Wednesday, 13 July 1983 Session: Programming Tools 1

Chairperson: Joseph Yao

Hadron, Inc.

Bcee: Runtime Checking for C Programs

Samuel C. Kendall
Delft Consulting Corporation

165 West 91st Street, Suite 2A
New York, NY 10024

(212) 624-1149
decvax!genrad!wjh12'kendall

bce is a preprocessor which generates bounds checking code for C programs. It will check array
indices, pointers into arrays, and pointers into space allocated by malloc ().

bece generates diagnostics that tell the user which subscript or pointer variable overstepped the bounds
of which array on which line of your C source program. Quite a bit nicer than the usual core dump.

With bcc, your program will take about 3 times longer to compile and ten times longer to run. As this
is not a production compiler, speed isn’t a primary consideration anyway.

bee can be used with makefiles, but it’s a little tricky.

bee’s job in life is to detect bounds check errors, and it’s especially valuable, because boundary errors

don’t always cause a program to fail immediately. bcc can be used to test program integrity and uncover
errors that would otherwise lay dormant, thereby saving many bleary-eyed hours staring at the CRT screen.

Summer 83 Toronto Conference Proceedings

Bee: Runtime Checking for C Programs

Samuel C. Kendall

Delft Consulting Corporation
165 West 9lst Street

New York, NY 10024

(212) 362-9753
!decvax!genrad!wjhl2!kendall

Abstract

Runtime error checking is more difficult for C than it is for most com-
puter languages, but is no less necessary. Bcc* is a new software pro-
duct which performs runtime checking for C.” We discuss what errors are
caught by becc, and the implementation of bcc; examples of its use are
also presented.

1. Introduction

The C language{Ritchie} has been in use for ten years, but no run-
time checking facilities have been available. This contrasts with
languages such as Pascal{Joy, Graham and Haley}{LeBlanc and Fischer} and
Fortran, which boast runtime checking tools (typically checkout com-
pilers) on many systems, and Ada**{Ada Standard}, which specifies that
implementations must perform many runtime checks. It is no surprise,
then, that runtime checking is much more difficult for C than for Pas-
cal, Fortran or Ada. This difficulty is due to the free availability of
pointers and pointer arithmetic in C; in contrast, pointers are res-
tricted in Pascal and Ada, and nonexistent in Fortran. Pointers are the
source of most runtime errors in C programs, as well as the source of
the difficulty in runtime checking.

But as C moves far beyond its history as a replacement for assembly
language, this lack of runtime checking becomes less and less justifi-
able.

The program in Figure la attempts to zero the elements of an array
using a for loop on an array index. In actual usage there would be no
printf in the loop to show us the index values each iteration; the
printf would be added in an attempt to find the bug. This sort of ad
hoc debugging is often necessary in current C programming, but it is ~a
time-consuming and not always reliable diagnostic tool. For instance,
the problem with this program would have been more evident had the
printf been placed above, rather than below, the assignment on line 5.

*Bcc 1s a trademark of Delft Consulting Corporation.

**Ada is a registered trademark of the U.S. Government, Ada Joint
Program Office.

USENIX, Software Tools

FIGURE la

$ cat -n autoloop.c

1 main(){
2 int i, a[3];
3
4 for(i = 0; i <= 3; + 1i){
5 ali] = g;
6 printf("sd ", i);
7 }
(=it
$ cc autoloop.c # compilation
$ a.out # execution
0120120120120 1201201201201201201
291201206120 128°C
$
FIGURE 1lb
$ bce autoloopl.c # bcc compilation
$ a.out # bcc execution
g12
autoloopl.c(5): array index too large
autoloopl.c(5):
ali] = 0;
—— e

1 element past high end of auto array(3] of 4-byte elements
$

This program typifies a kind of error that occurs frequently in C
programs which compile and even lint correctly: an array index which is
out of bounds, or the indirection of a pointer which is null or out of
bounds.

Bcc is a new software product which detects this kind of error.
The bcc command is used exactly as cc(l), the C compiler command, is
used. This paper discusses what we call a runtime error, and how this
checking is implemented in bcc. We also present examples of erroneous C
programs; Figure la is the first example compiled normally, and Figure
1b shows the same program compiled using bcc.

