
W e d n e s d a y , 1 3 J u l y 1 9 8 3 S e s s i o n : P r o g r a m m i n g T o o l s 1

Chairperson: Joseph Yao
Hadron, Inc.

Bcc: Runtime Checking for C Programs
S a m u e l C K e n d a l l

Delft Consulting Corporation

165 West 91st Street. Suite 2A

New York, NV 10024

(212) 624-1149
decvax!genrad!wjhl2!kendall

bcc is a preprocessor which generates bounds checldng code for C programs. It will check array
indices, pointers into anays, and pointers into space allocated by malloc{).

bcc generates diagnostics that tell the user which subscript or pointer variable overstepped the bounds
of which array on which line of your C source program. Quite a bit nicer than the usual core dump.

With bcc, your program will take about 3 times longer to compile and ten times longer to run. As this
is not a production compiler, speed isn't a primary consideration anyway.

bcc can be used with makefiles, but it's a little tricky.
bee's job in life is to detect bounds check errors, and it's especially valuable, because boundary errors

don't always cause a program to fail immediately, bcc can be used to test program integrity and uncover
errors that would otherwise lay dormant, thereby saving many bleary-eyed hours staring at the CRT screen.

Summer 83 Toronto Conference Proceedings 5

Bcc ; Runt ime Check ing fo r C Programs

S a m u e l C . K e n d a l l
De l f t Consu l t ing Corporat ion
165 Wes t 91s t S t ree t
New York , NY 10024
(212) 362-0753
!decvax1genrad!wjhl2Ikendal1

A b s t r a c t

Runt ime error checking is more di fficul t for C than i t is for most com
puter languages, but is no less necessary. Bcc* is a new software pro
duct which performs runtime checking for C. We discuss what errors are
caught by bcc, and the implementation of bcc; examples of its use are
also presented.

1 . . I n t r o d u c t i o n
The C language{Ritchie} has been in use for ten years, but no run

t i m e c h e c k i n g f a c i l i t i e s h a v e b e e n a v a i l a b l e . T h i s c o n t r a s t s w i t h
languages such as Pascal{Joy, Graham and Haley}(LeBlanc and Fischer} and
Fortran, which boast runtime checking tools (typically checkout com
pilers) on many systems, and Ada**{Ada Standard}, viiich specifies that
implementations must perform many runtime checks. It is no surprise,
then, that runt ime check ing is much more d i fficu l t for C than for Pas
cal, Fortran or Ada. This difficulty is due to the free availability of
pointers and pointer arithmetic in C; in contrast, pointers are res
tr ic ted in Pascal and Ada, and nonexistent in Fortran. Pointers are the
source of most runtime errors in C programs, as well as the source of
the difficulty in runtime checking.

But as C moves far beyond its history as a replacement for assembly
language, this lack of runtime checking becomes less and less justifi
ab le .

The program in Figure la attempts to zero the el^ents of an array
using a for loop on an array index. In actual usage there would be no
printf in the loop to show us the index values each iteration; the
prlntf would be added in an attempt to find the bug. This sort of ad
hoc debugging is often necessary in current C programming, but it is a
time-consuming and not always reliable diagnostic tool. For instance,
the prob lem wi th th is program would have been more ev ident had the
printf been placed above, rather than below, the assignment on line 5.

*Bcc is a t radenark of Delf t Consult ing Corporat ion.

