
The Burden of Proof: Automated Tooling for
Rapid Iteration on Large Mechanised Proofs

Chengsong Tan∗†, Alastair F. Donaldson∗, Jonathan Julián Huerta y Munive‡, and John Wickerson∗
∗Imperial College London, UK. Email: {c.tan, alastair.donaldson, j.wickerson}@imperial.ac.uk

†Kaihong, China. Email: tanchengsong@kaihong.com
‡Czech Technical University, Czech Republic. Email: huertjon@cvut.cz

Abstract—We report on challenges and solutions in
making large mechanised proofs scale, based on our
experience proving correctness properties for a cache
coherence protocol. This was a difficult proof that required
dozens of iterations to get right, and ultimately led to
an inductive invariant with nearly 800 conjuncts, and
to over 54,000 proof obligations. To address these proof
engineering challenges we developed super_sketch, a
tool that automates the generation of proofs involving
multiple subgoals in Isabelle/HOL, enabling efficient man-
agement and maintenance of large-scale proofs. We further
contribute super_fix, a tool to fix corner cases that
cannot be fully automated with super_sketch, such as
correcting proof scripts invalidated by upstream changes to
definitions. This allowed us to drop simplifying restrictions
in our model while retaining the correctness proof, as we
avoid the significant manual effort that would otherwise be
required to inspect and fix the broken lines of the original
proof when generalising the model. Our work provides
insights into proof engineering practices and highlights the
need for improved support in proof assistants for large-
scale mechanized proofs.

Index Terms—Proof engineering, proof automation,
mechanised proof, Isabelle, cache coherence, CXL, SWMR.

I. INTRODUCTION

There is a growing need for better automation in
interactive theorem provers (ITPs) [1], [2], [3], [4], [5],
to enable formal verification at greater scales. Large
mechanised proofs can be up to hundreds of thousands
of lines of code, often taking many person-years, or even
person-decades, to develop [6], [7], [8]. Although most
of the proof engineering is mentally engaging, a consid-
erable amount of time is spent on tedious tasks such as
confirming that (often trivial) individual subgoals can be
proven after applying a proof method like induction or
case analysis, or fixing broken proof scripts that fail due
to superficial changes in the formalisation.

Isabelle is a popular interactive theorem prover thanks
to its powerful automation tools. For example, the Is-
abelle command sledgehammer invokes solvers to
generate proofs for the user’s theorems automatically.
Despite sledgehammer’s usefulness, the user still
needs to wait for a long time (often tens of seconds,
sometimes minutes) for the utility to compute proof

suggestions. The user must then manually choose one
of the supplied proofs to adopt into their proof script.
This process is often repeated multiple times because
a theorem usually consists of various subgoals and
sledgehammer only works on one at a time. This
can be frustrating for a human expert who has al-
ready devised a correct high-level argument to prove
a theorem: they nevertheless need to invest time and
effort harnessing sledgehammer to fill out the easier
(yet tedious to formalise) details of the proof. It would
be beneficial if the generation of these parts of the
formalisation could be fully automated by: (1) calling
sledgehammer for each step in a formal proof-sketch,
(2) extracting from sledgehammer the proofs it found,
and (3) incorporating them directly into the sketch,
while (4) highlighting unproved steps so that users can
conveniently focus on them.

We faced this problem while doing a large mechanised
proof of properties of a cache coherence protocol [9],
which required us to generate the proofs of a large
number of lemmas. Towards the end of the proof, we
needed to prove over fifty thousand subgoals. However,
we did not just need to mechanically check them once,
but dozens of times, as we continuously refined our
argument towards proving our desired theorem. These
multiple cycles of proof attempts were needed due
to our theorem hinging on a large inductive invariant
comprising many conjuncts. It took us a long time to get
the inductive invariant right. We would repeatedly find
that the invariant was not quite preserved by the tran-
sition relation of our cache coherence protocol model:
some conjuncts of the invariant would fail to hold after
applying the transition relation. This would necessitate
strengthening the invariant via additional conjuncts, but
these additional conjuncts would then turn out not to be
preserved by the stronger invariant, necessitating further
strengthening. In the process of driving our proof to-
wards convergence the number of proof goals ballooned,
leading to each iteration of the process taking a large
amount of human effort and machine time.

Performing a mechanised proof at this scale using
standard tools became infeasible. We spent extensive

machine resources (and wall clock time) waiting for
sledgehammer to reprove subgoals from earlier itera-
tions. We also expended a great deal of manual effort
identifying broken lines in a proof and then calling
sledgehammer to obtain a fresh sub-proof of the
affected subgoal to rectify this problem.

In response to this, we have developed two tools to
largely automate this process, allowing proof engineers
to rapidly iterate on large mechanised proofs. These
tools proved indispensable in enabling us to finally prove
the desired cache coherence property of interest, which
involved an inductive invariant comprising nearly 800
conjuncts, requiring over 54,000 proof goals.

We expect that our proof-effort details and scalability
tools will be interesting and useful to others who embark
on large mechanised proofs, hence this experience report.

Contribution 1: A report on the challenges of de-
veloping a large-scale mechanised proof of emerging
hardware’s correctness. Over the last two years, we
have formalised a proof in Isabelle/HOL consisting of 74
Isabelle theory files, totalling around 310k lines of code.
It certifies that our CXL (Compute Express Link [10])
model, an important industry interconnect standard for
heterogeneous computing, satisfies the “Single-Writer-
Multiple-Reader” (SWMR) property, a key coherence
guarantee observed by all cache coherent systems [11].

Our contribution in this paper is not the CXL model
and associated proof, which is the subject of a different
article [9], but rather a report on the experience of
wrestling with a proof at this scale.

The model consists of 68 transition rules, and our
proof involved showing that all these rules preserve a
property, which we call SWMR+, that implies SWMR.
SWMR+ is a strengthened version of SWMR, consisting
of a conjunction of 796 formulas. This amounts to
proving 54,128 little lemmas, each showing a certain
conjunct i being preserved by rule j. It was not possible
to come up with SWMR+ in one go. We started with
a first approximation with only 2 conjuncts, and then
went through many iterations of refining it, during which
the invariant steadily grew in size. These iterations
have pushed Isabelle’s Prover IDE (PIDE) to its limit,
creating scalability challenges that have to be addressed
via a combination of proof engineering of the theory
code, external scripting and reusing and modifying parts
of the Isabelle/ML codebase.

Contribution 2: Experience accelerating proof de-
velopment with super_sketch. To cope with
the aforementioned challenges, we have developed
super_sketch, a tool that supports the automatic
integration of sledgehammer-generated proofs in
an Isabelle proof script. The high-level ideas be-
hind super_sketch are briefly discussed in a pa-

per devoted to our overall modelling and proof ef-
forts [9]. Our contribution here is a detailed discussion
of our experience developing super_sketch, and how
super_sketch is implemented in Isabelle/ML.

Given heuristics supplied by the user,
super_sketch turns the proof obligations into
multiple goals, trying to solve all of them by
concurrently calling sledgehammer. For more
difficult subgoals, super_sketch tries to use the
extra heuristics to further reduce the subgoals before
calling sledgehammer on them. We report on our
experience leveraging super_sketch to automate
the task of re-generating proof scripts in each iteration
of baking our inductive invariant. We describe the
scripting and fine-tuning challenges associated with
optimising the usage of super_sketch. Towards the
end of proof development, the tool was very effective
in reducing both the number of iterations we needed to
do, and the human effort involved in each iteration.

