experimental results show that our approach enables the symmetry re-
duction of specifications dependant on synchronisation but comes with an ad-
ditional overhead for each synchronisation instance. We conclude that the tech-
nique works well for systems composed of a large number of simple symmetric
modules that feature a small amount of synchronisation-based communication.

2 Background

2.1 Symmetry reduction via generic representatives

The generic representatives approach [16, 17], also known as counter abstraction,
allows symmetry reduction to be applied without the construction of an orbit
relation. Specifically, this process involves replacing a specification in which mul-
tiple symmetric modules3 are each individually represented by a single generic
module. The variables of the generic module represent the number of symmetric
modules at a given local state.

We illustrate the generic representatives approach using an example.
Consider a mutual exclusion algorithm for six identical modules, each with
three local states: neutral (N), trying (T ) and critical (C). The global states
(N,N,N, T, T, C), (N,T, T,N,N,C) and (C,N,N, T,N, T ) are symmetrically
equivalent and have generic representative (3N, 2T, 1C). A generic represen-
tative indicates how many modules are in each local state, without referring
to individual modules. In our example, the generic representative (3N, 2T, 1C)
merely records that there are three modules in the N state, two modules in
the T state and one module in the C state, without keeping track of which
particular module is in each state.

3 Throughout the paper we use the term “module” to mean what is often called a
“process” in the model checking literature. This is because the implementation of our
ideas is in the context of the PRISM model checker, which uses the term “module”
for this concept.



4 I. Valkov et al.

The idea of the generic representatives approach is to rewrite a specification
initially expressed as multiple individual symmetric modules into one that is
based on counter variables. The resulting specification represents the original
symmetric modules via a single module that uses the counter variables to keep
track of the number of original symmetric modules that are in each state. This
has the effect of exploiting symmetry at the source code level. As a result, there
is no need to do symmetry reduction when actually model checking, and so a
symbolic approach can be directly applied. This avoids the need to construct a
BDD for the orbit relation (which, as discussed above, is prohibitively expensive).
It also avoids the need to build an unreduced model and then apply symmetry
reduction to it (which is the approach taken by PRISM-symm), allowing the
verification of systems for which constructing an unreduced model in the first
place is intractable.

2.2 GRIP: generic representatives in PRISM

The generic representatives approach has been extended to probabilistic model
checking [13, 15]. A language, Symmetric Probabilistic Specification Language
(SPSL), was introduced which allowed for the specification of probabilistic sys-
tems in such a way that the applicability of the technique is guaranteed. SPSL
specifications can be directly translated into generic form using a defined algo-
rithm.

This translation has been implemented for the probabilistic model checker
PRISM and its modelling language [24] via the as the GRIP (Generic Repre-
sentatives in PRISM) tool. GRIP supports specifications that are defined in
Symmetric PRISM (henceforth SP). This is a subset of the PRISM modelling
language that is analogous to SPSL. Specifications are reduced using a transla-
tion corresponding to the SPSL translation rules. Fig. 1 shows the structure of
the workflow of GRIP (before we applied our modifications). When the source
code for GRIP is compiled, an abstract syntax tree representation of the model
is created. This is then translated to the reduced specification.

Fig. 1: GRIP workflow.

Symmetric PRISM (SP) Input specifications for GRIP must be written in
SP for the translation process to be applicable. An example input specification
for GRIP can be seen in Listing 1.1. Note that, as is required by PRISM, the first
line denotes the model type, which in this case is mdp—i.e. a Markov Decision
Process (MDP). Other model types include dtmc for a Discrete Time Markov



Generic Representatives with Synchronisation 5

Chain (DTMC) and ctmc for a Continuous Time Markov Chain (CTMC). All
model types are described in full in [24].

Consider the following simple model. Two devices call heads or tails for the
flip of a coin. They make their decisions at random and with equal probability, at
which point they terminate (we do not model any consequence of the coin toss).
All devices start at a state 0 (initial state), and can move to state 1 (chosen to
call heads) or state 2 (chosen to call tails). Once the devices have both reached
state 1 or state 2 they can move to state 3 (end state). An SP specification for
this system is shown in Listing 1.1. Note that si=j is a guard that will be true
if and only if device i is currently in state j. The model is defined by specifying
one concrete module, device1, and then an additional module, device2, by
renaming device1.

1 dtmc
2
3 module device1
4 s1 : [0..3] init 0;
5
6 [] s1=0 -> 0.5 : (s1’=1) + 0.5 : (s1’=2);
7 [] s1=1 -> (s1’=3);
8 [] s1=2 -> (s1’=3);
9 [] s1=3 -> (s1’=3);

10
11 endmodule
12 module device2 = device1[s1=s2 ,s2=s1] endmodule

Listing 1.1: Example: coin toss model.

