
TopSPIN
Version 2.2

Automatic symmetry reduction
for the SPIN model checker

User Manual
Alastair F. Donaldson



Before You Begin

What this manual covers

This user manual provides details of how to download, install and use TopSPIN, an automatic symme-
try reduction tool for the SPIN model checker. TopSPIN can potentially aid in the verification of safety
properties of concurrent systems specified in Promela.

• Downloading and Installing Chapter 1 provides details of other packages on which TopSPIN

depends, including where these packages can be found, and explains how to download and install
TopSPIN.

• Worked Example Chapter 2 provides a worked example showing how to run TopSPIN to obtain
symmetry reduction for an example specification.

• Overview of Options An overview of TopSPIN options is presented in Chapter 3.
• Limitations A summary of limitations of TopSPIN is given in Chapter 4.
• Compiling from Source For users who wish to experiment further with TopSPIN, Chapter 5

explains how to obtain, compile and test the TopSPIN source code.
• Troubleshooting and Bug Reporting Chapter 6 presents solutions to common problems asso-

ciated with the installation and operation of TopSPIN, and provides details of how bugs should
be reported.

What this manual does not cover

• Theory Users interested in the theory on which TopSPIN is based should refer to relevant papers
and a Ph.D. thesis, which are available from the tool web page (see below).

• Use of SPIN This manual assumes that the reader is familiar with the SPIN tool and the Promela
language. Details of and documentation for the SPIN tool are available from the SPIN web page.1

Online resources

• TopSPIN web page http://www.allydonaldson.co.uk/topspin/
• SourceForge https://www.sourceforge.net/projects/symmetryglasgow/

1. http://www.spinroot.com/



Contents

1 Downloading and Installing 4
1.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Downloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Installing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Compiling saucy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Creating a GAP workspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Executing the TopSPIN jar file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Worked Example 7
2.1 Loadbalancer specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Applying SPIN to the loadbalancer specification . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Setting up a TopSPIN configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Symmetry reduction with the fast strategy . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Running TopSPIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Compiling and executing the sympan verifier . . . . . . . . . . . . . . . . . . 10

2.5 Symmetry reduction with the enumerate strategy . . . . . . . . . . . . . . . . . . . . . 10
2.6 Summary so far . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Overview of Options 12
3.1 Online help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Command-line options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 -check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 -detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 -relaxedarrayindexing . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.4 -relaxedassignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Mandatory configuration file options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 saucy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 common . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Configuration file options for symmetry detection . . . . . . . . . . . . . . . . . . . . . 13
3.4.1 explain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.2 timebound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.3 conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.4 symmetryfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Configuration file options for symmetry reduction . . . . . . . . . . . . . . . . . . . . . 15
3.5.1 strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.2 transpositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.3 stabiliserchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.4 vectorise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.5 parallelise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.6 cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.7 target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Configuration file options for usability . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.1 profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.2 verbose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6.3 quiet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



4 Limitations 17
4.1 Process instantiation and dynamic process creation . . . . . . . . . . . . . . . . . . . . 17
4.2 Process termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 The _pid variable should be used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Restrictions on channels∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Never claims, trace/notrace constructs, accept and progress labels . . . . . . . . . . . 20
4.6 Exclusive send/recieve (xs/xr) channel assertions . . . . . . . . . . . . . . . . . . . . . 20
4.7 Unsigned data type∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.8 Sorted send, random receive (!! and ?? operators) . . . . . . . . . . . . . . . . . . . . . 20
4.9 Embedded C code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.10 Breadth-first search∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Compiling From Source 22
5.1 Downloading TopSPIN source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Generating the Promela parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Compiling and creating a jar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3.1 Compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.2 Creating a jar file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.4 Try your compiled version on an example . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.5 Acceptance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.5.1 Setting up a configuration file for testing . . . . . . . . . . . . . . . . . . . . . . 24
5.5.2 Running the tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5.3 Problems running the tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Troubleshooting and Bug Reporting 26
6.1 Common problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1.1 Missing configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.2 Incomplete configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.1.3 The saucy program is not correctly installed . . . . . . . . . . . . . . . . . . . . 26
6.1.4 Path to saucy in configuration file is wrong . . . . . . . . . . . . . . . . . . . . 26
6.1.5 GAP is not correctly installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.6 Path to GAP in configuration file is wrong . . . . . . . . . . . . . . . . . . . . . 27
6.1.7 Common directory does not exist, or user does not have permissions for this

directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.8 Path to Common directory does not have terminating slash . . . . . . . . . . . . 27
6.1.9 Missing or corrupt GAP workspace . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.10 GAP executable specified in configuration file, instead of shell script/batch file . . 28
6.1.11 SPIN is not correctly installed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.12 C preprocessor, cpp, unavailable . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.13 Typechecking error: problem with array index . . . . . . . . . . . . . . . . . . . 29
6.1.14 Typechecking error: problem with assignment to numeric variable . . . . . . . . 29
6.1.15 Error during verification: “bad proctype” . . . . . . . . . . . . . . . . . . . . . 29

6.2 Reporting bugs in TopSPIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Reporting bugs in this manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 Getting in touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



1
Downloading
and Installing

1.1 Prerequisites

TopSPIN is written in Java and GAP, interfaces with the GAP and SPIN packages, and produces C code
which must then be compiled. Figure 1.1 summarises the packages which must be installed before
TopSPIN can be used, and provides a URL for each package. For each package, the version used during
the development of TopSPIN is specified. Use of these or newer versions is recommended.

Before going further, make sure each of the packages of Figure 1.1 is installed on your system.
It is sufficient to download and install the GAP core package only. The archive of redistributed GAP

packages, referred to as packages-... in the GAP installation instructions, is not mandatory.

Important Make sure that the SPIN tool is installed in such a way that it can be invoked by name from a
command prompt, i.e. so that typing spin will launch SPIN. This is usually achieved by adding the folder
for the SPIN executable to your path environment variable. To verify that SPIN is set up appropriately,
type spin in a fresh command prompt. You should see something like:
C:\>spin
Spin Version 5.1.6 -- 9 May 2008
reading input from stdin:

If you have renamed the SPIN executable from spin to something like spin-linux or spin516 then you
will get errors when you run TopSPIN.

1.2 Downloading

To download TopSPIN version 2.2, go to the TopSPIN web page:
http://www.allydonaldson.co.uk/topspin/

and download the following file:
TopSPIN_2.2.tgz

Use the tar utility, the WinRAR tool,1 or another suitable program to extract this archive to an appro-
priate location, e.g. C:\Program Files\TopSPIN_2.2 under Windows, or /usr/local/TopSPIN_2.2
under Linux. This location is referred to as the TopSPIN root directory.

The archive should contain the following:
• TopSPIN.jar Executable jar for the TopSPIN program
• documentation Folder containing this document, some related research papers and a Ph.D.

thesis

1. http://www.rarlab.com/

Package URL Version
Java runtime environment http://java.sun.com/ 1.5.0 06
GAP system http://gap-system.org/ 4.4.6
SPIN model checker http://www.spinroot.com/ 5.1.7
GNU C Compiler (gcc) http://gcc.gnu.org/ 3.4.4

Figure 1.1: TopSPIN prerequisites.



• examples Folder containing example Promela specifications for use with TopSPIN

• Common Folder containing various GAP and C files files used by TopSPIN

• saucy Folder containing source code for the saucy program, which must be compiled (as
described in §1.3.1) before TopSPIN can be used.

