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Abstract

The presence of robotic products in our lives is steadily increasing, with the first

commercial home and industrial robots becoming available on the market. While

existing systems mostly rely on robust spatial navigation in order to fulfil their

roles, one can easily imagine more useful and harder tasks to automate.

In order to perform these tasks autonomously, robots need to be able to un-

derstand the geometry and the structure of their surroundings. While this can be

achieved using a range of different sensors, monocular cameras are the most cost-

effective, ubiquitous and interesting from the research perspective.

The most popular technique used for recovering 3D geometric information

from monocular imagery is Visual Simultaneous Localisation and Mapping (SLAM).

While traditional landmark-based SLAM systems have demonstrated high levels of

accuracy and robustness for trajectory estimation, the maps produced by them do

not provide enough information about the environment to enable interactive robot-

ics.

State of the art dense SLAM methods allow obtaining rich scene reconstructions

but are fragile and suffer from a number of limitations. A particular problem is the

lack of an efficient representation for the observed scenes. Current methods use

over-parametrised and geometry-focused representations of the environment, which

do not make use of the inherent semantic structure of man-made environments so

easily discovered and exploited by human brains.

This thesis aims to explore the recent advances in the field of deep learning

in order to address these issues with dense SLAM. New representations based on

neural networks are proposed in order to enable more efficient and robust reasoning

about the observed scenes. We also demonstrate novel SLAM systems that make use

of these representations, pointing towards the next generation of SLAM research.
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Chapter 1

Introduction

Contents

1.1 Interactive Robotics and Vision . . . . . . . . . . . . . . . . . . 13

1.2 Brief History of Visual SLAM . . . . . . . . . . . . . . . . . . . 16

1.3 Deep Learning and SLAM . . . . . . . . . . . . . . . . . . . . . 23

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.1 Interactive Robotics and Vision

The presence of robotic products in our lives is steadily increasing and is projected to

continue doing so. While solutions like robotic manipulators are widespread in man-

ufacturing, their control algorithms are mostly open loop and work in constrained

and adapted environments with very little to no perception involved. If we want to

automate more and more tasks outside factories, it is imperative to make robots

perform well in a dynamic, uncertain environment. The most basic requirement for

the robot is to be able to traverse and recognise the environment it is located in.

Some tasks can be enabled by primitive navigation strategies, such as the early ver-

sions of the iRobot Roomba vacuuming the room by “bouncing” off its walls and

thus, statistically covering the majority of the area over time. In that case the robot

only has to perceive the environment through the touch sensors to sense contact
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1. Introduction

with the walls. While simpler robotic jobs can be solved using such straightforward

approaches, most of the tasks require navigation to a set location. For this, a map

needs to be created that allows to plan an initial path to the desired goal and the

immediate scene in front of the robot needs to be perceived in order to avoid any

obstacles in its way.

The first commercial mobile solutions are starting to appear on the home robotics

market, with the last years seeing a number of new autonomous vacuum cleaning

solutions. These products incorporate increasing perception capabilities in order to

add useful features such as returning to base for charging, emptying the dust com-

partment or performing cleaning in certain patterns (e.g. the Dyson 360 Eye). Mobile

robots are also starting to appear on the industrial market for scheduled inspection,

with the highly agile Spot — the first commercial legged robot released by Boston

Dynamics. All of these robotic applications rely on the existence of a robust percep-

tion pipeline allowing the robot to construct a map of its surroundings and localise

itself within that map. This problem is known in the literature as Simultaneous

Localisation and Mapping (SLAM).

While existing commercial systems mostly rely on robust spatial navigation in

order to fulfil their roles, one can easily imagine more advanced tasks to automate.

An immediate example is a domestic robot that is not only limited to vacuuming

the floors but is also capable of tidying up objects by returning them to predefined

locations or performing chores like washing the dishes or dusting. Especially import-

ant are the tasks that can relieve humans from working in dangerous and harmful

environments, which were the target of the DARPA Robotics Challenge — a prize

competition funded by the US Defense Advanced Research Projects Agency held

between 2012 and 2015. The challenge, designed to spur innovation in autonomous

robotics, required the robots to perform tasks that could be useful in a real disaster

scenario, such as the Fukushima Daiichi nuclear power plant disaster in 2011. The

tasks involved human activities such as driving a utility vehicle, opening a valve,

entering a building through a door or traversing rubble.
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1.1. Interactive Robotics and Vision

These advanced tasks require machines to interact with and understand much

more about their surroundings, which puts more demands on the perception pipeline.

Beyond localisation, geometry of the immediate environment has to be estimated

in order to execute grasping and manipulation in a safe and efficient manner. Ob-

jects have to be recognised in the sensor stream for the robot to reason about them

and plan what actions need to be performed. A more general problem emerges here

which is appropriately captured by the term Spatial AI coined by Davison in [Dav-

ison, 2018]. It describes the online task of using vision and possibly other sensors

to allow embodied devices, either classical autonomous agents or other devices, to

intelligently and usefully interact with their environment.

An example of embodied devices that are not considered robots in the classical

sense and in which Spatial AI plays a fundamental role are Augmented Reality (AR)

devices, which aim to enhance human visual perception with computer generated

information in a realistic manner. The applications of AR range from utility to en-

tertainment, with examples including inserting virtual objects into the scene (e.g.

furniture in a room) or displaying art or media on flat surfaces. This is typically

achieved by making the user observe the world through a device that captures,

modifies and presents images on a digital display. The hardware currently used

for that purpose are smartphones, smart-glasses or custom head-mounted displays

(HMDs). Examples of dedicated AR products include Microsoft HoloLens and the

Magic Leap 1 headset developed by Magic Leap. In order to achieve a realistic out-

come the program has to estimate a 3D geometric model of the visible scene, which

is required to simulate physical and visual interactions between the virtual objects

and reality. Estimating additional parameters like light sources and surface proper-

ties allows colouring the inserted virtual objects in a way that simulates reflections

and shadows.

The general SLAM problem can be solved by using different sensors — vari-

ous RGB camera configurations (monocular, stereo pairs, multiple cameras), depth

sensors (RGB-D), laser ranging (LIDARs), GPS, touch sensors, inertial sensors

(IMUs) or odometry. In a typical SLAM system, information originating from mul-
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1. Introduction

tiple of these modalities is probabilistically fused in order to infer location and map

estimates. While such multi-sensor systems are robust and using additional inform-

ation that is often already available on the robotic platform is always beneficial,

this thesis aims to explore the limits of what can be achieved using pure monocu-

lar vision. There are many reasons why focusing on a single camera is interesting.

Monocular sensors are extremely cost-effective compared to e.g. LIDAR. They are

also ubiquitous, with every consumer mobile phone equipped with a single fixed lens

camera, which opens up many possibilities for applications that can be deployed

globally without requiring any additional hardware. In some situations the type of

sensing is not controlled — there exist vast amounts of already recorded footage

which can be leveraged only using monocular methods. Estimating geometry and

motion from a single camera only is also an interesting research direction in itself.

Despite the fact that there is no depth information in purely monocular imagery,

humans are still able to retain depth perception and navigate the world, interacting

with it with one eye closed. This suggests that it is possible to achieve robust spatial

perception even if limited to a single view perspective.

For the reasons presented above, the work presented in this thesis focuses solely

on a class of methods named dense monocular SLAM, which concern estimating a

rich geometric reconstruction together with the sensor trajectory from a stream of

RGB images coming from a monocular camera browsing an unknown environment.

1.2 Brief History of Visual SLAM

Sparse SLAM

The early approaches for visual SLAM focused on detecting and tracking a set of

landmarks present in the environment – e.g. points in the 3D space. The landmarks

are typically created based on their appearance in the camera images and chosen

to lay in the areas with strong gradient in both directions (e.g. [Shi and Tomasi,

1994]). These high gradient locations detected in the image are called keypoints or

features. Correspondence between between features originating from different images
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1.2. Brief History of Visual SLAM

is established based on their appearance. This is usually achieved by comparing

descriptors that aim to uniquely characterise the patch around the feature location

within the image. Keypoint detection and description has received a lot of attention

from the research community which has resulted in a big array of different methods

such as Harris Corner Detection [Harris and Stephens, 1988], SIFT [Lowe, 2004],

SURF [Bay et al., 2008], FAST [Rosten and Drummond, 2006], BRIEF [Calonder

et al., 2010], ORB [Rublee et al., 2011], and BRISK [Leutenegger et al., 2011]. Due

to a relatively small number of estimated 3D landmarks, systems based on keypoint

detection and tracking are referred to as sparse SLAM.

One of the earliest works on incremental visual estimation was done by Harris

and Pike in [Harris and Pike, 1988]. The authors presented a pioneering system that

sequentially built visual maps using input from a single camera. The system was

based on detecting Harris corner features and estimating the location of associated

landmarks and was able to create sparse 3D maps from long image sequences. A

major issue with that work was that each landmark was being treated as a separate

estimation problem, neglecting the correlations that are introduced by co-observing

the landmarks from the same camera perspective. The other systems released at

that time suffered from the same problem.

Smith et.al [Smith et al., 1987] and Moutarlier and Chatila [Moutarlier and Chat-

ila, 1989] have later proposed tracking the correlations between quantities in general

robot localisation and mapping by estimating a single state vector with an associ-

ated covariance matrix. In the proposed method, the landmark 3D positions and the

robot pose are jointly estimated in an Extended Kalman Filter (EKF) framework

which explicitly represents variable correlations and uncertainty. This approach of

estimating all quantities with a single EKF has become the foundation of many

future sparse SLAM systems and is still used to this date.

A breakthrough monocular SLAM system called MonoSLAM was introduced

in [Davison et al., 2003], which brought the developments from general SLAM re-

search described in the previous paragraph into the pure vision domain. The system
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1. Introduction

used a single EKF to estimate both the 3D positions of planar patch landmarks and

the current sensor pose. The 3D ladmark positions were measured in new images

by searching for maximum cross-correlation between the RGB intensities of land-

mark patch and the image. New landmarks were spawned from keypoints detected

with [Shi and Tomasi, 1994] and added to the map.

This work was later followed by PTAM [Klein and Murray, 2007], which tracked

a larger number of keypoints (e.g. thousands) and broke the joint probabilistic in-

ference by separating the tracking and mapping steps in order to maintain real-time

performance. Similar to MonoSLAM, planar patches were initially localised within

images using template matching but the mapping backed involved solving the Bundle

Adjustment [Triggs et al., 1999] problem rather than updating an EKF.

Many sparse SLAM systems have been released since. A notable example of a

modern sparse SLAM system is ORB-SLAM [Mur-Artal et al., 2015], which builds

and maintains a landmark map together with a keyframe co-visibility graph. Fea-

tures are extracted from each camera image and matched against a relevant subset

of visible landmarks based on the ORB descriptor [Rublee et al., 2011]. The cam-

era location is estimated by projecting the landmarks onto the current frame and

comparing their pixel locations with their detected ones. The system is able to close

large loops and perform global relocalisation in real-time and from wide baselines

and includes an automatic and robust initialisation from planar and non-planar

scenes.

An alternative approach to the SLAM problem is based on optimisation and was

championed by Dellaert et al. in [Dellaert and Kaess, 2006], which follows the same

probabilistic formulation but obtains the solution in a different way. The authors

propose the smoothing approach, which involves solving for not only the most current

robot location, but for the entire robot trajectory up to the current time. While there

existed a large number of offline methods that solved for the whole trajectory (e.g.

traditional Bundle Adjustment [Brown, 1958, Triggs et al., 1999]), the novelty lied in

demonstrating a method for performing this in real-time during robot operation. The
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1.2. Brief History of Visual SLAM

(a) Filtering (b) Smoothing

Figure 1.1: Comparison of graphical models of different approaches to the SLAM
problem adapted from [Newcombe, 2012]. In four time steps, the robot moves
through positions x1 to x4, observing landmarks y1 to y6. Filtering (a) estimates
the current robot location only, marginalising the previous pose at each update
step. Smoothing (b) solves for the whole robot trajectory at each step.

method shows that with careful matrix column ordering, optimised decomposition

algorithms and exploiting the sparsity patterns typical for SLAM leads to speed

and accuracy improvements over the traditional EKF framework. This is due to

the marginalisation performed at each EKF update step that results in irreversible

linearisation choices and developments in general matrix operations. A graphical

comparison of filtering and smoothing approaches has been presented in Figure 1.1.

As one of the methods presented in this thesis is based on the smoothing approach,

we will describe it in more detail in later chapters.

Dense Methods

A fundamental problem with the sparse approach to SLAM is that the model of

the environment that is built does not provide rich geometric information. The

information stored in the map in the form of a set of 3D landmarks can be considered

a by-product of tracking rather than a product itself. A sparse cloud of points does

not allow to infer much about shapes and surfaces of the observed scene. This is a

major hurdle on the way to general interactive robotics, which requires geometric

information for action planning or grasping.

A piece of hardware that is intimately connected to 3D computer graphics is the

GPU (Graphics Processing Unit). GPUs were originally invented as a way to replace
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CPU based ray-tracing with an optimised 3D rasterisation pipeline. To perform this

task efficiently they have been designed for mass parallelism, embracing the Single

Instruction, Multiple Data (SIMD) paradigm. Since their inception, it has been dis-

covered that the GPUs can be re-purposed to solve other tasks that were previously

the domain of high power CPU clusters, for example: physical simulations, scientific

computing, video decoding/encoding, cryptography or cryptocurrency mining.

The increased presence of graphics hardware in general computation and dedic-

ated frameworks such as CUDA or OpenCL have inspired a new set of methods

called dense SLAM that utilise information from all of the pixels in the image and

create rich geometric reconstructions. Due to the increased computational cost, these

methods typically break the joint probabilistic formulation and rely on interleaving

tracking and mapping steps in order to maintain real-time performance. In contrast

to sparse methods, correlations between the estimated map (depth) and camera

poses are not modelled. A more detailed description of dense SLAM methods can

be found in chapter 2.4.

A notable example of a monocular dense system is DTAM [Newcombe et al.,

2011], which estimates dense depth by integrating data from multiple frames into a

photometric cost volume and optimising it with hand crafted regularisation terms.

Tracking the camera location is based on the Lucas-Kanade template matching

method [Lucas and Kanade, 1981]. DTAM was later followed by more modern sys-

tems like MonoFusion [Pradeep et al., 2013] or REMODE [Pizzoli et al., 2014].

The appearance of commodity depth sensors like Microsoft Kinect [Microsoft

Corp, 2010] had a big impact on the popularity of dense SLAM. RGB-D based

methods such as KinectFusion [Izadi et al., 2011] produced impressive high quality

and accurate 3D maps and ran on a standard desktop computer. Due to the use of

a truncated signed distance (TSDF) volume, the size of the reconstructed scene was

limited. In ElasticFusion [Whelan et al., 2015] the authors used a surfel-based map

representation which, together with loop closure capabilities and map corrections

via deformations allowed for greater scalability.
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Worth mentioning are also semi-dense methods such as LSD-SLAM [Engel et al.,

2014] that estimate a larger number of points than sparse SLAM, but typically

restrict the computation to high gradient areas of the image yielding considerably

sparser maps than dense SLAM. In this thesis we focus on fully dense approaches

that we argue are fundamental to future robotics applications.