The core syntax of SPSL is shown in Table 1. The table is based on the orig-
inal syntax present in [13] with updates (highlighted in red) made to support
the translation of synchronised statements. The updates allow synchronisation
labels to be optionally attached to statements. Statements with the same la-
bel are executed simultaneously, i.e. all symmetric modules must be in a state
that satisfies the guard of at least one such statement, and the updates of those
statements get executed simultaneously. The basic structure of an SPSL specifi-
cation otherwise remains unchanged. A detailed explanation of SP and example
specifications can be found in [27].

Translation process We describe how a model specified in SP is translated
into generic form. First we consider how the local variables for each individual
module are replaced by counter variables. We then consider the translation of
transitions between states of the original specification to transitions between
states defined as values of the counter variables.

An abstract syntax tree is constructed from the original specification based
on the SP grammar. As shown in Fig. 2, a walk is then performed on this tree and
each element is translated into the reduced specification. The model type (i.e.
DTMC, CTMC, MDP, etc.) of the two specifications is the same. Similarly, the
global variables and the non-symmetric module declarations are directly copied
from the original model.

Translating the symmetric modules into a single generic module is more com-
plicated. The local variables are substituted by counter variables, one for each



6 I. Valkov et al.

specification ::= global-variables? module+

global-variables ::= globals { var-decl+ }
module ::= module M [number]{ var-decl∗ statement(M)+ }
var-decl ::= name : type init constant

type ::= [number..number] | bool

constant ::= true | false | number

statement(M) ::= [] expr(Mi) → stoch-update(M)

| [name] expr(Mi) → update(M)

stoch-update(M) ::= expr(Mi):update(M) + . . . + expr(Mi):update(M)

update(M) ::= skip | (name := expr(Mi)) ∥ . . . ∥(name := expr(Mi))
symm-expr ::= constant | global-name

| ⃝1≤j≤#N loc-expr(N)j (for some module type N)
| symm-expr ▷◁ symm-expr | ¬symm-expr | (symm-expr)

loc-expr(M) ::= constant | local-name | loc-expr(M) ▷◁ loc-expr(M)
| ¬loc-expr(M) | (loc-expr(M))

expr(Mi) ::= loc-expr(M)i | symm-expr | ⃝1≤j ̸=i≤#M loc-expr(M)j
| expr(Mi) ▷◁ expr(Mi) | ¬expr(Mi) | (expr(Mi))

Table 1: Syntax of Symmetric Probabilistic Specification Language (SPSL).
PCTL-specific syntax is omitted. Updates shown in red.

state a symmetric module can be in. Each counter variable keeps track of how
many symmetric modules are in the state associated with it. Each transition
statement of the original symmetric module is translated into one or more re-
duced statements. These update the counter variables according to the original
statement. Listing 1.2 shows the output produced by GRIP based on the model
specification from Listing 1.1.

1 probabilistic
2
3 module generic_process
4 no_0 : [0..2] init 2; // No modules in state (0)
5 no_1 : [0..2] init 0; // No modules in state (1)
6 no_2 : [0..2] init 0; // No modules in state (2)
7 no_3 : [0..2] init 0; // No modules in state (3)
8
9 [] (no_0 >0) -> 0.5:( no_0’=no_0 -1)&(no_1’=min(no_1 +1,2))

10 + 0.5:( no_0’=no_0 -1)&(no_2’=min(no_2 +1,2));
11 [] (no_0 >1) -> 0.5:( no_0’=no_0 -1)&(no_1’=min(no_1 +1,2))
12 + 0.5:( no_0’=no_0 -1)&(no_2’=min(no_2 +1,2));
13 [] (no_1 >0) -> (no_1’=no_1 -1)&(no_3’=min(no_3 +1,2));
14 [] (no_1 >1) -> (no_1’=no_1 -1)&(no_3’=min(no_3 +1,2));
15 [] (no_2 >0) -> (no_2’=no_2 -1)&(no_3’=min(no_3 +1,2));
16 [] (no_2 >1) -> (no_2’=no_2 -1)&(no_3’=min(no_3 +1,2));
17 [] (no_3 >0) -> true;
18 [] (no_3 >1) -> true;
19 endmodule

Listing 1.2: Example output specification for a model of a coin tossing scenario.
Output is generated by GRIP from the input specification shown in Listing 1.1.



Generic Representatives with Synchronisation 7

Lines 4 to 7 declare the counter variables replacing the local variables of the
eight symmetric modules. Lines 9 to 18 are the translated transition statements.
Note that each transition’s guard checks the number of symmetric modules in
a state associated with a particular counter variable. The update denotes the
transfer of one module from one state to another by incrementing/decrementing
the associated counter variables.