1.3 Installing

1.3.1 Compiling saucy

TopSPIN uses a prototype extension of the saucy program, which is used to compute symmetries of
directed graphs. A version of saucy with this capability will eventually be available from the saucy
website.2 For the time being, a source distribution of saucy with the required extended functionality is
provided with TopSPIN.3

Before using TopSPIN, you need to compile saucy on your platform. To do this, navigate to the
saucy folder, which is inside the TopSPIN root directory, and type make:
C:\Program Files\TopSPIN_2.2>cd saucy
C:\Program Files\TopSPIN_2.2\saucy>make
gcc -ansi -pedantic -Wall -O3 -c -o main.o main.c
gcc -ansi -pedantic -Wall -O3 -c -o saucy.o saucy.c
gcc -ansi -pedantic -Wall -O3 -c -o saucyio.o saucyio.c
gcc -o saucy main.o saucy.o saucyio.o

1.3.2 Creating a GAP workspace

In order to start GAP efficiently, TopSPIN requires a GAP workspace to be set up. Essentially, a workspace
is an image of a GAP session with a selection of libraries and files already loaded and ready to be
executed. For TopSPIN, the workspace consists of the GAP components of TopSPIN which have been
developed for automatic symmetry reduction. These are in the Common folder, inside the TopSPIN root
directory.

Navigate into the Common folder, and start GAP. GAP is usually started via a shell script (under
Linux) or batch file (under Windows). If the folder containing this script/batch file is on your path then
you should be able to start GAP simply by typing gap. Otherwise, start the tool by typing the full path
for the script/batch file, e.g.
C:\gap4r4\bin\gap

or
/home/username/bin/gap

You should see something like this:
C:\Program Files\TopSPIN_2.2>cd Common

C:\Program Files\TopSPIN_2.2\Common>gap

C:\Program Files\TopSPIN_2.2\Common>rem sample batch file for GAP

C:\Program Files\TopSPIN_2.2\Common>C:\GAP4R4\bin\gapw95.exe -m 14m
-l C:\GAP4R4\

######### ###### ########### ###
############# ###### ############ ####
############## ######## ############# #####
############### ######## ##### ###### #####
###### # ######### ##### ##### ######
###### ########## ##### ##### #######
##### ##### #### ##### ###### ########
#### ##### ##### ############# ### ####
##### ####### #### #### ########### #### ####

2. http://vlsicad.eecs.umich.edu/BK/SAUCY/
3. Permission for including the saucy distribution with TopSPIN has been granted by Paul Darga, lead developer of saucy.



##### ####### ##### ##### ###### #### ####
##### ####### ##### ##### ##### #############
##### ##### ################ ##### #############
###### ##### ################ ##### #############
################ ################## ##### ####
############### ##### ##### ##### ####

############# ##### ##### ##### ####
######### ##### ##### ##### ####

Information at: http://www.gap-system.org
Try ’?help’ for help. See also ’?copyright’ and ’?authors’

Loading the library. Please be patient, this may take a while.
GAP4, Version: 4.4.6 of 02-Sep-2005, i686-pc-cygwin-gcc
Components: ...
gap>

Now create a workspace as follows:
gap> Read("WorkspaceGenerator.gap");
gap> SaveWorkspace("gapworkspace");
true
gap> quit;

Ensure that these commands are typed exactly as shown, ensuring that the semi-colon is included after
the quit command. When you exit GAP, you should find a file called gapworksapce in the Common

directory.

1.4 Executing the TopSPIN jar file

It should now be possible to run the TopSPIN jar file on no input to display a list of TopSPIN options:
C:\>java -jar "C:\Program Files\TopSPIN_2.2\TopSPIN_2.2.jar"

Error: no input file specified.

To run TopSPIN on an input file:
[command-line options] <inputfile>

For help on command-line or config file option:
help <option>

For list of options:
help

Successfully displaying this message confirms that the Java runtime environment is correctly installed
on your system, and that the TopSPIN jar file you have obtained is in working order. If TopSPIN does not
correctly display its options, proceed to Chapter 6 to try to deduce what is wrong, and to file a bug report
if necessary.

In Chapter 2, instructions for running TopSPIN to perform symmetry reduction on a Promela
specification are given.



2 Worked Example

In this chapter, the basic workings of TopSPIN are illustrated via a worked example.

2.1 Loadbalancer specification

The examples folder in the TopSPIN root directory contains a file, loadbalancer.p. This is a Promela
specification for a loadbalancer, which forwards requests from a pool of clients to a pool of servers in a
fair manner.

Components in the loadbalancer are a set of 2 server and 4 client processes with associated com-
munication channels, and a loadbalancer process with a dedicated input channel. The load of a server is
the number of messages queued on its input channel. Client processes send requests to the loadbalancer,
and if some server’s channel is not full, the loadbalancer forwards a request nondeterministically to one
of the least-loaded server queues. Each request contains a reference to the input channel of its associated
client process, and the server designated by the loadbalancer uses this channel to service the request.

2.2 Applying SPIN to the loadbalancer specification

Before applying TopSPIN to this example, it is worth checking that SPIN is in good working order by
model checking the example without symmetry reduction.

Navigate to the examples directory, and run the following commands:
C:\Program Files\TopSPIN_2.2\examples>spin -a loadbalancer.p
C:\Program Files\TopSPIN_2.2\examples>gcc -o pan -O2 -DSAFETY pan.c
C:\Program Files\TopSPIN_2.2\examples>pan -m100000

SPIN should successfully verify that the model associated with the specification is deadlock-free, pro-
ducing output similar to:
(Spin Version 5.1.6 -- 9 May 2008)

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 108 byte, depth reached 73413, errors: 0
170903 states, stored
413074 states, matched
583977 transitions (= stored+matched)

6 atomic steps
hash conflicts: 48755 (resolved)

24.974 memory usage (Mbyte)

unreached in proctype client
line 20, state 6, "-end-"
(1 of 6 states)

unreached in proctype loadBalancer
line 34, state 13, "-end-"
(1 of 13 states)

unreached in proctype server



line 43, state 7, "-end-"
(1 of 7 states)

unreached in proctype :init:
(0 of 9 states)

pan: elapsed time 0.818 seconds pan: rate 208927.87 states/second

2.3 Setting up a TopSPIN configuration file

You are almost ready to use TopSPIN for symmetry reduction! When you invoke TopSPIN on a Promela
specification, the tool requires that a file called config.txt is available in the current directory. This file
tells TopSPIN where to find the GAP and saucy programs, the location of some common source code, and
the values of various runtime options. The file consists of a series of lines, each of which has the form:

attribute=value

Three attributes are required in every configuration file:

1. gap – the absolute path for the shell script or batch file required to launch GAP. The value for
the gap attribute must be such that typing this value at the command prompt is all that is required
to launch the GAP program.

2. saucy – the absolute path for the saucy executable. Again, the value for the saucy attribute
must be exactly what you type to run saucy from the command line.

3. common – the absolute path to the Common directory in the TopSPIN root directory, followed by
a (back- or forward-, depending on your operating system) slash.

Under Windows, config.txt might look like this:
gap=C:\gap4r4\bin\gap.bat
saucy=C:\Program Files\TopSPIN_2.2\saucy\saucy.exe
common=C:\Program Files\TopSPIN_2.2\Common\

whereas a possible Linux version of config.txt could be:
gap=/home/username/bin/gap
saucy=/users/grad/ally/TopSPIN_2.2/saucy/saucy
common=/users/grad/ally/TopSPIN_2.2/Common/

Note that the gap option should not specify the GAP executable itself, rather the shell script (gap.sh) or
batch file (gap.bat) used to launch GAP.

The remainder of config.txt is used to specify TopSPIN options for a particular specification.
One of these options is discussed in §2.5, and a complete overview of options is given in Chapter 3.

A configuration file must always be present in the directory from where you invoke TopSPIN. You
will probably use different configuration files for different specifications, depending on the nature of the
symmetry associated with these specifications. However, since the gap, saucy and common attributes are
likely to be the same in all configuration files, it makes sense to keep a “skeleton” configuration file
containing just these options, which you can then copy and extend for a given Promela specification.

2.4 Symmetry reduction with the fast strategy

When you run TopSPIN, you can specify a symmetry reduction strategy for the tool to use. The choice
of strategy influences the speed of symmetry reduction and the factor of reduction obtained though the
use of symmetry. Some strategies provide the maximum possible state-space reduction due to symmetry,
at the expense of a slow state-space search. Other strategies are more lightweight, providing potentially
sub-optimal reduction, but executing more quickly.