As shown in Figure 1b, the bcc command, like the cc command, pro-
duces an executable file a.out. This file, when run, outputs the three

Summer 83 Toronto Conference Proceedings

legal index values before terminating in a bcc error. The message given
on the error output stream is always a concise, one-line summary of the
problem, followed by various additional information: a longer explana-
tion, if necessary (it is not necessary for "array index too large"); a
display of the exact place on the line where the error occurred; and
more information about the offending pointer or array index value. The
octal or hexadecimal pointer value is optionally shown; we have chosen
to omit it in our examples.

Figures 2a and 2b show the same erroneous program, rewritten to use
a pointer directly instead of an array index. The program's normal

FIGURE 2a
$ cat -n autoloop2.c
1 main(){
2 int *p, a[31;
3
4 for(p=a; p<=a+ 3; + p){
5 *p = 0;
6 printf("sd ", p - a);
7 }
8 }
$ cc autoloop2.c
$ a.out
g 1 2 -5¢7529 Memory fault - core dumped
$

FIGURE 2b

$ bce autoloop2.c

$ a.out

g 12

autoloop2.c(5): attempt to indirect pointer exceeding high bound

Attempt to indirect a pointer which points past the end of the
object it should point into.

autoloop2.c(5):
*p:ﬂ;

>

1 element past high end of auto array[3] of 4-byte elements

USENIX, Software Tools

behavior (Figure 2a) is an interesting C puzzle.l The error message in

Figure 2b is simply the pointer analogue of the array error message in
Figure 1b.

2. Errors Caught by Bcc

It is clear that the errors detected in Figures 1lb and 2b are prop—
erly errors. But some cases are less clear. For instance, should it be
an error for pointer arithmetic to take a pointer beyond the end of an
array, even if the resulting out-of-bounds pointer is never indirected?
Probably not, since it is common practice for just that to happen in
loops. But how far should a pointer be allowed to stray, since it will
eventually reach the highest or lowest address and wrap around, causing
pointer comparisons to yield the wrong result? Bcc checks for wra-
paround every time an integer is added to or subtracted from a pointer.
The defect of this approach is that a program which barely avoids wra-
paround on one machine may not avoid it on another machine.

TABLE 1: OPERATIONS PRODUCING POINTERS

| Operation | Bounds Enclose |

address of array element the outermost array

address of function the function entry point

address of any other object | the object

malloc(3) allocation the allocated region

no object (no indirection allowed)

| | |
| | |
| | I
I | :
I l
I | |
I | :
I | . - 3
| brk(2) allocation, or &end | the entire heap (high end dynamic) }
| l
| pointer cast from constant | ‘
| integer { '
I .

| pointer cast from non-— | the entire address space |
| constant integer l l
|

| | [

all others (no change in bounds)

: i i ter where small addresses,
The run in Figure 2a took place on compu . -
including @, cause a "memory fault". The program's behav19r on.machlnes

where small addresses are legal would be different, but still bizarre.

Summer 83 Toronto Conference Proceedings

TABLE 2: OPERATIONS ON POINTER VALUES

Possible Error Conditions

out of out of
null bounds alignment others

Operation Operators

other cast (type)

use as a e T o R
truth value if() etc.

| indirection * =S] } X X X :
I .

| plus or minus + - + — | x 1 :
| an integer 1 += = } |
[

| subtraction - I X X 2 I
I

| equality = |= ‘ {
I

| relational <= < > >= |I X {
|

| copying = () return { I
l

| pointer cast (type *) { X :
|

| | |
| | |
I l |
| | |

l. Wraparound
2. Relative bounds and relative alignment

Unfortunately, the C Reference Manual does not cover this point, leaving
actual usage the de facto definition. And actual usage does not permit

bee to check more stringently.2

We established rules for what is an error and what is not. Some of
our choices are debatable; there are few guidelines on this matter in

the C Reference Manual{Ritchie}, and some of the guidelines there are
incorrect.

Our basic principle is that every pointer has a runtime association
with the object it points into. In order to remember this association
every pointer is made to include a pair of bounds, a low bound and a
high bound, which enclose the associated object. There are two classes

Problems of this sort, where we desire stricter checking than usage
in existing programs permits, will be solved in later versions of bcc by
implementing the stricter checking, but making it optional.

10

USENIX, Software Tools

of C operations about which decisions had to be made: those which pro-
duce pointers and set bounds, and those which act on pointers and which
may check bounds (check the pointer against its bounds), or check other
error conditions. Table 1 shows the operations which produce pointers,
and what bounds are assigned in each case.

An important principle that can be abstracted from these rules is
that whenever pointer bounds enclose an array element, they also enclose
the entire array, be it single-dimensional or multi-dimensional; but the
same is not true for structure elements and structures.