Shortcomings of Dense SLAM

Even though dense SLAM was originally proposed to increase robustness [New-

combe, 2012], there are fundamental issues that make it fragile and impractical to

use. The photometric error widely used in dense methods is measured in the dif-

ference between RGB intensities; for example, given two corresponding locations x0

and x1 in images I0 and I1:

ρpho = ||I0(x0)− I1(x1)||. (1.1)

This dependence on scene appearance makes this metric very sensitive to lighting

changes and other influences like camera exposure. In the case of using different

cameras, there might be other factors impacting the final image intensities, like the

gamma response of the cameras. There exist methods that aim to alleviate these

problems like estimating an affine transformation or using gradient based metrics

(Normalised cross correlation). Later in the thesis, we propose a more robust learned

photometric-style consistency metric.

Another issue with the photometric error is that depth is not observable in the

textureless regions of images. This allows for reliable estimates only in the regions

with sufficient gradient and gives noisy depth estimates elsewhere. This is usually

remedied by using simple handcrafted priors on the geometry in the total variation

optimisation, e.g. assuming local smoothness — neighbouring pixels ought to have

similar depth values. These priors are limited and do not always model reality well.

To obtain better reconstructions, it might be beneficial to use more complicated

priors that are learned directly from data.
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Dense geometry can be represented using point clouds, meshes, occupancy voxel

grids or TSDF volumes. This causes the surfaces to be over-parametrised with thou-

sands of points or vertices. We argue that there must exist a better representation

of geometry that allows for more efficient inference. We hypothesise that there must

exist a perfect semantic compression that utilises a minimal number of parameters

to describe geometric entities. This solution would have to involve deconstructing

all possible geometry into minimally parametrised “semantic” classes and build the

geometric maps with them. As an example, a 3D planar surface like a wall could be

described by 4 parameters (plus boundary) instead of regular sampling with points

or vertices. Even though the number of entities stored in the SLAM map is signific-

antly smaller in this representation, we still consider it “dense” as it is possible to

re-generate the original full 3D geometry from it.

Dense SLAM also suffers from “correlation problem” which was brought up by the

research community in the late 80’s: “(...) if the robot uses an observation of an im-

precisely known target to update its position, the resulting vehicle position estimate

becomes correlated with the feature location estimate.” [Leonard and Whyte, 1991].

This was solved by the use of a probabilistic representation of the map and robot

state within an EKF framework. Due to the fact that optimisation of dense map

representations involves a significantly larger number of parameters (for reference:

480’000 for a 800 × 600 depth map) dense methods typically resort to interleav-

ing tracking and mapping steps effectively choosing not to model the correlations.

During camera tracking, the constructed world model is assumed to be correct and

similarly, during mapping the estimated camera positions are fixed. Moreover, the

large number of parameters make it difficult to apply standard probabilistic methods

like the EKF. It is also not clear what probabilistic model could be used to densely

represent the geometry of the world, as it is likely not to fit the commonly used

Gaussian noise assumption.

As we demonstrate with the work presented in this thesis, these problems can be

addressed by introducing deep learning techniques into the SLAM pipeline.
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1.3 Deep Learning and SLAM

An example of the early machine learning models is the “perceptron” proposed

in [Rosenblatt, 1958]. This work and many others that followed later suggested

a different paradigm for creating environment models. Rather than attempting to

deconstruct the problem into simple and human understandable principles they ac-

knowledge its complexity and use a generic and biology-inspired model — a paramet-

ric hierarchical model of increasingly abstract layers (a neural network) is learned

directly from data. In supervised learning, the network is presented a with a set of

examples consisting of an input paired with the desired output and the parameters

of the model are optimised to fit the input data set. In contrast, unsupervised learn-

ing aims to learn to discover alternative data representations and predict desired

quantities without requiring explicit ground-truth labels.

Convolutional Neural Networks (CNNs) have their origin in the “neocognitron”

described in [Fukushima and Miyake, 1982], where the authors proposed a network

built out of two types of layers: convolutional and downsampling. The convolutional

layer consists of neurons that compute their activation by applying a filter to cor-

responding patches in the previous layer. The outputs of convolutional layers are

successively downsampled through averaging to reduce the spatial resolution. This

architecture allowed the learning of shift-invariant filters for detecting shapes or

patterns and drastically reduced the number of parameters in comparison to fully

connected networks.

An efficient way of training CNNs was first proposed in [LeCun et al., 1989],

which used back-propagation in order to learn the model parameters directly from

the images to recognise hand-written ZIP Code numbers. In contrast to previously

manually designed weights, this method was fully automatic and allowed for easy

application to other computer vision tasks. This work was later followed by [LeCun

et al., 1998], which proposed the LeNet-5 – a seven layer convolutional network

architecture that was trained to classify handwritten digits.
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Classical

Geometry
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Semantic Texture CodeSLAM

DeepFactors

Learned 

Components

End-to-end

Learning

Figure 1.2: A spectrum of different methods of uniting deep learning and SLAM,
spanned between classical geometry methods and the “strong ML” approach. The
top part of the diagram indicates where each piece of work presented in this thesis
lies on the spectrum. The bottom part displays dominant methods found in the
literature.

Modern GPUs and GPGPU frameworks such as CUDA have played a major role

in the development of this field. Massive parallelisation enabled a significant increase

in both the amount of training data and the model complexity, with the number of

parameters growing from thousands to tens of millions. The ability to train bigger

models led to the realisation that deeper networks consisting of a larger number

of layers perform better. This can be observed in the network for general image

classification presented in [Krizhevsky et al., 2012], which had a similar architecture

to LeNet-5, but used more convolutional layers and had a significantly larger number

of parameters. This trend was later followed by [Szegedy et al., 2015, Simonyan and

Zisserman, 2015, He et al., 2016] and gave rise to the field of Deep Learning.

As discussed in the previous section, SLAM could benefit significantly from Deep

Learning as many issues connected with dense methods could be remedied by the

using priors extracted from data. Conversely, SLAM can potentially aid deep learn-

ing through providing data for network supervision, e.g. estimating camera poses or

3D reconstructions from a video.

SLAM and deep learning can be united in a range of different ways which can

be arranged on a spectrum spanning between classical methods and pure learning.
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Figure 1.2 presents the dominant approaches that will be described below as well as

where the systems developed for this thesis fall on the spectrum.

In the simplest form, learned blocks can replace specific components in a standard

SLAM pipeline such as feature detectors (e.g. LIFT [Yi et al., 2016]) or optimisation

[Clark et al., 2018, Zhou et al., 2018]. Priors learned directly from data enabled

solving difficult tasks such as depth prediction from monocular imagery [Eigen et al.,

2014, Ummenhofer et al., 2017, Liu et al., 2015, Garg et al., 2016]. Such solutions

are often treated as “sensors” and are fused into standard algorithms to increase

robustness or densify the reconstructions [Laidlow et al., 2019, Laidlow et al., 2020,

Weerasekera et al., 2017]

A different approach, higher on the spectrum, is to have the network directly

predict the quantities of interest (end-to-end learning). The model is required to

learn the necessary intermediate representations/algorithm in order to successfully

generalise across data. For example, if regressing camera poses directly from the

input image stream, the network is expected to implicitly learn to solve SLAM as

an intermediate task. Examples of end-to-end methods include VINet [Clark et al.,

2017b], GeoNet [Yin and Shi, 2018] and [Zhou et al., 2017].

With the initial wave of enthusiasm for deep learning came an approach that we

call “strong ML”, which constitutes the far end of the spectrum. It encapsulates

the idea that it is possible to train an agent using, e.g. Reinforcement Learning

techniques to navigate an environment and carry out tasks based on a predetermined

reward [Chaplot et al., 2020, Banino et al., 2018]. This approach is promising and has

many advantages: the user has to only specify the desired goal in the form of a reward

function and the algorithm discovers the required intermediate representations and

actions. Manually crafted models need not to be created and carefully tuned, risking

over-fitting the method to the particular task or making simplified assumptions

about the environment. This method suggests that SLAM would simply become a

by-product, an intermediate task required for the agent to solve in order to obtain

the reward.
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Although deep learning currently might be seen as the gold standard for many

computer vision tasks such as semantic segmentation, object detection, denoising

and document parsing, the rate of adoption of learned methods has been slower in

SLAM. The general 6 DoF SLAM in the real world still remains an elusive target and

the research field has not been as overwhelmed by learning as the other computer

vision categories. We believe this is caused by the fact that many aspects of the

SLAM problem have been well understood by the research community, such as multi-

view geometry, the imaging process or calibration. At the heart of classical methods

often lies an effective principle of Bayesian combination of uncertain information.

This stands in stark contrast with the models for the human recognition system,

whose processes are not fully discovered. The methods for pattern recognition and

image classification developed before the learning era were limited and based on

primitive modelling. The arrival of Deep Learning allowed training generic template

models directly from annotated data and avoiding creating hand-crafted models,

which lead to rapid success and increase in performance.

In this thesis, we aim to build towards long term mapping systems that leverage

learned representations of scenes that mimic the way humans understand them —

not by estimating a geometrically perfect grid of millions of points or voxels but

through an explicit understanding of objects, relative to things observed before. We

are seeking a representation for 3D geometry that is both useful and efficient in

storage, capturing the hierarchical priors that humans make use of. For example,

an entity identified as a ‘cup’ will have limited variations in shape and colour that

can be minimally parametrised to succinctly describe and associate any instance

that is later observed in sensory data. Such minimal and efficient decompositions

of the world can drastically reduce the complexity of estimating 3D geometry, as

we will show in Chapter 4. While we did not necessarily focus directly on fixing

the shortcomings of dense SLAM presented in Section 1.2, it will be shown that our

work does improve them. Instead, we are particularly interested in using novel neural

representations to drive fundamental changes to the SLAM pipeline as a whole and

point towards a new generation of systems.
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An important characteristic of the methods developed within this thesis is retain-

ing the standard iterative optimisation approach of classical SLAM at test-time. We

argue that using networks in a simple feed-forward manner can produce promising

results in challenging conditions but fails to generalise to real-life scenarios. In that

setting, the training set is trusted to encompass all possible variations, a hard condi-

tion to meet in the real world. Instead of performing iterative refinement prevalent

in classical SLAM those methods produce a one-shot estimate. Work presented in

this thesis proposes different ways to incorporate priors learned from data while

preserving a standard iterative optimisation scheme.

1.4 Contributions

The contributions made in this thesis resulted in three separate publications. A full

list of publications done in conjunction with thesis is provided in the next section.

The contribution of each paper is briefly discussed below.

Paper I: SemTex – Semantic Texture for Robust Tracking

This paper argues that robust dense SLAM systems can make valuable use of the

layers of features coming from a standard CNN as a pyramid of “semantic texture”

which is suitable for dense alignment while being much more robust to nuisance

factors such as lighting than raw RGB values. A straightforward Lucas-Kanade

formulation of image alignment is used, with a schedule of iterations over the coarse-

to-fine levels of a pyramid. The usual image pyramid is replaced by the hierarchy

of convolutional feature maps generated from a pre-trained CNN. The resulting

dense alignment performance is much more robust to lighting and other variations,

as demonstrated by camera rotation tracking experiments on time-lapse sequences

captured over many hours. Looking towards the future of scene representation for

real-time visual SLAM, it is further demonstrated that a selection using simple

criteria of a small number of the total set of features output by a CNN gives just as

accurate but much more efficient tracking performance.
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SemTex will be described in detail in Chapter 3.

Paper II: CodeSLAM – Learning a Compact Optimisable Depth

Representation

The representation of geometry in real-time 3D perception systems continues to be

a critical research issue. Dense maps capture complete surface shape and can be

augmented with semantic labels, but their high dimensionality makes them compu-

tationally costly to store and process, and unsuitable for rigorous probabilistic infer-

ence. Sparse feature-based representations avoid these problems, but capture only

partial scene information and are mainly useful for localisation only. We present a

new compact but dense representation of scene geometry which is conditioned on the

intensity data from a single image and generated from a code consisting of a small

number of parameters. We are inspired by work both on learned depth from images,

and auto-encoders. Our approach is suitable for use in a keyframe-based monocular

dense SLAM system: While each keyframe with a code can produce a depth map,

the code can be optimised efficiently jointly with pose variables and together with

the codes of overlapping keyframes to attain global consistency. Conditioning the

depth map on the image allows the code to only represent aspects of the local geo-

metry which cannot directly be predicted from the image. We explain how to learn

our code representation, and demonstrate its advantageous properties in monocular

SLAM. In this paper, I have contributed to the initial idea of optimising a learned

code representation to fit observations and contributed equally to development and

experiments, with a focus on the SLAM system.

CodeSLAM will be described in detail in Chapter 4.

Paper III: DeepFactors – Dense Probabilistic Monocular SLAM

This paper presents DeepFactors, a real-time SLAM system that builds and main-

tains a dense reconstruction but allows for probabilistic inference and combines

the advantages of different SLAM paradigms. It also presents a tight integration of

learning and model based methods through a learned compact dense code repres-
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entation that drives significant changes to the core mapping/tracking components of

the SLAM pipeline. The system achieves greater robustness and precision, which is

demonstrated in trajectory and reconstruction experiments. The use of a standard

framework allows it to be easily extended with different sensor modalities, which

was not previously possible in the context of purely dense SLAM. An efficient C++

implementation and careful choices in the SLAM design enable real-time perform-

ance.

DeepFactors will be described in detail in Chapter 5.

1.5 Publications

The work described in this thesis resulted in the following publications:

• Czarnowski, J., Leutenegger, S. and Davison, A. J. (2017), Semantic Tex-

ture for Robust Dense Tracking. ICCV Workshop, Geometry Meets Deep

Learning. [Czarnowski et al., 2017]

• Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S., and Davison, A. J.

(2018), CodeSLAM - Learning a Compact, Optimisable Representa-

tion for Dense Visual SLAM. Proceedings of the Conference on Computer

Vision and Pattern Recognition (CVPR) [Bloesch et al., 2018]

• Czarnowski, J., Laidlow, T., Clark, R., and Davison, A. J. (2020), Deep-

Factors: Real-Time Probabilistic Dense Monocular SLAM. IEEE Ro-

botics and Automation Letters (RA-L). [Czarnowski et al., 2020]

While not described directly, the following publications were done in conjunction

with this thesis:

• Clark, R., Bloesch, M., Czarnowski, J., Leutenegger, S., Davison, A. J. (2018),

LS-Net: Learning to Solve Nonlinear Least Squares for Monocular
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Stereo. Proceedings of the European Conference on Computer Vision (ECCV)

[Clark et al., 2018]

• Laidlow, T., Czarnowski, J., and Leutenegger, S. (2019), Towards the Prob-

abilistic Fusion of Learned Priors into Standard Pipelines for 3D

Reconstruction. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). [Laidlow et al., 2019]

• Laidlow, T., Czarnowski, J., Nicastro, A., Clark, R., and Leutenegger, S. (2020),

DeepFusion: Real-Time Dense 3D Reconstruction for Monocular

SLAM using Single-View Depth and Gradient Predictions. In Pro-

ceedings of the IEEE International Conference on Robotics and Automation

(ICRA). [Laidlow et al., 2020]

The following video materials provide a visualisation of the algorithms developed

in this thesis:

• Semantic Texture for Robust Dense Tracking, https://youtu.be/SkpHccE1eTQ,

• CodeSLAM - Learning a Compact, Optimisable Representation for Dense

Visual SLAM, https://youtu.be/PbSggzaZWAQ,

• DeepFactors: Real-Time Probabilistic Dense Monocular SLAM, https://youtu.

be/htnRuGKZmZw

The source code for the DeepFactors system has been released and is available

under the following link: https://github.com/jczarnowski/DeepFactors

1.6 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 introduces basic notation and the concepts used in dense SLAM and

throughout this thesis.
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1.6. Thesis Structure

Chapter 3 describes a learned pyramid of ‘Semantic Texture’ which increases ro-

bustness to nuisance factors (such as lighting). The Increased performance of

a dense alignment application is shown by camera rotation tracking experi-

ments on time-lapse sequences captured over many hours and some properties

of the learned texture are discussed.