By default, TopSPIN uses the fast strategy. In a nutshell, when using this strategy TopSPIN at-
tempts to work out an efficient symmetry reduction algorithm based on the type of symmetry associated
with the input specification. The symmetry reduction algorithm used is approximate in the sense that it
may result in exploration of more than one state per symmetric equivalence class.



2.4.1 Running TopSPIN

Copy config.txt, the basic configuration file created in §2.3, into the examples directory, and run
TopSPIN on loadbalancer.p as follows:1

C:\Program Files\TopSPIN_2.2\examples>cp ../config.txt .
C:\Program Files\TopSPIN_2.2\examples>java -jar

"C:\Program Files\TopSPIN_2.2\TopSPIN.jar" loadbalancer.p
File: loadbalancer.p
--------------------------------------
TopSPIN version 2.2
--------------------------------------
Configuration settings:

Symmetry detection method: static channel diagram analysis
Using 0 random conjugates
Timeout for finding largest valid subgroup: 0 seconds
Reduction strategy: FAST
Using transpositions to represent permutations: true
Using stabiliser chain for enumeration: true
Using vectorisation: false

--------------------------------------

Typechecking input specification...

Specification is well typed!

Launching saucy via the following command: C:\Program Files\TopSPIN_2.2\saucy\saucy.exe -d
"C:\Program Files\TopSPIN_2.2\Common\graph.saucy"

Starting GAP with command: C:\gap4r4\bin\gap.bat -L
"C:\Program Files\TopSPIN_2.2\Common\gapworkspace" -q

The group:
G = <(3 4)(clients2 clients1),(3 2)(clients0 clients1),(servers1 servers0)(7 6),

(5 4)(clients2 clients3)>
is a valid group for symmetry reduction.

Generating symmetry reduction algorithms

The symmetry group has size 48
Completed generation of sympan verifier which includes algorithms for symmetry reduction!

To generate an executable verifier use the following command:
gcc -o sympan sympan.c group.c

together with SPIN compile-time directives for your specification.

Execute the verifier using the following command:
sympan.exe

together with SPIN run-time options for your specification.

If TopSPIN does not produce output like this, then proceed to Chapter 6 to try to deduce what is wrong,
and to file a bug report if necessary.

The first part of the TopSPIN output specifies which version of the tool is being used, and how
the various tool options have been configured. These options have all been set to default values. For now,
simply note that the fast strategy is being used.

The tool then typechecks the input specification, reporting that the specification is well-typed.
After typechecking, the saucy and GAP programs are launched, to perform automatic symmetry

detection. Note that the paths to these tools have been taken from the configuration file. The saucy
tool is passed the -d option to indicate that the graph it will operate on is directed. A temporary file,
graph.saucy, is also passed to the program: this is a graph generated by TopSPIN from which symmetries
of loadbalancer.p are derived. The GAP package is launched with the -L option to indicate that a
workspace (§1.3.2) should be loaded. The path to this workspace – gapworkspace inside the Common

directory – is also passed to GAP. The -q operation launches GAP in quiet mode, which improves the
efficiency of communication between the GAP and Java components of TopSPIN.

1. For reasons of space, some lines in the TopSPIN output have been wrapped. Also note that the output on your system will
vary slightly according to the paths you have specified in config.txt.



TopSPIN successfully computes generators for a group of symmetries associated with the load-
balancer specification. From the generators of this group, it can be seen that there is full symmetry
between the client processes, as well as symmetry between the server processes. TopSPIN then goes on
to generate symmetry reduction algorithms for this group, reporting that the number of symmetries is
48 (4! symmetries between the clients, and 2 symmetries between the servers, leads to 24 × 2 = 48
symmetries overall).

The end of the TopSPIN output details how the C files generated by SPIN and TopSPIN should be
compiled and executed.

2.4.2 Compiling and executing the sympan verifier

The examples directory should now contain a number of files, including sympan.c and group.c. The
sympan.c file is a modified version of the pan.c file produced by SPIN, which includes symmetry reduc-
tion algorithms. The group.c file includes functions for manipulating permutations.

Compile and execute this verifier using commands analogous to those shown in §2.2:
C:\Program Files\TopSPIN_2.2\examples>gcc -o sympan -O2 -DSAFETY sympan.c group.c
C:\Program Files\TopSPIN_2.2\examples>sympan -m100000

(Spin Version 5.1.6 -- 9 May 2008)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 108 byte, depth reached 2323, errors: 0
4960 states, stored

12254 states, matched
17214 transitions (= stored+matched)

6 atomic steps
hash conflicts: 35 (resolved)

5.735 memory usage (Mbyte)

unreached in proctype client
line 20, state 6, "-end-"
(1 of 6 states)

unreached in proctype loadBalancer
line 34, state 13, "-end-"
(1 of 13 states)

unreached in proctype server
line 43, state 7, "-end-"
(1 of 7 states)

unreached in proctype :init:
(0 of 9 states)

pan: elapsed time 0.369 seconds pan: rate 13441.734 states/second

Comparing this model checking result with the result without symmetry reduction (§2.2) shows that
the fast strategy leads to a state-space reduction factor of 34.5. The theoretical maximum symmetry
reduction factor is 48, which is the size of the symmetry group computed by TopSPIN, so this is a
reasonably good result. Notice that speedup factor is just 2.2, and as a result the states/second rate for
verification is significantly lower when symmetry reduction is applied.

2.5 Symmetry reduction with the enumerate strategy

Although the fast strategy provides effective symmetry reduction for the loadbalancer example, the
strategy does not provide space-optimal symmetry reduction. The enumerate strategy, on the other hand,
is guaranteed to provide full symmetry reduction.

To use the enumerate strategy, open config.txt in the examples directory, and add the follow-
ing line:



strategy=enumerate

This additional option tells TopSPIN to use the enumerate strategy over the default fast strategy.
Now apply TopSPIN to the loadbalancer specification, and compile and run the generated verifier:

C:\Program Files\TopSPIN_2.2\examples>java -jar
"C:\Program Files\TopSPIN_2.2\TopSPIN.jar" loadbalancer.p

... TopSPIN output ...

C:\Program Files\TopSPIN_2.2\examples>gcc -o sympan -O2 -DSAFETY sympan.c group.c
C:\Program Files\TopSPIN_2.2\examples>sympan -m100000

(Spin Version 5.1.6 -- 9 May 2008)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 108 byte, depth reached 1916, errors: 0
4213 states, stored

11181 states, matched
15394 transitions (= stored+matched)

6 atomic steps
hash conflicts: 23 (resolved)

5.638 memory usage (Mbyte)

unreached in proctype client
line 20, state 6, "-end-"
(1 of 6 states)

unreached in proctype loadBalancer
line 34, state 13, "-end-"
(1 of 13 states)

unreached in proctype server
line 43, state 7, "-end-"
(1 of 7 states)

unreached in proctype :init:
(0 of 9 states)

pan: elapsed time 0.647 seconds pan: rate 6511.592 states/second

Verification using the enumerate strategy provides a better reduction factor: 40.6 vs. 34.5 with the fast
strategy (§2.4). This comes at an expense: the speedup factor is reduced from 2.2 for the fast strategy
to 1.3. For specifications with more symmetric components, this time penalty is more significant: the
enumerate strategy works by applying every symmetry associated with the input specification to every
state encountered during model checking. Since a specification with n symmetric components has a
symmetry group of size at least n!, use of the enumerate strategy quickly becomes infeasible.

2.6 Summary so far

You should now have successfully installed TopSPIN and its prerequisite components, created a configu-
ration file, and applied the tool to a Promela example. If you have encountered any problems during this
process then proceed to Chapter 6 for troubleshooting ideas and information on how to report TopSPIN

bugs.
At this stage, you may have learned all you need to know about TopSPIN for your basic sym-

metry reduction needs. Chapters 3 and 5 are for advanced users who wish to explore TopSPIN’s more
sophisticated options, and compile the tool from source, respectively.



3 Overview of Options

This chapter will be expanded into a complete reference for the various TopSPIN options. At the moment,
every option is listed, but some of the descriptions are minimal.

