
Ratte: Fuzzing for Miscompilations in Multi-Level
Compilers Using Composable Semantics
Pingshi Yu

Imperial College London

London, UK

Nicolas Wu

Imperial College London

London, UK

Alastair F. Donaldson

Imperial College London

London, UK

Abstract
Multi-level intermediate representation (MLIR) is a rapidly

growing compiler framework, with its defining feature being

an ecosystem of modular language fragments called dialects.
Specifying dialect semantics and validating dialect imple-

mentations presents novel challenges, as existing techniques

do not cater for the modularity and composability required

by MLIR. We present Ratte,
1
a framework for specifying com-

posable dialect semantics and modular dialect fuzzers. We

introduce a novel technique for the development of seman-

tics and fuzzers for MLIR dialects, enabling a harmonious

cycle where the fuzzer validates the semantics via test-case

generation, whilst at the same time the semantics allow the

generation of high-quality test cases that are free from unde-

fined behaviour. The composability of semantics and fuzzers

allows generators to be cheaply derived to test combinations

of dialects. We have used Ratte to find 6 previously-unknown

miscompilation bugs in the production MLIR implementa-

tion. To our knowledge, Ratte is the first MLIR fuzzer capable

of finding such bugs. Our work identified several aspects of

the MLIR specification that were unclear, for which we pro-

posed fixes that were adopted. Our technique provides com-

posable reference interpreters for important MLIR dialects,

validated against the production implementation, which can

be used in future compiler development and testing research.

CCS Concepts: • Software and its engineering→ Inter-
preters; Compilers; Semantics.

Keywords: Compiler testing; differential testing; fuzzing;

composable semantics; MLIR

ACM Reference Format:
Pingshi Yu, Nicolas Wu, and Alastair F. Donaldson. 2025. Ratte:

Fuzzing for Miscompilations in Multi-Level Compilers Using Com-

posable Semantics. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’25), March 30-April 3,
2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3676641.3716270

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ASPLOS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1079-7/2025/03

https://doi.org/10.1145/3676641.3716270

1 Introduction
Multi-level intermediate representation (MLIR) [14] is a rela-

tively new but rapidly growing framework to reduce the cost

of developing compilers, and already has many influential

users [1, 14, 36, 37, 39]. MLIR helps compiler developers by

providing a framework for defining reusable modular and

composable fragments of intermediate representations (IRs)

known as dialects. Each dialect contains syntax for a partic-

ular aspect of a programming language (e.g. control flow,

memory accesses, floating point arithmetic), or a language

feature specific to a particular domain (such asmachine learn-

ing, hardware design or parallel programming) [26]. The

library of composable dialects reduces development work

for new programming languages by making it cheaper to

define intermediate layers in compilation. As a result, MLIR-

based compilers often introduce many abstraction levels to

maximise the benefit of the dialect-specific optimisations

available within MLIR [37–39].

Due to the increasing adoption of MLIR in a range of im-

portant domains, it is critical that MLIR-based compilers are

thoroughly validated to ensure they are reliable, since bugs

in MLIR can impact all of its users. However, compiler vali-

dation for this open framework of IRs and transformations

leads to several new challenges:

Challenge 1: Lack of reference dialect semantics. Users
expect compilers to do their job correctly. This means they

translate the source code into semantically equivalent target
code. The translation can be bug-prone, especially in the op-

timisation and code-generation stages. A class of bugs called

miscompilations, are when the compiler silently generates

wrong code, and are particularly difficult to detect.

To validate semantic correctness of compilers, there must

first exist unambiguous semantics against which correctness

can be checked. However, MLIR does not yet have clear se-

mantics for individual dialects, nor for dialect compositions.

The existing documentation for MLIR is the basis for current

implementations, and it provides only an English-language

account of dialect semantics. This leaves room for interpre-

tation ambiguities and potential for unspecified edge cases.

The issue extends beyond the clarity of single dialect se-

mantics. Since dialect syntax are designed to be composable,

their semantics should also be composable. A novel chal-

lenge that MLIR presents is that the semantics of dialects

1
Named in honour of Mimi, the first author’s German pet rodent.

https://orcid.org/0000-0002-4998-4878
https://orcid.org/0000-0002-4161-985X
https://orcid.org/0000-0002-7448-7961
https://doi.org/10.1145/3676641.3716270
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3676641.3716270


ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Pingshi Yu, Nicolas Wu, and Alastair F. Donaldson

can interact when composed, and existing documentation

on the semantics of dialect interactions is even less well-

specified than that of individual dialects. This is a problem

because MLIR-based compilers almost always use IR consist-

ing of multiple dialects [37–39], and thus understanding the

semantics of dialect compositions is important.

Challenge 2: Generating effective test programs. Even
if clear semantics are available, a compiler still needs to be

thoroughly validated against the semantics. Differential test-
ing [25] is a standard approach for validating compiler cor-

rectness. It uses either multiple compiler implementations or

multiple configurations of a single compiler (e.g. at different

optimisation levels) to compile the same program, followed

by executing and comparing the outputs of the resulting

executables. Any unexpected output differences indicate that

at least one of the compilers or compiler configurations has

not compiled the program correctly.

However, putting differential testing into practice forMLIR

is challenging for two main reasons. First, it is unlikely

that multiple implementations of MLIR will be available

for cross-checking, as MLIR is a unifying compiler frame-

work intended to be reused. Applying differential testing

across different optimisation levels will not reliably find er-

rors in lowering passes, as all compilation paths go through

the same lowering steps. Secondly, effective differential test-

ing requires a large number of high quality inputs—diverse

programs that produce well-defined results. Such input pro-

grams are non-trivial to generate. This is already a challenge

for traditional programming languages [43], and the open

ecosystem of MLIR only adds to the difficulty. The MLIR

framework covers a large and ever-growing family of di-

alects. Each abstraction can introduce new syntactic and

semantic restrictions that program generators must account

for to generate programs suitable for differential testing.

Challenge 3: Scaling compiler validation to dialect com-
binations. Whilst it would be possible in principle to build

a custom program generator for any MLIR dialect combina-

tion of interest, treating each combination as an individual

language, such an approach would be very costly in terms of

human effort, since their shared features meanmany domain-

specific generation techniques and analyses [18, 19, 32, 43]

would have to be repeated for each dialect combination.

Sharing fuzzer code for different languages is an open

problem in compiler fuzzing, where existing fuzzers are

tightly coupled to one language [43] (or family of languages

in similar domains [18]), and not easily adaptable to other

languages [5]. SinceMLIR is a unifying composable IR shared

by different compilers, composably fuzzing the MLIR frame-

work is both a challenge and an exciting opportunity to en-

able code-sharing between fuzzers. This requires a general

framework allowing generators, analyses and test oracles to

be defined in a modular fashion for dialects, and reused in

program generators for dialect combinations.

Our work. To address the above challenges, we present a

general method for specifying both semantics of dialects

through composable interpreters, and composable genera-

tors (fuzzers) that are enhanced by utilising semantic infor-

mation during program generation. Our method is inspired

by the previous approach taken by YARPGen [18] for C-like

languages, where a fuzzer is co-developedwith an interpreter.

The interpreter is executed in-step with program generation

to ensure that the values of variables at all program points are

known. Our method generalises the YARPGen approach to

composable languages and allows for different analyses to be

written for the language and used by the fuzzer during gener-

ation. Like the initial YARPGen approach [18], our approach

is limited to generation of loop-free programs, which makes

it possible to accurately track values of program variables

during generation. Despite this limitation, we still test com-

pilation of certain MLIR looping constructs by generating

higher-level operations that are lowered into loops.

We enable a harmonious cycle for developing validated

semantics for dialects, continuously cross-checking the se-

mantics against existing compiler implementations using

our fuzzer, in combination with static unit tests. Using the

semantics, we create the first generators of deterministic,

well-defined programs for MLIR-based compilers, to be used

in end-to-end testing. Importantly, this allows deeper bugs,

such as miscompilations, to be detected, which is not possible

with the current state-of-the-art MLIR testing tools [34, 41].

Our framework handles the challenges of composable se-

mantics and fuzzing by leveraging techniques such as effect

systems [12, 42] for addressing the expression problem [40]

when describing compositional semantics for programming

languages, and QuickCheck style property-based testing li-

braries [7] for writing composable program generators. We

have implemented our ideas in a practical tool, called Ratte.

We demonstrate the effectiveness of Ratte on key MLIR

dialects, finding 8 previously-unknown bugs during end-to-

end testing of dialect implementations—of which 4 have been

confirmed and 3 fixed. In particular, 6 out of 8 bugs are mis-

compilations, which are difficult to detect and are beyond the

scope of existing works on MLIR compiler testing. During

the development of the framework, we also contributed to

the MLIR specification by identifying ambiguities and in-

consistencies in the documentation, which led to clarifying

changes to the specification.

Our main contributions are as follows:

• A framework for describing MLIR dialect semantics

modularly via composable interpreters (Section 3.2).

• A general approach for constructing modular and com-

posable fuzzers for MLIR, using semantic information

to allow the generation of undefined-behaviour free

programs (Section 3.3).

• The first fuzzers for generating well-defined MLIR pro-

grams of several key MLIR dialects (Section 3.5).



Ratte: Fuzzing for Miscompilations in Multi-Level Compilers Using Composable Semantics ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

• Eight bugs found within the MLIR framework, most of

which are miscompilations, which are difficult to find

with existing MLIR testing techniques (Section 4.1).

• Validated and modular reference semantics for a sub-

set of MLIR dialects, and improvements to the MLIR

specification, arising from our work on modular MLIR

semantics (Section 4.3).

2 Background
MLIR is a family of IR components. New components are de-

finable by the user, and each component is an instance of the

foundational structure, following a basic syntax, presented

in Figure 1. The syntax of Figure 1 is in a one-to-one corre-

spondence with the “generic IR format” within the official

documentation [27].

