
When You Have a Fuzzer, Everything Looks Like a
Reachability Problem

Alastair F. Donaldson[0000−1111−2222−3333], Cristian Cadar[0000−0002−3599−7264],
Manuel Carrasco[0000−0003−2477−2163], Dan Iorga[0000−0002−2313−7910],

Dan Liew[0009−0001−7602−7707], and John Wickerson[0000−0001−6735−5533]

Imperial College London, London, UK⋆

Abstract. We provide an overview of three projects that explore the idea of
using coverage-guided fuzzing, a technique traditionally used for finding bugs in
software, in unconventional domains: (1) efficiently solving SMT formulas that
use floating-point constraints; (2) achieving fast SMT sampling for such formulas;
and (3) simulating operational memory models. In each case, the idea is to reduce
the problem at hand into a reachability problem: transforming a problem instance
into a program equipped with a special error location, such that finding an input
that reaches the error location equates to finding a solution to the problem instance.
Coverage-guided fuzzing, which excels at mutating a corpus of inputs to achieve
increasing statement coverage of a system under test, can then be used to search
for an input that reaches the error location—i.e., for a solution to the problem
instance. We hope this overview will inspire other researchers to consider recasting
search problems into a reachability problem form where coverage-guided fuzzing
may prove effective.

Keywords: Coverage-guided fuzzing, constraint solving, floating point, memory
models

1 Introduction

Coverage-guided mutation-based fuzzing is a randomised testing technique for automati-
cally finding software bugs, and has been widely adopted through tools such as AFL [36],
AFL++ [14] and libFuzzer [25]. Building on the basic idea of fuzzing—testing a software
system on randomised inputs [28]—coverage-guided mutation-based fuzzing is a search-
based test case generation technique [3], using ideas from evolutionary algorithms [18]
to guide the randomised testing process.

The technique starts with a corpus of seed inputs: inputs that already exercise
the software under test (SUT) to some extent. Further inputs are then obtained by
mutating and combining existing inputs drawn from the corpus. This is what makes the
technique “mutation-based”, and the hypothesis behind mutation-based fuzzing is that

⋆ This invited paper is associated with Alastair Donaldson’s invited talk at RP 2025. The other
authors are the main authors of the three existing papers on which this overview paper is
based [8, 21, 26] and are listed alphabetically. Imperial College London was the affiliation of all
authors when they contributed to these papers.

2 A.F. Donaldson et al.

inputs obtained via mutation are more likely to further exercise the SUT compared with
inputs generated from scratch in a naïve manner.

To decide whether a mutated input is interesting enough to be added to the corpus
(so that it will be considered for further mutation), a check is made to see whether the
input covers code in the SUT that is not covered by any existing input in the corpus.
Intuitively, favouring inputs that reach new parts of the SUT is a good strategy for
guiding the fuzzing process towards finding bugs. This use of coverage information is
what makes the technique “coverage-guided”. In the context of evolutionary algorithms,
code coverage is used as a measure of fitness.

The raison d’être of coverage-guided mutation-based fuzzing (henceforth referred
to as coverage-guided fuzzing for brevity) is to find bugs that cause a program to crash.
The technique has been very successful in this regard: ClusterFuzz, Google’s continuous
fuzzing infrastructure for Chrome [17], and OSS-Fuzz [35], a deployment of ClusterFuzz
targeting open-source projects, are reported to have found tens of thousands of bugs [17].

However, from a more abstract viewpoint, coverage-guiding fuzzing can be seen
as a technique for solving program reachability problems: a coverage-guided fuzzer
demonstrates that a program can crash by synthesising an input that reaches an error
location. With this viewpoint it is interesting to consider applications of coverage-guided
fuzzing to reachability programs that go beyond finding bugs in programs, by dressing
up said reachability problems as bug-finding problems.

In this invited paper we survey three pieces of work from the authors that leverage
coverage-guided fuzzing for other kinds of reachability problems:

1. JFS, where coverage-guided fuzzing is used to find solutions to SMT formulas that
feature floating-point constraints [26] (Section 2).

2. JFSAMPLER, an extension to JFS concerned with SMT sampling—finding a diverse
range of solutions to an SMT formula [8] (Section 3).

3. A project on the use of program analysis tools—including coverage-guided fuzzing—
for the simulation of operational memory models, to determine whether behaviours
of concurrent programs characterised by litmus tests are allowed according to a
given memory model [21] (Section 4).

We with a discussion of the conditions under which coverage-guided fuzzing may
be an effective reachability analysis in these application domains, and the pros and
cons of other program reachability analyses (Section 5). Key related work is discussed
throughout, and we refer the reader to the related work sections of the original papers on
these projects for a broader discussion of relevant literature [8, 21, 26].