Contribution 3: A tool that automatically fixes bro-
ken proof scripts. super_sketch is useful in bulk-
generating proof text for a single theorem, but not
tackling errors and updates that are interspersed across
multiple theorems and files. To address the limitations
of super_sketch, we have developed super_fix,
a tool that is better at fixing local errors in an Isabelle
proof script than bulk-generation of proof text. This is
especially suited for repairing proof errors that arise due
to modifications upstream in the proof—e.g. changes to
the definitions of our transition system or to the inductive
invariant. super_fix is good at fixing goal errors and
one-liner proof errors, where errors are a minority and
interspersed in the proof script. The implementation is
inspired by the observation that non-terminating proofs
and upstream errors cause later errors and therefore
should be fixed first. Using super_fix, we have
successfully dropped simplifying assumptions we made
in obtaining an initial version of the proof of the SWMR
property, obtaining a stronger theorem.

Our tools, written in Isabelle and standard ML,
operate at the outer syntax level. We have made
super_sketch and super_fix publicly available.

II. BACKGROUND: CXL AND THE SWMR PROPERTY

In this section, we describe the concrete proof engi-
neering problem we needed to address while proving the
Single-Writer-Multiple-Reader (SWMR) property of our
model of the CXL.cache protocol [9].

To contexualise the problem, we briefly introduce
cache coherence and Compute Express Link (CXL).

A. CXL and cache coherence

Cache coherence protocols are essential in multi-core
systems to ensure all caches share a coherent view of

https://github.com/ChengsongTan/super_sketch_and_super_fix

memory. They synchronise multiple copies of the same
data among the caches of different cores, preventing
incoherent scenarios such as stale data being read by
a core that has not been notified about a modified
cacheline. Abstractly, a cache coherence protocol can
be viewed as a communication protocol over a network
interconnecting several cores.

One of the most common cache coherence protocols
is the MESI protocol [12]. The MESI acronym refers
to four cacheline states: M, indicating that the cacheline
has a valid copy of the data and that the data is being
modified, so that it must be written back later; E,
indicating that the copy is clean and exclusively owned;
S, indicating read-only and non-exclusive ownership;
and I, indicating that the address is not currently in
the cache and therefore is not valid. Each cacheline can
transition to other states by sending and receiving certain
messages over the communication network, requesting
and indicating ownership changes.

CXL is a popular emerging interconnect standard
that defines how memory can be shared in a cache-
coherent way between heterogeneous devices, such as
CPUs, GPUs, and other accelerators. This means that
two CXL-enabled devices, even if manufactured as stan-
dalone hardware systems, can be composed to present a
unified memory and cache system. In CXL.cache, a
sub-protocol of CXL, these (possibly multicore) devices
are abstracted as a single “core” in the larger cache
coherent domain, and the CXL interconnect serves as the
network for connecting these “cores”. CXL.cache is
a MESI-style, directory-based cache coherence protocol
with some clever design choices that make it easier to
implement a cache-coherent device.

The CXL.cache standard is a suitable candidate for
formal verification because it is a relaxed protocol with
an unordered network and very few restrictions. This
creates complex concurrent situations that are poten-
tially error-prone. Our modelling and proof efforts were
worthwhile: they uncovered several inaccuracies in the
CXL specification, which have been confirmed by CXL
experts. They also revealed fixes for these inaccuracies
that are in the process of being adopted [9].

B. An overview of our model

Our model, an operational-style transition system,
represents the states and transitions of a CXL.cache
implementation. A set of system states and rules govern
the state transitions. Intuitively, when multiple cache
copies have read or write access, these accesses cannot
coexist. Otherwise, stale data may be read.

System state representation and transition rules.
We define the system state as a record of type
SystemState, which abstracts relevant components of

a CXL.cache-enabled cluster of devices: their cache-
lines, message channels representing the interconnect,
and other auxiliary structures that are necessary for
CXL-specific restrictions. The details of the datatype can
be found in our Isabelle formalisation [13].

Transition rules model the system’s possible be-
haviours and correspond to the protocol atomic actions.
We have 68 transition rules, covering all necessary
actions to start or complete a coherence transaction. Each
transition rule Ri (1 ≤ i ≤ 68) comprises:

• A guard guardRi
specifying the conditions under

which the rule Ri can be applied.
• A state-updating function fRi

defining how each
system state changes when the rule fires.

A system state Σ transitions to a state Σ′ (denoted
Σ −→ Σ′) if there exists a transition rule R in the set
R1, . . . , R68 such that the guard guardR holds on Σ,
and Σ′ is the result of applying the state-update function
fR to Σ. Formally:

Σ −→ Σ′ ⇐⇒ ∃R ∈ {R1, . . . , R68}.
guardR Σ ∧ fR(Σ) = Σ′

The SWMR property. The Single-Writer-Muiltiple-
Reader (SWMR) property is an important coherence guar-
antee stating that if one device has write permission on
a cacheline, no other device simultaneously has read or
write permission on that cacheline. Formally:

SWMR Σ
def
=

(i ̸= j ∧ Σ.Cachelines(Devi) = M

=⇒ Σ.Cachelines(Devj) /∈ {S,M})

Here Cachelines(Devi) refers to the ith device cache-
line. A normal CXL.cache device can cache copies of
the cachelines from a special device called “Host”.
Proof goal. Our goal is to show that starting from any
valid initial state, the SWMR property holds after any
sequence of transitions:

InitialState Σ ∧ (Σ −→∗ Σ′) =⇒ SWMR Σ′.

Here, −→∗ denotes the reflexive transitive closure of the
transition relation −→. We need to find an inductive
invariant P satisfying the following conditions:

InitialState Σ =⇒ P Σ

P Σ ∧ (Σ −→ Σ′) =⇒ P Σ′

P Σ =⇒ SWMR Σ

Showing that InitialState Σ =⇒ SWMR Σ holds
is relatively easy, but unfortunately we cannot take SWMR
as P because it is not inductive. In other words, there
are transitions where SWMR holds before the transition

.
P Σ ∧
guardRi

Σ ∧
Σ →Ri

Σ′

=⇒
ϕj Σ

′

(i,j)

.

m×n

Fig. 1. Proof obligation matrix for the inductiveness of P . Each single
cell represents a certain conjunct being preserved by a rule.

but not after. Consider a transition from Σ to Σ′ where a
device upgrades its cacheline to the M state while another
device already holds the cacheline in the M state:

Σ.Cachelines(Dev0) = M
∧ Σ.Cachelines(Dev1) ̸= M
∧ Σ′.Cachelines(Dev0) = M
∧ Σ′.Cachelines(Dev1) = M

Here, assuming two devices, Σ satisifies SWMR, but
after the transition to Σ′, both device 0 and 1 have their
cachelines in the M state, violating SWMR.

We strengthen SWMR by conjoining it with additional
properties to form P = SWMR ∧ ϕ1 ∧ ϕ2 ∧ These
additional properties capture the conditions to ensure that
SWMR is preserved across all transitions.

