The “Question Neighbourhood” Approach for
Systematic Evaluation of Code-Generating LLMs

Shahin Honarvar Member, IEEE, Marek Rei, Alastair Donaldson Member, IEEE

Abstract—We present the concept of a question neighbourhood
for systematically evaluating instruction-tuned large language
models (LLMs) for code generation via a new benchmark,
Turbulence. Turbulence consists of a large set of natural language
question templates, each of which is a programming problem,
parameterised so that it can be asked in many different forms.
Each question template has an associated fest oracle that judges
whether a code solution returned by an LLM is correct. Thus,
from a single question template, it is possible to ask an LLM
a neighbourhood of very similar programming questions, and
assess the correctness of the result returned for each question.
This allows gaps in an LLM’s code generation abilities to be iden-
tified, including anomalies where the LLM correctly solves many
questions in a neighbourhood but fails for particular parameter
instantiations. We present experiments against 22 state-of-the-
art proprietary and open-source LLMs, each at two temperature
configurations. Our evaluation is based on three complemen-
tary scores: accuracy score, correctness-potential score, and
consistent-correctness score. OQur findings show that, across the
board, Turbulence is able to reveal cases where LLMs do not
behave in a correct and consistent manner, highlighting gaps in
their reasoning ability. This goes beyond merely highlighting that
LLMs sometimes produce wrong code (which is no surprise):
by systematically identifying cases where LLMs are able to
solve some problems in a neighbourhood but do not manage to
generalise to solve the whole neighbourhood, our method provides
detailed insight into the behavioural characteristics of current
code-generating LLMs. We present data and examples that shed
light on the kinds of mistakes that LLMs make when they return
incorrect code results.

Index Terms—Large language models, correctness, potential
correctness, consistent correctness, robustness, Al evaluation,
code generation

I. INTRODUCTION

ARGE Language Models (LLMs) have demonstrated sig-
nificant advancements in code generation tasks, including
translating between programming languages [1] and answering
complex programming questions [2]. Although these models
have become increasingly effective, they generate incorrect
code [3]-[6], which poses significant challenges to their safe
and reliable integration into mainstream software engineering,
particularly in safety-critical environments where consistent
and correct behaviour is essential.
In practice, models may produce correct code only intermit-
tently or yield inconsistent behaviour, making it difficult for
developers to trust their output [7], [8]. To support the wider

This work was supported by UK Research and Innovation [grant number
EP/S023356/1], in the UKRI Centre for Doctoral Training in Safe and Trusted
Artificial Intelligence (www.safeandtrustedai.org).

Shahin Honarvar, Marek Rei, and Alastair Donaldson are with
the Department of Computing, Imperial College London, London,
UK (email: s.honarvar2]1@imperial.ac.uk; marek.rei@imperial.ac.uk; alas-
tair.donaldson @imperial.ac.uk)

adoption of LLMs in code-related tasks, there is a pressing
need for evaluation frameworks that go beyond aggregate
correctness and capture more nuanced behavioural properties.

While several works [3], [4], [9]-[12] have primarily fo-
cused on assessing correctness, and others [13]-[23] have
investigated model behaviour under semantically equivalent
prompt variations, our work complements these efforts by
introducing a new perspective: rather than evaluating LLMs
on isolated prompts or semantically equivalent variations, we
assess their behaviour across question neighbourhoods—sets
of related but semantically non-equivalent tasks derived from
a shared template.

To characterise LLM performance in this setting, we use

three complementary scores: (1) Accuracy Score, which mea-
sures the overall rate of correctness across all generated out-
puts; (2) Correctness-Potential Score, which captures whether
the model produces at least one correct output for a given
input; and (3) Consistent-Correctness Score, assessing the
model’s ability to consistently produce correct outputs for the
same input across successive generations. This multifaceted
evaluation provides a more complete picture of model be-
haviour than aggregate correctness alone.
Our contribution. Inspired by Gardner et al. [24], the key
idea behind our approach is that instead of evaluating an LLM
using separate, isolated coding problems, we use sets of related
problems, where all problems in a set are variations on a
theme—they are all in the same neighbourhood. Rather than
being interested in whether an LLM can solve any particular
problem, we are interested in identifying discontinuities in
the LLM’s ability to solve a neighbourhood of problems—
e.g. cases where the LLM correctly solves most problems
in a neighbourhood but fails for certain cases. As opposed
to merely identifying problems with isolated code generation
prompts (the fact that problematic cases exist is no surprise),
identifying discontinuities within a neighbourhood reveals the
limits of an LLM’s (in)ability to generalise.

Our approach is based on the notion of a question template.
A question template is a natural language programming spec-
ification parameterised by one or more values. An example is
shown in Figure 1a. This question template is parameterised by
two integer values, p; and po, and can be instantiated for any
0 <p; <ps <K, where K is a reasonable upper limit for
Python list sizes. An instantiation of the question template of
Figure 1a with p; = 1 and p, = 8 is shown in Figure 1b. This
is called a guestion instance. In Figure 1, the parameters p; and
p2, along with their respective instantiations, are highlighted
in bold for clarity.

Each question template is paired with an associated oracle
template. This includes a suite of parameterised unit tests,

Write a function called ‘sum_even_ints_inclusive’ that
takes one argument, a list of integers, and returns the
sum of all even integers from index p; to index p2, both
inclusive. If no even integers exist in the specified range,
the function should return 0.

(a) Question template featuring two parameters p; and pa.

Write a function called ‘sum_even_ints_inclusive’ that
takes one argument, a list of integers, and returns the sum
of all even integers from index 1 to index 8, both inclusive.
If no even integers exist in the specified range, the function
should return 0.

(b) Question instance from (a) with p; = 1 and p2 = 8.

~

rdef test_odd_range () :
odd_list = [i for i in range(-10001, p2+x10, 2)]

assert sum_even_ints_inclusive (odd_list) == 0
(c) Test case template for (a) featuring po.
def test_odd_range() :
odd_list = [1i for i in range(-10001, 8«10, 2)]
assert sum_even_ints_inclusive (odd_list) == 0

(d) Test case instance from (c) with pa = 8.

def sum_even_ints_inclusive (lst):
lst = 1st([p1 : p2 + 1]
return sum([i for i1 in 1lst if 1 % 2 == 0])

(e) Model solution template for (a) featuring p1 and pa.

def sum_even_ints_inclusive (lst):
lst = 1st[1l : 8 + 1]
return sum([i for i in 1st if i %

2 == 0I)

(f) Model solution instance from (e) with p; = 1 and pa = 8.

Fig. 1. Example of a question template, test case template, and model solution
template, with an instantiation of each.

featuring the same parameters that appear in the question
template. Figure 1c shows an example of a parameterised test
case for the question template in Figure 1a. The parameterised
test suite can be instantiated to yield a set of concrete tests for
a question instance. For example, Figure 1d shows the concrete
test case obtained by instantiating the test case of Figure Ic
with p; = 1 and ps = 8 (as p; does not occur in the test
case template its value is irrelevant to this instantiation). This
test is suitable for checking the correctness of solutions to
the question instance of Figure 1b. An oracle template also
includes a model solution, which we discuss in Section II.
Given a (question template, oracle template) pair, an LLM
can be asked, via multiple independent queries, to solve
a neighbourhood of e.g. 100 different question instances
derived from the question template, each of which can be
automatically checked for correctness via the corresponding
instantiated oracle. The results might be extreme, suggest-
ing that the LLM is completely incapable of solving this
neighbourhood of questions (if every solution fails the ora-
cle), or that the LLM can easily solve this neighbourhood
of questions (if all solutions pass). More intriguingly, an

LLM might successfully solve many instances of a question
template, yet consistently yield incorrect solutions for specific
parameter values. Conversely, it may generally fail to solve
most instances in a neighbourhood, yet unexpectedly produce
a correct solution for certain parameter values. Intuitively,
since question instances within a neighbourhood differ only
in their parameter values, they should be equally easy or
difficult to solve. Thus, it is noteworthy when an LLM solves
some, but not all, instances from a template. Our method for
identifying these discontinuities may offer valuable insights
into the limitations of the LLM’s reasoning capabilities and has
the potential to serve as a source of data for training or fine-
tuning. Furthermore, our approach may feed into discussions
as to whether LLMs are truly exhibiting emergent reasoning
powers, as some researchers have speculated [25]-[27]. It
seems implausible that an LLM that can truly reason would
be capable of solving the programming question of Figure la
for many values of p; and p, but not, say, for the particular
case of p; = 100 and py = 200. Prior methods for testing
LLM-based code generation using stand-alone problems (see
Section VII) cannot yield such insights. Central to our method
is the use of question neighbourhoods, which allow us to
evaluate: (1) LLM accuracy (the proportion of correct code
generations across all instances in a neighbourhood); (2) LLM
correctness potential (the proportion of instances for which
the LLM produces at least one correct response); and (3)
LLM consistent correctness (the proportion of instances for
which the LLM consistently generates correct responses across
multiple generations).

The Turbulence benchmark. Conceptually, the method we
propose is both LLM- and programming language-agnostic.
We have put it into practice by building a new benchmark,
Turbulence, for assessing the capability of instruction-tuned
LLMs at generating Python code. Turbulence comprises (1)
infrastructure for automatically assessing LLMs against a set
of question and oracle templates, and (2) a set of 60 question
and oracle templates that we have curated. We expect the long-
lasting impact of our work to come from (1), because our
method and infrastructure can be used with any suitable set
of question and oracle templates in the future. It is equally
important to note that (2) plays a critical role at present, as
no alternative template sets yet exist. Our curated question
templates allow us to report results across various state-of-
the-art LLMs. The questions were created from scratch by the
paper’s authors to avoid direct similarities to existing online
questions or code, thus preventing training bias [28]. They
were refined based on feedback from a number of experienced
Python programmers to minimise any potential ambiguity.

Research questions and summary of findings. We have used
Turbulence to evaluate 22 state-of-the-art proprietary and open
source LLMs each of which was evaluated at two temperature
settings. Our evaluation is guided by the following research
questions about the instruction-tuned LLMs:

¢« RQ1: How do LLMs perform in terms of accuracy,
correctness potential, and consistent correctness when
faced with alterations within a question neighbourhood?
o RQ2: How does setting an LLM’s temperature to zero for

maximum determinism affect its accuracy, correctness-
potential, and consistent-correctness scores compared to
the default temperature?

o RQ3: What are the primary errors in the code responses
of the LLMs that render the responses incorrect?

Our findings reveal that although models such as GPT-4o,
GPT-4, Claude 3.5 Haiku, Claude 3.5 Sonnet, Mistral Large
2, and Qwen2.5-Coder-32B exhibited strong performance
across the dimensions of accuracy, correctness potential, and
consistent correctness, all 22 LLMs assessed in this study
demonstrated notable deficiencies in these areas when evalu-
ated across diverse question neighbourhoods. Certain question
neighbourhoods posed challenges that were either entirely
solvable or entirely unsolvable for the LLMs. However, a
significant portion of the question neighbourhoods were only
partially solved by the LLMs. Statistical analysis revealed that
setting the temperature to zero improved consistent correctness
in a model-dependent manner, while effects on accuracy and
correctness potential were limited, with only minor gains in
some cases and no meaningful differences in most.

Despite the stochastic nature inherent in LLMs, the partial
resolution of some question neighbourhoods could potentially
highlight gaps in the training data used for the LLMs or flaws
in their reasoning. In Section V, we analyse the common issues
in incorrect code generated by LLMs.

In summary, the main contributions of this paper are:

e A new approach to assessing accuracy, correctness poten-
tial, and consistent correctness of the code generation ca-
pabilities of instruction-tuned LLMs via neighbourhoods
of related problem instances.

o Turbulence, a benchmark and automated testing frame-
work based on our approach, for assessing the Python
code generation capabilities of instruction-tuned LLMs.

o A study using Turbulence to evaluate the accuracy, cor-
rectness potential, and consistent correctness of 22 state-
of-the-art instruction-tuned LLMs of varying sizes and a
comprehensive analysis into the key sources of errors in
incorrect solutions.

In the rest of the paper, we give an overview of our approach
(Section II), present the Turbulence benchmark (Section III),
present results applying Turbulence to a range of instruction-
tuned LLMs (Section IV), and discuss characteristics of incor-
rect code returned by LLMs (Section V). We discuss threats
to validity (Section VI) and related work (Section VII) before
concluding (Section VIII).

Contribution over our prior work. This work extends a pa-
per [29] published at ICST 2025, the 18th IEEE International
Conference on Software Testing, Verification and Validation.
Our main additional contributions are as follows. First, we for-
malise the concept of a question neighbourhood (Section II).
Second, we provide formal definitions for three evaluation
metrics: Accuracy Score, Correctness-Potential Score, and
Consistent-Correctness Score. The previous paper used a met-
ric called CorrSc, which corresponds to the Accuracy Score
in this submission, while the Correctness-Potential Score and
the Consistent-Correctness Score are newly introduced here
(Section II). Third, we expand our evaluation from five models

in the prior work to 22 models, increasing the dataset of LLM
responses from 300,000 to 1,320,000 entries (Section IV-A).
Fourth, we apply rigorous statistical analysis using established
methods, both for pairwise comparisons across the 22 models
(Section IV-B) and for investigating the effect of reducing the
temperature to zero. This analysis includes visualisations such
as box plots and heatmaps to illustrate performance distribu-
tions across question neighbourhoods (Section IV-B). Fifth,
we formalise four distinct categories of LLM performance
(Section IV-C). Finally, we update the related work to include
recent studies (Section VII).

II. OUR BENCHMARKING APPROACH

We now describe our general approach to benchmarking
LLMs for code, an overview of which is shown in Figure 2.
In Section III we describe Turbulence, a concrete benchmark
based on this approach, tailored towards testing LLMs for
Python code generation. However, our approach is LLM- and
programming language-agnostic, allowing future testing of
other LLMs across various programming languages.

Question Parameter Test Suite Model Solution
Template Set Template Template
v A v v
Question Parameter Test Suite Model Solution
Instantiator Generator Instantiator Instantiator
Question v ¥
Instance Well-formedness Pass Fixed TestPa85_ Randomised
LLM's Check Suite Test »-
response YFail YFail YFail

Fig. 2. Overview of our benchmarking approach.

Question Template and Instance. A question template T
is a programming problem expressed in natural language,
parameterised by one or more parameters py, ..., p, (n > 0),
together with a constraint Cp. Each parameter p; has an
associated value set V;, which may have infinite size. The
constraint C'r is a predicate on Vj X - - - X V,, that can be used
to restrict the template to certain combinations of parameter
values (if any combination of parameter values is acceptable
this can be captured by the trivial constraint Cr(...) = true).

A question instance q is derived from a template 7' by
substituting a sequence of parameter values (v1,...,v,) for
placeholder(s) p; in T, as long as Cp(vi,...,v,) holds.
Hence, ¢ = T'(p; = v;) where 1 < i < n.

For example, the template in Figure 1a takes integer param-
eters p; and p,. Instantiating this template with p; = 1 and
p2 = 8 yields the question instance of Figure 1b. Here, the
associated constraint C' requires that both p; and p, be greater
than zero, and that py be greater than or equal to p;.

Definition 1 (Question Neighbourhood): Let T be a ques-
tion template with parameters pi,...,p, drawn from value
sets V1,...,V,, (n > 0) and associated constraint Cp. The
neighbourhood of T, denoted N7, is defined as the set of all
instances of 1"

Np={T(p;=v;)|v; €V; (1 <i<n) A Cp(vy,...,v,) holds}

According to Definition 1, two instantiated questions are in
the same neighbourhood N7 if they are instances of the same
template 7" with different parameter values.

An important property of a question neighbourhood, which
distinguishes this study from previous works [13]-[23], is
the semantic closeness and non-equivalence of the question
instances within a neighbourhood. Specifically, all question
instances ¢ € AN are semantically close as they share the
same structural template but differ in specific details (i.e.,
parameter values). Consequently, the instantiated questions
are not semantically equivalent, as changing parameter values
alters the particular task or problem instance. Moreover, since
differences are only in parameter values at fixed positions,
and the rest of the template remains identical, intuitively, the
semantic difference between any two question instances in
the neighbourhood is minimal compared to arbitrary questions
outside the neighbourhood.

In practice, each question neighbourhood N7 is accompa-
nied by a corresponding parameter set, consisting of parameter
valuations that are meaningful and suitable for the question
template. The Turbulence benchmark, described in Section III,
is equipped with a generator that automatically produces a
suitable parameter set of a desired size for a given question
template. To make this concrete, the generator associated
with each template samples parameter tuples that satisfy the
constraint C'p, using restricted ranges to keep the parameter
space finite and tractable (e.g., 1-3 digit integers for numeric
parameters, single-character strings for string parameters). In
a few templates, we additionally provided a small pool of
manually selected values to guarantee coverage of edge cases.
Sampling is random but constrained by C7p: for example, in
the template of Figure la, pairs (p1,p2) are drawn from digit-
based ranges and resampled if 0 < py < p; or if duplicates
occur. Random seeds can be fixed to ensure reproducibility.
This process yields finite, diverse parameter sets that respect
each template’s semantics and are suitable for automatic
instantiation of question instances.

A question template can be instantiated automatically with
a range of parameter values drawn from its parameter set,
leading to a collection of question instances that can be
presented to an LLM (see Figure 2).

Assessing Correctness: Oracle Templates. To assess whether
an LLM has returned a correct solution to a question instance,
the benchmark designer must provide an oracle template for
each question instance. This comprises: (1) a fixed test suite—
a set of unit tests, parameterised with the same parameters
as the question template, which once instantiated provides
a concrete test suite for the question instance; (2) a model
solution template, which can be instantiated to provide a
correct solution for any question instance; and (3) a random
input generator, which facilitates fuzz testing of solutions as
described further below.

To illustrate this, consider the question template of Fig-
ure la. The oracle template associated with this question
template comprises multiple parameterised test cases. One
of these is shown in Figure Ic, and refers to parameter po
from the question template. When the question template is
instantiated with p; = 1 and p; = 8, as shown in Figure 1b,

the oracle template is also instantiated with these parameters.
This transforms the parameterised test case of Figure lc
into the concrete test case of Figure 1d, which is suitable
for assessing the correctness of a solution to the concrete
question instance of Figure 1b. Furthermore, Figure le shows
a parameterised model solution for the question template,
again expressed in terms of the parameters p; and ps, while
Figure 1f shows a concrete instantiation of this model solution
for the given parameter values. This concrete model solution
facilitates experimental comparison with an LLM-generated
solution on arbitrary input values. The random input generator
component of the oracle template (not shown in Figure 1)
provides a means of generating a stream of input values at
random to support this kind of comparison.

Armed with these components, a code solution returned by
an LLM in response to a question instance is deemed correct
if and only if all of the following hold (see the “Test Oracle”
component of Figure 2): the LLM solution is well-formed
(syntactically correct and conforming to any static typing rules
of the programming language); the LLM solution passes all
tests in the fixed test suite (instantiated with the parameters
associated with the question instance); and the LLM solution
yields the same result as the model solution (again, instantiated
with the parameters of the question instance) when applied to
a number of random inputs generated by the input generator.
The approach of comparing the LLM solution with a model
solution using randomly-generated inputs is a special case
of fuzzing known as random differential testing [30]. The
combination of testing via a fixed test suite and through
random differential testing helps to ensure that the LLM
solution works on particular important edge cases (provided
by the fixed tests), as well as on a wider range of examples
(from the randomised input generator). The user can control
the amount of randomised testing per question instance.

Avoiding Ambiguity. It would be unfair to penalise an LLM
for failing test cases that check aspects of a question whose
solution is open to multiple interpretations. The designer
of a question and oracle template must either (a) state the
question precisely, without ambiguity, or (b) design the oracle
template to avoid testing solutions in ambiguous parts of the
input space. For example, the question template in Figure la
avoids ambiguity by specifying that list indices are inclusive.
Alternatively, this clarification could be omitted, and the
oracle template could be adjusted to exclude test cases with
even integers at indices p; and po, ensuring the oracle does
not distinguish between solutions treating index ranges as
inclusive or exclusive.

In Section III we explain how we used feedback from human
programmers to avoid ambiguity in Turbulence.

Assigning Accuracy, Correctness-Potential and Consistent-
Correctness Scores. An oracle template provides a means for
assigning a pass/fail result to an LLM’s solution for a question
instance. We explain how these results are combined into three
overall scores for each question template, reflecting the LLM’s
effectiveness in solving that question neighbourhood. Given
the non-deterministic nature of LLMs, multiple independent
queries per question instance are necessary.

Definition 2 (Accuracy Score (AS)): Let L be an LLM under
evaluation. Let 7" be a question template with M associated
parameter valuations (so that A/ distinct question instances
are derived from T). Let N denote the set of these M
instances—i.e., a finite subset of the corresponding full neigh-
bourhood of T' as defined in Definition 1. Suppose that the
LLM is queried R times per question instance, and let L (N7)
denote the result returned by L the jth time it is queried with
question instance i of T'. Let Oracle(L! (Nr))=1 if this result
is deemed correct according to the oracle template, and O oth-
erwise. The Accuracy Score, AS, for question neighbourhood
N for a given LLM L, AS (/\/’T7 L), is then defined as follows:

_ vai1 Zle Omcle(L? (NT))

This is the mean over the correctness of all solutions returned
by the LLM, where an individual solution is given a score of
either 0 or 1. AS(N7, L) yields a score in the range [0, 1] for
each question neighbourhood N7. When calculating AS, we
do not evaluate M x R unique instances, but rather generate
R solutions for each of the M question instances to account
for stochasticity in the model. This design reflects the inherent
non-deterministic nature of LLMs, allowing multiple attempts
on the same question instance to assess the model’s ability to
generate correct responses.

Definition 3 (Correctness-Potential Score (CPS)): Continu-
ing from Definition 2, let 1(.) be the indicator function (1
if true, O if false). The Correctness Potential Score, CPS,
for question neighbourhood N7 with respect to LLM L,
CPS(Nr, L), is then defined as follows:

SE (S Oracle(L{ (V7)) > 1)
M

This is the proportion of question instances for which the LLM
produces at least one correct answer across R independent
queries, relative to the total number of question instances.
CPS(Nr, L) produces a score in the range [0,1] for each
question neighbourhood N/7.

Definition 4 (Consistent-Correctness Score (CCS)): Con-
tinuing from Definition 3, the Consistent-Correctness Score,
CCS, for question neighbourhood N with respect to LLM L,
CCS(Np, L), is then defined as follows:

S (S, Oracle(LY(Nr) = R)
M

This is the proportion of question instances that the LLM
can consistenly answer correctly across all R independent
queries, relative to the total number of question instances.
CCS(Np, L) thus yields a score in the range [0, 1] for each
question neighbourhood N7 .

Although it is straightforward to interpret 1 — CPS as the
proportion of question instances for which an LLM fails to
produce a correct output across all R queries—i.e., a measure
of consistent incorrectness—this study deliberately focuses on
consistent correctness. Our evaluation framework is motivated
by the goal of assessing the safety-related properties of LLMs
in code generation, where the primary concern is whether a

CPS(Np, L) =

CCS(Ny, L) =

model can reliably and repeatedly produce correct outputs.
While consistent incorrectness may reveal systematic failure
patterns, it does not directly inform safety. In safety-critical
contexts, a model that is occasionally correct presents a higher
utility and lower risk profile than one that is consistently incor-
rect. Accordingly, our analysis prioritises behaviours aligned
with trustworthy and reliable performance, which are best
captured through consistent correctness rather than its inverse.

Taken together, AS, CPS, and CCS capture distinct yet
interrelated aspects of LLM performance over a question
neighbourhood and enable a more comprehensive understand-
ing of model behaviour in code generation tasks. The Accuracy
Score measures the overall proportion of correct generations
across all question instances and all repeated queries. This
gives a general sense of how often the model succeeds
across the entire neighbourhood but does not reveal whether
success is widespread or concentrated in a few instances. The
Correctness-Potential Score complements this by measuring
the proportion of question instances for which the model
generates at least one correct output across multiple queries.
This score reflects whether the model is capable of solving
a given task instance at all—even if inconsistently—offering
insight into the model’s latent capacity across varied parameter
values. Finally, the Consistent-Correctness Score captures the
proportion of instances in the neighbourhood for which the
model consistently produces correct outputs in all repeated
attempts. This reflects how reliably the model maintains
correctness even under stochastic generation settings, where
different outputs may be sampled across runs.

Using these scores in combination allows us to diagnose nu-
anced behavioural patterns that would be missed by any single
aggregate measure. For example, a model might exhibit a high
CPS—indicating it is capable of solving most instances—but
a low CCS, revealing that it rarely solves those instances
reliably. This discrepancy may point to instability in generation
or a sensitivity to sampling variability. Conversely, a model
might achieve high AS by consistently solving a small subset
of question instances, while failing on the rest—something
only visible when considering accuracy alongside correctness
potential. In another scenario, low scores across all three
metrics may indicate a structural failure to generalise across
the space spanned by the neighbourhood. Together, the three
metrics help disentangle these cases, revealing whether per-
formance is broad but unreliable, narrow but consistent, or
absent altogether. This multi-dimensional view is crucial for
identifying discontinuities in performance, pinpointing specific
weaknesses in generalisation, and understanding the reliability
of an LLM’s behaviour across structured problem sets.

This multi-dimensional analysis sets our approach apart
from standard evaluation metrics such as pass@¥k [3], which
simply measures whether a correct solution appears in the top-
k outputs for a single input. While pass@QFk is useful for assess-
ing best-case success on isolated prompts, it does not provide
insight into how performance varies across a structured space
of related tasks, nor does it capture consistency under repeated
sampling. In contrast, our scores provide instance-level and
neighbourhood-level resolution, exposing both what a model
can do and whether it does so reliably—critical considerations

for deploying LLMs in code generation settings that demand
both correctness and reliability.

III. THE TURBULENCE BENCHMARK

Based on the approach described in Section II we have
created a novel benchmark, Turbulence, for evaluating the
accuracy, correctness potential, and consistent correctness of
instruction-tuned LLMs for code. Turbulence focuses on the
generation of Python code due to the language’s popularity
and the ample Python training data available for LLMs.

To create the benchmark, we developed a diverse set of 60
Python problem-solving questions encompassing fundamental
concepts and basic data structures, thereby ensuring compre-
hensive and balanced coverage of key topics. No specific
framework was followed for the selection of these questions,
and to the best of our knowledge, no existing research outlines
best practices for question formulation in this context. Further-
more, as discussed later, we deliberately avoided reusing pub-
licly available questions to mitigate potential training bias [28].

Table I provides a broad categorisation of the 60 question
templates into six distinct problem groups, further subdivided
into subgroups. The questions utilise a wide variety of Python
data types, either explicitly stated in the question text or
implicitly required by the solution logic. These include list
(43 questions), integer (35 questions), boolean (60 questions),
string (39 questions), set (9 questions), tuple (4 questions),
and NumPy matrix (2 questions). Since some questions span
multiple problem groups and data types, the counts in Table I
and the data type totals exceed 60. Additionally, subgroup
counts within each problem group may exceed the group total,
since some questions belong to multiple subgroups.

Turbulence comprises 60 question templates, each featuring
at least one parameter, where each parameter is either a numer-
ical value or a string. Of these, 58 templates include numerical
parameters and 5 include string parameters, with 3 templates
incorporating both types. Each question template is equipped
with an associated oracle template: a fixed test suite, random
input generator and model solution, as described in Section II.
Every question template is accompanied by a parameter set
of size 100, yielding 100 question instances per template.
Hence, a total of 6,000 question instances are generated by
Turbulence. For each question template, the parameter set
was created by choosing a number of natural or evidently
interesting parameter valuations (e.g. to exercise edge case
behaviour), and thereafter populated with random valuations,
restricted to well-formed valuations. For example, with respect
to the question template of Figure la we would not allow
negative values or values such that p» < p;. When such hand-
chosen parameter values were used, they are documented in
a file called manually_chosen_params.txt, provided
alongside the corresponding question template in the source
code folder of our replication package [31], [32], ensuring
transparency and reproducibility.

