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Abstract The futex Linux system call enables implement-
ing performant inter-thread and inter-process synchronisa-
tion primitives, such as mutexes and condition variables.
However, the futex system call is notoriously difficult to use
correctly. An early implementation of futex-based mutexes
in the Linux Native POSIX Thread Library suffered from a
subtle defect. When teaching about clever futex-based mu-
tex designs that avoid these early shortcomings, we have
found that their intricacies are hard to understand and dif-
ficult to convey to students. In this case study, we use the
Promela modelling language to model a number of futex-
based mutex and condition variable implementations, and
the Spin model checker to verify safety properties over these
models. We show that model checking is effective at con-
firming known bugs that affected real-world implementa-
tions, and at confirming that current implementations do in-
deed behave correctly in multi-threaded environments. We
also investigate the effectiveness of symmetry reduction and
two memory usage reduction techniques for increasing the
scalability of model checking in this domain. The Promela
models we have developed are available as open source.
They may be useful as teaching material for classes that
cover futex-based synchronisation primitives, and as a tem-
plate for performing formal verification on new synchroni-
sation primitive designs.
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1 Introduction

The futex system call was introduced to the Linux kernel
in the early 2000s in order to support efficient synchronisa-
tion primitives [20]. The name “futex” is derived from “fast
userspace mutex”, because one of the most important use
cases for the futex system call is the efficient implementa-
tion of mutexes, striking a balance between OS semaphores,
whose manipulation involves a system call even when con-
tention is low, and spinlocks, which avoid system calls by
operating entirely in userspace but may lead to high CPU
usage when contention is high.

When used in a careful and clever manner, futexes can
enable efficient inter-thread and inter-process synchronisa-
tion. However, futexes are notoriously difficult to use cor-
rectly. According to Drepper, in his aptly-titled paper “Fu-
texes are Tricky” [15], a package authored by one of the in-
ventors of the futex system call, containing user-level code
demonstrating its use, turned out to be incorrect, and for a
period of time a futex-based mutex implementation in the
Linux Native POSIX Runtime Library also suffered from a
performance-related defect. Drepper describes these prob-
lems and presents two alternative implementations, arguing
their correctness informally.

More recently, Gustedt [26] presented another approach
for a futex-based lock primitive akin to a mutex, and con-
tributed a variation of his approach as the low-level lock
primitive of the Musl C standard library [39]. While the
method by which this primitive avoids deadlock is discussed
in detail, the guarantee that no more than one thread can lock
the mutex at a time is only mentioned informally.

In an article on his personal website about futex-based
condition variables [9], Denis-Courmont describes a number
of flawed proposals for implementing condition variables,
explaining why they are incorrect, and a proposal that is ar-
gued to be correct under reasonable practical assumptions.
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A limitation of these expositions of futex-based synchro-
nisation primitives is that they provide only informal de-
scriptions of how code snippets might behave in a concur-
rent context. The reader may not fully understand the (often
subtle) arguments for (in)correctness, and even if they do, it
may be hard for them to imagine the consequences of alter-
native implementation choices.

In this case study, we investigate the use of the Promela
language and its associated Spin model checker [30] to for-
mally express and analyse various proposals for futex-based
mutexes and condition variables that have been discussed
in previous works [15,9,26]. Due to the ability of model
checking to produce counterexamples, our Promela mod-
els of incorrect implementations lead to step-by-step traces
that illustrate bug-triggering thread interleavings. This fa-
cility also aids in understanding why certain details of cor-
rect implementations are important, because one can change
those details and inspect the counterexamples that arise as
a result. We show that model checking can detect bugs that
affected real-world implementations of mutexes and that it
can confirm bugs in both naive and real-world implementa-
tions of condition variables. We also show that model check-
ing aids in understanding the importance of certain intrica-
cies of a futex-based mutex design. In addition, we present
experimental results assessing the scalability of Spin-based
model checking for verifying correctness of futex-based mu-
tex implementations in scenarios with increasing numbers
of threads, assessing the effectiveness of symmetry reduc-
tion and two different memory usage reduction approaches
at increasing scalability.

The Promela models we have developed are available as
open source, together with instructions on how to use Spin
to analyse them [17]. We envisage that they may be useful as
teaching material in classes that cover futex-based synchro-
nisation primitives. In fact, our investigation into the appli-
cation of model checking to this problem was inspired by
the experience of one of the authors teaching about futex-
based mutexes on a course at Imperial College London, and
being dissatisfied with his informal correctness-related ex-
planations. We also hope that our models will serve as a
template for performing formal verification on new synchro-
nisation primitive designs.

The rest of the paper is organised as follows. In Sec-
tion 2 we provide necessary background on the futex system
call. We explain how we have modelled this system call in
Promela in Section 3. Our Promela models of mutexes and
condition variables rely on the modelling of various integer
atomic operations, including operations that may overflow;
we discuss these in Section 4. In Section 5 we work through
examples of futex-based mutex implementations from Drep-
per’s paper [15], explaining how we have modelled each mu-
tex variant using Promela and presenting insights into our
analysis of these models using Spin. In Section 6 we do the

same for the two futex-based mutex variations from Gust-
edt’s paper [26] and his contribution to the Musl C standard
library [39]. Then in Section 7 we turn to condition vari-
ables, working through various implementation proposals
from Denis-Courmont’s article [9] and discussing our use of
Promela and Spin for modelling and analysis. In Section 8
we present experimental results assessing the scalability of
model checking for verifying correctness of futex-based mu-
tex implementations, with and without symmetry reduction
and two memory usage reduction techniques. We discuss re-
lated work in Section 9 and conclude with a discussion of
future directions in Section 10.

Throughout the paper we assume the reader is familiar
with the syntax of Promela and with basic operation of the
Spin model checker, referring the reader to the definitive ref-
erence for more details [30].

Contribution over our prior work This work extends a pa-
per published at SPIN 2023, the International Symposium
on Model Checking Software [18]. Our main additional con-
tributions are: discussion of modelling and model checking
results for an additional futex-based mutex implementation
from Drepper’s paper [15, Section 6] and a further variation
of this mutex implementation featuring an additional optimi-
sation (Section 5.4); the application of Promela and Spin to
two futex-based mutex implementations from Gustedt [26]
on which a mutex implementation in the Musl C standard
library [39] is based (Section 6); the application of Promela
and Spin to additional futex-based condition variable imple-
mentations discussed by Denis-Courmont [9] (Section 7.3
and Section 7.5); and experimental results assessing the ef-
fectiveness of symmetry reduction and memory usage re-
duction techniques (Section 8).

2 The Futex System Call

The word futex is often used to designate three things: (1)
a 32-bit addressable value also called a futex word, (2) the
futex system call, and (3) mutex implementations based on
the futex system call. In this section, we are concerned with
(1) and (2), while (3) is discussed in Section 5 and Section 6.

The futex system call enables threads to block depending
on the value of a given memory word—a futex word—or to
wake up threads that are waiting in a queue associated with
a futex word. In practice, a futex system call has the form
shown in Listing 1, where SYS_futex is the futex system
call ID.1

The system call is multiplexed via its futex_op argu-
ment, which refers to one of various operations. In this case
study, we focus on the two main operations, FUTEX_WAIT

1 https://man7.org/linux/man-pages/man2/futex.2.html

https://man7.org/linux/man-pages/man2/futex.2.html
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1 long syscall(SYS_futex,
2 // pointer to futex word
3 uint32_t *addr,
4 // operation (e.g. FUTEX_WAIT, FUTEX_WAKE)
5 int futex_op,
6 // plain value argument
7 uint32_t val,
8 // extra arguments for other operations
9 // (not used in this paper)

10 ...);

Listing 1 Signature of the futex system call

and FUTEX_WAKE, where only the addr and val argu-
ments are relevant.

FUTEX_WAIT: the calling thread blocks and goes to
sleep only if the value of the futex word addressed by addr
is equal to the plain value argument val. In this case, the
thread joins a queue of waiters associated with the address
of the given futex word. The FUTEX_WAIT operation is
atomic with respect to the futex word, which is typically
in memory shared between threads. This call has compare-
and-block semantics: loading the futex word’s value, com-
paring it to val and adding the thread to the waiters queue
(if appropriate) happen atomically and are totally ordered
with respect to other concurrent operations on the futex word.

FUTEX_WAKE: the calling thread wakes up threads in a
queue of waiters associated with addr, which again is the
address of a futex word. It wakes val threads, or the number
of threads waiting on addr, whichever is smaller. Beyond
this, there is no guarantee on which threads are woken up,
or in which order threads are woken up. In practice, val is
typically either 1 (to ask for a single thread to be woken) or
INT_MAX (to wake up all waiters).

When presenting code examples, we use futex_wait
(addr, val) to denote a futex system call performing
FUTEX_WAIT with the given addr and val parameters,
and similarly for futex_wake(addr, val).

The name “futex” is derived from fast and userspace
because futex-based synchronisation primitive implementa-
tions (such as implementations of mutexes) typically first
try synchronising in userspace via C atomic operations on
a shared futex word, and only resort to slower futex system
calls in case of contention. We see this pattern in the mutex
implementations of Section 5 and Section 6.

Note that there is no need to register addr, the address
of a futex word, before using it with futex system calls.
When a thread calls futex_wait(addr, val), if the
thread needs to go sleep and the kernel does not yet know
about addr then a queue of waiters specific to addr is cre-
ated. Similarly, if futex_wake(addr, val) is called
when no queue of waiters exists for addr the call immedi-
ately returns. Also, when the final waiter in the wait queue
of addr is woken, the queue is deallocated. This means
that the kernel overhead associated with the use of futex-

1 typedef Futex {
2 // Futex word
3 byte word;
4 // Wait queue: array of bool indexed by thread IDs;
5 // thread T is waiting iff wait[T] is true
6 bool wait[NUM_THREADS];
7 // Number of threads currently waiting
8 byte num_waiting;
9 }

Listing 2 The Futex type in Promela

based synchronisation primitives is minimal: wait queues
and book-keeping state only exist when threads are actually
waiting. Millions of futex-based objects can be in use by an
application, with only a very small number of them actually
known by the by kernel at any moment.

3 Modelling the Futex System Call Variants

We model futexes in Promela as a Futex type, and two in-
line macros futex_wait and futex_wake to represent
these variants of the general system call. Before covering
these in detail, we make some general remarks about our
modelling approach.

To keep the state vector size under control, we use byte
values virtually everywhere we would use int values in C.
This is without loss of generality since, in our examples with
up to a dozen threads, all interesting values are within the
range [0, 255].

Threads are mapped to Promela’s proctype and are
identified by their _pid builtin variable. The total number
of threads is a global constant that we use to dimension ar-
rays, defined by a preprocessor macro, NUM_THREADS, so
that it can be easily changed when invoking Spin (e.g. via a
command such as spin -DNUM_THREADS=5 . . .).

Now, on to futexes. The Futex type, shown in Listing 2,
contains a futex word, the queue of threads that are waiting
on this futex word, and a counter recording the number of
threads that are currently waiting.

An array indexed by thread IDs is used to model the wait
queue. This will prove convenient to allow waking up sleep-
ing threads in a non-deterministic order. In a C program,
each futex is identified by the address of its futex word; here
each futex is identified by a variable of type Futex which
is in global scope so that all threads can refer to it.