The continuously evolving invariant. We start by set-
ting P to SWMR and identify specific scenarios where
the invariance property P Σ ∧ Σ −→ Σ′ =⇒ P Σ′ is
violated, using the shorthand notation τ−→ for transitions
leading to such scenarios. We then formulate additional
properties ϕi to prevent these violations.

Σ
τ−→ Σ′ ∧ ϕi Σ ∧ SWMR Σ =⇒ SWMR Σ′

But this introduces more proof obligations if ϕi is itself
not inductive, requiring us to come up with ϕi+1 to
ensure that ϕi holds in all scenarios:

Σ −→ Σ′ ∧ ϕi+1 Σ =⇒ ϕi Σ
′

This process continues, with each new ϕi strengthening
P until a fixed point is reached where P is inductive.

The obligation matrix. We can view the task from the
perspective of augmenting an m×n matrix, where m is
the number of transition rules, and n is the number of
conjuncts in P . Each cell (i, j) in the matrix corresponds
to the obligation of proving that ϕj is preserved by
transition Ri. We illustrate this in Figure 1. Each row
and column have a special meaning:

• Rows correspond to individual transition rules.
• Columns correspond to individual conjuncts in P .

We started with a 68 × 2 matrix (68 rules and 2
conjuncts), and gradually expanded it by adding more
conjuncts (so that m remains fixed but n increases as
more conjuncts are added). Whenever a cell in the matrix
is unprovable, we need to

• Add a new conjunct to P .
• Write the proof to the lemma corresponding to the

previously unprovable cell, which is made possible
with the new conjunct.

• Write proofs for the additional proof obligations due
to the new conjunct being added.

This process repeats until all matrix cells are provable.

III. THE SCALABILITY CHALLENGES

We now discuss the scalability challenges we faced
during the construction of the formal proof of the
SWMR property for our CXL.cache model using Is-
abelle/HOL. The primary challenge stemmed from the
continuously evolving inductive invariant P , which grew
significantly in size as we iteratively strengthened it
to achieve inductiveness. This growth led to a sub-
stantial increase in proof obligations and computational
overhead, pushing the capabilities of Isabelle, and the
hardware that ran it, to their limits.

Structure of the proofs. Our proof obligations’ are
organised as in the obligation matrix of Figure 1, which
has m rows (transition rules) and n columns (conjuncts
of P), as discussed in Section II-B. To manage these
obligations effectively, we structured our Isabelle proof
files in a “row-major order”: each file corresponds to a
specific transition rule Ri and contains the rule-related
lemmas. This organisation allows us to supply additional
facts about specific rules locally to improve the perfor-
mance of proof automation tools like sledgehammer.

For each transition rule Ri, we aim to prove a lemma
that asserts the preservation of the inductive invariant P
by that rule. Figure 2 illustrates the typical structure of a
lemma and its proof. Each time we add a new conjunct
ϕn+1 to the inductive invariant P , we need to:

1) Add a new fact: Introduce a new assumption
factn+1 : ϕn+1 Σ.

2) Add a new goal Prove that ϕn+1 is preserved by
the transition, i.e., show that ϕn+1(fRi(Σ)) holds.

These additions are highlighted in blue in Figure 2.
We found that the “preamble” section of the proof
(highlighted with green) is essential for making our
proof scale, even though it might seem redundant or not
strictly necessary at first glance. This section is crucial
because automated tools like sledgehammer, auto,
and simp work significantly better when provided with
smaller, focused facts rather than large, complex for-
mulas as a monolithic term like the entire invariant
P Σ. Each goal in this proof often depends on only

lemma Ri_coherent:
assumes "P Σ ∧ guardRi

Σ"
shows "P (fRi(Σ))"

proof -
have fact0:guardRi

Σ by assumption
have fact1:ϕ1 Σ by assumption
have fact2:ϕ2 Σ by assumption
. . .
have factn:ϕn Σ by assumption
have factn+1:ϕn+1 Σ by assumption
show ?thesis

proof (intro conjI)
show goal1: "ϕ1(fRiΣ)" Sledgehammer proof

1 using facts from {fact0, . . . ,factn}
next

show goal2: "ϕ2(fRiΣ)" Sledgehammer proof
2 using facts from {fact0, . . . ,factn}

next
. . .

next
show goaln: "ϕn(fRiΣ)" Sledgehammer proof

n using facts from {fact0, . . . ,factn}
next

show goaln+1: "ϕn+1(fRiΣ)" Sledgehammer
proof n using facts from {fact0, . . . ,factn+1}

qed
qed

Fig. 2. A rule lemma for Ri. Our mechanised proof mainly consists
of these rule lemmas. The additions when a new conjunct ϕn+1 is
introduced are highlighted in blue.

several facts from fact0 to factn. Referencing the whole
invariant P Σ is unnecessary and inefficient. Without
the “preamble” section that breaks down the invariant P
into manageable, digestible individual facts, automated
tools like sledgehammer would begin to struggle—
our experience is that, with more than 100 conjuncts,
sledgehammer would either fail to find a proof, or
find proofs that, when adopted, would lead to non-
termination during proof checking.

To amend our proof, it was preferable to add the blue
parts (of Figure 2) rather than to regenerate the entire
proof of Ri coherent. Verifying whether a proof
exists for each newly added goal remained a manual and
time-consuming process. The steps involved were:

• Manually copy the new conjunct as a new fact, and
add a new proof goal about the new conjunct (the
blue bits in fig. 2).

• Manually invoke sledgehammer at the position
of the new goal.

• Wait for sledgehammer’s proof suggestions,
which could take up to several minutes per goal.

• Manually adopt one of the suggested proofs into
our proof script.

• If sledgehammer fails, manually inspect the goal
to devise heuristics such as case analysis, simplifi-
cation, or introduce intermediate lemmas.

• Repeat the steps for all new goals on all rule files.

This process was labour-intensive, as we had to repeat-
edly copy-and-paste, wait for sledgehammer to finish
proving each goal, click to adopt the proofs, and manage
numerous files. As the number of conjuncts increased
beyond 100, this manual overhead became untenable.

Limitations of our initial solutions. As well as using
state-of-the-art hardware, we attempted several strategies
to save human time and remove redundancy.

We used Python scripts with regular expressions to
automate the insertion of new facts and goals. However,
this did not eliminate the manual effort required to adopt
sledgehammer proofs in each file.

We experimented with different proof script structures
to improve processing times. For example, we tried con-
solidating multiple “have...by...” commands with identi-
cal proofs (the “by” part) into a single chained command:

have fact0:guardRi
Σ

and fact1:ϕ1 Σ
and fact2:ϕ2 Σ
. . .
and factn:ϕn Σ by assumption+

where the + operator indicates that a proof method
is applied one or more times. However the “by
assumption+” line at the end of the chain took the
prover process of Isabelle an exceedingly long time to
interpret, as Isabelle seems to handle the “+” operator
super-linearly in this situation.