Fig. 2: Visualisation of the translation steps of the SPSL symmetry reduction
algorithm. Entities with the same name in the two specifications are direct copies.
We include a family of symmetric modules but no asymmetric modules (for
simplicity).

For MDPs there is a one-to-one relationship between statements and trans-
lated statements. In the case of DTMCs however (as for this example) each
statement is translated into a number of reduced statements (one for each sym-
metric module present in the original specification). This is necessary to correctly
model the fact that a counter variable with a higher value is more likely to change
in the next transition.

3 Synchronisation and Generic Representatives

Our goal is to add synchronisation to both the grammar and translation rules of
SPSL. To do this we first introduce some notation (Section 3.1). We then give
some initial intuition towards the development of our new translation rules for
SPSL via an example in SP (Section 3.2). The new translation rules for SPSL
are defined in Section 3.3.



8 I. Valkov et al.

3.1 Notation

For ease of presentation We assume that our model is for a single family of
symmetric modules M = {M1,M2, . . . ,Mm} that have access to a set of shared
global variables.

If the set of states of M is S(M), the set of local states of each Mi is
S(Mi), and the set of realisations of the global variables is G, then S(M) =
(
∏

1≤i≤m S(Mi))×G. Every state is a tuple of the form

(s1, s2 . . . sm, g)

We may assume that, for each i, S(Mi) = {si,1, si,2, . . . , si,r}, and for any i and
j, the states si,k and sj,k are identical after module renaming for any 1 ≤ k ≤ r.

Counter variables count_M_k : k ∈ {1, 2, . . . , r} record at any state the
number of modules in a given local state. Specifically they record the number of
modules, Mi whose local state is si,k. Counter function f maps each element of
S(M) to the appropriate r-tuple of counter variable values.

For each transition statement c in Mi, let SATMi
(c) = {l ∈ S(Mi) : l |=

c}, i.e. the subset of local states of Mi that satisfy its guard. Similarly, for an
expression e appearing in a guard, we use SATMi(e) to refer to the subset of
local states that satisfy e.

3.2 Basic synchronisation example

Consider the basic coin toss example from Listing 1.1; however, this time with
synchronisation labels present. The two devices again make their decisions at
random and with equal probability, but now must simultaneously reveal their
choices, at which point they terminate (we again do not model any consequence
of the coin toss).

1 dtmc
2
3 module device1
4 s1 : [0..3] init 0;
5
6 [] s1=0 -> 0.5 : (s1’=1) + 0.5 : (s1’=2);
7 [a] s1=1 -> (s1’=3);
8 [a] s1=2 -> (s1’=3);
9 [] s1=3 -> (s1’=3);

10
11 endmodule
12 module device2 = device1[s1=s2 ,s2=s1] endmodule

Listing 1.3: Example: coin toss with synchronisation

Without synchronisation labels, each device could progress to state 3 (c.f.
lines 7 and 8 of Listing 1.3) as soon as it enters state 1 or 2. With the labels,
they would need to wait until the other device were ready. Furthermore, syn-
chronisation requires all updates to be executed simultaneously.

Lines 13 to 16 of Listing 1.2 have been created by GRIP for the reduced
specification of the coin toss model without synchronisation. The updates are
simple: in each of them the value of the no_3 counter is increased by one, i.e. a



Generic Representatives with Synchronisation 9

module moves to state 3. In two of them that particular module has arrived at
that state from state 1, in the other two it has arrived from state 2. The guard
of line 13 is equivalent to “there are 1 or 2 modules in state 1” and of line 14
to “there are 2 modules in state 1”. Similarly the guards of lines 15 and 16 are
equivalent to “there are 1 or 2 modules in state 2”, and “there are 2 modules
in state 2” respectively. Out of these, lines 14 and 16 would be acceptable even
with synchronisation. However, the guards of the other two would need to be
tightened. Merely requiring that one module is in state 1 (or in state 2) is
insufficient – in this case the guard should also state that the other module is in
the corresponding (other) state. That is: when exactly one module is in state 1,
the other module would need to be in state 2 and vice versa. Listing 1.4 shows
what a reduced version of the specification could look like if the guards were
strengthened to accommodate this observation.