3.1 Online help

Running TopSPIN with a single argument, help, displays a list of command-line switches and configu-
ration file options for which short help messages can be generated.

Running TopSPIN with two arguments, help <option>, where <option> is one of the
options for which help is available, displays a short message describing the function of the option.

3.2 Command-line options

3.2.1 -check

Apply this switch to just type-check a specification. Type checking will be symmetry-aware: the checker
will report errors if the specification contains features which will cause symmetry detection to fail, e.g.
arithmetic on pid variables, or absence of an init process.

When using the -check option it is not necessary to use config.txt, as the typechecking
process does not depend on other tools or options.

3.2.2 -detect

Apply this switch to type-check and detect symmetry for a specification, but not apply symmetry reduc-
tion. TopSPIN will report the symmetries it computes, indicating whether there are problems in detecting
symmetry. This option can be useful if you want to find out the extent to which symmetry is present in
a model, but not actually do symmetry reduction.

Because this option does not require the output of symmetry reduction algorithms, TopSPIN

will detect symmetries for specifications containing features which are not supported for symmetry
reduction, e.g. a never claim. The idea here is that these features could, in principle, be supported
fully, and determining whether symmetry is present may still be of interest.

3.2.3 -relaxedarrayindexing

TopSPIN is based on the ETCH typechecker, which tries to help modellers improve the quality of their
specifications by performing relatively strict type-checking. In particular, ETCH does not allow an array
to be indexed by an expression with a numeric type larger than byte. This is because the maximum
size of an array in Promela is 255, which is also the largest byte value.

So, for example, the following code snippet will cause a type error:
mtype myArray[12];
int x;
x = ...;
myArray[x] = ...

due to the fact that myArray has been indexed by x, which has type int.
Sometimes, in practice, it is useful to index an array using a larger type than byte, e.g. so that a

non-byte value like -1 can be used to represent a null index. For this reason, TopSPIN can be passed the



-relaxedarrayindexing command-line option, instructing the tool to allow indexing of arrays by
expressions of any numeric type.

Note that the efficiency of a verification model can be improved by using smaller types: an
int takes up more state-vector space than a byte, so the user should consider re-modelling their
specification to use byte variables to index arrays where possible.

3.2.4 -relaxedassignment

As with array indexing, TopSPIN performs strict typechecking of numeric assignments by default, and
rejects assignments from an expression of a “large” integer type (e.g. short) to a “smaller” integer type
(e.g. bit). This is to prevent arithmetic overflow where possible.

So, for example, the following code snippet will cause a type error:
byte k;
k = -1;

due to the fact that -1 has type short, which is a larger type than byte.
Because SPIN is not as strict as this, practical examples may rely on this kind of assignment. For

this reason, specifying -relaxedassignment on the command line tells TopSPIN to allow a variable
of any numeric type to be assigned the result of an expression of any numeric type.

As in §3.2.3, note that where possible, smaller numeric types should be used for reasons of
efficiency. If you find you need the -relaxedassignment option then consider whether you could
refactor your specification to use smaller types, removing the need for this option and reducing the size
of the state-vector.

3.3 Mandatory configuration file options

3.3.1 saucy

String option specifying path to the saucy program. This option must be set by the user.

3.3.2 common

String option specifying path to the Common directory, which is part of the TopSPIN distribution. This
option must be set by the user.

3.3.3 gap

String option specifying path to the GAP program. This option must be set by the user.

3.4 Configuration file options for symmetry detection

3.4.1 explain

TopSPIN detects symmetry by finding the static channel diagram for the input specification, computing
its symmetries, and checking these symmetries for validity against the Promela specification. Some
symmetries may not be valid: TopSPIN will try to compute the largest valid set of static channel diagram
symmetries.

If you have written a specification which you expect to be symmetric, but for which TopSPIN

reports invalid symmetries, it may be interesting to inspect the reason for this invalidity: it could indicate
a typo in the specification, a misunderstanding on the part of the user, or a limitation of TopSPIN.

Setting explain to a positive integer n tells TopSPIN to output explanations for the first n
invalid symmetries. An “explanation” for an invalid symmetry α consists of a pair of text files, one
called m original.txt, the other m permuted.txt (where m < n). The original file shows
the input specification before α is applied, then shows the specification after normalization has taken
place. The permuted file shows the input specification after α has been applied, then shows the permuted



specification after normalization. TopSPIN regards a symmetry as valid if these normalized specifications
are the same, so obviously they will not be identical for α.

The two text files can be compared with a diff tool (e.g. the excellent WinMerge1). Looking at
the differences in the normalized parts should be instructive as to why the given symmetry is not valid.

By way of example, here is a mutual exclusion specification with five processes:
mtype = {N,T,C}
mtype st[6]=N

proctype user() {
do

:: d_step { st[_pid]==N -> st[_pid]=T }
:: d_step { st[_pid]==T &&

(st[1]!=C && st[2]!=C && st[1]!=C && st[4]!=C && st[5]!=C)
-> st[_pid]=C

}
:: d_step { st[_pid]==C -> st[_pid]=N }

od
}

init {
atomic {

run user();
run user();
run user();
run user();
run user();

}
}

Running TopSPIN on this example, in verbose mode and with explain=1, produces output
including the following:
Saucy computed the following generators for Aut(SCD(P)):

Aut(SCD(P)) = <(3 2),(2 1),(3 4),(5 4)>
--------------------------------------
Computing valid generators:

(3 2) : not valid
generating explanation in files 0_original.txt and 0_permuted.txt

(2 1) : not valid
(3 4) : not valid
(5 4) : valid

--------------------------------------

The tool has determined that the symmetry (3 2) which swaps user processes 3 and 2 is not
valid, and has written an explanation to the files 0_original.txt and 0_permuted.txt.

Figure 3.1 shows the results of comparing these files with WinMerge. This should alert the user
to the fact that the operand st[1] != C appears twice in the highlighted boolean expression: this is
clearly a mistake – one of these operands should be changed to st[2] != C to restore full symmetry
and presumably correct the model.

This illustrates the idea that presence of symmetry can actually be a correctness requirement in
its own right.
Default value: 0, i.e. no explanations will be given.

3.4.2 timebound

When detecting symmetry, TopSPIN may use a coset search to try to improve upon the initially computed
group of symmetries. This search can be time-consuming on particular examples. The timebound
integer option limits the length of time dedicated to this search to a maximum number of seconds.
Default value: 0, which is used to specify that the coset search should be unbounded.

3.4.3 conjugates

If the coset search is taking a long time, it is sometimes possible to speed things up by picking a num-
ber of candidate symmetries at random, finding the conjugate of each known valid generator by these

1. http://www.winmerge.org/



Figure 3.1: Comparing text files output by the explain option to see why symmetry (3 2) is not valid.

random elements, and then testing the conjugates for validity. This is based on the practical observation
that valid symmetries are often conjugate to other valid symmetries. The conjugates integer option
is used to specify how many conjugates to use.
Default value: 0. If symmetry detection is slow, try 5 conjugates.

3.4.4 symmetryfile

Sometimes TopSPIN is unable to automatically detect symmetry from an input specification even though
the user knows that symmetry exists. In this case, it is possible to specify a file containing generators for a
symmetry group. The name of this file is specified via the symmetryfile option. If symmetryfile
is set, TopSPIN will not attempt automatic symmetry detection, and will use the given group of symme-
tries for symmetry reduction.
Default value: no file specified, automatic symmetry detection will be attempted..

3.5 Configuration file options for symmetry reduction

3.5.1 strategy

String option specifying the strategy to use for symmetry reduction. Options are: fast, enumerate, hill-
climbing, segment, flatten, exactmarkers, approxmarkers.
Default value: fast.

3.5.2 transpositions

Boolean option stating whether to apply group elements as transpositions.
Default value: true.

3.5.3 stabiliserchain

Boolean option stating whether to use a stabiliser chain for enumeration.
Default value: true.

3.5.4 vectorise

Boolean option stating whether to use vector SIMD instructions for symmetry reduction. The nature of
the resulting vector code depends on the target configuration file option (see §3.5.7).
Default value: false.