At its core, MLIR is a single static assignment (SSA) IR with

the addition of Regions, which are a convenient abstraction

to encode scoping directly in the IR. A Region is a piece

of MLIR program. A regions allows accesses to variables

defined within the region, and potentially to the variables of

parent regions.

Like traditional SSA, an MLIR Operation has a name,

Operands, Results, and compile time information attached,

called Attributes. In addition to traditional SSA, however,

MLIR Operations can also contain Regions.
Programming constructs can be modelled as Operation

instances using the name, operands, attached Regions, and
storing static information as Attributes. A collection of

related operations on the same domain is called a dialect.
For example, in Figure 2, arith.constant is an opera-

tion that has no operands, one result, and an attribute con-

taining a statically-known value (−1). Another example is

func.return, in the last line, which is an operation that has

one operand, no results, and no attributes attached. The two

occurrences of func.func are examples of operations that

have regions. In each case, the operation takes no operands

and yields no results, but contains attributes storing the func-

tion type, its name (“main” and “one”), and a single region,

contained within the “{ }” braces.
Dialects can be considered syntaxes, and are composable

in the sense that multiple instances of dialects can exist in

the same IR. Although an arbitrary IR (potentially using

operations from multiple dialects) is valid syntactically, it

is not necessarily the case that such an arbitrary IR has

meaningful semantics.

To check the IR for validity, apply optimisations, and trans-

late them down to executable code, MLIR provides an ecosys-

tem of modular passes. These passes perform tasks in a modu-

lar way. For this paper, we consider them broadly classifiable

into two categories: 1. lowering passes, which transform

dialects of higher abstractions to lower abstractions, and

2. optimisation passes, which do not change the abstraction

⟨operation⟩ ::= ⟨results$⟩? ‘“’⟨id⟩‘’” ‘(’ ⟨operands⟩? ‘)’
⟨successors⟩? ⟨regions⟩? ⟨attributes⟩? ‘:’ ⟨op-type⟩

⟨id⟩ ::= [A-Za-z0-9]+

⟨type⟩ ::= ⟨id⟩

⟨result⟩ ::= ‘%’⟨id⟩

⟨results⟩ ::= ⟨result⟩ (‘,’ ⟨result⟩)*

⟨results$⟩ ::= ⟨results⟩ ‘=’

⟨operand⟩ ::= ⟨result⟩

⟨operands⟩ ::= ⟨operand⟩ (‘,’ ⟨operand⟩)*

⟨region⟩ ::= ‘{’ ⟨entry-block⟩? ⟨block⟩* ‘}’

⟨regions⟩ ::= ⟨region⟩ (‘,’ ⟨region⟩)*

⟨block-label⟩ ::= ‘^’⟨id⟩

⟨block-args⟩ ::= ‘(’ ⟨result⟩ ‘:’ ⟨type⟩ (, ⟨result⟩ ‘:’ ⟨type⟩)* ‘)’

⟨block⟩ ::= ⟨block-label⟩ ⟨block-args⟩? ⟨operation⟩+

⟨successor⟩ ::= ⟨block-label⟩

⟨successors⟩ ::= ‘[’ ⟨successor⟩ (‘,’ ⟨successor⟩)* ‘]’

⟨op-type⟩ ::= ‘(’ ⟨type⟩, (, ⟨type⟩)* ‘)’ ‘->’ ‘(’ ⟨type⟩, (, ⟨type⟩)* ‘)’

⟨attribute-value⟩ ::= dialect-attribute | builtin-attribute

⟨attribute⟩ ::= ⟨id⟩ ‘=’ ⟨attribute-value⟩

⟨attributes⟩ ::= ‘{’ ⟨attribute⟩ (‘,’ ⟨attribute⟩)* ‘}’

Figure 1.Grammar that forms the basis of Ratte’s representa-

tion ofMLIR syntax tree, presented in extended Backus–Naur

form. In a one-to-one correspondence with the MLIR generic

representation [27].

level, but either perform optimisations or compute additional

information for other passes.

MLIR passes can be composed to form a pipeline. Pipelines
take IRs (dialect combinations) from high abstraction levels

into a lower, executable abstraction level like LLVM, and

thus can be seen as implicitly giving semantics to dialect

combinations (when a valid pipeline exists). Passes have

preconditions for their correct application (e.g. a statically

and dynamically well-defined IR).

3 Methodology
Fundamentally, Ratte is a framework for the simultaneous

specification of MLIR semantics, and generators for exe-

cutable MLIR programs. Ratte-generated programs produce

a well-defined output, and Ratte uses the semantics informa-

tion to ensure this, by satisfy the static and dynamic validity

constraints of individual dialects.



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Pingshi Yu, Nicolas Wu, and Alastair F. Donaldson

func.func @main() {
%n1 = arith.constant -1 : i1
%0 = call @one() : () -> i1
%low, %high = arith.mulsi_extended %0, %n1 : i1
vector.print %low : i1
vector.print %high : i1
return

}
func.func @one() -> i1 {

%n1 = arith.constant -1 : i1
return %n1 : i1

}

Figure 2. Example MLIR program using a combination of

func, arith, and vector dialects. This Ratte-discovered pro-
gram that computes −1 × −1 revealed a miscompilation in

the production compiler, which evaluated to −1 rather than
1 due to its special treatment of 1-bit integers types (i1).

Ratte’s goal is to test the correctness of MLIR optimisa-

tions and lowerings passes by generating inputs for theMLIR

framework (MLIR programs) and using differential testing

to detect bugs. For programs to be usable for this purpose, in

addition to being syntactically correct according to Figure 1,

they must also respect the static constraints of the language

and must not trigger any dynamic undefined behaviours.

Altogether these constraints ensure a correct implementa-

tion will successfully compile the program, triggering passes

throughout the compilation stack, and yield an output that

can be used for differential testing.

As mentioned in Section 2, MLIR is an open ecosystem of

composable dialects. Each dialect introduces operations that

cover some abstraction domain and can impose constraints

on which programs have well-defined semantics. Since com-

piler engineers using MLIR can also introduce new dialects,

it is infeasible to create a fuzzer for the entirety of MLIR.

Therefore, Ratte is an extensible and composable framework

that allows generators of programs with well-defined se-

mantics to be defined on a per-dialect basis. Generators for

multiple dialects can then be used together for the dialect

combination that the user requires.

For differential testing, there are a host of behaviours

that are undesirable, which we define here as one of two

things. First, explicit undefined behaviours, which make any

compilation trivially correct. Second, behaviours that make

it challenging to work with a differential testing oracle, such

as non-deterministic behaviours, compile-time rejections or

runtime crashes.
2

2
In principle it is possible to use differential testing to check that two com-

pilers produce comparable error messages, or generate code that produces

comparable runtime error messages when crashes occur during execution,

but this is not the focus of our work.

To avoid generating these undesirable programs, Ratte

keeps track of semantic information evaluated on the pro-

gram during generation. Figure 4 shows some examples of

undesirable behaviours introduced by various dialects, and

the semantic information required to avoid generating pro-

grams that trigger the undefined behaviours.

Whilst it is possible to apply rejection sampling based on

the grammar of MLIR, by generating ASTs of MLIR programs

and rejecting those that contain undesirable behaviours, the

process would be very inefficient. This is because a vanish-

ingly small percentage of programs following the grammar

would be free from such behaviours, resulting in a large

amount of time wasted on generation.

An overview of Ratte is shown in Figure 3, and we re-

fer back to components of the figure throughout this sec-

tion. Ratte constructs programs incrementally, alternating

between generation and semantic evaluation/analysis. Incre-

mental semantics (Section 3.1) is used in the generation loop

to efficiently evaluate a partially generated program, yield-

ing information that will guide future generation choices. In

order to evaluate the semantics in a modular way, the expres-

sion problem [40] needs to be addressed. Ratte uses effect
systems [31] for this purpose and embeds the MLIR syntax

using an effects-based AST for modular semantic evaluation

and analysis (Section 3.2). Generators rely on the semantics

of the partial program to inform future choices, in order to

avoid making choices that lead to programs with undesirable

behaviours (Section 3.3). At the end of generation, Ratte also

appends code that produces output by printint the values of

certain program variables, which allows generated programs

to be used to detect bugs via differential testing (Section 3.4).

3.1 Generation Principles
As mentioned before, Ratte incrementally generates pro-

grams to avoid rejection sampling whenever possible, evalu-

ating partial programs during generation to derive informa-

tion for future generation steps. Each step randomly extends
the partial program, and keeps the evaluated information

up to date with the extended partial program. For efficiency,

evaluating partial programs should also be incremental, in

that evaluating an extension to a partial program should not

require re-evaluating the entire partial program.

Similar design choices are also made in other program

generators such as YARPGen [18] and Csmith [43], which

use this observation implicitly. They generate incrementally

as much as possible, falling back to rejection sampling for

instances where the desired property is not straightforwardly

incremental, like undefined-behaviour-free loops.

To make the concepts discussed above concrete, we give

definitions for partial programs (what Ratte processes during

generation), their extensions (how Ratte modifies programs),

and evaluations that can be defined on partial programs

(information used to decide on next generation steps).



Ratte: Fuzzing for Miscompilations in Multi-Level Compilers Using Composable Semantics ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

SemantIc 
Information

End of generation: generates code for oracles

module {
  func.func @func0 (%11 : i1, %12 : i16) 

: (i1, i16) -> (i1) {

    func.return %11 : i1
  }

  func.func @main {

    %1 = arith.constant 1 : i1

    %2 = arith.constant 77 : i64
    %3 = arith.constant 5 : i16

    vector.print %2 : i64

    %265, %266 = "func.call"(%1,%1)

      {callee=@func0} : (i1, i16) -> (i1, i1)

    ...