Chapter 4 presents CodeSLAM, a new compact but dense representation of scene

geometry which is conditioned on the intensity data from a single image and

generated from a code consisting of a small number of parameters. A method

for learning the code representation is described, and its advantageous prop-

erties in monocular SLAM are presented.

Chapter 5 describes DeepFactors, which explores the impact of the compact code

representation on dense SLAM pipelines. A new SLAM system is presented

that unifies different SLAM approaches in a probabilistic framework while

still maintaining real-time performance. The system is evaluated on trajectory

estimation and depth reconstruction on real-world sequences.

Chapter 6 concludes the thesis with a discussion of the research presented and

suggestions for future work.
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2.7.3 Variational Autoencoders . . . . . . . . . . . . . . . . . 58
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In this chapter we review some of the methods and models that will be used

in the remainder of the thesis. It begins with introducing our chosen mathemat-

ical notation. Section 2.2 describes rigid body transformations in 3D space as well

as their minimal parametrisation. Next, the pinhole camera model is described, as

well as the mathematical functions abstracting the imaging process. This is followed

by a presentation of the fundamental machinery of dense image alignment, a cru-

cial building block of every system presented in this thesis. Section 2.5 introduces

Factor Graphs, a graphical representation often found in SLAM and used as the

backbone of our DeepFactors system (Chapter 5). Key methods for nonlinear op-

timisation employed in our work are presented in Section 2.6. We also provide a

short introduction to Convolutional Neural Networks and the U-Net architecture.

The chapter ends with a description of some of the implementation details of dense

SLAM systems.

2.1 Notation

This thesis makes use of the following notation:

2.1.1 General Notation

a This font is used for scalars.
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2.1. Notation

a This font is used for M -dimensional column vectors, where ai is the ith

element of the vector:

a =



a1

a2
...

aM


, aT =

[
a1 a2 . . . aM

]
. (2.1)

A This font is for M × N -dimensional matrices, where aij is the matrix

element at the ith row and jth column:

A =



a11 a12 . . . a1N

a21 a22 . . . a2N
...

...
. . .

...

aM1 aM2 . . . aMN


. (2.2)

1 represents the identity matrix.

0 represents the zero matrix.

(·)× denotes the cross-product operator that produces a skew-symmetric

matrix from a 3-dimensional vector, such that a× b = a×b:

a× =


a1

a2

a3


×

=


0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (2.3)

2.1.2 Probability

p(x) represents the probability density of x.

p(x|y) represents the probability density of x given y.

2.1.3 Spaces and Manifolds
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R denotes the set of real numbers.

RM denotes the vector space of real M -dimensional vectors.

RM×N denotes the vector space of real M ×N -dimensional matrices.

SO(3) denotes the 3D rotation group.

SE(3) denotes the Special Euclidean group.

exp(·) denotes the exponential map from R3 to SO(3).

� denotes the box-plus operator that applies a small perturbation ex-

pressed in the tangent space to a manifold state.

� denotes the box-minus operator that determines the difference between

two manifold states in the tangent space.

2.1.4 Frames and Transformations

Aa The represents the vector a expressed in coordinate frame A.

RAB represents a 3D rotation from coordinate frame B to A, expressed as a

rotation matrix (i.e. RAB ∈ SO(3)).

TAB represents the homogeneous transformation matrix that transforms ho-

mogeneous points from coordinate frame B to A.

2.1.5 Camera Models and Images

fx represents the horizontal focal length of the camera, in pixels.

fy represents the vertical focal length of the camera, in pixels.

cx represents the horizontal coordinate of the camera centre, in pixels.

cy represents the vertical coordinate of the camera centre, in pixels.

K represents the intrinsic camera matrix

π(·) denotes the perspective projection function

π−1(x, d) denotes the back-projection function, which maps a 2D pixel coordinate

to a 3D Euclidean coordinate using the depth and camera parameters.

I(x) represents the intensity of image I at pixel coordinate x. Images are

treated as functions, e.g. I : R2 −→ R for a grayscale image.
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2.2 Transformations

Rigid body rotations of three-dimensional Euclidean space R3 form a group under

the operation of composition. This group, regardless of the actual representation of

the rotations is often denoted SO(3). Since rotations are linear transformations of R3

that preserve the origin, distance and orientation, the SO(3) group can be identified

with 3× 3 orthogonal matrices with unit determinant under matrix multiplication:

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 ∈ R3×3. (2.4)

While this representation has 9 parameters, any rotation can be described using

only three degrees of freedom. As rotation matrices live on a manifold optimising

the matrix coefficients directly would quickly lead to losing the orthogonality con-

straint and would yield matrices not representing rotations. Lie groups can be used

to optimise a minimal representation so(3) of elements living on the tangent space

around the identity of the manifold SO(3). Elements of Lie algebra so(3) are anti-

symmetric 3 × 3 matrices. Each skew matrix can be associated with an R3 vector

using the ()× operator:

ω× =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ∈ so(3). (2.5)

An exact mapping between elements of so(3) and their SO(3) manifold counter-

parts is given by the exponential map:

exp : so(3) −→ SO(3) (2.6)

exp(ω×) =
∞∑
k=0

1
k!
ωk× = I + ω× +

ω2
×

2!
+
ω3
×

3!
+ . . . , (2.7)

where powers denote matrix powers. This can be seen as adding increasingly higher

order terms to bring the so(3) element onto the manifold. Throughout the thesis,
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the following notation is alternatively used to represent the exponential map:

R(ω) = exp(ω×). (2.8)

The exponential map has an analytical closed form solution, called the Rodrigues

formula:

θ =
√
ωTω (2.9)

R(ω) = I + (
sinθ

θ
)ω× + (

1− cosθ
θ2 )ω2

×. (2.10)

During optimisation, the boxplus operator � is used to perturb the rotation using

a vector in the minimal representation:

� : SO(3)× R3 −→ so(3) (2.11)

C� ω = R(ω)C = exp(ω×)C. (2.12)

The boxminus operator � can be used to obtain the vector space distance between

two rotations:

� : SO(3)× SO(3) −→ R3 (2.13)

R1 �R2 = log(RT2R1). (2.14)

In the neighbourhood of the identity element, elements of SO(3) can be approx-

imated with:

R(ω) ≈ I + ω×. (2.15)

General six degrees of freedom rigid body motion is represented with 4×4 matrices

belonging to the SE(3) group and consisting of rotation and translation:

T =

R t

0T 1

 ∈ SE(3), (2.16)

where R ∈ SO(3) and t ∈ R3.
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2.3. Camera Model

The following notation is used to indicate a transformation that transforms ho-

mogeneous points p = (x, y, z, 1)T from frame A to frame B:

Ap = TAB Bp. (2.17)

Transformations can be chained in the following manner:

TAC = TABTBC , (2.18)

and are invertible:

TBA = T−1
AB =

RTAB −RTAB AtB

0T 1

 ∈ SE(3). (2.19)

2.3 Camera Model

In the work presented in this thesis, the pinhole camera model (Figure 2.1) is used

to describe the relationship between 3D point coordinates and their projections onto

the image plane. It models the imaging process of an ideal pinhole camera which

has an infinitesimally small, single point aperture.

Figure 2.1 illustrates the model. The camera coordinate frame has its origin at

point O, which is where its aperture is located. Axis z, which points in the viewing

direction, is referred to as the optical axis. In a physical pinhole camera, the image

plane is located behind O, intersecting the optical axis at −f from the origin O,

where f is the focal length. This causes the resulting projection of the 3D world to

be inverted. We simplify the model by placing the image plane at +f and modifying

the formulae accordingly, resulting in an equivalent but correctly oriented image.

Point P ∈ R3 in Euclidean space is projected through the aperture onto the image

plane, giving raise to point Q = (xq, yq, f)T . The specific image location can be

calculated by noticing the two similar triangles created by the optical axis and the

ray along which the point P is projected. It therefore follows that:

xq = f
xp
zp

(2.20)

yq = f
yp
zp
. (2.21)

39



2. Preliminaries
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Figure 2.1: An illustration of the pinhole camera model, which describes the rela-
tionship between points in the 3D Euclidean space and their projections onto the
camera image.

To calculate the coordinates within the actual image, an offset (cx, cy) called the

principal point needs to be applied. In practice, camera lenses also have different

focal lengths fx, fy for x and y dimensions. We combine all the processes described

above into a single camera projection function π : R3 −→ R2, which maps a point

x ∈ R3 to its corresponding pixel location in the image coordinates:

π(x) =
1
x3


fx 0 cx

0 fy cy

0 0 1



x1

x2

x3

 =
1
x3
Kx, (2.22)

where matrix K is called the camera intrinsic matrix. Similarly, if depth d of pixel

x ∈ R2 is known, the corresponding location in euclidean space can be recovered

using the unprojection function π−1 : R2 × R −→ R3:

π−1(x, d) = d


1
fx

0 − cx
fx

0 1
fy
− cy
fy

0 0 1



x1

x2

1

 = d K−1ẋ, (2.23)

where ẋ = (x1, x2, 1)T .
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2.4. Dense Image Alignment

Many effects are not modelled by the pinhole camera model but can be com-

pensated for with coordinate transformations or neglected when dealing with good

quality cameras/lenses. In order to deal with non-linear lens distortion not explained

by the pinhole camera model, we compensate for it by warping the incoming im-

ages using a spherical distortion model at the start of the processing pipeline, which

removes the non-linear effect of camera lenses.

2.4 Dense Image Alignment

This section contains a detailed description of dense image alignment, which is a

fundamental method that lies at the heart of many dense SLAM methods and will

be used in all work presented in this thesis. It is particularly important for the

work on Semantic Texture presented in Chapter 3, which will focus on analysing the

photometric error and it’s convergence basins.

2.4.1 Direct Per-Pixel Cost Function

Image alignment (registration) requires moving and deforming a constant template

image T to find the best match with a reference image I. To assess correspondence

we must define a measure of image similarity. The sum of squared differences (SSD)

of pixel intensities (also called the photometric error) is a typical measure used in

dense alignment, which is derived from minimising the negative log of a Gaussian

likelihood model. This gives the following final objective function:

ρ(x; p) =
1
2

∑
x
‖I(W (x; p))− T (x)‖2. (2.24)

The reference image is warped using a parametric warp W (x; p), where p =

(p1, p2, ..., pn) is a vector of warp parameters. This warp relates pixels of the tem-

plate to the corresponding ones in the reference image. This might also be viewed

as warping of the reference image, or predicting its “view” given a particular move-

ment. Movement models popularly used are 2D and 3D rigid body motion models

or their pure rotational versions.
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Figure 2.2: Example 2DoF image alignment cost function for pan-tilt camera rota-
tion, with a clear minimum and smooth bowl.

One way to find the optimal parameters is simply ‘exhaustive search’, evaluating

the cost function over a full range of quantised parameter combinations and selecting

the minimum. Visualising the cost surface produced is insightful; Figure 2.2 presents

a 2 degree-of-freedom example for images related by pan-tilt camera rotation. The

clear bowl shape of this surface shows that we can do something much more efficient

than exhaustive search as long as we start from a set of parameters close enough to

correct alignment by following the gradient to the minimum.

2.4.2 Lucas-Kanade Image Alignment

An efficient method for dense alignment was presented in [Lucas and Kanade, 1981]

and named after its two authors. The revolutionary contribution of this algorithm

is that instead of calculating a global correlation by sweeping through the whole

warp parameter space, the algorithm proceeds by iteratively finding better sets of

parameters to warp the images into correspondence. This is achieved by using a
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gradient descent based approach to minimise the total mismatch error. Different op-

timisation methods can be used to find the minimum, for example: steepest-descent,

Gauss-Newton, Newton, or Levenberg-Marquardt. The shape of the convergence basin

heavily depends on the image content: the amount and type of texture and ambigu-

ities present in the image. Since the cost landscape is usually locally convex in the

vicinity of the real translation, a good initialisation is required for the optimisation

to successfully converge to the correct solution.

To use the algorithm for camera tracking we minimise the error between the live

image Il and the previous, reference frame Ir.

ρ(x; p) =
1
2

∑
x
‖Ir(W (x; p))− Il(x)‖2. (2.25)

This optimisation task is non-linear because images are in general not linear in x.

Therefore, in order to derive the Lucas-Kanade algorithm, we first linearise Equa-

tion 2.25 by expanding the expression Ir(W (x; p)) into a Taylor series around the

current warp parameter estimate p, dropping the higher-order terms and assuming

the images are grayscale:

ρ(x; ∆p) =
1
2

∑
x

[
Ir(W (x; p)) + ∇Ir|W (x;p)

∂W

∂p
∆p− Il(x)

]2

, (2.26)

where ∇Ir = (∂Ir∂x ,
∂Ir
∂y ) is the reference image gradient. It is evaluated at a warped

location W (x; p) which requires sub-pixel interpolation.

To find the minimum, we take the partial derivative of Equation 2.26 and set it

to zero:

∑
x

[
Ir(W (x; p)) + ∇Ir|W (x;p)

∂W

∂p
∆p− Il(x)

] [
∇Ir

∂W

∂p

]
= 0. (2.27)

After rearranging the terms and solving for ∆p we arrive at the final closed form

for the warp parameter update:

∆p =

(∑
x
JTJ

)−1(∑
x
JT r

)
, (2.28)
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where:

J = ∇Ir|W (x;p)
∂W

∂p

r = Il(x)− Ir(W (x; p)).

H =
(∑

x J
TJ
)

is the Gauss-Newton approximation of the Hessian: a 3×3 matrix.

Given ∆p, the current parameter estimate p is updated as follows:

p← p + ∆p. (2.29)

The approach described in this section is not computationally efficient. As both

the Jacobian and the approximate Hessian depend on p, they need to be recomputed

at each iteration.

2.4.3 The Inverse Compositional method

A more efficient version of this algorithm, called the Inverse Compositional method,

which allows for pre-computation of the system Jacobian and Hessian was proposed

in [Baker and Matthews, 2004]. This is achieved by swapping the roles of the ref-

erence and template image and optimising for an update warp composed with the

current warp estimate. This results in the following modified cost function:

ρ(x; p) =
1
2

∑
x

‖Il(W (x; ∆p))− Ir(W (x; p))‖2. (2.30)

In this approach, at each iteration we are looking for an incremental warpW (x; ∆p)

of the live image and compose it with the current estimate in the following way:

W (x; p)←W (x; p) ◦W (x; ∆p)−1. (2.31)

To derive the warp update we start by expanding the non-linear term of Equa-

tion 2.30 into a Taylor series around ∆p = 0, dropping the higher order terms. We

also assume the images are grayscale:

1
2

∑
x

[
Il(W (x; 0)) + ∇Il|W (x;0)

∂W

∂p

∣∣∣∣
p=0

∆p− Ir(W (x; p))

]2

.
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Assuming that W (x; 0) is the identity warp, we have:

1
2

∑
x

[
Il(x) +∇Il

∂W

∂p

∣∣∣∣
p=0

∆p− Ir(W (x; p))

]2

.