3.5.5 parallelise

Boolean option stating whether to parallelise symmetry reduction using pthreads.
Default value: false.

3.5.6 cores

Integer option stating the number of cores available for parallel symmetry reduction.
Default value: 1.

3.5.7 target

String option specifying the target to use for vector and parallel symmetry reduction. Options are: PC,
CELL, POWERPC.
Default value: not set by default.

3.6 Configuration file options for usability

3.6.1 profile

Profile the performance of TopSPIN?
Default value: false.

3.6.2 verbose

Display progress of TopSPIN in detail?
Default value: false.

3.6.3 quiet

Suppress non-vital output?
Default value: false.



4 Limitations

Before using TopSPIN for advanced verification it is important to understand what can and cannot be
done with the tool. TopSPIN places various restrictions on the form a Promela specification may have.
Also, certain SPIN options are not (yet) compatible with symmetry reduction.

This section briefly described the limitations of TopSPIN. Limitations marked with an asterisk
could be removed with relative ease: they just haven’t been dealt with yet. If you’re working with SPIN

and TopSPIN and are being hindered by these restrictions then please get in tough (see §6.4) and efforts
will be made to add appropriate features to TopSPIN.

4.1 Process instantiation and dynamic process creation

TopSPIN requires all processes to be instantiated using run statements within an init process. The form
of the init process must be:

init {
atomic {

run ...;
run ...;
...
run ...;
<other statements>

}
}

i.e. all process must be started atomically, and must come before any other statements in the init process
(e.g. initialisation code), which must also appear within the atomic block.

In particular, TopSPIN does not support process instantiation using the active keyword, or via
run statements outside the init process.

If a specification relies on dynamic process creation then it may be possible to re-model the
processes as shown in Figures 4.1 and 4.2. Figure 4.1 shows a specification which instantiates copies
of proctype P dynamically. Assuming that 3 is an upper bound for the number of instances of P which
should be running at any time, Figure 4.2 shows an alternative way of expressing the specification. The
proctype P now includes a channel parameter, and an instance of P waits until it can receive on this
channel before executing its body. Its body is identical to the original, except that it includes a final goto

proctype P() {

/* body */

}

proctype Q() {
...

run P();

...
}

Figure 4.1: Skeleton Promela specification with dynamic process creation.



chan wakeup_P_1 = [0] of {bit};
chan wakeup_P_2 = [0] of {bit};
chan wakeup_P_3 = [0] of {bit}

proctype P(chan start) {

sleep:
start?1;

/* body */

goto sleep
}

proctype Q() {
...

if :: wakeup_P_1!1
:: wakeup_P_2!1
:: wakeup_P_3!1

fi;

...
}

init {
atomic {

/* original ‘run’ statements */

run P(wakeup_P_1);
run P(wakeup_P_2);
run P(wakeup_P_3)

}
}

Figure 4.2: Re-modelled Promela specification without dynamic process creation.

statement after which it returns to its initial configuration.1 The init process instantiates three copies
of P , each with a distinct synchronous channel. Instead of instantiating a copy of P , the proctype Q
now offers the literal value 1 to all channels on which instances of P may be listening. The example
of Figures 4.1 and 4.2 can be adapted to handle multiple process types, with any fixed upper bound for
each process type.

4.2 Process termination

Technically, process termination destroys symmetry in a Promela specification. SPIN only allows pro-
cesses to terminate in reverse order. So, if five identical, terminating client proctypes are launched
simultaneously with process identifiers in the range {1, 2, 3, 4, 5}, the processes will terminate one-by-
one in a fixed order: 5, 4, 3, 2, 1. This ordering on process identifiers breaks symmetry between the
processes.

Furthermore, the way symmetry reduction is implemented in TopSPIN is not strictly compatible
with process termination. After the initial state, TopSPIN assumes a fixed set of running processes. If
a process dies, TopSPIN may try to exchange this processes’s state with that of another process when
computing symmetry representatives, and this can (very occasionally) lead to verification-time errors
(see §6.1.15).

If you want to work with terminating processes, you can insert a dummy termination state at the
end of each proctype using a line like the following:
end_ok: false

1. This goto statement should really be part of an atomic block which also resets any local variables of the proctype to their
initial values.



mtype = {N,T,C}
mtype st[2]=N

proctype user(byte id) {
do

:: d_step { st[id]==N -> st[id]=T }
:: d_step { st[id]==T && st[0]!=C && st[1]!=C -> st[id]=C }
:: d_step { st[id]==C -> st[id]=N }

od
}

init {
atomic {

run user(0);
run user(1);

}
}

Figure 4.3: Promela specification which uses user-defined process identifiers.

mtype = {N,T,C} mtype st[3]=N;

proctype user() {
do

:: d_step { st[_pid]==N -> st[_pid]=T }
:: d_step { st[_pid]==T && st[1]!=C && st[2]!=C -> st[_pid]=C }
:: d_step { st[_pid]==C -> st[_pid]=N }

od
}

init {
atomic {

run user();
run user();

}
}

Figure 4.4: Re-modelled specification which uses the _pid variable.

The end label ensures that SPIN will not complain about instances of the proctype blocking at
this label, and the false statement ensures that proctype instances will never truly terminate.

4.3 The _pid variable should be used

For symmetry to be detected, it is important for proctypes to use their built-in _pid variable rather than
a user-defined process identifier. This is illustrated in Figures 4.3 and 4.4. Processes in Figure 4.3 are
parameterised by a byte identifier, which they use to index the st array. SymmExtractor is not yet so-
phisticated enough to work out the correspondence between the id parameter and the built-in identifier
for each process. However, the specification can be converted into a form which SymmExtractor can han-
dle, as shown in Figure 4.4. The disadvantage here is that position 0 of the array st is un-used, meaning
that an array of size three rather than two is required, increasing the state-vector size by one byte. On
the other hand, eliminating the id variables reduces the state-vector by two bytes, so the re-modelling
works well for this example.

4.4 Restrictions on channels∗

For simplicity, TopSPIN does not allow channel initialisers to be associated with channels which are
declared locally to a proctype, and does not currently support arrays of channels.



4.5 Never claims, trace/notrace constructs, accept and progress labels

These are method for specifying liveness properties in a Promela model. TopSPIN is not yet compat-
ible with verification of liveness properties, so you will get an error if you try to apply TopSPIN to a
specification containing one of these constructs.

Symmetry detection is still possible with liveness verification constructs. It is OK to apply
TopSPINto a specification containing a liveness construct with the -detect option (see §6.4). The
tool will tell you any symmetries it detects; it’s just not yet possible to exploit these symmetries when
model checking.

4.6 Exclusive send/recieve (xs/xr) channel assertions

This is not actually a restriction, rather a warning for users wishing to use these keywords.
Promela includes keywords xr and xs, which stand for exclusive receive and exclusive send re-

spectively. A process can include a declaration ‘xr name’, where ‘name’ is the name of a previously
declared channel, to indicate that only this process can receive messages on the channel. The xs key-
word is used similarly. Providing SPIN with this information can lead to more efficient partial-order
reduction. It is not possible to check, statically, whether xs and xr are used correctly, but incorrect uses
are flagged by SPIN during verification. These keywords do not affect the presence of symmetry in the
model associated with a specification, so are no problem for symmetry detection.

However, there is a potential problem with exploiting xs/xr information in conjunction with
symmetry reduction, described in Appendix C.1.1 of Donaldson’s thesis. In practice, the problem with
these keywords is unlikely to cause problems: there is a slim chance that if the keywords are used
incorrectly, symmetry reduction will prevent this from being flagged up during verification. Therefore,
TopSPIN does allow these features to be used, but it is the user’s responsibility to use them with care.

4.7 Unsigned data type∗

Promela supports an unsigned numeric type. A declaration of the form unsigned x : y declares an
integer variable x which takes non-negative values which can be represented using y bits. Clearly the use
of this data type will have no effect on our symmetry detection/reduction techniques. However, TopSPIN

is integrated with an enhanced Promela type checker which does not currently support the unsigned

data type. A temporary fix for this omission is to replace each occurrence of the unsigned keyword with
one of the other numeric types during symmetry detection.