The futex_wait call is modelled by the inline macro
of Listing 3. As arguments it takes a variable of type Futex
—a futex word—and a plain value to compare to the futex
word. If they are equal, the thread goes to sleep: we set its
entry in the wait queue, and increment the counter of waiting
threads. An assertion checks that only non-sleeping threads
may go to sleep. Then, the thread blocks until its wait queue
entry is set to false. If the value argument differs from the
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1 inline futex_wait(futex, val) {
2 if
3 :: d_step {
4 futex.word == val ->
5 printf(
6 "T%d futex_wait, value match: %d; sleep\n",
7 _pid, futex.word);
8 // The thread must not be sleeping already
9 assert(!futex.wait[_pid]);

10 futex.wait[_pid] = true;
11 futex.num_waiting++;
12 }
13 d_step {
14 !futex.wait[_pid] ->
15 printf("T%d has woken\n", _pid);
16 }
17 :: d_step {
18 else ->
19 printf(
20 "T%d futex_wait, value mismatch: %d vs. %d; do

not sleep\n",
21 _pid, futex.word, val);
22 }
23 fi
24 }

Listing 3 Modelling futex wait in Promela

futex word, the thread continues without blocking. Log mes-
sages prefixed by the ID of the executing thread are printed
to ease the understanding of counterexamples.

The atomic compare-and-block semantics is modelled
via a d_step (deterministic step) scope (line 3), which “in-
troduces a deterministic code fragment that is executed indi-
visibly” [30, p. 401]. This is a better choice compared with
the alternative atomic scope that Promela offers. This is
because all statements in a d_step are treated as leading
to a single state change by Spin, thus reducing the search
depth. In contrast, the statements in an atomic scope are
executed atomically if no statement blocks, but an interme-
diate state for each statement is recorded (a) in case non-
determinism is encountered mid-way through the scope, re-
quiring an intermediate state to have multiple successors, (b)
to allow control to transfer into or out of the atomic scope
at positions other than the scope start and end, and (c) in
case a statement blocks (in which case state-space explo-
ration will switch to consider an action by a different pro-
cess in the Promela model). It is safe to use d_step over
atomic here since all contained statements are determinis-
tic, there is no jump in or out the d_step scope, and there
is no blocking statement in the middle of the scope (here
even the statement in line 4 cannot block since the other if
branch starts with an else). The d_step scopes (lines 13
and 17) guarantee that print statements associated with value
match/mismatch checks display their messages as soon as
the associated check occurs. This is important for ensuring
readability of counterexamples: it avoids logging messages
from other threads being interleaved between a value check
occurring and its associated print statement being executed.

The futex_wake call is modelled by the inline macro
of Listing 4; again, log messages are used to improve read-

1 inline futex_wake(futex, num_to_wake) {
2 atomic {
3 // The waker must not be asleep
4 assert(!futex.wait[_pid]);
5 num_woken = 0;
6 do
7 :: num_woken == num_to_wake ||
8 futex.num_waiting == 0 ->
9 break

10 :: else ->
11 if
12 :: futex.wait[0] -> futex.wait[0] = false;
13 printf("T%d wakes T0\n", _pid)
14 :: futex.wait[1] -> futex.wait[1] = false;
15 printf("T%d wakes T1\n", _pid)
16 #if NUM_THREADS > 2
17 :: futex.wait[2] -> futex.wait[2] = false;
18 printf("T%d wakes T2\n", _pid)
19 #endif
20 #if NUM_THREADS > 3
21 :: futex.wait[3] -> futex.wait[3] = false;
22 printf("T%d wakes T3\n", _pid)
23 #endif
24

25 ...
26

27 #if NUM_THREADS > 12
28 #error "NUM_THREADS > 12, add more if branches in

futex_wake"
29 #endif
30 fi;
31 futex.num_waiting--;
32 num_woken++;
33 od;
34 printf("T%d woke up %d thread(s)\n",
35 _pid, num_woken);
36 // Reset to avoid state space explosion
37 num_woken = 0;
38 }
39 }

Listing 4 Modelling futex wake in Promela

ability of counterexamples. The macro requires that a local
variable num_woken is in scope.2

The num_to_wake argument indicates the number of
threads to wake up, and num_woken counts the number
of threads that have been woken so far. We cannot elimi-
nate num_woken and instead decrement num_to_wake
until it reaches zero since the num_to_wake macro argu-
ment may be a literal value. This will be the case with a
call such as futex_wake(futex, 1). A loop is used
to wake one thread per iteration, until the desired number
of threads have been woken or there are no more threads to
wake. When waking a thread, a nondeterministic if is used
to pick one of the sleeping threads, which is then woken up
by setting its entry in the futex wait queue array to false.

The whole macro body is contained in an atomic scope
to prevent concurrent accesses to the futex internals. This
time, d_step cannot be used due to the nondeterministic
order in which threads are woken; recall from above that

2 Although Spin does allow local variables to be defined in inline
macros, we have found that using this feature leads to unexpected in-
creases in state space size. To avoid this, throughout our modelling, we
take the approach of declaring all local variables that a process will use
at the start of its proctype declaration.
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1 inline cmpxchg(location, expected, desired, result) {
2 d_step {
3 result = location;
4 location = (location == expected
5 -> desired
6 : location)
7 }
8 }

Listing 5 Modelling compare-and-exchange in Promela

a d_step scope requires the code fragment that it con-
tains to behave deterministically, and documentation about
the construct states that “If non-determinism is present, it is
resolved in a fixed and deterministic way, for instance, by
always selecting the first true guard in every selection and
repetition structure” [30, p. 401]. This would not be appro-
priate in the context of futex_wake: the futex system call
does not guarantee the order in which waiting threads will be
woken, so that faithful modelling demands that the threads
that are woken should be selected nondeterministically from
the pool of waiting threads.

At the end of the atomic scope, num_woken is reset
to zero. This is vital to reduce state-space explosion: it pre-
vents Spin from regarding otherwise identical states that dif-
fer only in the final value of num_woken as distinct, which
would lead to Spin continuing its exhaustive search from
each such state [40].

Relying on the non-deterministic selection of enabled
if branches requires exactly NUM_THREADS branches: we
use the C preprocessor to achieve this, supporting up to 12
threads, with it being easy to support more threads by adding
further if branches. To support an arbitrary thread count,
one could easily script the generation of these branches. We
opt for the C preprocessor approach to keep the Promela
code self-contained.

4 Modelling Atomic Operations and Overflow

The mutex and condition variable implementations rely on
C/C++ atomic operations that we model in Promela. The
atomic compare-and-exchange operation, cmpxchg, com-
pares the value at a given location with an expected value.
If the values match, the location is updated to a given value,
desired. Otherwise the location is left unchanged. Either
way, the original value of the location is returned. This op-
eration is modelled by the inline macro of Listing 5, which
uses a result parameter in lieu of returning a value.

The atomic exchange operation xchg, which uncondi-
tionally exchanges the value at a given location with a new
value, is modelled in a similar fashion.

The atomic fetch-and-increment operation fetch_inc
returns the current value of a location before increment-

ing it. We make sure to model overflow and wrapping on

1 #define inc(a) (a == MAX_BYTE_VALUE -> 0 : a + 1)
2 inline fetch_inc(location, result) {
3 d_step {
4 result = location;
5 location = inc(location)
6 }
7 }

Listing 6 Modelling fetch inc in Promela

byte values, but in order to limit the state space and the
size of counterexamples, we introduce a tighter upper bound
MAX_BYTE_VALUE, which is set to the total number of
threads plus one, since byte variables tend to count some
number of threads. This is without loss of generality, since
C/C++ atomic integers also wrap upon overflow.

We define the inc macro to handle overflow, and use
d_step to make fetch_inc atomic as shown in List-
ing 6. In a similar fashion, we define a dec macro that han-
dles underflow, and a fetch_dec macro for atomic fetch-
and-decrement. Some of the Promela models discussed later
also make direct use of the inc macro when performing a
non-atomic increment in a local expression, rather than op-
erating on a futex word.

5 Model Checking Futex-based Mutexes from
Drepper’s Paper

We describe the usage scenario and properties for mutexes
to which model checking is applied (Section 5.1). We then
describe the modelling and verification of various mutex
implementations from Drepper’s paper [15] (Section 5.2—
Section 5.4).

5.1 Model Checking Harness and Properties

We use the harness of Listing 7 to enable model check-
ing of various futex-based mutex implementations presented
here and in Section 6. This harness uses an active proc-
type to launch NUM_THREADS threads, each of which uses
the lock() and unlock() inline macros to repeatedly
lock and unlock a shared mutex. Separate versions of these
macros are provided for each mutex implementation dis-
cussed below. The macros assume that a global variable of
type Futex (see Listing 2) is available. Global variable
num_threads_in_cs, initialised to 0 by default, is used
to record when threads enter and leave the critical section.
The version of the harness in our source code repository also
features declarations of various local variables that are relied
on by inline macros (e.g. the num_woken variable used in
Listing 4). We omit these in Listing 7 for brevity.

We consider model checking of two safety properties:
(1) freedom from invalid end states (a built-in feature of
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1 // Number of threads in the critical section (CS)
2 byte num_threads_in_cs;
3

4 active [NUM_THREADS] proctype Thread() {
5 do
6 :: lock();
7 num_threads_in_cs++;
8 num_threads_in_cs--;
9 unlock();

10 :: printf("T%d is done\n", _pid) -> break
11 od
12 }
13

14 // Never more than one thread in CS
15 active proctype Monitor() {
16 end:
17 atomic {
18 num_threads_in_cs > 1 -> assert(false);
19 }
20 }

Listing 7 Harness for model checking futex-based mutexes

1 class Mutex {
2 public:
3 Mutex() : futex_word(0) {}
4 void lock() {
5 uint32_t old_value;
6 while ((old_value = futex_word.fetch_add(1)) != 0)
7 futex_wait(&futex_word, old_value + 1);
8 }
9 void unlock() {

10 futex_word.store(0);
11 futex_wake(&futex_word, 1);
12 }
13

14 private:
15 atomic<uint32_t> futex_word;
16 };

Listing 8 Incorrect futex-based mutex implementation adapted from
“Mutex, Take 1” in Drepper’s paper [15]

Spin), which confirms that it is not possible for a thread to
become blocked in a call to futex_wait when all other
threads have terminated, and (2) mutual exclusion, captured
by the Monitor active proctype shown in Listing 7. The
monitor is designed to check that, in every reachable state,
the number of threads in the critical section does not exceed
one. The end label informs Spin that it is acceptable for the
system to end up in a state where the monitor is blocked
checking its condition despite all other processes having ter-
minated, so that this scenario is not reported as an invalid
end state.

5.2 Incorrect Futex-based Mutex

Listing 8 shows C++ code adapted from a presentation of
a subtly incorrect futex-based mutex [15, Section 4]. The
futex word is the 32-bit atomic integer field futex word.
The intention is that the mutex is unlocked if and only if
futex_word has value 0.

A thread attempts to lock the mutex by atomically incre-
menting futex_word via a fetch_add, storing its pre-

vious value in local variable old_value. If the previous
value is 0 then the thread has locked the mutex, by changing
futex_word from 0 to 1, and can return from lock. Oth-
erwise, the thread calls futex_wait passing the argument
old_value + 1 in order to go to sleep until the lock be-
comes free. Recall from Section 2 that futex_wait only
puts a thread to sleep if the value of the futex word is equal
to the integer passed as the second argument. Thus the value
old_value + 1 is passed to futex_wait: if no other
thread modifies the futex word between the fetch_add
and futex_wait calls, this value will match the futex word
and the thread will go to sleep until the lock becomes free.
However, if another thread modifies the futex word before
the call to futex_wait, then this call will not put the first
thread to sleep so that the thread will immediately attempt
to acquire the mutex again via another fetch_add.