After rearranging terms and solving for ∆p, we arrive at the closed form solution

for the warp parameter update:

∆p =

(∑
x
JTJ

)−1(∑
x
JT r

)
, (2.32)

where:

J = ∇Il
∂W

∂p

∣∣∣∣
p=0

r = Ir(W (x; p))− Il.

This time, the Jacobian J does not depend on p. Because of this, the Hessian can

be precalculated and an iteration consists only of computing the photometric error

r and multiplying it with the Jacobian. Moreover, the Jacobian of the warp ∂W
∂p is

evaluated at p = 0, which often simplifies its computation.

2.4.4 Computational complexity

This section will analyse the computational complexity of the inverse compositional

Lucas-Kanade registration algorithm. To summarise the previous section, the fol-

lowing steps need to be performed in the algorithm:

Precompute:

1. Calculate live image gradients ∇Il

2. Evaluate the warp Jacobian ∂W
∂p at p = 0

3. Calculate the approximate Hessian H =
∑

x J
TJ

4. Calculate the inverse of Hessian H−1
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Table 2.6: Computational complexity of the precomputation stage of the Inverse
Compositional Lucas-Kanade algorithm

Precomputation step 1 2 3 4 Total
Complexity O(N) O(n) O(n2N) O(n3) O(n2N)

Per iteration:

1. Warp the reference image with current warp estimate Ir(W (x; p))

2. Calculate the residual error image r = Ir(W (x; p))− Il

3. Calculate
∑

x J
T r

4. Solve ∆p = H−1(
∑

x J
T r)

5. Update the warp parameters W (x; p)←W (x; p) ◦W (x; ∆p)−1

Assume that the number of pixels in the image is N and the number of warp

parameters n. In the precompute stage, the first step is to calculate gradients of

the live image. This consists of convolving a kernel with the image. Since this is

a per-pixel operation and the kernel sizes are usually small the complexity of this

operation is O(N). Step 2 involves evaluating a closed form of the warp Jacobian.

Its cost depends on the warp. For the popularly used warps evaluated at p = 0

we can assume cost of O(n). In step 3 the Hessian H is computed. For this, the

Jacobian J = ∇Il ∂W∂p

∣∣∣
p=0

is calculated for each pixel. This involves multiplying a

1×2 matrix with a 2×n matrix, which costs O(2n) = O(n). Next, JTJ is calculated

which also costs O(n) for multiplication and O(n2) for transposition, composing to a

total O(n2). The total cost of step 3 is O(n2N). Inverting the Hessian in step 4 costs

O(n3). Table 2.6 presents a summary of the computational cost of the precompute

stage.

To perform a single iteration of the algorithm, the reference image Ir needs to

be first warped with the current warp estimate W (x; p). For each pixel of the live

image Il we compute W (x; p) and sample Ir at this location. The cost of calculating
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Table 2.7: Computational complexity of a single iteration of the Lucas-Kanade al-
gorithm

Iteration step 1 2 3 4 5 Total
Complexity O(nN) O(N) O(nN) O(n2) O(n2) O(nN + n2)

W (x; p) depends on the warp itself, but for the popularly used ones is usually O(n).

Therefore, the total cost of step 1 is O(nN). In step 2, a simple image difference is

performed, which costs O(N). Next, using the precalculated J we calculate
∑

x J
T r

in O(nN). Solving the equation in step 4 involves multiplication of matrices n × n

and n × 1 (O(n2)). Updating the warp parameters consists of inverting W (x; ∆p)

and matrix multiplication, complexity of which can vary. We will use the cost for

an affine warp, which is O(n2). Table 2.7 presents a summary of the computational

complexity of a single iteration of the registration algorithm.

2.4.5 Coarse-to-fine approach

To increase the rate of convergence, low-pass filtering can be used on the images in

order to skip higher frequencies, effectively smoothing the cost function, making it

possible to jump over local minima [Lucas and Kanade, 1981] and broadening the

basin of convergence. As low-pass filtered images can be sub sampled without loss

of information, this approach also significantly reduces the computation needed to

perform an iteration of the algorithm. The trade off is that the smoothing discards

small details in the image, which leads to reduced accuracy of the match. In an

extreme case, the features available in the image might be completely suppressed,

making it impossible to align the images correctly.

An iterative coarse-to-fine strategy can help to mitigate this problem. A low-

resolution, Gaussian-smoothed version of the image can be used to find an approx-

imate solution first. This approximation can be then used in optimisation with a

more detailed image. In order to find the final alignment, a few iterations of the

alignment algorithm are ran on each level of an image pyramid, in which the images

are successively smoothed and downsampled. An example of such Gaussian pyramid

is presented in Fig. 2.3.
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Figure 2.3: A Gaussian pyramid with 6 levels created from the live image for tracking

Since during registration a number of values needs to be calculated for each pixel,

the cost of the whole operation is mostly defined by the image size. Assuming the

number of pixel in the original image (0th pyramid level) is n, pyramid level i has n
22i

pixels. This leads to significant computational savings, in which the most detailed

and costly registration is done at the end to increase the precision. Typically, 4-5

pyramid levels are used in tracking.

In order to create the smoothed image I∗, the original image I is convolved with

a Gaussian smoothing kernel:

G =


1
16

2
16

1
16

2
16

4
16

2
16

1
16

2
16

1
16

 .

When registering images at lower resolution, special care must be taken to scale

the intrinsic matrix K appropriately. Given the original focal lengths fx, fy and

centre location u0, v0, the intrinsic matrix for pyramid level n has the following
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form:

K =


1

2n fx 0 1
2nu0

0 1
2n fy

1
2n v0

0 0 1

 .

In the following section, we describe the machinery that can make use of dense

image alignment presented in this section in order to estimate the camera localisation

jointly with a 3D map of the observed environment.

2.5 Factor Graphs for SLAM

In this section we will describe Factor Graphs — an important graphical represent-

ation used in mapping back-ends of many SLAM systems, including DeepFactors

presented in Chapter 5. The detailed description and derivation from probabilistic

models found below is directly relevant to that work, in particular due to the use of

ISAM2, an incremental mapping method.

Factor graphs are a type of graphical models for representing function factorisa-

tions [Koller and Friedman, 2009]. They are commonly used to represent probability

distribution functions and are well suited to model complex estimation problems

such as SLAM or Structure From Motion. Following the example presented in [Del-

laert and Kaess, 2017], Figure 2.4 illustrates a toy SLAM problem in a graphical

manner. A robot moving in the environment takes bearing measurements of land-

marks l1, l2 from three different positions: x1, x2, x3. We also assume that there is

a measurement anchoring the first robot position in space.

As standard in the SLAM literature, the measurements are modelled to be inde-

pendent of each other and the robot states are made to depend only on the directly

preceding state (the Markov Chain assumption). Figure 2.5 presents a Bayes Net

representation of the toy SLAM example. A Bayes Net is a probabilistic graphical

model that represents a set of random variables and the conditional dependencies

between them as a directed acyclic graph. They are particularly useful to intuitively

represent the structure of the joint probability density function. The joint probab-
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l2l1

x1 x2 x3

Figure 2.4: An example SLAM problem with a robot taking bearing measurements
of two landmarks from three positions. The arrows represent robot motion and
the dashed arrows indicate landmark observations. Inspired by [Dellaert and Kaess,
2017].

ility density function p(X,Z) = p(x1, x2, l1, l2, l3, z1, z2, z3, z4) of the robot poses xi,

landmark positions lj and landmark observations zk can be obtained as a product of

conditional densities of each variable conditioned on their parent nodes. This results

in the following factorisation, which can be broken into four distinct types of factors:

p(X,Z) = p(x1)p(x2|x1)p(x3|x2)︸ ︷︷ ︸
a

· p(l1)p(l2)︸ ︷︷ ︸
b

· p(z1|x1)︸ ︷︷ ︸
c

· p(z2|x1, l2)p(z3|x2, l1)p(z4|x3, l2)︸ ︷︷ ︸
d

a) The Markov Chain p(x1)p(x2|x1)p(x3|x2). The conditional densities represent

relative motion measurements from wheel odometry.

b) Prior densities on landmarks p(l1), p(l2). Typically not known in standard SLAM

settings.

c) Absolute measurement on the first pose p(z1|x1)

d) Bearing measurements on landmarks: p(z2|x1, l2), p(z3|x2, l1) and p(z4|x3, l2).

Based on this model, we can find the unknown state variables X (robot poses

and landmark locations) given the measurements Z. In probabilistic terms, this

translates to maximisation of the posterior P (X|Z) and is known in literature as
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l2l1

x1 x2 x3

z2 z3 z4

z1

Figure 2.5: Bayes Net corresponding to the toy SLAM example. Nodes represent
different random variables from the model: landmarks, robot states and measure-
ments. Measurement variables are illustrated with boxes to indicate that they are
observed quantities. Adapted from [Dellaert and Kaess, 2017].

Maximum a Posteriori (MAP) estimation:

X∗ = argmax
X

p(X|Z) = argmax
X

p(Z|X)p(X)
p(Z)

. (2.33)

The p(Z|X) term is called the likelihood of the measurements. From the per-

spective of the optimisation problem the likelihood p(Z|X) is treated as a function

of X, parametrised by the given measurements Z. This is opposite to the original

formulation of this term and most often does not follow the same distribution. To

indicate this, we use l(X;Z) to represent the likelihood term. Moreover, since the

measurements are given, the normalising term p(Z) can be dropped, leading to:

X∗ = argmax
X

p(Z|X)p(X)
p(Z)

= argmax
X

l(X;Z)p(X). (2.34)

Due to the change of parametrisation of the likelihood and reformulation of the

minimisation problem, the models created by Bayes Nets become mismatched with

the actual structure of the inference problem. Factor graphs are more suited to model

these types of problems, because they can represent factorisation of any function

ψ(X) over a set of variables X. Figure 2.6 presents a factor graph representation of

the previously introduced toy SLAM example. All model variables are illustrated as

nodes of the graph. The measurement variables omitted because they are given and

not of interest in the optimisation. Rather than associating each graph node with a
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l2l1

x1 x2 x3

f7 f8

f2 f3

f9

f6

f1

f4 f5

Figure 2.6: Factor graph representation of the toy SLAM inference problem. Black
dots represent factor nodes and variables are represented in circles. Adapted
from [Dellaert and Kaess, 2017]

conditional density, factor graphs explicitly represent factors with separate nodes in

the graph with each factor being connected with an edge to all the variables it is a

function of. Similar to Bayesian Networks, the function can be obtained by taking

a product of all the factors involved in the graph:

f(X) =
∏
i

fi(Xi), (2.35)

which, for the example graph leads to:

p(X,Z) = f1(x1)f2(x1, x2)f3(x2, x3)︸ ︷︷ ︸
a

· f4(l1)f5(l2)︸ ︷︷ ︸
b

· f6(x1)︸ ︷︷ ︸
c

· f7(x1, l2)f8(x2, l1)f9(x3, l2)︸ ︷︷ ︸
d

The correspondence to the previously described probability term types is given by

a,b,c,d.

In the case that all random variables are modelled by Gaussian distributions, the

inference equation 2.34 can be transformed further by changing it into a minimisation

problem and taking the logarithm:

argmax
X

l(X;Z)p(X) = argmin
X

[− log(l(X;Z)p(X))] (2.36)

= argmin
X

∑
i

||hi(Xi)− zi||2Σi , (2.37)

where hi(Xi) is the measurement model and || · ||Σi denotes the Mahalanobis

distance. The resulting equation represents a Nonlinear Least Squares problem. In
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order to solve it, the measurement functions hi have to be linearised using first-order

expansion into Taylor series:

hi(Xi) = hi(X0
i + ∆i) ≈ hi(X0

i ) +Hi∆i, (2.38)

where the measurement Jacobian Hi is the derivative of hi evaluated at the linear-

isation point X0
i . Substituting Equation 2.38 into Equation 2.36 gives:

∆∗ = argmin
∆

∑
i

||hi(X0
i ) +Hi∆i − zi||2Σi (2.39)

= argmin
∆

∑
i

||Hi∆i − {zi − hi(X0
i )}||2Σi (2.40)

= argmin
∆

∑
i

||Ai∆i − bi||2, (2.41)

where Ai = Σ−1/2
i Hi and bi = Σ−1/2

i (zi − hi(X0
i )). By further grouping the indi-

vidual equations into matrix and vector forms we arrive at the canonical form of

Linear Least Squares:

∆∗ = argmin
∆

||A∆− b||2. (2.42)

The update vector ∆∗ can be then obtained by solving the normal equations:

(ATA)∆∗ = ATb. (2.43)

2.6 Nonlinear Optimisation

This section presents a very brief description of Nonlinear Optimisation methods,

especially focusing on the Nonlinear Least Squares problem that can be found within

almost all classical SLAM methods.

The general Nonlinear Least Squares objective function has form:

ρ(X) =
∑
i

||f(Xi)− zi||2 = ||f(X)− z||2. (2.44)

This problem cannot be solved directly and requires an iterative method that finds

the solution by successively refining the parameters that better satisfy the object-

ive function. This is typically performed by linearising the residuals at the current
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estimate and calculating an incremental parameter update that minimises the cost

function. At each iteration, the objective function ρ(X) is linearised at the current

parameter estimate X∗:

ρ̄(∆X) = ||J∆X − r||2, (2.45)

where J = ∂f
∂X

∣∣
X∗

and r = z− f(X∗).

The Gradient Descent method calculates the update step by using the direction

of the steepest descent at the current estimate X∗:

∆X = −α∂ρ(X)
∂X

∣∣∣
X∗

= −2αJT r (2.46)

where α is called step size. Larger step sizes increase the speed of convergence but

can also lead to instability. A decreasing schedule is often used for α in order to

balance speed and precision of convergence.

The Gauss-Newton (GN) method is a second-order method that improves on

Gradient Descent by approximating the Hessian of the function. It provides faster

convergence but the quadratic approximation can be invalid, which might lead to

diverging from the optimum. The update in this method is obtained by solving the

normal equations:

∆X = (JTJ)−1JT r. (2.47)

A more robust version of GN called Levenberg-Marquardt (LM) has been proposed

in [Levenberg, 1944] and later modified in [Fletcher, 1971]. This method combines the

advantages of the Gauss-Newton and Gradient descent algorithms by interpolating

between the two. Because of that, it is also known as a trust-region method. To

obtain the parameter update, a modified (damped) version of the normal equations

is used:

[JTJ+ λdiag(JTJ)]∆X = JT r. (2.48)

The damping factor λ is adjusted at each iteration depending on the quality of the

quadratic fit. For larger values of λ, the step will be taken approximately in the

direction of the gradient. The Levenberg-Marquardt method tends to be slightly
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slower than Gauss-Newton for well-behaved functions, but is more robust in other

cases.