**Ada is a registered trademark of the U.S. Government, Ada Joint
P r o g r a m O f fi c e .

6 USENIX, Software Tools

F I G U R E l a

$ cat -n autoloop.c
1 i n a i n () {
2 i n t i , a [3] ;
3
4 f o r (i = 0 ; i < = 3 ? + + i) {
5 a [i 3 = 0 ;
6 p r i n t f (" % d i) ;
7 }
8 }

$ c c a u t o l o o p . c # c o m p i l a t i o n
$ a . o u t # e x e c u t i o n
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1
2 0 1 2 0 1 2 0 1 2 0 1 2 0 " C
$

F I G U R E l b

$ b c c a u t o l o o p l . c # b c c c o m p i l a t i o n
$ a . o u t # b c c e x e c u t i o n
0 1 2

au to loop l .c (5) : a r ray index too la rge

a u t o l o o p l . c (5) :
a [i] = 0 ;

>

1 element past high end of auto array[3] of 4-byte elements

Ih i s p rog ram typ i fies a k ind o f e r ro r tha t occu rs f requen t l y i n C
programs which compile and even l int correctly; an array index which is
ou t o f bounds , o r the ind i rec t ion o f a po in te r wh ich i s nu l l o r ou t o f
b o u n d s .

Bcc i s a new so f tware p roduc t wh ich de tec ts th i s k ind o f e r ro r.
The bcc command is used exactly as cc(l), the C compiler command, is
used. This paper discusses what we cal l a runt ime error, and how this
checking is implemented in bcc. We also present examples of erroneous C
programs? Figure la is the first example compi led normal ly, and Figure
lb shows the same program compiled using bcc.

As shown in Figure lb, the bcc command, like the cc command, pro
d u c e s a n e x e c u t a b l e fi l e a . o u t . T h i s fi l e , w h e n r u n , o u t p u t s t h e t h r e e

Summer 83 Toronto Conference Proceedings 7

legal index values before terminating in a bcc error. The message given
on the error output stream is always a concise, one-line summary of the
problem, followed by various additional information; a longer explana
tion, if necessary (it is not necessary for "array index too large"); a
display of the exact place on the line where the error occurred; and
more information about the offending pointer or array index value. The
octal or hexadecimal pointer value is optionally shown; we have chosen
to omit it in our examples.

Figures 2a and 2b show the same erroneous program, rewritten to use
a pointer directly instead of an array index. The program's normal

F I G U R E 2 a

$ cat -n autoloop2.c
1 m a i n () {
2 i n t * p , a [3] ;
3
4 f o r (p = a ; p < = a + 3 ; + + p) {
5 * p = 0 ;
6 p r i n t f (" % d " , p - a) ;
7 }
8 }

$ cc autoloop2.c
$ a . o u t
0 12 -507529 Monory fault - core dumped
$

F I G U R E 2 b

$ bcc autoloop2.c
$ a . o u t
0 1 2

autoloop2.c(5): attaiipt to indirect pointer exceeding high bound

Attempt to indirect a pointer which points past the end of the
ob jec t i t shou ld po in t i n to .

a u t o l o o p 2 . c (5) :
*p = 0;

> -

1 elenent past high end of auto array[3] of 4-byte elements

8 USENIX, Software Tools

b^avior (Figure 2a) is an interesting C puzzle. The error message in
Figure 2b is simply the pointer analogue of the array error message in
F igure lb .

2. Errors Caught by Bcc

It is clear that the errors detected in Figures lb and 2b are prop
erly errors. But some cases are less clear. For instance, should it be
an error for pointer arithmetic to take a pointer beyond the end of an
array, even if the resulting out-of-bounds pointer is never indirected?
Probably not, since it is common practice for just that to happen in
loops. But how far should a pointer be allowed to stray, since it will
eventually reach the highest or lowest address and wrap around, causing
p o i n t e r c o m p a r i s o n s t o y i e l d t h e w r o n g r e s u l t ? B c c c h e c k s f o r w r a
paround every t ime an integer is added to or subtracted from a pointer.
The defect of this approach is that a program which barely avoids wra
p a r o u n d o n o n e m a c h i n e m a y n o t a v o i d i t o n a n o t h e r m a c h i n e .