In designing the question templates, we deliberately chose
not to include import statements in the problem prompts.
Providing imports risks biasing the model toward particular
solution strategies, since the presence of a library import

can serve as a strong cue for its use. By omitting such
scaffolding, we require models to independently determine
whether external functionality is necessary and to produce
self-contained solutions within the standard Python environ-
ment. Although this increases the likelihood of execution-
time failures (e.g., when a model relies on a library it has
not imported), these outcomes are themselves informative,
as they expose limitations in the model’s ability to generate
executable code without external guidance. Our design choice
therefore supports the benchmark’s primary aim: to evaluate
correctness and robustness under minimal prompting, such
that reported performance reflects the model’s intrinsic code
generation capability rather than reliance on provided context.

To avoid problems of bias occurring due to LLMs having
been exposed to questions during the training [28], we decided
to write question templates ourselves, from scratch, rather than
seeking existing questions available on the internet. This was
done to ensure that the LLMs were not able to simply regurgi-
tate memorised training data, but instead had to generate new
and creative responses. We were also careful not to put our
questions online publicly before running experiments against
LLMs. During the construction of Turbulence, we used only a
small set of trivial questions for preliminary LLM evaluation,
to avoid the risk of the models learning from our interactions.

To ensure the clarity of question templates and the cor-
rectness of test oracles, we conducted a validation exercise
with two experienced Python programmers. Each participant
independently solved an instance of every question template,
after which their solutions were cross-checked against our test
oracles. Discrepancies between their solutions and the oracle
were carefully analysed to determine whether the issue arose
from (i) ambiguity or imprecision in the natural language
specification of the template, or (ii) errors in the construction
of the oracle itself. Based on this process, we identified
20 cases requiring intervention: 10 question templates were
revised to improve wording and eliminate potential ambiguity
and 10 test oracles were corrected to address implementation
bugs or coverage gaps. This validation step provided assurance
that the curated benchmark is both unambiguous and aligned
with its test oracles, thereby reducing the risk of unfairly
penalising correct model outputs.

Creating our own questions has its pros and cons. As
argued above, using previously-unseen questions minimises
problems of training-related bias [28], but it could arguably
be more interesting to have a benchmark based on real-world
programming challenges faced by developers “in the field”.
While the true role of LLMs in software engineering is solving
real-world programming tasks, to have any chance of being
useful in such contexts they should ar least be capable of
solving the kinds of programming problems that beginner to
intermediate programmers would be capable of solving. Also,
we emphasise that Turbulence is just one example of our
proposed approach in Section II. The enduring value of our
research lies in the approach itself, which could be retargeted
to use alternative questions.

We deliberately included questions that, while uncommon in
typical development scenarios, are pertinent to evaluating the
reasoning capabilities of LLMs. For instance, a prompt like

TABLE I
CLASSIFICATION OF THE TURBULENCE QUESTION TEMPLATES INTO
PROBLEM GROUPS AND SUBGROUPS.

Number of

Problem Group Question Templates

Problem Subgroup

List Manipulation Total 44
“Slicing T T 27

Indexing 26

Filtering 24

Element-based Operations 26

Summation 6

Sorting/Order-based Operations 13

Element Insertion 2

Count elements 1

Circular Lists 1

String Manipulation Total 16
“Character Insertion T 2

Indexing 7

Character Removal 3

Substring/Character Extraction 12

Palindrome Operations 3

Anagram Detection 2

Sorting 3

Set Manipulation Total 9

Add Elements 6

Subset/Superset Operation 1

Counting Subsets 1

Intersection 1

Union 1

Searching Total 46
"TLinear Search T 34

Index-based Search 11

String Search 16

Copying Total 20
“Shallow Copy T 2

Copy Sublist 18

Mathematical Problems Total 22
Arithmetic Operations T 9

Factorial Calculations 1
Prime Checking 5
Composite Checking 1
Factorisation 4
Special Sequences 6
Combinatorial Problems 2

“Write a function called ‘all_ints_exclusive’ that takes one
argument, a list of integers, and returns the list of all elements
from index O to index 1, both exclusive” serves as an edge case
designed to test the model’s ability to comprehend and execute
nuanced instructions. A primary goal of our benchmark is
to assess whether LLMs are genuinely exhibiting emergent
reasoning abilities. True reasoning capability should enable a
model to solve not only standard problems but also edge cases
that deviate from common patterns. While a human developer
is unlikely to craft such an edge-case prompt, it is important to
consider the evolving contexts in which LLMs are deployed.
LLMs are increasingly being used in the back-ends of systems
(such as integrated development environments) where prompts
are generated programmatically rather than being written by
humans. In these automated systems, the likelihood of en-
countering edge cases rises, as the prompts may not undergo
human refinement or oversight. Auto-generated prompts are

inherently more prone to exhibiting unusual or unexpected
parameters, making it essential for LLMs to handle them
effectively. Moreover, evaluating out-of-distribution robustness
has been recognised as a critical aspect in the field of NLP: as
highlighted by Yuan et al. [33], assessing how models perform
on data that falls outside the distribution of their training data
is necessary for understanding their generalisation capabilities
and identifying potential weaknesses.

We distinguish between (a) the underlying conceptual
framework of Turbulence and (b) the specific empirical find-
ings of this study. It is evident that (a), the concept of using
neighbourhoods to identify reasoning discrepancies in LLMs,
could be extended to test other LLMs (with a small amount of
engineering effort specific to each model) and could also be
adapted for other programming languages (requiring additional
engineering effort for each language). While Turbulence is in-
stantiated for Python in this study, the underlying methodology
is inherently language-agnostic. Extending the framework to
other programming languages would entails engineering effort
in two principal respects. First, some question templates rely
on Python-specific constructs—such as list comprehensions,
tuples, or NumPy features—that do not always have direct
analogues in other languages. These question templates would
need to be reformulated to use idiomatic equivalents in the
new target language (e.g. a question template involving a
Python list comprehension could be re-expressed to refer to a
loop when targeting C++). Resources such as the MultiPL-E
dataset [34], which provide systematic cross-language map-
pings, could support such adaptations where straightforward
correspondences exist. Second, certain question templates are
intrinsically tied to the semantics of Python; these kinds
of templates could be swapped out for suitable templates
designed to exercise specific features of interest in the new
target language. With respect to our empirical results, however,
we do not claim that the specific findings generalise directly to
other LLMs or languages. Rather, we expect that applying the
methodology across contexts will reveal different classes of
deficiencies, much as distinct software systems exhibit unique
faults when subjected to the same testing technique. Overall,
our results show that the proposed approach effectively reveals
key strengths and limitations of code generation.

Concerning (b), we do not expect our specific findings to
generalise directly to other LLMs or programming languages.
Instead, we anticipate discovering different deficiencies, sim-
ilar to how applying a software testing technique to different
systems under test reveals distinct bugs. Our findings show
that our approach effectively provides valuable insights into
code generation.

Practical Issues. Implementing our approach requires modest
prompt engineering [35] to enhance the chances of obtaining
source code from an LLM. In initial experiments with the
models in Section IV, we found that adding a simple prefix
requesting Python code within triple backticks was effective,
allowing the code to be extracted from between the backticks.

Availability. The Turbulence source code, all question and or-
acle templates, and the complete results are available at https:
//github.com/ShahinHonarvar/Turbulence-Benchmark-v2.

https://github.com/ShahinHonarvar/Turbulence-Benchmark-v2
https://github.com/ShahinHonarvar/Turbulence-Benchmark-v2

IV. EXPERIMENTAL EVALUATION

We now present results from running Turbulence against a
diverse range of LLMs.

A. Experimental Setup

We gathered results by running Turbulence against 22
instruction-tuned LLMs, including both closed- and open-
source models of varying sizes. Our selection spans a diverse
range of development teams, with each model chosen to
represent either the flagship or largest version within its
series—highlighting the full capabilities of its model family.
The selected models are either explicitly trained for code
generation or are general-purpose LLMs with demonstrated
proficiency in code generation and reasoning tasks.

Given the rapid pace of progress in LLM development
across both industry and academia, new models are introduced
frequently. The models evaluated in this study represent the
state-of-the-art options available during the period of our
experiments. We therefore emphasise that the significance of
our work lies not in the specific set of models evaluated, but
in the novelty and flexibility of our approach, which enables
the systematic assessment of any code-generating LLM. We
demonstrate the effectiveness of this approach in uncovering
issues related to accuracy, correctness potential, and consistent
correctness in such models. As the field evolves and newer
models are released, our evaluation framework remains appli-
cable and valuable for analysing future generations of LLMs
under the same rigorous criteria.

The instruction-tuned LLMs evaluated in this study are
as follows: Command, Command R+, GPT-3.5-turbo, GPT-
4, GPT-40, Claude 3.5 Haiku, Claude 3.5 Sonnet, Gemini
1.5 Pro, Gemma-2-27B, CodeGemma-7B, DeepSeek-Coder-
V2, Mistral Large 2, Codestral, Dolphin 2.9.2 Mixtral 8x22b,
Llama-3.1-70B, Llama-3.1-405B, Phi-3-medium, Qwen2.5-
72B, Qwen2.5-Coder-7B, Qwen2.5-Coder-32B, DBRX, and
StarCoder2-15B.

OpenAl [36] introduced the GPT-3.5-turbo [37], GPT-4
[37], and GPT-40 [37] models. The GPT-3.5-turbo model is
optimised for chat, handling both natural language and code
generation. The multimodal GPT-4 model improves problem-
solving with broader knowledge and advanced reasoning.
GPT-40 (“0” for omni), OpenAl’s flagship model, excels in
English text and code. We accessed all three models via
OpenAl’s commercial APIL.

Command [38], Cohere’s [39] default generation model,
produces text based on user instructions. Command R+ [38],
an advanced instruction-following model, offers superior per-
formance in language tasks, maths, code, and reasoning. Both
models were accessed via Cohere’s commercial APIL.

The Claude 3.5 family [40], developed by Anthropic [41],
offers enhanced performance, speed, and versatility. Key mod-
els include Claude 3.5 Sonnet [42], optimised for high-quality
content and code generation, and Claude 3.5 Haiku [43],
designed for fast, accurate code suggestions. We accessed
these models through Anthropic’s commercial APIL.

Gemini 1.5 Pro [44], by Google DeepMind [45], is a
multimodal LLM optimised for reasoning tasks. We accessed

it via Gemini’s commercial API. Gemma-2-27B, with 27B-
parameter is the largest instruction-tuned model in the open-
source Gemma 2 series [46]. We accessed it via the deepin-
fra [47] commercial API. CodeGemma [48] is an open model
for code, with the CodeGemma-7B variant excelling in math-
ematics, coding, and language understanding. We accessed it
via Google Cloud Vertex AI's API [49].

DeepSeek-Coder-V2 [50], developed by DeepSeek Al [51],
is an open-source code model with 236B parameters in total,
21B of which are active during inference. It is pre-trained for
coding, mathematical reasoning, and general language tasks.
We accessed it via DeepSeek’s commercial APIL

Mistral Large 2 [52], a 123B-parameter open-source model,
is Mistral-AI’s [53] latest flagship, excelling in code genera-
tion, mathematics, reasoning, and precise instruction follow-
ing. Codestral [54], also introduced by Mistral-Al [53], a 22B-
parameter model trained for code, is available as an open-
weight model for research and testing. We accessed both via
Mistral-AI’'s commercial API.

Dolphin 2.9.2 Mixtral 8x22b [55], developed by Cogni-
tive Computations [55], is a fine-tuned version of Mixtral-
8x7B [56], trained on diverse data, including coding. We
accessed it via OpenRouter’s [57] commercial APL

Phi-3-medium [58], a 14B-parameter open-source model
by Microsoft [59], is trained on diverse datasets to improve
language understanding, reasoning, maths, and coding. We
accessed it through Microsoft Azure’s serverless API [60].

Llama-3.1-70B [61] and Llama-3.1-405B [61], with 70 and
405 billion parameters respectively, are part of Meta’s Llama
3.1 [61] open-source collection. Both are pre-trained and
instruction-tuned for coding and reasoning, with Llama-3.1-
405B the largest publicly available LLM [61]. We accessed
them via Microsoft Azure’s API [60].

Qwen2.5-72B, the largest instruct model in the Qwen 2.5
series [62], and Qwen2.5-Coder-32B and Qwen2.5-Coder-
7B, the largest and a medium-sized model in the Qwen 2.5
Coder series [63], were developed by Alibaba Cloud’s Qwen
team [62]. We accessed Qwen2.5-72B and Qwen2.5-Coder-
32B via Deeplnfra’s API [47] and Qwen2.5-Coder-7B via
Hugging Face’s endpoint [64].

DBRX [65], an advanced open-source model by Databricks
[66], has 132B parameters, with 36B active during inference
for efficiency. Trained on 12T tokens of text and code, it excels
in programming and mathematical reasoning. We accessed it
via OpenRouter’s commercial API [57].

The StarCoder2 series [67], by the BigCode project [68], is
an open-source family of LLMs for code generation and com-
prehension. We accessed its largest instruction-tuned model,
StarCoder2-15B, via Hugging Face’s endpoint [64].

This selection allows us to evaluate both proprietary and
open models of varying sizes. It is worth noting that, although
OpenAI’s ol model [69] was released at the time of our
experiments, we were unable to include it due to API access
restrictions (limited to Tier 5, while our account was Tier 3).
Moreover, even if access had been available, the cost of using
the ol model via its API would have been prohibitively high
at the time. Further details are provided in Section VI.

Every LLM has a user-determined temperature parame-
ter that controls output randomness. Lower temperatures re-
duce randomness, improving quality but decreasing diversity
[70], [71], while higher temperatures increase randomness,
enhancing creativity. In addressing RQ2, we focused exclu-
sively on comparing the models’ behaviour at two specific
settings: their default temperature and a temperature of 0. A
temperature of 0 was chosen to evaluate the LLMs’ perfor-
mance in as deterministic a context as possible, causing the
models to select the most probable next token at each step.
The default temperatures varied across LLMs, as developers
selected them to balance output diversity and coherence for
optimal performance. Since these default temperatures reflect
the intended behaviour envisioned by the developers, we used
them to assess the LLMs’ performance in their standard oper-
ational settings. Our goal was to analyse the shift from non-
deterministic behaviour at default temperatures to maximum
determinism at a temperature of 0, offering clear insights into
how determinism affects LLM performance without the com-
plexity of varying randomness. Broader temperature ranges
were excluded as outside the study’s scope.

Due to the stochastic nature of LLMs, repeat runs of
experiments are necessary. At the same time, access to LLMs
via commercial APIs is costly, with variable query times. We
ran the full benchmark five times (R = 5 in Definition 2,
Definition 3, and Definition 4) for each combination of LLM
and temperature setting.

While a temperature of O should theoretically render the
LLMs deterministic, one might ask why each LLM was run
through the full benchmark five times at this temperature.
Our initial mock tests revealed that LLMs occasionally pro-
duced varying answers even at a temperature of 0. This
non-deterministic behaviour may be due to several factors,
including non-deterministic GPU operations, memory access
patterns, and numerical precision [72] and the inherent ran-
domness from sampling, even at a temperature of 0 [73].

Our results are thus based on a comprehensive set of
1,320,000 LLM responses (i.e. number of models x number
of temperature settings per model X number of prompts per
each model’s temperature setting X number of repeat runs
=22 x2x 6000 x 5 = 1320000). For a consistent comparison
of experimental results, we used the same random seed when
generating parameters for each question template.

In the rest of this paper, LLM configuration refers to an
LLM combined with a specific temperature setting and ¢t =0
and t=D denote the configurations with temperature settings
of 0 and the default, respectively.

B. Results Based on AS, CPS, and CCS

In this section, we address RQ1 and RQ2. As outlined in
Section II, each parameter p; in a question template 1" has
an associated value set V;, which may be finite or infinite
depending on the nature of the constraint Cr. In Turbulence,
for the majority of the 60 question templates, the value sets
V; are theoretically infinite. In the context of an infinite
population of all possible parameter values, it is not feasible
to sample values uniformly such that every value has an equal

probability of selection. To address this, we restricted the value
sets V; for each parameter in a question template, rendering
them finite. For example, in cases where the parameter values
were natural numbers, we defined V; to include only 1-digit, 2-
digit, and 3-digit numbers. Similarly, for questions involving
string parameters, we limited V; to single-character strings.
This restriction affected only 5 of the 60 curated question
templates, and none of these involved tasks (such as sorting)
where multi-character strings would be essential. In these
cases, single characters were sufficient to preserve the intended
semantics of the task while also keeping the parameter space
tractable and simplifying oracle design.

By limiting the sets V; in this manner, we ensured a finite
population of parameter values, which also facilitated the man-
agement of computational costs associated with our evaluation
process. Consequently, all findings, statistical estimates, and
inferences presented herein apply strictly to the chosen sets
V; and should not be extrapolated to parameter values outside
these sets without additional justification or analysis. However,
the approach presented in this study is not dependent on the
specific selection of V;. Using the principles of our method, it
is possible to choose alternative regions of the parameter value
space for each question, evaluate the performance of LLMs,
and present the corresponding statistics results.

To enable a robust and multi-dimensional analysis of LLM
behaviour across code generation tasks, we employ both box
plots and heatmaps for each of our evaluation scores: AS,
CPS, and CCS. These visualisations are complementary, each
offering distinct analytical strengths.

We begin by presenting our results using box plots to
provide a distribution-level view of how each LLM config-
uration performs across the 60 question neighbourhoods. Box
plots enable us to assess central tendency (median), variability
(interquartile range), and the presence of outliers—offering
insight into how different configurations behave across neigh-
bourhoods. For instance, two configurations may have similar
average scores yet differ markedly in score dispersion: one
may yield tightly clustered results, while another exhibits high
variability. Box plots thus support an accessible, distributional
comparison across models. To extend the analysis beyond
visual interpretation, we use heatmaps to conduct and visualise
a formal inter-model comparison. These allow us to assess
whether one configuration significantly and meaningfully out-
performs another, addressing the limitations of distributional
overlap that box plots alone cannot resolve. By systematically
comparing all configuration pairs, the heatmaps enable us to
investigate the effect of temperature reduction on LLM code
generation—revealing whether setting the temperature to zero
leads to statistically and practically meaningful differences in
accuracy, correctness potential, or consistent correctness.

AS, CPS, and CCS Distributional Analysis via Box Plots:
Figure 3 comprises three stacked box plots, each correspond-
ing to a distinct evaluation score—AS, CPS, and CCS—used
to assess LLM performance on code generation tasks. Each
box represents the distribution of a given score across 60
question neighbourhoods for a specific LLM configuration.
There are 44 configurations in total (22 models, each evaluated
at two temperature settings). A lighter blue represents the

Claude 3.5 Haiku (t=0) 1
Claude 3.5 Haiku (t=D) 4
Claude 3.5 Sonnet (t=0) 4
Claude 3.5 Sonnet (t=D) 1
CodeGemma7B (t=0) A
CodeGemma7B (t=D) A
Gemma 2 27B (t=0)
Gemma 2 27B (t=D) 1
Codestral (t=0) 4
Codestral (t=D) -

Mistral Large 2 (t=0) 4
Mistral Large 2 (t=D)
Command (t=0) -
Command (t=D) A
Command R+ (t=0) -
Command R+ (t=D) 4
DBRX (t=0)

DBRX (t=D) 4

DeepSeek Coder (t=0)
DeepSeek Coder (t=D) 4
Dolphin 2.9.2 (t=0) 4
Dolphin 2.9.2 (t=D) 4

GPT 3.5 (t=0) ~

GPT 3.5 (t=D)

GPT 4 (t=0) 4

GPT 4 (t=D) A

GPT 40 (t=0)

GPT 40 (t=D) ~

Gemini 1.5 Pro (t=0) |
Gemini 1.5 Pro (t=D) -
Phi3 (t=0) A

Phi3 (t=D) 4

Llama3.1 70B (t=0)
Llama3.1 70B (t=D)
Llama3.1 405B (t=0)
Llama3.1 405B (t=D) 4
Qwen 2.5 72B (t=0) 4
Qwen 2.5 72B (t=D) 4
Qwen 2.5 Coder 7B (t=0) A
Qwen 2.5 Coder 7B (t=D) -
Qwen 2.5 Coder 32B (t=0) 4
Qwen 2.5 Coder 32B (t=D)
StarCoder 2 15B (t=0) 4
StarCoder 2 15B (t=D)

Fig. 3. Box plots of AS, CPS, and CCS across LLM configurations.

=)
)
=)
[N)
Lo
IS
=)
o
o
©
=

§
g
O

=

T

1

@ o ® o o|—|:||
{oom o o ooo Hj
{@ o owmoo o [
{oo o @ oo H]
11 | i

T
==

{ao oo oo o]
{ao o o o of
{aw o om o HJ
0o oo o o o o H
{joaw oo o —{]
o0o ® o

'

lower temperature configuration (¢t = 0) for each model. For
clarity, the median line in each box plot is rendered in red.

AS Distribution. Recall that an AS of 1.0 means that, for a
particular question neighbourhood, the LLM configuration is
able to generate correct code for all instantiations and across
all 5 generations. Conversely, an AS of 0.5 indicates that,
on average, only half of the generated solutions across all
instantiations are correct. An AS close to 0.0 therefore reflects
systematic failure on the problem, whereas intermediate values
(e.g., between 0.2 and 0.8) capture varying degrees of partial
success, either due to stochastic behaviour across generations
or differential performance across parameter instantiations.
The left panel of Figure 3 presents the results for the AS. The
distribution of box plots reveals that several LLM configura-
tions exhibit skewed accuracy distributions, reflecting varying
levels of accuracy across the LLM configurations.

LLM configurations such as Claude 3.5 Haiku, Claude
3.5 Sonnet, GPT-4, GPT-40, and Qwen2.5-Coder-32B, each
at both ¢ = 0 and ¢ = D, demonstrate high accuracy, with
median AS scores exceeding 0.95. These models also exhibit
narrow interquartile ranges (IQRs) between 0.091 and 0.21,
along with short whiskers—indicating reliable accuracy across
most neighbourhoods. Nonetheless, each configuration shows
a number of outliers (9-14 of the 60 question neighbourhoods),
suggesting that even the top-performing models occasionally
struggle with specific question neighbourhoods.

Another group of LLM configurations, including DeepSeek-
Coder-V2 and Llama-3.1-405B (at both temperatures), Mistral
Large 2, Llama-3.1-70B, and Qwen2.5-Coder-7B (at t = 0),
also achieve high median accuracy scores but exhibit moder-
ately wider IQRs (ranging from 0.27 to 0.55). This suggests in-
creased variability in accuracy across different neighbourhoods
compared to the previous group. Further down the accuracy
spectrum, models such as Gemini 1.5 Pro, Qwen2.5-72B,
Owen2.5-Coder-7B, Codestral, Phi-3-medium, GPT-3.5-turbo,
Gemma-2-27B, and StarCoder2-15B, across both temperature
settings, display lower median AS values and substantially
wider IQRs. These characteristics point to a greater variability
in accuracy. Notably, Phi-3-medium at t = (0 exhibits a
relatively high median (above 0.9) but also one of the widest
IQRs, indicating considerable variation in accuracy.

The remaining LLM configurations exhibit low median AS
scores coupled with wide IQRs, indicating poor and unstable
accuracy. Among them, Command stands out as the worst-
performing model, with near-zero median AS values (0.0 at
t =0 and 0.015 at ¢t = D) despite relatively narrow IQRs.
This reflects a consistent inability to generate correct solutions
across most neighbourhoods.

CPS Distribution. Recall that a CPS of 1.0 for a particular
question neighbourhood indicates that the model solves every
instance at least once, even if it does not do so consistently
across repeated generations. A CPS of 0.5 means that only
half of the instances are solved at least once, while the
remainder are never solved correctly. Values near 0.0 suggest
failure on almost all instances, whereas intermediate values
reflect uneven performance, with correctness achieved only
sporadically across different instances.

The centre panel of Figure 3 illustrates the distribution of
CPS values across LLM configurations. A group of these
configurations achieves near-perfect CPS scores, with medians
between 0.99 and 1.0 and exceptionally narrow interquartile
ranges (IQRs) between 0.03 and 0.13. This group comprises
GPT-40, GPT-4, Claude 3.5 Haiku, and Claude 3.5 Sonnet, all
evaluated under both ¢t =0 and t=D settings, as well as Mistral
Large 2, Llama-3.1-405B, and Qwen2.5-Coder-32B at t=D.
These configurations demonstrate strong potential to produce
at least one correct solution across R = 5 trials in the majority
of question neighbourhoods. However, each also exhibits be-
tween 8 and 13 outliers out of 60 neighbourhoods, indicating
that despite their generally high correctness potential, they still
fail consistently on a subset of question instances.

The next tier comprises LLM configurations such as
DeepSeek-Coder-V2, Llama-3.1-70B, Gemini 1.5 Pro, and
Dolphin 2.9.2 Mixtral 8x22b, evaluated under both ¢ =0 and
t = D settings; Qwen2.5-Coder-32B, Mistral Large 2, and
Llama-3.1-405B, each at t = 0; and Qwen2.5-Coder-7B and
QOwen2.5-72B, each at t=D. These configurations attain high
median CPS values but are associated with moderately wider
interquartile ranges (ranging from 0.14 to 0.54), indicating
greater variability in their ability to produce at least one correct
solution per question instance across neighbourhoods. The
other LLM configurations show reduced correctness potential
and substantial variability. These models show no statistical
outliers, suggesting that the variation is broadly distributed
rather than driven by extreme cases. Command is a notable
exception, with markedly lower scores and observable outliers.

CCS Distribution. Recall that a CCS of 1.0 for a given
question neighbourhood indicates that the model answers
every instance correctly in all 5 generations, demonstrating
full consistency in its outputs. A CCS of 0.5 means that
only half of the instances are solved correctly in every
generation, while the remainder include at least one failure.
Values close to 0.0 suggest that the model rarely achieves
consistent correctness, even when it can occasionally produce
correct solutions. Intermediate values reflect partial consis-
tency, where some instances are always solved correctly while
others exhibit variability across generations. The right panel of
Figure 3 presents the distribution of CCS values across LLM
configurations. Among the highest-scoring configurations are
Claude 3.5 Haiku, Claude 3.5 Sonnet, GPT-4, and GPT-4o, all
evaluated at ¢ =0. These models achieve CCS median values
between 0.98 and 0.99, with narrow interquartile ranges rang-
ing from 0.10 to 0.12. Each configuration also shows 12-14
outliers among the 60 question neighbourhoods, indicating that
although correctness is generally maintained, the models still
face challenges in a non-negligible subset of neighbourhoods.

A second group of LLM configurations—including
Owen2.5-Coder-32B (at t =0), Claude 3.5 Sonnet and GPT-
4o (each at t = D), Llama-3.1-405B and Mistral Large 2
(each at t =0), and Claude 3.5 Haiku (at t = D)—achieves
relatively high CCS scores, though with moderately wider
interquartile ranges ranging from 0.21 to 0.40. These models
generally sustain correctness across repeated trials in many
neighbourhoods, but the broader IQRs suggest a more variable

ability to maintain correctness compared to the first group.

A third group, comprising models such as DeepSeek-Coder-
V2 (at both temperatures), Llama-3.1-70B, Qwen2.5-Coder-
7B (each at t = 0), and GPT-4 (at t = D), achieves mod-
erately high CCS values but exhibits substantial variability,
with IQRs extending up to 0.57. These configurations do
not show statistical outliers, which suggests that their lower
scores result from widespread variation rather than isolated
failures. While these models may be capable of producing
correct solutions in some trials, they show reduced ability
to maintain correctness across all five trials in a number
of neighbourhoods. The remaining LLM configurations are
associated with substantially lower CCS values and wide
interquartile ranges, indicating a reduced capacity to maintain
correctness across all trials. Most configurations in this group
do not produce statistical outliers, suggesting that the observed
variability reflects broadly distributed deviations rather than
isolated anomalies. Among the lowest-scoring configurations
are Command (at both temperatures), CodeGemma-7B, DBRX,
and StarCoder2-15B (each particularly at t=D), and Dolphin
2.9.2 Mixtral 8x22b (at both temperatures). Notably, Command
and CodeGemma-7B (at t= D) also produce outliers. These
configurations collectively exhibit persistent difficulty in main-
taining correct outputs across repeated attempts.