2.7 Deep Neural Networks

In this section we introduce the basic definitions and architectures of Deep Neural

Networks, which are fundamental to the work presented in this thesis. We begin with

a brief description of Convolutional Neural Networks, a network structure that has

enabled the success of machine learning in image-based tasks. This is then followed

by an introduction of the U-Net architecture, used extensively in our work.

Neural Networks are trained to approximate a function f(x) using a parametric

generic model f(x; θ). Due to the large number of parameters in the Deep Neural

Network models, this is usually achieved by using a first-order optimisation method

to minimise the prediction error over a dataset of examples. To generalise outside the

training data, the dataset must encompass all possible variations of inputs. Because

of that, stochastic gradient descent is typically used which performs the optimisation

on mini-batches rather than on all examples at once [Goodfellow et al., 2016].

2.7.1 Convolutional Neural Networks

Currently, the majority of neural networks used in computer vision are built using

convolutional layers. Convolutional networks draw inspiration from biology, with

their connectivity patterns following the organisation of the animal visual cor-

tex [Fukushima, 1980, Hubel and Wiesel, 1968, Matsugu et al., 2003]. A typical

network is built out of a series of layers: for each, a set of convolutional filters is

learned that is convolved with the input spatial data, and the result is passed to the

next layer [Goodfellow et al., 2016]. Convolutional layer outputs are often followed

by a non-linear activation function, which is to simulate the activation of neurons

in the brain.

The filters are each applied to the input with a specified stride S by computing

the dot product of the target region with their coefficients. Figure 2.7 presents a one
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Figure 2.7: A one dimensional example of a convolutional layer applying a gradient
filter of size 3 with stride 1. Padding the input tensor with 0’s allows to achieve the
same dimension in the output tensor.

dimensional example of applying a convolutional layer with a filter (or kernel) of

size K = 3 using a stride S = 1. Compared to the pure mathematical definition of

convolution, this method does not mirror the kernel coefficients. The filter is applied

at each pixel of the input, producing an output activation. Padding the input with

zeros allows the filter to be applied at the data boundaries and to preserve the input

dimensions. The size of the output tensor can be calculated using the following

formula:

M =
N −K + 2P

S
+ 1, (2.49)

where N is the input dimension and P is the size of padding. It can be seen that

with stride 1, for the input and output array dimensions to be the same, the input

padding needs to be P = (K − 1)/2.

Figure 2.8 presents example activations produced by a CNN trained for image

classification. Typically, the first CNN layers extract small features such as edges

and coloured blobs, followed by general shapes and partial objects in the deeper

layers [Qin et al., 2018].

2.7.2 The U-Net Architecture

One of the most popular network models is the U-Net, proposed in [Ronneberger

et al., 2015] for biomedical image segmentation. Figure 2.9 illustrates its architecture
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Figure 2.8: Example feature activation maps produced at the fourth layer of Con-
volutional Neural Network trained for image classification (VGG-16). Each feature
map is the result of convolving a learned filter with the preceding layer. The filters
of early layers typically learn to detect coloured edges or corners.

Encoder Decoder

Output

Bottleneck

Input

Skip connectionConvolutional block

Figure 2.9: Architecture of a U-Net. The input is transformed by convolutional blocks
consisting of multiple dimension preserving convolutional layers followed by activa-
tion functions. Strided convolutions reduce the tensor dimensions after each block.
Skip connections allow the decoder part of the network to access high dimensional
spatial information.
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– an encoder-decoder structure with a bottleneck in between. Autoencoders are a

type of a neural networks that are used to learn efficient encodings of data domains

in an unsupervised manner. They are typically trained to significantly reduce the

dimensions of the input space, transforming it into a compact ’code’. The input is

successively transformed with convolutional blocks into features with reduced spatial

resolution and increased depth. Each convolutional block consists of multiple convo-

lutional layers followed by an activation function. Resolution reduction is achieved

by using an increased stride. Upon reaching the minimum spatial resolution, the

bottleneck, the process is reversed. The decoder uses sequential convolutions and up

sampling to produce the desired output resolution. Since the decoder often has sim-

ilar but mirrored structure to the encoder, the network resembles an hourglass or a

U-shape, depending on the visualisation method. Forcing the data through a small

bottleneck ensures that the network utilises global image context but also causes

the detailed spatial information to be lost, degrading the prediction quality. Skip

connections, either concatenating or adding the outputs of two layers, between the

convolutional layers of the encoder and the decoder aim to remedy this by giving

the decoder access to the original information at higher resolutions. Concatenation

based skip connections were used in all the networks used in this thesis.

2.7.3 Variational Autoencoders

Variational Autoencoders (VAEs) have been used in both CodeSLAM (Chapter 4)

and DeepFactors (Chapter 5) and are briefly described in this section. They are a

class of networks used to learn generative models of data and have demonstrated

impressive results, e.g. producing realistic images of human faces and allowing to

interpolate between them [Kingma and Welling, 2014].

Given a dataset X = {x(i)}Ni=1 of N samples of some random variable x, the

method assumes that the data is generated by a certain unknown process that

involves an uncertain unobserved latent variable z ∈ RM . For example, if x is an

image from the set of all possible images of human faces, z might represent features

not observed during training, such as race, age, pose, gender or expression. In this
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qφ(z|x) ∼

x

encoder

z

x̂

decoder

Figure 2.10: Architecture of a Variational Autoencoder network. The parameters of
the approximate posterior qφ(z|x) are produced for the input x by the encoder. This
distribution is then used to sample a latent variable z, which is transformed by the
decoder pθ(x|z) to generate the reconstruction of the input x̂.

model, a value z(i) is generated from a prior distribution p(z) and x(i) is generated

from some conditional distribution pθ(x|z), parametrised with θ.

Finding the ML or MAP estimate for the parameters θ allows mimicking the un-

known random process and generating new, artificial data that resembles the original

data. Since the true posterior pθ(z|x) is typically intractable, the method introduces

a recognition model qφ(z|x) as its approximation. This recognition model allows to

identify the hidden variables z(i) (also called the ‘code’) for a particular data ex-

ample x(i) and is called the encoder. Similarly, the likelihood pθ(x|z) is called the

decoder, since it produces a distribution of x given a latent code z. The prior is as-

sumed to be a centred isotropic multivariate Gaussian distribution p(z) = N(z;O, I)

and the approximate posterior qφ(z|x) and the likelihood pθ(x|z) are modelled as

a multivariate Gaussian with diagonal covariance whose parameters µ and σ are

computed from a neural network.

Figure 2.10 presents the architecture of the network. During training, the latent

variable z(i) is sampled from the approximate posterior qφ(z|x) determined by the

network for each data point x(i) and is then used by the decoder pθ(x|z) to generate

the reconstructed version of the data x̂. The network is trained using the following
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variational loss:

L(x, θ, φ) = ||x− x̂||2 +KL[qφ(z|x)||p(z)], (2.50)

where KL denotes the Kulback-Leibler divergence between the two distributions.

The additional loss term fulfils the role of a regulariser, ensuring that the distri-

butions of the latent variable are continuous and complete (produce a meaningful

reconstruction for each point sampled from a given distribution).

2.8 System Building

Building any kind of SLAM system is a challenging task, especially one that integ-

rates multiple components such as dense tracking, mapping or neural networks. A

great part of the novelty of the work presented in this thesis is the knowledge gained

by building real-time Dense SLAM systems that utilise deep neural networks. This

section provides an overview of the common structures of software developed for

this thesis.

2.8.1 Software Architecture

When writing SLAM systems, we follow a practice inspired from the Model-View-

Controller (MVP) software design pattern and encapsulate the core algorithm into

a single library component, making it independent of the user interface and other

system-specific choices. This allows exchanging the visualisation easily and allows to

use our SLAM as a sub-component of a bigger system or during functional testing.

The core library implements an API interface that accepts new camera frames and

informs the caller about new pose or geometry estimates, usually through invoking

preconfigured callback functions or direct query.

The structure of an example core library of a dense, deep learning enabled SLAM

system is presented in Figure 2.11. The main algorithm logic, such as deciding when

to create a new keyframe, run relocalisation or close loops is contained within the

‘system’ group. The task-specific implementation is encapsulated within components
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Mapper

LoopDetector

Core Library

system cuda common

SE3 Aligner

SfM Aligner

Sum Reduction

Gaussian Blur 

Downsampling

Math Functions

Feature Detector

Feature Matcher

Camera TrackerGraph Evaluator

Load Graph

Session

Tensor

network

Map

Keyframe

GPU Buffers

Lucas Kanade

Pinhole Camera

SE3/SO3 Transform

Component Data Structure Function

Figure 2.11: Subsystems and components of an example dense SLAM library divided
by their functionality. The ‘system’ group contains the main algorithm (e.g. key-
frame creation/management) which delegates work to its various sub-components:
Camera Tracker, Loop Detector and Mapper. These components make use of items
from other groups: network, for evaluating trained models; cuda, for fast parallel
implementations of image operations; common, for general abstract mathematical
functions and algorithms.

of this group, e.g. a Camera Tracker estimating the current camera position against

the latest keyframe or a Mapper that optimises the keyframes for global geometrical

consistency. To fulfil their tasks, these classes use components from other groups.

The network group contains functionality that allows to load a trained network

graph and evaluate it on a GPU Session to obtain predictions in form of Tensors.

The cuda components include parallel implementations of various image processing

tasks, such as downsampling or computing gradients. The dense image alignment

method that forms the basis of camera tracking (SE3 Alignment) or mapping (SfM

Alignment) is typically also performed on the GPU, by first calculating per-pixel

Jacobians of the photometric error with respect to the quantity of interest and later

reducing the matrices into a single system of normal equations. Often, there are

many various functions and components are reused across the whole SLAM system.

These are separated in a ‘common’ group that contains, for example, mathematical

function implementations and classes representing rigid body transformations or the

camera model.

61



2. Preliminaries

Demo Program

Slam System

Visualizer

Input Stream

components

thread 2

Fetch New Frame

Process Frame

thread 1

Process User Input

Display

Figure 2.12: An example architecture of a live SLAM demo. The program, separ-
ated from the core SLAM library, consists of two threads. The first thread handles
interaction with the user and displays a visualisation of the current state of the
algorithm using the Visualizer component. The second thread fetches new images
from hardware using the Input Stream and feeds them to the Slam System.

In the research setting, the most common program that will use the core SLAM

library is the live demo. In our architecture, the demo program serves as an applic-

ation layer responsible for integrating a specific form of data visualisation, a source

of data and the SLAM algorithm. Figure 2.12 presents an overview of an example

live demo program, which consists of two parallel threads. The first thread runs

the chosen Visualiser allowing the user to interact with the system and inspect the

results. The second, main thread, handles fetching latest camera frames using the

Image Stream component and feeds them to the SLAM system. Delegating the visu-

alisation loop to a separate thread allows uninterrupted interaction with the GUI,

independent of the SLAM processing rate.

In our software, the Image Stream component was designed using the Abstract

Factory pattern. Various sources of image sequences implement a single common

abstract interface, which allows to seamlessly run the program on various different
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cuda

Image Interface

Live Interface Dataset Interface

OpenNI Interface

PointGrey Interface

UVC Interface

ScanNet Interface

SceneNet Interface

TUM Interface

NYUD-V2 Interface

Input Stream

Figure 2.13: Class hierarchy for the Input Stream component. The leaf nodes in
the graph implement the two abstract interfaces: Live Interface and Dataset Inter-
face, both of which inherit from the generic Image Interface. Arrows denote class
inheritance.

datasets or cameras. This pattern is nicely extensible as adding a new implement-

ation does not require changes to any other parts of the system — each concrete

implementation registers itself with the abstract factory. Since each interface is re-

gistered using a short identifier (e.g. ‘tum’ for the TUM Interface) a function Cre-

ateInterfaceFromUrl can be implemented that takes in a URL string in the form of

id://params and returns the appropriate interface. This can be used to let the user

specify input sources through command line arguments. The inheritance diagram of

the Input Stream component has been presented in Figure 2.13.

2.8.2 Deep Learning Integration

The typical workflow for developing programs combining deep learning and SLAM

is to perform training in python and afterwards deploy the model for use in a high

performance C++ implementation. We have used the TensorFlow framework for

training all the networks used in this thesis. At the time of writing the software

for this thesis, there were limited options for deploying a trained model for use in

a different language. Our TensorFlow networks weights were saved during training

using ‘tf.Saver‘, which stores the learnable parameters in a binary format together
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with a description of the computational graph in the form of a Protocol Buffers file.

To be used in a C++ program, the saved model has to be ‘frozen’, reading the weights

from the binary file and store them within the computational graph description as

constants. A model processed in such way can be loaded and evaluated using the

TensorFlow C API. Since this API only supports loading a single computational

graph, all networks to be used in the SLAM system have to be merged into a single

graph which can later be selectively evaluated to obtain desired quantities.

Both deep learning and dense SLAM rely on the GPU for carrying out critical

computation. TensorFlow abstracts the hardware used for parallel computation us-

ing Google’s StreamExecutor library, which serves as a wrapper for CUDA and

OpenCL and allows running the same computational kernels using either of these

technologies. The StreamExecutor library is written directly on top of the low level

CUDA Driver API and assumes sole control of the device. This causes problems

with sharing the GPU between the CUDA kernels used e.g. for calculating per-pixel

Jacobians of the photometric error and the TensorFlow network. Each GPU process

is connected to a separate CUDA context, which is similar to the context of a stand-

ard operating system process and contains essential information such as addresses of

the allocated memory blocks. In order for TensorFlow and our CUDA-based SLAM

optimisation to coexist we have separated the two contexts using a feature of the

CUDA API called the ‘context stack’, essentially isolating TensorFlow in its own con-

text, giving it the impression it has sole control over the device. This was achieved

by initialising the main CUDA context for SLAM computation first, removing it

from the stack, initialising the TensorFlow library and finally returning the original

context on top of the stack. The SLAM context is then ‘popped’ off the stack using

a convenience class (Listing 2.1) for network evaluation, exposing the context that

was used to initialise TensorFlow.
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1 class ScopedContextPop {
2 CUcontext ctx_;
3
4 public:
5 ScopedContextPop() {
6 // pop context on construction
7 cuCtxPopCurrent(&ctx_)
8 }
9
10 ~ScopedContextPop() {
11 // push context on scope exit
12 cuCtxPushCurrent(ctx_);
13 }
14 };
15
16 // Example usage:
17 void FunctionUsingTensorFlow() {
18 ScopedcontextPop pop;
19 // Run the network
20 }

Listing 2.1: The ScopedContextPop class, used to manage the CUDA context stack
to enable sharing the GPU between TensorFlow and CUDA computation

65



2. Preliminaries

66



Chapter 3

Semantic Texture for Robust

Dense Tracking

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 Replacing the Pyramid with CNN Feature Maps . . . . 69

3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Real-Time Dense Mosaicing SLAM . . . . . . . . . . . . . . . . 74

3.2.1 Purely Rotational Motion Model . . . . . . . . . . . . . 74

3.2.2 Dense Rotational Tracking . . . . . . . . . . . . . . . . . 76

3.2.3 Volume Alignment . . . . . . . . . . . . . . . . . . . . . 78

3.2.4 Spherical Mosaic Rendering . . . . . . . . . . . . . . . . 78

3.2.5 System Implementation . . . . . . . . . . . . . . . . . . 81

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.1 Robust, Long-Term Tracking . . . . . . . . . . . . . . . 83

3.3.2 Reducing the Number of Features . . . . . . . . . . . . . 87

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

67



3. Semantic Texture for Robust Dense Tracking

3.1 Introduction

As described in Chapter 2.4, dense SLAM relies on whole image alignment of live

images with the reprojected dense texture of the reconstruction. However, using raw

RGB values in persistent dense scene representations over long time periods is prob-

lematic because of their strong dependence on lighting and other imaging factors,

causing image to model alignment to fail. While one thread of research to mitigate

this involves getting closer to the real physics of the world by modelling lighting and

surface reflectance in detail [Jachnik et al., 2012, Whelan et al., 2016], this is very

computationally challenging in real-time. The alternative, which is described in this

chapter, is to give up on representing light intensity directly in scene representa-

tions, and instead to use transformations which capture the information important

for tracking but are invariant to nuisance factors such as lighting.