1 probabilistic
2 global total : [ 0 .. 2 ] init 0 ;
3
4 module generic_process
5 no_0 : [0..2] init 2; // No modules in state (0)
6 no_1 : [0..2] init 0; // No modules in state (1)
7 no_2 : [0..2] init 0; // No modules in state (2)
8 no_3 : [0..2] init 0; // No modules in state (3)
9

10 [] (no_0 >0) -> 0.5:( no_0’=no_0 -1)&(no_1’=min(no_1 +1,2))
11 + 0.5:( no_0’=no_0 -1)&(no_2’=min(no_2 +1,2));
12 [] (no_0 >1) -> 0.5:( no_0’=no_0 -1)&(no_1’=min(no_1 +1,2))
13 + 0.5:( no_0’=no_0 -1)&(no_2’=min(no_2 +1,2));
14 [a] (no_1 =0) & (no_2 =2) -> (no_2’=0)&(no_3’=min(no_3 +2,2));
15 [a] (no_1 =1) & (no_2 =1) -> (no_1’=0)&(no_2’=0)&(no_3’=min(no_3 +2,2));
16 [a] (no_1 =2) & (no_2 =0) -> (no_1’=0)&(no_3’=min(no_3 +2,2));
17 [] (no_3 >0) -> true;
18 [] (no_3 >1) -> true;
19 endmodule

Listing 1.4: Example: reduced coin toss specification with synchronisation

Note that in this example, the updates for all synchronised statements in the
output specification are the same, suggesting that the three statements could be
combined. However this is not true in general, as synchronised statements may
have different updates. The reduced updates will therefore consist of a number
of distinct assignments each requiring a distinct statement. For each synchro-
nisation label, guard and update combination, we must consider the possible
ways of allocating the symmetric modules between the states accepted by the
guards. The number of reduced statements arising from a synchronised block of
statements is exponential in both the number of symmetric modules and in the
number of local states that satisfy the guards of the local statements. This is an
important observation (hence we state it again below). It means that adding syn-
chronisation to our translation algorithm comes at a significant cost - although
its inclusion is necessary when synchronous protocols are to be modelled.

Observation Although the method we present allows the generic representa-
tives approach to symmetry reduction to be applied in the presence of synchro-
nised statements, its scalability is limited. This is because our method results



10 I. Valkov et al.

in an exponential blow-up in the size of the text of the reduced specification:
the blow-up is exponential in both the number of symmetric modules, and the
number of statements that use a particular synchronisation label. Although the
state space associated with the reduced specification will be smaller than the
original state space (thanks to symmetry reduction), the overhead associated
with processing the larger specification text in order to build this state space
may outweigh the benefits brought by symmetry reduction.

3.3 Translating synchronisation

We now develop new SPSL translation rules for synchronised statements to be
added to the original rules introduced in [13]. For notation see Section 3.1. As
the translation process is more complex for DTMCs, we assume that our model
type is either an MDP or a CTMC for ease of presentation. However, our imple-
mentation in the GRIP tool does support DTMCs.

Counter abstraction replaces each family M of m symmetric modules by a
single generic module with a set of r counter variables, each of which ranges from
0 to m. All counter variables are initialised to 0, except for that corresponding
to the initial state, which is initialised to m.

Without loss of generality we can assume that a synchronised statement has
the form:

[label] local-expr(M) ∧ symm-expr(M) → stoch-update(M) (1)

where local-expr(M) is an expression over local variables only and symm-expr(M)
may also include some global variables. Either can be set to true if no such
expression is present. Expression symm-expr(M) must be fully symmetric for
translation to be applicable.

Consider a statement in the original specification with local-expr(M) = e,
and symm-expr(M) = s. Without synchronisation, GRIP splits the translation
process into cases, one per l ∈ SATM (e) (see Fig. 3). For each case, a separate
reduced generic statement is generated by the following process. Expression e
is replaced with a condition count_M_fM (l) > 0. (Although we are assum-
ing that our model is an MDP, it is worth noting that, in the case of DTMCs,
each statement gets translated into m statements which are identical except that
the ith statement has guard count_M_fM (l) > i, for 0 ≤ i ≤ m − 1.) This
condition asserts that some member of M has a local state required to satisfy
the local part of the guard of this statement. Both s and the stochastic update
stoch-update(M) are translated in the context of the state l, so their reduced
counterparts do not make use of any variables local to M . Updates affecting
variables local to M are replaced with updates to two counter variables: if l is
the local state considered in the current case, and l′ is the local state reached
by performing all local variable updates on l, then the resulting reduced update
must decrement count_M_fM (l) and increment count_M_fM (l′) (represent-
ing modules leaving l and arriving at l′ respectively).

We approach synchronised statements using a similar methodology (see
Fig. 4). First, we assume that all updates of synchronised statements will



Generic Representatives with Synchronisation 11

Fig. 3: Translation of a single non-synchronised statement. The top row repre-
sents the components a statement in the original specification, while the bottom
row represents the corresponding translated components that form a reduced
statement.

only change the local state of a module. Note that PRISM does not allow
synchronised statements to perform updates to global variables, so this is a
reasonable assumption. For brevity, we only consider synchronised statements
with a single update (i.e. of the form p1 : u1 where p1 = 1) rather than a
stochastic choice of updates. A discussion of how multiple updates could be
included is given in [27].