Unlocking the mutex is simpler: futex_word is set to
0, and futex_wake is called so that one of the threads
waiting on futex_word, if any, will be woken.

Correctness aside, Drepper notes that this mutex imple-
mentation is not ideal because it involves a futex_wake
call every time the mutex is unlocked, regardless of whether
there are waiters, a deficiency that is fixed in the mutex im-
plementations studied in Section 5.3 and Section 5.4.

Drepper discusses a correctness issue triggered by an
overflow of the futex word. Suppose several threads are con-
tending to try to lock an already-locked mutex. It is pos-
sible that while a given contending thread T1 is between
the calls to fetch_add and futex_wait, another con-
tending thread T2 calls fetch_add and modifies the futex
word, such that T1 will not go to sleep and will itself call
fetch_add again, preventing T2 from going to sleep. This
can go on until the futex word wraps back to 0, in which case
a contending thread will believe it has successfully locked
the mutex. Drepper notes [15, Section 4] that this extreme
scenario is made more likely in practice by the fact that
futex_wait may return prematurely if the waiting thread
is interrupted by a signal [22].

This mutex design is modelled in Promela by the inline
macros of Listing 9. The macros rely on a local variable,
old_value, being in scope.

We use print statements so that counterexamples pro-
duced by Spin are readable. We use atomic and d_step
scopes to (a) ensure that print statements are executed atom-
ically with the actions that they aim to document, and (b)
limit state explosion by allowing interleavings only between
operations that have inter-thread visibility (known as visi-
ble operations [19]): statements that manipulate the futex
word and calls to the futex wait and futex_wake in-
line macros. For example, there must be an interleaving point
between fetch_inc (line 4) and futex_wait (line 14),
but there is no value in considering thread interleavings be-
tween the call to fetch_inc and the if..fi that imme-
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1 inline lock() {
2 do
3 :: atomic {
4 fetch_inc(futex.word, old_value);
5 if
6 :: old_value == 0 ->
7 printf("T%d locks mutex\n", _pid);
8 break
9 :: else ->

10 printf("T%d lock fail, old_value: %d\n",
11 _pid, old_value);
12 fi
13 }
14 futex_wait(futex, inc(old_value))
15 od
16 }
17

18 inline unlock() {
19 d_step {
20 futex.word = 0;
21 printf("T%d unlocks mutex\n", _pid)
22 }
23 futex_wake(futex, 1)
24 }

Listing 9 Modelling the incorrect futex-based mutex of Listing 8 in
Promela

diately follows. These only involve a thread manipulating its
local state. An interleaving point will cause needless state-
space explosion which we have found Spin’s partial order re-
duction (which is based on conservative static analysis [31])
does not completely alleviate.

Recall from Section 4 that the fetch_inc operation
is modelled over a small integer range, so that overflows
rapidly occur.

With two threads, Spin quickly verifies the mutual ex-
clusion property and confirms that all end states are valid.
This makes sense: the bug described above requires a race
between multiple contending threads when the mutex is al-
ready held by a further thread.

With three threads, Spin quickly reports a counterexam-
ple (minimised using Spin’s iterative shortening algorithm)
with the following messages, showing that it is possible for
two threads to simultaneously acquire the mutex:

Thread Message
T0 locks mutex
T1 lock fail, old value: 1
T2 lock fail, old value: 2
T1 futex wait, value mismatch: 3 vs. 2;

do not sleep
T1 lock fail, old value: 3
T2 futex wait, value mismatch: 4 vs. 3;

do not sleep
T2 lock fail, old value: 4
T1 futex wait, value mismatch: 0 vs. 4;

do not sleep
T1 locks mutex

This nicely illustrates the problem where threads T1 and
T2 repeatedly prevent one another from sleeping, with each

thread incrementing the futex word before the other can call
futex_wake: “value mismatch: 0 vs. 4” shows the futex
word wrapping from 4 (the value limit when checking using
three threads; see Section 4) to 0.

When the monitor process that checks for mutual exclu-
sion is disabled, Spin also confirms that the “no invalid end
states” property fails, though with a longer counterexample.
Here is a summary of the problem. Suppose that T0 holds
the lock. T1 and T2 then get into a race, incrementing the fu-
tex word until T1 observes the word’s old value to be 3 and
T2 observes the word’s old value to be 4, so that the word’s
current value is 0 (T2 having caused it to wrap-around). T1
is poised to call futex_wait(4), and T2 is poised to call
futex_wait(0), but neither have done so yet.

T0 unlocks the mutex (so that the value of the futex word
remains 0), wakes up no threads (because neither T1 nor
T2 has managed to go to sleep) and terminates. T1 calls
futex_wait(4), which directly returns due to a value
mismatch. T1 tries to lock the mutex again, succeeds (in-
crementing the futex word from 0 to 1), immediately un-
locks the mutex (setting the futex word to 0), wakes up no
threads (because T2 has not managed to go to sleep) and ter-
minates. Finally, T2 calls futex_wait(0), which it has
been poised to do for a while. Because the value of the futex
word is 0, T2 goes to sleep. All other threads having termi-
nated, T2 is stuck in its sleeping state.

The problem with this mutex design has been reported to
affect real code [15]. It is encouraging that model checking
can quickly expose it, providing clear counterexamples.

It is important to note, however, that model checking
was able to provide a concise counterexample for this issue
because of our use of a counter that rapidly overflows (as
discussed in Section 4), which we designed based on prior
knowledge of the overflow-related problem. If instead we
use a counter that only overflows upon reaching the max-
imum value of 255 for a byte in Promela, Spin reports a
counterexample involving 3,721 steps, which would be a lot
harder to comprehend.

5.3 Correct Futex-based Mutex

Drepper goes on to present mutex implementation shown
in Listing 10, which is more intricate compared with that
of Listing 8. The mutex implementation of Listing 10 is
claimed to be correct [15, Section 5].

We use waiters to refer to threads that are asleep due
to having called futex_wait. In this implementation, the
futex word can take one of three values. A value of 0 means
that the mutex is free, while values 1 and 2 mean that some
thread, say T, holds the mutex. If the futex word is 1, a state
referred as “locked, no waiters”, then when T unlocks the
mutex, T is not obliged to wake up any waiters. In contrast,
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1 class Mutex {
2 public:
3 Mutex() : futex_word(0) {}
4 void lock() {
5 uint32_t old_value;
6 if ((old_value = cmpxchg(futex_word, 0, 1)) != 0)
7 do {
8 if (old_value == 2
9 || cmpxchg(futex_word, 1, 2) != 0)

10 futex_wait(&futex_word, 2);
11 old_value = cmpxchg(futex_word, 0, 2);
12 } while (old_value != 0);
13 }
14 void unlock() {
15 if (futex_word.fetch_sub(1) != 1) {
16 futex_word.store(0);
17 futex_wake(&futex_word, 1);
18 }
19 }
20

21 private:
22 atomic<uint32_t> futex_word;
23 };

Listing 10 Correct futex-based mutex implementation adapted from
“Mutex, Take 2” in Drepper’s paper [15]

if the futex word is 2, a state referred as “locked, waiters”,
then when T unlocks the mutex, T must call futex_wake
to request that one waiter be woken.

In lock, a thread T first tries to change the value of the
futex word from 0 to 1 via a cmpxchg (line 6). If T succeeds
in doing this then it has locked the mutex and can return. In
this case, we say that the thread has locked the mutex on the
fast path.

Otherwise, T must contend for the mutex on the slow
path, via a loop (line 7). The thread considers making a call
to futex_wait to go to sleep and be notified when the
mutex becomes free. Before this (line 8) T checks whether
the previous value of the futex word was already 2 (“locked,
waiters”). If not, the previous value of the futex word must
have been 1 (“locked, no waiters”), so T attempts to change
the value from 1 to 2 via another cmpxchg (line 9). Nor-
mally T will then call futex_wait (line 10), but if the
cmpxchg returns a previous value of 0 this indicates that
the mutex has suddenly become free, in which case there is
no point calling futex_wait; instead, T should try again
to lock the mutex.

Once T returns from futex_wait, or if T decided not
to perform this call due to observing the mutex to be free,
it performs another cmpxchg (line 11) to try to lock the
mutex. In contrast to line 6, here T attempts to change the
futex word from 0 to 2 (“locked, waiters”): T had to contend
for the mutex (and was possibly itself a waiter). By setting
the futex word to 2, T records the fact that contention has
occurred and that there might exist sleeping threads that will
need to be woken. The thread T leaves the loop only when
the cmpxchg (line 11) returns 0: we say that T has locked
the mutex on the slow path.

The unlock() function is simpler: the futex word is
atomically decremented and its old value inspected (line 15).
If the old value is 1, “locked, no waiters”, this means that (a)
the value of the futex word is now 0, so the mutex is un-
locked as desired, and (b) the unlocking thread has no obli-
gation to wake up any waiters, so the thread is done and can
return from unlock(). Otherwise the old value must have
been 2, “locked, waiters”. In this case the unlocking thread
sets the futex word to 0 (line 16) and calls futex_wake to
wake up one waiter, if any waiters exist (line 17).

Although the code is short, this clever mutex implemen-
tation is difficult to understand. It is unlikely that a reader
will gain a full understanding of the design from a best-
effort prose explanation such as the above, or the explana-
tion given by Drepper [15]. Particularly subtle is the fact that
the futex word can have value 1, “locked, no waiters”, de-
spite the fact that there are waiters, and conversely the mu-
tex word can have value 2, “locked, waiters” even though
there are no waiters. Reasoning informally that this mutex
implementation is correct is difficult, hence why we decided
to model it formally.

The Promela lock() and unlock() inline macros
for this mutex implementation are presented in Listing 11.
As with the Promela code of Listing 9 we use print state-
ments for counterexample readability and use atomic and
d_step so that threads only interleave after issuing visible
operations. The Promela code is a fairly straightforward re-
flection of the original C++ code, but the differences in the
structured control flow constructs offered by the language
led to us making use of Promela’s goto.

Checking correctness The mutual exclusion property and
freedom from invalid end states (see Section 5.1) are ver-
ified by Spin for our model of this mutex implementation
within seconds for up to 5 threads, and Spin can verify a
configuration with 6 threads in a matter of minutes. Em-
ploying symmetry reduction, verification scales further to
12 threads. These experimental results, and the associated
experimental setup, are presented in full in Section 8.

Understanding bugs in incorrect variants Having a formal,
checkable model makes it easy to experiment with the in-
tricacies of this futex-based mutex implementation and un-
derstand why they are needed. We give two examples of
changes to the mutex implementation that compromise its
correctness in ways that might not seem immediately obvi-
ous. For each, we show that model checking quickly pro-
duces short, illuminating counterexample traces.