Table 2 shows the operations on pointers, and what kinds of errors
can be generated from them. For instance, if you indirect a pointer, an
error can be given because the pointer is null, or because it is out of
bounds, or because it is out of alignment.

The checks covered in the column "others" are: ‘"relative bounds",
which fails for pointers the bounds of which do not enclose the same
array, and "relative alignment", which fails for pointers to objects not
an integral number of object-sizes apart; and "wraparound", which fails
for arithmetic operations that cause a pointer to "wrap around" the
address space.

An interesting decision that had to be made is shown in Table 2 by
the difference in error checking between pointer subtraction and pointer
relational operators. The conditions for subtraction are quite restric-
tive. But the only condition checked for relationals is that neither
pointer is null, and even the reason for this condition—that the C
Reference Manual does not guarantee a null pointer value to be less than
all other pointer values—is debatable. We differentiate between
pointer subtraction and pointer relationals because subtraction makes
sense only with pointers that point into the same array, whereas there
are portable uses for comparing pointers that point into different
arrays—despite what the C Reference Manual claims.

Uninitialized pointers are not explicitly checked for, but are
almost always caught, since it is very unlikely that garbage will look
like a legal pointer and bounds. Some errors, most notably dangling
pointer, integer overflow, and uninitialized non-pointer, are not caught
by the current version of bcc. Nonetheless, bcc does catch the
overwhelming majority of C runtime errors. DL

3. Examples

Figures 3a and 3b demonstrate the bcc versions of malloc and a few
other standard library functions which use pointers. All pointer usage
in library functions is checked.

The program in Figure 3a seems to lack errors—it runs without
fault—but it actually allocates an area one byte too small on line 5.
Errors of this nature can and do remain in production programs, sugfac—
ing only as occasional reliability or security problems, very difflcglt
to find. To find such errors, bcc can be used for reliability testing
as well as for more ordinary debugging. The bcc'd version of a program

Summer 83 Toronto Conference Proceedings

11

FIGURE 3a

$ cat -n usemalloc.c
1 char s[] = "A string.";

2 main(){
3 char *p, *malloc(), *strcpy();
4
5 p = malloc(strlen(s));
6 printf ("Copied: $s\n", strcpy(p, s));
Tegd
$ cc usemalloc.c
$ a.out
Copied: A string.

$

can be run through a test suite, or even installed as the production
version for a time in order to test the program against normal (or mali-
cious) user data.

As in Figure 3b, the error messages given for errors involving
pointers to heap storage are particularly informative, since they

FIGURE 3b

$ bcc usemalloc.c
$ a.out

usemalloc.c(6): lib function strcpy(arg 1): array too small

The library function expected the array to be larger than it
actually is.

called from usemalloc.c(6):
printf ("Copied: %s\n", strcpy(p, s));

—_—D
expected: array[l8] of l-byte elements
element @ of heap array[9] of l-byte elements

allocated in usemalloc.c(5):
p = malloc(strlen(s));

>

12

USENIX, Software Tools

display exactly where the storage was allocated, as well as where the
error occurred.

Our fourth and last example, Figures 4a and 4b, displays an often-
found nonportable code fragment. This access to location zero gives a
memory fault on most VAX-1l* and MC6800@ systems. But on the PDP-11%,
one is allowed to access location zero (in defiance of the Reference
Manual), which is why so much code was written that does exactly what
this example does. This coding practice can be extremely annoying to
UNIX** porters; for instance, the abstract for one porting talk at the
January 1983 UNICOM sarcastically promised to describe "the true meaning

FIGURE 4a

$ cat -n nullptr.c
1 main(argc, argv) int argc; char *argv([];

24
3 if(argv[1l][9] = '-' && argv[l][l] = 'a')
4 printf ("-a option given.\n");
5 }
$ cc nullptr.c
$ a.out -a
—-a option given.
$ a.out
Memory fault - core dumped

$

FIGURE 4b

$ bce nullptr.c
$ a.out -a

—-a option given.
$ a.out

nullptr.c(3): attempt to indirect a null pointer

nullptr.c(3):
if(argv[l]EG] = '-' && argv[l][1l] = 'o')

==

$

*PDP-11 and VAX-1l are trademarks of Digital Equipment Corporation.

**UNIX is a trademark of Bell Laboratories.

Summer 83 Toronto Conference Proceedings

13

of location zero and its relevance to UNIX." Figure 4b shows bcc's
response to the problem.