   

Partial Program

EvaluatorState-Based Generator

Reads

Extends partial program

Generates

Generator

Generated Prefix
Extension

Existing Semantic
Information

New Semantic
Information

Incremental Semantics Evaluation

Effects-
AST
Repr

Raw
AST
Repr

Updates

+
and/or

Evaluation

Pseudo-
Random
Number

Sequence

(1)
(3)

(4) (5)

(2)

(6)

Figure 3. Overview of the Ratte framework. The generator (1) reads the semantics information (2) and generates an extension

to the program. This extension (3) is used to update both the generated partial program and the semantic store. The semantic

update step either uses the generated extension as is (4), if updating dialect-agnostic semantics, or first converts the extension

into an effects-AST representation (5), if updating dialect-specific semantics, before evaluating the semantics update (6). The

components to be updated for extending Ratte to new dialects are in purple: a) new generators for the new dialect, b) new

effects-AST definitions, and c) modular semantics definitions for the new dialect.

%x = op1 %a1, %a2, ..., %an : t1
%x = op2 %b1, %b2, ..., %bn : t2

Requires: fresh value name generator

%0 = arith.constant 3 : i64
%1 = arith.constant 7 : i32
%2 = arith.addi %0, %1 : i32

Requires: typing information for values

%0 = arith.constant 0 : i64
%1 = arith.constant 1 : i64
%n = arith.divsi %1, %0 : i64

Requires: concrete interpretation for values

// %0 : tensor<3x3xi64>
%1 = arith.constant 9 : index
%2 = tensor.extract %0[%1] : tensor<3x3xi64>

Requires concrete interpretation for values

Figure 4. Examples of undesirable behaviours in MLIR

dialects. From top to bottom, 1: compile-error (reuse of

ID within a scope); 2: compile-error (mismatched types);

3: undefined behaviour (division by zero); 4: runtime er-

ror/undefined behaviour (out-of-bounds access).

module {

  func.func @main() {

    %0 = arith.constant dense<[2,3,4]> : tensor<3xi64>

    %1 = arith.constant 1 : index

    %2 = arith.constant 42 : i64
    %3 = tensor.extract %0[%1] : i64

    %4 = arith.xori %2, %3 : i64

    vector.print %4 : i64

func.return vector.print %3 : i64 %5 = arith.addi %3, %3 : i64

Figure 5. An example program prefix, along with some pos-

sible extensions to the prefix (in dashed boxes).

Partial Programs. Incremental fuzzers, such as Ratte or

YARPGen [18] construct programs piece by piece. Figure 5

is an example of a partially generated program, and some

possible operations that can be used to extend the program.

To formally describe the generation process above, we

introduce the concept of prefixes and extensions. A prefix

of an MLIR AST (following the grammar of Figure 1) is a

subtree obtained from some partial depth-first traversal of
the AST—treating operations without regions as leaves, and

others operations (operations with regions) as nodes.



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Pingshi Yu, Nicolas Wu, and Alastair F. Donaldson

Definition 3.1 (Prefixes). Given a valid MLIR program 𝑃

with syntax tree𝑇𝑃 , a depth-first traversal visiting the opera-

tions in 𝑇𝑃 in order [𝑜1, 𝑜2, . . . , 𝑜𝑛], a prefix of 𝑃 is a sub-tree

of𝑇𝑃 containing only the operations [𝑜1, . . . , 𝑜𝑚],𝑚 ≤ 𝑛. Let
𝐾 denote the set of all prefixes, defined as:

𝐾 = {𝑃 ′ | 𝑃 ′ is a prefix of some program 𝑃}

Definition 3.2 (Prefix Extensions). For an MLIR prefix 𝑃

derived from the operation ordering [𝑜1, . . . , 𝑜𝑚], its prefix
extensions 𝑃+ are defined as

𝑃+ = {𝑃 ′ ∈ 𝐾 | ∃𝑒 ∈ Op . 𝑃 ′ has ordering[𝑜1, . . . , 𝑜𝑚, 𝑒]}

We say 𝑃 is extended by 𝑒 if some 𝑃 ′ ∈ 𝑃+ has ordering

[𝑜1, . . . , 𝑜𝑚, 𝑒].

That is, for a given prefix 𝑃 , the set of extensions 𝑃+ are
prefixes that contain all of the operations in 𝑃 in the same

order, with one extra operation 𝑒 , such that they are still

valid prefixes for some MLIR program.

A prefix is not expected to be a complete program: stop-

ping the depth-first traversal halfway through a regionwould

mean the program fails to satisfy validity properties, such as

being terminated by a specific terminator operation. Despite
this, it is possible nonetheless to infer facts that hold at the

end of the prefix, which the fuzzer can then use to inform

the next generation steps.

Incremental Semantics. In this work, for ease of exposi-

tion and convenience during development, we refer to both

static analysis of programs (i.e. used to infer facts on pro-

grams) and the dynamic behaviour of programs as semantics.
Figure 6 presents two examples of useful information (se-

mantics) that can be inferred from partial programs to be

used by generators: the type of each value in the program,

and the next available fresh variable name. For these to be

used effectively in a fuzzer, where efficiency is important,

it must be possible to compute these semantics efficiently

on a prefix extension by reusing the previously-computed

semantics for the prefix that is being extended.

We formalise this property via the notion of incremen-
tal semantics. In the following definition, the output of the

semantics, 𝐴, is intentionally left abstract. This allows the

definition to be instantiated for different domains, which is

necessary since dialects can describe arbitrary abstractions.

Definition 3.3 (Incremental Semantics). Semantics 𝑆 : 𝐾 →
𝐴 is incremental if there exists a function 𝑓 : 𝐴 → Op → 𝐴

such that, for any prefix 𝑃 , the semantics of its extension

with operation 𝑒 , 𝑃 ′, satisfies:

𝑆 (𝑃 ′) = 𝑓 (𝑆 (𝑃), 𝑒)

That is, the semantics of a prefix extension can be derived

as a function of the semantics of the prefix.

The incremental property of 𝑆 means it can be evaluated

on the fly by keeping the output of 𝑆 as a state.

Figure 6 contains two possible instantiations for 𝐴: either

as a table mapping values to their types or as a single string,

keep tracking of fresh variable names. The partial program

in the diagram makes use of the dialects scf (structured con-
trol flow), arith (arithmetic operations) and vector (vector

operations, and printing operations for scalars).

Constraints on the Generator. The generator is respon-
sible for producing prefix extensions that preserve key pro-

gram properties, referring to computed semantics to guide

its choices. For example, the properties of being well-typed,

avoiding variable name reuse in the same scope, and be-

ing free from unwanted behaviours are all properties the

extension should maintain.

The computed semantics can be seen as a set of facts on

the partial program, and the generator uses these facts to

make its decisions. For example, one possible semantics is

the set of values that each variable can take, and the genera-

tor’s choices are based on this information. Therefore, the

generator must also ensure that the extension, after evalua-

tion, does not invalidate the facts the previous generation

steps were based on. Such a situation can occur, for instance,

if generating an extension increases the set of possible values
that a variable can take (e.g. allowing the variable to take the

value zero), which leads to invalidating an operation that

was generated based on an outdated fact (e.g. that the divisor

in a division is non-zero).

3.2 Evaluating Semantics
Ratte evaluates semantics (see point (6) in Figure 3) when

incrementally generating programs to guide the next steps

of the generation. To keep track of semantic information in

a uniform way, many of the semantics in Ratte make use of a

parameterisable and hierarchical symbol table that captures

MLIR’s scoping structure. The table has keys of type 𝑋 (such

as the set of MLIR values) an interpretation result of type 𝑌 ,

both kept arbitrary in the definition for flexibility:

ScopeType := {Standard, IsolatedFromAbove}
ScopedTable𝑋,𝑌 := [
(𝑠1 ∈ 𝑋 → 𝑌, 𝑡1 ∈ ScopeType)), . . . ,
(𝑠𝑛 ∈ 𝑋 → 𝑌, 𝑡𝑛 ∈ ScopeType)], 𝑛 > 0

where the nested scopes are represented as a stack, the first

element of the list (stack) is the inner-most scope, and the

parent of the scope indexed by 𝑖 is the (𝑖 + 1)th scope, if it
exists. The ScopeType tag denotes the visibility of the current
scope, following MLIR’s value scoping rules [27]: Standard
denotes the scope can access everything its parent is able

to access, and IsolatedFromAbove indicates that the visible
variables are limited only to those in the current scope.

3.2.1 Dialect-Agnostic Semantics. Some semantic infor-

mation, such as the types of values or the next available

value ID, is dialect agnostic. These can be defined directly on



Ratte: Fuzzing for Miscompilations in Multi-Level Compilers Using Composable Semantics ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Type (Before)
...
%9 → i64

FreshVar (Before)

Next available:
%10

Partial program
%10 = arith.constant true : i1
%11 = scf.if {
vector.print %10 : i1
%12 = arith.addi %11, %11 : i1

FreshVar (After)

Next available:
%13

Type (After)
...
%9 → i64
%10 → i1

%12 → i1

Figure 6. Two different dialect-agnostic semantics (value

types, and the next available value ID) evaluated on a gener-

ated partial program segment. In the value types example,

the scopes have Standard type.

the MLIR AST, as no dialect-specific information is involved

in these semantics (see point (4) on Figure 3). We give two

examples in Figure 6, showing different dialect-agnostic in-

cremental semantics being evaluated on a generated (partial)

program segment. The type semantics, which track typing

information for each value, are updated to reflect the new

typing environment. The next-fresh variable tracker is up-

dated to the next available name for a fresh ID.

3.2.2 Modular Dialect Semantics. Since MLIR is a mod-

ular IR, any semantics for MLIR also needs to be specified

modularly in order to support new dialects that can be de-

fined by the user, without modifications to the semantics of

existing dialects. For example, although it would be possible

to write a function that interprets the string-based MLIR AST

directly, semantics for all supported operations would need

to be specified within this single monolithic interpretation

function. This would mean that changes to operations in

any dialect would require modifications of the monolithic

interpretation function. This would make the code for the

interpretation function difficult to scale and maintain. For

an extensible IR like MLIR, such a non-modular approach

would quickly become unmaintainable.