TABLE 1: OPERATIONS PRODUCING POINTERS

1 O p e r a t i o n i B o u n d s E n c l o s e

1 address of array element t h e o u t e r m o s t a r r a y 1
I
1 a d d r e s s o f f u n c t i o n
t

t h e f u n c t i o n e n t r y p o i n t 1
I
1 address of any other object t h e o b j e c t 1
1
1 mal loc(3) a l locat ion t h e a l l o c a t e d r e g i o n 1
i
1 brk(2) allocation, or Send the entire heap (high end dynamic) 1
1
1 pointer cast from constant
1 integer
1

no object (no indirection allowed) I
1

1
1 pointer cast from non-
1 c o n s t a n t i n t e g e r

t h e e n t i r e a d d r e s s s p a c e 1

1I
1 a l l o t h e r s (n o c h a n g e i n b o u n d s) 1

^The run in Figure 2a took place on computer where small addresses,
including 0, cause a "mesnory fault". The program's behavior on machineswhere small addresses are legal would be different, but still bizarre.

83 Toronto Conference Proceedings

T A B L E 2 : O P E R A T I O N S O N P O I N T E R V A L U E S

I 1 P o s s i b l e E r r o r C o n d i t i o n s I
1 11

1
1 Operation O p e r a t o r s

1 1

1 o u t o f o u t o f 1
1 nu l l bounds a l i gnmen t o the rs 1

1 i n d i r e c t i o n
1

* - > [] 1 X X X 1
1 I1

1 plus or minus
1 an integer
1

+ - + + —

[] + = - =
i X 1 1
1 1
1 1

1 s u b t r a c t i o n
1

- 1 X X 2 1
1 11

1 equal i ty =

1 1
1 i
1 1

1 r e l a t i o n a l I IAAVI IV
1 1

1 X 1

1 copying
1

~ 0 r e t u r n 1 1
1 1

1 pointer cast
1

(type *)
1 1
I X 1

1 o t h e r c a s t
I

(type)
1 1
1 1

1 use as a
1 t r u t h v a l u e

! & & I I ? :
i f () e t c .

' 1
1

1 1

1. Wraparound
2. Relative bounds and relative alignment

1 0

Unfortunately, the C Reference Manual does not cover this point, leavingactual usage the de facto definition. And actual usage does not permit
to check more stringently.̂
We ptablished rules for what is an error and what is not. Some of

hi? debatable; there are few guidelines on this matter in^e C Reference Manual{Ritchie}, and some of the guidelines there are
i n c o r r e c t .

Wi^h i® that every pointer has a runtime associationWith the obj^t it points into. In order to remember this association
include a pair of bounds, a low bound and a

high bound, vihich enclose the associated object. There are two classes

i n d e s i r e s t r i c t e r c h e c k i n g t h a n u s a g ein existing programs permits, will be solved in later versions of bcc hv
implementing the stricter checking, but making it optional.

USENIX, Software Tools

of C operations about which decisions had to be made: those \^ich pro
duce pointers and set bounds, and those which act on pointers and which
may check bounds (check the pointer against its bounds), or check other
error condi t ions. Table 1 shows the operat ions which produce pointers,
and what bounds are assigned in each case.

An impor tant pr inc ip le tha t can be abst rac ted f rom these ru les is
that whenever pointer bounds enclose an array element, they also enclose
the ent i re ar ray, be i t s ing le -d imens iona l o r mul t i -d imens iona l ; bu t the
s a m e i s n o t t r u e f o r s t r u c t u r e e l e m e n t s a n d s t r u c t u r e s .

Table 2 shows the operations on pointers, and what kinds of errors
can be generated from them. For instance, i f you indirect a pointer, an
error can be given because the pointer is nul l , or because i t is out of
bounds, or because it is out of al ignment.

T h e c h e c k s c o v e r e d i n t h e c o l u m n " o t h e r s " a r e : " r e l a t i v e b o u n d s " ,
v^ ich fa i l s fo r po in te rs the bounds o f wh ich do no t enc lose the same
ar ray, and " re la t i ve a l i gnment " , v^ i ch fa i l s fo r po in te rs to ob jec ts no t
an in tegra l number of object -s izes apar t ; and "wraparound", which fa i ls
f o r a r i t h m e t i c o p e r a t i o n s t h a t c a u s e a p o i n t e r t o " w r a p a r o u n d " t h e
address space.