4.8 Sorted send, random receive (!! and ?? operators)

Promela provides alternative channel operators: !! (sorted send) and ?? (random receive). Sending data
on a buffered channel using !! causes messages to be queued on the channel in sorted order. Messages
can be retrieved from the buffer in a random order using ??. These operators provide a useful alternative
to FIFO channel semantics. They also aid state-space reduction: storing channel contents in a sorted
manner can be seen as a form of state canonicalisation. However, storing pid messages in a sorted
queue imposes an ordering on the set of process identifiers. It is not immediately clear whether this
ordering has an effect on symmetry.

For the time being, TopSPIN allows the !! and ?? operators to be used, but they should be used
with care. If you get weird symmetry reduction results using these operators then please get in touch
(§6.4).



4.9 Embedded C code

Recent versions of SPIN allow C code to be embedded in a Promela specification, and certain variables
from the C part of the specification to be included in the SPIN state-vector. Automatic symmetry detection
for this mix of C and Promela is beyond the scope of TopSPIN at present.

4.10 Breadth-first search∗

TopSPIN has not been tested with breadth-first search, and will give an error message if sympan.c is
compiled with -DBFS.



( Compiling from Source

5.1 Downloading TopSPIN source code

The TopSPIN source code is stored in a Subversion repository, hosted by the Department of Computing
Science at the University of Glasgow at the following URL:
https://ouen.dcs.gla.ac.uk/repos/symmetry/

Use subversion to check out the TopSPIN source code to an appropriate location:
C:\prog>svn checkout https://ouen.dcs.gla.ac.uk/repos/symmetry/trunk TopSPINSource
A TopSPINSource/TestModels
A TopSPINSource/TestModels/EtchTesting
A TopSPINSource/TestModels/EtchTesting/ParsePassTests
A TopSPINSource/TestModels/EtchTesting/ParsePassTests/peterson
A TopSPINSource/TestModels/EtchTesting/ParsePassTests/hello
A TopSPINSource/TestModels/EtchTesting/ParsePassTests/pathfinder
A TopSPINSource/TestModels/EtchTesting/ParsePassTests/snoopy
A TopSPINSource/TestModels/EtchTesting/ParsePassTests/mobile1
A TopSPINSource/TestModels/EtchTesting/ParsePassTests/mobile2
A TopSPINSource/TestModels/EtchTesting/ParsePassTests/pftp
A TopSPINSource/TestModels/EtchTesting/ParsePassTests/leader
A TopSPINSource/TestModels/EtchTesting/ParsePassTests/loops
...
A TopSPINSource/Common/Minimising.gap
A TopSPINSource/Common/parallel_symmetry_cell_ppu.c
A TopSPINSource/Common/Verify.gap
A TopSPINSource/Common/WorkspaceGenerator.gap
A TopSPINSource/Common/parallel_symmetry_cell_spu.c
A TopSPINSource/Common/parallel_symmetry_cell_ppu.h
A TopSPINSource/symmextractor_common_config.txt
Checked out revision 75.

5.2 Generating the Promela parser

TopSPIN is based on a Promela parser which is constructed using the SableCC parser generator. Down-
load SableCC version 3.2 from the Sable website1, and generate the parser as follows (adapting the
command according to where you have installed SableCC):
java -jar C:\sablecc-3.2\lib\sablecc.jar promela.grammar

This command should result in output similar to the following:
C:\prog\TopSPINSource>java -jar C:\sablecc-3.2\lib\sablecc.jar
promela.grammar

SableCC version 3.2 Copyright (C) 1997-2003 Etienne M. Gagnon <etienne.gagnon@uqam.ca>
and others. All rights reserved.

This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.

Type ’sablecc -license’ to view the complete copyright notice and license.

-- Generating parser for promela.grammar in C:\prog\TopSPINSource
Adding productions and alternative of section AST.
Verifying identifiers.
Verifying ast identifiers.
Adding empty productions and empty alternative transformation if necessary.
Adding productions and alternative transformation if necessary.
computing alternative symbol table identifiers.

1. http://sablecc.org/



Verifying production transform identifiers.
Verifying ast alternatives transform identifiers.
Generating token classes.
Generating production classes.
Generating alternative classes.
Generating analysis classes.
Generating utility classes.
Generating the lexer.
State: INITIAL
- Constructing NFA.
..............................................................................
..............................................................................
- Constructing DFA.
..............................................................................
..............................................................................
- resolving ACCEPT states.
Generating the parser.
..............................................................................
..............................................................................

Due to a bug in SableCC, it is then necessary to apply a patch file to the generated parser. Do
this by executing the following command (you will need to have PERL installed: if you don’t, you could
easily re-write the PERL script in your favourite language!).
C:\prog\TopSPINSource>perl apply_patch.pl

5.3 Compiling and creating a jar

You have now downloaded and generated all the Java source code for TopSPIN, and can proceed to
compile this source code. The javac compiler and jar utility are required to compile the source and
create an executable jar file respectively. The source code is all contained in directories within src.

5.3.1 Compiling

There are two options for compilation:
1. Create an Eclipse project from the TopSPIN source code, in which case Eclipse will automatically

compile the code.
2. Use the make utility and the supplied Makefile to compile the source code, by typing the com-

mand make classes in the TopSPIN root directory. The provided Makefile uses the sed and
find utilities, which are provided as standard with Linux, and are available on Windows via
Cygwin.

Compiling the source code using the Makefile gives output along the following lines:
C:\prog\TopSPINSource>make classes
javac src/etch/checker/Check.java
Note: .\src\promela\parser\Parser.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
javac src/etch/checker/CheckerTest.java
javac src/etch/testing/EtchTestCase.java
javac src/etch/testing/EtchTester.java
javac src/group/Group.java
javac src/promela/analysis/ReversedDepthFirstAdapter.java
javac src/symmextractor/InlineReplacer.java
javac src/symmextractor/SymmExtractor.java
javac src/symmextractor/testing/SymmExtractorFailTestOutcome.java
javac src/symmextractor/testing/SymmExtractorRunTestOutcome.java
javac src/symmextractor/testing/SymmExtractorTestCase.java
javac src/symmextractor/testing/SymmExtractorTester.java
javac src/symmreducer/testing/ModelCheckingResult.java
javac src/symmreducer/testing/SymmReducerFailTestOutcome.java
javac src/symmreducer/testing/SymmReducerTestCase.java
javac src/symmreducer/testing/SymmReducerTester.java
javac src/testing/RunAllTests.java

Note the compile warnings generated for Parser.java: these are due to code generated by SableCC.
All other files should compile without warnings.



5.3.2 Creating a jar file

If you are using Eclipse then you can create an executable jar file for TopSPIN by exporting your TopSPIN

project as a jar, and selecting src.TopSpin as the main class.
If using the supplied Makefile, typing make jars will produce two jar files:

C:\prog\TopSPINSource>make jars

jar cmf manifest.txt TopSPIN.jar src/etch/checker/Check.class src/etch/checker/Checker.class
... <many .class files> ...
src/utilities/Strategy.class src/utilities/StringHelper.class src/promela/lexer/lexer.dat
src/promela/parser/parser.dat && echo "TopSPIN.jar built successfully."
TopSPIN.jar built successfully.

jar cmf tests_manifest.txt TopSPINTests.jar src/etch/checker/Check.class
src/etch/checker/Checker.class
... <many .class files> ...
src/utilities/Strategy.class src/utilities/StringHelper.class src/promela/lexer/lexer.dat
src/promela/parser/parser.dat && echo "TopSPINTests.jar built successfully."
TopSPINTests.jar built successfully.

Note that you can skip the make classes step, and type make jars to both compile the Java files and
produce jar files. To delete all jar and class files, use make clean.

5.4 Try your compiled version on an example

Now that you have successfully compiled a jar file from the TopSPIN source, you are effectively in the
same position as a user who has downloaded the TopSPIN jar file using the instructions given in §1.2. Of
course, you have the advantage of being able to modify TopSPIN to suit your purposes!