Relationship to existing papers. The article draws on material from the original papers
about these works [8, 21, 26]. The authors of the relevant material are also authors on
this article and the material is reused here with their consent.

2 Just Fuzz It: Solving Floating-Point SMT Formulas

Satisfiability modulo theories (SMT) solvers have found application in many domains
including software testing and software verification (see e.g. [5, 7, 9, 15, 16, 23, 24, 31]).

When You Have a Fuzzer, Everything Looks Like a Reachability Problem 3

1 (declare-fun a () Float64)
2 (declare-fun b () Float64)
3 (define-fun div_rne () Float64 (fp.div RNE a b))
4 (define-fun div_rtp () Float64 (fp.div RTP a b))
5 (assert (not (fp.isNaN a)))
6 (assert (not (fp.isNaN b)))
7 (assert (not (fp.isNaN div_rne)))
8 (assert (not (fp.isNaN div_rtp)))
9 (assert (not (fp.eq div_rne div_rtp)))

10 (check-sat)

Fig. 1: Example QF_FP formula

1 int FuzzOneInput(const uint8_t* data, size_t size) {
2 double a = makeFloatFrom(data, size, 0, 63);
3 double b = makeFloatFrom(data, size, 64, 127);
4 if (!isnan(a)) {} else return 0;
5 if (!isnan(b)) {} else return 0;
6 double a_b_rne = div_rne(a, b);
7 double a_b_rtp = div_rtp(a, b);
8 if (!isnan(a_b_rne)) {} else return 0;
9 if (!isnan(a_b_rtp)) {} else return 0;

10 if (a_b_rne != a_b_rtp) {} else return 0;
11 abort(); // TARGET REACHED
12 }

Fig. 2: C++ program generated by JFS for Figure 1 using the fail-fast encoding

For example, symbolic execution techniques involve gathering the constraints on a
program input that must hold for the program to reach a given location or trigger a
particular error, and then using an SMT solver to solve for inputs that satisfy these
constraints [7, 15, 16, 31].

A limitation to the utility of SMT solvers in these domains can be a lack of scalability;
e.g. solver timeouts cause symbolic executors to grind to a halt and lead to inclusive
results from program verifiers. Scalability is a particular problem when reasoning about
formulas that use the floating-point SMT theory (QF_FP) [33] or the combination of
floating-point and bitvector theories (QF_BVFP), to the extent that it can be impractical to
apply SMT-based analysis methods to numeric applications that operate on floating-point
numbers [27].

The limited scalability of floating-point SMT solvers inspired the first project that
we survey here: the Just Fuzz It Solver (JFS).

Overview of JFS. The idea behind JFS is to transform the problem of finding a satisfying
assignment to an SMT formula into a program reachability problem. Specifically, JFS
transforms an SMT formula into a program such that (1) a program input corresponds to
an assignment to the free variables of the formula, and (2) the program contains a special
target statement that is reachable if and only if the input corresponds to a satisfying
assignment to the formula.

A coverage-guided fuzzer aims to find inputs that maximise coverage, so when
applied to this program it will search relentlessly for an input that reaches the target
statement, i.e. for a satisfying assignment to the formula. The hypothesis behind JFS

4 A.F. Donaldson et al.

is that this technique may sometimes be able to rapidly find satisfying assignments
for formulas that are challenging for general-purpose solvers, such as floating-point
formulas. However, JFS is incomplete: for an unsatisfiable formula the target statement
is unreachable, thus coverage-guided fuzzing will run indefinitely, never finding an
error-triggering input. We envision that JFS would be run in parallel with a complete
solver as part of a portfolio.

JFS requires that the input formula is presented as a conjunction of assertions. Given
the conjunction, JFS generates a C++ program that takes an assignment to the free
variables of the formula as input. The program evaluates the formula on the assignment
by evaluating the top-level conjuncts in turn. By construction, the program crashes if
and only if all of the conjuncts are satisfied—i.e. if the input is a satisfying assignment.
JFS then uses libFuzzer to automatically search for an input that triggers a crash—i.e.
for a satisfying assignment.

Example. As an illustration of this idea, consider the example constraints in Listing 1,
shown in SMT-LIB format. Free variables a and b of type Float64 are declared on
lines 1 and 2 respectively. On lines 3 and 4, variables div_rne and div_rtp are
defined to be the division of a by b using the rounding to nearest, ties to even (RNE) and
rounding toward positive infinity (RTP) rounding modes, respectively. The satisfiability
problem captured by the example is the conjunction of the constraints specified in the
five assert statements. The first four constraints state that none of a, b, div_rne
and div_rtp are NaN; the last states that div_rne is not equal to div_rtp.