To define semantics modularly, Ratte makes use of effect
libraries based on algebraic effects [31]. Effect libraries facili-

tate the specification and interpretation of domain-specific

languages (DSLs). The constructs of a particular DSL are spec-

ified as an effect, analogous to an AST node. The semantics

Table 1. Table of embeddings for MLIR features (of the gram-

mar in Figure 1) into a programming language supporting

effect libraries. The exception is Value, which is not a term

of the grammar, but is a synonym for operand and result
(following convention of the official documentation [27]).

Feature Embedding

type Interface (as in Figure 10)

Value The Value’s ID and type (String, String)

operand Same as Value

result Same as Value

operation Effect constructor

region Funcs of type [Value] → Effect-AST

block Labelled funcs (String, [Value] → Effect-AST)
attribute Argument to effect constructor

are defined as transformations, or handlers, on the effects-
based AST (hereon referred to as the effects-AST ) represen-
tation of the DSL. This allows semantics to be defined mod-

ularly: the semantics can be defined for a single effect as a

handler, and then the handler can be used on any effects-AST

that contains the effect. To give an effects-AST semantics,

one can compose together multiple handlers that, together,

transforms the ASTs down to a value (with no effects remain-

ing). Although the early implementation of effect libraries

has been in functional languages, they are not intrinsically

tied to functional programming, and effect libraries are also

available for imperative languages like C++ [10] and Java [3].

Embedding into Effects-AST. The first step to making

use of effect frameworks is to convert the string-based MLIR

AST into the effects-based one so that modular semantics

can be specified (see point (5) in Figure 3).

The specifics of such a conversion process are dependent

on the exact effect framework chosen. However, we will high-

light several aspects of the conversion that would apply to

all embeddings of MLIR into any effect framework. The inter-

ested reader can refer to the associated source code [44] for

details on the implementation within the Polysemy effects

framework [23].

Effect frameworks allow DSLs to be defined modularly,

and we take advantage of this feature for MLIR.

An overview of the embeddings for MLIR features into

effect systems is shown in Table 1.

Each MLIR operation is embedded as an effect, with the

operation name as the effect constructor’s name, and the

operation arguments as the effect arguments. Operations

with assignments are embedded as effects that return a unit

value, and operations without assignments are embedded as

effects that return the output values. In Figure 7 and Figure 8,

we show examples embedding instances of arith.addi and

func.func operations within an effect system.



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Pingshi Yu, Nicolas Wu, and Alastair F. Donaldson

%7 = arith.addi %5, %3 : i32

Arith.Addi ("7", "i32")
("5", "i32") ("3", "i32")

v1 = Read "5"
v2 = Read "3"
Assign "7" (addi_ v1 v2)

Embed

Handle Arith

Figure 7. Embedding of an instance of arith.addi operation

as an effect, and the result of applying handlers (partial in-

terpretation) on the effect embedding.

func.func @sq(%a : i64)
: i64 -> i64 {
%b = arith.muli %a, %a : i64
func.return %b : i64
}

Func.Func "sq" (𝜆 (a, "i64") →
Arith.Muli ("b", "i64")
(a, "i64") (a, "i64")
Func.Return ("b", "i64"))

AddFunc "sq" (𝜆 (a, "i64") →
Arith.Muli ("b", "i64")
(a, "i64") (a, "i64")

Func.Return ("b", "i64"))

Embed

Handle Func

Figure 8. Embedding of an instance of func.func operation

as an effect, and the result of the handler application on the

effect. The AddFunc effect stores the effect-AST, to be called

later with arguments via the CallFunc effect.

A region is embedded as a function that takes a number

of region arguments (arguments to the first block [27]) and

returns an effects-AST for the region’s body. A block is em-

bedded as a labelled function from block arguments to the

effects-AST of its body. Terminator operations (block termi-

nators) use function labels to dispatch calls to next blocks.

Since MLIR has a recursive structure between the oper-

ations, regions, and block constructs, embedding the AST

into the effects needs to be done recursively. The particular

conversion scheme used in Ratte proceeds in a depth-first

way (through the MLIR AST): for each operation, the con-

verter is applied on any associated regions first, to obtain

their embeddings, before constructing the effect instance

using the region embeddings.

Modular Semantics on Effects-ASTs. We now illustrate

howMLIR semantics are evaluated by effect libraries through

MLIR Embedding

Func
func, call,
return, ...

Tensor
constant,
generate, ...

...

Interpreter Effects

Assignment
Assign, Read,
...

FuncTable
AddFunc,
CallFunc

...

Host Language

State
Read, Write, Modify, ...

Figure 9. Structure of effects-based interpreters for MLIR

programs. Each layer is an abstraction level in the interpreter,

and boxes represent a modular effect component, containing

the available operations for the component. The components

shown are for illustrative purposes, as the combination de-

pend on the semantics supported. All stages are written using

the effect framework, and code produced in the final stage is

in the host language for execution.

several examples. Interpretation of the effects-AST can be

seen as transformations that convert the AST at a higher

level of abstraction into one at a lower level.

Once embedded as higher-level effects, interpretations

can be defined arbitrarily. Although other interpretations

are possible, Ratte primarily uses the concrete value inter-

pretation to compute semantics used by the generator. The

interpreter converts the MLIR effects-AST into a lower-level

DSL, which contains assignment, error, scoping, function

table, and writer operations. These are then translated fur-

ther to executable code (in the host language—in Ratte’s case

this is Haskell) that implements the semantics. To provide

concrete semantics for a dialect in this way, the user of Ratte

needs to provide function that transform the operations of

the dialect into the lower-level DSL. An overview of the main

stages of this interpretation is illustrated in Figure 9, along

with the operations available within each DSL component.

The lower-level DSL that MLIR dialects translate to is

not fixed, and the DSL combination is variable based on the

implementation needs of the higher-level semantics.

Dialects can introduce new types into the abstraction, and

an interpreter needs to know the combination of types used

to record their values during interpretation. However, to pro-

vide modular semantics, it is necessary to delay specifying

the concrete combination of types used as much as possible.



Ratte: Fuzzing for Miscompilations in Multi-Level Compilers Using Composable Semantics ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

class IntegerInterface T where
constanti_ :: Attribute -> T
addi_ :: (T, T) -> T
muli_ :: (T, T) -> T
muluiExtended_ :: (T, T) -> (T, T)
divsi_ :: (T, T) -> Nullable T
...
iTypeWidth :: T -> Int
zero :: Int -> T

class BoolIntegerInterface TI TB X where
adduiExtended_ :: (TI, TI) -> (TI, TB)
cmpi_ :: (Attribute, TI, TI) -> TB
select_ :: (TB, X, X) -> X
...
false :: TB
true :: TB

Figure 10. Interfaces for the integer type in Haskell-like

pseudocode, where class denotes an interface, T, TI, TB,
X all denote type variables, and m :: T denotes the type of the
method m is T. There is a distinction between the basic integer
interface, IntegerInterface, implemented by types such as

i1, i8, ..., index, and the interface for integer functions
that uses booleans, BoolIntegerInterface (TB parameter

satisfied by e.g. i1, and the TI parameter satisfied by standard

integer types e.g. i1, i8, ... index). Interfaces for types
contain all non-side-effecting computations on the type.

This allows semantics to be written that make the minimum

stipulation on the types combination, and make them usable

in all contexts where their required type is available.

Ratte treats types as an interface, and semantics are written

against the type’s interface rather than any concrete type im-

plementations. Type interfaces contain all pure computations

that can be performed on the value of a type. For example,

some pure operations on the integer type are listed in Fig-

ure 10. Note that some pure operations make use of multiple

types (e.g. the cmpi, select operations uses an integer type,
and also another type that can be treated as a boolean), and

these are encoded as a multi-parameter interface. A combi-

nation of types is often used during interpretation, and the

values stored in the symbol table is a union of the types used.

Interactions Between Dialect Semantics. MLIR seman-

tics can also interact, for instance by operations working on

values frommultiple dialects (e.g. vector.print), regions that

contain code written in other dialects (e.g. linalg.generic,

scf.if, func.func), or specific conversions between types

(index to and from integer). Whilst the semantics of individ-

ual dialects can be unclear from the prose-based language

documentation, the interaction of semantics between differ-

ent dialects is even less well specified. Through the Ratte

project, we developed a framework for specifying the se-

mantics of dialects in terms of definitional interpreters. This

process distilled the types of interactions we encountered

and how these can be handled in a semantics framework.

Noninteracting Unions. This situation is when two di-

alects are used within the same IR layer, but are noninteract-

ing in the sense that instances of operations in one dialect

do not use any values of the other dialect. In this case, no

extra work needs to be done to specify their interactions, as

the semantics of the dialects are independent.

Parameter Interfaces. Operations such as vector.print

can accept values from other dialects (i.e. outside of the

vector dialect). This interaction is handled by requiring types

usable by the operation to implement an operation-specific

interface. For vector.print, this would be an interface that

produces a string from the type, for printing.

Regions. Operations that contain regions, for example,

linalg.generic and func.func, interact with the semantics

of other dialects only implicitly by calling the region. The

parent operation treats the region as a black box and interacts

with the semantics of the region only through execution

and extraction of execution results. For instance, by calling

the region repeatedly on different arguments in the case of

linalg.generic, or by storing the continuation within the

state to be called later in the case of func.func. No additional

work is needed to specify the interactions of the semantics.

Specific Instances. Some operations act specifically be-

tween abstractions, for instance, the arith.index_cast op-

eration converting between index and integer types. These

conversions have specific semantics and would need to be

done on a case-by-case basis through a specific interface

that bridges the two types. The interface specifies the two

types that are needed (e.g. one implementing the integer in-

terface, the other implementing the index interface), and the

semantics is defined for the two types only. This is different

from parameter interfaces, as the interface is written for two

specific types, rather than one interface shared by all types.