The next steps involve compiling saucy, creating a GAP workspace, and testing TopSPIN on a
simple example. Therefore you should work your way through Chapters 1 and 2, using your compiled
jar file in place of the downloaded jar file.

5.5 Acceptance Tests

The TopSPIN source checkout includes a reasonably large set of acceptance tests. It is highly recom-
mended that you run these tests using the instructions below before commencing any development work
on TopSPIN – passing the acceptance tests confirms that you are starting from a stable base. The accep-
tance tests can also be run regularly during development, to ensure that the addition of new features to
TopSPIN does not adversely affect the tool’s existing features.

Important Before running the acceptance tests, make sure that the GCC tool is installed in such a way
that it can be invoked by name from a command prompt, i.e. so that typing gcc will launch GCC. To
check this, try typing gcc from a fresh prompt. You should see something like:

C:\>gcc
gcc: no input files

5.5.1 Setting up a configuration file for testing

The TopSPIN test suite uses a called symmextractor_common_config.txt for some configuration op-
tions which apply to most tests. Open this file, and edit the gap line to use the appropriate command
for your setup. You should not have to change the Common or saucy lines: the source code checkout
is organised so that the saucy and Common directories are sub-directories of the directory in which
symmextractor_common_config.txt is contained.



5.5.2 Running the tests

You can now run the acceptance tests via the TopSPINTests.jar file:
java -ea -jar TopSPINTests.jar 2> temp.txt

The -ea argument switches on assertion checking, which is useful for finding potential problems with
TopSPIN. The final part of the command, 2> temp.txt, pipes error messages generated during testing
to the file temp.txt. This is useful since many of the tests are fail tests, which check that the TopSPIN

typechecker correctly rejects Promela specifications which are not suitable for processing by TopSPIN.
Redirecting these error messages to a text file means that the screen is not cluttered with error messages.

You should see something like this when you run the tests:
ETCH TESTS
==========

[PASS] expected and actual: BadlyTyped, file: TestModels/EtchTesting/FailTests/failrec...
[PASS] expected and actual: WellTyped, file: TestModels/EtchTesting/PassTests/testtele...
[PASS] expected and actual: WellTyped, file: TestModels/EtchTesting/PassTests/test_ex_...
[PASS] expected and actual: WellTyped, file: TestModels/EtchTesting/PassTests/testtele...
[PASS] expected and actual: BadlyTyped, file: TestModels/EtchTesting/FailTests/faildup...
[PASS] expected and actual: ParsePass, file: TestModels/EtchTesting/ParsePassTests/pet...
...

SYMMEXTRACTOR TESTS
===================

[PASS] expected and actual: (well typed, group size = 72, coset search: no), file: Tes...
[PASS] expected and actual: (well typed, group size = 1296, coset search: no), file: T...
[PASS] expected and actual: BreaksRestrictions, file: TestModels/SymmExtractorTests/Ba...
[PASS] expected and actual: (well typed, group size = 3628800, coset search: no), file...
[PASS] expected and actual: BreaksRestrictions, file: TestModels/SymmExtractorTests/Ba...
...

SYMMREDUCER TESTS
=================

[PASS] expected and actual: ((well typed, group size = 120, coset search: no), no. sta...
[PASS] expected and actual: ((well typed, group size = 3628800, coset search: no), no....
[PASS] expected and actual: ((well typed, group size = 6, coset search: no), no. state...
[PASS] expected and actual: ((well typed, group size = 5040, coset search: no), no. st...
[PASS] expected and actual: ((well typed, group size = 720, coset search: no), no. sta...
...

Summary:
238 passes
0 fails

Acceptance tests passed - you may commit your changes!

There are in the order of 250 test cases. These are divided into ETCH tests, which test the typecheck-
ing component of TopSPIN; SymmExtractor tests, which check the symmetry detection capabilities of
the tool, and SymmReducer tests, which perform symmetry reduction on Promela examples, checking
that verification results for these examples are as expected. The ETCH tests run very quickly, the Sym-
mExtractor tests run at a moderate speed, and the SymmReducer tests run fairly slowly. Testing takes
approximately 10 minutes on an average PC.

5.5.3 Problems running the tests

If you have compiled a fresh checkout of TopSPIN then all of the acceptance tests should pass, since
their passing is a condition for committing changes to the source code repository. Therefore, if you have
any problems running the tests this is likely due to a problem with the way you have set up GAP, saucy,
SPIN, or GCC. Have a look at §6.1 which details common problems encountered when using TopSPIN. If
test cases continue to fail then please send a bug report to the TopSPIN development team: see §6.2 for
details.



6
Troubleshooting

and Bug Reporting

This section includes a list of common problems with the use of TopSPIN. Please also refer to current
limitations of TopSPIN, in Chapter 4.

6.1 Common problems

6.1.1 Missing configuration file

Problem: There is no file named config.txt in your working directory when you run TopSPIN.
Example error message:
Error opening configuration file "config.txt", which should be
located in the directory from which you run TopSPIN.

Solution: Follow the instructions in §2.3 on how to create config.txt.

6.1.2 Incomplete configuration file

Problem: The file config.txt does not contain entries for all of the mandatory options, gap, saucy and
common.
Example error message:
No configuration specified for GAP.
No configuration specified for saucy.
No common directory specified.

Solution: Follow the instructions in §2.3 on how to create config.txt with these mandatory options.

6.1.3 The saucy program is not correctly installed

Problem: You may not have correctly installed and compiled saucy, the graph automorphism program
on which TopSPIN relies.
Example error message:
Error launching saucy with command: C:\Program Files\TopSPIN\saucy\saucy.exe -d
"C:\Program Files\TopSPIN\Common\graph.saucy"
java.io.IOException: CreateProcess: C:\Program Files\TopSPIN\saucy\saucy.exe -d
"C:\Program Files\TopSPIN\Common\graph.saucy" error=2

at java.lang.ProcessImpl.create(Native Method)
... rest of Java stack trace

Solution: Source code for saucy is included with the TopSPIN distribution, which can be downloaded
via the instructions of §1.2. However, you need to compile the saucy source code using GCC. To do this,
follow the instructions given in §1.3.1.

6.1.4 Path to saucy in configuration file is wrong

Problem: From TopSPIN’s point of view this is the same as the previous problem. From your point of
view there is a difference: you may have correctly installed and compiled saucy, but but mistyped the
path to saucy in config.txt.
Example error message:



Error launching saucy with command: C:\Program Files\TopSPIN\saucy\tsaucy.exe -d
"C:\Program Files\TopSPIN\Common\graph.saucy"
java.io.IOException: CreateProcess: C:\Program Files\TopSPIN\saucy\tsaucy.exe -d
"C:\Program Files\TopSPIN\Common\graph.saucy" error=2

at java.lang.ProcessImpl.create(Native Method)
... rest of Java stack trace

Note that TopSPIN is trying to launch tsaucy.exe rather than saucy.exe, due to a typo in config.txt.
Solution: Make sure saucy is correctly downloaded and compiled (§1.3.1), and ensure that config.txt
contains a line for saucy with exactly the absolute path to the tool (§2.3).

6.1.5 GAP is not correctly installed

Problem: You may not have correctly installed GAP, the computational group theory package on which
TopSPIN relies.
Example error message:
Starting GAP with command: C:\gap4r4\bin\gap.bat -L
"C:\Program Files\TopSPIN\Common\gapworkspace" -q
Exception in thread "main"
java.io.IOException: CreateProcess: C:\gap4r4\bin\gap.bat -L
"C:\Program Files\TopSPIN\Common\gapworkspace" -q error=2

at java.lang.ProcessImpl.create(Native Method)
... rest of Java stack trace

Solution: Download and install GAP from the GAP website. The URL for this website and the version of
GAP which TopSPIN supports are given in Figure 1.1 (§1.1).