Overall, the patterns in Figure 3 provide an accessible
distribution-level view of LLM behaviour across neighbour-
hoods for the three evaluation scores. However, these descrip-
tive patterns should be interpreted with caution and comple-
mented by the pairwise statistical analysis that follows, which
rigorously tests whether differences are statistically significant
and practically meaningful.

Pairwise Comparative Analysis of AS, CPS, and CCS
via Heatmaps: We present a separate heatmap for each
score—AS, CPS, and CCS—to enable a statistically grounded,
pairwise comparison of all LLM configurations. While box
plots provide distributional insights, they do not establish
whether observed differences are statistically significant or
practically meaningful. The heatmaps we present here ad-
dress this limitation by combining non-parametric significance
testing with effect size estimation, allowing for a rigorous
assessment of both inter-model differences and the impact of
temperature reduction within each model. This level of analy-
sis is crucial for moving beyond visual inspection and drawing
robust conclusions about comparative model behaviour.

Recall that each LLM configuration was evaluated on
three metrics—AS, CPS, and CCS—across all 60 question
neighbourhoods, resulting in three distributions of scores per
configuration, each of size 60. To conduct the pairwise com-
parative analysis, we considered all (%) = 946 possible
pairs among the 44 LLM configurations. This analysis was
performed separately for each of the three evaluation metrics.
Prior to selecting an appropriate statistical test, we assessed
whether the distributions of each score followed a normal
distribution. This evaluation was conducted using the Shapiro-
Wilk test [74], which is known to be the most powerful
normality test [75]. Our analysis indicated that the distributions
did not conform to normality. Consequently, we employed
the Mann—Whitney U test [76] to determine statistical sig-

nificance between each pair of distributions, as this test is
non-parametric and does not assume normality. We set the
significance threshold at p < 0.05, corresponding to a 95%
confidence level. Additionally, we used Cliff’sd [77] as a
non-parametric measure of effect size, which remains valid
regardless of the underlying data distribution.

The inclusion of effect size alongside statistical significance
is crucial, as a statistically significant result (p < 0.05)
merely indicates that an observed difference is unlikely to
have occurred by chance but does not convey the magnitude
or practical relevance of the difference. Effect size, in contrast,
quantifies the strength of the observed effect, offering insights
into its real-world importance independent of sample size.

The heatmaps in Figure 4, Figure 5, and Figure 6 present
a comparative analysis of all LLM configurations in terms
of accuracy, correctness potential, and consistent correctness,
respectively. For conciseness, only the Dolphin 2.9.2 Mixtral
8x22b model is labelled as Dolphin 2.9.2 in all figures.
In each figure, each cell represents the effect size of the
difference between a given pair of LLM configurations for the
corresponding metric. A star in the bottom-left corner of a cell
indicates that the observed difference is statistically significant,
meaning it is unlikely to have arisen by chance.

The colour scheme of the heatmap in each figure visually
conveys both the direction and magnitude of the differences.
A positive value, represented by a red-shaded cell with in-
tensity varying according to magnitude, indicates that the
LLM configuration on the vertical axis of the heatmap has
a higher corresponding score value (i.e., AS, CPS, or CCS)
than the model on the horizontal axis. Conversely, a negative
value, shown as a blue-shaded cell, signifies that the LLM
configuration on the horizontal axis outperforms the one on
the vertical axis with respect to that metric. Thus, a negative
effect size does not imply no effect but a reversal in direction,
with the horizontal-axis group showing larger values than the
vertical-axis group. A cell value of zero denotes no difference
between the two configurations.

For effect size interpretation, the magnitude, determined by
its absolute value, is critical, as it reflects the strength of the
effect, irrespective of direction. This is done based on estab-
lished thresholds in the literature. We adopt the classification
proposed by Cliff’s study [77], where an effect is considered
negligible if |§| < 0.147, small if 0.147 < |6] < 0.33,
medium if 0.33 < || < 0.474, and large if |6] > 0.474. The
significance and practical implications of each cell value in
Figure 4, Figure 5 and Figure 6 depend on both its magnitude
and statistical significance (p < 0.05): if an effect size is
small or negligible but statistically significant, the difference
between the corresponding LLM configurations is unlikely due
to chance but remains too minor to be practically meaningful;
if an effect size is small or negligible and not statistically
significant, there is insufficient evidence of a meaningful
effect, with differences likely arising from random variation;
and if an effect size is medium or large and statistically
significant, the difference between groups is both real (unlikely
due to chance) and practically meaningful.

To illustrate how to interpret the data presented in Figure 4,
Figure 5, and Figure 6, we provide a representative example

Claude 3.5 Haiku (t=0)-

0.12 -0.03 0.07 Emg.z! .0.50 ‘ 9 9
-0.15-0.06 [TI[XF 0.13 0.4 [XTY[XT .45 j0.a7

0.11 @m:ﬁ.zs‘ Jo.90[0.80]g m@m 0.13 0.14 [T 0.26
Jo.68]0.76 (Xt 0i54]0.92 0.0 [0 (2] 0.04 0.05 [XTI[XT] 0.18 pas

0.02 - ouou@oso 10.24:0.26-0.15-0.07}

] .13 .12 [T o3 4
m 0.00 0.01 mm 0.15 0.41

Claude 3.5 Haiku (t=D)--0.12
Claude 3.5 Sonnet (t=0)-0.03 0.15
Claude 3.5 Sonnet (t=D)--0.07 0.06 -0.11

CodeGemma7s (t=0) LI INHTEEINET
CodeGemma7 (t=D) JUE L NFERZTNT: 0.02

Codestral (t=0)+0.23-0.13:0.26-0.18[0.42 0.44
Codestral (t=D) [0:50-0.44 177" 0.34 0.46 :0.22

conmars .o TR B EOTOEY
L8 0.87/:0.900.89/0.90 1 10162:0.75 0.54[%73

Command R+ (t=0)-_/*1-0.45 024 0.31-0.27-0. 05@

-041E 0.26 0.34 - ouaosmwooo

DBRX (t=0) | Wil 035 0.19:0.31-017[7] -1 0,100

DBRX (t= D)Wmmo 07 0.14 :0.40:0 37@@ -0.24:0.26-0.12
DeepSeek Coder (£=0)-0.11-0.00-0.13-0.04 mn 13 0.20 (Y[¥ 0.41 0.42 085 [
DeepSeek Coder (Q:D)7-0.12»0.01»0.14-0.05. |20 0.22 0.30 [XTA[XT 0.40 0.1 0.aa

Dolphin 2.9.2 u:o)mﬁﬁm 0.20 0.29:0.31:0.25 0.15-0.15-0.01 0.14 [0:50/0.49
Dolphin 2.9.2 (t=n)mmmm 0.19 0.29 ;0.31;0.25-o.1s-o.1s-o.o1 0.13 10.5010.49-0.00

GPT 3.5 (£=0)10.23-0.15:0.26-0.18 0.32 0.32 -0.04 0.15 1.1)11 0.18 0.18 0.23 0.30 -0.14-0.13 0.23 0.23
£0:49 0.32 0.40:0.22-0.02 [FFI [0.07 0.08 0.16 0.330.37:0.35 0.21 0.21 -0.13

GPT 4 (t=0)-0.01 0.14 -0.02 0.09 @ 0.76 X X0 m_ m 0.12 0.13 9.24 0

(2R 0-05 0.06 0.17 0.37

BXZlorsa oo
e omastonon

40-0.39 0.25 0.26 -0.15 0.02 _

Command R+ (t=D) |

0.01 0.50 0.50 0.14 0.37
220 -

-0.01 0.49 0.49 0.13 0.35

0.13
GPT 3.5 (t=D) 0.48:0.41

GPT 4 (£=D)£0.22-0.11:0.26-0.17 [F1[¥F] 0.07 0.39 [YFA[¥TY 0.39 0.42 0.47 [17]-0.09-0.09 X T1[77] 0.07 0.35 :0.25

GPT 4o (t=0)-0.04 0.16 0.02 0.13 ng.za 0

o130 usustlosslors SR caloss Ll
GPT 40 (t=D)--0.10 0.02 -0.14-0.03mm 0.16 0

o.52]0.01 [£52] 0.01 0.02 (1|1 015 a7

Gemini 1.5 Pro (t=0)10.32:0.23:0.35.0.29(0.50 []-0.03 0.23 [¥TI[WT 0.26 0.28 0.34 0.50-0.20-0.20/0.42 0.42 -0.00 0.21 }0.36-0.160.39:0.29
L e] - 0:260.28/0.3¢ § e - R

Gemini 1.5 Pro (t=D) 10.35.0.250.38.0.32 0.49 -1 -0.05 0.22 [XTI[¥T] 0.24 0.26 0.3 0,50.:0.23:0.22 0.41 0,41 -0.02 0.19 }0.39.0.18 10.41:0.31-0.02

0)0.26-0.19:0.28:0.22 0.32 0.34 -0.06 0.10 [JLT][771 0.16 0.16 0.21 0.31-0.16-0.15 0.23 0.23 -0.02 0.11 0.27-0.11:0.28-0.19-0.02-0.01

:0.39:0.30,0.40,0.34 0.35 0.40 ouommou 0.15 0.21 0.33:0.25:0.25 0.24 0.24 -0.07 0.09 :0.40:0.22:0.41.0.32-0.09-0.08-0.06

Gemma 2 278 (t:

Gemma 2 278 (t=D|

Liama3.1 405B (t=0)--0.07 0.03 -0.10-0.01

MO 16/0.39 [XT[¥T] 0.41 0.42 0.4 [
|27 0.08 036 WE'” 039 042,

oososo@n:do:s 0.38 0.48-0.04-0.03 0.40 0.41 0.12 0.29
Liama3.1 70B (t=D);0.37:0.29 nu—nuou -0.07 0.18

Mistral Large 2 (t=0)--0.04 0.07 - nn7nnz@@o 19 042-044 0.46 OJBWDW 0.07 |

Mistral Large 2 (t=D)-0.23-0.13:0.26-0.19 _ Eo 08 0.33 wwa 34 0.36 0.40

0.04 0.05 0.17 0.37

Llama3.1 4058 (t=D)-0.19-0.08:0.22-0.13 -o.o7-o.o7p.49 0.49 0.08 0.32

Liama3.1 70B (t=0)-0.15-0.05-0.16-0.08

021 0.41 -

Phi3 (t=0) 70.36:0.29-0.40-0.34 0.32 0.37 -0.16 0.08 @ 0.12 0.13 0.19 _0.33 70.27:0.26 0.25 0.25 -0.09 0.06 ;0.39-0.21:0.41-0.33-0.12-0.09-0.07-0.02-0.28:0.22:0.22-0.07;0.32-0.19

Phi3 (tzo)mmmm 0.23 0.34 -o.31-o.zsﬂu-o.u-o.u 0.03 0.23 -0.47:-0.46 0.09 0.09 -o.n-o.nm ﬁm-o.n-o.ss-o.zl-o.zo-o.ﬂ-0.44-0.37-0.32
Dol S Eaiadaatte B - Pty ORI

0.00 0.30 [FIFIE] 0.30 0.31 0.360.49 -0.16-0.15 0.40|0.41 0.02 0.27 0.29-0.07:0.33-0.19 0.07 0.09 0.05 0.14 -0.19-0.09-0.11 0.1 -0.22-0.07 0.16 [0.40

Qwen 2.5 72B (t=0)0.27-0.16:0.31-0.22 0.48
Qwen 2.5 72B (t=D);0.32:0.23:0.36:0.300.49 | 11-0.03 0.26 m

0.03 0.08 -0.05 0.04 [J71[7] 0.19 .44 [XFI[NFY 0.45 0.46 [0.49 [177] 0.08 0.09 [IT1[
0.24-0.130.27-0.19 [-11[X7] 0.04 0.36 [XTI[XT 0.37 0.39 0.43 [1] -0.22-0.12]

0.24-0.15:0.27-0.190.46 - 0.00 0.25 [¥TI[¥T] 0.28 0.28 0.33 0.46-0.14-0.13 0.40 0.40
013012@@016018 0.26 0“ -0.29-¢ DZHD;‘ 03‘

Qwen 2.5 Coder 32B (t=0) - 0.20 0.42

Qwen 2.5 Coder 32B (t=D|

Qwen 2.5 Coder 7B (t=0

Qwen 2.5 Coder 78 (t=D)-0.41:0.33:0.45-0.40 0.42 |

-0.20-0.19:0.32:0.32

0.44:0. 45@@ 0.31:0.34-0.19-0. umm 0.29-0.29-0.32:0.. wmmmmmm 0.

ozzmmonozao:l 0.40-0.13-0.12 0.31 0.31 0.04 0.22 :0.23-0.07:0.28-0.16 0.03 0.05 0.06 0.11 -0.16-0.08-0.09 0.07 -0.19-0.08 0.16 0.31 -0.00 0.03 -0.19-0.04-0.00 0.13 0.28 0.32

86000 3050011010 50501000 G0 . 4010503000020 5010024
S0 k0S5 .10037 to a OBR A o0 5,078

0.00 0.10 0.24 -0.41:0.40 0.15 0.15 -0.18-0.07
0.11 0.26 :0.42:0.41 0.15 0.16 -o.ls-o.osm-‘o.um'

0.12 0.45:0.44 0.01 0.010.23-0.16)| :0.47 01
-o.14-o.13-_o.so-_o.ummmm-_o.so;o.so;o.n;o.aa_

-0.13 0.15 -0.16

+0.21 0.01 :0.24-0.10 0.15 0.17 0.10 0.20-0.11
0.22 0.24 0.31 0.48-0.24-0.24 0.39 0.38 -0.05 0.16 ;0.41:0.21:0.44:0.34-0.04-0.02-0.02 0.04 0.27-0.19-0.17

-0.10-0.09 0.49 0.49 0.08 0.31 :0.26-0.05:0.27-0.15 0.11 0.13 0.10 0.20 -0.14-0.03-0.05 0.16 -0.15

@3.27 0.29 0.33 0.49 -0.21-0.21 0.40 0.40 -0.01 0.23 :0.36-0.16:0.39-0.28 0.01 0.03 0.03 0.09 -0.23-0.16-0.14 0.05 -0.26-0.13 0.12 0.39 -0.07
-0.04 0.18 -0.06 0.08 0.28 0.30 0.22 0.34 0.04 0.16 0.12 0.33 0.01 0.20 0.32 _
0.05 0.32 -0.27-0.03;0.30-0.17 0.13 0.16 0.08 0.18 -0.15-0.05-0.05 0.18 -0.17 0.01 0.20 0.50 0.03 0.12:0.21

0.03 0.22 :0.26-0.09:0.30-0.19 0.05 0.07 0.05 0.12 -0.16-0.08-0.08 0.09 -0.19-0.05 0.15 0.35 0.00 0.04 :0.21-0.06
-0.07 0.10 :0.45-0.260.47:0.40-0.11-0.09-0.05-0.00-0.31-0.24-0.21-0.07,0.34-0.21 0.02 0.27 -0.16-0.12:0.360.24-0.14

-0.01 0.22 -0.04 0.10 0.32 0.35 0.26 0.39 0.07 0.19 0.15 0.37 0.04 0.23 P.zsmg.n 032 0.03 0.24 0.24 0.41 | E

0.16 0.23 -0.08 013 0.15 0.33 0.45 -7
0.02 0.26-0.02 0.14 0.35 0.38 0.280.40 0.10 0.22 0.160.40 0.07 0.26 0.40|[)[] 0.31 0.36 0.05 0.27 0.27 0.45)= |[)CT]
. 0:3503810.28 0 . . 26/ L 9:270.27 058

-0.09 0.17 0,13 0.03 0.29 0.32 0.22 0.34 0.01 0.13 0.08 0.34-0.02 0.19 0.34 [0.22 0.30 -0.04 0.19 0.19 0.40 |
mmﬁ 0.50:0.49.0.32:0.35 f0:48 [0 0T 0.52.0.23 /0148 049 {171 11CT110146.0.42.0.23-0.19
“ostomiastamossont T aniastontomiomant

-0.14 0.11 -0.16-0.02 0.23 0.25 0.19 0.30 -0.03 0.08 0.05 0.29 -0.07 0.13 0.29

*
0.75

0.39. +0.23:0.22-0.10-0.07:0.39-0.36.0.30-0.18-0.42-0.33-0.08 0.25 -0.30.0.26 :0.44

6-0.25-0.12 0.09 0.27
¥ ¥

sacfoaiond
otosnosiag oo omastomator aetors

2:0.44-0.34-0.12 0.11 -0.30:0.27:0.45:0.370.28-0.16 0.01 0.14.

70.39 | -0.50-0.26:0.24-0.16-0.14:0.41-0.37-0.34
+0.28:0.26-0.16-0.15:0.42-0.39-0.35-0.24:0.46:0.36-0.13 0.11 :0.31:0.29.0.46 :0.39-0.28-0.18-0.00 0.14
-0.34-0.33-0.21-0.21-0.44-0.42-0.38-0.31-0.48-0.40-0.19-0.03-0.36-0.33-0.49-0.43-0.33-0.26-0.08 0.00
P e i e P P el R0 AR AR SRy

-‘o.dn-_o.dnm_ -_0.33-_0.23-_0.49-_o.nmm;o.u;o.u;‘o.zd-o.15

-0.12 0.09 -0.15-0.01 0.20 0.23 0.16 0.25 -0.04 0.07 0.04 0.24 -0.07 0.10 0.27 0.47 0.16 0.21-0.08 0.12 0.14 0.29 0.41 0.49

-0.13 0.09 -0.16-0.02 0.20 0.22 0.15 0.25 -0.05 0.07 0.03 0.24 -0.07 0.09 0.26 0.46 0.15 0.21-0.09 0.12 0.13 0.28 0.40 0.48

0.00:0.23-0.21 JTTITITNTITT l0.4210.41:0.23 -0.24]
;ﬂ.z!;ﬂ.zlmmm;ﬂ.‘z;o.‘l;o.zz;ﬂ.z“

+0.24-0.07:0.26-0.15 0.00 0.02 0.02 0.07 -0.17-0.08-0.12 0.05 -0.21-0.08 0.09 0.21 -0.02 0.01 -0.20-0.05-0.03 0.07 0.19 0.23

£0:49:0.40-0.39 7' 10.49.0.25-0.09 0.40:0.40 [=T
P E083 A4 <

10:49-0.25-0.09:0.420.40 [T

10.40:0.34-0.14-0.02
:0.49-0.41:0.38 :0.40:0.34-0.14-0.03

-0.35 :0.47-0.21-0.19-0.11-0.09-0.37-0.32-0.29-0.16-0.41-0.31-0.06 0.17 -0.27-0.23-0.42-0.32-0.22-0.10 0.07 0.19
Pl = i Py ereleRaslaey

0.07 0.16 -0.18 0.03 0.09 0.26 0.39
Rl e
0.16 0.39 0.41 0.28 0.41 0.10 0.24 0.18 0.4 0.07 0.27 p.umg.zz 0:39 0.06 0.30 0.30 0.47 | @
029 0.31 0.19 0.32-0.02 0.10 0.06 0.34 -0.05 0.15 9.33@0.19 0.28-0.08 0.17 0.19 0.40 E
0.02 0.02 0.09 :0.23-0.15-0.13 0.04 ;0.25-0.11 0.12 0.37 -0.07-0.01;0.28-0.13-0.05 0.11 0.26 0.41

0.25-0.03 0.13 0.36 0.39 0.27 0.40 0.08 0.21 0.15 0.41 0.05 0.26 9.39@9.29 0:36 0.04 0.27 0.26 0.45 |
;0.28-0.15 0.16 0.18 0.11 0.22 -0.12-0.01-0.02 0.21 -0.15 0.05 0.21
0.03 0.28

0.01 0.08 :0.24-0.17-0.15 0.02 :0.27-0.13 0.09 0.36 -0.09-0.03:0.30-0.16-0.07 0.09 0.24 0.40
0.06-0.19-0.10-0.12 0.02 :0.22-0.10 0.07 0.21 -0.05-0.03:0.22-0.08-0.05 0.05 0.16 0.23
£0.29-0.20-0.20-0.04-0.33-0.20 0.02 0.20 -0.14-0.09-0.34-0.18-0.12 0.00 0.14 0.23 025
-0.08 0.12-0.10 0.02 0.23 0.24 0.19 0.29 0.11 0.07 0.27 -0.03 0.14 0.28 0.48 0.19 0.23-0.04 0.15 0.16 0.31 0.41 0.50
-0.03 0.19 -0.15 0.03 0.22 0.44 0.09 0.16 -0.16 0.05 0.08 0.24 0.37 0.47
-0.15 0.02 -0.18-0.06 0.13 0.15 0.12 0.20 -0.07 0.03 0.17 -0.10 0.05 0.22 0.37 0.11 0.14 -0.12 0.05 0.08 0.21 0.34 0.40
0.30-0.16 0.07 0.32 -0.11-0.05-0.33-0.18-0.09 0.07 0.23 0.36
-0.05 0.15 -0.07 0.05 0.25 0.27 0.22 0.33 0.03 0.15 0.10 0.30 0.15 0.32 |~ 0.22 0.26 -0.01 0.17 0.19 0.34 0.45 . --0.50
0.19 0.45 0.07 0.13 -0.20-0.01 0.05 0.21 0.35 0.47
0.22-0.16-0.12:0.32-0.20-0.15-0.02 0.12 0.24
-0.45-0.22 -0.40-0.39 :0.50-0.35-0.27-0.11 0.04
Py Bttty
0.07 :0.24-0.03-0.00 0.16 0.33 0.42
0.29-0.12-0.04 0.12 0.30 0.41
. Lo -0.75
0.24 0.29 0.21 0.21 0.36 0.45
Eanadhs Lol 2l Sl Sl
0.06 0.24 0.37 |
0.14 0.27 0.38
ot

0.15 0.32

StarCoder 2 158 (t=0) |)-+1:0.45 [-7 71 0.23 0.29 10.28-0.09 [)11 1171-0.01 0.00 0.08 0.24 }0.410.40 0.14 0.14 -0.19-0.07 - :0.39 :0.26:0.24-0.16-0.14:0.41-0.37:0.34-0.230.450.35-0.12 0.11 :0.33:0.30,0.45.0.37:0.27-0.15 012
StarCoder 2 15B (t= D)mmmm 019 0.29 0.32,0. z1w -014-0.14-0.00 0.15 [0.490.48 0.02 0.03 ;n.zs-n.1gmmmﬁ;a.41;a.ao;o. 3:0.50-0.47 10:47-0.24-0.04/0.42-0.41) 11 71 F0.38.0.32-0.12
s a 5 s o 5 3 8 a8 8 &8 8 @ © @ © @ © @ © @ © @ © @ © @ ©° @ ° @ @ @ @ @ & 1o
1§:3:3:1:31:83:3:3¢83¢83¢83¢2¢221212i2i8iiEIEE8LEE
s 5 @ 3 3 % 5 or N n < e o @ @ @ ~ = @ @ @ @
2 2 8 % B 2 T OF PR OEOEOEE R OEGLMMEMNMNE e g g £ o R @ B o2 g g 00N 2 o @ 2 8 8 2 2§ 2
" ® £ £ 8 ® £ £ 8§ &8 o @ @ B 3 r @ m FE K p p & &8 &~ & @ ¢ R R & & & £ ~ K m & o T A 4
= £ § § £ £ ¢ %4 E E T T oaada 8§ YN E LG F EE W ow o~ T F 4 o PP w on o5 o5 8 8§ N o
w s © & E E ¥ ® E E 8 & x 3 £ = & & 6 6 A d g g 2 4 @ 4 3 8 N N 3 % 8 % 5 &
H ® n n 9 ¢ 8§ & S8 & E E " o £ = = = E E ® @ ® ® = = e 8 o & % g
momo2om 8885 S 8 EE 2 s £ 3% £ 2 EE "% E E BT § § ¢ S w5 3 3
2 ¢ s 0o % 3 s 8 2 2 8 3 EE s s EE = s § % EE e & oq 809
g 3 33 8 & 8 ¢ 6 8 © 3 3 I ¥ N g ¢ £ o8
C C =& & a a § § § ¢ @ &
S o 2 2 o ¢o
S &

Fig. 4. Comparison of LLM configurations based on pairwise AS effect size

drawn from Figure 4. The interpretation outlined here gener-
alises to all three figures with respect to their corresponding
evaluation metric. In Figure 4, the cell corresponding to
Claude 3.5 Haiku (t=D) on the vertical axis (the second LLM
configuration from the top) and StarCoder2-15B (t=D) on the
horizontal axis (the rightmost LLM configuration) contains the
value 0.59 accompanied by a star. The presence of the star
indicates that the difference between the two LLM configura-
tions is statistically significant. Given that the Cliff’s § value is
|6] = 0.59 > 0.474, it qualifies as a large effect size, indicating
that the difference is practically meaningful and that Claude
3.5 Haiku (t=D) achieved substantially higher accuracy than
StarCoder2-15B (t=D) in our evaluation.

To identify the LLM configuration(s) that achieve the high-
est levels of accuracy, correctness potential, and consistent
correctness—as measured by AS, CPS, and CCS, respec-
tively—we refer to Figure 4, Figure 5, and Figure 6. Specifi-
cally, we look for configurations that consistently exhibit the
largest effect size values when compared to others. When a
group of LLM configurations each shows large values against
the rest but exhibits no statistically significant differences and

and statistical significance. Note that the heatmap is symmetric.

only negligible effect sizes in their pairwise comparisons, they
may be considered to perform similarly with respect to the
corresponding metric. Based on this, the lists below present
the LLM configurations that show no statistically significant
difference and negligible effect size in pairwise comparisons,
indicating similar performance in that metric:

AS: Claude 3.5 Haiku (t = 0), Claude 3.5 Sonnet (at both
temperatures), Mistral Large 2 (t=0), GPT-4 (t=0), GPT-4o
(t=0), Llama-3.1-405B (t=0), Qwen2.5-Coder-32B (t=0).
CPS: Claude 3.5 Haiku (t = D), Claude 3.5 Sonnet (at
both temperatures), Mistral Large 2 (t = D), GPT-4 (at
both temperatures), GPT-4o (at both temperatures), Qwen2.5-
Coder-32B (t=D).

CCS: Claude 3.5 Haiku (t = 0), Claude 3.5 Sonnet (t = 0),
Mistral Large 2 (t=0), GPT-4 (t=0), GPT-40 (t=0), Llama-
3.1-405B (t=0), Qwen2.5-Coder-32B (t=0).

We observe that, with the exception of Claude 3.5 Sonnet
(t=D), the AS and CCS lists include an identical set of LLM
configurations, all operating under ¢ = 0. This alignment can
be partially attributed to how the two metrics relate to re-
peated correctness: while AS measures the average correctness

Claude 3.5 Haiku (t=0)-

-ﬂ.ln-n.ﬂs-n.nQ@P.‘s :1.21 0.03 m?."’ 9.32 9
0.04 0.02 [FF[7° 0.30 0.11 [FH
-0.03 (7] 0:50 0.26 0.0s [T
% o2 EENEED:

j0.32/0.43 935:0.29/0.43-0.16:0.37 117

-
-0.19;0.39mm 0.01-0.15 0.15 -0.090.