An interesting decision that had to be made is shown in Table 2 by
the di fference in error checking between pointer subtract ion and pointer
re l a t i ona l ope ra to r s . The cond i t i ons f o r sub t rac t i on a re qu i t e r es t r i c
t i v e . B u t t h e o n l y c o n d i t i o n c h e c k e d f o r r e l a t i o n a l s i s t h a t n e i t h e r
p o i n t e r i s n u l l , a n d e v e n t h e r e a s o n f o r t h i s c o n d i t i o n — t h a t t h e C
Reference Manual does not guarantee a null pointer value to be less than
a l l o t h e r p o i n t e r v a l u e s — i s d e b a t a b l e . W e d i f f e r e n t i a t e b e t w e e n
po in te r sub t rac t i on and po in te r re la t i ona ls because sub t rac t i on makes
sense only wi th pointers that point in to the same array, whereas there
a r e p o r t a b l e u s e s f o r c o m p a r i n g p o i n t e r s t h a t p o i n t i n t o d i f f e r e n t
arrays—despite what the C Reference Manual claims.

U n i n i t i a l i z e d p o i n t e r s a r e n o t e x p l i c i t l y c h e c k e d f o r , b u t a r e
almost always caught, since it is very unlikely that garbage will look
like a legal pointer and bounds. Some errors, most notably dangling
pointer, integer overflow, and uninitialized non-pointer, are not caught
b y t h e c u r r e n t v e r s i o n o f b c c . N o n e t h e l e s s , b c c d o e s c a t c h t h e
overwhelming majority of C runtime errors.

Examples

Figures 3a and 3b demonstrate the bcc versions of malloc and a few
o ther s tandard l i b ra ry func t ions wh ich use po in te rs . A l l po in te r usage
in l ib rary func t ions is checked.

The program in Figure 3a seems to lack errors—it runs without
fault—but it actually allocates an area one byte too small on line 5.
Errors of this nature can and do remain in production programs, surfac
ing only as occasional reliability or security problems, very difficult
to find. To find such errors, bcc can be used for reliabil i ty testing
as well as for more ordinary debugging. The bcc'd version of a program

Summer 83 Toronto Conference Proceedings 1 1

FIGURE 3a

$ c a t - n u s e m a l l o c . c
1 c h a r s [] = " A s t r i n g . " ;
2 m a i n () {
3 c h a r * p , * i n a l l o c () , * s t r c p y () ;
4
5 p = m a l l o c (s t r l e n (s)) ;
6 p r i n t f (" C o p i e d : % s \ n " , s t r c p y (p , s)) ;
7 }

$ c c u s e m a l l o c . c
$ a . o u t
Copied: A s t r ing.
$

can be run through a test suite, or even installed as the production
version for a time in order to test the program against normal (or mali
c i o u s) u s e r d a t a .

As in Figure 3b, the error messages given for errors involving
pointers to heap storage are particularly informative, since they

F I G U R E 3 b

$ b c c u s e m a l l o c . c
$ a . o u t

usemal loc .c (6) : l ib func t ion s t rcpy(a rg 1) : a r ray too smal l

The l ibrary funct ion expected the array to be larger than i t
a c t u a l l y i s .

ca l led f rom usemal loc.c(6) :
p r i n t f (" C o p i e d : % s \ n " , s t r c p y (p , s)) ;

>

expected: array[101 of 1-byte e lements

element 0 of heap array[9] of 1-byte elements
a l loca ted in usemal loc .c (5) :

p = m a l l o c (s t r l e n (s)) ;
>

$

1 2 USENIX, Software Tools

display exact ly where the storage was a l located, as wel l as where the
e r r o r o c c u r r e d .