A possible translation of these constraints into a C++ program is shown in Listing 2.
The program is a fuzz target for libFuzzer (with some details omitted for brevity). The
guard of each if statement corresponds to a constraint. The fuzzer will repeatedly call
FuzzOneInput (line 1), each time passing an input of size bytes via the data
buffer. If the abort() statement is reached (line 11), causing the program to crash,
the input corresponds to a satisfying assignment and JFS terminates and returns SAT.
Otherwise, the fuzzer proceeds to try another input.

Further details and results. Before transforming a formula into a program, JFS
performs a number of simplification and rewriting passes to make the formula more
amenable to coverage-guided fuzzing. One such rewrite step involves splitting a top-level
and constraint (appearing directly under assert) into two separate constraints (via two
distinct assert commands). This leads to the resulting C++ program having a distinct
location associated with the satisfaction of each conjunct, so that the coverage-guided
fuzzer is rewarded separately for finding inputs that satisfy each conjunct.

We experimented with two different program encodings: fail-fast, where the fuzz
target exits as soon as it is found that the current input does not satisfy some constraint
of the formula, illustrated by Figure 2, and try-all, which evaluates all constraints of
the formula even if some constraints are found not to hold, illustrated by Figure 3. We
hypothesised that try-all would provide a stronger coverage signal that might outweigh
the additional cost associated with redundantly evaluating further constraints once a
constraint has been found not to hold. However, in practice we found that fail-fast was
significantly more efficient.

Since coverage-guided fuzzing needs an input corpus, JFS provides smart seeds
featuring special constant values such as infinities, zeros and NaNs [26].

When You Have a Fuzzer, Everything Looks Like a Reachability Problem 5

1 int FuzzerTestOneInput(const uint8_t* data, size_t size) {
2 double a = makeFloatFrom(data, size, 0, 63);
3 double b = makeFloatFrom(data, size, 64, 127);
4 size_t counter = 0;
5 if (!isnan(a)) ++counter;
6 if (!isnan(b)) ++counter;
7 double a_b_rne = div_rne(a, b);
8 double a_b_rtp = div_rtp(a, b);
9 if (a_b_rne != a_b_rtp) ++counter;

10 if (!isnan(a_b_rne)) ++counter;
11 if (!isnan(a_b_rtp)) ++counter;
12 if (counter != 5)
13 return 0;
14 abort(); // TARGET REACHED
15 }

Fig. 3: C++ program generated by JFS for Figure 1 using the try-all encoding

An evaluation over benchmarks drawn SMT-COMP suites with respect to state-
of-the-art solvers at the time of the project showed JFS to be highly competitive on
QF_FP and QF_BVFP benchmarks (formulas that use the floating-point theory or the
combination of floating-point and bitvector theories, respectively), but uncompetitive
on QF_BV benchmarks (which only use the bitvector theory). The results support the
idea that JFS could be used to help unblock the search for satisfying assignments in
the presence of floating-point constraints. The evaluation also confirmed that coverage
guidance is an important contributor to the success of JFS: results for a version of the
tool where coverage guidance is disabled show markedly worse results.

JFS only supports the combination of bitvector and floating-point theories, but the
idea of encoding SMT solving as a program reachability problem to be solved using
fuzzing should be straightforward to adapt to other finite-domain SMT theories.

3 JFSAMPLER: Efficient Floating-Point SMT Sampling

Traditional SMT solvers aim to find a single satisfying assignment for a satisfiable
formula, but in some application domains it can be useful to obtain a diverse range
of satisfying assignments for a formula; e.g. in software testing there is evidence that
symbolic execution can benefit from retrieving multiple solutions from the constraints
instead of exploring multiple paths from a certain program point [19].

In large, configurable systems, such as operating systems or web development
frameworks, it is often useful to generate a small but representative set of valid build
or deployment configurations for testing [30]. In hardware design, it is often useful to
generate multiple stimuli that meet the preconditions of a functional specification, and
then compare the resulting outputs with those of the hardware’s logic design before the
design becomes silicon [13, 29].

In response to this, recent work has focused on SAT and SMT sampling techniques
that find large sets of satisfying assignments for a formula, attempting to provide reason-
able coverage of the formula’s solution space [11–13].

The difficulty of scaling SMT solvers in the floating point domain (see Section 2)
means that SMT sampling techniques such as SMTSAMPLER [12], which rely on using

6 A.F. Donaldson et al.

an existing SMT solver as a source of initial satisfying assignments, are also limited in
this domain. In response to this we designed JFSAMPLER, an SMT sampling technique
based on JFS geared towards efficient sampling for floating-point formulas [8].