Claude 3.5 Haiku (t=D)-0.10

Claude 3.5 Sonnet (t=0)-0.05 -0.04 038

Claude 3.5 Sonnet (t=D)-0.09 -0.02 0.03
CodeGemma7 (t=0) [NT IR EINTIRT
CodeGemma7B (t=D) '-.D.IS B —'0-50 €

Codestral (t=0) ';0.21;0.30;0.25:0.30 '0.43 0.19

033,
-

0.32

Codestral (t=D) -0.03-0.11-0.08-0.10 /1] 0.39 0.21

BRI, . s sasgorrostons
Command (t=D) [BIX TN T TN 0.35 L7 [IFINT 0.36

Command R+ (£=0) 0.47 7 0.29 -0.01,0.240.42
Command R+ (t=D);0.320.43:0.38/0.430.43 0.15 -0.09.0. 30@@0 19
DBRX (t=0) m ﬁnls olsonﬂag@(oas -0.13:0.29
DBRX u:n)r-‘o.ss-_o.u-_o.u-_o.n 037 0.09 -0.13;0.32 [171171 0.10 -0.07 0.2
DeepSeek Coder (£=0)-0.02-0.10-0.05-0.08 171 0.41 0.20 0.01 mg.u 0.31/0.50 0.33

0.40 0.20 0.02 [FT[¥7] 0.43 0.30 0.49 0.32 0.00
030 0.09 -0.11 [JFRIYF 0.3 0.18 0.42 0.21-0.15-0.15

031 0.10 -o.1oﬂﬂg.zz 0.19 0.41 0.21-0.14-0.14 0.02

GPT 3.5 (t=0) +0.22:0.30-0.260.29 0.33 0.13 -o.oA:o.ang.so 0.16 0.03 0.24 0.07 :0.20-0.20-0.11-0.11

GPT 3.5 (t=D) -0.05-0.13-0.09-0.11
GPT 4 (t=0)-0.09 - nolooannzm 0.30 0.11

GPT 4 (t=D)-0.17 0.08 0.12 oosﬂ@o 36 019@@049@
GPT 40 (t=0)-0.13 0.04 0.09 0.06 [J7F1 /-1 0.32 0.15 [XTIETY
GPT 4o (t=D)-0.19 0.10 0.14 0.13 mﬁy.ss 021 Mm::.n@‘

-0.22-0.50
P

DeepSeek Coder (t=D)--0.01-0.10-0.05-0.08
Dolphin 2.9.2 (t=0) ~0.17:0.27.0.220.28
Dolphin 2.9.2 (t=D)-0.17:0.26.0.20-0.25

035 0.17 -0.03 [XTI[RT] 0.38 0.26 0.44 0.28 -0.02-0.03 0.09 0.08 0.19

Gemma 2 278 (t=D)-0.09-0.17-0.13-0.16
Liama3.1 405B (t=0)-0.06-0.15-0.11-0.14
Llama3.1 405B (t=D)-0.03 -n.ns»n.nz-n.nsg.n 025 0.06 mwg.as 0.3a

Llama3.1 708 (t=0)-0.13-0.21-0.16-0.20

Liama3.1 708 (£=D)--0.00-0.09-0.04-0.07 (17 0.46 0.24 0.03 [XTYLNT] 0.48 0.35

Mistral Large 2 (t=0)-0.00 -n.na-n.na-n.w@y.u 023 0.03 o.sn 0.44 0.31 0.51 0.34 0.03 0.02 0.16 0.15 0.23 0.06 -0.07-0.15-0.11-0.17 0.05 0.04 0.25 0.09 0.06 -0.02 0.12 0.01
0.42 Mg.u 0.09 0.08 0.26 0.24 0.29 0.13 -0.03-0.11-0.07-0.13 0.13 0.12 0.31 0.16 0.12 0.03 0.20 0.08 0.07
-0.11 0.19 -0.02:0.360.35-0.23:0.24-0.11:0.31:0.46 _

Mistral Large 2 (t=D)-0.06 -0.03 0.02 -o.o1m‘ 0.31 0.12 m*

Phi3 (t=0) 70.37/0.48-0.43:0.49 0.32 0.06 -0.17:0.34 [J7] ' =1 0.08
Phi3 (t=D)--0.15:0.25:0.20:0.24
Qwen 2.5 728 (t=0) -0.18:0.28.0.24 - nzsosz 0-28 0.05 -0.15[XA0)

Qwen 2.5 72B (t=D)-0.00 - onaoosooamouozaamﬁ@nuoaa

Qwen 2.5 Coder 32B (t=0) -0.04-0.14-0.09-0.12|_

Qwen 2.5 Coder 32B (t=D)-0.10 0.01 0.05 mnzm_

a:30 0.3 [T,

.41

Qwen 2.5 Coder 78 (£=0)-10.250.35:0.30:0.35(0.46/0.21 0.02:0.21 [T (7] 0.23 0.07 0.3 0.12 10.23:0.23-0.09-0.10 0.01 -0.180.35/0.42.0..

StarCoder 2 158 (t=0)

StarCoder 2 158 (t=D);0.30:0.42.0.38/0.43 0.48 0.22 004021 0.22 0.03 0.33 0.10.,0.29

D)‘

5 3 a8 5 a5 a S 5 3 a5 a5 a5 &
powonon o %wrononSorTORIONLOLIOROLOLonon
£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ &£ £ £ £ &
3 3 ® ® @ @ " s T ° + x H H N N n n
2 2§ 8 R R EEER O EE S EG G omom

] H Il 3 N H
x £ 6 § E E 8 § E E B T o a & § ¢ &N B &
n a0 W@ 5 E 3 % g £ E & x x £ £ O ¢
o oaom g g oSS 8 EE $§ 8 2 35
E1 E] o) o o o
5 3§ ¢ 8 3 o < ¢ § o o
8 & 3 3 0 O g 9
O 0 & &= a a

o o

Fig. 5. Comparison of LLM configurations based on pairwise CPS effect

across all generations, CCS assigns credit only when all five
responses for a given question instance are correct. Although
setting the temperature to 0 does not make generation fully
deterministic [73], it provides the most deterministic decoding
context available. In such settings, models that produce a
correct output once often replicate that output across repeated
trials. For the specific LLM configurations identified in the
top AS and CCS groups, this behaviour appears to hold—they
tend to generate outputs that are both frequent and consistent,
resulting in strong performance on both metrics. However, we
emphasise that this alignment is not generalisable to all LLMs,
as consistency under ¢ =0 depends on the model architecture
and decoding behaviour. Moreover, the alignment observed
here does not imply equivalence between AS and CCS, as
each captures correctness at a different level of granularity.

To identify the lists of top-performing LLM configurations
based on AS, CPS, and CCS, we adopted strict criteria: no
statistically significant difference and a negligible effect size
in all pairwise comparisons. One may choose to relax the
latter threshold—for instance, by including configuration pairs
with small effect sizes—which would naturally expand the

0.30-0.31-0.13:0.35

ouﬂoasomoln 0.27 0.26 0.29 0.12

036 0.02 0.01 0.17 0.17 0.22 0.05 -0.09-0.17-0.13:0.19 0.07 0.05 0.25 0.09 0.06 -0.03 0.13 0.00 -0.00-0.06 0.37 0.15 0.18 -0.00 0.04 -0.10 0.25 0.06

041 0.05 0.05 0.22 0.20 0.26 0.09 -0.04-0.12-0.09-0.14 0.12 0.09 0.29 0.13 0.11 0.02 0.16 0.04 0.04 -0.02 0.43 0.20 0.24 0.05 0.09 -0.05 0.30 0.10 |
onzmoﬂ 0.08 0.08 0.28 0.25 0.29 0.11-0.02-0.09-0.06-0.13 0.17 0.14 0.32 0.16 0.14 0.05 0.20 0.07 0.07 0.01 0.49 0.24 0.28 0.08 0.12-0.03 0.35 0.13

WWWWE@ 053

;o.zlm@ozlnos 0.31 0.13 :0.20-0.20-0.09-0.10 0.04 -0.17:0.300.360.32:0.39-0.17-0.19 0.06 -0.13-0.15-0.25-0.10-0.24-0.23:0.31 0.17 -0.10-0.05:0.24-0.17:0.30 0.02 -0.18 0.29 0.04
M(Mz 0.30 0.48 0.32-0.01-0.02 0.11 0.10 0.20 0.03 -0.11-0.19-0.150.21 0.01 -0.00 0.23 0.06 0.02 -0.06 0.08 -0.03-0.03-0.12 0.34 0.13 0.15 -0.04 0.00 -0.13 0.21 0.01 0.49 0.27

® ”WEﬂﬂﬁﬂﬁﬁﬁﬂ@ﬂﬁﬁﬂﬂﬂﬂﬂﬁﬁﬂﬂﬂﬁ
7207 002 0.t 7et .00l 0.00f0.2410.8910.0510.05 LGBSH0.75.0.62, 0172 0.03.0.00. .52 R 077 07a} .of 77 0. S .01 DR

-0.19 0.13 -0.10:0.44-0.43-0.33:0.32-0.160.38
0:29 0.07 :0.31:0.30-0.18-0.19-0.03:0.26.:0.42:0.49.0.44 :0.51-0.250.28-0.01

9:0.42:0.41:0.24 0.4 [0 - TR T :0.4810.51-0.23 /0,41 0.45]

70.33:0.32:0.21:0.21-0.07;0.28:0.45

-0.02 0.11 -0.09:0.27;0.35:0.29:0.36-0.11-0.13 0.13 -0.05-0.10:0.20-0.02-0.18-0.16:0.26 0.23 -0.01 0.03 -0.16-0.13:0.27 0.09 -0.12 0.38 0.13

0.17 0.17 0.35 0.33 0.36 0.19 0.09
o Mm 0.47 0.14 0.13 0.29 0.28 0.32 0.15 0.05 -0.03
0.20 0.19 0.36 0.35 0.37 0.22 0.11 0.03 0.06
Gemini 1.5 Pro (t=o)r-u.u7-n.17-n.1z-n.17Eg.no 0.17 -o.olwwg.zs 0.25 0.48 0.29 -0.04-0.04 0.11 0.11 0.18 0.02 -0.16;0.24-0.19:0.25
Gemini 1.5 Pro (l:D)r-o.os-o.ls-o.os-o.lamg.az 0.19 0.00 EEQ.A: 0.28 0.51 0.31-0.02-0.02 0.13 0.12 0.19 0.03 -0.15:0.22-0.17:0.24 0.02
Gemma 2 278 (t=0) -0.25:0.34:0.29:0.32 0.33 0.11 -o.os;o.zzmg.sl 0.14 0.01 0.23 0.05 0.23:0.22-0.13-0.13-0.02:0.21:0.32:0.39.0.35.0.40.0.21:0.22
031 0.13 -0.06 (LI FE1 0.35 0.21 0.41 0.24 -0.07-0.07 0.05 0.04 0.15 -0.03-0.16-0.23-0.19:0.25-0.05-0.06 0.17
0.36 0.15 -o.ozmg.za 024 0.45 0.28 -0.04-0.04 0.10 0.09 0.16 -0.00-0.14:0.22-0.18:0.24-0.00-0.02 0.19 0.03
038 0.05 0.05 0.20 0.20 0.24 0.08 -0.06-0.14-0.10-0.16 0.10 0.08 0.28 0.12 0.09
0.28 0.10 -o.oBMg.sz 0.19 0.39 0.21-0.10-0.10 0.02 0.01 0.12 -0.06-0.20-0.28:0.23:0.29-0.08-0.09 0.13 -0.03-0.06-0.16
037 0.01 0.01 0.18 0.16 0.23 0.05 -0.09-0.17-0.13:0.20 0.06 0.04 0.26 0.09 0.06 -0.04 0.12

033 0.10 - oummozs 0.19 0.42 0.23 -0.14-0.14 0.01 -0.01 0.11 -0.08:0.25:0.320.28:0.35-0.09-0.12 0.14 -0.05-0.09-0.19-0.02-0.16-0.15:0.25 0.27
0.30 0.14 0.38 0.19 -0.17-0.17-0.03-0.04 0.08 -0.11:0.27:0.35:0.30:0.37-0.12-0.14 0.11 -0.08-0.11:0.21-0.06-0.19-0.18-0.27 0.21 -0.03
0.36 0.02 0.01 0.16 0.15 0.24 0.07 -0.08-0.16-0.12-0.19 0.05 0.04 0.26 0.09 0.06 -0.03 0.11 0.01 0.00 -0.08 0.37 0.18 0.20
0.40 0.17 -0. ooma 41 0.27 0.49 0.31 -0.02-0.02 0.13 0.12 0.18 0.01 -0.13:0.21-0.17:0.22 0.03 0.01 0.20 0.05 0.02 -0.07 0.09 -0.03-0.04-0.10 0.32 0.12 0.14 -0.03
0.44 0.11 0.11 0.27 0.26 0.29 0.14 0.02 -0.07-0.03-0.09 0.16 0.15 0.32 0.17 0.15 0.07 0.21 0.11 0.09 0.04 0.45 0.26 0.28 0.10 0.14

m_ Mozs oosozsoAsWoAs-nosozan -0.16:0.48:0.47-0.38 - 037021-044@@@@04‘047019 0.39:0.43

za013nuouo021441449043051022025003 -0.17-0.22+ 022015 ozz oza nzsuu 015011032026040004024029

:0)

GPT 4 (t:

size and statistical significance. Note that the

0.30
b

9.‘3@9.‘7 0.10 0.10 0.27 0.26 0.30 0.13 0.01 -0.08-0.04-0.10 0.17 0.15 0.34 0.17 0.15 0.06 0.21 0.09 0.08 0.03 0.48 0.25 0.28 0.08 0.14 -0.010.35 0.15 MQ.M

0.38
b
0.43

0. szmmm 0,267 0.23/0.28

-0.06-0.33:0.28:0.44:0.40 - -0.21:0.40 0.06 -0.22

O O !

moaooazou 0.31:0.36:0.470.28-0.46.0.43 _

0.75

m_ mozsoazouozsozaodaozznunu -0.08:0.35:0.30:0.46:0.41 . -0.23:0.40 0.06 -0.22

:0.21:0.24:0.34-0.19:0.35.0.31:0.42 0.11 -0.19-0.14:0.33:0.27,0.41-0.07;0.27 0.26 -0.03 |, o
f0.39, 7" 05517 1(7-0.19/0.42.0.38 | - }0.49 1 71:0.3310.:48-0.07:0.33

10.47 /. -0.29:0.31-0.05-0.24-0.28:0.380.21:0.37-0.34-0.44 0.02 -0.23-0.19:0.360.31:0.44-0.12:0.30 0.16 -0.10

-0.00 0.15 0.14 0.20 0.02 -0.10-0.17-0.14:0.20 0.04 0.02 0.23 0.07 0.04 -0.05 0.10 -0.01-0.03-0.09 0.36 0.14 0.17 -0.02 0.02 -0.11 0.23 0.03 0.48 0.29
0.15 0.14 0.20 0.03 -0.10-0.17-0.13:0.19 0.04 0.02 0.22 0.07 0.04 -0.05 0.10 -0.01-0.02-0.08 0.35 0.14 0.17 -0.01 0.02 -0.11 0.23 0.03 0.47 0.28

0.11 -0.08:0.26;0.330.28-0.35-0.11-0.12 0.13 -0.04-0.09-0.20-0.01-0.16-0.15-0.24 0.24 0.01 0.04 -0.15-0.12:0.26 0.10 -0.12 0.37 0.14.
-0.19-0.29:0.36:0.32:0.37-0.18-0.19 0.02 -0.15-0.16-0.24-0.12-0.23-0.23-0.29 0.11 -0.11-0.08-0.24-0.180.29-0.01-0.18 0.21 0.00
-0.12:0.19-0.15-0.22-0.02-0.03 0.21 0.03 0.00 -0.08 0.06 -0.05-0.06-0.13 0.31 0.08 0.11 -0.07-0.01-0.14 0.18 -0.01 0.44 0.21

-0.09-0.05-0.11 0.16 0.15 0.32 0.16 0.14 0.06 0.20 0.09 0.07 0.03 0.46 0.25 0.27 0.08 0.13 -0.02 0.35 0.14 Eg.u
0.03-0.03 0.24 0.22 0.39 0.23 0.22 0.14 0.28 0.17 0.15 0.11 0.32 0.35 0.16 0.21 0.07 0.42 0.23 Eo.‘as
026 0-22 0.39 0.23 3 b e 232 2 2 2420 b
-0.06 0.19 0.17 0.35 0.19 0.18 0.10 0.23 0.13 0.11 0.07 0.48 0.28 0.30 0.12 0.17 0.03 0.37 o.1s@g.nz
0.25 0.24 0.40 0.25 0.24 0.16 0.29 0.20 0.17 0.13 - 110.35 0.37 0.19 0.22 0.09 0.44 0.24 @9.51
-0.02 9.21 0.05 0.00 -0.10 0.08 -0.06-0.05-0.13 P.Zﬂ 0.09 0.12 -0.05-0.03-0.16 0.18 -0.01 P.AI 9.22
0.22 0.06 0.02 -0.08 0.09 -0.04-0.04-0.12 0.33 0.12 0.14 -0.04-0.01-0.15 0.21 0.00 0.47 0.25
-0.17-0.19:0.28-0.13-0.26-0.25:0.31 0.09 -0.14-0.11:0.260.20:0.32-0.04-0.21 0.19 -0.03
-0.03-0.12 0.03 -0.09-0.09-0.16 0.27 0.05 0.08 -0.09-0.05-0.17 0.14-0.05 0.39 0.17 -°
-0.09 0.06 -0.06-0.06-0.12 0.29 0.09 0.11 -0.06-0.02-0.15 0.18 -0.01 0.43 0.22
0.16 0.04 0.02 -0.039.39 0.19 :1.21 0.03 0.07 -0.07 9.25 0.09 0 ‘9.32
-0.12-0.12:0.20 0.24 0.02 0.06 -0.11-0.09:0.21 0.11 -0.08 0.36 0.15
-0.01-0.08 0.39 0.16 0.19 -0.01 0.03 -0.110.26 0.04 | |- 10.32
-0.07 0.36 0.15 0.18 -0.00 0.04 -0.09 0.24 0.05 0.50 0.28 | ~~050
0.44 0.25 0.27 0.08 0.10-0.04 0.33 0.12 | /-1 0.39

10.48 . -0.30:0.33-0.09:0.27:0.29-0.39-0.24-0.39-0.36:0.44 70.27:0.21:0.37:0.32:0.45-0.15:0.32 0.13 -0.12
0.03 -0.18-0.12:0.26 0.11-0.11 0.42 0.15
-0.20-0.14-0.28 0.07 -0.13 0.37 0.11
0.03-0.10 0.25 0.06 |/~ 0.32 -0.75
-0.14 0.21 0.02 0.45 0.26

034 0.15 " 1] 0.40

10.44-0.18:0.21 0.04 -0.14-0.18-0.28-0.11:0.26-0.24:0.33 0.15 -0.11-0.07,0.25:0.21.0.34 -0.20 0.28 0.04

¥
Qwen 2.5 Coder 7B (t=D)r-n.ns-n.ls»n.lo-n.u@9.10 0.18 -o.olﬂﬂg.ao 0.27 0.49 0.30 -0.03-0.03 0.12 0.12 0.18 0.01 -0.14-0.23-0.18:0.24 0.01 -0.00 0.21 0.05 0.01 -0.09 0.08 -0.04-0.05-0.12 0.32 0.11 0.13 -0.06-0.02-0.15 0.20

0.46 0.24

0.36, /- 1:0.50) 1)-0.13:0.42:0.37 |/ ©-0.45_ /1 -0.28:0.46 029

=n)
=D)
o).
=D)
—0)- &
—p)- ¢
=O)‘
=D)-
=0)- §
=D) -
=0)-
=D)
=D)
=0) -
—0)]
=D)-

GPT 4 (t:
GPT 40 (t=0)
GPT 4o (t:
Gemini 1.5 Pro (t:
Gemini 1.5 Pro (t:
Gemma 2 27B (t:
Gemma 2 27B (t:
Llama3.1 405B (t:
Llama3.1 4058 (t=D)
Llama3.1 70B (t=0)- §
Llama3.1 70B (t=D!
Mistral Large 2 (t=0)-
Mistral Large 2 (t:
Phi3 (t:
Phi3 (t:
Qwen 2.5 72B (t:
Qwen 2.5 72B (t:
Qwen 2.5 Coder 32B (t=0)
Qwen 2.5 Coder 32B (t:
Qwen 2.5 Coder 7B (t:
Qwen 2.5 Coder 78 (t=D). |
StarCoder 2 15B (t:
StarCoder 2 15B (t:

heatmap is symmetric.

sets listed previously. In any case, the full heatmaps presented
in Figure 4, Figure 5, and Figure 6 provide the necessary
information for readers to explore such comparisons in greater
detail, based on the interpretation guidance outlined earlier.

Impact of Reducing Temperature to Zero: To address
RQ2, we examined whether setting an LLM’s temperature to
zero impacts its performance on AS, CPS, and CCS compared
to its default temperature configuration. To facilitate this com-
parison, particularly between each LLM’s pair of temperature
settings, we refer to the data in Figure 4, Figure 5, and
Figure 6, and summarise the results in Table II. In Table II, the
“Significance” column reports whether the observed difference
between temperature settings is statistically significant based
on the Mann—Whitney U test, while the “Importance” column
presents the interpretation of the corresponding Cliff’s § effect
size. Within each LLM, the first group refers to the configu-
ration at t=D), and the second to that at t=0.

For example, consider Claude 3.5 Haiku in Table II. The
analysis reveals no statistically significant difference in AS
and CPS, but a statistically significant difference in CCS.
The effect sizes are -0.12 and 0.10 for AS and CPS, respec-
tively—both classified as negligible. For CCS, the effect size

Claude 3.5 Haiku (t=0)-
Claude 3.5 Haiku (t=D)0.21
Claude 3.5 Sonnet (t=0)-0.02 0.23

£0.23-0.08)~ (K31 0.05

o7 I o

C g ose o7
Claude 3.5 Sonnet (t=D)--0.14 0.08 -0.17
CodeGemma7s (t=0)- LI 0P TEEIET
CodeGemma7 (t=D) UL NN TN T 0.46
Codestral (t=0) - 0 23-0.05- 0 25-0.. 110‘2
Codestral (t= n)mmﬁm 0.05 |00
conmars .o CEEERCERTEEET T
commns -0 LT a0 A a5
Command R+ (£=0) |- -0.3a{ 17 /:0.44 0.19 [71:0.31 0.21 [JITRE]
Command R+ (t=D) m;ﬂ“mm 0.07 .0.‘9 ;0.39 0.08 m-o.lS
DBRX (£=0))1 03911 £0.48 0.13] 1:0.32 0.13 [N F][F3-0.07 0.06
DBRX (t=D) ‘ﬂ -.0.29 0.19 m;ﬂ.399.35 |0 :0.‘5:0.35:0.‘0

Deepseek Coder (£=0)-0.15 0.03 -0.16-0.02 | |[9 0.09 ME.M 0.5 g.nom
DeepSeek Coder (£=D)--0.15 0.03 -0.17-0.02) [¥73 0.08 |17 [XFAF¥TY 0.38 0.47 0.40 [X7]-0.01

Dolphin 2.9.2 (t= o)mmmmm 210. 31@ 031048 @-o. 10.30:0.34 0.09
Dolphin 2.9.2 (t= n)ﬁﬁmzznaomosznasmou -0.30- oanoosmm -0.01

GPT 3.5 (t=0) - oonoBozsouoslﬁoosozlE011030023 0.48-0.11-0.12 0.43 0.43

GPT 3.5 (£=D) 00+ 10497071107 0.04 0.47 :0.40 0.01 | 11 1T

[0:46 :0.42-0.05 -1 [%71-0.19-0.07-0.13 .20 |
mﬁ 0.16 0.38 m;n.nsm -0.191%

0.40 (XL}

[ZE|ED 022-0.08-0.130.39

0.25 -0.36

0.15 0.07 0.46

-0.16-0.04-0.09 0.34 :0.47-0.47 0.26 0.27 :0.30

o740 003029 006022 (LR . QR - 7 T o2 22 g -

-0.02 0.39 -0.33

GPT 40 (t=0)-0.01 0.22 -0.01 0. 1sﬁozammmmolsolsozamnunw

-0.180.17-0.23
0.12 0.26 0.29 [1171:0.27-0.27 /- [1[7-7]-0.10 0.29 :0.43-0.12/0.46.0.20
-0.13 0.25 :0.45-0.16. 0.
Gemma 2 278 (£=0):0.27-0.11:0.28-0.17 0.30 [1-7-0.07 0.32 [T [¥7] 0.18 0.28 0.210.49 -0.13-0.13 0.45 0.45 -0.02 0.30:0.25-0.00:0.27-0.12 0.08 0.11

F: F: . . 0:28/0:21 8 s 30/ F:
Gemma 2 278 (t=D) {0:49.0.34 0.50:0.39 0.150.50:0.27 0.11 [-1 |[7].0.00 0.20 0.04 0.38:0.34:0.34 0.32 0.33 -0.20 0.1 [0.46.0.23/0.50/0.35-0.13-0.10-0.19

GPT 4 (t=D)- o:-isou-onozzcusmoosnas 0.24 0.37 0.30 -0.17-0.16

GPT 4o (t=D) -0.21 0.02 -0.24 - oosﬁﬂo os@ﬂoao

Gemini 1.5 Pro (t=0) 10.44-0.24:0.47:0.33 0.34 [1/F]-0.17 0.34

Gemini 1.5 Pro (t=D):0.47-0.27:0.490.37 0.31 @-0.109.31 @ 0.08 0.22 0.15 m-_o.zo-_o.zs_

olsm -0.04 - oodmmoos

Liama3.1 4058 (£=0)0.08 0.11 -0.10 0.05 [-] [0.15 [-1 [FE (X TY 0.43

Liama3.1 4058 (£=D)-0.29-0.10:0.32-0.17 0.41 [71.0.05 0.2 [7]

044 [%7 0.07 0.07 [ET[FT] 0.27]

Liama3.1 708 (¢=D) |)-+1:0.327-7:0.40 0.26 [)(T7-0.24 0.23 [RTIFXE] 0.06 0.19 0.12,
Mistral Large 2 v=o) JSIGEOHE GE oI5 J0:57]0.52 (Xt 0i58]0.89|0.04 [XT]0

Phi3 (t=0) 70.36-0.17:0.39-0.26 0.31 m-o.lsg.za 0.17 0.29 0.21

Phi3 (t=D) mmmm-o.u 0.37 -0.50-0.23
Pt

Qwen 2.5 728 (t=0) -0.30-0.08:0.33-0.16 0.46 [[}

Qwen 2.5 72B (t=D);0.45-0.25:0.48.0.33 0.31 | 11:1-0.19 0.32 0.13 0.26 0.17 m-_o.zs-_o.zn_
Qwen 2.5 Coder 32B (t=0)--0.03 0.16 -0.04 0.10 o.

oo Eualose

Qwen 2.5 Coder 78 (£=0)0.24-0.05:0.26-0.11(0.46 [J7] 0.01 0.47 [¥T] [0

Quen 2.5 Coder 78 (t=D) [1-:0.38)11:0.47 0.19 [171030 0.16 [LTI [¥T

StarCoder 2 158 (t=0)-,

0:21-0.02 0.14 [ITIRNTY 0.2 [AR (51 (305 (0TI -5 o.15 [ETIERT] 0-24 [F] 0.03 0.35 -0.01 0.21 [0.44 0147 0.27 [0148) 0.08 0.29 0.15 [}