3.3 Semantics-Guided Generators
Ratte generates programs in an incremental way. The gener-

ator (see point (1) on Figure 3) takes a source of randomness

(i.e. a pseudorandom number sequence), and the semantics

evaluated on the partially generated program (see point (2)

in Figure 3). The generator uses the semantic information

to inform its choices, and it is the generator’s responsibility

to ensure that the programs generated maintain necessary

invariants (e.g. the program being free from undesired be-

haviours).

Generators are structured to follow the syntax of the

IR [11], where an operation-generator instantiates its param-

eters and attributes randomly, and calls a region-generator

for its region(s); a region-generator chooses the scoping type

(Standard or IsolatedFromAbove) and calls a block-generator

for its blocks; finally, a block-generator chooses its name,

and calls an operation-generator for its body.



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Pingshi Yu, Nicolas Wu, and Alastair F. Donaldson

%42 = arith.divsi %40, %27 : i8

FreshId:
Valid ID required

ConcreteVal:
%27 ≠ 0, and if %40 = minInt, then %27 ≠ -1.

TypeEnv:
both values have type i8

%13 = tensor.cast %11, %12 :
tensor<?xi64> to tensor<3xi64>

FreshId:
Valid ID required

ConcreteTypeEnv:
Both values have con-

crete shape of 3xi64

Figure 11. Usage of semantics in the generation of the

arith.divsi and tensor.cast operations.

The semantics is evaluated when a group of related op-

erations, called IR fragments are generated (see point (3)

on Figure 3), and appended onto the partial program. IR

fragments are multiple chained extensions (described in Def-

inition 3.3), which can be convenient if the extensions are

related, for instance, generating runtime checks alongside a

potentially unsafe operation at the same time.

The generator requests semantic information through in-
terfaces. As in Definition 3.3, incremental semantics can be

thought of as the state of a partial program, and generators

use the computed state by asserting that the state imple-

ments specific interfaces/semantics. Multiple semantics may

be required by the generators through interfaces, and this

can be satisfied by a state consisting of a tuple of individual

states, each implementing one of the required interfaces. Se-

mantic updates proceed in the expected way for tuples of

states, by updating each state of the tuple independently.

As shown in Figure 11, generating the arith.divsi oper-

ation requires several interfaces to ensure the absence of

undesirable behaviours. arith.divsi requires the inputs to

be integer types of the same width, and therefore the typing
information is needed to choose values of valid types for

the operation. The operation also creates new values, and

these need to be assigned valid IDs that do not clash with

existing ones, meaning the store should have a mechanism

for generating fresh IDs for the current scope. Moreover,

the operation contains undefined behaviours if either the

divisor is zero, or if arith.divsi MIN_INT, -1 is attempted to

be computed, resulting in a signed-division overflow as the

value -MIN_INT is not representable by the two’s complement

representation the arith dialect uses.

Similarly, in the second example of Figure 11, tensor.cast

operation is casting from a tensor with dynamic sizes (but

statically known) to concrete sizes. Dynamic sizes are a part

of the tensor dialect and are type annotations where the

concrete sizes of the containers are forgotten by the type

system—allowing, for instance, functions to be written for

a family of tensors with a variable size component. Whilst

casting does not alter the value of the tensor, a runtime error

will be triggered if the sizes or the base types of the con-

tainers used in the cast do not match. Since a new value is

being created for this operation, we also require a fresh ID

generator. In addition, we need the state to implement an in-

terface tracking the concrete types of compound containers,

in order to avoid triggering runtime errors by ensuring the

types chosen by the generator for the operation are between

compatible types. Note that the concrete type is different to

the syntactical types within MLIR: syntactical types allow for

components of the types to be elided, whereas the concrete

types track the statically inferred runtime values of the types
in the main function, and no components are elided.

3.4 Test Oracles
The generator should generate programs 𝑃 that produce

some observable output. This allows the program to be com-

piled (and possibly executed) with an MLIR implementation,

and checked against a known expectation (oracle) for the

output to identify implementation bugs. A weak oracle is

simply checking that the compiler does not crash; we call

this the non-crash oracle. Alternatively, a stronger oracle is
via differential testing—either across different compiler im-

plementations, or cross-checked against the Ratte-defined

semantics; we call this the differential testing oracle.
Output-producing code (e.g. prints) can be appended to

the end of the program, as a final step of generation, to al-

low these oracles to be checked. For the non-crash oracle,

the extra code is not necessary but can be useful in trig-

gering/preventing some compiler passes. For the differential

testing oracle, the variables that are known to bewell-defined

are used to produce an output. To ensure this is the case,

Ratte performs a well-definedness analysis of variables. For

instance, tensor.empty produces values that are not well-

defined,tensor.fill always produces a well-defined value,

whilst other operations propagate the undefinedness.

3.5 Implementation and Support Code
The semantics, parsing, and generation components are im-

plemented using ≈ 6000 lines of Haskell. Support code for or-

chestrating fuzzing experiments is implemented with ≈ 300

lines Python. The implementation uses Polysemy [23] as the

effect system, the Parsec [16] combinators for parsing MLIR,

and the QuickCheck [7] library for building generators.

Thus far, Ratte provides detailed support for generation

and concrete interpretation oracles for the arith compila-

tion, covering all operations on the integer and index types.

In the linalg dialect, all operations are syntactical sugar

forms of the linalg.generic operation. Ratte provides a



Ratte: Fuzzing for Miscompilations in Multi-Level Compilers Using Composable Semantics ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

best-effort implementation for generation and interpretation

of linalg.generic, supporting instances with permutation-

based indexing maps, and with any valid region. Finally, for

the tensor dialect, Ratte supports a subset of operations

(empty, fill, extract, generate, constant, yield).
Overall, Ratte currently supports the interpretation and gen-

eration of 43 operations across core dialects (arith, func,
scf, linalg, vector, tensor) of the MLIR framework.

The validated semantics are also usable as an independent

reference interpreter (by parsing the MLIR generic textual

format [27]), which can help bothMLIR developers and users.

The full source of Ratte generators, reference interpreters

and support code are available in the appendix.

4 Evaluation
We now present an empirical evaluation based on our experi-

ence using Ratte at various stages in its development to find

bugs in the production implementation of MLIR. Moreover,

we also compare Ratte against an existing state-of-the-art

MLIR fuzzer, MLIRSmith [41]. Our empirical evaluation cen-

tres on the following two research questions:

RQ1 How effective is Ratte for finding lowering and opti-

misation bugs? (Section 4.1)

RQ2 How effective is Ratte at generating programs for end-

to-end testing of MLIR-based compilers compared to

MLIRSmith? (Section 4.2)

We also discuss how our work led to reliability improve-

ments to the MLIR ecosystem, including enhancements to

the MLIR language specification (Section 4.3).

A by-product of our work on modular semantics-aware

fuzzers is a composable reference implementation for a num-

ber of MLIR dialects that has been thoroughly validated

against the production implementation. We have made this

validated semantics usable as an independent reference im-

plementation by combining it with a parser, which can help

both developers and users of MLIR.

4.1 Bugs found
Ratte is used to validate the correctness of compilations,
rather than single passes. We applied Ratte at various stages

of development to test end-to-end compilations, with an exe-

cutable target dialect. These experiments were conducted in

bursts, but overall we estimate the total associated runtime

to be one week, each run executing overnight on an 8-core

laptop CPU, continuing until no new bugs were found for a

significant amount of time (≈ 6 hours). Our experiments fo-

cused on compilations targeting {llvm}, which is executable
using the mlir-cpu-runner tool, producing an output that

can be validated against the oracles (Section 3.4).

We implemented several semantics-guided generators of

full programs, covering a range of abstractions, by compos-

ing together the generators for individual operations. These

Table 2. Generators used for bug-finding. The Name column

is the primary dialect being fuzzed. The Dialects column is

the dialects used by the generated programs. Target is the
target dialect of the tested compilation in MLIR.

Name Dialects Target

Arith {arith, scf, func, vector} {llvm}
LinAlg {linalg, arith, func, vector} {llvm}
Tensor {tensor, arith, func, vector} {llvm}

generators yield compileable programs that are free from un-

defined behaviours by construction (which we call UB-free).

Details on the generators are summarised in Table 2.

So far, our use of Ratte led to the discovery of 8 previously

unknown bugs, which are summarised in Table 3. Of the

8 bugs detected, 6 were miscompilations, and 2 of the 6

miscompilations were caused by bugs in the lowering passes.

The remaining 2 bugs are programs that have been wrongly

rejected by the static checks of the compiler, yielding no

code when they should have been compiled successfully.

All bugs found depend on Ratte generating statically cor-
rect MLIR programs. This is the case even for verifier bugs:

with generators like MLIRSmith that produce an unpre-

dictable mixture of valid vs. invalid programs, there is no

way to know if the verifier rejecting a program is the correct

behaviour.

All of themiscompilation bugs depend on Ratte generating

programs that are also dynamically well-defined, computing

deterministic, well-defined results. Without such guaran-

tees, there would be no way to know whether a mismatch

between the result of the “production” compilation stack

vs. the Ratte reference semantics is acceptable. With well-

defined programs, such a difference is never acceptable.

The miscompilations triggered by buggy optimisations

(for instance, in Figure 2) could in principle be detected by

applying differential testing over optimisation passes on

Ratte-generated programs, i.e. without referencing the Ratte

semantics. However, they would still rely on the UB-free

property of the Ratte-generated programs.