Overview of JFSAMPLER. The basic idea behind JFSAMPLER is to take the JFS
approach of encoding the search for a satisfying assignment as the problem of finding
an input that reaches a special target statement in a program. However, instead of using
coverage-guided fuzzing to search for a single input that reaches the target location,
JFSAMPLER runs fuzzing continuously for a given time budget, collecting all distinct
inputs that reach the target, which correspond to distinct satisfying assignments.

However, the basic idea of reusing JFS for this task, without modification, suffers
from the problem that once a solution-inducing input has been found, further solution-
inducing inputs will exercise the same path through the program: the unique path that
satisfies all conjuncts and hence reaches the target location. With this setup the fuzzer is
not rewarded (via coverage feedback) for finding diverse solutions.

To overcome this, JFSAMPLER uses a more sophisticated encoding based on an SMT-
level coverage metric proposed in the SMTSAMPLER project [12]. The new encoding,
which we call the diversity encoding, features additional code that, if covered, will
correlate with an increase in the SMT-level coverage metric used for measuring diversity.

Example. Recall again the SMT formula of Figure 1 and its associated reachability prob-
lem encoding of Figure 2. The diversity encoding employed by JFSAMPLER involves the
addition of extra conditional code right before the abort() call that corresponds to the
target location. At this point, an input corresponding to a satisfying assignment has been
found. The additional code is designed to test the value of every bit in every non-root
and non-leaf subexpression of the formula under the current satisfying assignment.

For our running example this would involve adding 128 conditional statements
between lines 10 and 11 of Figure 2 that test each of the 64 bits of each of the double
variables a_b_rne and a_b_rtp. Each such test introduces a new program point
that the fuzzer will be rewarded for reaching. This rewards the fuzzer for synthesising
assignments that make the formula true in myriad different ways. It also allows the
fuzzer to distinguish between them and keep them in the corpus for further refinement.

Further details and results. The SMTSAMPLER project proposed an effective method
that takes existing satisfying assignments for a formula and combines them using a
heuristic that generates candidate follow-on satisfying assignments. In JFSAMPLER we
used this heuristic as the basis for a custom mutator for libFuzzer, the underlying fuzzer
used by JFS. Our custom mutator has access to all satisfying assignments that have been
shown so far. On encountering an input that achieves new coverage, the custom mutator
combines the input with two randomly-selected previous satisfying assignments (if
available), using a combination strategy based on the technique used by SMTSAMPLER.

We evaluated JFSAMPLER empirically, comparing it with SMTSAMPLER (which is
based on the Z3 solver and its support for MaxSMT problems [6]), over the QF_FP and
QF_BVFP formulas that were used in the evaluation of JFS. We found that JFSAMPLER
significantly outperformed SMTSAMPLER on the QF_FP benchmarks. An ablation
study confirmed that the diversity encoding and custom mutator make a substantial
contribution to the performance of JFSAMPLER on these benchmarks when compared to

When You Have a Fuzzer, Everything Looks Like a Reachability Problem 7

a naïve version of JFSAMPLER that simply searches for multiple crashing inputs with
respect to the program encoding emitted by JFS with no further improvements.

On the QF_BVFP benchmarks we found that SMTSAMPLER significantly outper-
formed the naive version of JFSAMPLER. The diversity encoding and custom mutator,
when used individually in isolation, improved the performance of JFSAMPLER, but
performance remained below that of SMTSAMPLER. However, these two features in
combination ultimately led to a slight performance improvement over SMTSAMPLER.

4 Simulating Concurrency Memory Models

Our final case study considers the use of coverage-guided fuzzing and other reachability
analysis techniques to aid in the simulation of operational memory models [21]. This
project is distinct from the JFS and JFSAMPLER projects described in Sections 2 and 3,
but was in part inspired by the success of JFS.

Overview. The memory model of a shared memory concurrent system formally describes
the potential interactions between threads that can arise through communication via
shared memory locations. For reasons of efficiency, modern multi-core CPUs, accel-
erators and heterogeneous systems feature memory models that are weaker than the
appealingly simple sequentially consistent memory model [22], as demonstrated by
vendor documentation and various academic studies [1, 2, 20, 32, 34].

An operational memory model characterises the allowed memory behaviours of a
system using a state machine, where states represent components such as store buffers,
caches and queues, and transitions define the legal changes between these states, trig-
gered by memory operations such as reads, writes and flushes. The memory model can
then be applied to litmus tests—small programs that capture potential interactions be-
tween threads, where a litmus test is allowed if the behaviour that it captures is permitted
by the memory model.

Constructing operational memory models and applying them to litmus tests is facili-
tated by simulators that reveal which behaviours of a given program are allowed. While
extensive work has been done on simulating axiomatic memory models [2, 4], there
has been less work on simulation of operational models [32, 34], despite the fact that
operational models are arguably more intuitive than their axiomatic counterparts.