0.86|

-0.05 0.23 -0.08 0.11 0.32 0.35 0.19 0.40
0.27 031 ozsm -0.14- oummnnl 0.38-0.26 0.03 ;0.31-0.11 0.13 0.17 0.02 0.24 -0.20
Llama3.1 708 (t=0)--0.15 0.02 -0.16 - oozonmoos oAGMOJG 0.44 osa@ oooooomm»u 0.44-0.12 0.15 -0.15 0.03 0.24 0.27 0.12 0.33-0.07 0.13
70.35:0.35 0.48 0.48 nlsnzo-onsonm 70:36-0.08-0.05-0.15 0.04 ;0.40:0.22:0.33
0.47 (X1 0.09 0.09 9.20 m-n.nzy.zs -0.06 0.12 0.34 0.37 0.22 0.42 0.02 0.22 0.09 0.40
Mistral Large 2 (t=D)0.35-0.17:0.36-0.24 0.36 m-o.osg.n mm 0.19 0.29 0.23 E-o.la-o.ﬂmﬁ-o.oz 0.32 :0.32-0.060.35-0.19 0.05 0.09 -0.02 0.19 :0.25-0.05-0.16 0.14 -0.27
70.22:0.22 0.47 0.48 -0.08 0.29 :0.34-0.060.38-0.20 0.06 0.09 -0.06 0.13 -0.28-0.10-0.21 0.12 ;0.29-0.04

[2]:0:35:0.24:0.27 0.20 (I 0.12 0.12 [0.40:0.21 TR VT R FYCT 0145 0.460.41 0.27 [0 |07 U7 Lo.3a [T l0.a7 0.4
03[0.47 [F[XFY 0.1 0.42 0.34 [7]-0.14-0.13[JF|[7F] 0.01 0.42 :0.27 0.05 :0.33-0.20 0.18 0.22 0.04 0.26 :0.21 0.02 -0.14 0.26 -0.22 0.08 0.13 []
. -0.110.28 :0.42-0.13:0.47.0.28-0.00 0.04 -0.08 0.12 ;0.34-0.15-0.26 0.07 :0.35-0.07-0.04 0.45 -0.20
[0:48 [771/0:50 []] 0-12 0.12 [FI[RF] 0-22 [777-0.00 0.30 -0.04 0.17 0.39 0.41 0.23 045 0.05 0.25 0.12 0.47 0.02 0.30 0.32 [T 0.27 0.0
Qwen 2.5 Coder 328 (t=D) 10.36-0.15.0.39:0.23 0.42 [73-0.09 0.43 [XF[¥TY 0.23 0.36 0.28 [}[7]-0.19-0.19 7] [177]-0.04 0.37 :0.34-0.02}0.38-0.18 0.11 0.14 -0.02 0.21 ;0.26-0.05-0.17 0.20 }0.26 0.03 0.04]-1-0.07 0.12 ;0.32
0.32(0.42 035 [7-0.08-0.08 [[TI[7F] 0.04 0.43 :0.21 0.09 :0.25-0.04 0.20 0.23 0.06 0.29 -0.15 0.06 -0.07 0.28 -0.17 0.1 0.15 -1 0.05 0.21 :0.20 0.11
.05 0.09 0.040.47:0.3910.39 0.41 0.42 :0.21 0.13 |1 -0.28-11:0.43-0.16-0.13-0.20-0.01/0.440.28:0.36.-0.08/0.46-0.20-0.19 0.34 :0.32-0.150.50:0.27 0.3
:0.300 17041 0.23 [][11:0.27 0.28 [JT| [0.05 0.19 0.10 0.48:0.35.0.34 0.43 0.43 -0.18 0.23 [0.48-0.20, | - :0.35-0.07-0.03-0.15 0.05 0.40:0.22,0.33-0.01:0.43-0.15-0.11 0.39 :0.29-0.090.45-0.17.0.27 0.09

StarCoder 2 15B (t= D)Wﬁm -0.18 0. zsm 10270, zs@ 10:38:0.27:0.310. 12@@003 0.04:0.44-0. z4mm

15

0.06 .35 0.36 [JF7] 0.30 [0:45 0.03 036 0.24 [T

o]

(X:1310.34 0.46 0.39 [£1-0.03 - oosmoosols-olso:lz 10.22-0.02 0.24 0.27 0.11 0.34 -0.11 0.10 -0.02 0.32 - 013017017@008025 oleolsoosnsaoanm

J0:690.90[0.94] m ozs@ousnnnn1024047nasozsnsno1oozzou@ooaozanasnzzounuaasozs@@

|20 0.2 [PEEIRXERY 0.4 - 0:48 [XZ] 0.02 0.02 [FB[XE] 0.24 111011 0.22 0.16 0.06 0.33 0.37 0.17 039 -0.05 0.17 0.02 0.40-0.07 0.24 0.26 [FT) 0.16 0.3 -0.10 0.23 0.11 0,47 0.41 [XF]
021 0.22 0.31-0.04 T L0.48 [N 0T

ST vt o o et oo s eaetortolom s eoekoni

931 0.39 0.32 7] 0.09-0.08 151 [777 0.05 0.40 -0.20 0.06 :0.24-0.05 0.17 0.20 0.07 0.27 -0.15 0.05-0.09 0.24 -0.18 0.08 0.16 0.50|0.03 0.19 -0.20 0.09 -0.01 0.30 0.27 [}

031 0.32 0.31-0.01 [)T [0.46

g
Fosta o ovo e LI o0 rocfo
(Sl o o-=7 2. QR O I .50 0.0110.921.0200.5510.e=iepRl 0.o0 .59

38.0.38 0.40 0.41:0.210.16
-0.06 0.36 0.4610.47 0.30 0.30.:0.30 0.04 M-‘o.nm_
0.40 0.40:0.40 0.34 0.34 -0.23 0.09 | |- -0.3011:0.43-0.19-0.15:0.21-0.04:0.44-0.290.38-0.12:0.470.23-0.21 0.27 :0.34-0.170.50-0.28.:0.35-0.04-0.10 0.31

2 (QERE - i s 0295 [9:27|g i i L
I otk costont B nastosdasta o
0.01 [J7I[XT] 0.11 [0.47-0.12 0.17 -0.16 0.02 0.27 0.30 0.13 0.34 -0.07 0.14 0.00 0.35 -0.09 0.18 0.22 [77] 0.14 0.20 -0.12 0.19 0.08 0.39 0.35 [I7]
|25 0.12[0:47 -0.12 0.16 -0.16 0.04 0.27 0.29 0.13 0.34 -0.07 0.14 -0.00 0.35 -0.09 0.17 0.22 1] 0.13 0.28 -0.12 0.19 0.08 0.39 0.34 [17]

o2 948,036 XN R 0 o8 o3
P o ostorsosmass ¥ osostostormas (i¥oc

0.30:0.21 0.02 ;0.

oce oo

0.26 0.36:0.310.13 :0.46.0.31 :0.42:0.46-0.19:0.23 0.18

orun o]

ouonoaooumon

0.75

0.88|

4:0.31:0.32-0.11)" 0.4230. -o.zzm :0.34:0.34 0.23 10.47.0.32 [71:0.4310.47-0.16.0.28 0.27

Bt ooiorsostands masiontish v amonionionass sl

O N O O DT S O
024@0‘0 -0.12-0.08-0.18 0.00 0‘3 027 DZS -0.06 - DM -0.19-0. 17035-03] 013-0“- 3-‘0.320.05-0.05’9.35
;‘0.26;‘0.22:‘0.23-0.10' ;0.37;0.“-0.19m;0.29;0.29 9.24 -‘0.42-‘0.26@-’0.36-‘0.42 -0.09-0.199.27

o onstore

m-_o.ﬂ-_o.u-o. 12

0.68|

m 0. ummau -o. um R 0.a1:0.43-0.03

R 0.42,0.43-0.08

.09 0.10 0.13 0.02 0.20 -0.17-0.01-0.12 0.16 ;0.20 0.02 0.08 [0.40-0.01 0.11 :0.21 0.04 -0.04 0.21 0.18 [0.44

;o.zs;n.u-o.znm;n.zz;n.zg 0:210.42.0.28) :0.3700.43-0.13:0.23 0.24

0.33-0.04 0.18 0.43 0,45 0.25 0.46 0.05 0.26 0.12|0.49| 0.03 0.32 0.34 [¥7] 0.27 0.42 0.00 0.34 0.21 -7 0.a8 [XT
10.37-0.17 0.12 0.16 0.00 0.23 ;0.23-0.03-0.15 0.21 :0.25 0.06 0.06 [11-0.05 0.13 :0.30 0.02 -0.09 0.28 0.20 [T

0:23.5 9:245 F; s

023 0.46 0.4/ 0.270.50 0.08 0.31 0.15)] 0.06 0.35 0.38 [J7] 0.33 [0.47 0.04 0.38 0.25 [171

9:29 032 0.12 0.35 -0.11 0.11 003 0.36 -0.12 0.19 0.20 [)[1] 0.10 0.28 -0.17 0.18 0.04 0.43 0.35
0.04 -0.08 0.13 -‘0.32-0.13-’0.2‘ 0.08 ;D.Z‘-ﬂ.ns-n.ﬂs 9.‘9 -0.18 0.00 ;0.39-0.11-0.20 0.16 0.07

-0.29-0.25-0.30-0.11
ey .

-0.32-0.04

-0.11 0.10 :0.35-0.17;0.27 0.05 :0.37-0.09-0.09 0.46 :0.22-0.04:0.41-0.14-0.23 0.13 0.03 0.48
0.19-0.19-0.02-0.12 0.15 -0.22 0.02 0.06 0.41 -0.04 0.08 -0.23 0.02 -0.06 0.20 0.15 0.46
£0.40-0.24-0.33-0.040.42-0.19-0.13 0.27 -0.26-0.12:0.45-0.21:0.29 0.01 -0.050.30 ~~0:25
0.20 0.07 0.40 -0.02 0.25 9.23@9.21 0.34-0.05 0.26 0.15 0.44 9.40@
-0.13 0.22 :0.22 0.05 0.10 .~ -0.02 0.15 :0.25 0.05 -0.06 0.28 0.22 m
0.33-0.090.16 0.21 m 0.14 0.26 -0.12 0.17 0.07 0.36 0.33 W
70.40-0.14-0.12 0.38 -0.26-0.07:0.47-0.20-0.28 0.08 0.01 0.42
0.27 0.29 Wy.zz 0:35-0.02 0.26 0.17 0.46 0.43 W
0.04 0.47 -0.08 0.07 :0.30-0.03-0.11 0.20 0.15 |,

--0.50

943 -0.13 0.04 ;0.32-0.04-0.15 0.19 0.11 0.47

s IR T 034039 0.0
F 03438
0.200.27 0.07 -0.05 0.32 0.29 [51]

10.40-0.12.0.21 0.15 0.09 0.49
032 0.20 (0150 0.45 [71

'0-11)9.27 0.17 I EEI
033 0.27 77

-0.09 0.37

-0.75

0.44

octosont oo

f0.47-0. HAW-O Asmmm 0.37:0.44
]

§8583§3383538333% £ 5 383%3 3°5333°°=°5
R T T A I A L & L T I e T
5 s < : 5
z £ 5§ 5§ E E & § E E T T o a § § N 4 E E G G 2 & M ow o~ & T FT 4 o4 2 w on o5 o5 8 8§ N o
n o, % & E £ T 3 E E 8 § x % £ £ & & O 6 A A4 g8 @ " 4 @ & 38 N N T % 8 B3 5 %
momo2oa g 8§88 8 EE 303 % ErEET YRGS § 5 S8 2 0 % 3
g g % o™ 3 9 § & a @& 5 3 E §E £ E E E s § £ £ I A B
33 8 ¢ 3 3 o g 2 2 8 § s § § & s 5 3 5 & 3 E & 2 0w N o~ 8209
5 & 3 3 o & 9 @ o o -1 £ = T ¥ 5 5 & £
S ¢ 2 2 o a § s g ¢ & &
& & =4 =4
Fig. 6. Comparison of LLM configurations based on pairwise CCS effect size and statistical significance. Note that the heatmap is symmetric.

is -0.21, which is interpreted as small. Since negative values
indicate improvement at ¢ =(relative to ¢=D, these results
suggest that Claude 3.5 Haiku shows slightly higher AS and
CCS at t = 0, and slightly higher CPS at ¢t = D. However,
only the CCS difference is statistically significant. Yet even
in that case, the effect size remains small, indicating that the
observed differences are not practically meaningful. Across
all models, the effect sizes for AS are either negligible or
small, regardless of statistical significance. This suggests that
the differences in AS between the two temperature settings
are not practically meaningful. The same conclusion largely
applies to CPS, with the exception of Command, where a
statistically significant difference is accompanied by a positive
medium effect size, indicating that the model achieves mean-
ingfully higher correctness potential at ¢ = D. With respect
to CCS, we observe statistical significance and medium neg-
ative effect sizes for seven models—CodeGemma-7B, Code-
stral, DBRX, Phi-3-medium, Llama-3.1-70B, Qwen2.5-Coder-
7B, and StarCoder2-15B—indicating notable improvement in
consistent correctness under ¢ =0. For all remaining models,
the effect sizes under CCS are either negligible or small,

suggesting limited practical impact of temperature reduction.

Following all results and discussions presented in this sec-
tion, we address RQ1 and RQ2 as follows. Regarding RQ1,
when confronted with instances within a question neighbour-
hood, LLMs did not gain perfect AS, CPS, and CCS across all
neighbourhoods. While some models achieve high scores with
relatively stable performance, no model demonstrates perfect
performance across all neighbourhoods. Most models exhibit
some degree of variability, with fluctuations in correctness
depending on the specific parameter values. This indicates that
even when tasks are closely related, LLMs can fail unpre-
dictably, highlighting limitations in their ability to generalise
robustly and reliably across similar but non-equivalent inputs.

Before addressing RQ2, we first offer an important clari-
fication regarding the relationship between the distributional
patterns observed in Figure 3 and the statistical comparisons
presented in the heatmaps in Figure 4, Figure 5, and Figure 6.
An important methodological observation emerges when com-
paring the box plots and the corresponding statistical results
visualised in the heatmaps. In Figure 3, when LLMs are
evaluated under the two temperature settings, several cases
show noticeable changes in the spread or shape of distributions

TABLE 11
STATISTICAL TESTS AND EFFECT SIZES FOR THE IMPACT OF DECREASING TEMPERATURE TO 0 ON AS, CPS, AND CCS.

AS CPS CCS
LLM Significant Effect Size Importance | Significant Effect Size Importance | Significant Effect Size Importance
Claude 3.5 Haiku No -0.12 Negligible No 0.10 Negligible Yes -0.21 Small
Claude 3.5 Sonnet No -0.11 Negligible No 0.03 Negligible No -0.17 Small
CodeGemma-7B No -0.02 Negligible Yes 0.32 Small Yes -0.46 Medium
Gemma-2-27B No -0.06 Negligible No 0.17 Small No -0.19 Small
Codestral Yes -0.22 Small Yes 0.21 Small Yes -0.40 Medium
Mistral Large 2 No -0.15 Small No 0.07 Negligible Yes -0.27 Small
Command Yes 0.24 Small Yes 0.36 Medium Yes -0.25 Small
Command R+ No -0.00 Negligible No 0.19 Small No -0.15 Small
DBRX No -0.12 Negligible Yes 0.22 Small Yes -0.40 Medium
DeepSeek-Coder-V2 No -0.01 Negligible No 0.00 Negligible No -0.01 Negligible
Dolphin 2.9.2 Mixtral 8x22b No -0.00 Negligible No 0.02 Negligible No -0.01 Negligible
GPT-3.5-turbo No -0.13 Negligible No 0.19 Small Yes -0.30 Small
GPT-4 Yes -0.25 Small No 0.09 Negligible Yes -0.33 Small
GPT-4o0 No -0.16 Small No 0.06 Negligible Yes -0.23 Small
Gemini 1.5 Pro No -0.02 Negligible No 0.02 Negligible No -0.04 Negligible
Phi-3-medium Yes -0.22 Small Yes 0.27 Small Yes -0.44 Medium
Llama-3.1-70B No -0.17 Small No 0.12 Negligible Yes -0.33 Medium
Llama-3.1-405B No -0.11 Negligible No 0.09 Negligible No -0.20 Small
Qwen2.5-72B No -0.07 Negligible No 0.20 Small No -0.20 Small
Qwen2.5-Coder-7B No -0.14 Negligible No 0.20 Small Yes -0.33 Medium
Qwen2.5-Coder-32B Yes -0.21 Small No 0.14 Negligible Yes -0.32 Small
StarCoder2-15B No -0.12 Negligible Yes 0.29 Small Yes -0.44 Medium

across AS, CPS, and CCS, including shifts in interquartile
ranges or outlier patterns. However, these visual differences
are not always reflected in the results of statistical testing.
For instance, a model may exhibit a visibly narrower or wider
distribution under ¢ = 0, yet the Mann—Whitney U test may
indicate no statistically significant difference, and the corre-
sponding Cliff’s § effect size may be classified as negligible.
This apparent mismatch arises from the fact that box plots pri-
marily highlight distributional characteristics, including vari-
ability, skewness, and the presence of outliers. In contrast,
statistical significance testing and effect size estimation are
designed to detect systematic differences in central tendency
or stochastic dominance between two groups. Therefore, visual
shifts in spread—such as widening IQRs under t=0 in CPS, or
compact distributions under ¢ =0 in CCS—may not translate
into statistically significant differences if the relative ranks or
central values remain similar across the compared groups.

In the case of CPS, for example, the box plots reveal
that many models experience increased variability under ¢t =
0, likely due to reduced sampling diversity. Yet, for most
models, these shifts are not statistically significant and the
associated effect sizes remain negligible or small, indicating
that the practical impact of the observed change is limited.
Similarly, for CCS, although ¢ = 0 often leads to visibly
improved consistency—as seen through higher medians and
tighter distributions in Figure 3—the heatmaps show that such
improvements are statistically and practically meaningful only
for a subset of models with medium or large effect sizes.

These findings highlight the complementary nature of box
plots and heatmaps. Box plots are well-suited for revealing
qualitative patterns, distributional variation, and behavioural
trends across neighbourhoods, while heatmaps provide rigor-
ous quantitative validation of whether those patterns constitute

meaningful differences. Using both tools together ensures that
interpretations are visually informed and statistically justified,
enabling a nuanced understanding of how LLM performance
varies with temperature settings and across evaluation scores.

To answer RQ2, setting an LLM’s temperature to
zero—thereby increasing determinism—has varied effects on
performance across the three evaluation scores. For AS, tem-
perature reduction does not lead to practically meaningful
changes; effect sizes are mostly negligible or small, even
when visual differences in variability are observed in box
plots. For CPS, in Figure 3 most models exhibit slightly
reduced correctness-potential under ¢ = 0, often associated
with wider IQRs and explained by the loss of sampling
diversity. However, according to Table II these differences
are rarely statistically or practically significant. In contrast,
CCS shows the clearest improvement under ¢ = 0 with
some models: 7 out of the 22 evaluated—demonstrate statis-
tically significant and practically meaningful gains, reflected
by medium effect sizes (Table II) and visibly higher medians
(Figure 3). These models benefited from the reduced output
variability introduced by more deterministic decoding, which
increased the likelihood of generating consistently correct
outputs across multiple attempts. For the remaining models,
while improvements in CCS were often observed visually in
Figure 3, the corresponding statistical differences were either
insignificant or negligible in effect size, indicating limited
practical impact. Thus, temperature reduction appears to offer
the most consistent and measurable advantage in enhancing
consistent correctness, though this benefit is model-dependent.
As a practical recommendation: when reliability and repro-
ducibility are critical—such as in safety-sensitive or testing
scenarios—temperature-zero decoding should be preferred, as
it increases the likelihood of consistently correct outputs.

However, because the effect is model-dependent, practitioners
should validate temperature sweeps during model selection
and deployment. Where exploratory diversity or creativity is
important, higher temperatures may remain preferable despite
the loss of consistency. Thus, our results recommend a dual
strategy: (1) deploy ¢ =0 for applications demanding stable,
reproducible behaviour, and (2) use higher temperatures when
diversity of solutions is more valuable. For researchers, these
findings further suggest that evaluation pipelines should in-
clude multiple temperatures and report consistency-oriented
metrics such as CCS, ensuring that robustness to decoding
settings is systematically assessed.

C. Results Based on Distinct Categories

Recall that each question template 7' is instantiated to
generate a neighbourhood of 100 instances, each with distinct
parameters, and each instance is given to the LLM across 5
rounds. Let Ay’ denote the LLM’s answer to question instance
¢; in round r;, where 1 <14 < 100 and 1 < j < 5. We then
categorise LLM performance for a question neighbourhood
N into four distinct categories as follows.

Perfect Success., This category refers to when the LLM

always returns a correct result (AS = CPS=CCS=1.0, i.e.,

the LLM can solve this neighbourhood effortlessly), that is:
Vq; € N1, Vrj, Ay = Correct

Perfect Failure. This category corresponds to when the LLM

does not ever return a correct result (AS=CPS=CCS=0.0,

i.e., the LLM cannot solve this neighbourhood at all), that is:

Vq; € N, Vr;, AlJ = Incorrect

qi

Stochastic Failure. This category is defined by the simul-
taneous presence of both conditions: (i) the LLM returns at
least one incorrect result, (ii) there is no question instance for
which the LLM returns an incorrect result across all 5 rounds
O<AS <1, 0LKCCS<1, and CPS =1, i.e, the LLM is
not completely blocked on any question instance), hence:

() 3¢; € N, Ir;, Ay = Incorrect

(ii) Yg; € N, 3rj, Ay = Correct

This category captures models that are potentially capable of
solving every instance, but whose performance is inconsistent.
It reflects high CPS (all instances solved at least once), but
lower CCS (not solved consistently), and a moderate AS
depending on the overall correctness rate. This pattern suggests
that the LLM does appear capable of generalisation, solving
every instance in a neighbourhood in at least one round, with
sporadic failures due to its stochastic nature, not necessarily a
lack of reasoning ability.

Inconsistent Generalisation. This category is characterised
by the coexistence of both of the following conditions: (i) the
LLM returns at least one correct result, (ii) there is at least one
question instance for which the LLM returns an incorrect result
across all 5 rounds (0 < AS, CPS < 1 and 0 < CCS < 1,

i.e., the LLM appears to be completely blocked on at least one
question instance), hence:

A;’j = Correct

(1) qu € NT) 3Tj>

(i) 3gir € Nz, ¥rj, Ay, = Incorrect

where 1 < 3/ < 100.

This category is particularly diagnostic, capturing cases
where the LLM succeeds on some instances but consistently
fails on others within the same neighbourhood. Such behaviour
may indicate a breakdown in generalisation, despite the shared
structure across question instances. It typically results in non-
zero AS, lower CPS, and low CCS, reflecting inconsistencies in
the model’s reasoning. Since all instances in a neighbourhood
differ only in parameter values and are designed to be sim-
ilarly challenging, persistent failure on a subset can suggest
generalisation gaps or reasoning discontinuities.

Figure 7 presents the results for each LLM configuration,
categorised into the four predefined groups. As indicated by
the Perfect Success bars in each subplot—and as previously
noted in Section IV-B—no LLM configuration achieves perfect
success across all 60 question neighbourhoods, underscoring
that even the most capable models exhibit occasional failures
or inconsistencies. Some LLM configurations exhibit neigh-
bourhoods that fall into the Perfect Failure category, where
the model fails to produce a correct output for any instance
across all five rounds. This behaviour is most pronounced in
the Command model. These patterns suggest that, while most
configurations demonstrate at least minimal capacity to solve
some instances, certain models remain fundamentally inca-
pable of handling specific subsets of tasks. For the Stochastic
Failure category, the distribution of question neighbourhoods
varies across LLM configurations. Some configurations exhibit
no or very few question neighbourhoods in this category,
whereas others display a considerable number. An example
of this category was observed when GPT-4o0 at t = 0 was
presented with a question instance in which the parameter
value was set to -15 (Figure 8). Within the corresponding
neighbourhood, the LLM generated at least one correct re-
sponse for each question instance across five trials. However,
for a small subset of question instances, including the one
in Figure 8, some incorrect responses were also produced,
indicating that at least one incorrect answer was generated
overall. Figure 8b presents a correct code response for the
corresponding question instance, while Figure 8c displays the
incorrect code generated by the same LLM configuration. The
incorrect response exhibits improper circular-list handling, an
incorrect termination range, and faulty sublist construction.

Concerning the Inconsistent Generalisation category, as
shown in Figure 7, all LLM configurations contain a sub-
stantial number of question neighbourhoods falling into this
category. Among the LLM configurations, CodeGemma-7B
at t =D (52 question neighbourhoods), StarCoder2-15B at
t =0 and t=D (50 and 49 neighbourhoods, respectively),
Command R+ at both temperatures (48 neighbourhoods each),
CodeGemma-7B at t =0 (47 neighbourhoods), and DBRX at
both temperatures (44 neighbourhoods each) exhibit a higher
susceptibility to inconsistent generalisation.

Fig.

Count of Question

Count of Question

Count of Question

Count of Question

Count of Question Count of Question

Count of Question

Count of Question Count of Question

Count of Question

Count of Question

Claude 3.5 Haiku (t=0)

Claude 3.5 Haiku (t=D)

| Claude 3.5 Sonnet (t=0)

Claude 3.5 Sonnet (t=D)

CodeGemma 7B (t=0)

CodeGemma 7B (t=D)

27 27

Gemma 2 27B (t=0)

|

11

Gemma 2 27B (t=D)

a7

12
[1

29
19

11
1

Codestral (t=0)

Codestral (t=D)

Mistral Large 2 (t=0)

]

21

Mistral Large 2 (t=D)

39

28 31 28 27 29
19
20 16 12
ol 3 2] 1 o 1 2] o
w© C (t=0) [(t=D) C R Plus (t=0) c R Plus (t=D)
a8 a8
40 37 a1
23
2 19
s 2 2 3 5
o 0 0 0 0 1
DBRX (t=0) DBRX (t=D) DeepSeek Coder (t=0) DeepSeek Coder (t=D)

aa

12
[

aa

.

Dolphin 2.9.2 Mixtral 8x22B (t=0)

29
20

8

Dolphin 2.9.2 Mixtral 8x22B (t=D)

GPT 3.5 Turbo (t=0)

20
9

GPT 3.5 Turbo (t=D)

a2

a0

26
20

31

27
19
ol o 0 1 0 2 1 [2
. GPT4 (t=0) GPT4 (t=D) GPT4-0 (t=0) GPT4-0 (t=D)
40
29
25 25 2n n 26 26 o
20 13
; s 10
3 2 3 2
ol 1 1
. Gemini 1.5 Pro (t=0) Gemini 1.5 Pro (t=D) Phi 3 (t=0) Phi 3 (t=D)
“° 33 33 38 42
20 21 18
20 . . 12 10
1 1 0 1 0 0

Llama 3.1 70B (t=D)

Llama 3.1 405B (t=0)

Llama 3.1 405B (t=D)

4 2

Qwen 2.5 72B (t=0)

33
25

2

Qwen 2.5 72B (t=D)

Qwen 2.5 Coder 7B (t=0)

'

19

Qwen 2.5 Coder 7B (t=D)

40 39

11

Qwen 2.5 Coder 32B (t=0)

31
25

40

14
[

Qwen 2.5 Coder 32B (t=D)

StarCoder2 15B (t=0)

]

23

StarCoder2 15B (t=D)

5
[

Stochastic Inconsistent Perfect
Failure Generalisation Success

Perfect
Failure

3

Perfect
Failure

22

7

Stochastic Inconsistent Perfect
Failure Generalisation Success

50

8

a9

)
2 0

° 2
Perfect Stochastic Inconsistent Perfect
Failure Failure Generalisation Success

Perfect Stochastic Inconsistent Perfect
Failure Failure Generalisation Success

LLM performance categorised into four types, with bars showing the number of question neighbourhoods per category.

An example is illustrated in Figure 9. When the question
template in Figure 9a was instantiated with p = 107, across
five attempts, the LLM generated five semantically distinct
yet correct responses, indicating that at least one correct
answer was generated. One such correct response is shown in
Figure 9b. However, when the same template was instantiated
with p = 111, the LLM produced five semantically distinct
responses across five attempts, all of which were incorrect,
demonstrating a case in which all outputs were erroneous.
Figure 9c presents one such incorrect response. The generated
code counts only the non-zero entries in the submatrix, rather
than the total number of elements.