Despite these efforts, we still hit a scalability wall.
A significant factor contributing to this was the lim-

itations of Isabelle/jEdit, the mandatory interactive in-
terface of Isabelle. Isabelle/jEdit struggled to handle
multiple large theory files simultaneously due to their
size and complexity. Attempting to import all 60+ rule
files at once caused crashes. This instability prevented
us from processing the files concurrently, which would
have allowed us to adopt sledgehammer proofs more
efficiently. The sequential nature of our workflow sig-
nificantly increased the human time required for proof
development, as we could not leverage parallelism to
expedite the process.

Moreover, processing a single goal within a file could
be time-consuming, especially if the goal required addi-
tional proof strategies such as case analysis, intermediate
lemmas, or simplification with simp. It could take
several minutes or more to find a proof for one goal.

Another significant factor contributing to the scalabil-
ity wall was the necessity to delete conjuncts or make
changes to the transition system. This was necessary e.g.
on receiving comments from industry experts working on
the CXL specification, who sometimes clarified how our
interpretation of the specification text differed from their
intent. When removing a conjunct ϕi from the invariant

P , the impact was not confined to the single column
corresponding to ϕi in our obligation matrix. Since ϕi

could be referenced in proofs across various lemmas,
all cells in the matrix that relied on facti needed to be
re-examined and updated.

The combination of these factors made the manual
approach to proof maintenance impractical as the project
scaled, leaving little opportunity to focus on higher-level
aspects of the proof.

IV. THE SUPER_SKETCH TOOL

To address the scalability challenges outlined in Sec-
tion III, we developed super_sketch, a tool designed
to automate the generation of proofs with minimal
human intervention. We built super_sketch upon
Haftman’s sketch [14], which automatically gener-
ates an Isar [15] skeleton for a single lemma in Is-
abelle/HOL. However, super_sketch extends this
functionality significantly to handle more complex proof
strategies and integrate automated proof search tools
such as sledgehammer. We now present details of
super_sketch, and explain how it helped to eliminate
bottlenecks and allow our proofs to scale.

A. Main features of super_sketch

The tool automates the proof generation process
by applying various user-specified proof methods and
heuristics to each goal. It not only generates the proof
skeleton but also attempts to solve each subgoal using
a combination of proof tactics, automated provers, and
sledgehammer.

The super_sketch tool allows users to:

1) Specify initial proof methods: Apply an initial
proof method (e.g. intro conjI) to decompose
the main goal into subgoals.

2) Apply additional methods to subgoals: For
all subgoals, specify methods to simplify or
manipulate them. This can include tactics like
insert assms, cases and simp.

3) Specify methods to split and reduce complex
goals: Break down complex subgoals into smaller,
more manageable sub-subgoals using tactics like
cases and further simplify them using methods
like auto.

4) Invoke multiple instances of sledgehammer:
Automatically invoke sledgehammer to attempt
to automatically prove multiple (sub-)subgoal con-
currently.

5) Quickly identify unprovable goals: If a goal can-
not be proven automatically, super_sketch in-
serts a sorry placeholder together with a comment
indicating the failed proof attempt, highlighting that
manual intervention is required.

B. Workflow of super_sketch

A summary for super_sketch’s workflow is:

1) Initial goal processing First, parse the user-
supplied methods. There can be up to four
methods, which we denote as meth1 (the ini-
tial proof method), meth2 (the preprocessing
method), meth_split (the splitting method)
and meth_reduce (the reduction method). Each
method can itself be a composite method, built from
multiple child methods using method combinators
(such as Isabelle’s sequencing operator ”,”).
Second, apply meth1 (e.g. intro conjI) to
decompose the main goal into subgoals.

2) Concurrent proof text generation from each
subgoal For each subgoal, do the following:
First, apply the specified preprocessing
method meth2 to the subgoal (e.g. simp,
insert assms). If this succeeds, return “apply
meth2 done” as the proof text (meaning that
the method meth2 solves the goal in Isabelle),
otherwise proceed to call sledgehammer.
Second, invoke sledgehammer. If it succeeds,
return the proof text. If it fails, apply the user-
specified method meth_split to the subgoal
(e.g., cases) to produce sub-subgoals. Proceed to
process each of these sub-subgoals in the next step.

3) Sub-Subgoal Processing (for failed subgoals)
First, for all sub-subgoals resulting from
splitting, apply any specified reduction method
method_reduce. If all sub-subgoals have been
solved, return the text corresponding to all the
methods applied so far.
Second, for each remaining sub-subgoal: try to
prove the sub-subgoal using sledgehammer. If
successful, return sledgehammer’s proof text. If
not, return text indicating a failure to find a proof.
Finally, combine all sub-subgoals’ returned proofs
if they all succeeded. If any of the sledgehammer
calls failed, use placeholder text to indicate failed
proof. Return the combined (or failed) text.

4) Finalisation Assemble the proofs of all subgoals
(including those with sorry) into the Isar skeleton
to form the complete proof of the main goal. Then
output the generated proof script for adoption.

Sometimes methods that are complementary to and more
lightweight than sledgehammer can already solve or
simplify particular subgoals. For proofs containing many
subgoals, it is beneficial to apply these methods before
invoking sledgehammer. This motivates the inclusion
of meth2 (the preprocessing method) in our design.

The splitting and reduction methods, meth_split
and meth_reduce, are used to tackle harder but still
solvable subgoals. If sub-subgoals remain after applying

them, sledgehammer is invoked on all these sub-
subgoals, which can be more computationally intensive
than the initial invocation of sledgehammer. We have
found that the harder yet provable goals usually consti-
tute a small but significant percentage of all subgoals in
our use case. Given that processing these sub-subgoals
would take at least as much time when done manually,
incorporating this heavyweight step is justified.

C. Example usages of super_sketch

After inserting the super_sketch command and
it finished running, the proof text in markup format
is displayed on the Isabelle/jEdit output panel, which
the user can click to adopt. Figure 3 illustrates the
process of invoking and adopting the proof text from
super_sketch, showing the command required to
invoke super_sketch (top) and the result (bottom).

The text blocks highlighted in pink and purple are
newly-generated by super_sketch. In this example,
goalh required the processing of sub-subgoals.

With super_sketch we were able to generate the
vast majority of the proofs for our rule lemmas in
under half an hour each, covering over 700 conjuncts.
This translates to about one day to iterate through
the entire obligation matrix. Towards the end of the
development we found that each time we generated
the 50,000+ proofs, the number of subgoals for which
super_sketch failed to find a proof (such that human
intervention was required) was less than 100.