Part of the reason for this is the overhead associated with engineering and maintaining
a full-blown simulator for an operational memory model. For example the RMEM [32]
state-of-the-art memory model simulator, which supports the ARM, Power, RISC-V and
x86 memory models, comprises more than 60k lines of OCaml code in part because the
developers had to build custom efficient reachability analyses.

An appealing idea to reduce this engineering overhead is to implement the logic of the
memory model as a program that takes a particular test scenario as input. Determining
whether the test scenario is allowed would then boil down to determining whether
a particular state of the program that encodes the memory model is reachable when
executed on an input describing the scenario of interest, and off-the-shelf reachability
analysis tools for the language of interest could be leveraged to answer this question.
Subsequent detailed examination of traces would then be possible by stepping through
the simulator code using a standard debugger.

8 A.F. Donaldson et al.

1 // Choose a number of steps of the simulation to run
2 int sim_steps = choose(SIMULATION_STEPS);
3 for (int i = 0; i < sim_steps; i++) {
4 // Choose a thread to take a step
5 int thread = choose(NUM_THREADS);
6 // Choose whether the CPU or the environment takes a step
7 Action action = choose(NUM_ACTIONS);
8 switch (action) {
9 case CPU_THREAD: // the CPU is to take a step

10 // Check that the thread still has work to do
11 if (!thread_ops[thread].empty()) {
12 // Pop the next instruction from the thread’s list
13 Operation op = thread_ops[thread].pop();
14 // Carry out a write by appending to the CPU’s store buffer
15 if (op.type == WRITE) {
16 write_to_buffer(thread, op.var, op.val);
17 }
18 // Carry out a read from the CPU’s store buffer or from memory
19 if (op.type == READ) {
20 read_buffer_or_memory(thread, op.var);
21 }
22 break;
23 }
24 case FLUSH_BUFFER: // the environment is to take a step
25 // Check that the CPU’s store buffer is not empty
26 if (!buffer[thread].empty()) {
27 // Flush an entry from the CPU’s store buffer into memory
28 flush_buffer(thread);
29 break;
30 }
31 }
32 }
33 // Check whether the litmus test’s postcondition has been reached
34 check_litmus_test();

Fig. 4: The pseudocode of the mechanised x86 memory model.

In recent work [21] we put this idea into practice for two different operational
memory models: the x86 memory model, which allows for a comparison with the
RMEM simulator, and the X+F memory model [20] associated with a system that
combines an Intel Xeon CPU with a field-programmable gate array (FPGA), for which
no bespoke memory model simulator exists.

Example. Figure 4 gives a flavour of our encoding—full details are in our full article
about the project [21]. The program makes several nondeterministic choices – how many
simulation steps to run (line 2), which thread to activate for each step (line 5), and
whether each step corresponds to the thread’s next instruction being executed (line 9)
or to the ‘environment’ making a transition by flushing an x86 store buffer (line 24). If
executed directly, this program would not be very useful because it would be unlikely to
make the right sequence of decisions to get interesting behaviours. However, it becomes
useful when presented for reachability analysis, because then the question becomes: is it
possible to resolve all of these choices so as to make the interesting behaviour emerge.

Further details and results. We investigated the effectiveness of three different C-
analysis tools for analysis of: CBMC [10], which encodes the reachability problem as a
monolithic SAT query, KLEE [7], which uses dynamic symbolic execution to explore

When You Have a Fuzzer, Everything Looks Like a Reachability Problem 9

the program in a path-by-path manner, generating an SMT query per path, and using
three different coverage-guided fuzzers including libFuzzer (the fuzzer behind JFS and
JFSAMPLER). A common feature of all these tools is that they avoid false positives:
if the tool reports ‘reachable’ then the error-state really is reachable. This is because,
unlike many static analysis tools, they do not employ any abstraction.

The CBMC and KLEE tools can, in principle, prove that error states are not reachable,
assuming the litmus test provided as input is loop-free. In the case of CBMC this is via
the use of unwinding assertions, while for KLEE it involves exhaustive exploration of all
program paths. While the fuzzers cannot prove unreachability of error states, when the
error states are reachable, the fuzzers tend to discover this much more quickly than the
other two tools. However, large litmus tests feature error states that can only be reached
via lengthy paths that depend on an intricate schedule of thread and memory subsystem
events. The fuzzers struggled on these larger litmus tests, while CBMC/KLEE performed
somewhat better due to their more systematic approaches.

Our results also show that the coverage-guidedness of the fuzzers is valuable: when
coverage guidance is disabled, the fuzzers did not perform at all well for the task of
memory model simulation.