In contrast, themiscompilations triggered by lowering can-

not be detected by cross-optimisation level testing, because

the incorrect lowering is applied regardless of whether opti-

misations are executed. Detecting these bugs thus depends

on Ratte’s full power—its ability to generate well-defined

programs and to provide alternative, unambiguous reference

semantics for differential testing. Figure 12 is a reduced test

case found by Ratte, triggering a bug in the lowering of the

arith.floordivsi operation. The cause was an incorrect

implementation of the lowering pass for floordivsi, where
one of the intermediate values computed was −263/−1. This
is a signed division overflow in the llvm target [21] and

introduced a poison value into the result.



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Pingshi Yu, Nicolas Wu, and Alastair F. Donaldson

Table 3. List of bugs found1. Symptom denotes observed error: Miscompile is when wrong code is generated, and Rejection is

when the verifier wrongly rejects valid programs. Oracle are ones from Section 3.4 that detected the bug: NC=non-crash oracle,

DT-O=optimisation-level differential testing, and DT-R=differential testing against concrete Ratte semantics. Detected With is

the operation/operation generator that was isolated to have triggered the bug, after reducing the bug-triggering test case.

Compiler Phase Symptom Status Pass Oracle Detected With Issue

1 Optimisation Miscompile Submitted canonicalize DT-R arith.index_castui 90238

2 Optimisation Miscompile Confirmed canonicalize DT-R arith.index_cast 90296

3 Verifier Rejection Confirmed remove-dead-values NC func.call 82788

4 Verifier Rejection Confirmed convert-arith-to-llvm NC arith.addui_extended 84986

5 Optimisation Miscompile Fixed canonicalize DT-R arith.mulsi_extended 88732

6 Optimisation Miscompile Fixed convert-arith-to-llvm DT-R arith.ceildivsi 89382

7 Lowering Miscompile Fixed arith-expand NC arith.floordivsi 83079

8 Lowering Miscompile Confirmed arith-expand DT-R arith.ceildivsi 106519

func.func @main() {
%cm, %cn1 = call @func1() : () -> (i64, i64)
%1 = arith.floordivsi %cm, %cn1 : i64
vector.print %1 : i64
return

}
func.func @func1() -> (i64, i64) {

%cm = arith.constant -9223372036854775807 : i64
%cn1 = arith.constant -1 : i64
return %cm, %cn1 : i64, i64

}

Figure 12. Example lowering bug found by Ratte. The pro-

gram computes and prints (−263 + 1)/−1, which should yield

2
63 − 1, but produces an undefined value.

4.2 Comparison with MLIRSmith
We now turn to a comparison with the state-of-the-art in pro-

gram generation forMLIR prior to our work: MLIRSmith [41].

Though MLIRSmith focuses on crash bugs and not miscom-

pilations, it still generates syntactically valid MLIR programs

on which passes can be executed. However, MLIRSmith pro-

grams are not expected to compile fully. Nonetheless, as

a generator of syntactically valid MLIR programs, we in-

vestigate MLIRSmith’s utility in producing programs for

differential testing to detect semantic bugs. For this, only

compileable and UB-free programs can be used.

For each dialect combination in Table 2, we generated

1,000 programs using MLIRSmith, and evaluated each for

compileable/UB-freeness using the Ratte interpreter. Our

results are presented in Table 4. In comparison, all Ratte-

generated programs are compileable and UB-free by design.

As Ratte also interprets during generation, it has a lower

throughput compared to MLIRSmith. For Arith, Linalg and

Tensor dialect combinations, Ratte generated 1000 programs

in 191s, 193s, and 196s respectively, whilst MLIRSmith gen-

erated 1000 programs in 67s, 59s, and 82s.

Table 4. Compileability/UB-freeness of MLIRSmith genera-

tor restricted to known valid dialect combinations (of Table 2)

and of the Unmodified MLIRSmith. Compiled=proportion of

programs that successfully compile, UB-Free=percentage of
programs found by the Ratte interpreter to be free from UB.

(*) For the unmodified version, the pipeline ran is not a full

compilation (applying only the -canonicalize pass), since

to the best of our knowledge, there are no pass combinations

able to lower the produced IR down to executable code. (†)
Of the compileable operations, most contained no linalg
operations, and ones that did often had long runtimes due

to large loop bounds, making UB-checking infeasible.

Name Dialects Compiled UB-Free

Unmod All MLIRSmith dialects 7.80*% N/A

Arith Arith (of Table 2) 100.00% 1.10%

LinAlg Linalg (of Table 2) 6.90% N/A
†

Tensor Tensor (of Table 2) 99.40% 0.00%

To effectively apply different optimisation levels (DOL)
testing, any validity rate significantly lower than 100% can

mean a large number of false positives in stable projects like

MLIR. This greatly diminishes the usability of MLIRSmith for

DOL testing, as every false positive requires costly manual

intervention to differentiate between a real bug vs. a UB.

4.3 Specification improvements
Our work identified several aspects of the MLIR documenta-

tion, which serves as the specification for MLIR, that were

incorrect, incomplete, or ambiguous, and for which we have

contributed fixes. Ambiguities were found in the documenta-

tion for the arith dialect, on the semantics of shifts-past-end,

the underlying representation, and the exact behaviour of

divisions by zero. Although previous MLIR users mostly

assumed [13] the corresponding LLVM semantics [20] for

arith, our pull request clarified this for MLIR. In the linalg

https://github.com/llvm/llvm-project/issues/90238
https://github.com/llvm/llvm-project/issues/90296
https://github.com/llvm/llvm-project/issues/82788
https://github.com/llvm/llvm-project/issues/84986
https://github.com/llvm/llvm-project/issues/88732
https://github.com/llvm/llvm-project/issues/89382
https://github.com/llvm/llvm-project/issues/83079
https://github.com/llvm/llvm-project/issues/106519


Ratte: Fuzzing for Miscompilations in Multi-Level Compilers Using Composable Semantics ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

dialect, ambiguities were found when our semantics dis-

agreed with the outputs of the compilation [30]. The case

involves incomplete indexings of the input arguments by the

indexing maps, treated as undefined in the production MLIR

implementation. However in our semantics, the values were

assumed to be the initial value. We submitted a PR clarifying

this behaviour, currently under review [29].

5 Related Work
Compiler Fuzzing. There exist many approaches to com-

piler fuzzing [22, 24], and Ratte is an instance of an analysis-

guided grammar-based generator, a technique similar to that

used in Csmith [43] and YARPGen [18], the previous and cur-

rent state of the art in the validation of C compilers. Csmith

uses information from static analysis to ensure the genera-

tion of UB-free C programs. Whilst in YARPGen, ad hoc anal-

ysis (e.g. variable usage, expression safety) is combined with

a concrete interpreter, queried during generation to create

UB-free programs that allow certain conservative dynamic

checks used in Csmith to be elided. Ratte generalises the

YARPGen approach for MLIR dialects, to describe both anal-

ysis and concrete interpretations, and in a composable way.

Ratte embeds this observation within a flexible framework

for describing composable MLIR interpretations and analysis.

Unlike prior work, Ratte applies this to a language (MLIR)

with open syntax and composable semantics, rather than the

fixed syntax/semantics of C/related languages. To achieve

this, Ratte leverages functional programming techniques

to describe composable dialect semantics and an extensible

framework for building fuzzers of MLIR-based compilers.

The only known prior works to us on MLIR fuzzing are

MLIRSmith [41], MLIROd [34], and SynthFuzz [17]. MLIR-

Smith and MLIROd focus on crash bugs and do not aim to

generate programs with oracles strong enough to detect mis-

compilations. SynthFuzz is a general mutation technique

applicable to all MLIR programs. However, it does not pro-

duce programs for finding semantic bugs, as the general

mutation does not maintain dialect-specific semantic con-

straints, making it usable with crash oracles only. To the

best of our knowledge, Ratte is the first generator of well-

defined programs for MLIR, which requires significant se-

mantic information—made possible through its modular in-

terpretation framework.

An interesting approach to compiler testing involves gen-

erating equivalent programs and then checking that, after

compilation, they indeed behave in an equivalent manner.

This is an example of metamorphic testing [6], and one possi-

ble application is by directly generating equivalent programs

from scratch [35]. Alternatively, semantics-preserving muta-

tions can be applied to an existing program to obtain a set

of equivalent programs [8, 9, 15, 33]. Applied to MLIR, such

a technique also has the potential to find miscompilations,

including lowering bugs. The main challenge is describing

per-dialect transformations, as well as having principled

ways to compose transformations when working with mul-

tiple dialects, and is an interesting avenue for future work.

Modular Semantics. Ratte uses effect systems to address

the expression problem [40], which arises when defining

semantics on extensible data: MLIR syntax. Although func-

tional implementations of effect systems can have a steep

learning curve due to their type-driven design, they help

eliminate bug-prone programs and integrate well with type-

driven property-based testing tools like QuickCheck [7]. Pre-

viously, effect systems have been used to specify and verify

modular semantics for LLVM [45], and for verifying some

MLIR passes [2]. Other approaches for the expression prob-

lem include multiple dispatch [4], or object algebras [28].

6 Conclusions
We have introduced, to the best of our knowledge, the first

fuzzing framework for MLIR that focuses on generating dy-

namically and statically well-defined programs. Unlike pre-

vious approaches, our focus is on miscompilations, the most

insidious compiler bugs with no obvious symptoms. Our

design is influenced by the prior art in C-language fuzzers,

YARPGen. In building our framework, we also introduce

an embedding of MLIR using higher-order effects, through

whichwe describe the semantics ofMLIR operations, and par-

ticularly the semantics of regions, a novel and major defining

characteristic of MLIR. We demonstrated the effectiveness

and generality of our approach by finding 8 previously un-

known bugs, including 6 miscompilations within core parts

of the MLIR codebase. Through the successful marriage of

techniques developed by the functional programming com-

munity with fuzzing, our framework is composable and fully

extensible to new dialects and semantics.