Bug 1: incorrect simplification. On line 9 of Listing 10,
the conditions under which a thread calls futex_wait
are rather complex and, as discussed by Drepper [15], some
of this intricacy is for purposes of optimisation. One might
wonder whether, from a correctness point of view, it would
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1 inline lock() {
2 atomic {
3 cmpxchg(futex.word, 0, 1, old_value);
4 if
5 :: old_value == 0 ->
6 printf("T%d locks mutex on fast path\n", _pid);
7 goto acquired_mutex
8 :: else ->
9 printf("T%d fails to lock mutex on fast path\n",

10 _pid)
11 fi
12 }
13 do
14 :: atomic {
15 if
16 :: old_value == 2
17 :: else ->
18 assert(old_value == 1);
19 cmpxchg(futex.word, 1, 2, old_value);
20 if
21 :: old_value == 0 -> goto retry
22 :: else
23 fi
24 fi
25 }
26 futex_wait(futex, 2);
27 retry:
28 atomic {
29 cmpxchg(futex.word, 0, 2, old_value);
30 if
31 :: old_value == 0 ->
32 printf("T%d locks mutex on slow path\n",
33 _pid);
34 goto acquired_mutex
35 :: else ->
36 printf(
37 "T%d fails to lock mutex on slow path\n",
38 _pid)
39 fi
40 }
41 od;
42 acquired_mutex: skip;
43 }
44

45 inline unlock() {
46 d_step {
47 fetch_dec(futex.word, old_value);
48 printf("T%d decrements futex word from %d to %d\n",
49 _pid, old_value, futex.word)
50 }
51 if
52 :: d_step {
53 old_value == 2 ->
54 futex.word = 0;
55 old_value = 0
56 }
57 futex_wake(futex, 1)
58 :: d_step {
59 old_value == 1 ->
60 old_value = 0
61 }
62 fi
63 }

Listing 11 Modelling the correct futex-based mutex of Listing 10 in
Promela

suffice for a thread that just failed to lock the mutex to set the
futex word to 2 (“locked, waiters”), and call futex_wait
in an attempt to go to sleep. This would amount to replacing
lines 8–10 of the C++ code with:

futex_word.store(2);
futex_wait(&futex_word, 2);

This change does not lead to violations of the mutual
exclusion property, but does lead to the possibility of “lost
waiters”, i.e. threads stuck waiting while all other threads
have terminated.

Making corresponding adjustments to lock() in our
Promela model (including adding a print statement to log
the storing of 2 to futex_word by a thread), Spin quickly
produces the following counterexample when invoked on a
2-threaded configuration:

Thread Message
T0 locks mutex on fast path
T1 fails to lock mutex on fast path
T0 decrements futex word from 1 to 0
T0 is done
T1 sets futex.val to 2
T1 futex wait, value match: 2; sleep

The problem is that between T1 observing the mutex to
be unavailable and setting the futex word to 2, T0 unlocks
the mutex, waking up no waiters, because there are none
yet, and terminates. T1 then sets the futex word to 2, goes to
sleep and is never woken.

Bug 2: incorrect cmpxchg. On line 11 of Listing 10, when
a thread attempts to lock the mutex on the slow path it tries to
change the value of the futex word from 0 to 2, in contrast to
the fast path, where a value change from 0 to 1 is attempted
(line 6). A reasonable question is: is it essential that the slow
path changes the futex word to 2? Adapting the lock()
implementation in Promela so that the slow path changes
the futex word to 1 instead of 2, and applying Spin to a two-
threaded configuration leads to successful verification. But
with three threads, Spin quickly reports a counterexample
demonstrating an invalid end state:

Thread Message
T0 locks mutex on fast path
T1 fails to lock mutex on fast path
T1 futex wait, value match: 2; sleep
T2 fails to lock mutex on fast path
T2 futex wait, value match: 2; sleep
T0 decrements futex word from 2 to 1
T0 wakes T2
T0 woke up 1 thread(s)
T0 is done
T2 has woken
T2 locks mutex on slow path
T2 decrements futex word from 1 to 0
T2 is done

The counterexample illustrates a situation where threads
T1 and T2 go to sleep due to T0 holding the mutex. When
the mutex becomes free, T0 wakes up T2, and T0 terminates.
T2 then succeeds in locking the mutex on the slow path, but
(due to the change we have introduced) does not set the futex
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1 void lock() {
2 uint32_t old_value;
3 if ((old_value = cmpxchg(futex_word, 0, 1)) != 0) {
4 if (old_value != 2)
5 old_value = xchg(futex_word, 2);
6 while (old_value != 0) {
7 futex_wait(&futex_word, 2);
8 old_value = xchg(futex_word, 2);
9 }

10 }
11 }

Listing 12 Optimised lock function adapted from “Mutex, Take 3”
in Drepper’s paper [15]

word to 2. As a result, when T2 unlocks the mutex it is not
obliged to wake up any waiters, so T1 remains asleep. T2
then terminates, so that T1 becomes a lost waiter.

This concrete example sheds light on why it is essen-
tial that the cmpxchg used to lock the mutex on the slow
path changes the futex word to the “locked, waiters” state:
this ensures that if there are additional waiters, the thread
that succeeds in locking the mutex on the slow path is guar-
anteed to wake up one of them. Model checking facilitates
experimenting with design variations, and quickly produces
counterexamples that clearly illustrate defects.

5.4 Optimised Futex-based Mutex

We have also used Promela to model two optimisations to
the futex-based mutex of Listing 10, one which is also pre-
sented in Drepper’s paper, and another that reflects an op-
timisation present in the pthread_mutex_unlock im-
plementation in glibc.

Using xchg when locking The mutex of Section 5.3 uses
the cmpxchg (compare-and-exchange) atomic operation.
Modern architectures also feature an “exchange” instruc-
tion, xchg. Recall from Section 4 that xchg exchanges the
value of an atomic variable with a new value, returning the
old value, without also performing a comparison.

Drepper presents an optimised alternative of the mutex
lock function that uses cmpxchg in the fast path, but then
uses xchg thereafter [15, Section 6]. This is illustrated by
the code of Listing 12 (the remainder of the mutex class is
the same as in Listing 10).

This optimisation saves one atomic operation per loop it-
eration, because the xchg(futex_word, 2) in the loop
at line 8 of Listing 12 unconditionally sets the futex word to
2 (with the xchg at line 5 ensuring that the futex word is
set to 2 on loop entry if it was not already found to be 2
by the attempt to lock the mutex on the fast path). In con-
trast, in Listing 10 the cmpxchg(futex_word, 0, 2)
at line 11 will not change the futex word if it is found to have
value 1, hence the need for the cmpxchg(futex word,
1, 2) at line 9.

1 void unlock() {
2 if (xchg(futex_word, 0) == 2) {
3 futex_wake(&futex_word, 1);
4 }
5 }

Listing 13 Optimised unlock function that uses xchg instead of
fetch sub

We do not show the Promela code for this mutex vari-
ant, but it is available in our open source repository as file
drepper mutex3.pml [17].

Using xchg when unlocking Recall the unlock function
from Listing 10. The result of the fetch_sub operation is
used to detect whether the futex word had value 2, in which
case it must be explicitly set to 0 and a futex_wake call
must be issued.

When the xchg operation is available, the need for these
two steps can be avoided: xchg can be used to directly set
the futex word to 0, and the old value of the futex word (re-
turned by xchg) can be inspected to determine whether a
call to futex_wake is needed. The code for unlock with
this simplification is shown in Listing 13.

This optimisation is not suggested in Drepper’s paper,
and was brought to our attention by a question from an un-
dergraduate student at Imperial College London during a
lecture on futex-based mutexes. It turns out that this opti-
misation is in fact present in the glibc implementation of
pthread_mutex_unlock [21, line 174].

Again, we omit the Promela code for this mutex vari-
ant, but it is available in our open source repository as file
drepper mutex3b.pml [17]; the name reflects the fact
that although this optimisation was not proposed in Drep-
per’s paper, it constitutes a minor change to the optimised
mutex implementation presented in the paper.

Checking correctness Our experiments (Section 8) confirm
that checking the mutual exclusion property and freedom
from invalid end states for these optimised mutex imple-
mentations leads to state space sizes of the same order of
magnitude as for the unoptimised version, and comparable
model checking times.

6 Model Checking Futex-based Mutexes from Gustedt

In a research report [25] and a later article [26], Gustedt
presents a futex-based pair of lock-unlock primitives which
can be seen as a mutex. While the original motivation was
to implement C11’s generic atomics efficiently, Gustedt con-
tributed a second version of his approach to the Musl C stan-
dard library [39] as an internal lock-unlock facility.

In this approach the futex word serves two roles. It is
both a flag to indicate whether the lock is acquired or not,
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1 #define set_locked(VAL) (0x80000000u | (VAL))
2 #define is_locked(VAL) (0x80000000u & (VAL))
3 class Mutex {
4 public:
5 Mutex() : futex_word(0) {}
6 void lock() {
7 uint32_t cur = cmpxchg(futex_word, 0, set_locked(1))

;
8 if (cur == 0) return;
9 cur = futex_word.fetch_add(1) + 1;

10 for (;;) {
11 while (!is_locked(cur)) {
12 uint32_t prev =
13 cmpxchg(futex_word, cur, set_locked(cur));
14 if (prev == cur) return;
15 for (uint32_t i = 0;
16 i < BUSYWAIT && is_locked(cur);
17 i++) {
18 cur = futex_word.load();
19 }
20 }
21 while (is_locked(cur)) {
22 futex_wait(&futex_word, cur);
23 cur = futex_word.load();
24 }
25 }
26 }
27 void unlock() {
28 uint32_t prev = futex_word.fetch_sub(set_locked(1));

29 if (prev != set_locked(1)) {
30 futex_wake(&futex_word, 1);
31 }
32 }
33

34 private:
35 atomic<uint32_t> futex_word;
36 };

Listing 14 Gustedt’s lock primitive [26] presented as a mutex

and a contention counter keeping track of how many threads
have acquired or are trying to acquire the lock. In practice,
the high-order bit of the futex word is used as the lock flag,
we call it the lock bit, while the 31 lower bits are used as
the contention counter. Also, for the sake of performance,
this approach contains a bounded busy wait loop to enable
trying to acquire the lock several times before resorting to a
futex_wait.

In Section 6.1 and Section 6.2 we study the “research”
and “Musl” versions of this approach, respectively.

6.1 Research version

Listing 14 shows an adaptation of Gustedt’s lock and un-
lock primitives [26], presented as a C++ Mutex class. Two
macros set_locked and is_locked enable easy set-
ting and checking of the high-order lock bit. Local variable
cur of the lock method reflects the expected value of the
futex word. A thread T performs a first cmpxchg (line 7) to
try to acquire the lock from an expected futex word value of
zero, i.e. unlocked and with zero waiter threads. Upon suc-
cess, cmpxchg returns zero and T exits the lock method
(line 8): T has acquired the lock on the fast path with a
single atomic operation. In this case the futex word value

is set_locked(1), i.e. the lock bit is set, and the con-
tention counter is one, accounting for T who just acquired
the lock.

If the first cmpxchg fails, T increments the futex word
to add itself to the contention counter, and stores the result-
ing value in cur (line 9). T then enters a loop (line 10)
that contains two “while” sub-loops testing whether the lat-
est known value of the futex word, stored in the cur local
variable, is locked or not.

In the first sub-loop (line 11), while the futex word ap-
pears to be unlocked, T attempts to acquire the lock with a
cmpxchg (line 13), where upon success it would set the fu-
tex word lock bit. If the cmpxchg is successful, then T has
acquired the lock and exits the lock method (line 14). Oth-
erwise, T performs a bounded busy wait loop where it reads
the futex word up to BUSYWAIT times (which in practice
has a low value, e.g. 10). If during this busy wait loop the
futex word appears to be unlocked, then the first sub-loop
starts again (line 11) to try acquiring the lock. Otherwise, T
moves on to the second sub-loop.

In the second sub-loop (line 21), while the futex word
appears to be locked, T calls futex_wait (line 22) to put
itself to sleep. When futex_wait returns—either because
the futex word value did not match T’s expected value in
cur, or because another thread woke up T—then cur is up-
dated with the value of the futex word. If this value is locked,
then the second sub-loop starts again (line 21). Otherwise, T
goes back to the first sub-loop where it tries to acquire the
seemingly unlocked futex word.