The X+F memory model to which we applied this technique is rather complicated, so
it is a testimony to the generality of our approach that we were able to obtain a simulator
for it with little additional effort, by encoding its logic as a C program.

5 Discussion

We conclude with a discussion of the strengths and weaknesses of coverage-guided
fuzzing as a reachability analysis technique in the context of these three case studies,
and how the dynamic vs. symbolic and under-approximating vs. over-approximating
dimensions of a reachability analysis affect its suitability in these domains.

Effectiveness of coverage-guided fuzzing. Our experience with JFS is that a fuzzing-
based approach to constraint solving often works better than traditional approaches for
formulas involving floating-point constraints, but that the performance of JFS was poor
when applied to formulas involving only bitvector constraints, where traditional methods
excel. When applied to the problem of memory model simulation, fuzzing excelled
in comparison to symbolic analysis techniques for simpler litmus tests, but fared less
well on larger tests where the behaviour under consideration relied on a very specific
interleaving of threads and memory subsystem events. Our hypothesis is that fuzzing
has the potential to outperform symbolic techniques for reachability analysis on problem
instances where (a) many solutions exist, so that the probability of finding a solution via
guided random search is reasonably high, and (b) the constraints that a solution must
satisfy are nevertheless complex enough that symbolic solving algorithms have a difficult
time navigating the underlying search tree. Investigating this hypothesis in more detail,
e.g. by using model counting to see whether there is a correlation between the number
of solutions to a floating-point SMT query and the ease with which JFS can solve this
query, would be an interesting avenue for future work.

In both the JFS work and the memory model simulation project, experimental results
confirmed that the “coverage-guided” part of coverage-guided fuzzing is an important

10 A.F. Donaldson et al.

contributor: disabling coverage guidance led to less effective solving of floating-point
formulas by JFS (and thus would also negatively impact JFSAMPLER), and to markedly
worse results for memory model analysis.

The JFSAMPLER approach is a particularly good match for fuzzing because in SMT
sampling one is always concerned with satisfiable formulas, and typically formulas that
have many different solutions.

Dynamic vs. symbolic reachability analyses. In the JFS and JFSAMPLER projects
we focused on a purely-dynamic reachability analysis—coverage-guided fuzzing—to
analyse the program associated with an SMT formula, while in the memory model
simulation work we also considered the use of techniques that perform full or partial
symbolic reasoning (CBMC and KLEE).

In principle, any under-approximating analysis could be used to find satisfying
assignments through analysis of the program emitted by JFS, and it would certainly
be possible to try applying CBMC or KLEE to a JFS-generated program. However,
given that the purpose of JFS is to provide an alternative means for solving a problem
that is known to be hard for symbolic methods (namely reasoning about floating-point
arithmetic), applying SAT or SMT-based analysis techniques such as CBMC or KLEE
to the programs generated by JFS would make little sense. In contrast, memory model
simulation involves the exploration of the possible behaviours of a nondeterministic
system, something at which symbolic program analysis tools excel.

Under-approximating vs. over-approximating analyses. In the projects discussed here,
we have focused almost entirely on the use of under-approximating program analyses,
geared towards bug finding, except that in the memory model simulation work we
considered the use of CBMC and KLEE for “brute force” verification, by fully unrolling
program loops (CBMC) or exhaustively exploring program paths (KLEE).

In the context of JFS it is necessary to use an under-approximating analysis to
find solutions to a formula from its associated program with confidence. Furthermore,
the under-approximating analysis must yield inputs that triggers the bug found by the
analysis if one wishes to obtain a satisfying assignment to the formula of interest rather
than merely knowing that it is satisfiable. An over-approximating analysis might still
be useful for finding solutions to a formula if there is a way to obtain a candidate input
from an alarm raised by the analysis, because one could simply run the program on the
candidate input to check whether it indeed reaches the program’s target location.

In principle it would be possible to use a JFS-generated program to prove unsatisfia-
bility of a given formula by using an over-approximating static verification technique to
prove that the program is correct. However, similar to the discussion above regarding
the limited value of applying CBMC or KLEE to JFS-generated programs, many static
verification techniques are based on symbolic analysis so using them for this task would
again seem somewhat circular.

For JFSAMPLER, bug finding is the only meaningful way to analyse the program
associated with a formula, because SMT sampling involves mining a formula for a diverse
range of satisfying assignments and is not concerned with proving unsatisfiability.

In the context of memory model analysis, applying an under-approximating analysis
to a program obtained from a (memory model, litmus test) pair facilitates establishing
that the behaviour characterised by a litmus test is allowed: finding a bug in the resulting

When You Have a Fuzzer, Everything Looks Like a Reachability Problem 11

program equates to confirming that a behaviour is possible. A bug report from an over-
approximating analysis would merely indicate that the behaviour might be allowed,
because the bug report could be a false alarm. In contrast, showing that a memory model
behaviour is disallowed would require verifying that the associated program is correct.
We have only investigated performing such verification via brute force methods, as
discussed above, and it would be interesting to assess the utility of other verification
techniques for this task.