To translate statements with synchronisation we must consider all statements
with the same label at the same time, rather than translating them individually.
Again we assume that M consists of a single family of symmetric modules Mi,
1 ≤ i ≤ m. For any statement in M1 (say), the same statement (under module
renaming) is present in all modules. For this reason we base our reasoning on
statements in M1.

All statements in M1 with label α have the form [α] e ∧ y → p1 : u1 (c.f.
Eq. (1)). If there are z such statements, with local parts e1, e2, . . . , ez, then define

SATM1
(α) =

⋃
1≤j≤z

SATM1
(ej)

Synchronisation over α can only take place at state s = (s1, s2, . . . , sm, g)
if, for each module, at least one statement with label α is enabled at s, i.e. if
there exists an si,k ∈ SATMi

(α) for 1 ≤ i ≤ m. For each j and local state
l ∈ SATM1(ej) we define wl

j to be the number of modules in their corresponding
local state before the synchronised transition is executed, where 0 ≤ wl

j ≤ m.
Similarly for any state l ∈ SATM1

(α) define xl =
∑

j:l∈SATM1
(ej)

wl
j . Each trans-

lated statement then has the condition
∧

l∈SATM1
(α) count_M_fM (l) = xl.



12 I. Valkov et al.

Fig. 4: Translation of a block of synchronised statements. Top and bottom rows
represent components in a statement in a synchronised block in the original
specification in the reduced model respectively.

The global part of the guards, symm-expr(M), is then translated by con-
sidering only those parts which belong to a statement that is being executed,
and evaluated in the context of the corresponding local state l. For each lo-
cal state l with wl

j > 0, we translate the global guard corresponding to ej .
We then combine the translated global guards. The individual translation pro-
cess here is the same as for the global part of a non-synchronised statement.
The translation of updates follows a similar idea: for each wl

j > 0, we find
the states resulting from applying the update associated with the statement
whose guard is ej . For any such updated state l′ we are interested in two quan-
tities: the number of modules that were in state l′ before the updates were
applied, wl′

j , and the number of modules in states which change to state l′ af-
ter the updates are applied. The translated updates have the following form∧

l count_M_fM (l):=count_M_fM (l) + δl→l′ , where δl→l′ is the difference
between the modules changing into state l′ and the number of modules changing
out of it.

4 Experimental Results

We have implemented our new translation techniques in an updated version
of GRIP: GRIP 3.0. The input PRISM specification (in SP) may now contain
any number of synchronised statements across multiple modules. There may be
multiple blocks of synchronised statements (each with a different label).



Generic Representatives with Synchronisation 13

We now investigate how well GRIP 3.0 performs compared to PRISM and
PRISM-symm. Our first example (Rock-Paper-Scissors) is a purpose-built small
example to show a complete SP specification with synchronisation. The other
two examples (CSMA/CD, and a synchronous version of a randomised Byzan-
tine agreement protocol) are based on examples from [23] and demonstrate where
GRIP does badly compared to PRISM-symm, and where it does well. The ex-
periments were performed on a 2.60 GHz PC with 16 GB RAM, running PRISM
version 4.8 under Windows. The maximum memory of the CUDD library was
set to 1 GB (PRISM default) and the Java maximum memory was set to 6 GB.

We note that all of the PRISM case studies [1] suitable for symmetry reduc-
tion using GRIP have already been considered in the previous version of the tool
(for more information see [27]). Many of the other PRISM case studies are not
suitable for the generic representatives approach as they possess ring symmetry,
rather than the full symmetry we require [11].

Rock-Paper-Scissors We first consider a model of a Rock-Paper-Scissors
game. Modules represent participants, who choose between three options: rock,
paper and scissors. When all choices have been made, they are evaluated. If all
choices are different or all are the same, the game continues for another round.
Otherwise an outcome is announced, based on the choices made. Synchronised
statements are required to ensure that all choices are made before the result is
evaluated. The PRISM model is shown in Listing 1.5.

1 dtmc
2 global r : [0..1] init 0;
3 global p : [0..1] init 0;
4 global s : [0..1] init 0;
5
6 module player1
7 // choice: 0-undecided , 1-rock , 2-paper , 3-scissors
8 ch1 : [0..3];
9 // local phase