Our fourth and last example, Figures 4a and 4b, displays an often-
found nonpor table code f ragment . This access to locat ion zero g ives a
memory fault on most VAX-11* and rC68000 systems. But on the PDP-11*,
o n e i s a l l o w e d t o a c c e s s l o c a t i o n z e r o (i n d e fi a n c e o f t h e R e f e r e n c e
Manual), which is why so much code was written that does exactly v^at
th is example does. Th is cod ing pract ice can be ext remely annoy ing to
UNIX* * po r te rs ; f o r i ns tance , t he abs t rac t f o r one po r t i ng ta l k a t t he
January 1983 UNICOM sarcastically promised to describe "the true meaning

F I G U R E 4 a

$ c a t - n n u l l p t r. c
1 ma inCargc , a rgv) i n t a rgc ; cha r *a rgv [] ;
2 {
3 i f (a r g v [l] [0] = & & a r g v [l] [l] = ' a ')
4 p r i n t f (" - a o p t i o n g i v e n . \ n ") ;
5 }

$ c c n u l l p t r. c
$ a . o u t - a
-a opt ion g iven.
$ a . o u t
Memory fau l t - core dumped
$

F I G U R E 4 b

$ bcc nu l l p t r. c
$ a . o u t - a
-a opt ion g iven.
$ a . o u t

n u l l p t r . c (3) : a t t a n p t t o i n d i r e c t a n u l l p o i n t e r

n u l l p t r . c (3) :
i f (a r g v [l] [0] — & & a r g v [l] [1 3 — ' o ')

>

$

*PDP-11 and VAX-11 are trademarks of Digital Equipment Corporation.

* * U N I X i s a t r a d e m a r k o f B e l l L a b o r a t o r i e s ,

Summer 83 Toronto Conference Proceedings 1 3

o f l o c a t i o n z e r o a n d i t s r e l e v a n c e t o U N I X . " F i g u r e 4 b s h o w s b e e ' s
r e s p o n s e t o t h e p r o b l e m .

One might want to simulate a machine where access to location zero
i s l e g a l , t o s i m p l y g i v e a w a r n i n g m e s s a g e v ^ e n l o c a t i o n z e r o i s
accessed. Bee 's responses to cer ta in er ror s i tua t ions , th is one among
them, can be changed by setting an environment variable.

£. Implementation
B c c i s a s o u r c e - t o - s o u r c e t r a n s f o r m e r w h i c h i n v o k e s t h e n o r m a l C

compi ler on the resul t o f a t ransformat ion. The actual source- to-source
t rans fo rmat ion p rogram is ca l led the "mapper " , fo r h i s to r i ca l reasons .
Figure 5 depic ts the log ica l s t ructure of the mapper; the three phases
shown are logical divisions of the code, rather than separate processes.
The mapper ac tua l ly cons is ts o f mapc, a tab le-dr iven source- to -source
transformat ion tool , and " the map", the table of parse t ree t ransforma
tion rules that drives it. Given an empty map, mapc makes essentially
no change in a program; but given the map used for bcc, it makes per
vasive changes, as i l lust rated in F igure 6.

In addi t ion to the mapper, there is an extensive l ibrary of encap
sula t ions. Each funct ion in the s tandard l ib rary which takes or re turns

F I G U R E 5

B C C ' s M A P P E R
i

(f r o m preprocessed C
1

t e x t 1 1 1
C — > 1 P A R S I N G 1 1
p r e p r o c e s s o r) 1 1 1

1

p a r s e I t r e e s I
V 1

1
1 1 1
1 M A P P I N G 1 1
1 1 1

1
p a r s e I t r e e s I

V 1

(t o mapped C
• - - - 1

t e x t 1 1 1
C < - 1 U N P A R S I N G 1 1
c o m p i l e r) 1 1 1

1

1 4 USENIX, Software Tools

FIGURE 6: BEFORE AND AFTER SOURCE-TO-SOURCE TRANSFORMATION

Hiis tpnsfonnation was targeted to an MC68000, on which ints
and pointers are 4 bytes long but are aligned only on even-
byte boundaries.

