Explain AI@Imperial Workshop

Explainable AI that Can be Used for Judgment with Responsibility

FUJITSU LABORATORIES LTD. 25th April 2018

About me

Name: Hajime Morita

- Research interests:
 - Natural Language Processing
 - Summarization
 - Morphological Analysis
 - Information Extraction
- Recent jobs:
 - I received my Ph.D. from Tokyo Institute of Technology (2015)
 - Researcher @ Kyoto University (2015 2017)
 - Researcher @ Fujitu Laboratory (2017 -)

Outline

- Introduction of explainable AI
- Knowledge Graph (short)
- Deep Tensor
- Explainable AI

Why we need explainable AI

FUĴĨTSU

If we applied IN-explainable AI to clinical decision.

If we applied explainable AI to clinical decision.

Application to Genomic Medicine

We developed a prototype of AI that infers which gene mutation of the patient is associated with disease.

Ref. Hokkaido Univ. Hospital(http://www.huhp.hokudai.ac.jp/hotnews/detail/00001144.html)

Formation of Evidence Path by Knowledge Graph Fujitsu

The mutation cause an abnormality in the gene (AGTR1) and the abnormality can causes diseases such as tachycardia.

Overview

Two key components

- Deep Tensor is a neural classifier of graph data
- Knowledge graph is an extremely large graph knowledge base

(1) Explaining the important factor for the inference

Outputting the factors which strongly influenced the inference result through Deep Tensor

Knowledge Graph

What is knowledge graph?

FUĴITSU

Knowledge

Nodes and a edge that connects the nodes.

Knowledge graph

Nodes

• Gene, mutation, drug, disease, etc...

Edges

• ...

- Drug A is responsive to disease B
- Gene C has an function D
- Mutation E is located on Gene F

How to make knowledge graph

FUJITSU

From existing database

- Extraction of relational data from public databases
 - Relations between gene and its attributes (name, ID, function, etc.)
 - Relations between protains

From literature

Knowledge extraction using Natural Language Processing technologies

Deep Tensor

Koji Maruhashi, Masaru Todoriki, Takuya Ohwa, Keisuke Goto, Yu Hasegawa, Hiroya Inakoshi, Hirokazu Anai, Learning Multi-way Relations via Tensor Decomposition with Neural Networks, AAAI 2018 (<u>AAAI</u> <u>2018</u>), February 2018.

Naïve Idea

Difficulties Using Graph for Deep Leaning Fujirsu

Multi-way data can be represented as a tensor

Multi-way data <u>Tensor representation</u>

Sub	Relation	Obj	
S1	R1	01	
S2	R3	01	
S3	R2	02	,
•••		•••	

Tensor Decomposition

FUĴITSU

- Approximate a tensor X by a core tensor \overline{X} multiplied by factor matrices $\{C_k\}$
- Results are <u>easy to interpret</u> in terms of nodes and edges.

Can we leverage tensor decomposition?

Leveraging Tensor Decomposition

Neural

Analyze graph data more efficiently

How to interpret prediction results?

Solution: Learn <u>interpretable models</u> that output similar results as Neural Networks

Local Interpretable Models

Use perturbed samples $X^{(p)}$ based on LIME [Ribeiro+ KDD16]

Learn interpretable model
$$g_A(\overline{\boldsymbol{\mathcal{X}}^{(p)}}) = \langle \overline{\boldsymbol{\mathcal{X}}^{(p)}}, \boldsymbol{\mathcal{W}}_A \rangle + \boldsymbol{b}_A$$

• which minimize
$$\sum_{p} \pi(p) \left\| y_{A}^{\prime(p)} - g_{A}\left(\overline{\boldsymbol{\mathcal{X}}^{(p)}}\right) \right\|_{2}^{2}$$

where
$$\pi(p) = \exp(-\left\|\overline{\mathcal{X}} - \overline{\mathcal{X}^{(p)}}\right\|_2^2 / \sigma^2)$$

Probability that $X^{(p)}$ is classified into A by DeepTensor

$$y_A^{\prime(1)} = 0.9 \quad y_A^{\prime(4)} = 0.1$$

$$y_A^{\prime(2)} = 1.0 \quad y_A^{\prime(5)} = 0.0$$

$$y_A^{\prime(3)} = 0.9 \quad y_A^{\prime(6)} = 0.1$$

• Contribution score is calculated by $\mathbf{X} * \mathbf{W}_A \prod_k \times_k \mathbf{C}_k^T$

Recap: Overview

Deep Tensor + knowledge graph

- Knowledge graph generates input graph (extracting subgraph representing about the mutation)
- Deep Tensor infers which the mutation cause disease or not, and output inference factors.
- Knowledge graph makes evidence graph based on the inference factors.

Conclusion

- Explainable AI is a key technology for cooperation of AI and humans
- We developed a prototype of explainable AI
 - The explainable AI explains important part of input data, and the evidence that explains the important part and inference result.
- We are now trying to proof of the concept of explainable AI, by cooperating with several medical groups.

FUJTSU

shaping tomorrow with you