10 ph1 : [1..2];
11 // winner: 1-rock , 2-paper , 3-scissors
12 res1 : [0..3];
13 // make choice
14 [](( ch1=0)&(ph1 =1)&(res1 =0)) -> 1/3: (ch1’=1) & (r’=1)
15 + 1/3: (ch1’=2) & (p’=1)
16 + 1/3: (ch1’=3) & (s’=1);
17 // determine outcome
18 [decided] ((ph1=1) & (res1 =0)) -> (ph1’=2) ;
19 [](( ph1=2)&(res1 =0))&((r=1)&(p=0)&(s=1))->(ch1’=0)&(res1’=1);
20 [](( ph1=2)&(res1 =0))&((r=1)&(p=1)&(s=0))->(ch1’=0)&(res1’=2);
21 [](( ph1=2)&(res1 =0))&((r=0)&(p=1)&(s=1))->(ch1’=0)&(res1’=3);
22 [](( ph1=2)&(res1 =0))&((r=0)&(p=0)&(s=0))->(ch1’=0);
23 [](( ph1=2)&(res1 =0))&((r=1)&(p=0)&(s=0))->(ch1’=0)&(r’=0)&(p’=0)&(s’=0);
24 [](( ph1=2)&(res1 =0))&((r=0)&(p=1)&(s=0))->(ch1’=0)&(r’=0)&(p’=0)&(s’=0);
25 [](( ph1=2)&(res1 =0))&((r=0)&(p=0)&(s=1))->(ch1’=0)&(r’=0)&(p’=0)&(s’=0);
26 [](( ph1=2)&(res1 =0))&((r=1)&(p=1)&(s=1))->(ch1’=0)&(r’=0)&(p’=0)&(s’=0);
27 // reset for next round if needed
28 [reset] ((ch1=0)&(ph1=2)&(res1 =0)) -> (ph1’=1) ;
29 endmodule
30 module player2=player1[ch1=ch2 ,ch2=ch1 ,ph1=ph2 ,ph2=ph1 ,res1=res2 ,res2=res1]

endmodule

Listing 1.5: Rock-Paper-Scissors model. Multiple module renamings are not
shown.



14 I. Valkov et al.

Table 2 shows the model sizes and execution times for the Rock-Paper-
Scissors model described above for m participants, for 2 ≤ m ≤ 10, using
PRISM, PRISM-symm and GRIP respectively. The property verified is: “what
is the probability that the winning outcome is rock?”.

Compared to PRISM, the GRIP specification is more complex in all cases but
the resulting model has far fewer states (when m > 2). Consequently the build
times increase for reduced models and the times taken for model checking de-
crease. On this example GRIP is significantly out-performed by PRISM-symm.
We suspect that this is because, given the size of the example, the synchroni-
sation dominates. (Recall from the observation in Section 3.2 that synchroni-
sation results in an exponential increase in translated statements). We expect
our approach to be most beneficial for models that involve a majority of non-
synchronised statements. However, we do achieve a significant improvement in
comparison to standalone PRISM. The example also serves to demonstrate the
correctness of GRIP’s new support for synchronisation.

RPS Model size (MTBDD) Model build time (sec.) Model check time (sec.)
PRISM PRISM GRIP PRISM PRISM GRIP PRISM PRISM GRIP

m -symm -symm -symm
2 453 280 605 0.03 0.066 0.01 0.01 0.03 0.03
3 1774 749 1029 0.04 0.109 0.15 0.01 0.05 0.03
4 4311 1513 2156 0.05 0.112 0.35 0.02 0.04 0.04
5 8021 2394 2880 0.07 0.185 0.88 0.05 0.04 0.05
6 12902 3335 3672 0.08 0.207 2.98 0.15 0.06 0.13
7 18951 4360 4593 0.09 0.339 6.66 0.59 0.07 0.13
8 26153 5442 7240 0.15 0.428 20.73 5.16 0.08 0.08
9 34526 6593 8611 0.16 0.545 30.68 148.21 0.09 0.33
10 44067 7816 10198 0.18 0.712 54.09 261.71 0.12 0.55

Table 2: Model size and build times for the Rock-Paper-Scissors model for m
participants, obtained by PRISM, PRISM-symm and GRIP 3.0.

Carrier Sense, Multiple Access with Collision Detection Protocol (CS-
MA/CD) PRISM-symm has been applied to a variety of case studies [23].
However, until now, it has not been possible to compare the performance of
PRISM-symm to GRIP for one of those case studies due to the lack of support
for synchronisation in GRIP. That example is the IEEE 802.3-2002 CSMA/CD
(Carrier Sense, Multiple Access with Collision Detection) communication proto-
col (csma) [22]. We now investigate applying GRIP 3.0 for that example.

The PRISM specification for csma is of the type that GRIP is not well suited
for. GRIP excels at a larger number of symmetric copies of a simpler module,
while PRISM-symm is best for a smaller number of more complex modules [13].
Hence we would not expect GRIP to compare favourably to PRISM-symm in
this case.



Generic Representatives with Synchronisation 15

Examining the csma specification closely, we note that the symmetric module
has |S(M)| = 118 local states, an order of magnitude larger than the typical
GRIP case studies [13]. Additionally, most of its synchronised statements have
loose guards; for example, a single synchronised statement can have its guard
satisfied by modules in 60 out of the 118 possible states. As the number of reduced
statements increases with the number of local states satisfying the guards of
synchronised statements (again, see the observation in Section 3.2), the number
of reduced statements is very large.