A long term goal in SLAM is to replace the raw geometry and appearance in-

formation in a 3D scene map by high level semantic entities such as walls, furniture,

and objects. This is an approach being followed by many groups who are work-

ing on semantic labelling and object recognition within SLAM [Hermans et al.,

2014, Valentin et al., 2013, McCormac et al., 2017a], driving towards systems cap-

able of scene mapping at the level of nameable entities (a direction pointed to by

the SLAM++ system [Salas-Moreno et al., 2013]).

What we argue here, and make the first experimental steps to demonstrate, is

that there is a range of very useful levels of representation for mapping and tracking

in between raw pixel values and object level semantics. The explosion of success in

computer vision by Convolutional Neural Networks, and work on investigating and

visualising the levels of features they generate in a variety of vision tasks (e.g. [Si-

monyan et al., 2013]), has revealed a straightforward way to get at these represent-

ations as the outputs of successive levels of convolutional feature banks in a CNN.

This chapter demonstrates that dense alignment, the most fundamental compon-
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ent of dense SLAM, can be formulated simply to make use not of a standard image

pyramid, but the responses of the layers of a standard CNN trained for classifica-

tion; and that this leads to much more robust tracking in the presence of difficult

conditions such as extreme lighting changes. We demonstrate our results in a pure

rotation SLAM system, where long term tracking against keyframes is achieved over

the lighting variations during a whole day. Detailed experiments on the convergence

basins of alignment at all pyramid levels are performed, comparing CNN pyramids

against raw RGB and dense SIFT. It is also shown that just as good performance

can be achieved with small percentages of CNN features chosen using simple criteria

of persistence and texturedness, pointing to highly efficient real-time solutions in the

near future.

A completely new real-time dense spherical SLAM has been developed and used as

the basis of experimentation in this chapter. While it was not necessary for proving

the main concept of semantic texture, it served not only as a means to investigating

the concept, but also to prototype and learn about building dense SLAM systems

that use a neural network in real-time. The know-how gained from this project later

became the foundations to our next work, described in the remainder of the thesis.

We also wanted to prove that Semantic Texture could be used as straightforward

drop-in replacement for RGB textures in existing SLAM pipelines.

There are two characteristic features which make spherical mosaicing a simpler

problem yet representative of SLAM in general: the camera movement model is

simple, having three degrees of freedom (rotation) compared to six for general rigid

body motion (rotation and translation). The other feature is that the maximum map

size is limited to a view sphere, which means that the maximum distance travelled

without loop closure is bounded.

3.1.1 Replacing the Pyramid with CNN Feature Maps

The performance of dense alignment can be measured along several axes. Two are

the accuracy of the final alignment and the speed of convergence, but generally more
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important are the size of the basin of convergence and the robustness to unmod-

elled effects such as lighting changes. Both the speed and basin of convergence of

LK alignment are improved by the use of image pyramids. Before alignment, both

images are successively downsampled to produce a stack of images with decreasing

resolution. Alignment then proceeds by performing a number of iterations at each

level, starting with the lowest resolution versions which retain only low frequency

detail but allow fast computation, and ending back at the original versions where

only a few of the most expensive iterations are needed.

This chapter proposes replacing the downsampling pyramid in LK by the output

of the convolutional layers of an off-the-shelf VGG Convolutional Neural Network

trained for classification. The early layers of a CNN are well known to be generic,

regardless of the final task it was trained for, as shown in [Agrawal et al., 2015]. The

later layers respond to features which are increasingly complex and semantically

meaningful, with more invariance to transformations including illumination. Now

that the convolutional layers of a CNN can comfortably be run in real-time on video

input on desktop or mobile GPUs, the simplicity of using them to build pyramids

for alignment and scene representation is very appealing.

Even though CNNs turn raw images into feature maps, we argue that align-

ing their hierarchical responses is still a ‘dense’ method, which is much more akin

to standard Lucas-Kanade alignment than image matching using sparse features.

The convolutions produce a response at every image location. As we move towards

powerful real-time scene understanding systems which can deal with complex scenes

whose appearance and shape changes over short and long timescales, we will need

dense and fully generative representations, and the ability to fuse and test live data

against these at every time-step. We believe that there are many interesting levels of

representation to find between raw pixel values and human annotated ‘object-level’

models, and that these representations should be learned and optimised depending

on what task needs to be achieved, such as detecting whether something has changed

in a scene.
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Gaussian 3x3 filters

Learned 3x3 filters

Figure 3.1: A comparison between a Gaussian pyramid (left) and the proposed se-
mantic pyramid (right).

Outputs of the convolutions in standard classification CNN’s form a pyramid

similar to the ones used in RGB based LK image alignment (Figure 3.1). Consecut-

ive layers of such pyramid encode increasingly semantic information, starting from

simple geometrical filters in the first layers, leading to more complex concepts. Each

level of the pyramid takes the form of a multi-channel image (tensor), where each

channel contains responses to a certain learned convolutional filter. We propose to

align the volumes in a coarse-to-fine manner, starting from the highest, low resolu-

tion layers and progressing down to the lower, geometrical layers to refine alignment.

The pyramid is created through applying successive convolutions followed by a

nonlinear activation function, with occasional downsampling, very much like in

standard CNN’s. The weights for convolutions are trained for an image classification

task. While in this work we have used weights from a trained VGG-16 classification

model from [Simonyan and Zisserman, 2015] we believe that any classification CNN

could be used instead due to the fact that they have been shown to learn mostly

similar filters. The VGG network network consists of 13 layers of convolutions and
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a number of top level layers which we do not make use of in our work, and which

compute the final classification vector. Figure 3.2 presents the architecture of this

network.

3 64 64
128 128

256
512 512

Figure 3.2: A pyramid is created using successive learned convolutions, just as in a
standard CNN classification network. We have used VGG-16 for our experiments

We recommend watching the associated video material that visualises the CNN

features and shows experiments described in this chapter. It can be found under the

following link: https://youtu.be/SkpHccE1eTQ.

3.1.2 Related Work

Other non-CNN transformations of RGB have been attempted to improve the per-

formance of correspondence algorithms. There are many advantages to generating

a scale-space pyramid using non-linear diffusion [Perona and Malik, 1990], where

edges are preserved while local noise is smoothed away, although it is not clear

how much this would help Lucas-Kanade alignment. In stereo matching, there has

been work such as that by Hirschmüller et al. [Hirschmüller, 2007] which compared

three representations: Laplacian of Gaussian (LoG), rank filter and mean filter. All

of these approaches help with viewpoint and lighting changes. In face fitting using

Lucas-Kanade alignment, Antonakos et al. [Antonakos et al., 2015] evaluated nine

different dense hand-designed feature transformations and found SIFT and HOG to

be the most powerful.

There is a growing body of literature that uses convolutional networks to compare
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image patches, register camera pose and compute optical flow between images [Fisc-

her et al., 2015, Zagoruyko, S., and Komodakis, N., 2015, Luo et al., 2016, Kendall

et al., 2015]. Such methods use networks trained end-to-end, and can output robust

estimates in challenging conditions but fail to deliver the accuracy of model-based

approaches. Instead of performing iterative refinement those methods produce a one-

shot estimate. In FlowNet [Fischer et al., 2015], in particular, the optical flow result

must still be optimised with a standard variational scheme (TV-L1). Our approach

bridges the gap between these two paradigms, delivering both the accuracy of online

optimisation and the robustness of learned features.

Since the time the method presented in this chapter was developed, the research

community has proposed several methods for directly learning a set of features spe-

cialised for camera tracking. In [Lv et al., 2019], the authors remodel the Inverse

Compositional Lucas-Kanade pipeline using neural networks and train it end-to-

end, including a neural optimiser, coarse-to-fine alignment of learned features and a

predicted M-estimator. GN-Net, a network by Stumberg et al. [Stumberg et al.,

2019] learns a nonlinear transformation of RGB images that produces a robust

N-channel texture that is designed to promote robustness to strong lighting and

weather changes while enforcing a maximal basin of convergence for the respective

SLAM algorithm. In [Tang and Tan, 2019] the authors propose BA-Net, an end-

to-end trained network for solving the two-view dense bundle adjustment problem.

The depth and camera poses are recovered by minimising a direct per-pixel error on

features predicted by the network.

While directly training a network to learn a representation for tracking might

improve performance, we argue that exploring using off-the-shelf pre-trained CNNs

is a worthwhile endeavour. A real-time autonomy system for a robot might require

solving multiple different problems such as tracking, estimating optical flow or pre-

dicting depth. Since it has been demonstrated that early features of CNNs trained

for different tasks learn similar filters [Agrawal et al., 2015], it might make sense to

share the common preprocessing step between the various tasks, instead of train-

ing multiple networks. Moreover, on such platforms, it is very likely that a neural
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network will already be used in some capacity, thus producing the ‘Semantic Tex-

ture’ representation. Different types of on-board methods, including other neural

networks could share this alternative representation of the image to calculate their

desired quantities.

3.2 Real-Time Dense Mosaicing SLAM

This section describes the real-time mosaicing SLAM system developed as a means

to investigate the proposed Semantic Texture representation. Inspiration for the

principle of operation of the system was drawn from the work of Lovegrove and

Davison [Lovegrove and Davison, 2010]. We will begin with Section 3.2.1, where we

will derive the pixel warp function for purely rotational movement by first assum-

ing the camera is observing a planar scene (plane induced homography) and then

showing that in the case of pure camera rotation the knowledge of the true scene

geometry is not required.

We then show in Section 3.2.2 how to use the derived warp to estimate the camera

motion using the method previously described in Section 2.4. In Section 3.2.3, we

demonstrate how to modify the system to make use of the proposed Semantic Tex-

ture. We finish with a description of two methods for displaying a spherical mosaic

and information on the implementation of our system and its performance.

3.2.1 Purely Rotational Motion Model

In order to relate image points in one camera view to corresponding image points in

a second view, knowledge of scene geometrical structure is required. A Plane induced

homography is such a transformation, which uses a plane to relate coordinate frames

of two cameras co-observing it (Figure 3.3). The homography has a form of a 3× 3

matrix and can be determined by intersecting the ray corresponding to an image

location x1 with the plane π and then projecting the intersection point ~π onto the

second camera image plane.

Assume that K1 and K2 are the intrinsic matrices of both cameras, the first
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π

C1 C2

H

Figure 3.3: Homography H induced by the plane π relating the image coordinates
of cameras C1 and C2.

camera is located at world origin and the R, t are the rotation and translation

between two cameras. Projection matrices corresponding to the cameras are then:

P1 = K1[I|0]

P2 = K2[R|t].

Given a plane π = (vTd)T where v is a unit vector orthogonal to the plane and d

is the distance from the origin, we can write the plane equation as:

πT x = 0. (3.1)

The intersection of a point from the first camera x = K−1x1 with the plane π can

be calculated with:

xπ = (xT ,−vT x)T . (3.2)

Projecting the point xπ onto the second camera image plane:

x2 = Pxπ = K2[R|t]xπ = Rx− tvT x = K2(R− tvT )K−1
1 x1 (3.3)

H = K2(R− tvT )K−1
1 . (3.4)
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In case of pure rotational movement the homography becomes independent of the

scene altogether:

H = K2RK−1
1 . (3.5)

3.2.2 Dense Rotational Tracking

Using the pure rotational homography derived in the previous section (Equation 3.5),

we can construct a per-pixel photometric error cost function and solve the optim-

isation problem for minimising the warp between two overlapping frames using the

inverse compositional approach (described in Section 2.4):

ρ(x;ω) =
∑

x
[Il(π(KR(ω)K−1x))− Ir(π(KRK−1x)]2, (3.6)

where:

π(x, y, z) =

x/z
y/z

 (3.7)

is the dehomogenising function projecting the points onto the image plane.

To solve, we first perform Taylor expansion around ω = 0 and drop higher order

terms:

ρ(x; ∆ω) =
∑

x
[Il(π(KR(0)K−1x)) + J∆ω − Ir(π(KRK−1x)]2, (3.8)

where:

J =
∂

∂ω

(
Il(π(KR(ω)K−1x))

)∣∣∣
ω=0

. (3.9)

Since R(0) is the identity rotation R(0) = 1, we have:

ρ(x; ∆ω) =
∑

x
[Il(x) + J∆ω − Ir(π(KRK−1x)]2. (3.10)

Next, we calculate the Jacobian J:

∂

∂ω

(
Il(π(KR(ω)K−1ẋ))

)
=
∂Il
∂π

∂π

∂x
∂

∂ω

(
KR(ω)K−1x

)∣∣∣∣
ω=0

=

= ∇IlJπK
∂

∂ω

(
R(ω)K−1x

)
,

(3.11)
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where

Jπ =

1 0 − x
z2

0 1 − y
z2

 (3.12)

is the Jacobian of the π function and ∇Il =
[
gx gy

]
is the image gradient.

R(ω) is the exponential map taking elements from so(3) to their corresponding

lie group elements. To calculate the derivative of the exponential map, we use the

following approximation:

exp(ω×) ≈ 1+ ω×. (3.13)

Substituting for exp(ω×) in Equation 3.11 and using the anti-commutative prop-

erty of the cross product, we have:

∇IlJπK
∂

∂ω

(
(I+ ω×)K−1x

)
= ∇IlJπK

∂

∂ω

(
ω×K−1x

)
=

= ∇IlJπK
∂

∂ω

(
−(K−1x)×ω

)
=

= −∇IlJπK(K−1x)×.

(3.14)

The warp parameter updates can be then calculated using equation 2.28:

∆ω =

(∑
x
JTJ

)−1(∑
x
JT r

)
, (3.15)

where

r = Ir(π(KRK−1x))− Il(x)

J = −∇IlJπK(K−1x)×.

The current camera pose estimate R is then updated by composing it with the

inverse of the calculated warp:

R← R exp(∆ω×)−1. (3.16)
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3.2.3 Volume Alignment

To apply the proposed semantic texture to our dense mosaicing system, we use the

same purely rotational Lucas-Kanade formulation from Equation 3.6 and simply

replace the images with feature volumes V : R2 → RN :

∑
x
||Vt(π(KR(ω)K−1x)− Vr(KRK−1)||2 . (3.17)

In order to solve for the parameter update ∆p, the Jacobian and Hessian of this

nonlinear Least Squares System need to be calculated. Similarly to contributions

from each pixel, terms from different filters can be summed together:

Jx =
∂ex

∂∆p
=


∂ex,1
∂∆p

...
∂ex,N
∂∆p

 =


Jx,1

...