References

1. Alglave, J., Batty, M., Donaldson, A.F., Gopalakrishnan, G., Ketema, J., Poetzl, D., Sorensen,
T., Wickerson, J.: GPU concurrency: Weak behaviours and programming assumptions. ASP-
LOS’15, ACM (2015). https://doi.org/10.1145/2694344.2694391

2. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: Modelling, simulation, testing,
and data mining for weak memory. ACM Trans. Program. Lang. Syst. 36(2), 1–74 (2014).
https://doi.org/10.1145/2627752

3. Ali, S., Briand, L.C., Hemmati, H., Panesar-Walawege, R.K.: A systematic review of the
application and empirical investigation of search-based test case generation. IEEE Trans.
Software Eng. 36(6), 742–762 (2010). https://doi.org/10.1109/TSE.2009.52

4. Armstrong, A., Campbell, B., Simner, B., Pulte, C., Sewell, P.: Isla: integrating full-scale ISA
semantics and axiomatic concurrency models (extended version). Formal Methods Syst. Des.
63(1), 110–133 (2024). https://doi.org/10.1007/S10703-023-00409-Y

5. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The static driver verifier
research platform. CAV’10, Springer (2010). https://doi.org/10.1007/978-3-642-14295-6_11

6. Bjørner, N., Phan, A.D., Fleckenstein, L.: νz - an optimizing SMT solver. TACAS’15, Springer
(2015). https://doi.org/10.1007/978-3-662-46681-0_14

7. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation of high-
coverage tests for complex systems programs. OSDI’08, USENIX (2008)

8. Carrasco, M., Cadar, C., Donaldson, A.F.: Scalable SMT sampling for floating-point formulas
via coverage-guided fuzzing. ICST’25, IEEE (2025). https://doi.org/10.1109/ICST62969.
2025.10989031

9. Carter, M., He, S., Whitaker, J., Rakamaric, Z., Emmi, M.: SMACK software verification
toolchain. In: Dillon, L.K., Visser, W., Williams, L.A. (eds.) ICSE’16 Companion Volume,
ACM (2016). https://doi.org/10.1145/2889160.2889163

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. TACAS’04,
Springer (2004). https://doi.org/10.1007/978-3-540-24730-2_15

11. Delannoy, R., Meel, K.S.: On almost-uniform generation of SAT solutions: The power of 3-
wise independent hashing. LICS’22, ACM (2022). https://doi.org/10.1145/3531130.3533338

12. Dutra, R., Bachrach, J., Sen, K.: SMTSampler: Efficient stimulus generation from complex
SMT constraints. ICCAD’18, ACM (2018). https://doi.org/10.1145/3240765.3240848

13. Dutra, R., Laeufer, K., Bachrach, J., Sen, K.: Efficient sampling of SAT solutions for testing.
ICSE’18, ACM (2018). https://doi.org/10.1145/3180155.3180248

14. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: AFL++: Combining incremental steps of
fuzzing research. WOOT’20, USENIX (2020)

15. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing. PLDI’05,
ACM (2005). https://doi.org/10.1145/1065010.1065036

16. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. NDSS’08, The
Internet Society (2008)

17. Google: ClusterFuzz, https://github.com/google/clusterfuzz (2025)

https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1145/2694344.2694391
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2627752
https://doi.org/10.1109/TSE.2009.52
https://doi.org/10.1109/TSE.2009.52
https://doi.org/10.1007/S10703-023-00409-Y
https://doi.org/10.1007/S10703-023-00409-Y
https://doi.org/10.1007/978-3-642-14295-6_11
https://doi.org/10.1007/978-3-642-14295-6_11
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1109/ICST62969.2025.10989031
https://doi.org/10.1109/ICST62969.2025.10989031
https://doi.org/10.1109/ICST62969.2025.10989031
https://doi.org/10.1109/ICST62969.2025.10989031
https://doi.org/10.1145/2889160.2889163
https://doi.org/10.1145/2889160.2889163
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1145/3531130.3533338
https://doi.org/10.1145/3531130.3533338
https://doi.org/10.1145/3240765.3240848
https://doi.org/10.1145/3240765.3240848
https://doi.org/10.1145/3180155.3180248
https://doi.org/10.1145/3180155.3180248
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://github.com/google/clusterfuzz

12 A.F. Donaldson et al.

18. Holland, J.: Adaptation in natural and artificial systems: an introductory analysis with applica-
tions to biology, control, and artificial intelligence. University of Michigan Press (1975)