Additional applications of super_sketch Beyond
generating proofs for rule lemmas, super_sketch can
also facilitate the addition of new conjuncts by defining
conjunct lemmas. These lemmas state the proof of an
entire column of the obligation matrix, allowing us to
generate their proofs in a single step. For instance,
if we want to test whether the new proof obligations
introduced by adding the formula ϕn+1 to P can be
proven, we can invoke super_sketch with the same
set of arguments as in the previous example. This yields:

lemma ϕn+1_coherent:
assumes "P Σ ∧ ϕn+1"
shows "

∧m
i=1 ϕn+1 (fRi(Σ))"

proof -
have fact0 . . .
. . .
show ?thesis

proof (intro conjI)
show goal1: "ϕn+1(fR1Σ)" apply(insert

assms) Sledgehammer proof 1 using facts
from {fact0, . . . ,factn}
...

show goalm: "ϕn+1(fRiΣ)" Sledgehammer
proof n using facts from {fact0, . . . ,factn}

qed
qed

Before:
lemma Ri_coherent:

assumes "P Σ ∧ guardRi
Σ"

shows "P (fRi(Σ))"
proof -
have fact0 . . .
. . .
show ?thesis
super sketch3 (intro conjI) (insert
assms) (cases "Cachelines(Dev0)")
(auto)
qed

After:
lemma Ri_coherent:

assumes "P Σ ∧ guardRi
Σ"

shows "P (fRi(Σ))"
proof -
have fact0 . . .
. . .
show ?thesis

proof (intro conjI)
show goal1: "ϕ1(fRiΣ)" apply(insert

assms) Sledgehammer proof 1 using
facts from {fact0, . . . ,factn}

. . .
next
show goalh: "ϕh(fRiΣ)" apply(insert

assms) apply (cases "Cachelines(Dev0)")
apply (auto) Sledgehammer proofs for
sub-subgoals of h using facts from
{fact0, . . . ,factn} done

next
. . .
show goalk: "ϕk(fRiΣ)" sorry(*failed

to find proof in multi-steps*)
next
. . .
show goaln: "ϕn(fRiΣ)" Sledgehammer

proof n using facts from
{fact0, . . . ,factn}

qed
qed

Fig. 3. Proof script before and after invocation of super_sketch
and adopting super_sketch’s generated text

Since the number of proof obligations in a column (m)
is smaller than that in a row (n), super_sketch takes
significantly less time to generate proofs for a conjunct
lemma compared to a rule lemma, often completing in
minutes rather than tens of minutes. We sometimes batch
multiple conjuncts together and attempt to prove them in
a single lemma, further reducing the number of iterations
and saving human effort.

D. Limitations of super_sketch and mitigations

Despite the significant automation provided by
super_sketch, certain aspects prevent it from fully
automating the tedious parts of our proof development.

One limitation is that super_sketch occasion-
ally incorporates sledgehammer proofs that result in
errors or nontermination during proof-checking when
adopted into the proof script. This issue can arise due
to discrepancies between the proof context at runtime
when sledgehammer is invoked by super_sketch
and the proof context in an interactive session using
the actual Isar proof text. Ideally these contexts should
be identical, but in practice, slight differences can lead
to sledgehammer generating “bad proofs” that fail
or cause non-termination when used. When manually
using sledgehammer, the user can easily select an
alternative suggested proof that works. These problem-
atic proofs are not indicative of a soundness bug in
sledgehammer; rather, they suggest that a proof does
exist, but the particular proof text provided is unsuitable
for the goal in its current context.

This issue can be mitigated somewhat by the user
breaking down the assumptions of the theorem into
smaller named facts. However, this does not completely
eliminate the occurrence of broken proofs. This is a
problem in our use case, which requires immediately-
usable proof text if manual effort is to be avoided.

V. ENHANCEMENTS WITH SUPER_FIX

Before developing super_fix, we were constrained
in the number of iterations we could perform when revis-
ing the proof obligation matrix due to limited manpower.
During the later phases of our project, the inductive
invariant P had still not fully converged, so we set
ourselves an initial milestone of getting a meaningful
proof completed, even if this required weakening the
property being proven slightly.

Specifically, we modified the transition system by
adding additional predicates to rule Ri’s guard, making
it fire in a more restricted set of scenarios and thereby
eliminating certain complex concurrent situations from
consideration. This adjustment did not alter the overall
coherence property but simplified the invariant by reduc-
ing the number of cases we needed to handle.

Our modified transition system was identical to the
original, except for this strengthened rule. We then
proved that all reachable states under this strengthening,
from any initial state, satisfy the SWMR property.

Having achieved the milestone, we sought to drop
this simplification to obtain the desired full theorem. We
were uncertain about the amount of additional human
resources required to achieve this by manual effort.
Therefore, we concluded that an automated tool address-

ing the remaining scalability challenges in the proof was
necessary to manage our manpower efficiently.

We first identified the remaining automation chal-
lenges. The issues of sledgehammer generating in-
valid proofs or the need to fix broken goals—such
as when the transition system or invariant is updated,
as described in Section III—can often be efficiently
addressed by local fixes. By local, we mean fixes that
are usually confined within the proof of a single lemma
and can be derived from the current proof state.

The key idea of the new tool is to automate the process
of fixing a piece of almost-correct theory text in the
same way a human user would. By almost-correct, we
mean that the definitions, functions, and datatypes are
all valid—they do not raise error messages. For example,
consider an error raised due to a referenced lemma being
broken, a show statement in an Isar proof failing to refine
a goal, or a non-terminating one-liner proof.

A human proof engineer would open the Isabelle/jEdit
session on the theory file, scroll down to the point where
the error or looping occurs, and attempt to fix it. If the
issue can be resolved—for instance, by replacing the
proof text with alternative text—a fix is applied; if not,
a sorry is inserted to allow the processing to continue.
If a goal is incorrect, they would try to update the goal,
which is clearly displayed in the proof state.

Our new tool, super_fix, aims to emulate this
behavior, automating the process of detecting and fix-
ing such local errors, thereby significantly reducing the
manual effort required.

A. Utilising DeepIsaHOL to automate fixes

To implement this procedure, we leverage APIs from
the DeepIsaHOL codebase [16] for converting proof
scripts into Isabelle’s internal representations of proofs.
DeepIsaHOL is a project that provides infrastructure for
extracting and feeding data to Isabelle. It has a set of
APIs to manipulate terms, contexts, transitions, proof
states and other Isabelle data structures. These APIs
allow us, for example, to easily turn an arbitrary string
into the corresponding proof command.

We use DeepIsaHOL APIs to directly access the data-
carrying states s of Isabelle’s script-checking algorithm.
In Isabelle/ML, the type Toplevel.state represents
these states. Among other things, they carry theory in-
formation (e.g. imported theorems), context information
(e.g. current user configuration) and, when proving, a
proof’s proof states. Isabelle’s official constructs for ma-
nipulating these states are top-level transitions τ . At the
user level, these correspond to the script’s commands and
their arguments (e.g. apply auto or have "F x = y").
Intuitively, one can view them as functions f mapping
a Toplevel.state si to the next one si+1 with op-
tional error messages εi+1 if the transition was not mean-

ingful. Thus, we extensively use DeepIsaHOL’s methods
to parse a .thy file and convert it into a finite sequence
⟨τi⟩i∈I of Isabelle Toplevel.transitions. Since
the top-level states carry the proof states, if a transition
τi fails with an error εi+1 inside a proof, we can inspect
the error, backtrack, and apply a different and correct
transition τ ′i based on the type of error reported.

We mainly focus on three types of errors: non-
terminating proofs, goal alignment errors, and incorrect
applications of proof methods. We explain their rele-
vance below and our procedures for fixing them.

B. Detecting and handling non-terminating proofs

The type of error that needs to be prioritised is
non-terminating or looping proofs, which we use to
refer to lines in the proof script that take an indefinite
amount of time to process. Visually this is shown on
the interactive editor as lines constantly marked with a
purple background, indicating that the PIDE is not done
processing them. Looping proofs are often caused on
lines that use automated provers or SMT solvers. For
instance, the auto prover can loop because of recursive
applications of equalities or introduction rules.