Jx,N

 , (3.18)

H :=
∑

x
JTx Jx =

∑
x

[
JTx,1 . . .J

T
x,N

]

Jx,1

...

Jx,N

 =

=
∑

x

N∑
c=1

JTx,cJx,c

, (3.19)

b :=
∑

x
JTx ex =

∑
x

[
JTx,1 . . .J

T
x,N

]


ex,1
...

eTx,N

 =

=
∑

x

N∑
c=1

JTx,cex,c

. (3.20)

3.2.4 Spherical Mosaic Rendering

The map constructed and maintained by the SLAM system consists of a collection

of keyframes containing the associated image and its estimated pose. In order to

present the panorama to the user, the map has to be transformed into a single
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image. Overlapping parts of keyframes also need to be properly blended to avoid

ghosting and visible seams.

In order to render a panorama from a set of registered images, pixels from each

need to be projected onto a compositing surface which is then mapped to a flat 2D

output image. To ensure real-time performance the implementation utilises parallel

GPU kernels. For each keyframe, a separate kernel is launched which processes pixels

of the output mosaic. Each pixel location is mapped to coordinates in a system

appropriate to the selected compositing surface (spherical, cylindrical, etc). These

coordinates represent a ray r specified in the world frame, which is transformed into

the keyframe frame of reference using its associated pose estimation Rwk. The ray

is next intersected with the keyframe image plane. If the intersection lies within

the image bounds, the image is sampled at that location and added to the original

processed mosaic pixel. This approach allows rendering panoramas at arbitrarily

selected resolutions, which can be higher than the resolution of the input image,

enabling super-resolution.

A separate counter is stored for each output mosaic pixel, which is incremented

every time a keyframe is successfully sampled and contributes intensity to this spe-

cific pixel. After processing all keyframes a second normalisation kernel is launched

which iterates over the output mosaic pixels and divides the accumulated intens-

ity by the counter value. This results in simple averaging of keyframes at overlap

regions.

One of the surfaces used for composition is a sphere centred in the camera centre of

rotation. This projection is pictured in Figure 3.4. To render a spherical panorama,

we first map the mosaic image coordinates x = (u, v)T ∈ Ω = [0, w] × [0, h] to

spherical coordinates: yaw ψ ∈ [−π, π) and pitch θ ∈ [−π
2 ,

π
2 ). The corresponding

ray can be calculated as follows:

rsph(ψ, θ) = (cos θ cosψ, sin θ, cos θ sinψ)T . (3.21)
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Figure 3.4: Spherical projection of keyframe pixels and mapping
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Figure 3.5: Cylindrical projection of keyframe pixels and mapping

The formula for the resulting mosaic is:

Isph(ψ, θ) =
1
n

n∑
i=1

Ii(π(KR−1
wkrsph(ψ, θ))). (3.22)

A cylinder can be also used for composition. This type of projection is presented

in Figure 3.5. For this, we map mosaic image coordinates to cylindrical coordinates:

yaw ψ ∈ [−π, π] and height h ∈ [hmin, hmax]. The corresponding ray has the form:

rcyl(ψ, h) = (cosψ, h, sinψ)T . (3.23)

The formula for the resulting mosaic is:

Icyl(ψ, h) =
1
n

n∑
i=1

Ii(π(KR−1
wkrcyl(ψ, h))). (3.24)
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3.2.5 System Implementation

On start, the system creates an initial keyframe from the first image and initialises its

frame of reference. As the user moves the camera, its rotation is tracked using dense

image alignment against the first keyframe. Once the overlap between the current

and the initial view falls below a certain threshold, a new keyframe is spawned. In

the case when tracking is lost, the system attempts relocalisation by trying to track

against small resolution versions of each keyframe. A spherical or cylindrical mosaic

is rendered in real-time live from the keyframe map, together with the current camera

frustum. An example panorama created by the system is presented in Figure 3.6.

Our system has been implemented from scratch in C++, using the Caffe frame-

work for neural network evaluation. In order to perform alignment in real-time

over big volumes the optimisation has been implemented to run on the GPU us-

ing NVIDIA CUDA. Each computational thread calculates per-pixel values, which

are later reduced to single matrices using Equations 3.19 and 3.20.

The system runs in interactive real-time at 15-20 frames per second when using

the whole pyramid, although as shown in Section 3.3.2, this could be significantly

increased by selecting a small subset of features to track. Extraction of full 13 layers

of convolutional features takes approximately 1 ms per frame. We use an image of size

224×224 to extract features and align all of the levels. The Caffe framework did not

allow to access the GPU pointers of pyramid data, therefore our software is forced

to make copies. This takes 10ms, which could be avoided by further modifications

to the software. Time spent on performing the alignment depends on the number of

iterations performed at different levels and for the settings used in our experiments,

usually takes approximately 40–60ms.

In all tests, a tripod setup with a PointGrey Flea3 FL3-U3-20E4C-C camera with

wide angle 82.4◦ × 66.9◦ lens has been used to capture the image streams.
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Figure 3.6: This figure presents the spherical mosaic incrementally built by our
spherical SLAM system as the camera browses the scene. The current camera loc-
ation estimate is drawn in blue. On start, the system creates an initial keyframe
from the first image and initialises its frame of reference (1). As the user moves
the camera, its rotation is tracked using dense image alignment against the first
keyframe. Once the overlap between the current and the initial view falls below a
certain threshold, a new keyframe is spawned (2-3). The bottom image presents the
final mosaic consisting of 8 keyframes (4).
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3.3 Experimental Results

We present experiments which compare the performance of image alignment for our

CNN pyramid with raw RGB and dense SIFT pyramids. We consider that robustness

is the most important factor in camera tracking, and therefore use the size of basin of

convergence as our performance measure in the main results in Section 3.3.1. We also

investigate the possibility of improving the results and reducing the computational

overhead through selecting the most valuable feature maps in Section 3.3.2.

3.3.1 Robust, Long-Term Tracking

In order to test the robustness of the proposed representation in long-term track-

ing scenarios, three time-lapse sequences from a static camera have been captured

showcasing real-world changing lighting conditions. The videos cover 8–10 hours of

outdoor scenes, and have been sub-sampled into 2 minute clips.

In our tests we focus on two of the captured sequences — window and home. The

first features a highly specular scene which undergoes major and irregular lighting

changes throughout the day with no major outliers in the form of moving objects.

The home sequence shows a relatively busy street with frequent outliers. This se-

quence contains less specular surfaces, the observed illumination changes have more

a global character. We have selected three snapshots from each of these sequences

containing different lighting conditions, and evaluated the area of the convergence

basin while trying to align each possible pair of frames. To serve as a baseline com-

parison, we also present the results of alignment using RGB (RGB) and dense SIFT

features (SIFT), as they have been shown to be very robust to lighting nuisance

when used for Lucas-Kanade based face tracking in [Antonakos et al., 2015].

In order to measure the size of the convergence basin, we segment the parameter

space into a regular grid and initialise the Lucas-Kanade algorithm at each point.

Next, we perform the optimisation for 1000 iterations and inspect the final result.

We find that when convergence is successful, the final accuracy is generally good,

and therefore define that if the tracking result is within 0.07 radians of ground truth,
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we mark the tested point as belonging to the convergence basin. The marked points

are next used to calculate the total area of the convergence basin.

The results are presented in Figures 3.7 and 3.8. Five pyramids levels of SIFT and

RGB have been used in the tests to compare with the proposed CNN pyramid. The

missing values were duplicated in the plots so that it is possible to easily compare

the convergence basin areas of the corresponding image resolutions (e.g. RGB/SIFT

level 5 corresponds to CONV levels 11–13). Note that the LK alignment results are

not symmetric with regard to which image is used as the template and which as

the reference, as only the gradient of the template image is used, which might have

impact on performance under varying lighting conditions and blur.

For frames from the window dataset (Figure 3.7), all of the methods have a sensible

basin of convergence on the diagonal, where the images used for alignment are

identical. For more challenging, off-diagonal pairs, such as A2, A3 or B3, the RGB

cost function fails to provide a minimum in the correct spot, while SIFT and CONV

still have wide, comparable convergence basins. One of the failure cases is showcased

in more detail in Figure 3.9. The proposed CONV method seems to excel at higher

levels, which are believed to have more semantic meaning.

In the second, home sequence (Figure 3.8) RGB performs better, possibly due

to the global character of the illumination changes. It still fails when the lighting

changes significantly (pair C2,B3). Similar to the previous sequence, the proposed

method performs at least as well as SIFT and better than RGB at the highest levels

of pyramid. To evaluate how the proposed solution handles image blurring, we have

tested it with an alignment problem of an image with a heavily blurred version

of itself. Figure 3.10 presents the reference and template images used in this test,

selected cost landscape plots of RGB, CONV and SIFT and a comparison of basin

sizes. We can see that all methods are robust to blur, with our proposed method

providing the best results at the highest pyramid levels. It provides a steady, wide

basin of convergence at the top pyramid levels regardless of the lighting conditions

and blur.
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Figure 3.7: Comparison of sizes of convergence basins for aligning pairs of images
with different lighting conditions (sampled from the window sequence). Each array
cell presents convergence basins areas of RGB (red), SIFT (green) and CONV (blue)
at different pyramid levels. The left column and top row images are used in LK as
template and reference, respectively.
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Figure 3.8: Comparison of sizes of convergence basins for aligning pairs of images
with different lighting conditions (sampled from the home sequence). Each array cell
presents convergence basins areas of RGB (red), SIFT (green) and CONV (blue)
at different pyramid levels. Left and top images are used in LK as template and
reference, respectively.
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Figure 3.9: Cost landscape plots and convergence basin areas of different methods
for aligning two images of the same scene in vastly different lighting conditions. (a)
Template image (b) Reference image (c) RGB cost landscape (d) SIFT cost land-
scape (e) CONV cost landscape (f) Comparison of convergence basin areas (RGB:
red, SIFT: green, CONV: blue).

3.3.2 Reducing the Number of Features

The results presented so far are based on aligning all of the CNN feature maps

produced at each pyramid level jointly. One clear disadvantage of this approach is

computational cost: the amount of work which needs to be done at each alignment

iteration to calculate a difference is proportional to the number of features. It is

apparent from any inspection of the features generated by a CNN that there is a

lot of redundancy in feature maps, with many looking very similar, and therefore it

seemed likely that it is possible to achieve similar or better results through selection

of a percentage of features. We perform experiments to compare a random selection

with simple criteria based on measures of texturedness and stability. An other option

would be to use a different, smaller CNN with a smaller number of features, but it
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Figure 3.10: Cost landscape plots and calculated convergence basin areas of different
methods for aligning an image with a blurred version of itself. (a) Template image
(b) Reference image (c) RGB cost landscape (d) SIFT cost landscape (e) CONV
cost landscape (f) Comparison of convergence basin areas (RGB: red, SIFT: green,
CONV: blue).

could be benefit from the techniques presented in this section. This approach could

also be replaced by learning a small subset of features that are most important for

tracking, but as we have outlined in the introduction of this chapter, we believe it

is still worthwhile to explore using features from a network trained for a different

task.

In standard Lucas-Kanade, the size of the convergence basin depends highly on

image content. For example, a vertical stripe can only be used to detect horizontal

translation; the lack of vertical gradient makes it impossible to determine the move-

ment in this direction. In order to correctly regress the camera pose, a strong gradient

in both feature directions is required. As in Shi and Tomasi’s classic ‘Good Features

to Track’ paper [Shi and Tomasi, 1994], we measure the texturedness of a feature
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based on its structure tensor:

Gf =
∑
x∈If

 g2
x gxgy

gxgy g2
y

 ,
where If is the activation map of the feature in response to a certain input image.

We use the smallest eigenvalue of matrix Gf as a comparable single score:

λf =
1
N

N∑
i=1

min(1λ
i
f , 2λ

i
f ),

where 1λ
i
f and 2λ

i
f are the two eigenvalues of matrix Gif .

The other factor to consider is stability. Most valuable features provide stable

activations that change only due to changes in camera pose. Features that react to

objects that are likely to change their location, or lighting changes, are undesirable.

We measure the instability of a feature f by calculating the average sum of squared

differences (SSD) between activations obtained from images of the test sequence to

the ones extracted from the first image and warped to the current camera frame:

sf =
1

N − 1

N∑
i=2

∑
x
‖(I1

f (W(x;ω))− Iif (x)‖2.

Averages of these two scores have been calculated across frames of three video se-

quences — two time-lapses and one hand tracking sequence. We have selected and

evaluated several subsets of features of varying size that have the optimal textured-

ness and stability. To assess their robustness, we again use the size of convergence

basin as a measure. Twelve challenging (outliers, varying lighting conditions) image

pairs sampled from our recorded sequences have been used in the evaluation.

Figure 3.12 compares the average convergence basin size achieved with the features

selected with our proposed approach with a baseline of using random selections.

Random tests were performed in a range of 5–100% sub-sampling, with a step of 5%.

Each sampled subset was tested 20 times against all twelve image pairs. We see very

strongly that the features selected using our simple criteria give excellent tracking

performance when they are much fewer than the whole set; while the performance

of the randomly chosen features tails off much faster.
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Figure 3.11: Feature texturedness versus instability. Each point represents one of
the 512 features from the last convolutional layer. We pick features with maximum
texturedness and minimum instability (top left corner of the plot).

3.4 Conclusions

We have shown that substituting the image pyramid in standard Lucas Kanade

dense alignment with a hierarchy of feature maps generated by a standard VGG

trained for classification straightforwardly gives much improved tracking robustness

with respect to large lighting changes, often outperforming SIFT, an image trans-

formation shown to be superior for template matching at that time [Zagoruyko, S.,

and Komodakis, N., 2015]. Our tests have proven that it is possible to make use of

the generic filters learned by Convolutional Neural Networks, without training them

directly for camera tracking. This allows us to take advantage of the fact that an

object recognition or other type network will most likely be already present on any

intelligent robotic system, providing us with the required Semantic Texture.
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Figure 3.12: Average convergence basin size obtained by using our proposed selection
process (blue) and random sampling (red), for different sampling percentage. Results
were evaluated using twelve image pairs representing the most challenging conditions
(outliers, lighting variations).

While our method induces additional computation, it offers a trade-off between

performance and robustness which could be tuned to each specific application. We

have demonstrated a simple yet effective feature selection procedure that could be

performed as a pre-processing step for each specific network, obtaining the desired

increase in robustness and computational complexity.

Despite the fact that other methods [Lv et al., 2019, Stumberg et al., 2019, Tang

and Tan, 2019] have taken this approach further, it is still interesting to observe how

much the performance of tracking can be improved using non-specific features. We

expect the learned methods to perform better than our proposed approach, but it

has not been determined exactly how much is gained by performing specific training.

Developing the work in this thesis has taught us that incorporating more learned
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3. Semantic Texture for Robust Dense Tracking

parts in the processing pipeline causes problems with generalisation across different

datasets. This might indicate that not relying on networks being specifically trained

for the task we are trying to solve might prove to be a more robust approach.

We continue this trend in our next work, which also retains the classical iterative

optimisation scheme and does not fully rely on the network predicting the correct

values in a feed-forward manner.

A different but important lesson learned from developing the work for this chapter

is the know-how of building real-time dense SLAM systems that use the GPU for

both processing images with a neural network and performing image alignment with

CUDA kernels. This knowledge was extensively used for developing the DeepFactors

system, which will be described in Chapter 5.