The unlock method is simpler: T starts by subtracting
the value set_locked(1) from the futex word (line 28),
effectively unsetting the lock bit and decrementing the con-
tention counter in one atomic operation. Then, T looks up
the previous value of the futex word. If it is set_locked
(1) then the contention counter value was one, accounting
for T only, so there is no thread to wake up. Otherwise T
calls futex_wake (line 30) to wake up a waiter thread.

Modelling this approach in Promela requires revisiting
the atomic increment/decrement operations to properly han-
dle the lock bit, as shown in Listing 15.

Recall the futex word is a byte; we use its high-order
bit as the lock bit. We define a series of macros for easy
access and manipulation of this bit. When the lock bit is
set, the value of the futex word is typically greater than
MAX_BYTE_VALUE, which would be considered an over-
flow by our regular fetch_inc (Listing 6). We therefore
define a new lockbit_fetch_inc macro which looks
for an overflow on a value where the lock bit is unset. If
there is an overflow then the contention counter is set to zero,
and lock bit is inverted. This reflects what an overflow on
the 31 lowest bits of a C uint32_t would do: if the lock
bit was zero, it would become one, and vice-versa. As for
fetch_dec, we directly define a macro named lockbit
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1 #define lock_bit_mask (1 << 7)
2 #define is_locked(w) (lock_bit_mask & (w))
3 #define set_locked(w) (lock_bit_mask | (w))
4 #define unset_locked(w) ((lock_bit_mask - 1) & (w))
5

6 inline lockbit_fetch_inc(location, result) {
7 d_step{
8 result = location;
9 if

10 :: unset_locked(location) == MAX_BYTE_VALUE ->
11 location =
12 (is_locked(location) -> 0 : set_locked(0))
13 :: else -> location = location + 1
14 fi
15 }
16 }
17

18 inline lockbit_fetch_unlock_and_dec(location, result) {
19 d_step{
20 result = location;
21 location = unset_locked(location);
22 location = dec(location)
23 }
24 }

Listing 15 Specialised atomic operations handling the lock bit

_fetch_unlock_and_dec since this is the only opera-
tion required to decrement the value of the futex word.

Equipped with these new helpers, the Promela lock and
unlock inline macros for this mutex implementation are
shown in Listing 16. These reflect the C++ code of List-
ing 14, and make use of goto to model the various loops.
These macros rely on local variables cur and prev being
in scope; these are declared in the root scope of the Thread
proctype that models a thread.

The busy wait loop (line 29) is modelled without a loop
counter. On each iteration, the loop may do one of its two
non-deterministic branches. If cur is locked, then the branch
at line 30 updates cur to the futex word value. Regardless
of the value of cur, the branch at line 31 breaks the busy
wait loop and goes back to starting the lock loop again: this
branch models either cur being locked, or the busy wait
counter reaching its limit. Note that the guard of this sec-
ond branch is true, not else: if the guard of the first
branch (cur is not locked) holds, either branch can execute.
This effectively models a busy wait loop with an arbitrary
busy wait limit—and avoids state-space explosion due to the
range of values a busy wait counter would take.

Checking correctness As discussed in full in Section 8, we
are able to use Spin to successfully verify the mutual ex-
clusion property and freedom from invalid end states for up
to 4 threads. Although exploiting symmetry leads to signif-
icantly smaller state spaces with 2, 3 and 4 threads, it does
not allow verification to scale beyond 4 threads.

Exploring counter overflow The fact that the futex word
contains a contention counter raises question about overflow
of that counter. Such an overflow would lead to changing the
value of the high-order lock bit, and resetting the contention

1 inline lock() {
2 atomic {
3 cmpxchg(futex.word, 0, set_locked(1), cur);
4 if
5 :: cur == 0 ->
6 printf("T%d locks mutex on fast path\n", _pid);
7 goto acquired_mutex
8 :: else ->
9 printf("T%d fails to lock mutex on fast path\n",

10 _pid)
11 fi
12 }
13 lockbit_fetch_inc(futex.word, cur);
14 cur = cur + 1;
15

16 retry: // Lock loop
17 if
18 :: !(is_locked(cur)) ->
19 atomic {
20 cmpxchg(futex.word, cur, set_locked(cur), tmp);
21 if
22 :: cur == tmp ->
23 printf("T%d locks mutex\n", _pid);
24 goto acquired_mutex
25 :: else
26 fi
27 }
28 cur = futex.word;
29 do // Busy wait loop
30 :: is_locked(cur) -> cur = futex.word
31 :: true -> goto retry
32 od;
33 goto retry
34 :: else ->
35 futex_wait(futex, cur);
36 cur = futex.word;
37 goto retry
38 fi;
39

40 acquired_mutex: tmp = 0; cur = 0;
41 }
42

43 inline unlock() {
44 d_step {
45 lockbit_fetch_unlock_and_dec(futex.word, prev);
46 printf(
47 "T%d unlocks: set futex word from %d to %d\n",
48 _pid, prev, futex.word);
49 }
50 if
51 :: prev != set_locked(1) -> futex_wake(futex, 1)
52 :: else
53 fi;
54 prev = 0;
55 }

Listing 16 Using Promela to model the Gustedt lock primitive of
Listing 14

counter value to zero. In our Promela model, this happens
in Listing 15 on line 10 when lockbit_fetch_inc is
called while the contention counter value is already
MAX_BYTE_VALUE.

As an experiment, we can redefine MAX_BYTE_VALUE
to be NUM_THREADS - 1, enabling potential overflow of
the contention counter. With this change, Spin quickly re-
ports errors and counterexamples illustrating the bugs trig-
gered by the overflow.

In practice, the futex word is 32 bits so that 31 bits are
used to store the contention counter. We would thus need
231 threads in contention to have a chance of overflowing
the counter, and one can assume it is unrealistic to have such
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1 #define set_locked(VAL) (0x80000000u | (VAL))
2 #define unset_locked(VAL) (0x7FFFFFFFu & (VAL))
3 #define is_locked(VAL) (0x80000000u & (VAL))
4 class Mutex {
5 public:
6 Mutex() : futex_word(0) {}
7 void lock() {
8 uint32_t cur = cmpxchg(futex_word, 0, set_locked(1))

;
9 if (cur == 0) return;

10 for (uint32_t i = 0; i < BUSYWAIT; i++) {
11 if (is_locked(cur)) cur = unset_locked(cur) - 1;
12 uint32_t prev =
13 cmpxchg(futex_word, cur, set_locked(cur+1));
14 if (prev == cur) return;
15 cur = prev;
16 }
17 cur = futex_word.fetch_add(1) + 1;
18 for (;;) {
19 if (is_locked(cur)) {
20 futex_wait(&futex_word, cur);
21 cur = unset_locked(cur) - 1;
22 }
23 uint32_t prev =
24 cmpxchg(futex_word, cur, set_locked(cur));
25 if (prev == cur) return;
26 cur = prev;
27 }
28 }
29 void unlock() {
30 uint32_t prev = futex_word.fetch_sub(set_locked(1));
31 if (prev != set_locked(1)) {
32 futex_wake(&futex_word, 1);
33 }
34 }
35

36 private:
37 atomic<uint32_t> futex_word;
38 };

Listing 17 Musl version of Gustedt approach [39], presented as a
mutex

a number of threads contending for the same mutex. As op-
posed to Section 5.2, the fact that no error is reported when
checking with up to four threads gives us strong confidence
that there is no way for the contention counter to be over-
flown by just a few competing threads.

6.2 Musl version

Listing 17 shows a C++ class based on the Musl version of
this mutex. This mostly differs from the research one by the
busy wait loop, which here is tried at most once during each
call to lock().

Similar to the research version, the lock method has
a cur variable that reflects the expected value of the futex
word. A thread T entering lock starts with a fast path that
assumes there is no contention: a cmpxchg expects a futex
word value of zero (line 8). If successful, this operation sets
the futex word to set_locked(1), i.e. the lock bit is set
and the contention counter is one, and T returns (line 9).

Otherwise, T enters the busy wait loop (line 10): it tries
up to BUSYWAIT times to acquire the mutex, whether cur
has its lock bit set or not. Note that T has not added itself to
the contention counter yet, hence at line 11 if cur is locked

then the expected value of the futex word once it gets un-
locked would be cur with the lock bit unset, and the con-
tention counter decremented by one since the other thread
who released the lock would have remove itself from this
counter. Accordingly, the busy wait loop cmpxchg (line 13)
tries to set the futex word value to its current value plus one
to account for T in the contention counter, and also with the
lock bit set. If this cmpxchg succeeds, then the lock is ac-
quired and T returns. Otherwise, cur is updated with the
futex word value returned by the cmpxchg, and the busy
wait loop starts again.

If T does not manage to acquire the lock during the busy
wait loop, it continues and will not try the busy wait loop
again during this lock call. T adds itself to the contention
counter by incrementing the futex word value, and stores the
result in cur (line 17). Next, T enters an unbounded loop
(line 18). On each iteration of this loop, T checks whether
cur is locked. If so, T calls futex_wait to put itself to
sleep, and when woken up it assumes that the value of the
futex word now reflects that an other thread has just released
the lock, i.e. this value is cur with the lock bit unset, minus
one for the contention counter. At line 24, cur reflects the
best guess T has of the current value of an unlocked futex
word, and T tries a cmpxchg using this value. Upon suc-
cess, T has acquired the lock and can return (line 25). Oth-
erwise, cur is updated with the futex word value returned
by cmpxchg, and T proceeds to the next iteration of the
unbounded loop.

The unlock method is similar to the one in research
version: the futex word value is updated to unset its lock bit
and decrement its contention counter. If it appears that there
were waiter threads, then futex_wake is called.

The Promela code for this mutex variant is available in
our repository as gustedt mutex2.pml [17].

Checking correctness As with the research version, we are
able to use Spin to verify the mutual exclusion property and
freedom from invalid end states for up to 4 threads; again,
symmetry reduction does not provide enough benefit to al-
low verification to scale to larger thread counts. Compared
to the research version, the Musl version exhibits larger state
spaces and associated verification times, while still staying
in the same order of magnitude. This illustrates how using
the busy wait loop in a different way, and other minor dif-
ferences with the research version, may impact verification
scalability. These experimental results are discussed in full
in Section 8.

7 Model Checking Futex-based Condition Variables

A condition variable (cv) [29,28] allows inter-thread com-
munication via three operations: cv_wait, cv_signal
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1 bool mutex;
2 inline mutex_lock() {
3 d_step {
4 !mutex -> mutex = true
5 }
6 }
7 inline mutex_unlock() {
8 mutex = false
9 }

Listing 18 A simple mutex implementation in Promela

and cv_broadcast. The cv_wait operation takes a mu-
tex as an argument, which must already be locked. It atomi-
cally unlocks the mutex and puts the calling thread to sleep.
Once the thread is woken up, it locks the mutex again before
returning. The cv_signal operation wakes up one thread
chosen non-deterministically among the sleeping ones, while
cv_broadcast wakes up all sleeping threads.

The cv_wait operation is atomic in the sense that by
the time another thread locks the mutex, the first thread is in
the list of threads sleeping on the condition variable. In par-
ticular, consider a pair of threads T0 and T1; first T0 holds
the mutex and calls cv_wait, then T1 locks the mutex and
calls cv_signal: the signal from T1 cannot be lost, i.e. it
must wake up T0.