7 Acknowledgements
We are grateful to Luke Geeson, James Lee-Jones, Hamid

Maazouz, Alyssa Renata, John Wickerson and our ASPLOS

reviewers for their feedback on earlier drafts of this work.

This work was supported by an EPSRC Programme Grant

on Interface reasoning for interacting systems (grant number

EP/R006865/1).

A Artifact Appendix
A.1 Abstract
This artifact contains the supporting code, executables, and

results data as described in the paper on Ratte, a framework

for building composable fuzzers and interpreters for com-

pilers. Ratte generates executable programs with known,

deterministic behaviours for MLIR, which is a composable

intermediate representation (language) used by compilers.

These programs are used for the purpose of finding miscom-

pilation bugs within compilers by differential testing. As a



ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Pingshi Yu, Nicolas Wu, and Alastair F. Donaldson

result of the Ratte methodology, independent interpreters

for the language are also developed alongside the fuzzers,

and are validated by cross-checking the results against the

reference interpreter on the Ratte-generated programs. This

artifact contains the bug reports of the bugs found by Ratte,

executable program generators for several MLIR dialects,

and the executable reference interpreter for the supported

operations of Ratte (listed below).

A.2 Artifact check-list (meta-information)
• Program: Ratte, MLIR
• Compilation: MLIR, LLVM, Haskell, Python
• Binary: mlir-quickcheck, ref-interpreter
• Hardware: Intel, AMD
• Output: MLIR programs, interpretation result
• Experiments: fuzzing, interpretation
• How much disk space required (approximately)?: 3Gb
• How much time is needed to prepare workflow (ap-
proximately)?: 30 minutes

• How much time is needed to complete experiments
(approximately)?: 2 hours

• Publicly available?: Yes
• Code licenses (if publicly available)?: GPL v3.0
• Archived (provide DOI)?: 10.5281/zenodo.14790908

A.3 Description
A.3.1 How to access. Through the provided DOI link to

the repository.

A.3.2 Hardware dependencies. Minimum 4Gb of RAM,

x86 processor.

A.3.3 Software dependencies. Docker / other container
managers

A.4 Installation
This artifact is intended to be built using Docker (Podman

would probably work, but is untested).

From the source directory, run:

docker build -t ratte-artifact .
This will build the image and take ≈ 25 minutes.

A.5 Evaluation and expected results
A.5.1 Verify Setup. Enter the image and check, as a first

step, that the unit tests pass:

docker run -it ratte-artifact
cabal test
This step will take ≈ 1 minutes to build and run the tests.

Generate a program using the arith, scf, func dialects
of size 30, and its expected execution result, run:

cabal run mlir-quickcheck – -d=ariths -n=30 \
2> /dev/null

which should produce output of the form:

/app# cabal run mlir-quickcheck -- -d=ariths -n=30 2>

/dev/null↩→
"builtin.module"() ({

^bb0():
...
--== Expected output:
%6=...
...
--== End of output.

A.5.2 Bugs found. Each of the reduced bugs can be found

within bugs/ folder of the artifact, named according to their

numbers on the table below and in the paper (e.g. 3.mlir).
The table below contains more details on each bug, along

with a link to their respective GitHub issue. Each GitHub

issue also contains a link to a Godbolt to reproduce the bug.

Table 5.Description of the bugs mentioned within the paper,

and their respective GitHub issue.

Pass Issue

1 canonicalize 90238

2 canonicalize 90296

3 remove-dead-values 82788

4 convert-arith-to-llvm 84986

5 canonicalize 88732

6 convert-arith-to-llvm 89382

7 arith-expand 83079

8 arith-expand 106519

Verify that the bug reports exist and are as described in

the paper.

A.5.3 Proposed MLIR Spec and Testing Changes. The
spec changes mentioned in Section 4.3 of the paper are as

follows.

Arith representation clarifications: 1 and 2; Linalg dialect

documentation updates: 1.

The proposed additional integration tests is here.

Verify that the proposals exist and are as described in the

paper.

A.5.4 Fuzzers. The binary mlir-quickcheck implements

several preset fuzzers based on the generators implemented.

The following will run the fuzzer for a given preset, gen-

erating a program of size (roughly) 50 variables, alongside

its expected execution output:

cabal run mlir-quickcheck – \
-d <PRESET> -n 50 2> /dev/null

where <PRESET> is one of:

• ariths
• linalggeneric
• tensor

The output should be a randomMLIR program, using oper-

ations defined by the preset (respectively, ariths uses arith
ops, linalggeneric uses linalg.generic ops, tensor uses

https://doi.org/10.5281/zenodo.14790908
https://doi.org/10.5281/zenodo.14790908
https://github.com/llvm/llvm-project/issues/90238
https://github.com/llvm/llvm-project/issues/90296
https://github.com/llvm/llvm-project/issues/82788
https://github.com/llvm/llvm-project/issues/84986
https://github.com/llvm/llvm-project/issues/88732
https://github.com/llvm/llvm-project/issues/89382
https://github.com/llvm/llvm-project/issues/83079
https://github.com/llvm/llvm-project/issues/106519
https://github.com/llvm/llvm-project/pull/74346
https://github.com/llvm/llvm-project/pull/72932
https://github.com/llvm/llvm-project/issues/94180
https://github.com/llvm/llvm-project/pull/92272


Ratte: Fuzzing for Miscompilations in Multi-Level Compilers Using Composable Semantics ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

tensor ops), along with the expected output in a format sim-

ilar to that in section “Verify Setup”.

The output program should also be compile by mlir-opt
using the following passes (one way to access mlir-opt is
via Godbolt):

ariths: –arith-expand –test-lower-to-llvm
linalggeneric: -one-shot-bufferize -func-bufferize

-cse -canonicalize -convert-vector-to-scf
-test-lower-to-llvm

tensor: -one-shot-bufferize -func-bufferize -cse
-canonicalize -convert-vector-to-scf
-test-lower-to-llvm

A.5.5 Reference Interpreter. The interpreter based on

the MLIR semantics implemented within Ratte can be found

in the ref-interpreter binary.

The interpreter parses code in the generic MLIR format,

which is defined as the “mlir-generic-op” within the offi-

cial documentation.

The generic form can be obtained for MLIR programs by

running mlir-opt with pass -mlir-print-op-generic.
To run the interpreter on an example file:

cabal run ref-interpreter -- \
-f=app/Interpreter/examples/example2.mlir \
-m=main

Optional. To run the interpreter for another MLIR file,

e.g. prog.mlir with entry function entry, first convert into
generic form (e.g. as follows: using Godbolt), then run the

interpreter on the generic form file:

mlir-opt -mlir-print-op-generic prog.mlir > \
prog-generic.mlir

cabal run ref-interpreter -- \
-f=prog-generic.mlir -m=entry

Current limitations is that the interpreter only supports

natural-number variable names.

A.6 Notes
The current operations supported by the reference inter-

preter are as follows: arith.constant, arith.ceildivui,
arith.ceildivsi, arith.floordivsi, arith.divui,
arith.divsi, arith.remui, arith.remsi, arith.shli,
arith.shrsi, arith.shrui, arith.cmpi,
arith.addi, arith.andi, arith.maxsi, arith.maxui,
arith.minsi, arith.minui, arith.muli, arith.ori,
arith.subi, arith.xori, arith.addui_extended,
arith.mulsi_extended, arith.mului_extended,
arith.extsi, arith.extui, arith.trunci,
arith.select, arith.index_cast, arith.index_castui,
func.func, func.return, func.call, linalg.generic,
linalg.yield, scf.yield, scf.if, tensor.constant,
tensor.cast, tensor.extract, tensor.insert,
tensor.dim, tensor.empty, tensor.yield,
vector.print.

References
[1] AMD. MLIR-Based AI Engine Toolchain. https://github.com/Xilinx/

mlir-aie, 2025. Accessed: 2025-02-09.
[2] Bhat, S., Keizer, A. C., Hughes, C., Goens, A., and Grosser, T. Veri-

fying peephole rewriting in SSA compiler IRs. In 15th International
Conference on Interactive Theorem Proving, ITP 2024, September 9-14,
2024, Tbilisi, Georgia (2024), Y. Bertot, T. Kutsia, and M. Norrish, Eds.,

vol. 309 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

pp. 9:1–9:20.

[3] Brachthäuser, J. I., Schuster, P., andOstermann, K. Effect handlers

for the masses. Proc. ACM Program. Lang. 2, OOPSLA (2018), 111:1–

111:27.

[4] Chambers, C., and Leavens, G. T. Typechecking and modules for

multimethods. ACM Trans. Program. Lang. Syst. 17, 6 (1995), 805–843.
[5] Chen, J., Patra, J., Pradel, M., Xiong, Y., Zhang, H., Hao, D., and

Zhang, L. A survey of compiler testing. ACM Comput. Surv. 53, 1
(2021), 4:1–4:36.

[6] Chen, T., Cheung, S., and Yiu, S. Metamorphic testing: a new ap-

proach for generating next test cases. Tech. Rep. HKUST-CS98-01,

Department of Computer Science, The Hong Kong University of Sci-

ence and Technology, 1998.

[7] Claessen, K., and Hughes, J. Quickcheck: a lightweight tool for

random testing of haskell programs. In Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP
’00), Montreal, Canada, September 18-21, 2000 (2000), M. Odersky and

P. Wadler, Eds., ACM, pp. 268–279.

[8] Donaldson, A. F., Evrard, H., Lascu, A., and Thomson, P. Auto-

mated testing of graphics shader compilers. Proc. ACM Program. Lang.
1, OOPSLA (2017), 93:1–93:29.

[9] Donaldson, A. F., Thomson, P., Teliman, V., Milizia, S., Maselco,

A. P., and Karpinski, A. Test-case reduction and deduplication almost

for free with transformation-based compiler testing. In PLDI ’21: 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 2021
(2021), S. N. Freund and E. Yahav, Eds., ACM, pp. 1017–1032.