It is important to note that comparisons between LLM
configurations—or assessments of the impact of reducing the
temperature to 0—should be based on the analysis presented

18

in Section IV-B, which considers the full distributions of AS,
CPS, and CCS. In contrast, Figure 7 is not intended to serve
as a basis for statistical comparison. Rather, it is intended to
illustrate how the performance of each LLM configuration
maps onto the four predefined categories. Nonetheless, it is

noteworthy when an LLM successfully solves some, but not
all, instances derived from a single question template. Our

question neighbourhood approach reveals such discontinuities
by examining LLM behaviour at a fine-grained level. In this
context, the Inconsistent Generalisation category captures the
phenomenon by grouping together those neighbourhoods in
which the model exhibits inconsistent success across question
instances. This fine-grained perspective offers valuable in-
sights into the limitations of an LLM’s reasoning capabilities.

We now present the results of our behavioural categorisation

Write a function called ‘lists_with_product_equal_n’ that
takes an argument, a circular list of integers. In a circular
list, the head and the tail are adjacent to each other,
forming a closed loop. The function should return a list
of sublists, each containing contiguous integers from the
given list such that their product equals -15. Each sublist
in the returned list can be of any size, provided it does
not exceed the length of the given list. If no such sublist
exists, the function should return an empty list. If multiple
identical sublists satisfy the condition, all occurrences
should be included in the output. The order of sublists
in the returned list is not relevant.

(a) Question instance with parameter value —15.

def lists_with_product_equal_n(circular_list):
len(circular_list)
result = []
for start in range(n):
product = 1
for end in range(start, start + n):
product *= circular_list[end % n]
if product == -15:
result.append([circular_list[i % n]

n =

for i in range(start, end + 1)])
if product == 0:
break

return result

(b) Correct code returned by GPT-40 (t=0) 4 times.

def lists_with_product_equal_n(circular_list):
def product_of_list (lst):
product = 1
for num in 1lst:
product *= num
return product
len(circular_list)
result = []
for start in range(n):
for end in range (1,
if end > n:

n =

n + 1):

sublist = circular_list[start:] +
circular_list[:end % n]
else:
sublist = circular_list[start:end]

if product_of_list (sublist) == -15:
result.append (sublist)

return result

(c) Incorrect code returned by GPT-4o (t=0) once.

Fig. 8. Example of Stochastic Failure category.

analysis, beginning with aggregated group-level trends (Ta-
ble III) before moving to template-level details (Table IV).
To facilitate a structured analysis of model behaviour across
diverse question types, Table III reports, for each group and
subgroup, the proportion of the 44 LLM configurations whose
performance falls into one of four distinct categories defined
earlier: Perfect Failure (PF), Stochastic Failure (SF), Inconsis-
tent Generalisation (IG), and Perfect Success (PS). Percentages
are calculated relative to the total number of LLM configura-
tions. Each entry in Table III reports the mean percentage of
configurations falling into the specified category. For example,
the value of 6.71 under %PF in List Manipulation, Total

Write a function called ‘submatrix_with_n_numbers’ that
takes one argument which is a two-dimensional numpy
matrix of integers. The function should return the count of
all submatrices of the given matrix that contain p integers
each. If no such submatrix is found, the function should
return O.

(a) Question template.

import numpy as np
def submatrix_with_n_numbers (matrix) :
rows, cols = matrix.shape
count = 0
for row in range (rows) :
for col in range(cols):
for r in range (row, rows):
for ¢ in range(col, cols):
submatrix =
matrix[row:r+l,col:c+1]
if np.size(submatrix) == 107:
count += 1

return count
L J

(b) One of the five correct code answers returned by Llama-3.1-405B (t=
D) for the question instance derived from the template in (a) with parameter
value 107.

import numpy as np
def submatrix_with_n_numbers (matrix) :
count = 0
rows = matrix.shape([0]
cols = matrix.shape[l]
n =111
for row in range (rows) :
for col in range(cols):
for r in range (row, rows):
for ¢ in range(col, cols):
submatrix =
matrix[row:r+l,col:c+1]
if np.count_nonzero (submatrix)==n:
count += 1

return count
L J

(c) One of the five incorrect code answers returned by Llama-3.1-405B
(t = D) for the question instance derived from the template in (a) with
parameter value 111.

Fig. 9. Example of Inconsistent Generalisation category.

indicates that, on average, 6.71% of the 44 LLM configurations
produced no correct answers in the question neighbourhoods
involving list manipulation. Likewise, the value of 6.57 under
%PF in the Slicing row shows that, on average, 6.57% of the
configurations failed entirely in neighbourhoods specifically
concerned with slicing tasks. Consistent with Table I, the sum
of subgroup entries within a problem group may exceed the
corresponding group total, as certain questions are associated
with multiple subgroups.

This mapping—from each problem group and subgroup
to the distribution of outcomes across the four -cate-
gories—enables systematic cross-analysis of performance by
problem type, supporting diagnostic insights, prompt design,
and fine-tuning strategies. In particular, the proportion of
configurations in the PF category is especially informative:
it indicates which subgroups correspond to tasks that models
consistently fail to solve, independent of specific parameter

TABLE III
PROPORTION OF 44 LLM CONFIGURATIONS ACROSS DISTINCT
CATEGORIES PER PROBLEM GROUP AND SUBGROUP. VALUES ARE SHOWN
AS PERCENTAGES.

Problem Group Problem Subgroup %PF %SF %IG %PS

List Manipulation Total 6.71 1999 5336 19.94
CSlicing T 657 1827 55.56 19.60

Indexing 6.47 1674 60.74 16.05

Filtering 6.06 2093 52.84 20.17

Element-based Operations 437 20.02 5297 22.64

Summation 2.65 27.65 35.61 34.09

Sorting/Order-based Operations ~ 8.74 19.06 5524 16.96

Element Insertion 1.14 9.09 84.09 5.68

Count elements 1591 0.00 84.09 0.00

Circular Lists 2273 9.09 6591 227

String Manipulation Total 11.51 1577 6293 9.79
" Character Insertion 0.00 25.00 S51.14 23386

Indexing 10.06 7.14 7857 423

Character Removal 1439 6.06 7879 0.76

Substring/Character Extraction 14.58 11.74 6591 7.77

Palindrome Operations 22773 0.00 77.27 0.00

Anagram Detection 455 30.68 56.82 795

Sorting 874 19.06 5524 16.96

Set Manipulation Total 1591 11.11 65 .40 7.58
“Add Elements 2348 492 67.05 455

Subset/Superset Operation 0.00 4091 36.36 22.73

Counting Subsets 227 9.09 84.09 455

Intersection 0.00 2045 6591 13.64

Union 0.00 4091 3636 2273

Searching Total 8.65 1892 53.80 18.63
“Linear Search 582 1798 5555 2065

Index-based Search 930 16.53 57.44 16.73

String Search 11.51 1577 6293 9.79

Copying Total 6.82 1693 5943 16.82
“Shallow Copy 114 9.09 84.09 568

Copy Sublist 745 17.80 56.69 18.06

Mathematical Problems Total 744 2159 53.00 17.97
“Arithmetic Operations 455 2045 62.12° 1288~

Factorial Calculations 6.82 0.00 93.18 0.00

Prime Checking 19.55 18.18 5273 9.54

Composite Checking 6.82 2955 3636 27.27

Factorisation 227 3295 2386 4092

Special Sequences 1591 20.83 52.65 10.61

Combinatorial Problems 227 455 9091 227

instantiations. Conversely, high proportions of PS highlight
areas of strength, whereas intermediate distributions across SF
and IG indicate instability in generalisation. Taken together,
Table IIT allows the community to interpret subgroup-level PF
proportions as a measure of intrinsic task difficulty, providing
a benchmark for identifying problem types where LLMs face
fundamental limitations.

Building on this aggregated view, we next shift from
groups and subgroups to the diagnostic lens of individual
templates. Table IV complements Table III by drilling down
into template-level results, enabling a more fine-grained char-
acterisation of model behaviour. It includes all 60 question
templates (available in our GitHub repository [31]) and, for
each template, reports the template ID, its problem group
(e.g., List, String, Searching), and one or more subgroups
that specify functional characteristics (e.g., Slicing, Character
Insertion, Index-based Search), following the taxonomy in
Table I. For every template, the percentages indicate the
distribution of LLM configurations across the same four
behavioural categories introduced earlier. At this finer gran-
ularity, Table IV highlights local discontinuities at the level

20

of individual question templates. In some cases, templates
within groups that appear strong in Table III still exhibit high
PF proportions, pointing to specific problem instances where
models consistently fail. In this way, Table IV complements
the broader subgroup trends of Table III by exposing template-
level weaknesses and variations in robustness. Together, the
two tables ground our three evaluation metrics—accuracy,
correctness potential, and consistent correctness—within sys-
tematic patterns of robustness and failure.

V. EXPLORING REASONS FOR FAILURE

In this section, we address RQ3 by analysing the pri-
mary errors in the LLM-generated code responses that led
to incorrect outputs. Table V categorises these errors into
nine failure types with each entry representing the percentage
of responses from a given LLM configuration that fall into
each category. The complete dataset supporting these results
is publicly available at https://github.com/ShahinHonarvar/
Turbulence-Benchmark-v2. The first three columns in Ta-
ble V—No Function, Wrong Function Name, and Wrong
Count of Arguments—correspond to the well-formedness check
in the Turbulence test oracle (Figure 2). Recall that each
question instance explicitly instructs the LLM to generate a
Python function with a specified name and a specified number
of arguments (Figure 1b). The remaining six failure categories
are identified using the Pylint linter [78], which automatically
detects various code issues. The Total column reports, for each
LLM configuration, the aggregate percentage across all failure
categories. This serves as a row-wise summary, indicating the
overall magnitude of failures observed for that configuration
and enabling direct comparison of overall failure levels across
LLMs. The Average row reports, for each category, the mean
proportion across all LLM configurations. This provides a
column-wise summary, quantifying the expected frequency of
each failure type when averaged over all evaluated models,
thereby characterising the distribution of errors across the
benchmark as a whole.

No function. This category includes instances where the LLM
failed to generate a Python function, a failure observed in
16 LLM configurations on specific question instances from
different neighbourhoods. Among these, Codestral at t=D ex-
hibited the highest proportion of such failures, with 3.51% of
its responses falling into this category. As indicated in Table V,
for LLMs affected by this issue, reducing the temperature to
0 resulted in a decrease in the number of responses classified
under this failure category.

Wrong function name. This failure arises when the LLM
generates a function with a name differing from the specified
one, leading to errors, as each Turbulence test oracle requires
functions to have the exact predefined names. There is no
systematic or reliable method to correct function names, partic-
ularly when responses contain multiple functions. A total of 17
LLM configurations exhibited this issue, with DBRX and Phi-
3-medium both at t=D demonstrating the highest proportion
(0.41%). With the exception of Command and Dolphin 2.9.2
Mixtral 8x22b, reducing the temperature to O generally led to

https://github.com/ShahinHonarvar/Turbulence-Benchmark-v2
https://github.com/ShahinHonarvar/Turbulence-Benchmark-v2

TABLE IV

21

PROPORTION OF 44 LLM CONFIGURATIONS ACROSS DISTINCT CATEGORIES PER QUESTION TEMPLATE, WITH THE ASSOCIATED PROBLEM GROUP AND

SUBGROUPS. VALUES ARE SHOWN AS PERCENTAGES.

ID Group(Subgroups) % in PF % in SF % in IG % in PS
1 List(Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist) 0.00 20.45 25.00 54.55
2 List(Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist) 25.00 2.27 70.45 2.28
3 List(Element-based Operation, Filtering, Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist) 2.27 31.82 45.45 20.46
4 List(Element-based Operation, Filtering, Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist) 22.73 0.00 77.27 0.00
5 List(Element-based Operation, Filtering, Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist) 0.00 27.27 31.82 4091
6 List(Element-based Operation, Filtering, Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist) 18.18 0.00 81.82 0.00
7 List(Element-based Operation, Filtering, Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist) 2.27 25.00 34.09 38.64
8 List(Element-based Operation, Filtering, Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist) 18.18 0.00 81.82 0.00
9 List(Element-based Operation, Filtering, Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist) 2.27 25.00 45.45 27.28

10 List(Element-based Operation, Filtering, Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist) 9.09 0.00 90.91 0.00

11 List(Element-based Operation, Slicing, Sorting/Order-based Operations); Searching(Index-based Search, Linear Search) 0.00 1591 31.82 52.27

12 List(Element-based Operation, Slicing, Sorting/Order-based Operations); Searching(Index-based Search, Linear Search) 0.00 13.64 34.09 52.27

13 List(Element-based Operation, Slicing, Sorting/Order-based Operations); Searching(Index-based Search, Linear Search) 2.27 20.45 72.73 4.55

14 List(Element-based Operation, Slicing, Sorting/Order-based Operations); Searching(Index-based Search, Linear Search) 2.27 11.36 84.09 2.28

15 List(Element-based Operation, Filtering, Indexing, Slicing, Summation); Searching(Linear Search) 2.27 34.09 29.55 34.09

16 List(Element-based Operation, Filtering, Indexing, Slicing, Summation); Searching(Linear Search) 0.00 45.45 27.27 27.28

17 List(Element-based Operation, Filtering, Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist); Math(Arithmetic Operations) 0.00 38.64 38.64 22.72

18 List(Element-based Operation, Filtering, Indexing, Slicing, Summation); Searching(Linear Search); Math(Arithmetic Operations) 0.00 29.55 36.36 34.09

19 List(Element-based Operation, Filtering, Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist); Math(Arithmetic Operations) 0.00 0.00 100.00 0.00

20 List(Element-based Operation, Slicing, Sorting/Order-based Operations); Searching(Index-based Search, Linear Search) 6.82 11.36 72.73 9.09

21 List(Element-based Operation, Filtering, Indexing, Slicing); Searching(Linear Search); Copying(Copy Sublist); Math(Arithmetic Operations) 0.00 31.82 47.73 20.45

22 Math(Arithmetic Operations, Special Sequences) 2.27 1591 81.82 0.00

23 List(Filtering); Searching(Linear Search); Math(Factorisation) 0.00 36.36 13.64 50.00

24 Searching(Linear Search); Math(Factorisation) 2.27 36.36 15.91 45.46

25 List(Element Insertion, Indexing); Copying(Shallow Copy) 0.00 18.18 70.45 11.37

26 List(Element-based Operation, Filtering, Summation); Searching(Linear Search) 0.00 20.45 6.82 72.73

27 List(Element Insertion, Indexing); Copying(Shallow Copy) 2.27 0.00 97.73 0.00

28 List(Sorting/Order-based Operations); String(Sorting, String Indexing, Substring/Character Extraction); Searching(Index-based Search, Linear 2.27 29.55 40.91 27.27

Search, String Search)

29 List(Element-based Operation, Indexing); Math(Factorisation) 2.27 25.00 4091 31.82

30 String(Character Insertion); Searching(String Search) 0.00 22.73 54.55 22.72

31 List(Element-based Operation, Indexing); Math(Special Sequences) 4.55 29.55 29.55 36.35

32 String(Character Insertion); Searching(String Search) 0.00 27.27 47.73 25.00

33 String(String Indexing, Substring/Character Extraction); Searching(Linear Search, String Search); Copying(Copy Sublist) 0.00 227 97.73 0.00

34 Set(Subset/Superset Operation, Union) 0.00 40.91 36.36 22.73

35 String(Character Removal, String Indexing, Substring/Character Extraction); Searching(Linear Search, String Search) 18.18 0.00 81.82 0.00

36 String(Character Removal, String Indexing, Substring/Character Extraction); Searching(Linear Search, String Search) 20.45 4.55 75.00 0.00

37 String(Character Removal, String Indexing, Substring/Character Extraction); Searching(Linear Search, String Search) 4.55 13.64 79.55 2.26

38 Set(Counting Subsets); Math(Combinatorial Problems) 2.27 9.09 84.09 4.55

39 List(Sorting/Order-based Operations); String(Sorting, Substring/Character Extraction); Searching(String Search) 0.00 31.82 52.27 15.91

40 List(Sorting/Order-based Operations); String(Sorting, Substring/Character Extraction); Searching(Index-based Search, String Search) 0.00 22.73 68.18 9.09

41 List(Element-based Operation, Filtering, Indexing); Set(Intersection); Searching(Linear Search) 0.00 20.45 65.91 13.64

42 List(Element-based Operation, Indexing); Set(Add Elements); Math(Factorial Calculations, Prime Checking) 6.82 0.00 93.18 0.00

43 List(Element-based Operation, Indexing, Slicing, Sorting/Order-based Operations); Searching(Linear Search); Copying(Copy Sublist); 4.55 34.09 4091 20.45

Math(Prime Checking)
44 List(Element-based Operation, Filtering, Indexing, Slicing); Set(Add Elements); Searching(Linear Search); Math(Composite Checking) 6.82 29.55 36.36 27.27
45 String(Palindrome Operations, String Indexing, Substring/Character Extraction); Set(Add Elements); Searching(Index-based Search, Linear 2.27 0.00 97.73 0.00
Search, String Search); Math(Combinatorial Problems)

46 List(Indexing); Math(Factorisation) 4.55 34.09 25.00 36.36

47 String(Palindrome Operations, String Indexing, Substring/Character Extraction); Set(Add Elements); Searching(Linear Search, String Search) 22.73 0.00 77.27 0.00

48 List(Filtering, Indexing, Slicing, Sorting/Order-based Operations, Summation); Math(Arithmetic Operations) 9.09 0.00 90.91 0.00

49 Math(Arithmetic Operations, Special Sequences) 2.27 22.73 75.00 0.00

50 List(Filtering); String(Anagram Detection); Searching(String Search) 4.55 27.27 56.82 11.36

51 List(Filtering); String(Anagram Detection); Searching(String Search) 4.55 34.09 56.82 4.54

52 String(Palindrome Operations, Substring/Character Extraction); Set(Add Elements); Searching(String Search) 43.18 0.00 56.82 0.00

53 String(Substring/Character Extraction); Set(Add Elements); Searching(String Search) 59.09 0.00 40.91 0.00

54 List(Sorting/Order-based Operations); Searching(Index-based Search); Math(Prime Checking, Special Sequences) 4.55 31.82 43.18 20.45

55 List(Circular Lists, Filtering, Slicing); Copying(Copy Sublist); Math(Arithmetic Operations) 22.73 9.09 65.91 2.27

56 String(Substring/Character Extraction); Searching(String Search); Copying(Copy Sublist) 2.27 36.36 22.73 38.64

57 List(Filtering, Slicing, Summation); Copying(Copy Sublist); Math(Arithmetic Operations) 4.55 36.36 22.73 36.36

58 List(Count elements, Filtering, Slicing) 15.91 0.00 84.09 0.00

59 List(Sorting/Order-based Operations); Searching(Index-based Search); Math(Prime Checking, Special Sequences) 15.91 25.00 52.27 6.82

60 List(Sorting/Order-based Operations); Searching(Index-based Search); Math(Prime Checking, Special Sequences) 65.91 0.00 34.09 0.00

TABLE V
PERCENTAGE OF RESPONSES BASED ON THE TEST FAILURE CATEGORIES.

22

LLM No Wrong Wrong Count Syntax Static Type Resource Runtime Assertion Fuzzing Total

s Function Function Name of Arguments Error Error Exhaustion Error Error Failure O
Claude 3.5 Haiku (t=0) 0.00 0.00 0.00 0.03 0.00 1.58 0.03 7.03 9.03 17.70
Claude 3.5 Haiku (t=D) 0.00 0.00 0.00 0.02 0.02 1.52 0.07 8.19 8.89 18.71
Claude 3.5 Sonnet (t=0) 0.00 0.00 0.00 0.00 0.00 0.42 0.00 11.97 4.23 16.62
Claude 3.5 Sonnet (t=D) 0.00 0.00 0.00 0.01 0.02 0.35 0.00 11.51 4.21 16.10
CodeGemma-7B (t=0) 0.00 0.00 0.10 2.18 4.82 0.07 0.16 49.26 2.95 59.54
CodeGemma-7B (t=D) 0.71 0.34 0.49 5.08 3.65 0.57 0.48 48.55 4.13 64.00
Gemma-2-27B (t=0) 0.00 0.00 0.00 0.20 0.44 0.34 0.26 31.00 6.07 38.31
Gemma-2-27B (t=D) 0.00 0.00 0.00 0.29 0.98 0.48 0.20 30.61 5.32 37.88
Codestral (t=0) 0.00 0.00 1.23 0.02 0.02 1.60 0.00 22.72 9.84 3543
Codestral (t=D) 3.51 0.01 0.74 0.07 0.04 1.34 0.02 23.56 791 37.20
Mistral Large 2 (t=0) 0.00 0.00 0.00 0.00 0.00 1.60 0.00 14.37 7.61 23.58
Mistral Large 2 (t=D) 0.00 0.00 0.13 0.18 0.02 1.59 0.03 15.46 7.52 2493
Command (t=0) 0.00 0.04 0.00 5.18 291 0.00 0.63 78.37 7.32 94.45
Command (t=D) 0.46 0.04 0.02 241 4.86 0.15 0.73 78.46 6.57 93.70
Command R+ (t=0) 0.00 0.00 0.02 0.04 0.24 1.05 0.29 31.75 8.50 41.89
Command R+ (t1=D) 0.00 0.01 0.02 0.07 0.31 1.01 0.24 32.36 7.62 41.64
DBRX (t=0) 0.05 0.01 0.27 2.16 2.62 0.06 0.29 36.86 6.26 48.58
DBRX (t=D) 0.34 0.41 1.12 7.51 2.30 0.44 0.32 37.59 4.82 54.85
DeepSeek-Coder-V2 (t=0) 0.00 0.00 0.17 0.03 0.02 0.05 0.00 15.44 8.99 24.70
DeepSeek-Coder-V2 (t=D) 0.00 0.00 0.24 0.01 0.04 0.03 0.00 15.62 9.09 25.03
Dolphin 2.9.2 Mixtral 8x22b (t=0) 0.54 0.11 0.46 1.80 2.17 0.04 0.14 36.61 6.30 48.17
Dolphin 2.9.2 Mixtral 8x22b (t=D) 0.90 0.10 0.46 1.89 222 0.04 0.19 36.42 6.14 48.36
GPT-3.5-turbo (t=0) 0.00 0.00 0.00 0.42 0.79 0.32 0.02 31.31 6.01 38.87
GPT-3.5-turbo (t=D) 0.13 0.07 0.00 0.51 0.86 0.44 0.11 30.68 6.45 39.25
GPT-4 (t=0) 0.00 0.00 0.00 0.00 0.03 0.80 0.00 10.38 4.37 15.58
GPT-4 (t=D) 0.00 0.24 0.00 0.11 0.04 0.79 0.01 12.38 4.62 18.19
GPT-4o (t=0) 0.00 0.00 0.00 0.01 0.00 1.03 0.00 9.23 5.41 15.68
GPT-40 (t=D) 0.01 0.01 0.01 0.07 0.01 0.92 0.00 10.71 449 16.23
Gemini 1.5 Pro (t=0) 0.07 0.00 0.00 0.46 1.49 0.00 0.00 19.75 6.01 27.78
Gemini 1.5 Pro (t=D) 0.17 0.00 0.00 0.53 1.53 0.01 0.01 19.64 6.20 28.09
Phi-3-medium (t=0) 0.00 0.00 0.05 0.07 0.91 0.87 0.05 25.75 9.22 36.92
Phi-3-medium (t=D) 0.05 0.41 0.60 0.82 0.83 0.70 0.19 33.55 6.85 44.00
Llama-3.1-70B (t=0) 0.00 0.00 0.02 0.00 0.12 0.00 0.05 17.68 11.11 28.98
Llama-3.1-70B (t=D) 0.01 0.01 0.06 0.17 0.24 0.02 0.04 19.06 9.72 29.33
Llama-3.1-405B (t=0) 0.00 0.00 0.00 0.00 0.01 0.00 0.05 16.17 7.95 24.18
Liama-3.1-405B (t=D) 0.00 0.00 0.00 0.06 0.03 0.01 0.04 16.51 8.45 25.10
QOwen2.5-72B (t=0) 0.08 0.00 0.01 0.03 0.01 1.60 0.02 20.43 7.80 29.98
QOwen2.5-72B (t=D) 0.11 0.01 0.04 0.21 0.08 1.55 0.06 21.08 7.30 30.44
Qwen2.5-Coder-7B (t=0) 0.00 0.00 0.02 1.20 1.43 0.08 0.17 18.25 8.48 29.63
Qwen2.5-Coder-7B (t=D) 0.00 0.02 0.25 0.62 1.33 0.18 0.08 21.51 7.61 31.60
Qwen2.5-Coder-32B (t=0) 0.00 0.00 0.00 0.12 0.02 0.00 0.03 12.58 7.74 20.49
Qwen2.5-Coder-32B (t=D) 0.00 0.00 0.00 0.98 0.01 0.07 0.04 13.26 742 21.78
StarCoder2-15B (t=0) 0.00 0.00 0.70 0.43 3.85 0.00 0.00 32.51 5.65 43.14
StarCoder2-15B (t=D) 0.06 0.10 0.70 0.62 1.61 0.35 0.14 37.91 6.45 47.94
Average 0.16 0.04 0.18 0.83 0.98 0.55 0.12 25.55 6.92 35.33

a decrease in the number of responses classified under this
failure category for the affected LLMs.

Wrong number of arguments. In this failure category, the
LLM generates a function with the correct name but an
incorrect number of arguments, rendering it incompatible
with the test oracle. This issue was observed in 25 LLM
configurations, with Codestral at t =0 exhibiting the highest
proportion (1.23%). Similar to the previously discussed failure
categories, reducing the temperature to 0 generally decreased
the occurrence of this issue among impacted LLMs, with the

exception of Codestral, Command R+, Dolphin 2.9.2 Mixtral
8x22b, and StarCoder2-15B.

Syntax errors. In this category, the LLM output was un-
parseable due to Python syntax errors, including invalid char-
acters, assignment issues, expression errors, generator/compre-
hension issues, unmatched brackets and parentheses, indenta-
tion and block structure errors, string and Unicode errors, as
well as linting and variable-related issues. This failure was
observed in 39 LLM configurations, with DBRX at t = D
exhibiting the highest proportion (7.51%). Consistent with the

trends in the previous categories, reducing the temperature to
0 generally decreased the occurrence of this issue across af-
fected LLMs; however, this trend was reversed for Claude 3.5
Haiku, Command, DeepSeek-Coder-V2, and Qwen2.5-Coder-
7B, where the number of unparseable responses increased
when the temperature was set to 0.

Static type errors. The integrated Pylint linter [78] detected
static type errors in the generated code, encompassing issues
such as undefined variables, unsubscriptable objects, incorrect
module or attribute usage, type errors, duplicate function
definitions, set and dictionary issues, invalid format or en-
coding errors, and other miscellaneous errors. This failure
was observed in 40 LLM configurations, with Command at
t=D exhibiting the highest proportion (4.58%). Reducing the
temperature to O led to a decrease in the number of responses
classified under this category for 16 LLMs; however, it resulted
in an increase for 6 LLMs.

Resource exhaustion error. This category encompasses cases
where the generated code exceeded computational resources,
such as time or memory, during execution, despite the avail-
ability of more efficient solutions. This issue was identified
in 38 LLM configurations, with Codestral, Mistral Large
2, and Qwen2.5-72B, all at t = 0, exhibiting the highest
proportion (1.6%). For example, given the question template:
Write a function called ‘find_subset_of length_n’ that takes
one argument, a set of elements, and returns the number
of all its subsets of size p, most LLM configurations gen-
erated resource-intensive functions when the template was
instantiated with p > 60. One such case involved GPT-
40 (t = D), which was given a question instance of the
template with p = 90 and generated a function to return the
number of subsets of size 90. The model’s answer included
len(list (combinations (elements, 90))), where “com-
binations” is a function from Python’s itertools module that
generates all possible subsets of a given size. By converting the
iterator to a list, this implementation constructs and stores all
such subsets in memory before counting them, which makes
it highly inefficient for large sets. A more scalable alterna-
tive is math.comb (len (elements), 90), which performs
efficiently regardless of set size. Reducing the temperature
mitigated this issue in 10 LLMs, had no effect in one LLM,
and led to a reversal of the trend in 10 LLMs.