In the following, we focus on futex-based implementa-
tions of cv_wait and cv_signal: the cv_broadcast
operation is typically similar to cv_signal save for using
INT_MAX instead of 1 as the number of threads to wake up
in futex_wake calls.

7.1 Model Checking Harness and Properties

Like for lock and unlock in Section 5.1, our harness
makes use of to-be-defined inline macros cv_wait and
cv_signal. The harness involves a loop in which threads
nondeterministically repeat the process of either waiting or
signalling. The harness is designed such that if cv_wait
and cv_signal are implemented correctly there always
exists a path to successful termination of every thread. In
terms of verification, here we pay special attention to make
sure the harness can enable catching lost signal bugs by
checking freedom from invalid end states.

First, in Listing 18 we define a simple mutex: condi-
tion variables are use in conjunction with mutexes whose
whose internals are irrelevant, so we can use straightfor-
ward Promela code to model mutexes. A mutex is repre-
sented by a global boolean variable (whose default value
if false); locking involves atomically blocking until its
value is false and then setting it to true, while unlocking
simply involves resetting it to false.

The harness consists of a condition variable used by a
single signaller thread and one or more waiter threads. The

1 active[NUM_WAITERS] proctype Waiter() {
2 do
3 :: mutex_lock() ->
4 num_signals_req++;
5 printf("T%d calls cv_wait()\n", _pid);
6 cv_wait();
7 printf("T%d returns from cv_wait()\n", _pid);
8 mutex_unlock()
9 :: break

10 od;
11 num_done++;
12 }

Listing 19 Condition variable harness: waiter threads

1 active proctype Signaller() {
2 do
3 :: num_signals_req > 0 ->
4 mutex_lock();
5 printf("T%d must signal, num_signals_req=%d\n",
6 _pid, num_signals_req);
7 cv_signal();
8 num_signals_req--;
9 mutex_unlock()

10 :: else ->
11 if
12 :: true ->
13 mutex_lock();
14 printf("T%d signals without need\n", _pid);
15 cv_signal();
16 num_signals_req =
17 (num_signals_req > 0 -> num_signals_req - 1
18 : 0);
19 mutex_unlock()
20 :: true ->
21 printf("T%d won’t signal until needed\n", _pid);
22 if
23 :: num_signals_req > 0 ->
24 assert(num_done < NUM_WAITERS)
25 :: num_done == NUM_WAITERS ->
26 assert(num_signals_req == 0);
27 break
28 fi
29 fi
30 od
31 }

Listing 20 Condition variable harness: signaller thread

waiters call cv_wait an arbitrary number of times before
terminating. The signaller calls cv_signal until all wait-
ers are done, then it terminates. In order to catch lost signal
bugs, we also make sure the signaller has an execution path
where cv_signal is called only the necessary number of
times to match calls to cv_wait, but no more.

To model all this, we start with a constant represent-
ing the number of waiters, and global variables to count the
minimum number of signals that are needed and how many
threads have terminated, before defining the behaviour of
waiter threads via the Waiter proctype of Listing 19.

Each waiter loops on either locking the mutex, incre-
menting num_signals_req, calling cv_wait and then
unlocking the mutex; or exiting the loop and incrementing
num_done before terminating. Thus, each waiter may call
cv_wait an arbitrary number of times before terminating.

The Signaller proctype of Listing 20, modelling the
signaller thread, is slightly more complex. It loops on ei-
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1 class CondVar {
2 public:
3 CondVar() : futex_word(0) {}
4 void cv_wait(mutex &m) {
5 m.unlock();
6 futex_wait(&futex_word, 0);
7 m.lock();
8 }
9 void cv_signal() { futex_wake(&futex_word, 1); }

10

11 private:
12 atomic<uint32_t> futex_word;
13 };

Listing 21 Incorrect futex-based condition variable based on the
“Simple but very wrong” example in Denis-Courmont’s article [9]

ther detecting that a signal is required (line 3), in which
case it locks the mutex, calls cv_signal to issue a sig-
nal, decrements num_signals_req and unlocks the mu-
tex (lines 4–9); or it sees that no signal is required (line 10).
In this case, it non-deterministically decides to either call
cv_signal even though there is no apparent need for it
(lines 13–19), or to block until either a signal is needed
(line 23), or all waiters are done in which case it breaks out
of the loop to terminate (line 25). The if branches starting
with true (lines 12 and 20) model the “internal” decision
of the signaller. In particular, once it has decided to block, it
must not signal again unless it detects the need for a signal.

On the one hand, this harness allows the signaller to pro-
duce an arbitrary number of signals, even if no waiter is cur-
rently waiting for a signal. On the other hand—and this is
crucial to detect lost signal bugs—when the signaller sees
that no signal is needed, it may decide to stop signalling un-
til either a signal is needed, or all waiters are done. This
ensures that each call to cv_wait is matched by at least
one call to cv_signal, but potentially no more than the
number of signals that are strictly needed. In the execution
path where there is only one signal per wait, if any signal
is lost this will lead to a scenario where (a) some waiter is
stuck in the cv_wait call at line 6, and (b) the signaller is
blocked at line 23 because no signals are currently required.
Thus the lost signal will lead to the model checker reporting
an invalid end state.

The rest of this section covers various futex-based imple-
mentations of cv_wait and cv_signal, as presented by
Denis-Courmont [9]. Each implementation depends on the
declaration of a single futex global variable named futex.

7.2 Take 1: Naive and Incorrect

The C++ class of Listing 21 represents a naive attempt at
a condition variable implementation, from the “Simple but
very wrong” section in Denis-Courmont’s article [9].

The cv_wait operation unlocks the mutex before call-
ing futex_wait with a plain value of 0 (the initial value

1 inline cv_wait() {
2 mutex_unlock();
3 futex_wait(futex, 0);
4 mutex_lock()
5 }
6

7 inline cv_signal() {
8 futex_wake(futex, 1)
9 }

Listing 22 Modelling the incorrect condition variable of Listing 21 in
Promela

1 class CondVar {
2 public:
3 CondVar() : futex_word(0) {}
4 void cv_wait(mutex &m) {
5 futex_word.store(1);
6 m.unlock();
7 futex_wait(&futex_word, 1);
8 m.lock();
9 }

10 void cv_signal() {
11 futex_word.store(0);
12 futex_wake(&futex_word, 1);
13 }
14

15 private:
16 atomic<uint32_t> futex_word;
17 };

Listing 23 Incorrect futex-based condition variable based on the
“Toggle” example in Denis-Courmont’s article [9]

of the futex word) to put the thread to sleep. On waking, it
locks the mutex again before returning. The cv_signal
operation just calls futex_wake to wake up one of the
sleeping threads. This is modelled in Promela using the in-
line macros of Listing 22.

Invoking Spin on the harness with this version leads to
an invalid end state error, with a counterexample illustrating
the issue. After the mutex is unlocked in cv_wait (line 2),
the signaller thread might call cv_signal, which in turn
calls futex_wake, before the waiter calls futex_wait
(line 3); the signal is lost. In this case, if the signaller decides
to block until another signal is needed, then the waiter thread
has no chance to be woken up: the system is in deadlock.

7.3 Take 2: Toggle State

Listing 23 shows a second take, from the “Toggle” section
of Denis-Courmont’s article [9], which involves using the
futex word as a toggle state, oscillating between values 0 and
1, to avoid lost signals. In cv_wait, the futex word is set
to 1 before releasing the mutex and calling futex_wait
with a value of 1. In cv_signal, the value of the futex
word is set to 0 before calling futex_wake. This toggling
is meant to avoid losing the signal in the counterexample
considered in Section 7.2: if a thread T is between lines 6
and 7 when another thread calls cv_signal, then the futex
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1 inline cv_wait() {
2 futex.word = 1;
3 mutex_unlock();
4 futex_wait(futex, 1);
5 mutex_lock();
6 }
7

8 inline cv_signal() {
9 futex.word = 0;

10 futex_wake(futex, 1);
11 }

Listing 24 Modelling the incorrect condition variable of Listing 23 in
Promela

word is set to 0, such that T will not sleep when it eventually
calls futex_wait.

This approach is transcribed to the Promela code of List-
ing 24. Using Spin on this approach confirms that there is
no issue when only two threads are considered. However, as
soon as we have three threads, Spin outputs a counterexam-
ple illustrating a lost signal:

Thread Message
T1 calls cv wait()
T2 must signal, num signals req=1
T2 woke up 0 thread(s)
T0 calls cv wait()
T1 futex wait, value match: 1; sleep
T2 must signal, num signals req=1
T0 futex wait, value match: 1; sleep
T2 wakes T0
T2 woke up 1 thread(s)
T2 won’t signal until needed
T0 has woken
T0 returns from cv wait()

Here, T0 and T1 are waiters, and T2 is the signaller.
This counterexample starts like the lost signal counterex-
ample we saw before. First, T1 calls cv_wait: it sets the
futex word to 1 and unlocks the mutex. At this point, T2
signals: it sets the futex word to 0 and calls futex_wake
but wakes up no thread. This is because T1 has not called
futex_wait yet. Then, T0 calls cv_wait, so it sets the
futex word to 1 again. At this point, both T1 then T0 call
futex_wait, and thus go to sleep. Then, T2 signals and
wakes up one of the sleeping threads, T0. At this point, we
reach a deadlock: T1 is sleeping waiting for a signal op-
eration to wake it up, however T2 does not have to signal
anymore: it has signalled after each of the cv_wait calls
issued so far. The first signal was lost: the corresponding
toggled futex word value was overwritten by T0.

We note that Denis-Courmont first thought this approach
was correct, before being pointed to a counterexample by a
reader of the article. Our modelling and analysis show that
using model checking at the design stage could lead to quick
discovery of such issues.

1 class CondVar {
2 public:
3 CondVar() : futex_word(0) {}
4 void cv_wait(mutex &m) {
5 uint32_t old_value = futex_word;
6 m.unlock();
7 futex_wait(&futex_word, old_value);
8 m.lock();
9 }

10 void cv_signal() {
11 futex_word.fetch_add(1);
12 futex_wake(&futex_word, 1);
13 }
14

15 private:
16 atomic<uint32_t> futex_word;
17 };

Listing 25 Futex-based condition variable based on the “Sequence
counter, close but no cigar” example in Denis-Courmont’s article,
which suffers from a potential deadlock [9]

1 inline cv_wait() {
2 val = futex.word;
3 mutex_unlock();
4 futex_wait(futex, val);
5 mutex_lock();
6 // Reset to avoid state space explosion
7 val = 0;
8 }
9

10 inline cv_signal() {
11 futex.word = inc(futex.word);
12 futex_wake(futex, 1);
13 }

Listing 26 Modelling the condition variable of Listing 25 in Promela

7.4 Take 3: Bionic, Unlikely Yet Possible Deadlock

Our third take on implementing condition variables, which
Denis-Courmont entitles “Sequence counter, close but no
cigar” [9], mimics the approach taken in Android’s Bionic
libc [1], where cv_signal increments the futex word to
avoid deadlocks seen in our first take (Section 7.2). This is
illustrated by the C++ class of Listing 25.

In cv_wait, the value of the futex word is saved in
old_value before the mutex is released, after which a call
to futex_wait with old_value is made.

In cv_signal, the futex word is incremented by 1,
with a possible overflow, before calling futex_wake. This
avoids the deadlock situation encountered in Section 7.2:
if cv_signal is executed between unlocking the mutex
(line 6) and calling futex_wait (line 7) in cv_wait,
the futex word value will be different from the value used in
the call to futex_wait which thus will not block.