Looping errors lead to bottlenecks that prevent the
fixing of other errors because processing tools get stuck
on them. A human user would resolve a looping error by
calling sledgehammer at the position of the looping
line and adopting a new proof that works. If the user is
confident that a proof exists, they may simply declare
the subgoal as true with a sorry so that they can move
on to fix other parts and complete that step later.

We approximate this behaviour programmatically by
applying the script’s top-level transitions τi with time-
outs. We sequentially compute the top-level states si for
each top-level transition τi. If τi corresponds to a tactic
application containing a potentially loop-prone method,
we time its application. Then, if the application does not
produce a new state after 90 seconds, we replace τi with
a sorry. Either way, we retrieve the new state si+1 and
continue processing the script.

We do not fix sorrys immediately to ensure progress
for upcoming transitions—since sledgehammer’s
newly-generated proofs may still loop, it may hinder
producing any intermediate results. We instead construct
a first version ⟨τi⟩i∈I of the fixed proof script with
some sorry placeholders, and then substitute them with
sledgehammer proofs in a second pass.

For timing transitions, we take advantage of Is-
abelle/ML’s Future library for multi-threaded com-
putations. For a loop-prone transition τi, we create a
new (Isabelle process) child thread (via Future.fork)
in charge of applying the transition τi to state si.
From the parent process, we time this child ev-
ery (OS) 100 milliseconds, and await a result from

this computation (of type ’a Future.future). If
there is one (Future.is_finished), we extract
it (Future.get_result), otherwise we cancel the
child thread (Future.cancel) and report a timeout
error, which triggers our algorithm to insert a sorry.

C. Handling misaligned proof obligation errors

After a definition modification or an edition of a proof
script, some assertions in the proof must change. If this
is not addressed, it can reverberate further downstream
in the proof, potentially generating infinite loops. Fortu-
nately, Isabelle warns the user when a goal asserted in a
transition τi does not coincide with the proof obligation
obli truly required to complete the proof. This is reported
in the error εi+1 as: “Failed to refine any pending goal”.
Notice that the previous state si contains the real proof
obligation obli. Thus, while processing the sequences of
transitions ⟨τi⟩i∈I , we can detect if the script produces
an incorrect transition by inspecting εi+1. If it does,
we extract obli from si, generate a transition τ ′i with it
(e.g. via show "obli"), and apply it to si. Then we can
continue processing the original script, and use our other
error-correction methods to fix the probably incorrect
upcoming method applications.

D. Handling incorrect proof method application

If there is no timeout, but the proof method in a transi-
tion τi still fails, Isabelle has various messages that could
be reported in εi+1, such as “Illegal application. . . in state
mode” or “Failed to apply proof method”. These errors
can be consequences of previous fixes from our tool. The
first arises when the script attempts a proof method in an
already certified step. The second one emerges when the
attempted proof method fails and it may arise due to our
tools’ modification of a proof obligation. In the first case,
we simply delete the redundant τi. In the second case, we
call sledgehammer to find a correct proof method. If
it does, we replace τi with the sledgehammer-found
one. Otherwise, we write a sorry, indicating that the
user needs to look into that proof step.

E. Prioritising upstream error fixes

Often lines directly above an error in the proof script
were causing the subsequent errors or loops. We want
the tool to automatically generate those fixes if possible,
and carry on with processing the file as if the fix has
been integrated. By prioritizing the repair of root errors,
we resolve multiple errors at once.

VI. MANUAL EFFORT SAVED: SOME STATISTICS

While it is impossible to calculate the exact amount
of manual effort saved thanks to super_sketch and
super_fix, due to these tools being developed via a
gradual, non-uniform process, we summarise with some
data points how super_sketch and super_fix

reduced the burden of manual proof maintenance and
kept our verification manageable.

A hybrid of scripting and manual effort produced 68
.thy files (one per rule) with 777 goals each. After
using super_sketch, 18 files contained unfinished
proofs. Out of these, 13 contained at most 2 unfinished
proofs, while the remaining had 14, 10, 6, 6, and 4 errors.
Then, after our fix iteration with super_fix, only 9
files remained with errors, 1 per each. A second re-
finement with super_fix completed the proof. These
super_fix numbers are an under-approximation of
the total errors fixed since some of the non-terminating
proof-error are not recorded in the processing log.

VII. RELATED WORK

Automation tools have been extensively used to enable
and accelerate the development of mechanized proofs
in various ITPs [17], [18], [19], [20]. In Isabelle/HOL,
sledgehammer [5], [21], [22], [20], [23], [24] notably
integrates automated theorem provers with the proof as-
sistant. This integration has been instrumental in making
our work possible. Although other ITPs do not share
proof search tools as powerful as sledgehammer, the
ideas behind super_sketch and super_fix also
serve for proof-engineering automation in other ITPs.
Large parts of the capabilities of super_sketch do
not rely on sledgehammer but rather a solver that can
automatically discharge simple goals. Any automation
utilities in other ITPs can be encapsulated as we have
done for simp and auto.

There are other tools that do not directly rely on
external provers or SMT solvers, improve the proof-
engineering efficiency, and automate tedious proof-
maintenance tasks. Eisbach [25] is an Isabelle-based
proof method language that allows users to build com-
plex proof methods from simpler ones, supporting ab-
straction, recursion, and pattern matching. Matichuk
et al. [26] have demonstrated that applying Eisbach
can reduce proof script sizes to a fraction of their
original implementation in certain sections of practical
formalisations such as seL4 [6]. Eisbach could reduce
code duplication in our formalisation by encapsulating
frequently used compound proof methods leading to
better proof automation in our work.

Smart Isabelle [27], [28], [29], [30] is a suite of
tools that leverages sledgehammer and other auto-
mated provers to find proofs for harder theorems than
a single sledgehammer call can handle. These tools
use clever heuristics that exploit the syntactic struc-
ture of problems, especially for induction problems.
Its most resource-intensive tool, tryhard, provides
Isabelle users with a command that generates proof text
by automatically searching through multiple intermediate
steps. During the development of our formalisation,

we employed tryhard as a stronger alternative to
sledgehammer, which generates proofs for a single
subgoal similar to the sub-subgoal processing triggered
in super_sketch. However, tryhard proved to be
overly resource-intensive and therefore unsuitable for the
number of subgoals in our use case. Nevertheless, it
inspired us to develop the sub-subgoal processing step
in our super_sketch tool.

Controlled automation [31] is a tactic developed in
HOL4 [32] to enhance the productivity of proof en-
gineers and reduce the verbosity of proof scripts. It
allows the user to provide minimal guidance to the prover
via a mechanism called hints, and precisely control the
modifications to assumptions and goals.

We have chosen to use Isabelle for its expressivity,
flexibility and small trusted kernel. Our initial conjecture
was that starting with two devices would allow us to
scale better and obtain quick initial results, which we
could generalise to arbitrary many devices. In ongoing
work we are investigating this parametrisation. It would
be interesting to export the model (in its two-device
form) to more automated tools like IC3 [33], Murphi [34]
and IVy [35] and compare the results.