6.1.6 Path to GAP in configuration file is wrong

Problem: From TopSPIN’s point of view this is the same as the previous problem. From your point
of view there is a difference: you may have correctly installed GAP, but mistyped the path to GAP in
config.txt.
Example error message:
Starting GAP with command: C:\gap4r4\bin\tgap.bat -L
"C:\Program Files\TopSPIN\Common\gapworkspace" -q
Exception in thread "main"
java.io.IOException: CreateProcess: C:\gap4r4\bin\tgap.bat -L
"C:\Program Files\TopSPIN\Common\gapworkspace" -q error=2

at java.lang.ProcessImpl.create(Native Method)
... rest of Java stack trace

Note that TopSPIN is trying to launch tgap.bat rather than gap.bat, due to a typo in config.txt.
Solution: Make sure you have correctly downloaded and installed GAP(§1.1), and ensure that config.txt
contains a line for GAP with exactly the absolute path to the tool (§2.3).

6.1.7 Common directory does not exist, or user does not have permissions for this directory

Problem: The location of the TopSPIN Common directory has been specified incorrectly in commmon.txt.
Example error message:
Error while trying to create file "C:\Program Files\TopSPIN\Common\graph.saucy".
Make sure that the directory C:\Program Files\TopSPIN\Common\ exists,
and that you have write permission.

Solution: Make sure that config.txt contains a line of the form common=name, where name is the
absolute path to the Common directory provided with the TopSPIN distribution. Make sure this path has
not been mistyped, and that the path includes a terminating slash.

6.1.8 Path to Common directory does not have terminating slash

Problem: The location of the TopSPIN Common directory has been specified without a final forward-
(Linux) or back- (Windows) slash.
Example error message:



Solution: Make sure that config.txt contains a line of the form common=name, where name is the
absolute path to the Common directory provided with the TopSPIN distribution. Make sure this path has
not been mistyped, and that the path includes a terminating slash.

6.1.9 Missing or corrupt GAP workspace

Problem: The file gapworkspace in the Common directory is either missing or corrupted.
Example error message:

Starting GAP with command: C:\gap4r4\bin\gap.bat -L
"C:\Program Files\TopSPIN\Common\gapworkspace" -q
Error -- bad GAP workspace specified in configuration file.

GAP produced errors:
====================
gap: Press <Enter> to end program
End of GAP errors

Solution: Check that:
1. You have followed the instructions in §1.3.2 on creating a GAP workspace
2. This workspace has been successfully saved in the Common directory
3. You have not changed the version of GAP you are using since creating the workspace
4. The workspace was created exactly the same machine, with the same operating system, on which

you are running TopSPIN.

6.1.10 GAP executable specified in configuration file, instead of shell script/batch file

Problem: You have specified the path to the GAP executable as the gap option in config.txt.
Example error message:

GAP produced errors:
====================
Error, the library file ’system.g’ must exist and be readable called from
CallFuncList( func, arg ); called from
RereadLib( "system.g" ); called from
<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...
you can ’quit;’ to quit to outer loop, or
you can ’return;’ to continue
brk>

Solution: Open config.txt and change the gap option to refer to the shell script (gap.sh) or batch file
(gap.bat).

6.1.11 SPIN is not correctly installed

Problem: You have not correctly installed SPIN in such a way that the tool can be invoked by simply
typing spin, as discussed in §1.1.
Example error message:

An error occurred while constructing the "sympan" files.
java.io.IOException: CreateProcess: spin -a loadbalancer.p error=2

at java.lang.ProcessImpl.create(Native Method)
... rest of Java stack trace

Solution: Make sure SPIN is correctly installed, and that the directory containing the SPIN executable
is part of your path environment variable. Perhaps you have renamed spin to spin-linux or spin516;
maybe you do not have execute permission for SPIN, or perhaps you have another application called spin

installed on your machine. Resolve these issues so that spin is all that needs to be typed to launch the
SPIN tool.



6.1.12 C preprocessor, cpp, unavailable

Problem: TopSPIN uses the cpp program to expand #define and #include macros before processing a
specification. If cpp is not available then TopSPIN can still be invoked, but cannot handle specifications
which include these directives.
Example error message:
C preprocessor (cpp) not available - TopSPIN will not work correctly on files which use
#define or #include.
src.promela.lexer.LexerException: [1,1] Unknown token: #

... rest of Java stack trace

Solution: Install the cpp program on your system. Linux distributions provide cpp as standard; under
Windows the cpp program is provided as part of Cygwin. Make sure cpp is in your path.

6.1.13 Typechecking error: problem with array index

Problem: By default, TopSPIN performs strict typechecking and only allows arrays to be accessed using
byte or pid types.
Example error message:
Error at line 8: Type "int" cannot be used as an array index, it is not a subtype of "byte".

Solution: You can use the -relaxedarrayindexing option to make this error go away (see §3.2.3),
or refactor your specification so that arrays are indeed only indexed by byte or pid expressions: this
may make the associated state-vector smaller.

6.1.14 Typechecking error: problem with assignment to numeric variable

Problem: By default, TopSPIN performs strict typechecking and only allows a variable to be assigned
a value of a “smaller” type, e.g. assignment of byte to short is OK, but not the other way round.
Sometimes this is too restrictive.
Example error message:
Error at line 8: invalid assignment -- Type "short" occurs in a context where it is required to be a subtype of "byte".

Solution: You can use the -relaxedassignment option to make this error go away (see §3.2.4), or
refactor your specification so that assignments to numeric variables are always from expressions with a
smaller type: this may make the associated state-vector more compact.

6.1.15 Error during verification: “bad proctype”

Problem: Verification quits with a “bad proctype” error message.
Example error message:
pan: bad proctype - collapse (at depth 1023)

Solution: This error can occur if your specification involves proctypes which terminate. See §4.2 for de-
tails of this, and for a technique to prevent SPIN processes from terminating by providing an inescapable
final state. This error message will only be generated if COLLAPSE compression is used. Nevertheless,
for reasons explained in §4.2 it is best to apply TopSPIN to systems of non-terminating processes.

6.2 Reporting bugs in TopSPIN

If you have a problem using TopSPIN, first check to see if your problem is covered by one of the common
problems in §6.1. If this is not the case, then please take the time to report your bug to the TopSPIN

developers, so that it can be immediately documented and ultimately fixed, for the benefit of you and
other TopSPIN users.

Bug reports should be submitted using the contact details in §6.4. Please provide the following
when reporting a bug:



• A description of the problem
• A test-case (example Promela specification and config.txt file) which exposes the problem
• The TopSPIN version you are using, the approximate date on which you downloaded TopSPIN

• Details as to whether you are using a pre-compiled version of TopSPIN, or a version you have
compiled from source

• Any ideas you have as to what may have gone wrong!
Please note that bugs do not have to relate to the correctness of TopSPIN – a valuable bug report

could be in response to a misleading error message generated by TopSPIN, where there is something
wrong with the input specification, but the problem is not what the error message indicates. Please feel
free to also submit suggestions for features to be added to TopSPIN.

6.3 Reporting bugs in this manual

Please also get in touch (§6.4) if you find typos, inconsistencies or ambiguities in this manual – this kind
of feedback is extremely valuable.

6.4 Getting in touch

All correspondence related to TopSPIN should be by email, to Alastair Donaldson: ally@codeplay.com.



Acknowledgements

• TopSPIN was originally developed by Alastair Donaldson at the University of Glasgow, between
2003 and 2006.

• TopSPIN uses symmetry reduction theory developed by Alastair Donaldson and Alice Miller.
This theory is in turn based on a decade of research by the model-checking community.

• Thanks to the following people for reporting bugs in TopSPIN, and feedback on the instructions
in this manual: Silver Juurik, Jan Rakow, Shamim Rippon, Iryna Shkvarko.

• Thanks to Gerard Holzmann, designer of SPIN, for advice on integrating symmetry reduction
with other SPIN state-space reduction techniques.

• The approach taken by the TopSPIN implementation was influenced greatly by the SymmSpin
tool, developed by Dragan Bosnacki, Denis Dams and Lezek Holenderski.

• The manual layout was inspired by the GAP reference manual.
• Thanks to the developers of GAP, saucy and SableCC: the development of TopSPIN would have

taken a lot longer without these excellent tools.