This approach is modelled in Promela via the code of
Listing 26, which assume that a local variable val has been
declared at the root scope of the Waiter proctype. How-
ever, Spin still reports a possible deadlock: if between lines 3
and 4, cv_signal is called enough times to overflow the
futex word and bring it back to the old value saved in line 2,
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1 class CondVar {
2 public:
3 CondVar() : futex_word(0) {}
4 void cv_wait(mutex &m) {
5 previous.store(futex_word);
6 uint32_t val = previous.load();
7 m.unlock();
8 futex_wait(&futex_word, val);
9 m.lock();

10 }
11 void cv_signal() {
12 uint32_t val = 1 + previous.load();
13 futex_word.store(val);
14 futex_wake(&futex_word, 1);
15 }
16

17 private:
18 atomic<uint32_t> futex_word;
19 atomic<uint32_t> previous; // Additional state
20 };

Listing 27 Futex-based condition variable based on the “Back to
sequence counting” example in Denis-Courmont’s article, which still
suffers from a potential deadlock [9]

1 byte cv_previous; // Additional state
2

3 inline cv_wait() {
4 cv_previous = futex.word;
5 val = cv_previous;
6 mutex_unlock();
7 futex_wait(futex, val);
8 mutex_lock();
9 // Reset to avoid state space explosion

10 val = 0;
11 }
12

13 inline cv_signal() {
14 futex.word = inc(cv_previous);
15 printf("T%d sets futex.word to %d\n",
16 _pid, futex.word);
17 futex_wake(futex, 1);
18 }

Listing 28 Modelling the condition variable of Listing 27 in Promela

then the call to futex_wait does block, and we reach a
deadlock. This issue is documented in Bionic, with an ac-
knowledgement that it would be extremely unlikely to arise
in practice: with a 32-bit futex word, we would need ex-
actly 232 calls to cv_signal in a row, at the moment when
cv_wait is between lines 3 and 4, to trigger the deadlock.

Such issues are hard to foresee at design time. Model
checking is valuable in illustrating rare risks of deadlocks,
so that their practical acceptability can be evaluated.

7.5 Take 4: Even Rarer Yet Still Possible Deadlock

A fourth take on condition variables, entitled “Back to se-
quence counting” in Denis-Courmont’s article [9], adds an
extra piece of state to represent the condition variable, which
consisted only of a futex so far. This extra previous vari-
able stores the expected previous value of the futex word.
This approach is captured by the C++ class of Listing 27.

We model this variation in Promela via the inline macros
of Listing 28, which again requires local variable val to be
in scope. Global variable cv_previous is used to model
the additional state. When a thread calls cv_wait, it up-
dates cv_previous to the current value of the futex word.
This value is also stored in the val local variable before un-
locking the mutex, and then futex_wait is called with
this locally stored value. In cv_signal, the futex word is
set to cv_previous incremented by one, before calling
futex_wait.

Here, the idea is to avoid lost signals by modifying the
value of the futex word in cv_signal, similarly to the
approach in Section 7.4, yet to try and avoid the deadlock
triggered by overflowing the futex word value. To this end,
in cv_signal the futex word is updated to the value of
cv_previous plus one (line 14), such that several consec-
utive calls to cv_signal all lead to the same value in futex
word. For the futex word to keep on incrementing, lock-step
pairs of calls to cv_wait (to set cv_previous to the
futex word value) and cv_signal (to set the futex word
value to cv_previous plus one) are required.

Denis-Courmont argues that here, an overflow-induced
deadlock can only occur if while thread T is between unlock-
ing the mutex (line 6) and calling futex_wait (line 7),
232 other threads call cv_wait concurrently, and at least
one other thread calls cv_signal concurrently between
each cv_wait, such that the futex word overflows and that
the futex_wake call of thread T puts thread T to sleep,
never to be woken up [9].

However, Spin quickly finds a counterexample showing
that such a deadlock can happen with only three threads. If
thread T0 is between line 6 and 7, then we can have two
threads T1 and T2 calling cv_wait and cv_signal in
lock-step pairs enough times to overflow the futex word.
This scenario is acknowledged by Denis-Courmont in a sub-
sequent article [10]. Note that in practice, for a 32-bit futex
word, this would require exactly 232 lock-step pairs of calls
to cv_wait and cv_signalwhile another thread has un-
locked the mutex and is about to call futex_wait: this
makes the probability of this deadlock even lower than the
one in Section 7.4.

Despite the elaborate sequence required to trigger a dead-
lock, model checking is once again able to find a counterex-
ample that is valuable for designers to assess the relevance
of a solution.

8 Experiments

For the incorrect futex-based mutex discussed in Drepper’s
article (Section 5.2), and the various attempts at implement-
ing condition variables (Section 7), we have demonstrated
that model checking can be useful in quickly providing coun-
terexamples to correctness. We now turn to the scalability of
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model checking when it comes to verifying the correctness
of the mutex implementations that are not thought to suf-
fer from correctness issues: the correct mutex from Drep-
per’s article (Section 5.3) and its optimised variants (Sec-
tion 5.4), and the two mutex implementations from Gustedt
(Section 6). For these mutexes, we investigate how model
checking scales as increasing numbers of threads contend
for the mutex. Because these examples are inherently sym-
metric, we investigate the potential of symmetry reduction
to allow model checking to scale to larger thread counts. We
also investigate the effectiveness of two lossless memory re-
duction techniques that Spin provides.

8.1 Experimental Setup

Our experiments were executed on an AMD EPYC work-
station running Linux 6.9.10, with C code generated by Spin
compiled using GCC 13.2.0 with optimisation flag “-O3”.
Each run is limited to 100 GB of memory and six hours of
run time.

For experiments without symmetry reduction, Spin ver-
sion 6.5.2 was used.

For experiments with symmetry reduction, Spin version
6.1.0 was used, together with Git revision 6d26219 of the
TopSPIN symmetry reduction tool [12,11]. This is because
(as discussed in Section 8.2 below) TopSPIN is not com-
patible with more recent versions of Spin. TopSPIN relies
on the computational group theory package GAP [24], with
GAP version 4.13.1 being used in our experiments.

The times that we present are averages taken over 3 runs,
and overall we observed a coefficient of variation of less
than 10%.

8.2 Changes to Support Symmetry Reduction

Symmetry reduction is a state-space reduction technique that
can be used when a model features many replicated compo-
nents [8,16,41,38]. In the simplest case—which applies in
the context of our futex-based mutex examples—a model
comprises multiple identical processes and is fully symmet-
ric. In a fully symmetric model with N processes, a model
state has the form (L1, L2, . . . , LN , G), where Li represents
the local state of process i (1 ≤ i ≤ N ), and G represents
the state of any global variables. In our examples, each local
state Li would capture the program counter and local vari-
ables of a thread contending for the mutex, while G would
capture global state such as the futex word and the array
recording which threads are waiting.

Two states (L1, L2, . . . , LN , G) and (M1,M2, . . . ,MN ,

G′) are equivalent under symmetry if (M1,M2, . . . ,MN ) is
a permutation of (L1, L2, . . . , LN )—i.e. it can be obtained
by shuffling the Li—and G′ is the result of applying this

permutation to the state of the global variables captured by
G (e.g., in our context, shuffling the values of the array that
records which threads are waiting). It can be shown that if
the property ϕ under analysis is invariant under symmetry
(that is, it does not depend on the identity of any particular
process), then ϕ holds in state s if and only if it holds in
state s′ where s and s′ are equivalent under symmetry [8,
16]. It thus suffices to check just one state per symmetric
equivalence class. With N processes, a symmetric equiv-
alence class can be as large as N !, thus symmetry reduc-
tion has the potential to substantially reduce the number of
states that need to be explored as N increases. The main
challenge associated with putting symmetry reduction into
practice (explored in the literature and described in a pair of
survey articles [41,38]) involves efficiently detecting equiv-
alence between states.

Our mutex implementations are fully symmetric, and the
properties of freedom from invalid end and mutual exclusion
are invariant under symmetry, so these models are good can-
didates for symmetry reduction. To experiment with sym-
metry reduction, we use the TopSPIN tool [12]. TopSPIN
performs a static analysis of Promela source code to auto-
matically identify symmetry [14], and then uses techniques
from computational group theory to automatically classify
the group of identified symmetries and determine a strategy
for exploiting symmetry during model checking [13].

We found that TopSPIN is not compatible with recent
versions of Spin, but remains compatible with versions of
Spin up to Spin 6.1.0. Therefore, as discussed in Section 8.1,
we Spin 6.1.0 for our symmetry reduction experiments.

We had to create alternative versions of our Promela
models to cater for a number of restrictions of the TopSPIN
tool, as follows:

No active proctypes TopSPIN does not support Promela’s
concept of active proctypes, so our alternative models use
an init process that launches further processes via run
statements in an atomic scope. This causes a tiny increase
in state space size—a single extra state—because it takes
one step for the init process to launch the other processes.

Changes to arrays TopSPIN requires that any array that is
indexed by a process ID must have a length equal to the to-
tal number of processes, regardless of type. In our case, this
includes the init process and the safety monitor process.
Our alternative versions thus use larger arrays, and array in-
dexing operations are adapted to account for the fact that the
init process has process ID 0, so that the IDs of Thread
processes start from 1. This slightly enlarges the state vector
associated with each state of the model.

Removal of certain printf statements Our models feature
printf statements that include literal values correspond-
ing to process IDs. The type inference behind TopSPIN’s
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symmetry detection strategy cannot detect that these liter-
als should be treated like process IDs, rather than as regular
integer values. This leads to a failure to detect symmetry.
We thus commented out such printf statements (which
do not contribute to the number of reachable states) in our
alternative versions.

By performing a number of model checking runs with-
out symmetry reduction, we confirmed that these changes
lead to alternative models with state space sizes identical to
those of the original models, save for the additional state
caused by the use of an init process.

8.3 Experimental Results

Results without symmetry reduction State space sizes and
verification times (in seconds) for model checking the cor-
rect mutex implementations with varying numbers of threads
are shown in Table 1. These results are for Spin working in
its default safety verification mode, where partial order re-
duction is enabled and no state compression is used. Sym-
metry reduction is not employed.

The “Drepper” column show results for Drepper’s cor-
rect mutex implementation (see Section 5.3). The “Drepper
(opt. lock)” and “Drepper (opt. lock/unlock)” columns show
results for the versions of this implementation where the
lock function, and both the lock and unlock functions,
are optimised respectively (see Section 5.4). The “Gustedt
(research)” column shows results for the research version of
Gustedt’s mutex implementation (see Section 6.1), while the
“Gustedt (Musl)” column shows results for the Musl version
of this mutex (see Section 6.2).

For Drepper’s mutex and its variants, while the size of
the state space grows rapidly as the thread count increases,
verification succeeds comfortably (within a matter of min-
utes) for up to 6 threads. Available memory resources are ex-
ceeded when verification is attempted with 7 threads (hence
why only results for up to 6 threads are shown in the ta-
ble). The optimised versions of this mutex implementation
exhibit somewhat larger state spaces, but within the same
order of magnitude.

Verification scales less well for the Gustedt mutexes,
which suffer from more serious state-space explosion. For
the research version, the state space size increases by a fac-
tor of more than 270 when moving from 2 to 3 threads, and
by another factor of more than 587 when moving from 3 to 4
threads. These factors are even larger for the Musl version,
with a growth factor of more than 441 when moving from
2 to 3 threads, and more than 696 when moving from 3 to
4 threads. For both mutexes, verification with more than 4
threads exceeded available memory resources, indicated by
a ‘-’ entry in the table.