B E F O R E :

f () { / * n o n s e n s e f u n c t i o n * /
i n t a [1 0] , i , * p ;
*pH- = a [i] ;

}

A F T E R :
i n t f (Zfi lenam,Z tokno) cha r (*Zfi lenam) ; i n t Z tokno ;

{ r e g i s t e r c h a r (* (* Z t a)) ;
au to i n t aC10] ; au to i n t i ; au to i n t (* p [3]) ;
* { i n t (*)) Z c h k i n d (Z i n c r (p , 4 , 2 , " fi l e . c " , 1 8) , 4 , 2 ,
" fi l e . c " , 1 6) = * (i n t (*)) Z c h k a b (a , 4 0 , 4 , 2 , i ,
" fi l e . c " , 2 1) ;
}

a pointer must be separately encapsulated. In the bcc world, pointers
include a low and high bound; each encapsulat ion is an error-checking
interface between the bcc world and a normal l ibrary function.

C o n c l u s i o n

We chose the source-to-source approach because it is a portable
approach. Bcc is almost trivially portable except for the differences

o

in s tandard l ib rar ies between vers ions o f UNIX. Hovrever, th is source-
to-source approach has its costs. A bcc compilation takes about three
times as long as a normal compilation; and the resultant executable file
is 2 to 3 times larger, and executes an order of magnitude slower, than
the corresponding result of a normal compilation.

The C programmer, valuing efficiency, may be tempted to ask whether
he or she can afford runtime checking. The C programmer values effi
ciency One can first note that bcc is not intended to be used for every
compilation; nor is the bcc executable intended for production use.
Runtime errors are usually found near the start of execution; in our
experience, the execution slowdown has not been a problem.

^Because each library function v^ich takes or returns a pointer must
be separately encapsulated, bcc is much easier to port between different
CPUs running the same version of UNIX than it is to port between
identical CPUs running different versions of UNIX.

83 Toronto Conference Proceedings
1 5

Moreover, one cannot ignore human efficiency. Every C programmer
can probably remonber times when he or she spent hours, even days,
searching for a bug which could have been located almost ^ immediately
with runtime checking. And equally important, runtime checking can find
bugs whose existence would not otherwise have been noticed, bugs vrfiich
would have become rel iabi l i ty or securi ty problems.

A c k n o w l e d g e m e n t s

Chaim Schaap was responsible for many key insights and design princi
ples. The advice of Mike Douglas was also invaluable. Chaim Schaap,
Jahanshah More, Allen Wolovsky, and Charles Perkins were helpful in
shaping this paper.

B i b l i o g r a p h y

A d a S t a n d a r d
Mi l i tary Standard, Ada Programming Language, ANSI/MIL-STD-
1815A (January 22, 1983).

Johnson Johnson, S. C., Lint, a C Pr^ram Checker, in various UNIX
d o c u m e n t a t i o n c o l l e c t i o n s (1 9 7 8) .

Joy, Graham and Haley
Joy, William N., Susan L. Graham, and Charles B. Haley, Berke
l e y P a s c a l U s e r ' s M a n u a l — Ve r s i o n 2 . 0 (1 9 8 0) .

L e B l a n c a n d F i s c h e r
LeBlanc, R. J., and C. N. Fischer, "A Case Study of Run-Time
E r r o r s i n P a s c a l P r o g r a m s " , S o f t w a r e — P r a c t i c e a n d E x p e r i e n c e ,
Vo l . 1 2 , 8 2 5 - 8 3 4 (1 9 8 2) .

Ritchie Ritchie, D. M., "C Reference Manual", Appendix A of B. W. Ker-
n i g h a n a n d D . M . R i t c h i e , T h e C P r o g r a m m i n g L a n g u a g e ,
P r e n t i c e - H a l l , I n c . (1 9 7 8) .

USENJX, Software Tools