VIII. FUTURE WORK

We wish to make super_sketch more generally
applicable by enabling the automatic usage of proof
methods such as term-accepting induction tactics. This
enhancement would allow users to avoid manually in-
putting heuristics, specially for induction proofs.

We also aim to extend super_fix’s capabilities
by incorporating more sophisticated proof repair tech-
niques [19]. This would allow it to fix proofs consider-
ably different from their previous iterations.

Incorporating all our tools and scripts into a single
and fully automated pipeline would improve the over-
all approach. A tighter integration of solvers (possibly
bypassing sledgehammer) with the ITP is needed to
make such a pipeline efficient for large verifications.

Finally, we intend to extend our CXL model to support
more devices and memory locations. It currently has
three devices and a single memory location. While this
is sufficient for verifying cache coherence, supporting
more devices and locations is essential for tasks such as
litmus testing and other memory consistency verification
tasks. We expect to reuse the existing proof infrastruc-
ture, adapting the proofs to newer versions with more
components, using super_sketch and super_fix
to iterate and progress with less human effort.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable
feedback. This work was supported by EPSRC grant
EP/R006865/1 and a Horizon MCSA 2022 Postdoctoral
Fellowship (project number 101102608).

REFERENCES

[1] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL -
A Proof Assistant for Higher-Order Logic, ser. Lecture Notes
in Computer Science. Springer, 2002, vol. 2283. [Online].
Available: https://doi.org/10.1007/3-540-45949-9

[2] Y. Bertot and P. Castéran, Interactive Theorem Proving and
Program Development - Coq’Art: The Calculus of Inductive
Constructions, ser. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004. [Online]. Available:
https://doi.org/10.1007/978-3-662-07964-5

[3] L. M. de Moura, S. Kong, J. Avigad, F. van Doorn,
and J. von Raumer, “The Lean theorem prover (system
description),” in Automated Deduction - CADE-25 - 25th
International Conference on Automated Deduction, Berlin,
Germany, August 1-7, 2015, Proceedings, ser. Lecture Notes
in Computer Science, A. P. Felty and A. Middeldorp, Eds.,
vol. 9195. Springer, 2015, pp. 378–388. [Online]. Available:
https://doi.org/10.1007/978-3-319-21401-6 26

[4] Agda Developers, “Agda,” accessed: 2025-02-03. [Online].
Available: https://agda.readthedocs.io/

[5] J. C. Blanchette, S. Böhme, and L. C. Paulson, “Extending
Sledgehammer with SMT solvers,” J. Autom. Reason., vol. 51,
no. 1, pp. 109–128, 2013. [Online]. Available: https://doi.org/
10.1007/s10817-013-9278-5

[6] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. A. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish,
T. Sewell, H. Tuch, and S. Winwood, “seL4: formal verification
of an OS kernel.” in Proceedings of the 22nd ACM Symposium
on Operating Systems Principles 2009, SOSP 2009, Big Sky,
Montana, USA, October 11-14, 2009, J. N. Matthews and T. E.
Anderson, Eds. ACM, 2009, pp. 207–220. [Online]. Available:
https://doi.org/10.1145/1629575.1629596

[7] X. Leroy, “Formal verification of a realistic compiler,” Commun.
ACM, vol. 52, no. 7, pp. 107–115, 2009. [Online]. Available:
https://doi.org/10.1145/1538788.1538814

[8] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens,
“CakeML: a verified implementation of ML,” in The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, San Diego, CA,
USA, January 20-21, 2014, S. Jagannathan and P. Sewell,
Eds. ACM, 2014, pp. 179–192. [Online]. Available: https:
//doi.org/10.1145/2535838.2535841

[9] C. Tan, A. F. Donaldson, and J. Wickerson, “Formalising CXL
cache coherence,” in Proceedings of the 30th ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2025. ACM, 2025,
to appear.

[10] CXL Consortium, “Compute Express Link Specification,
Revision 3.1,” 2023, accessed: 2025-02-03. [Online].
Available: https://computeexpresslink.org/wp-content/uploads/
2024/02/CXL-3.1-Specification.pdf

[11] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood, A
Primer on Memory Consistency and Cache Coherence, Second
Edition, ser. Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, 2020. [Online]. Available:
https://doi.org/10.2200/S00962ED2V01Y201910CAC049

[12] M. S. Papamarcos and J. H. Patel, “A low-overhead coherence
solution for multiprocessors with private cache memories,”
in Proceedings of the 11th Annual Symposium on Computer
Architecture, Ann Arbor, USA, June 1984, D. P. Agrawal,
Ed. ACM, 1984, pp. 348–354. [Online]. Available: https:
//doi.org/10.1145/800015.808204

[13] C. Tan, “CXLCoherenceProof GitHub repository,” 2023,
accessed: 2025-02-04. [Online]. Available: https://github.com/
ChengsongTan/CXLCoherenceProof

[14] F. Haftmann, “The Sketch and Explore library,” 2023, accessed:
2025-02-04. [Online]. Available: https://isabelle.in.tum.de/dist/
library/HOL/HOL-ex/Sketch and Explore.html

[15] M. Wenzel and L. C. Paulson, “Isabelle/Isar,” in The
Seventeen Provers of the World, Foreword by Dana S. Scott,
ser. Lecture Notes in Computer Science, F. Wiedijk, Ed.

Springer, 2006, vol. 3600, pp. 41–49. [Online]. Available:
https://doi.org/10.1007/11542384 8

[16] J. J. Huerta y Munive, “DeepIsaHOL,” Nov. 2023, accessed:
2025-02-04. [Online]. Available: https://github.com/yonoteam/
DeepIsaHOL

[17] LeanProver Community, “Lean-auto,” 2024, ac-
cessed: 2025-02-04. [Online]. Available: https://github.com/
leanprover-community/lean-auto

[18] F. Lindblad and M. Benke, “A tool for automated theorem
proving in Agda,” in Types for Proofs and Programs,
International Workshop, TYPES 2004, Jouy-en-Josas, France,
December 15-18, 2004, Revised Selected Papers, ser. Lecture
Notes in Computer Science, J. Filliâtre, C. Paulin-Mohring,
and B. Werner, Eds., vol. 3839. Springer, 2004, pp. 154–169.
[Online]. Available: https://doi.org/10.1007/11617990 10

[19] T. Ringer, R. Porter, N. Yazdani, J. Leo, and D. Grossman, “Proof
repair across type equivalences,” in Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language
Design and Implementation, ser. PLDI 2021. New York, NY,
USA: Association for Computing Machinery, 2021, p. 112–127.
[Online]. Available: https://doi.org/10.1145/3453483.3454033

[20] L. C. Paulson and K. W. Susanto, “Source-level proof
reconstruction for interactive theorem proving,” in Theorem
Proving in Higher Order Logics, 20th International Conference,
TPHOLs 2007, Kaiserslautern, Germany, September 10-13,
2007, Proceedings, ser. Lecture Notes in Computer Science,
K. Schneider and J. Brandt, Eds., vol. 4732. Springer,
2007, pp. 232–245. [Online]. Available: https://doi.org/10.1007/
978-3-540-74591-4 18