We attribute the rapid state space growth for the Gustedt
mutexes, compared with the Drepper mutexes, to the pres-
ence of a busy wait loop, and the number of values the futex
word might have: in Gustedt, the futex word stores both a
lock bit and a contention counter, whereas in Drepper cor-
rect versions, the futex word can only have three values (0,
1 or 2).

Results with symmetry reduction Results for model check-
ing when TopSPIN is used to provide symmetry reduction
are shown in Table 2. The main take-away from comparing
Table 2 (with symmetry reduction) with Table 1 (no sym-
metry reduction) is that symmetry reduction is very useful
for scaling the analysis of Drepper’s mutex and its variants
to larger thread counts, but not useful in this regard for the
Gustedt mutexes.

For the Drepper mutexes, comparing state space sizes
with and without symmetry reduction shows symmetry re-
duction leads to a reduction factor of 420× for configura-
tions involving 6 threads. Symmetry reduction enables veri-
fying configurations of these mutexes with up to 12 threads
before available memory resources are exhausted.

Symmetry reduction also leads to a substantial reduc-
tion in state space size for the Gustedt mutexes, offering
a reduction of more than 20× for configurations of these
mutexes involving 4 threads. However, the incredibly rapid
state space explosion exhibited by these models means that
even with the help of symmetry reduction, verification does
not scale beyond 4 threads before exhausting available mem-
ory resources.

From the timing results we can see that while symmetry
reduction leads to significantly smaller state space, it also
induces a per-state overhead computation: for example, ver-
ifying “Drepper” with 6 threads without symmetry reduction
results in a throughput of 362,119 states per seconds, while
with symmetry reduction it is down to 209,407 states per
seconds. Considering “Drepper” with symmetry reduction
with 12 threads, throughput reduces further to 24,788 states
per second. This is because configurations with more threads
have larger symmetry groups (hence the bigger state space
reduction factor), but the larger group means that more com-
putation is required per state in order for symmetric equiva-
lence between states to be detected.

Effectiveness of two memory reduction techniques We in-
vestigate whether two memory reduction techniques pro-
vided by Spin can be useful in improving the scalability of
model checking: collapse compression, which stores states
in a compressed form [30, Chapter 9], and the minimised au-
tomaton method, which uses an alternative data structure to
represent the state space in a compact manner [32]. In con-
trast to some other memory reduction techniques that Spin
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Table 1 State space sizes and model checking times (in seconds) for verifying correct mutex implementations with various thread counts, without
symmetry reduction. A ‘-’ entry indicates that verification could not be completed within available memory resources, which was also the case for
configurations involving 7 threads.

Drepper Drepper (opt. lock) Drepper (opt. lock/unlock) Gustedt (research) Gustedt (Musl)
Threads States Time States Time States Time States Time States Time

2 268 0.0 351 0.0 320 0.0 1,051 0.0 1,087 0.0
3 9,494 0.0 10,913 0.0 9,923 0.0 284,431 0.1 479,692 0.2
4 254,228 0.2 292,693 0.2 274,152 0.2 167,239,830 217.0 334,107,290 374.0
5 6,006,939 8.0 7,222,655 7.8 7,053,427 7.9 - - - -
6 132,426,930 365.7 168,134,930 364.0 170,710,110 358.3 - - - -

Table 2 State space sizes and model checking times (in seconds) for verifying correct mutex implementations with various thread counts, with
symmetry reduction. A ‘-’ entry indicates that verification could not be completed within available memory resources, which was also the case for
configurations involving 13 threads.

Drepper Drepper (opt. lock) Drepper (opt. lock/unlock) Gustedt (research) Gustedt (Musl)
Threads States Time States Time States Time States Time States Time

2 136 0.0 182 0.0 168 0.0 537 0.0 531 0.0
3 1,690 0.0 1,834 0.0 1,793 0.0 48,799 0.0 79,092 0.0
4 12,549 0.0 14,289 0.0 13,805 0.0 7,115,838 13.6 13,256,896 21.9
5 69,464 0.2 84,116 0.2 79,839 0.2 - - - -
6 314,111 1.5 394,260 1.6 385,565 1.5 - - - -
7 1,219,936 9.2 1,599,879 9.7 1,598,859 9.6 - - - -
8 4,205,948 47.2 5,739,971 49.0 5,785,936 48.2 - - - -
9 13,158,276 199.3 18,631,188 208.0 18,951,940 207.0 - - - -

10 37,966,278 759.7 55,546,516 802.0 56,893,240 805.7 - - - -
11 102,252,580 2,633.3 154,248,840 2,816.7 158,733,570 2,786.7 - - - -
12 259,450,920 10,466.7 401,739,510 10,933.3 414,483,280 11,000.0 - - - -

supports, both of these methods are lossless: they do not lead
to any states being missed.

A summary of our findings is shown in Table 3, where
data are taken for all runs, both with and without symmetry
reduction, where full verification was possible. We did not
find any cases where memory reduction led to more tractable
verification; i.e. there were no cases where a memory reduc-
tion strategy made full verification possible (within our re-
source limits) when it was not possible without a memory
reduction strategy.

The “Space saving (total)” row shows that, on average,
the space savings afforded by these two reduction techniques
are very modest when one looks at the total memory asso-
ciated with model checking. This is because in all model
checking runs we executed Spin with a very large search
depth, so that depth-first search would be possible on the
large state spaces associated with high thread counts. The
collapse and minimised automaton techniques do not affect
the space required for the depth-first search stack, and so the
memory required for this stack dwarfs the savings that these
approaches bring. The median space saving is particularly
low because we use an unnecessarily large stack size even
for small thread counts. However, a large amount of stack
space was needed for larger thread counts.

If we ignore the amount of memory devoted to stor-
ing the depth-first search stack, we see that the memory re-
duction techniques have a more pronounced impact on the

remaining memory that is used. This is illustrated by the
“Space saving (no DFS stack)” row, with mean space sav-
ings of more than 20% for collapse and more than 70% for
minimised automaton, respectively.

However, these savings do not come for free: the final
row of the table, “Time overhead” shows the increase in
model checking time, on average, associated with using these
techniques. The collapse technique incurs a relatively mod-
est performance overhead, but verification using the min-
imised automaton approach is several times slower.

In summary: in this domain, the deep nature of the state
spaces mean that these memory reduction techniques are not
effective if one wishes to perform full depth-first search-
based verification, because full verification requires a large
amount of memory for the depth-first search stack, which is
not reduced by either technique.

9 Related Work

There is a significant literature on formal verification of inter-
process communication primitives. Bogunovic et al. verified
mutual exclusion algorithms with SMV [5], with an analysis
of liveness and fairness. Mateescu and Serwe analysed 27
different shared-memory mutual exclusion protocols with
CADP, assessing both correctness and performance [35,36].
Bar-David and Taubenfeld used model checking techniques
to automatically discover mutual exclusion algorithms [2].
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Table 3 Data showing the average percentage savings afforded by memory reduction using collapse compression and the minimised automaton
approach, together with data on the performance overhead associated with the approaches.

Collapse Minimised automaton
Mean Median Mean Median

Space saving (total) 2.31% 0.03% 4.14% 0.48%
Space saving (no DFS stack) 20.33% 25.31% 71.21% 68.27%
Time overhead 1.64× 1.29× 8.64× 5.23×

More recently, Kokologiannakis and Vafeiadis developed a
specific dynamic partial order reduction (DPOR) technique
to better handle the barrier synchronisation primitive [34]. In
terms of using model checking for education, Hamberg and
Vaandrager wrote about their experience using UPPAAL in
a course on operating systems [27].

We are not aware of formal verification of futex-based
synchronisation primitives. Futexes are primarily a Linux
system call [22,23]. Besides the two reference publications
from Franke et al. [20] and Drepper [15], Benderski wrote a
good introduction on the topic [3]. Note that the futex sys-
tem call itself has suffered from bugs that affected userspace
applications, such as the Java Virtual Machine [37].

In our evaluation we considered the application of sym-
metry reduction, which has received significant attention in
the field of model checking since it was first proposed [8,
16], and is the subject of two survey articles [41,38]. A fea-
ture of the TopSPIN tool that we have used for symmetry re-
duction is that it detects symmetry in an automated manner,
but as discussed in Section 8.2 this does put some constraints
on how a model must be expressed in order for the detec-
tion algorithm to succeed, and these constraints can lead to
a slight waste in resources when working with PID-indexed
arrays (arrays that are indexed by process ID). An alterna-
tive symmetry reduction tool for Spin, called SymmSpin [6],
requires the presence of symmetry to be identified in an up-
front manner through the use of a scalarset data type, which
is based on prior work on symmetry reduction for the Mur-
phi verification system [33]. While requiring manual type
annotations, the use of scalarsets to identify particular types
of processes that should be regarded as symmetric has the
potential to avoid the issues related to PID-indexed arrays
that affect TopSPIN. However, our understanding is that the
SymmSpin tool is no longer maintained.

10 Future Directions

We have presented a case study of modelling a series of
futex-based implementations of mutexes and condition vari-
ables in Promela, and using Spin to verify safety proper-
ties. An immediate extension would be to consider fairness
to enable verifying liveness properties, like the absence of
starvation. We can also explore additional futex-based syn-
chronisation primitives, for instance barriers.

To create an educational resource that would require lit-
tle model checking expertise, we can think of doing veri-
fication directly on a C implementation by using a model
checker that targets C code, such as CBMC [7] or CPAcheck-
er [4]. We can even envision extracting C models from var-
ious C standard library implementations (e.g. glibc), to ver-
ify designs actually used in widespread libraries. Finally, it
would be interesting to verify the implementation of the fu-
tex system call implementation itself in the Linux kernel and
other OSes that have adopted futexes (e.g. OpenBSD).

References

1. Android. Bionic C library, pthread cond implementation, 2023.
https://android.googlesource.com/platform/bionic/+/refs/tags/
android-13.0.0 r24/libc/bionic/pthread cond.cpp, last accessed
2025-01-15.

2. Yoah Bar-David and Gadi Taubenfeld. Automatic discovery of
mutual exclusion algorithms. In Faith Ellen Fich, editor, Dis-
tributed Computing, 17th International Conference, DISC 2003,
Sorrento, Italy, October 1-3, 2003, Proceedings, volume 2848
of Lecture Notes in Computer Science, pages 136–150. Springer,
2003.

3. Eli Benderski. Basics of futexes, 2018. https://eli.thegreenplace.
net/2018/basics-of-futexes/, last accessed 2025-01-15.

4. Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for
configurable software verification. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Computer Aided Verification - 23rd Inter-
national Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings, volume 6806 of Lecture Notes in Computer
Science, pages 184–190. Springer, 2011.

5. Nikola Bogunovic and Edgar Pek. Verification of mutual exclu-
sion algorithms with SMV system. In The IEEE Region 8 EURO-
CON 2003. Computer as a Tool., volume 2, pages 21–25. IEEE,
2003.

6. Dragan Bosnacki, Dennis Dams, and Leszek Holenderski. Sym-
metric Spin. International Journal on Software Tools for Technol-
ogy Transfer, 4(1):92–106, 2002.

7. Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for
checking ANSI-C programs. In Kurt Jensen and Andreas Podel-
ski, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in
Computer Science, pages 168–176. Springer, 2004.

8. Edmund M. Clarke, Somesh Jha, Reinhard Enders, and Thomas
Filkorn. Exploiting symmetry in temporal logic model checking.
Formal Methods in System Design, 9(1/2):77–104, 1996.
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