Runtime errors. This category includes instances where ex-
ecuting the generated code resulted in runtime errors, such as
operations between incompatible types, access to uninitialized
local variables, indexing and slicing errors, unpacking errors,
use of non-iterable objects in iteration, and invalid function
return types. These errors were observed in 33 LLM configu-
rations, with Command at t=D exhibiting the highest propor-
tion (0.73%). Reducing the temperature generally decreased
the frequency of such errors across impacted LLMs, except
for Gemma-2-27B, Command R+, Llama-3.1-70B, Llama-3.1-
405B, and Qwen2.5-Coder-7B.

Assertion errors and fuzzing failures. These two categories
encompass cases where the code executed but was functionally
incorrect, without aligning with the errors in the previous seven
categories. The following examples illustrate this category.

23

One common source of functional errors involved inaccuracies
in handling index or numerical ranges, or misinterpretation of
the given question instance. We identified a pattern involving
indices or bounds that were identical, where the lower bound
was 0, or where the difference between bounds was 1. In
other words, if x denotes a non-negative integer, the ranges
were: (0,z),[0,z], (z,), [z,], (z,z + 1) and [z,2 + 1],
with parentheses indicating exclusivity and square brackets
indicating inclusivity. For example, when Claude 3.5 Haiku
(t=D) was asked to return all positive integers from index
1 to 7, both exclusive, it incorrectly returned integers from
[1:7] instead of the correct range [2 : 7]. Another issue arose
with Claude 3.5 Sonnet (t =0), as illustrated in Figure 10a.
In this case, instead of slicing the given list according to the
specified indices, the LLM-generated code returned all integers
between and including the values at those indices. Given an
input list of [4,6, 8], the expected output was [4, 6], whereas
the generated code erroneously produced [4,5,6]. Another
similar edge case occurs with Qwen2.5-Coder-32B (t = D),
as illustrated in Figure 10b. The issue with the generated code
is that it always returns 0, regardless of the value of n passed
to the function. A counterexample is when n = 3 , where the
expected output should be 3; however, the code incorrectly
returns 0. This suggests that the model has confused the range
[3,4], which includes the boundaries, with the range (3,4),
which excludes them.

Another type of functional error involves partially correct
responses that overlook specific inputs. In Figure 11a, code
generated by GPT-3.5-turbo (t=D) fails to return 2 when 2
occurs at index 85, due to using if number > 2 instead of
if number >= 2, thereby excluding 2 as a prime.

Logical miscalculations also arise. In Figure 11b, code from
Gemini 1.5 Pro (t=0) underestimates the number of anagram
pairs by counting only groups with at least two anagrams,
rather than computing the total number of pairs.

In the context of string manipulation, an example of erro-
neous substitution logic occurred when inserting a character
before another in a string if either was a space character. For
example, in Figure 11c, the corresponding question instance
and the generated code by Codestral (t = 0) are presented.
The generated code incorrectly places W immediately before
each space rather than immediately after it, resulting in an
unintended modification of the string structure.

VI. THREATS TO VALIDITY

Our assessment of LLM correctness depends on (a) un-
ambiguous questions, (b) accurate test oracles that do not
misclassify correct answers as incorrect, and (c) strong test
oracles capable of detecting errors. For (a) and (b), although
skilled Python programmers reviewed our questions and test
oracles (see Section III), some ambiguities or oracle errors
may remain. For (c), we combine regression testing with ran-
dom differential testing to robustly assess LLM responses, but
acknowledge that no testing approach can be fully exhaustive.

We evaluated 22 LLMs, so our findings are limited to this
set. However, Turbulence is designed to accommodate addi-
tional models in future work. Ideally, we would have included

24

Write a function called ‘all_pos_ints_inclusive’ that
takes one argument, a list of integers, and returns
the list of all positive integers from index 0 to index
1, both inclusive. If no positive integers exist in the
specified range, the function should return an empty list.

def all_pos_ints_inclusive (numbers) :

if len (numbers) < 2:
return []
start = numbers[0]

end = numbers([1l]
if start > end:
return []
return [num for num in range (start,
if num > 0]

end+1)

(a) Incorrect code generated by Claude 3.5 Sonnet (t=0).

Write a function called ‘sum_of_divisors_in_range’ that
takes a positive integer as its argument, and returns the
sum of all positive divisors of the given integer that are
between 3 and 4, both inclusive. If no such divisors
exist in the specified range, the function should return 0.

def sum_of_divisors_in_range (n) :
return 0

(b) Incorrect code generated by Qwen2.5-Coder-32B (t=D).

Fig. 10. Examples of functional errors in LLM-generated code.

GitHub Copilot [79], but its lack of programmatic access
makes large-scale evaluation challenging, though we note that
workarounds for this are available [13], [80]. We would also
have liked to include results for OpenAl’s ol model [69]
which was state-of-the-art when we ran our experiments.
However, access to its API was restricted to Tier 5 users, while
our account was limited to Tier 3. Furthermore, even with
access, the associated costs would have been prohibitive at the
time, due to the model’s substantially higher per-token pricing
and its tendency to produce extended intermediate chain-of-
thought outputs, leading to increased token usage.

To balance financial constraints, we set M and R (as defined
in Definition 2, with M also in Definition 3 and Definition 4)
to 100 parameter settings per template and five repeat runs per
instance to capture sampling variance. Although seemingly
arbitrary, these values reflect resource limits; with greater
resources, we would choose larger ones.

To minimise training data bias [28], we created original
question templates rather than reusing internet-sourced prob-
lems. While some may resemble public questions, they are
tailored to the question neighbourhood methodology. Unlike
typical programming tasks, where parameters remain formal
user inputs, our artificial questions provide two advantages:
(i) they target hard-to-find edge cases, and (ii) they enable
reproducible, comparable evaluation across models.

Our study is based on 60 question neighbourhoods, which
may not capture the full range of real-world programming
tasks. Nevertheless, the Turbulence framework is designed for
extensibility and can readily incorporate additional question

Write a function called ‘prime_factors’ that takes
one argument, a list of positive integers, and returns
the set of all prime factors of the integer at index 8S.

def prime_factors(lst):
number = 1lst[85]
factors = set ()
for i in range (2, int (number/2)
while number $ i == 0:
factors.add (i)
number = number/i
if number > 2:
factors.add (number)
return factors

+ 1):

(a) Incorrect code generated by GPT-3.5-turbo (t=D).

Write a function called ‘if_contains_anagrams’ that
takes one argument, a list of strings. The function should
return true if there are at most 5 pairs of anagrams in
the given list; otherwise, it should return false. The
function should only consider the anagrams of the
English letters. The function should only consider the
anagrams of the length of at least three. The function
should compare the strings in a case-insensitive manner.

from collections import defaultdict
def if_ contains_anagrams (list_of_strings):
anagram_dict = defaultdict (list)
for word in list_of_strings:
if len(word) >= 3:
sorted_word =
"7 .join(sorted(word.lower()))
anagram_dict [sorted_word] .append (word)
count = 0
for key, value in anagram_dict.items() :
if len(value) >= 2:
count += 1
if count <= 5:
return True
else:
return False

(b) Incorrect code generated by Gemini 1.5 Pro (t=0).

Write a function called ‘insert_after character’ that
takes one argument, a string, and returns a string that
is identical except that character ‘W’ has been inserted
immediately succeeding any occurrences of character ¢ °.

def insert_after_character(s):
return s.replace(" ", "W ")

(c) Incorrect code generated by Codestral (t=0).

Fig. 11. Examples of functional errors in LLM-generated code.

templates to enhance coverage and generalisability. It remains
flexible for future studies using different question sets, includ-
ing broader or domain-specific evaluations.

VII. RELATED WORK

Numerous benchmarks [81] have been introduced to eval-
uate LLMs across domains, including code generation. Here,

we focus on benchmarks and studies relevant to assessing the
code generation capabilities of LLMs. We then highlight the
key distinctions between these efforts and our study.

Benchmarks for code correctness and general evaluation.
A variety of benchmarks have been developed to evaluate the
correctness of code generated by LLMs. Notable among them
are HumanEval [3], HumanEval-X [82], APPS [4], MBPP [9],
BigCodeBench [83], CodeContests [84], and CodeXGLUE
[85]. These datasets primarily focus on standalone coding
tasks and functional correctness. Xu et al. [10] extended
these evaluations to multilingual LLMs, assessing correct-
ness and perplexity, while Nguyen and Nadi [5] evaluated
Copilot’s [79] performance using LeetCode problems across
four programming languages. Moradi et al. [86] compared
Copilot’s solutions against human-written ones, and Zeng et
al. [87] introduced CoderUJB, a runnable Java benchmark
built from real-world projects that enables execution-based,
context-rich evaluation of 2,239 programming tasks. Yuan et
al. [12] emphasised the importance of fine-tuning, while Du
et al. [88] highlighted the challenges of class-level code gen-
eration using ClassEval. SWE-bench, introduced by Jimenez
et al. [89], targets real GitHub issues and evaluates bug fixing
and feature implementation across large codebases. Bradbury
and More [28] introduced HumanEval_T, a template-based
variant of HumanEval that generates distinct but semantically
equivalent tasks to reduce data leakage. Thakur et al. [90]
evaluated LLMs on Verilog code generation, a domain largely
overlooked in mainstream benchmarks.

Existing benchmarks primarily assess correctness on iso-
lated tasks. In contrast, our methodology examines sets of
non-equivalent tasks, enabling the identification of selective
model successes within a structured neighbourhood.

Evaluation frameworks and metrics. Numerous tools and
metrics have been proposed to improve LLM evaluation.
DeepEval [91] by Confident Al [92] is an open-source unit-
testing framework for LLM outputs, supporting over 14 met-
rics. Manh [93] presented CodeLLM Evaluator, a frame-
work supporting standard benchmarks, backends, and adapter-
based evaluations. IdentityChain [94] assessed self-consistency
in code generation and comprehension, while CCTest [95]
leveraged structural consistency to improve completion. ICE-
Score [96] is a reference-free, multi-dimensional metric fo-
cused on semantic alignment, and CodeJudge [97] evaluates
semantic correctness without requiring test cases. CodeScore,
developed by Dong et al. [98], uses a fine-tuned LLM trained
via UniCE to predict executability and test pass rates across
Ref-only, NL-only, and hybrid inputs. Ren et al. [99] in-
troduced CodeBLEU, combining token overlap, syntax, and
semantic similarity. RACE [100] evaluates correctness, read-
ability, maintainability, and efficiency. Allamanis et al. [101]
proposed Round-Trip Correctness, a test-free metric based on
semantic consistency between forward and inverse tasks.

These frameworks propose diverse metrics, but remain tied
to single-instance evaluation. We contribute a neighbourhood-
based methodology with three complementary scores that
capture reliability across related tasks.

Robustness and adversarial testing. LLM robustness to

25

prompt variation and adversarial attacks has received grow-
ing attention. Shirafuji et al. [18] and Wang et al. [16]
showed that small prompt changes can significantly impact
model outputs. Ddderlein et al. [17] observed that Copilot
and Codex [102] are sensitive to minor prompt perturba-
tions, though temperature tuning can help. Mastropaolo et
al. [13] investigates whether GitHub Copilot generates dif-
ferent code from semantically equivalent method descriptions.
RADAR [103] and Anand et al. [21] confirmed that small
syntactic modifications degrade model performance. Several
frameworks aim to improve robustness: CLAWSAT [104] uses
contrastive adversarial training; CoTR [19] applies syntactic
transformations to defend against attacks; MHM [105] and
CodeBERT-Attack [106] generate semantically equivalent ad-
versarial examples; CODA [107] and CARROT [108] focus
on detecting and improving adversarial robustness. Zeng et al.
[109] compared LLMs across diverse tasks, revealing their
susceptibility to adversarial inputs. Techniques like DAMP
[110] and obfuscation [111] produce semantically equivalent
attacks. CoCoFuzzing [112] uses coverage-guided fuzzing to
probe models, while ALERT [14] targets LLMs with natural-
istic adversarial prompts.

Prior studies generally rely on perturbations that yield
equivalent prompts. By contrast, our approach constructs
neighbourhoods of non-equivalent tasks, thereby exposing
systematic limitations in model generalisation that extend be-
yond adversarial fragility and revealing where models succeed
selectively within structured variation.

Code quality, vulnerability, and security. Multiple studies
have examined the quality and security of LLM-generated
code. Tambon et al. [113] analysed 333 Python functions and
identified 10 common bug patterns. Siddiq et al. [114] found
code smells in the training data and outputs of GPT-Code-
Clippy and Copilot, raising concerns about maintainability
and security. Asare et al. [115] showed Copilot replicates
human vulnerabilities in 33% of cases and generates fixes
in 25%. Khoury et al. [116] demonstrated that ChatGPT can
improve code security when explicitly prompted. Pearce et al.
[117] found Copilot frequently produces insecure code and
evaluated its vulnerability across prompt types and domains.
Wong et al. [118] formally verified Copilot’s outputs for
specification compliance. Lahiri et al. [119] proposed TiCoder,
which integrates user feedback and validation to enhance
trust. Al-Kaswan et al. [120] analysed memorisation in LLMs,
highlighting legal and security risks.

These quality- and security-focused studies examine bugs
and vulnerabilities in generated code. By contrast, our work
analyses correctness and consistency across task families,
exposing reliability gaps rather than specific defect types.

Evaluation of logical and semantic reasoning. Several
works investigate reasoning in code generation. REval [121]
evaluates logical consistency through program execution.
COCO [20] tests semantic alignment by modifying program-
ming instructions, while LogicAsker [122] uses logic-based
test cases to assess reasoning. Rajan et al. [123] developed
KONTEST, combining knowledge graphs and metamorphic
oracles to detect inconsistencies. Dozono et al. [124] intro-

duced CODEGUARDIAN to identify common weaknesses
and accelerate detection in IDEs. Jian et al. [125] proposed
a debugging and explanation framework for LLMs, and Yang
et al. [126] evaluated LLMs for Java unit test generation.
Reasoning-focused evaluations address logic or semantics
within single problems. In contrast, we assess whether models
reason consistently across neighbourhoods of related tasks,
exposing discontinuities invisible at the instance level.

Survey and meta-evaluation studies. Multiple surveys have
examined the landscape of LLM evaluation for code. Wang et
al. [127] reviewed 20 studies and identified gaps in evaluating
code quality and trustworthiness. Chen et al. [128] outlined
common metrics and benchmarks, discussing their limitations
and future directions. Chang et al. [11] highlighted the need for
scalable, robust evaluation methodologies, particularly given
claims that LLMs are nearing AGI-level capabilities.

Beyond all of the related work discussed above, the most
closely related study to our work is the benchmark proposed
by Bradbury and More [28], which introduces HumanEval_T
to address data contamination by generating semantically
equivalent variants of existing programming tasks using com-
binatorial test design. Their approach ensures benchmark
integrity and fairness by constructing variants robust against
potential data leakage, but the tasks remain equivalent in
meaning. Our work builds on this idea of systematic variation
while shifting the focus: instead of generating equivalent
variants, we construct neighbourhoods of semantically similar
yet distinct tasks. This minimal semantic divergence allows
us to assess not just robustness to superficial reformulation,
but also the stability of LLM generalisation across genuinely
different problem instances. Another closely related study is
that of Shirafuji et al. [18], which investigates how syntac-
tic modifications—such as renaming variables or rephrasing
prompts—affect the correctness of generated code while pre-
serving task semantics. Their goal is to assess the sensi-
tivity of LLMs to superficial changes in input formulation.
Indeed, most prior studies assessing the robustness of LLMs in
code generation adopt semantics-preserving transformations,
analysing model behaviour under variations that maintain the
original task intent.

In contrast, we propose Turbulence, a fully automated
evaluation framework designed to assess the performance of
LLMs across neighbourhoods of question instances that are
semantically close but not equivalent. Each neighbourhood is
generated from a parameterised template, where variations in
template parameters yield distinct tasks that, while conceptu-
ally similar, differ in semantic content. By leveraging minimal
semantic divergence, Turbulence provides a novel perspec-
tive on model behaviour. The framework enables systematic
evaluation along three complementary dimensions—accuracy,
correctness potential, and consistent correctness—capturing
both task-level correctness and the stability and generalisation
of LLMs across related tasks.

Our method does not rely on adversarial training or manual
augmentation; instead, we systematically vary template pa-
rameters to uncover generalisation gaps. Furthermore, while
existing testing frameworks primarily rely on unit tests, our

26

tool combines unit testing with random differential testing,
enabling a more scalable and nuanced assessment of code
correctness. This is achieved through a hybrid of fixed test
suites and fuzzing, facilitating behaviour-driven evaluation
tailored to the challenges of instruction-tuned code generation.
Overall, our benchmark goes beyond task-level correctness
by offering a structured methodology to reveal model weak-
nesses in generalising across semantically similar yet distinct
problems. Using accuracy, correctness potential, and consistent
correctness as core metrics, it offers a more nuanced charac-
terisation of LLM behaviour in structured problem spaces.

VIII. CONCLUSIONS AND FUTURE WORK

We introduced a new method for evaluating the accuracy,
correctness potential, and consistent correctness of LLMs
in code generation, grounded in the concept of question
neighbourhoods. Assessing performance across a question
neighbourhood enables the identification of not only individual
problem instances that an LLM fails to solve, but also broader
gaps in the model’s ability to generalise within a structured
problem space. We operationalised this approach through
Turbulence, the first benchmark to systematically evaluate
code-generating LLMs using question neighbourhoods. Our
experiments with 22 models revealed that all exhibited defi-
ciencies in at least one of the three evaluation metrics across
certain neighbourhoods. Reducing the decoding temperature
from the default to 0 had minimal impact on accuracy and
correctness potential but led to meaningful improvements in
consistent correctness for 7 out of 22 models—highlighting
the model-dependent benefits of reduced output variability.
Promising future directions include examining the impact of
quantisation on LLM performance and extending the question
neighbourhood approach to code-infilling models.

REFERENCES

[1] J. D. Weisz et al., “Perfection not required? Human-Al partnerships
in code translation,” in [UI: College Station, TX, USA, April 13-17,
2021, T. Hammond et al., Eds. ACM, 2021, pp. 402—412. [Online].
Available: https://doi.org/10.1145/3397481.3450656

[2] V. Lomshakov, S. V. Kovalchuk, M. Omelchenko, S. I. Nikolenko,
and A. Aliev, “Fine-tuning large language models for answering
programming questions with code snippets,” in ICCS, Prague,
Czech Republic, July 3-5, 2023, Proceedings, Part II, ser. Lecture
Notes in Computer Science, J. Mikyska et al., Eds., vol. 14074.
Springer, 2023, pp. 171-179. [Online]. Available: https://doi.org/10.
1007/978-3-031-36021-3_15

[3] M. Chen et al., “Evaluating large language models trained on
code,” CoRR, vol. abs/2107.03374, 2021. [Online]. Available:
https://arxiv.org/abs/2107.03374

[4] D. Hendrycks et al., “Measuring coding challenge competence with
APPS,” in NeurIPS Datasets and Benchmarks 2021, December 2021,
virtual, J. Vanschoren and S. Yeung, Eds., 2021. [Online]. Avail-
able: https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/c24cd76elce41366a4bbe8a49b02a028- Abstract-round2.html

[5] N. Nguyen and S. Nadi, “An empirical evaluation of github copilot’s
code suggestions,” in MSR 2022. ACM, 2022, pp. 1-5. [Online].
Available: https://doi.org/10.1145/3524842.3528470

[6] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code
generated by ChatGPT really correct? Rigorous evaluation of large
language models for code generation,” in NeurIPS, New Orleans,
LA, USA, December 10 - 16, 2023, A. Oh et al., Eds., 2023.
[Online]. Available: http://papers.nips.cc/paper_files/paper/2023/hash/
43e9d647ccd3e4b7b5baab53f0368686- Abstract-Conference.html

https://doi.org/10.1145/3397481.3450656
https://doi.org/10.1007/978-3-031-36021-3_15
https://doi.org/10.1007/978-3-031-36021-3_15
https://arxiv.org/abs/2107.03374
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.1145/3524842.3528470
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. I. Ross, F. Martinez, S. Houde, M. J. Muller, and J. D. Weisz,
“The programmer’s assistant: Conversational interaction with a large
language model for software development,” in [UI, Sydney, NSW,
Australia, March 27-31, 2023. ACM, 2023, pp. 491-514. [Online].
Available: https://doi.org/10.1145/3581641.3584037

N. Perry, M. Srivastava, D. Kumar, and D. Boneh, “Do users
write more insecure code with Al assistants?” in CCS, Copenhagen,
Denmark, November 26-30, 2023, W. Meng, C. D. Jensen, C. Cremers,
and E. Kirda, Eds. ACM, 2023, pp. 2785-2799. [Online]. Available:
https://doi.org/10.1145/3576915.3623157

J. Austin et al., “Program synthesis with large language models,”
CoRR, vol. abs/2108.07732, 2021. [Online]. Available: https://arxiv.
org/abs/2108.07732

F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in MAPS@PLDI: 6th
ACM SIGPLAN, San Diego, CA, USA, 13 June 2022, S. Chaudhuri
and C. Sutton, Eds. ACM, 2022, pp. 1-10. [Online]. Available:
https://doi.org/10.1145/3520312.3534862

Y. Chang et al., “A survey on evaluation of large language models,”
ACM Trans. Intell. Syst. Technol., vol. 15, no. 3, Mar. 2024. [Online].
Available: https://doi.org/10.1145/3641289

Z. Yuan et al., “Evaluating instruction-tuned large language models
on code comprehension and generation,” CoRR, vol. abs/2308.01240,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2308.01240
A. Mastropaolo, L. Pascarella, E. Guglielmi, M. Ciniselli,
S. Scalabrino, R. Oliveto, and G. Bavota, “On the robustness

of code generation techniques: An empirical study on
GitHub Copilot,” in ICSE, Melbourne, Australia, May 14-
20, 2023. IEEE, 2023, pp. 2149-2160. [Online]. Available:

https://doi.org/10.1109/ICSE48619.2023.00181

Z. Yang, J. Shi, J. He, and D. Lo, “Natural attack for pre-
trained models of code,” in ICSE, Pittsburgh, PA, USA, May
25-27, 2022. ACM, 2022, pp. 1482-1493. [Online]. Available:
https://doi.org/10.1145/3510003.3510146

Z. Tian, J. Chen, and Z. Jin, “Code difference guided adversarial
example generation for deep code models,” in ASE, Luxembourg,
September 11-15, 2023. 1EEE, 2023, pp. 850-862. [Online].
Available: https://doi.org/10.1109/ASE56229.2023.00149

S. Wang et al., “ReCode: Robustness evaluation of code generation
models,” in ACL, Toronto, Canada, July 9-14, 2023, A. Rogers
et al., Eds. ACL, 2023, pp. 13818-13843. [Online]. Available:
https://doi.org/10.18653/v1/2023.acl-long.773

J. Doderlein, M. Acher, D. E. Khelladi, and B. Combemale,
“Piloting Copilot and Codex: Hot temperature, cold prompts, or
black magic?” CoRR, vol. abs/2210.14699, 2022. [Online]. Available:
https://doi.org/10.48550/arXiv.2210.14699

A. Shirafuji et al., “Exploring the robustness of large language models
for solving programming problems,” CoRR, vol. abs/2306.14583,
2023. [Online]. Available: https://doi.org/10.48550/arXiv.2306.14583

G. Yang et al, “Assessing and improving syntactic adversarial
robustness of pre-trained models for code translation,” Inf. Softw.
Technol., vol. 181, p. 107699, 2025. [Online]. Available: https:
//doi.org/10.1016/j.infsof.2025.107699

M. Yan et al, “COCO: Testing code generation systems via
concretized instructions,” CoRR, vol. abs/2308.13319, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2308.13319

M. Anand, P. Kayal, and M. Singh, “On adversarial robustness
of synthetic code generation,” CoRR, vol. abs/2106.11629, 2021.
[Online]. Available: https://arxiv.org/abs/2106.11629

T. Y. Zhuo et al., “Astraios: Parameter-efficient instruction tuning code
large language models,” CoRR, vol. abs/2401.00788, 2024. [Online].
Available: https://doi.org/10.48550/arXiv.2401.00788

Z. Yang, Z. Sun, T. Y. Zhuo, P. T. Devanbu, and D. Lo, “Robustness,
security, privacy, explainability, efficiency, and usability of large
language models for code,” CoRR, vol. abs/2403.07506, 2024.
[Online]. Available: https://doi.org/10.48550/arXiv.2403.07506

M. Gardner et al., “Evaluating models’ local decision boundaries
via contrast sets,” in EMNLP, Online Event, 16-20 November 2020,
ser. Findings of ACL, T. Cohn, Y. He, and Y. Liu, Eds., vol.
EMNLP 2020. Association for Computational Linguistics, 2020,
pp- 1307-1323. [Online]. Available: https://doi.org/10.18653/v1/2020.
findings-emnlp.117

A. Saparov and H. He, “Language models are greedy reasoners:
A systematic formal analysis of chain-of-thought,” in ICLR, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. [Online]. Available:
https://openreview.net/forum?id=qFVVBzXxR2V

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

27

F. Shi et al, “Language models are multilingual chain-of-
thought reasoners,” in ICLR, Kigali, Rwanda, May 1-5 2023.
OpenReview.net, 2023. [Online]. Available: https://openreview.net/
forum?id=fR3wGCk-IXp

T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa,
“Large language models are zero-shot reasoners,” in NeurlIPS, New
Orleans, LA, USA, November 28 - December 9, 2022, S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds.,
2022. [Online]. Available: http://papers.nips.cc/paper_files/paper/2022/
hash/8bb0d291acd4acf06ef112099¢16326- Abstract-Conference.html
J. S. Bradbury and R. More, “Addressing data leakage in HumanEval
using combinatorial test design,” in ICST, Napoli, Italy, March 31
- April 4, 2025. 1IEEE, 2025, pp. 587-591. [Online]. Available:
https://doi.org/10.1109/ICST62969.2025.10989022

S. Honarvar, M. van der Wilk, and A. E. Donaldson, ‘“Turbulence:
Systematically and automatically testing instruction-tuned large
language models for code,” in ICST, Napoli, Italy, March 31
- April 4, 2025. 1EEE, 2025, pp. 80-91. [Online]. Available:
https://doi.org/10.1109/ICST62969.2025.10989005

W. M. McKeeman, “Differential testing for software,” Digit. Tech.
J., vol. 10, no. 1, pp. 100-107, 1998. [Online]. Available:
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10numlart9.pdf
S. Honarvar and A. Donaldson, “Turbulence-Benchmark-v2,” https://
github.com/ShahinHonarvar/Turbulence-Benchmark-v2, 2025.

_ “Turbulence-Benchmark-v2,” https://dx.doi.org/10.21227/
pmmv-ntl1, 2025.

L. Yuan et al, “Revisiting out-of-distribution robustness in NLP:
Benchmarks, analysis, and Ilms evaluations,” in NeurIPS, New
Orleans, LA, USA, December 10 - 16, 2023, A. Oh et al., Eds.,
2023. [Online]. Available: http://papers.nips.cc/paper_files/paper/2023/
hash/b6b5f50a2001ad1cbccca96e693cd4abd- Abstract-Datasets_and_
Benchmarks.html

F. Cassano et al, “MultiPL-E,” https://github.com/nuprl/MultiPL-E/
blob/main/dataset_builder/terms.csv, 2023.

L. Reynolds and K. McDonell, “Prompt programming for large
language models: Beyond the few-shot paradigm,” in CHI: Virtual
Event / Yokohama Japan, May 8-13, 2021, Extended Abstracts,
Y. Kitamura, A. Quigley, K. Isbister, and T. Igarashi, Eds. ACM,
2021, pp. 314:1-314:7. [Online]. Available: https://doi.org/10.1145/
3411763.3451760

OpenAl, “About OpenAl,” https://openai.com/about, 2023.