Our attempt to apply GRIP 3.0 to this example resulted in approximately
eight million reduced statements being generated for a single synchronisation
label of the csma specification. A complete model would take over an hour to
build and is unlikely to offer any improvement over PRISM. We conclude that
while GRIP 3.0 could now be applied to the csma case study, it would be ill-
advised.

Randomised Byzantine Agreement protocol Our final example is an adap-
tation of a Byzantine agreement protocol [6]. The original protocol was an ex-
ample for which GRIP performed favourably compared to PRISM-symm [13].
We have added a common synchronisation label to three of the statements that
have updates to local states only and compare performance again. Results for
a range of numbers of participants m are shown in Table 3. Despite the addi-
tional synchronisation, GRIP still performs well for this example compared with
PRISM-symm.

Byz Model size (MTBDD) Model build time (sec.) Model check time (sec.)
PRISM PRISM GRIP PRISM PRISM GRIP PRISM PRISM GRIP

m -symm -symm -symm
6 130,145 54,512 21,018 1.36 0.207 1.29 2.07 0.30 0.26
8 592,630 214,293 54,887 6.20 0.428 1.92 >10m 1.39 0.66
12 OOM OOM 218,153 OOM OOM 2.98 OOM OOM 4.653
16 OOM OOM 343,941 OOM OOM 6.06 OOM OOM 13.84

Table 3: Model size and build times for the Byzantine model obtained by PRISM,
PRISM-symm and GRIP 3.0. OOM signifies models which resulted in an Out-
of-Memory error.

5 Conclusion

We have defined new translation rules for synchronised statements in SPSL, and
shown that they are sound. We have discussed the limitations of the method and
shown that, in worst case, the counter-abstraction approach does not achieve a
reduction in the size of the state space. We have updated GRIP (to version
3.0) to include support for specifications including synchronised statements. We



16 I. Valkov et al.

have shown that our approach is feasible, and works well in some cases. Our ap-
proach is most beneficial for models that involve a majority of non-synchronised
statements and a few synchronised ones.

We plan to add further features to GRIP. While the tool currently does not
support translation of steady-state properties, we have conducted an initial in-
vestigation using manual translation of this type of property (not included in
this paper). Our investigation has shown us that adding this feature in the future
would be feasible. Similarly, we aim to introduce support for specification and
analysis of properties based on costs and rewards. This would involve translating
both the reward structures present in a model and the properties themselves.
Specifically, (1) the translated reward structures should not reference any indi-
vidual module, and (2) GRIP and SPSL would need to be extended to support
the translation of reward-based properties.

Acknowledgments. Ivaylo Valkov was supported by the EPSRC Doctoral Training
Partnership award EP/N007565/1 and by a grant from the UKRI Strategic Priorities
Fund to the UKRI Research Node on Trustworthy Autonomous Systems Governance
and Regulation [EP/V026607/1, 2020-2024]. Alastair Donaldson was supported by the
EPSRC IRIS project (grant EP/R006865/1).

References

1. Prism - case studies. https://www.prismmodelchecker.org/casestudies/index.php,
accessed: 2024-03-15

2. Bosnacki, D., Dams, D., Holenderski, L.: Symmetric spin. In: Havelund, K., Penix,
J., Visser, W. (eds.) SPIN Model Checking and Software Verification, 7th Inter-
national SPIN Workshop, Stanford, CA, USA, August 30 - September 1, 2000,
Proceedings. Lecture Notes in Computer Science, vol. 1885, pp. 1–19. Springer
(2000). https://doi.org/10.1007/10722468\_1

3. Bryant, R.E.: Graph-based algorithms for boolean function ma-
nipulation. IEEE Trans. Computers 35(8), 677–691 (1986).
https://doi.org/10.1109/TC.1986.1676819

4. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Comput. Surv. 24(3), 293–318 (1992).
https://doi.org/10.1145/136035.136043

5. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic
model checking: 10ˆ20 states and beyond. Inf. Comput. 98(2), 142–170 (1992).
https://doi.org/10.1016/0890-5401(92)90017-A

6. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantipole: practical
asynchronous byzantine agreement using cryptography (extended abstract). In:
Neiger, G. (ed.) Proceedings of the Nineteenth Annual ACM Symposium on Prin-
ciples of Distributed Computing, July 16-19, 2000, Portland, Oregon, USA. pp.
123–132. ACM (2000). https://doi.org/10.1145/343477.343531

7. Cimatti, A., M. Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv:
a new symbolic model checker. STTT 2, 410–425 (03 2000).
https://doi.org/10.1007/s100090050046