[21] J. Meng and L. C. Paulson, “Experiments on supporting
interactive proof using resolution,” in Automated Reasoning
- Second International Joint Conference, IJCAR 2004, Cork,
Ireland, July 4-8, 2004, Proceedings, ser. Lecture Notes in
Computer Science, D. A. Basin and M. Rusinowitch, Eds.,
vol. 3097. Springer, 2004, pp. 372–384. [Online]. Available:
https://doi.org/10.1007/978-3-540-25984-8 28

[22] J. Meng, C. Quigley, and L. C. Paulson, “Automation
for interactive proof: First prototype,” Inf. Comput., vol.
204, no. 10, pp. 1575–1596, 2006. [Online]. Available:
https://doi.org/10.1016/j.ic.2005.05.010

[23] J. Meng and L. C. Paulson, “Lightweight relevance filtering
for machine-generated resolution problems,” J. Appl. Log.,
vol. 7, no. 1, pp. 41–57, 2009. [Online]. Available: https:
//doi.org/10.1016/j.jal.2007.07.004

[24] ——, “Translating higher-order clauses to first-order clauses,”
J. Autom. Reason., vol. 40, no. 1, pp. 35–60, 2008. [Online].
Available: https://doi.org/10.1007/s10817-007-9085-y

[25] D. Matichuk, M. Wenzel, and T. C. Murray, “An isabelle
proof method language,” in Interactive Theorem Proving - 5th
International Conference, ITP 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, ser. Lecture Notes in Computer Science, G. Klein
and R. Gamboa, Eds., vol. 8558. Springer, 2014, pp. 390–405.
[Online]. Available: https://doi.org/10.1007/978-3-319-08970-6
25

[26] D. Matichuk, T. C. Murray, and M. Wenzel, “Eisbach: A
proof method language for Isabelle,” J. Autom. Reason.,
vol. 56, no. 3, pp. 261–282, 2016. [Online]. Available:
https://doi.org/10.1007/s10817-015-9360-2

[27] Y. Nagashima, “Faster smarter proof by induction in
Isabelle/HOL,” in Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021,
Virtual Event / Montreal, Canada, 19-27 August 2021,
Z. Zhou, Ed., 2021, pp. 1981–1988. [Online]. Available:
https://doi.org/10.24963/ijcai.2021/273

[28] ——, “SeLFiE: Modular semantic reasoning for induction in
Isabelle/HOL,” CoRR, vol. abs/2010.10296, 2020. [Online].
Available: https://arxiv.org/abs/2010.10296

[29] ——, “Smart induction for Isabelle/HOL (tool paper),” in
2020 Formal Methods in Computer Aided Design, FMCAD
2020, Haifa, Israel, September 21-24, 2020. IEEE, 2020,

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-21401-6_26
https://agda.readthedocs.io/
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.1-Specification.pdf
https://computeexpresslink.org/wp-content/uploads/2024/02/CXL-3.1-Specification.pdf
https://doi.org/10.2200/S00962ED2V01Y201910CAC049
https://doi.org/10.1145/800015.808204
https://doi.org/10.1145/800015.808204
https://github.com/ChengsongTan/CXLCoherenceProof
https://github.com/ChengsongTan/CXLCoherenceProof
https://isabelle.in.tum.de/dist/library/HOL/HOL-ex/Sketch_and_Explore.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-ex/Sketch_and_Explore.html
https://doi.org/10.1007/11542384_8
https://github.com/yonoteam/DeepIsaHOL
https://github.com/yonoteam/DeepIsaHOL
https://github.com/leanprover-community/lean-auto
https://github.com/leanprover-community/lean-auto
https://doi.org/10.1007/11617990_10
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1007/978-3-540-74591-4_18
https://doi.org/10.1007/978-3-540-74591-4_18
https://doi.org/10.1007/978-3-540-25984-8_28
https://doi.org/10.1016/j.ic.2005.05.010
https://doi.org/10.1016/j.jal.2007.07.004
https://doi.org/10.1016/j.jal.2007.07.004
https://doi.org/10.1007/s10817-007-9085-y
https://doi.org/10.1007/978-3-319-08970-6_25
https://doi.org/10.1007/978-3-319-08970-6_25
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.24963/ijcai.2021/273
https://arxiv.org/abs/2010.10296

pp. 245–254. [Online]. Available: https://doi.org/10.34727/2020/
isbn.978-3-85448-042-6 32

[30] ——, “Towards united reasoning for automatic induction in
Isabelle/HOL,” in The Japanese Society for Artificial Intelligence
34th Annual Conference (JSAI), online, 2020. [Online].
Available: https://doi.org/10.11517/pjsai.JSAI2020.0 3G1ES103

[31] E. Kang and M. D. Aagaard, “Improving the usability
of HOL through controlled automation tactics,” in Theorem
Proving in Higher Order Logics, 20th International Conference,
TPHOLs 2007, Kaiserslautern, Germany, September 10-13,
2007, Proceedings, ser. Lecture Notes in Computer Science,
K. Schneider and J. Brandt, Eds., vol. 4732. Springer,
2007, pp. 157–172. [Online]. Available: https://doi.org/10.1007/
978-3-540-74591-4 13

[32] HOL4 Development Team, “HOL4,” 2024, accessed: 2025-01-
27. [Online]. Available: https://hol-theorem-prover.org

[33] A. R. Bradley, “SAT-based model checking without unrolling,”
in Verification, Model Checking, and Abstract Interpretation
- 12th International Conference, VMCAI 2011, Austin, TX,

USA, January 23-25, 2011. Proceedings, ser. Lecture Notes
in Computer Science, R. Jhala and D. A. Schmidt, Eds.,
vol. 6538. Springer, 2011, pp. 70–87. [Online]. Available:
https://doi.org/10.1007/978-3-642-18275-4 7

[34] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang,
“Protocol verification as a hardware design aid,” in Proceedings
1992 IEEE International Conference on Computer Design:
VLSI in Computer & Processors, ICCD ’92, Cambridge, MA,
USA, October 11-14, 1992. IEEE Computer Society, 1992,
pp. 522–525. [Online]. Available: https://doi.org/10.1109/ICCD.
1992.276232

[35] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham,
“Ivy: safety verification by interactive generalization,” in
Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, C. Krintz
and E. D. Berger, Eds. ACM, 2016, pp. 614–630. [Online].
Available: https://doi.org/10.1145/2908080.2908118

https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_32
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_32
https://doi.org/10.11517/pjsai.JSAI2020.0_3G1ES103
https://doi.org/10.1007/978-3-540-74591-4_13
https://doi.org/10.1007/978-3-540-74591-4_13
https://hol-theorem-prover.org
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1109/ICCD.1992.276232
https://doi.org/10.1109/ICCD.1992.276232
https://doi.org/10.1145/2908080.2908118

	Introduction
	Background: CXL and the SWMR Property
	CXL and cache coherence
	An overview of our model

	The Scalability Challenges
	The super_sketch Tool
	Main features of super_sketch
	Workflow of super_sketch
	Example usages of super_sketch
	Limitations of super_sketch and mitigations

	Enhancements with super_fix
	Utilising DeepIsaHOL to automate fixes
	Detecting and handling non-terminating proofs
	Handling misaligned proof obligation errors
	Handling incorrect proof method application
	Prioritising upstream error fixes

	Manual effort saved: some statistics
	Related Work
	Future Work
	References