19. Huang, H., Yao, P., Wu, R., Shi, Q., Zhang, C.: Pangolin: Incremental hybrid fuzzing with
polyhedral path abstraction. S&P’20, IEEE (2020). https://doi.org/10.1109/SP40000.2020.
00063

20. Iorga, D., Donaldson, A.F., Sorensen, T., Wickerson, J.: The semantics of shared memory
in Intel CPU/FPGA systems. Proc. ACM Program. Lang. 5(OOPSLA), 1–28 (2021). https:
//doi.org/10.1145/3485497

21. Iorga, D., Wickerson, J., Donaldson, A.F.: Simulating operational memory models using
off-the-shelf program analysis tools. IEEE Trans. Software Eng. 49(12), 5084–5102 (2023).
https://doi.org/10.1109/TSE.2023.3326056

22. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comput. 28(9), 690–691 (1979). https://doi.org/10.1109/TC.1979.
1675439

23. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. LPAR’10,
Springer (2010). https://doi.org/10.1007/978-3-642-17511-4_20

24. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language: Design and
logical encoding. TACAS’10, Springer (2010). https://doi.org/10.1007/978-3-642-12002-2_
26

25. LibFuzzer website. http://llvm.org/docs/LibFuzzer.html (2025).
26. Liew, D., Cadar, C., Donaldson, A., Stinnett, J.R.: Just fuzz it: Solving floating-point con-

straints using coverage-guided fuzzing. ESEC/FSE’19, ACM (2019). https://doi.org/10.1145/
3338906.3338921

27. Liew, D., Schemmel, D., Cadar, C., Donaldson, A., Zähl, R., Wehrle, K.: Floating-point
symbolic execution: A case study in N-version programming. ASE’17, IEEE (2017). https:
//doi.org/10.1109/ASE.2017.8115670

28. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX utilities.
Communications of the Association for Computing Machinery (CACM) 33(12), 32–44 (1990).
https://doi.org/10.1145/96267.96279

29. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.: Constraint-
based random stimuli generation for hardware verification. AI Mag. 28(3), 13–30 (2007).
https://doi.org/10.1609/AIMAG.V28I3.2052

30. Plazar, Q., Acher, M., Perrouin, G., Devroey, X., Cordy, M.: Uniform sampling of SAT
solutions for configurable systems: Are we there yet? ICST’19, IEEE (2019). https://doi.org/
10.1109/ICST.2019.00032

31. Poeplau, S., Francillon, A.: Symbolic execution with SymCC: Don’t interpret, compile!
USENIX Security’20, USENIX (2020)

32. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM concur-
rency: multicopy-atomic axiomatic and operational models for ARMv8. Proc. ACM Program.
Lang. 2(POPL), 19:1–19:29 (2018). https://doi.org/10.1145/3158107

33. Rümmer, P., Wahl, T.: An SMT-LIB theory of binary floating-point arithmetic. SMT’10
(2010). http://www.cprover.org/SMT-LIB-Float/smt-fpa.pdf

34. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding POWER multi-
processors. PLDI’11, ACM (2011). https://doi.org/10.1145/1993498.1993520

35. Serebryany, K.: OSS-Fuzz – Google’s continuous fuzzing service for open source software.
Invited talk at USENIX Security’17, USENIX (2017).

36. Zalewski, M.: Technical “whitepaper” for afl-fuzz. http://lcamtuf.coredump.cx/afl/technical_
details.txt (2025).

https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1145/3485497
https://doi.org/10.1145/3485497
https://doi.org/10.1145/3485497
https://doi.org/10.1145/3485497
https://doi.org/10.1109/TSE.2023.3326056
https://doi.org/10.1109/TSE.2023.3326056
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1007/978-3-642-12002-2_26
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/3338906.3338921
https://doi.org/10.1145/3338906.3338921
https://doi.org/10.1145/3338906.3338921
https://doi.org/10.1145/3338906.3338921
https://doi.org/10.1109/ASE.2017.8115670
https://doi.org/10.1109/ASE.2017.8115670
https://doi.org/10.1109/ASE.2017.8115670
https://doi.org/10.1109/ASE.2017.8115670
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1609/AIMAG.V28I3.2052
https://doi.org/10.1609/AIMAG.V28I3.2052
https://doi.org/10.1109/ICST.2019.00032
https://doi.org/10.1109/ICST.2019.00032
https://doi.org/10.1109/ICST.2019.00032
https://doi.org/10.1109/ICST.2019.00032
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3158107
http://www.cprover.org/SMT-LIB-Float/smt-fpa.pdf
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt

	When You Have a Fuzzer, Everything Looks Like a Reachability Problem