——, “Models,” https://platform.openai.com/docs/models, 2024.
Cohere, “Models Overview,” https://docs.cohere.com/v2/docs/models#
command, 2024.

Cohere, “We’re building
https://cohere.com/about, 2024.
A. PBC, “Meet Claude,” https://www.anthropic.com/claude/haiku,
2024.

Anthropic PBC, “Al research and products that put safety at the
frontier,” https://www.anthropic.com/, 2024.

A. PBC, “Claude 3.5 Sonnet,” https://www.anthropic.com/news/claude-
3-5-sonnet, 2024.

A. PBC, “Claude 3.5 Haiku,” https://www.anthropic.com/claude, 2024.
M. Reid et al., “Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context,” CoRR, vol. abs/2403.05530,
2024. [Online]. Available: https://doi.org/10.48550/arXiv.2403.05530
Google, “Build Al responsibly to benefit humanity,”
https://deepmind.google/about/, 2024.

T. Mesnard et al, “Gemma: Open models based on Gemini
research and technology,” CoRR, vol. abs/2403.08295, 2024. [Online].
Available: https://doi.org/10.48550/arXiv.2403.08295

deepinfra, “Fast ML inference, simple APIL” https://deepinfra.com/,
2024.

H. Zhao et al, “CodeGemma: Open code models based on
Gemma,” CoRR, vol. abs/2406.11409, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2406.11409

Google Cloud, “Innovate faster with enterprise-ready Al, enhanced by
Gemini models,” https://cloud.google.com/vertex-ai?hl=en, 2024.
DeepSeek-Al et al, “DeepSeek-Coder-V2: Breaking the barrier
of closed-source models in code intelligence,” CoRR, vol.
abs/2406.11931, 2024. [Online]. Available: https://doi.org/10.48550/
arXiv.2406.11931

deepseek, “deepseek Into the unknown,” https://www.deepseek.com,
2024.

the future of language AL”

Mistral-Al, “Large Enough,” https://mistral.ai/news/mistral-large-
2407/, 2024.
Mistral-Al, “Mistral Al team,” https://mistral.ai/company/, 2024.

https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3576915.3623157
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3641289
https://doi.org/10.48550/arXiv.2308.01240
https://doi.org/10.1109/ICSE48619.2023.00181
https://doi.org/10.1145/3510003.3510146
https://doi.org/10.1109/ASE56229.2023.00149
https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.48550/arXiv.2210.14699
https://doi.org/10.48550/arXiv.2306.14583
https://doi.org/10.1016/j.infsof.2025.107699
https://doi.org/10.1016/j.infsof.2025.107699
https://doi.org/10.48550/arXiv.2308.13319
https://arxiv.org/abs/2106.11629
https://doi.org/10.48550/arXiv.2401.00788
https://doi.org/10.48550/arXiv.2403.07506
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://doi.org/10.18653/v1/2020.findings-emnlp.117
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=fR3wGCk-IXp
https://openreview.net/forum?id=fR3wGCk-IXp
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html
https://doi.org/10.1109/ICST62969.2025.10989022
https://doi.org/10.1109/ICST62969.2025.10989005
https://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf
https://github.com/ShahinHonarvar/Turbulence-Benchmark-v2
https://github.com/ShahinHonarvar/Turbulence-Benchmark-v2
https://dx.doi.org/10.21227/pmmv-nt11
https://dx.doi.org/10.21227/pmmv-nt11
http://papers.nips.cc/paper_files/paper/2023/hash/b6b5f50a2001ad1cbccca96e693c4ab4-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/b6b5f50a2001ad1cbccca96e693c4ab4-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/b6b5f50a2001ad1cbccca96e693c4ab4-Abstract-Datasets_and_Benchmarks.html
https://github.com/nuprl/MultiPL-E/blob/main/dataset_builder/terms.csv
https://github.com/nuprl/MultiPL-E/blob/main/dataset_builder/terms.csv
https://doi.org/10.1145/3411763.3451760
https://doi.org/10.1145/3411763.3451760
https://docs.cohere.com/v2/docs/models#command
https://docs.cohere.com/v2/docs/models#command
https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.48550/arXiv.2403.08295
https://doi.org/10.48550/arXiv.2406.11409
https://doi.org/10.48550/arXiv.2406.11931
https://doi.org/10.48550/arXiv.2406.11931

[54]
[55]
[56]
[57]

[58]

[59]

[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]
[78]
[79]
[80]
[81]

[82]

Mistral-Al, “Codestral:
https://mistral.ai/news/codestral/, 2024.
E. Hartford, “dolphin-mixtral-8x7b,” https://erichartford.com/dolphin-
25-mixtral-8x7b?source=more_articles_bottom_blogs, 2023.
Mistral-Al, “Mixtral of experts,” https://mistral.ai/news/mixtral-of-
experts/, 2023.

OpenRouter, “A unified interface for LLMSs,” https://openrouter.ai/,
2024.

Microsoft, “Introducing Phi-3: Redefining what’s possible with SLMs,”
https://azure.microsoft.com/en-us/blog/introducing-phi-3-redefining-
whats-possible-with-slms/, 2024.

Microsoft, “Tiny but mighty: The Phi-3 small language models with
big potential,” https://news.microsoft.com/source/features/ai/the-phi-3-
small-language-models-with-big-potential/, 2024.

Microsoft, “Code it possible,” https://azure.microsoft.com/en-gb/, 2024.
A. Dubey et al, “The Llama 3 herd of models,” CoRR, vol.
abs/2407.21783, 2024. [Online]. Available: https://doi.org/10.48550/
arXiv.2407.21783

Alibaba Cloud, “About Qwen,” https://www.alibabacloud.com/en/
solutions/generative-ai/qwen?_p_lc=1, 2024.

B. Hui et al, “Qwen2.5-Coder technical report,” CoRR, vol.
abs/2409.12186, 2024. [Online]. Available: https://doi.org/10.48550/
arXiv.2409.12186

Hugging Face, “Turn Al models into
https://huggingface.co/inference-endpoints/dedicated, 2024.
The Mosaic Research Team, “Introducing DBRX: A new
state-of-the-art ~ open llm,” https://www.databricks.com/blog/
introducing-dbrx-new-state-art-open-1lm, Mar. 2024.

databricks, “Databricks is the data and Al company,” https://www.
databricks.com/company/about-us, Oct. 2024.

A. Lozhkov et al., “StarCoder 2 and the Stack v2: The next
generation,” CoRR, vol. abs/2402.19173, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2402.19173

Hello, World!”

APIs,”

BigCode, “The Mission,” https://www.bigcode-
project.org/docs/about/mission/, 2024.
OpenAl, “Introducing OpenAl ol-preview,”

https://openai.com/index/introducing-openai-o1-preview/, 2024.

M. Caccia et al., “Language gans falling short,” in ICLR, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. [Online].
Available: https://openreview.net/forum?id=BJgza6VtPB

T. B. Hashimoto, H. Zhang, and P. Liang, “Unifying human and
statistical evaluation for natural language generation,” in NAACL-HLT,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short
Papers), J. Burstein, C. Doran, and T. Solorio, Eds. ACL, 2019, pp.
1689-1701. [Online]. Available: https://doi.org/10.18653/v1/n19-1169
NVIDIA, “Determinism in deep learning,” https://developer.
download.nvidia.com/video/gputechconf/gtc/2019/presentation/
$9911-determinism-in-deep-learning.pdf, Dec. 2010.

J. Gawlikowski et al., “A survey of uncertainty in deep neural
networks,” Artif. Intell. Rev., vol. 56, no. S1, pp. 1513-1589, 2023.
[Online]. Available: https://doi.org/10.1007/s10462-023-10562-9

S. S. Shapiro and M. B. Wilk, “An analysis of variance test for
normality (complete samples),” Biometrika, vol. 52, no. 3/4, pp. 591—
611, 1965. [Online]. Available: http://www.jstor.org/stable/2333709
N. M. Razali and Y. B. Wah, “Power comparisons of Shapiro-Wilk
, Kolmogorov-Smirnov , Lilliefors and Anderson-Darling tests,”
2011. [Online]. Available: https://api.semanticscholar.org/CorpusID:
18639594

H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The Annals
of Mathematical Statistics, vol. 18, no. 1, pp. 50-60, 1947. [Online].
Available: http://www.jstor.org/stable/2236101

N. CIliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological bulletin, vol. 114, no. 3, p. 494, 1993.
Logilab and P. contributors, “Pylint,” https://pylint.pycqa.org/en/latest/
index.html#pylint, Nov. 2023.

GitHub, “Your Al pair programmer,”
https://github.com/features/copilot, 2023.

BOOTKID, “Copilot.api,” 2024, https://github.com/BOOTK1D/
copilot-api.

F. Beeson, “LLM benchmarks,” 12 2024. [Online]. Available:

https://github.com/leobeeson/llm_benchmarks

Q. Zheng et al, “CodeGeeX: A pre-trained model for code
generation with multilingual benchmarking on HumanEval-X,” in
KDD, Long Beach, CA, USA, August 6-10, 2023, A. K. Singh
et al., Eds. ACM, 2023, pp. 5673-5684. [Online]. Available:
https://doi.org/10.1145/3580305.3599790

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

28

T. Y. Zhuo et al., “BigCodeBench: Benchmarking code generation
with diverse function calls and complex instructions,” in ICLR,
Singapore, April 24-28, 2025. OpenReview.net, 2025. [Online].
Available: https://openreview.net/forum?id=YrycTjlILO

Y. Li et al., “Competition-level code generation with AlphaCode,”
CoRR, vol. abs/2203.07814, 2022. [Online]. Available: https://doi.org/
10.48550/arXiv.2203.07814

S. Lu et al, “CodeXGLUE: A machine learning benchmark
dataset for code understanding and generation,” in NeurlPS
Datasets and Benchmarks 2021, December 2021, virtual,
J. Vanschoren and S. Yeung, Eds, 202I. [Online].
Available: https://datasets-benchmarks-proceedings.neurips.cc/paper/
2021/hash/c16a5320fa475530d9583c34fd356ef5- Abstract-round1.html
A. M. Dakhel et al, “GitHub Copilot Al pair programmer: Asset
or liability?” J. Syst. Softw., vol. 203, p. 111734, 2023. [Online].
Available: https://doi.org/10.1016/j.jss.2023.111734

Z. Zeng, Y. Wang, R. Xie, W. Ye, and S. Zhang, “CoderUJB: An
executable and unified java benchmark for practical programming
scenarios,” in ISSTA, Vienna, Austria, September 16-20, 2024,
M. Christakis and M. Pradel, Eds. ACM, 2024, pp. 124-136.
[Online]. Available: https://doi.org/10.1145/3650212.3652115

X. Du et al, “Evaluating large language models in class-
level code generation,” in [ICSE, Lisbon, Portugal, April 14-
20, 2024. ACM, 2024, pp. 81:1-81:13. [Online]. Available:

https://doi.org/10.1145/3597503.3639219

C. E. Jimenez et al., “SWE-bench: Can language models resolve
real-world GitHub issues?” in ICLR, Vienna, Austria, May 7-
11, 2024. OpenReview.net, 2024. [Online]. Available: https:
/lopenreview.net/forum?id=VTF8yNQM66

S. Thakur et al, “Benchmarking large language models for
automated verilog RTL code generation,” in DATE, Antwerp, Belgium,
April 17-19, 2023. 1EEE, 2023, pp. 1-6. [Online]. Available:
https://doi.org/10.23919/DATES56975.2023.10137086

C. Al “Quick Introduction,” 12 2024. [Online]. Available: https:
/Iwww.deepeval.com/docs/getting-started

Confident AI, “Stay Confident,” 12 2024. [Online]. Available:
https://www.confident-ai.com/blog

D. N. Manh, “A framework for easily evaluation code
generation model,” 3 2024. [Online]. Available: https:/github.

com/FSoft- Al4Code/code-1lm-evaluator

M. J. Min et al., “Beyond accuracy: Evaluating self-consistency of
code large language models with IdentityChain,” in ICLR, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. [Online]. Available:
https://openreview.net/forum?id=caW7LdAALhO

Z. Li et al, “CCTEST: Testing and repairing code completion
systems,” in ICSE, Melbourne, Australia, May 14-20, 2023. IEEE,
2023, pp. 1238-1250. [Online]. Available: https://doi.org/10.1109/
ICSE48619.2023.00110

T. Y. Zhuo, “ICE-Score: Instructing large language models to evaluate
code,” in EACL, St. Julian’s, Malta, March 17-22, 2024, Y. Graham
and M. Purver, Eds. Association for Computational Linguistics,
2024, pp. 2232-2242. [Online]. Available: https://aclanthology.org/
2024 findings-eacl.148

W. Tong and T. Zhang, “CodeJudge: Evaluating code generation
with large language models,” in EMNLP, Miami, FL, USA,
November 12-16, 2024, Y. Al-Onaizan, M. Bansal, and Y. Chen,
Eds. ACL, 2024, pp. 20032-20051. [Online]. Available: https:
/laclanthology.org/2024.emnlp-main.1118

Y. Dong et al., “CodeScore: Evaluating code generation by learning
code execution,” ACM Trans. Softw. Eng. Methodol., vol. 34, no. 3, pp.
77:1-77:22, 2025. [Online]. Available: https://doi.org/10.1145/3695991
S. Ren et al., “CodeBLEU: A method for automatic evaluation of code
synthesis,” CoRR, vol. abs/2009.10297, 2020. [Online]. Available:
https://arxiv.org/abs/2009.10297

J. Zheng et al, “Beyond -correctness: Benchmarking multi-
dimensional code generation for large language models,”
CoRR, vol. abs/2407.11470, 2024. [Online]. Available: https:

//doi.org/10.48550/arXiv.2407.11470

M. Allamanis, S. Panthaplackel, and P. Yin, “Unsupervised evaluation
of code llms with Round-Trip Correctness,” in ICML, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. [Online]. Available:
https://openreview.net/forum?id=YnFuUX08CE

OpenAl, “OpenAl Codex,” https://openai.com/index/openai-codex/,
2021.

G. Yang et al., “How important are good method names in neural code
generation? A model robustness perspective,” ACM Trans. Softw. Eng.

https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://www.alibabacloud.com/en/solutions/generative-ai/qwen?_p_lc=1
https://doi.org/10.48550/arXiv.2409.12186
https://doi.org/10.48550/arXiv.2409.12186
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/company/about-us
https://www.databricks.com/company/about-us
https://doi.org/10.48550/arXiv.2402.19173
https://openreview.net/forum?id=BJgza6VtPB
https://doi.org/10.18653/v1/n19-1169
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9911-determinism-in-deep-learning.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9911-determinism-in-deep-learning.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9911-determinism-in-deep-learning.pdf
https://doi.org/10.1007/s10462-023-10562-9
http://www.jstor.org/stable/2333709
https://api.semanticscholar.org/CorpusID:18639594
https://api.semanticscholar.org/CorpusID:18639594
http://www.jstor.org/stable/2236101
https://pylint.pycqa.org/en/latest/index.html#pylint
https://pylint.pycqa.org/en/latest/index.html#pylint
https://github.com/B00TK1D/copilot-api
https://github.com/B00TK1D/copilot-api
https://github.com/leobeeson/llm_benchmarks
https://doi.org/10.1145/3580305.3599790
https://openreview.net/forum?id=YrycTjllL0
https://doi.org/10.48550/arXiv.2203.07814
https://doi.org/10.48550/arXiv.2203.07814
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.1016/j.jss.2023.111734
https://doi.org/10.1145/3650212.3652115
https://doi.org/10.1145/3597503.3639219
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.23919/DATE56975.2023.10137086
https://www.deepeval.com/docs/getting-started
https://www.deepeval.com/docs/getting-started
https://www.confident-ai.com/blog
https://github.com/FSoft-AI4Code/code-llm-evaluator
https://github.com/FSoft-AI4Code/code-llm-evaluator
https://openreview.net/forum?id=caW7LdAALh
https://doi.org/10.1109/ICSE48619.2023.00110
https://doi.org/10.1109/ICSE48619.2023.00110
https://aclanthology.org/2024.findings-eacl.148
https://aclanthology.org/2024.findings-eacl.148
https://aclanthology.org/2024.emnlp-main.1118
https://aclanthology.org/2024.emnlp-main.1118
https://doi.org/10.1145/3695991
https://arxiv.org/abs/2009.10297
https://doi.org/10.48550/arXiv.2407.11470
https://doi.org/10.48550/arXiv.2407.11470
https://openreview.net/forum?id=YnFuUX08CE

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Methodol., vol. 33, no. 3, pp. 60:1-60:35, 2024. [Online]. Available:
https://doi.org/10.1145/3630010

J. Jia et al, “ClawSAT: Towards both robust and accurate
code models,” in SANER, Taipa, Macao, March 21-24, 2023,
T. Zhang, X. Xia, and N. Novielli, Eds., 2023. [Online]. Available:
https://doi.org/10.1109/SANERS56733.2023.00029

H. Zhang et al, “Generating adversarial examples for holding
robustness of source code processing models,” in AAAI IAAI, EAAI
New York, NY, USA, February 7-12, 2020. AAAI Press, 2020, pp.
1169-1176. [Online]. Available: https://doi.org/10.1609/aaai.v34i01.
5469
——, “CodeBERT-Attack: Adversarial attack against source code
deep learning models via pre-trained model,” J. Softw. Evol. Process.,
vol. 36, no. 3, 2024. [Online]. Available: https://doi.org/10.1002/smr.
2571

Z. Tian, J. Chen, and Z. Jin, “Code difference guided adversarial
example generation for deep code models,” in ASE 2023, Luxembourg,
September 11-15, 2023, 2023. [Online]. Available: https://doi.org/10.
1109/ASE56229.2023.00149

H. Zhang et al., “Towards robustness of deep program processing
models - detection, estimation, and enhancement,” ACM Trans. Softw.
Eng. Methodol., vol. 31, no. 3, pp. 50:1-50:40, 2022. [Online].
Available: https://doi.org/10.1145/3511887

Z. Zeng et al., “An extensive study on pre-trained models for program
understanding and generation,” in ISSTA, South Korea, July 18 - 22,
2022, S. Ryu and Y. Smaragdakis, Eds., 2022. [Online]. Available:
https://doi.org/10.1145/3533767.3534390

N. Yefet, U. Alon, and E. Yahav, “Adversarial examples for models of
code,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, pp. 162:1-
162:30, 2020. [Online]. Available: https://doi.org/10.1145/3428230

S. Srikant et al, “Generating adversarial computer programs
using optimized obfuscations,” in ICLR, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. [Online]. Available: https:
/lopenreview.net/forum?id=PH5PH9Z0O_4

M. Wei, Y. Huang, J. Yang, J. Wang, and S. Wang, “CoCoFuzzing:
Testing neural code models with coverage-guided fuzzing,” IEEE
Trans. Reliab., vol. 72, no. 3, pp. 1276-1289, 2023. [Online].
Available: https://doi.org/10.1109/TR.2022.3208239

F. Tambon et al, “Bugs in large language models generated code:
an empirical study,” Empir. Softw. Eng., vol. 30, no. 3, p. 65, 2025.
[Online]. Available: https://doi.org/10.1007/s10664-025-10614-4

M. L. Siddig, S. H. Majumder, M. R. Mim, S. Jajodia, and
J. C. S. Santos, “An empirical study of code smells in transformer-
based code generation techniques,” in SCAM, Limassol, Cyprus,
October 3, 2022. 1EEE, 2022, pp. 71-82. [Online]. Available:
https://doi.org/10.1109/SCAM55253.2022.00014

O. Asare, M. Nagappan, and N. Asokan, “Is GitHub’s Copilot
as bad as humans at introducing vulnerabilities in code?” Empir.
Softw. Eng., vol. 28, no. 6, p. 129, 2023. [Online]. Available:
https://doi.org/10.1007/s10664-023-10380- 1

R. Khoury, A. R. Avila, J. Brunelle, and B. M. Camara, “How secure
is code generated by ChatGPT?” in SMC, Honolulu, Oahu, HI, USA,
October 1-4, 2023. 1EEE, 2023, pp. 2445-2451. [Online]. Available:
https://doi.org/10.1109/SMC53992.2023.10394237

H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “Asleep
at the keyboard? Assessing the security of GitHub Copilot’s code
contributions,” Commun. ACM, vol. 68, no. 2, pp. 96-105, 2025.
[Online]. Available: https://doi.org/10.1145/3610721

D. Wong, A. Kothig, and P. Lam, “Exploring the verifiability of code
generated by GitHub Copilot,” CoRR, vol. abs/2209.01766, 2022.
[Online]. Available: https://doi.org/10.48550/arXiv.2209.01766

S. K. Lahiri et al, “Interactive code generation via test-driven
user-intent formalization,” CoRR, vol. abs/2208.05950, 2022. [Online].
Available: https://doi.org/10.48550/arXiv.2208.05950

A. Al-Kaswan, M. Izadi, and A. van Deursen, “Traces of memorisation
in large language models for code,” in ICSE, Lisbon, Portugal, April
14-20, 2024. ACM, 2024, pp. 78:1-78:12. [Online]. Available:
https://doi.org/10.1145/3597503.3639133

J. Chen et al., “Reasoning runtime behavior of a program with
LLM: how far are we?” in ICSE, Ottawa, ON, Canada, April 26
- May 6, 2025. 1EEE, 2025, pp. 1869-1881. [Online]. Available:
https://doi.org/10.1109/ICSE55347.2025.00012

Y. Wan et al,, “A & B == B & A: Triggering logical reasoning
failures in large language models,” CoRR, vol. abs/2401.00757, 2024.
[Online]. Available: https://doi.org/10.48550/arXiv.2401.00757

S. S. Rajan, E. O. Soremekun, and S. Chattopadhyay, “Knowledge-
based consistency testing of large language models,” in EMNLP,

[124]

[125]

[126]

[127]

[128]

29

Miami, Florida, USA, November 12-16, 2024, Y. Al-Onaizan,
M. Bansal, and Y. Chen, Eds. ACL, 2024, pp. 10 185-10 196. [Online].
Available: https://doi.org/10.18653/v1/2024.findings-emnlp.596

K. Dozono, T. E. Gasiba, and A. Stocco, “Large language
models for secure code assessment: A multi-language empirical
study,” CoRR, vol. abs/2408.06428, 2024. [Online]. Available:
https://doi.org/10.48550/arXiv.2408.06428

N. Jiang et al., “LeDex: Training llms to better self-debug
and explain code,” in NeurlPS, Vancouver, BC, Canada,
December 10 - 15, 2024, A. Globersons et al., Eds., 2024.
[Online]. Available: http://papers.nips.cc/paper_files/paper/2024/hash/
3ea832724870c700f0a03c665572e2a9- Abstract-Conference.html

L. Yang et al., “On the evaluation of large language models in unit test
generation,” in ASE, Sacramento, CA, USA, October 27 - November 1,
2024, V. Filkov, B. Ray, and M. Zhou, Eds. ACM, 2024, pp. 1607—
1619. [Online]. Available: https://doi.org/10.1145/3691620.3695529

J. Wang and Y. Chen, “A review on code generation with LLMs:
Application and evaluation,” in MedAl, 2023, pp. 284-289.

L. Chen et al, “A survey on evaluating large language models in
code generation tasks,” CoRR, vol. abs/2408.16498, 2024. [Online].
Available: https://doi.org/10.48550/arXiv.2408.16498

Shahin Honarvar (Member, IEEE) is a PhD stu-
dent in the Department of Computing at Imperial
College London. His research focuses on the safety,
robustness, and evaluation of large language models
for code, with an emphasis on systematic testing
methodologies. He has introduced a novel bench-
marking framework, Turbulence, to assess correct-
ness and robustness in LLMs for code. He received
his MSc in Data Analytics from the University of
Warwick, where his thesis investigated non-uniform
quantisation techniques for graph convolutional net-

works, demonstrating their efficiency compared to uniform approaches. He
obtained his BSc in Computer Science from the University of Leicester, where
his dissertation introduced QSharpCheck, the first property-based testing
framework for quantum programs in Q#.

Marek Rei is a researcher in Machine Learning and
Natural Language Processing. His work investigates
new architectures and optimisation methods for lan-
guage modelling and multimodal representations. He
is an Associate Professor of Machine Learning at
Imperial College London and a Visiting Researcher
at the University of Cambridge. He also serves as
an Al Advisor for Locai Labs and Esgrid Tech-
nologies, and provides consultancy services through
Perception Labs. Previously, he completed a post-
doctoral fellowship at the University of Cambridge

and worked in the research team at SwiftKey, where he developed experimen-
tal technologies for language modelling and natural language processing. He
received his PhD from the University of Cambridge.

Alastair F. Donaldson (Member, IEEE) received
his Ph.D. from the University of Glasgow. He is
a Professor at Imperial College London, where he
leads the FastPL Group and serves as the Director
of Research for the Department of Computing. His
main research interests lie in the intersection of
software testing, formal verification, and parallel
computing. He was Founder and Director of Graph-
icsFuzz, a startup company based on his group’s re-
search on GPU compiler testing, which was acquired
by Google in 2018. After the acquisition, he spent

some time working as a Software Engineer with Google before returning full
time to Imperial in 2021. He received the 2017 Roger Needham Award in
recognition for his research achievements. He is an ACM Senior Member,
a Fellow of the British Computer Society, and serves as Editor-in-Chief for
ACM Transactions on Programming Languages and Systems.

https://doi.org/10.1145/3630010
https://doi.org/10.1109/SANER56733.2023.00029
https://doi.org/10.1609/aaai.v34i01.5469
https://doi.org/10.1609/aaai.v34i01.5469
https://doi.org/10.1002/smr.2571
https://doi.org/10.1002/smr.2571
https://doi.org/10.1109/ASE56229.2023.00149
https://doi.org/10.1109/ASE56229.2023.00149
https://doi.org/10.1145/3511887
https://doi.org/10.1145/3533767.3534390
https://doi.org/10.1145/3428230
https://openreview.net/forum?id=PH5PH9ZO_4
https://openreview.net/forum?id=PH5PH9ZO_4
https://doi.org/10.1109/TR.2022.3208239
https://doi.org/10.1007/s10664-025-10614-4
https://doi.org/10.1109/SCAM55253.2022.00014
https://doi.org/10.1007/s10664-023-10380-1
https://doi.org/10.1109/SMC53992.2023.10394237
https://doi.org/10.1145/3610721
https://doi.org/10.48550/arXiv.2209.01766
https://doi.org/10.48550/arXiv.2208.05950
https://doi.org/10.1145/3597503.3639133
https://doi.org/10.1109/ICSE55347.2025.00012
https://doi.org/10.48550/arXiv.2401.00757
https://doi.org/10.18653/v1/2024.findings-emnlp.596
https://doi.org/10.48550/arXiv.2408.06428
http://papers.nips.cc/paper_files/paper/2024/hash/3ea832724870c700f0a03c665572e2a9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/3ea832724870c700f0a03c665572e2a9-Abstract-Conference.html
https://doi.org/10.1145/3691620.3695529
https://doi.org/10.48550/arXiv.2408.16498

	Introduction
	Our Benchmarking Approach
	The Turbulence Benchmark
	Experimental Evaluation
	Experimental Setup
	Results Based on AS, CPS, and CCS
	Results Based on Distinct Categories

	Exploring Reasons for Failure
	Threats to Validity
	Related Work
	Conclusions and Future Work
	References
	Biographies
	Shahin Honarvar
	Marek Rei
	Alastair F. Donaldson