[10] Ghica, D. R., Lindley, S., Bravo, M. M., and Piróg, M. High-level

effect handlers in C++. Proc. ACM Program. Lang. 6, OOPSLA2 (2022),
1639–1667.

[11] Goldstein, H., and Pierce, B. C. Parsing randomness. Proc. ACM
Program. Lang. 6, OOPSLA2 (2022), 89–113.

[12] Kiselyov, O., Sabry, A., and Swords, C. Extensible effects: an alterna-

tive to monad transformers. In Proceedings of the 2013 ACM SIGPLAN
Symposium on Haskell, Boston, MA, USA, September 23-24, 2013 (2013),
C. Shan, Ed., ACM, pp. 59–70.

[13] kuhar. [RFC] Define precise arith semantics. https://discourse.llvm.
org/t/rfc-define-precise-arith-semantics/65507l, 2022. Accessed: 2025-
02-08.

[14] Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pien-

aar, J. A., Riddle, R., Shpeisman, T., Vasilache, N., and Zinenko, O.

MLIR: scaling compiler infrastructure for domain specific computa-

tion. In IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2021, Seoul, South Korea, February 27 - March 3,
2021 (2021), J. W. Lee, M. L. Soffa, and A. Zaks, Eds., IEEE, pp. 2–14.

[15] Le, V., Afshari, M., and Su, Z. Compiler validation via equivalence

modulo inputs. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom
- June 09 - 11, 2014 (2014), M. F. P. O’Boyle and K. Pingali, Eds., ACM,

pp. 216–226.

[16] Leijen, D., and Meijer, E. Parsec: Direct style monadic parser com-

binators for the real world. Tech. Rep. UU-CS-2001-27, Universiteit

Utrecht, July 2001.

[17] Limpanukorn, B.,Wang, J., Kang, H. J., Zhou, Z., and Kim,M. Fuzzing

mlir compilers with custom mutation synthesis. In 2025 IEEE/ACM
47th International Conference on Software Engineering (ICSE) (2024),

https://godbolt.org/z/77vYadK9h
https://mlir.llvm.org/docs/LangRef/
https://mlir.llvm.org/docs/LangRef/
https://godbolt.org/z/77vYadK9h
https://github.com/Xilinx/mlir-aie
https://github.com/Xilinx/mlir-aie
https://discourse.llvm.org/t/rfc-define-precise-arith-semantics/65507l
https://discourse.llvm.org/t/rfc-define-precise-arith-semantics/65507l


ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Pingshi Yu, Nicolas Wu, and Alastair F. Donaldson

IEEE Computer Society, pp. 457–468.

[18] Livinskii, V., Babokin, D., and Regehr, J. Random testing for C and

C++ compilers with yarpgen. Proc. ACM Program. Lang. 4, OOPSLA
(2020), 196:1–196:25.

[19] Livinskii, V., Babokin, D., and Regehr, J. Fuzzing loop optimizations

in compilers for C++ and data-parallel languages. Proc. ACM Program.
Lang. 7, PLDI (2023), 1826–1847.

[20] LLVM Foundation. LLVM language reference manual. https://llvm.
org/docs/LangRef.html, 2024. Accessed: 2025-02-08.

[21] LLVM Foundation. LLVM language reference manual: ‘sdiv’ in-
struction. https://llvm.org/docs/LangRef.html#sdiv-instruction, 2024.
Accessed: 2025-02-08.

[22] Ma, H. A survey of modern compiler fuzzing. CoRR abs/2306.06884
(2023).

[23] Maguire, S. polysemy-research/polysemy. https://hackage.haskell.
org/package/polysemy. Accessed: 2025-02-08.

[24] Marcozzi, M., Tang, Q., Donaldson, A. F., and Cadar, C. Com-

piler fuzzing: how much does it matter? Proc. ACM Program. Lang. 3,
OOPSLA (2019), 155:1–155:29.

[25] McKeeman, W. M. Differential testing for software. Digit. Tech. J. 10,
1 (1998), 100–107.

[26] MLIR Authors. Dialects. https://mlir.llvm.org/docs/Dialects/, 2024.
Accessed: 2025-02-08.

[27] MLIR Developers. MLIR language reference. https://mlir.llvm.org/
docs/LangRef/. Accessed: 2025-02-08.

[28] Oliveira, B. C. d. S., and Cook, W. R. Extensibility for the masses -

practical extensibility with object algebras. In ECOOP 2012 - Object-
Oriented Programming - 26th European Conference, Beijing, China, June
11-16, 2012. Proceedings (2012), J. Noble, Ed., vol. 7313 of Lecture Notes
in Computer Science, Springer, pp. 2–27.

[29] pingshiyu. [mlir][linalg] added some conditions for values being

undefined in the documentation for linalg.generic. https://github.com/
llvm/llvm-project/pull/96251, 2024. Accessed: 2025-02-08.

[30] pingshiyu. [mlir][linalg] linalg.generic miscompilation in case of

multiple return values. https://github.com/llvm/llvm-project/issues/
94179, 2024. Accessed: 2025-02-08.

[31] Plotkin, G. D., and Pretnar, M. Handlers of algebraic effects. In

Programming Languages and Systems, 18th European Symposium on
Programming, ESOP 2009, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29,
2009. Proceedings (2009), G. Castagna, Ed., vol. 5502 of Lecture Notes in
Computer Science, Springer, pp. 80–94.

[32] Sharma, M., Yu, P., and Donaldson, A. F. Rustsmith: Random dif-

ferential compiler testing for rust. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis, IS-
STA 2023, Seattle, WA, USA, July 17-21, 2023 (2023), R. Just and G. Fraser,
Eds., ACM, pp. 1483–1486.

[33] Sun, C., Le, V., and Su, Z. Finding compiler bugs via live code muta-

tion. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, Oc-
tober 30 - November 4, 2016 (2016), E. Visser and Y. Smaragdakis, Eds.,

ACM, pp. 849–863.

[34] Suo, C., Chen, J., Liu, S., Jiang, J., Zhao, Y., and Wang, J. Fuzzing

MLIR compiler infrastructure via operation dependency analysis. In

Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2024, Vienna, Austria, September
16-20, 2024 (2024), M. Christakis and M. Pradel, Eds., ACM, pp. 1287–

1299.

[35] Tao, Q., Wu, W., Zhao, C., and Shen, W. An automatic testing ap-

proach for compiler based on metamorphic testing technique. In 17th
Asia Pacific Software Engineering Conference, APSEC 2010, Sydney, Aus-
tralia, November 30 - December 3, 2010 (2010), J. Han and T. D. Thu,

Eds., IEEE Computer Society, pp. 270–279.

[36] Tensorflow Developers. Tensorflow MLIR. https://www.tensorflow.
org/mlir, 2024. Accessed: 2025-02-09.

[37] The Flang Developers. Flang. https://github.com/flang-compiler/
flang, 2024. Accessed: 2025-02-09.

[38] The IREE Authors. IREE - Intermediate Representation Execution

Environment. https://iree.dev/, 2024. Accessed: 2025-02-09.
[39] Torch-MLIR Developers. The Torch-MLIR Project. https://github.

com/llvm/torch-mlir, 2024. Accessed: 2025-02-09.
[40] Wadler, P. The expression problem. https://homepages.inf.ed.ac.uk/

wadler/papers/expression/expression.txt, 1998. Accessed: 2025-02-08.
[41] Wang, H., Chen, J., Xie, C., Liu, S., Wang, Z., Shen, Q., and Zhao, Y.

Mlirsmith: Random program generation for fuzzing MLIR compiler in-

frastructure. In 38th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2023, Luxembourg, September 11-15, 2023
(2023), IEEE, pp. 1555–1566.

[42] Wu, N., Schrijvers, T., and Hinze, R. Effect handlers in scope. In Pro-
ceedings of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg,
Sweden, September 4-5, 2014 (2014), W. Swierstra, Ed., ACM, pp. 1–12.

[43] Yang, X., Chen, Y., Eide, E., and Regehr, J. Finding and understanding

bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2011,
San Jose, CA, USA, June 4-8, 2011 (2011), M. W. Hall and D. A. Padua,

Eds., ACM, pp. 283–294.

[44] Yu, P., Wu, N., and Donaldson, A. F. Artifact for Ratte: Fuzzing for

miscompilations in multi-level compilers using composable semantics.

https://doi.org/10.5281/zenodo.14768650, 2025. Accessed: 2025-02-09.
[45] Zakowski, Y., Beck, C., Yoon, I., Zaichuk, I., Zaliva, V., and

Zdancewic, S. Modular, compositional, and executable formal se-

mantics for LLVM IR. Proc. ACM Program. Lang. 5, ICFP (2021), 1–30.

https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html#sdiv-instruction
https://hackage.haskell.org/package/polysemy
https://hackage.haskell.org/package/polysemy
https://mlir.llvm.org/docs/Dialects/
https://mlir.llvm.org/docs/LangRef/
https://mlir.llvm.org/docs/LangRef/
https://github.com/llvm/llvm-project/pull/96251
https://github.com/llvm/llvm-project/pull/96251
https://github.com/llvm/llvm-project/issues/94179
https://github.com/llvm/llvm-project/issues/94179
https://www.tensorflow.org/mlir
https://www.tensorflow.org/mlir
https://github.com/flang-compiler/flang
https://github.com/flang-compiler/flang
https://iree.dev/
https://github.com/llvm/torch-mlir
https://github.com/llvm/torch-mlir
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.5281/zenodo.14768650

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Generation Principles
	3.2 Evaluating Semantics
	3.3 Semantics-Guided Generators
	3.4 Test Oracles
	3.5 Implementation and Support Code

	4 Evaluation
	4.1 Bugs found
	4.2 Comparison with MLIRSmith
	4.3 Specification improvements

	5 Related Work
	6 Conclusions
	7 Acknowledgements
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Evaluation and expected results
	A.6 Notes

	References