Generic Representatives with Synchronisation 17

8. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (apr 1986). https://doi.org/10.1145/5397.5399

9. Clarke, E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model
Checking, second edition. Cyber Physical Systems Series, MIT Press (2018),
https://books.google.co.uk/books?id=qJl8DwAAQBAJ

10. Clarke, E.M., McMillan, K., Zhaor, X., Fujita, M., Yang, J.: Spectral transforms for
large boolean functions with applications to technology mapping. In: Proceedings of
the 30th ACM/IEEE Design Automation Conference. pp. 54–60. IEEE Computer
Society Press (1993)

11. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in tempo-
ral logic model checking. Formal Methods in System Design 9, 77–104 (1996),
https://api.semanticscholar.org/CorpusID:14472493

12. Donaldson, A.F., Miller, A.: Symmetry reduction for probabilistic model checking
using generic representatives. In: Graf, S., Zhang, W. (eds.) Automated Technology
for Verification and Analysis, 4th International Symposium ATVA 2006. Lecture
Notes in Computer Science, vol. 4218, pp. 9–23. Springer (2006)

13. Donaldson, A.F., Miller, A., Parker, D.: Language-level symmetry reduction for
probabilistic model checking. In: QEST 2009, Sixth International Conference on
the Quantitative Evaluation of Systems. pp. 289 – 298. IEEE Computer Society
(2009). https://doi.org/10.1109/QEST.2009.21

14. Donaldson, A.F., Miller, A.: Exact and approximate strategies for symmetry reduc-
tion in model checking. In: FM 2006: Formal Methods, 14th International Sym-
posium on Formal Methods. Lecture Notes in Computer Science, vol. 4085, pp.
531–556. Springer (2006)

15. Donaldson, A.F., Miller, A., Parker, D.: GRIP: Generic representatives in PRISM.
In: Proceedings of the 4th International Conference on Quantitative Evaluation of
Systems (QEST’07). IEEE Computer Society. pp. 115–116 (2007)

16. Emerson, E.A., Trefler, R.J.: From asymmetry to full symmetry: New techniques
for symmetry reduction in model checking. In: In Conference on Correct Hardware
Design and Verification Methods (CHARME ’99). pp. 142–156. Springer (1999)

17. Emerson, E.A., Wahl, T.: On combining symmetry reduction and symbolic repre-
sentation for efficient model checking. In: Conference on Correct Hardware Design
and Verification Methods (CHARME 2003). pp. 216–230. Springer (2003)

18. Hendriks, M., Behrmann, G., Larsen, K.L., Niebert, P., Vaandrager, F.W.: Adding
symmetry reduction to Uppaal. In: First International Conference on Formal Mod-
eling and Analysis of Timed Systems (FORMATS 2003). Lecture Notes in Com-
puter Science, vol. 2791, pp. 46–59. Springer (2003)

19. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic model
checker Storm. CoRR abs/2002.07080 (2020), https://arxiv.org/abs/2002.07080

20. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 1st edn. (2011)

21. Holzmann, G.J.: Explicit-state model checking. In: Clarke, E.M., Henzinger, T.A.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 153–171. Springer
International Publishing, Cham (2018)

22. IEEE Computer Society: IEEE standard for information technology-
telecommunications and information exchange between systems-local and
metropolitan area networks-specific requirements part 3: Carrier sense multiple
access with collision detection (CSMA/CD) access method and physical layer
specifications. IEEE Std 802.3-2002 (Revision of IEEE Std 802.3, 2000 edn) pp.
1–1550 (2002). https://doi.org/10.1109/IEEESTD.2002.93570



18 I. Valkov et al.

23. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic
model checking. In: Ball, T., Jones, R. (eds.) Proc. 18th International Conference
on Computer Aided Verification (CAV’06). LNCS, vol. 4114, pp. 234–248. Springer
(2006)

24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: CAV 2011. Lecture Notes in Computer Science, vol. 6806,
pp. 585–591. Springer (2011)

25. Miller, A., Donaldson, A.F., Calder, M.: Symmetry in temporal
logic model checking. ACM Computing Surveys 38(3) (9 2006).
https://doi.org/10.1145/1132960.1132962, http://eprints.gla.ac.uk/3197/

26. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in CE-
SAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) International Symposium on
Programming. pp. 337–351. Springer Berlin Heidelberg, Berlin, Heidelberg (1982)

27. Valkov, I.: Formal Analysis of Communication Protocols for Wireless Sensor Sys-
tems. Phd thesis, University of Glasgow, Glasgow, UK (June 2024), to appear

28. Wahl, T., Donaldson, A.F.: Replication and abstraction: Symme-
try in automated formal verification. Symmetry 2(2), 799–847 (2010).
https://doi.org/10.3390/SYM2020799