One might want to simulate a machine where access to location zero
is legal, to simply give a warning message when location zero is
accessed. Bcc's responses to certain error situations, this one among
them, can be changed by setting an environment variable.

4. Implementation

Bcc is a source-to-source transformer which invokes the normal C
compiler on the result of a transformation. The actual source-to-source
transformation program is called the "mapper", for historical reasons.
Figure 5 depicts the logical structure of the mapper; the three phases
shown are logical divisions of the code, rather than separate processes.
The mapper actually consists of mapc, a table-driven source-to-source
transformation tool, and "the map", the table of parse tree transforma-
tion rules that drives it. Given an empty map, mapc makes essentially
no change in a program; but given the map used for bcc, it makes per-
vasive changes, as illustrated in Figure 6.

In addition to the mapper, there is an extensive library of encap-
sulations. Each function in the standard library which takes or returns

FIGURE 5
I BCC's MAPPER I
(from preprocessed C | text | | |
C >| PARSING | |
preprocessor) : I I :
I parse | trees |
| \ |
| I
I I | I
| | MAPPING | |
I I I I
I I
| parse | trees |
I \ I
I |
(to mapped C | text | | |
C < | UNPARSING | |
compiler) | | | :

14

USENIX, Software Tools

FIGURE 6: BEFORE AND AFTER SOURCE-TO-SOURCE TRANSFORMATION

This transformation was targeted to an MC6800@, on which ints
and pointers are 4 bytes long but are aligned only on even-
byte boundaries.

BEFORE :
£0){ /* nonsense function */
int a[10], i, *p;
Aprti= alil,
}
AFTER:

int f(2filenam,Ztokno) char (*Zfilenam); int Ztokno;
{register char (*(*Zta));
auto int a(l@];auto int i;auto int (*p[3]);
(int ())2Zchkind(Zincr(p, 4, 2, "file.c", 18), 4, 2,
"file.c", 16) = *(int (*))Zchkab(a, 44, 4, 2, i,
"filevch,; 21);

}

a pointer must be separately encapsulated. In the bcc world, pointers
include a low and high bound; each encapsulation is an error-checking
interface between the bcc world and a normal library function.

5. Conclusion

We chose the source-to-source approach because it is a portable
approach. Bcc is almost trivially portable except for the differences

in standard libraries between versions of UNIX.> However, this source-
to-source approach has its costs. A bcc compilation takes about three
times as long as a normal compilation; and the resultant executable file
is 2 to 3 times larger, and executes an order of magnitude slower, than
the corresponding result of a normal compilation.

The C programmer, valuing efficiency, may be tempted to ask whether
he or she can afford runtime checking. The C programmer values effi-
ciency One can first note that bcc is not intended to be used for every
compilation; nor is the bcc executable intended for production use.
Runtime errors are usually found near the start of execution; in our
experience, the execution slowdown has not been a problem.

3Because each library function which takes or returns a pointer must
be separately encapsulated, bcc is much easier to port between different
CPUs running the same version of UNIX than it is to port between
identical CPUs running different versions of UNIX.

Summer 83 Toronto Conference Proceedings

15

Moreover, one cannot ignore human efficiency. Every C programmer
can probably remember times when he or she spent hours, even days,
searching for a bug which could have been located almost immediately
with runtime checking. And equally important, runtime checking can find
bugs whose existence would not otherwise have been noticed, bugs which
would have become reliability or security problems.

Acknowledgements

Chaim Schaap was responsible for many key insights and design princi-
ples. The advice of Mike Douglas was also invaluable. Chaim Schaap,
Jahanshah More, Allen Wolovsky, and Charles Perkins were helpful in
shaping this paper.

6. Bibliography

Ada Standard
Military Standard, Ada Programming Language, ANSI/MIL-STD-
1815A (January 22, 1983).

Johnson Johnson, S. C., Lint, a C Program Checker, in various UNIX
documentation collections (lg;ﬁ).

Joy, Graham and Haley
Joy, William N., Susan L. Graham, and Charles B. Haley, Berke—
ley Pascal User's Manual—Version 2.0 (1980).

LeBlanc and Fischer
LeBlanc, R. J., and C. N. Fischer, "A Case Study of Run-Time
Errors in Pascal Programs", Software—Practice and Experience,
Vol. 12, 825-834 (1982).

Ritchie Ritchie, D. M., "C Reference Manual", Appendix A of B. W. Ker-
nighan and D. M. Ritchie, The C Programming Language,
Prentice-Hall, Inc. (1978).

16

USENIX, Software Tools