While Semantic Texture is immediately a neat and convenient method for track-

ing, we hope that it opens the door to further research on new representations for

dense mapping and tracking which lie in between raw pixel values and object-level

models. What levels of representation are needed in dense SLAM in order actually

to achieve tasks such as detecting a change in an environment? A clear next step

would be to investigate the performance of m-estimators on the CNN features to

gate out outliers. Might we expect to see that whole semantic regions which had

moved or changed could be masked out from tracking? We imagine that a dense 3D

model will be painted with smart learned feature texture for tracking and updating,

rather than the raw pixel values of systems like DTAM [Newcombe et al., 2011].

For the remainder of the work presented in this thesis, rather than continuing

research from this chapter, we have moved towards more general 3D representations

that impact the dense SLAM pipeline in a more fundamental way, as we were inter-

ested in working towards a new generations of systems that are united with learning

in a more elegant and coherent way.
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4. Learned Compact Depth Map Representation

4.1 Introduction

The underlying representation of scene geometry is a crucial element of any loc-

alisation and mapping algorithm. Not only does it influence the type of geometric

qualities that can be mapped, but also dictates what algorithms can be applied. In

SLAM in general, but especially in monocular vision, where scene geometry cannot

be retrieved from a single view, the representation of geometrical uncertainties is

essential. However, uncertainty propagation quickly becomes intractable for large

degrees of freedom. For example, to represent the covariance of the pixels of a single

800×600 depth map 2.3·1011 parameters are required. This difficulty has split main-

stream SLAM approaches into two categories: sparse SLAM [Davison, 2003, Klein

and Murray, 2007, Mur-Artal et al., 2015] which represents geometry by a sparse set

of features and thereby allows joint probabilistic inference of structure and motion

(which is a key pillar of probabilistic SLAM [Durrant-Whyte and Bailey, 2006]) and

dense or semi-dense SLAM [Newcombe et al., 2011, Engel et al., 2014] that attempts

to retrieve a more complete description of the environment at the cost of approxim-

ations to the inference methods (often discarding cross-correlation of the estimated

quantities and relying on alternating optimisation of pose and map [Platinsky et al.,

2017, Engel et al., 2017]).

However, the conclusion that a dense representation of the environment requires

a large number of parameters is not necessarily correct. The geometry of natural

scenes is not a random collection of occupied and unoccupied space but exhib-

its a high degree of order. In a depth map, the values of neighbouring pixels are

highly correlated and can often be accurately represented by well known geomet-

ric smoothness primitives. But more strongly, if a higher level of understanding is

available, a scene could be decomposed into a set of semantic objects (e.g. a chair)

together with some internal parameters (e.g. size of chair, number of legs) and a

pose, following a direction indicated by the SLAM++ system [Salas-Moreno et al.,

2013] towards representation with very few parameters. Other more general scene

elements which exhibit simple regularity such as planes can be recognised and effi-
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Figure 4.1: Highlights of reconstruction created by our CodeSLAM system from
pairs of images selected frames from the EuRoC dataset. The proposed compact
representation of 3D geometry enables joint optimisation of the scene structure and
relative camera motion without explicit priors and a relatively fast performance.

ciently parametrised within SLAM systems (e.g. [Salas-Moreno et al., 2014, Kaess,

2015]). However, such human-designed dense abstractions are limited in the fraction

of natural, cluttered scenes which they can represent.

In this work we aim at a more generic compact representation of dense scene

geometry by training an auto-encoder on depth images. While a straightforward

auto-encoder might over-simplify the reconstruction of natural scenes, the key nov-

elty is to condition the training on intensity images. Our approach is planned to fit

within the common and highly scalable keyframe-based SLAM paradigm [Klein and

Murray, 2007, Engel et al., 2014], where a scene map consists of a set of selected and

estimated historical camera poses together with the corresponding captured images
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4. Learned Compact Depth Map Representation

and supplementary local information such as depth estimates. The intensity images

are usually required for additional tasks, such as descriptor matching for place re-

cognition or visualisation, and are thus readily available for supporting the depth

encoding.

The depth map estimate for a keyframe thus becomes a function of the cor-

responding intensity image and an unknown compact representation (henceforth

referred to as ‘code’). This allows for a compact representation of depth without

sacrificing reconstruction detail. In inference algorithms the code can be used as a

dense representation of the geometry and, due to its limited size, this allows for full

joint estimation of both camera poses and dense depth maps for multiple overlap-

ping keyframes. We might think of the image providing local details and the code

as supplying more global shape parameters which are often not predicted well by

‘depth from single image’ learning. Importantly though, these global shape para-

meters are not a designed geometric warp but have a learned space which tends to

relate to semantic entities in the scene, and could be seen as a step towards enabling

optimisation in general semantic space.

This work, published in [Bloesch et al., 2018] came at a time when many authors

were combining techniques from deep learning with estimation-based SLAM frame-

works, and there is an enormously fertile field of possibilities for this. Some particu-

larly eye-catching pieces of work over the past year have focused on supervised and

self-supervised training of surprisingly capable networks which are able to estimate

visual odometry, depth and other quantities from video [Garg et al., 2016, Ummen-

hofer et al., 2017, Wang et al., 2017, Clark et al., 2017b, Zhou et al., 2017, Yin

and Shi, 2018]. These methods run with pure feed forward network operation at

runtime, but rely on geometric and photometric formulation and understanding at

training time to correctly formulate the loss functions which connect different net-

work components. Other systems are looking towards making consistent long-term

maps by constantly refining geometric estimates, and this is the domain in which

we are more interested here. In CNN-SLAM [Tateno et al., 2017] single image depth

prediction and dense alignment are used to produce a dense 3D map and this gives a
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promising result, but it is not possible to optimise the predicted depth maps further

for consistency when multiple keyframes overlap as it is in our approach.

To summarise, the two key contributions of the work presented in this chapter

are:

• The derivation of a compact and optimisable representation of dense geometry

by conditioning a depth auto-encoder on intensity images.

• The implementation of a novel and preliminary monocular visual odometry

system that achieves a tight joint optimisation of motion and dense geometry.

In the rest of this chapter, we will first explain our method for depth learning and

prediction, and then show the applicability of this approach in a SLAM setting.

4.2 Intensity Conditioned Depth Auto-Encoding

Two important qualities of geometry representations are accuracy and practicality.

While the accuracy of a representation simply relates to its ability to reproduce the

geometry, the practicality describes how well the representation can be used in an

overall system. For inference-based SLAM systems, the latter typically requires the

representation to lead to an optimisable loss function. For a representation G of the

geometry a loss function L(G) should be differentiable and have a clear minimum.

Additionally, the size of the representation G should be limited in order to allow

the estimation of second-order statistical moments (a covariance matrix) as part of

more powerful inference methods.

In order to come up with a compact representation of the scene geometry we

explore auto-encoder-like network architectures. Auto-encoders are networks which

attempt to learn an identity mapping while being subject to an information bottle-

neck which forces the network to find a compact representation of the data [Rumel-

hart et al., 1986]. In a naive attempt to auto-encode depth this would lead to very

blurry depth reconstruction since only the major traits of the depth image can make
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Reconstruction Groundtruth

Figure 4.2: Depth auto-encoder without the use of image intensity data. Due to the
bottleneck of the auto-encoder only major traits of the depth image can be captured.

it through the bottleneck (see Figure 4.2). In a monocular vision setup, however,

we have access to the intensity images, which we are very likely to store alongside

every keyframe. This can be leveraged to make the encoding more efficient: the full

depth information does not need to be encoded, only the part of the information

which cannot be retrieved from the intensities has to be retained. The depth D thus

becomes a function of image I and (unknown) code c:

D = D(I, c) . (4.1)

The above equation also highlights the relation to depth-from-mono architec-

tures [Eigen et al., 2014, Liu et al., 2015, Garg et al., 2016, Zhou et al., 2017] which

solve a code-less version of the problem, D = D(I). Essentially, our architecture

is a combination of the depth-from-mono-architecture of Zhou et al. [Zhou et al.,

2017] and a variational auto-encoder for depth. We have chosen a variational auto-

encoder network [Kingma and Welling, 2014] in order to increase the smoothness of

the mapping between code and depth: small changes in the code should lead to small

changes in the depth. While the practicality of our representation is thus addressed

by the smoothness and the limited code size, the accuracy is maximised by training

for the reconstruction error.
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Figure 4.3: Network architecture of the variational depth auto-encoder conditioned
on image intensities. We use a U-Net to decompose the intensity image into convo-
lutional features (the upper part of the figure). These features are then fed into the
depth auto-encoder by concatenating them after the corresponding convolutions (de-
noted by arrows). Down-sampling is achieved by varying stride of the convolutions,
while up-sampling uses bilinear interpolation (except for the last layer which uses a
deconvolution). A variational component in the bottleneck of the depth auto-encoder
is composed of two fully connected layers (512 output channels each) followed by the
computation of the mean and variance, from which the latent space is then sampled.
The network outputs the predicted mean µ and uncertainty b of the depth at four
pyramid levels.

4.2.1 Detailed Network Architecture

An overview of the network architecture is provided in Figure 4.3. The top part

illustrates a U-Net [Ronneberger et al., 2015] applied to the intensity image, which

first computes an increasingly coarse but high-dimensional feature representation

of the input image. This is followed by an up-sampling part with skip-layers. The

computed intensity features are then used to encode and decode the depth in the

lower part of the figure. This part is a fairly standard variational auto-encoder

architecture with again a down-sampling part and an up-sampling part. Embedded

in the middle are two fully connected layers as well as the variational part, which
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samples the code from a Gaussian distribution and is subject to a regularisation cost

(KL-divergence, see [Kingma and Welling, 2014] and Section 2.7). The conditioning

of the auto-encoder is achieved by simply concatenating the intensity features of the

corresponding resolution.

Instead of predicting just raw depth values, we predict a mean µ and an uncer-

tainty b for every depth pixel. The uncertainty is predicted from intensity only and

thus is not directly influenced by the code. Subsequently, we derive a cost term by

evaluating the negative log-likelihood of the observed depth d̃. This allows the net-

work to attenuate the cost of difficult regions and to focus on reconstructing parts

which can be well explained. At test time, the learned uncertainties can also serve to

gauge the reliability of the reconstruction. In the present work we employ a Laplace

distribution which has heavier tails than the traditional Gaussian distribution:

p(d̃|µ, b)) =
1
2b

exp

(
−|d̃− µ|

b

)
. (4.2)

Discarding a constant offset, the negative log-likelihood thus becomes:

− log(p(d̃|µ, b)) =
|d̃− µ|
b

+ log(b) . (4.3)

Intuitively, the network will tune the pixel-wise uncertainty b such that it best

attenuates the reconstruction error |d̃ − µ| while being subject to a regularisation

term log(b). Using likelihoods as cost terms is a well-established method and has

previously been applied to deep learning problems in computer vision [Kendall and

Gal, 2017, Clark et al., 2017a].

The b parameter could alternatively be predicted alongside µ, as an additional

channel of the output of the code VAE. In our experiments, we have observed slightly

better results when predicting the uncertainty from the intensity image and have

not explored this further.

In analogy to previous work, we evaluate the error at multiple resolutions [Zhou

et al., 2017]. To this end, we create a depth image pyramid with four levels and

derive the negative log-likelihood for every pixel at every level. We increase the

weight on every level by a factor of 4 in order to account for the lower pixel count.
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Figure 4.4: (a) Comparison of different depth parametrisations (b) proximity encod-
ing for different values of the average depth parameter a. Best viewed on a computer
screen.

Except for the computation of the latent distribution and the output channels, the

activations are all set to ReLu. Furthermore, for allowing pre-computation of the

Jacobians (see Section 4.4.1), we explore identity activations for the depth decoder,

making the depth a linear function of the code:

D(c, I) = Ac+ b = J(I)c+D0(I). (4.4)

Using concatenations for the conditioning connections between the top U-Net and

the depth decoder would cause the Jacobian of the decoder to be also linear with

respect to the intensity image: J(I) = Dc + e. Since we would like to retain a

nonlinear relation between the decoder Jacobian J(I) and the intensity image I,

we add the element-wise multiplication of every concatenation to the concatenation

itself. I.e., we increment every concatenation [L1, L2] of layers L1 (from the previous

layer of the decoder) and L2 (from the top, conditioning U-Net) to [L1, L2, L1�L2].

4.2.2 Training Setup

The depth values of the dataset are transformed to the range [0, 1]. We do this by

employing a hybrid depth parametrisation which we call proximity :

p =
a

d+ a
. (4.5)
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A comparison of the proposed proximity parametrisation with other parametrisa-

tions found in the literature is presented in Fig. 4.4a. Given an average depth value a,

it maps the depth in [0, a] to [0.5, 1.0] (similar to regular depth) and maps the depths

in [a,∞] to [0, 0.5] (similar to inverse depth). This parametrisation is differentiable

and better relates to the actual quantity that is observed in 3D reconstruction,

as it is proportional to disparity measured between elements of the images taken

from different viewpoints (see inverse depth parametrisation [Montiel et al., 2006]).

Moreover, it allows to efficiently encode depth for a chosen value range by adjusting

the parameter a, which controls the inflection point of the curve (Fig. 4.4b).

The network is trained on the SceneNet RGB-D dataset [McCormac et al., 2017b]

which is composed of photo realistic renderings of randomised indoor scenes. It

provides five million colour and depth images as well as semantic labeling and poses

for training, out of which we only make use of the two former ones. We make use of

the ADAM optimiser [Kingma and Ba, 2015] with an initial learning rate of 10−4,

which is reduced by a factor of 0.1 every 3 epochs. We train the network for 6 epochs

with a batch size of 16 and evaluate our loss at four levels of image resolution.

4.3 Dense Warping

Due to the latent cost of the variational auto-encoder that forces the code distribu-

tion to a zero-mean normalised Gaussian, the zero code can be used to obtain the

most likely single view depth prediction for the supplied intensity image D(I, 0) (see

Figure 4.7). However, if overlapping views are available we can leverage stereopsis to

refine the depth estimates. This can be done by computing dense correspondences

between the views: Given the image IA and the estimated code cA of a view A, as

well as the relative transformation TBA = (RBA,BtA) ∈ SO(3) × R3 to a view B,

we compute the correspondence for every pixel u with:

w(u, cA,TBA) = π(RBA π−1(u, DA(u)) + BtA) , (4.6)

where π and π−1 are the projection and inverse projection operators introduced

in Section 2.3 and DA = D(IA, cA) denotes the depth image obtained from the
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intensity image and the corresponding code. Using this notation, we can derive the

photometric error using the code depth:

IA(u)− IB(w(u, cA,TBA)) . (4.7)

The above expressions are differentiable w.r.t. to their inputs and we can compute

the corresponding Jacobians using the chain rule:

∂IB(v)
∂BtA

=
∂IB(v)
∂v

∂π(x)
∂x

, (4.8)

∂IB(v)
∂RBA

=
∂IB(v)
∂v

∂π(x)
∂x

(−RBA π−1(u, d))× , (4.9)

∂IB(v)
∂ca

=
∂IB(v)
∂v

∂π(x)
∂x
RBA

∂π−1(u, d)
∂d

∂DA(u)
∂cA

, (4.10)

where × refers to the skew symmetric matrix of a 3D vector and with the abbrevi-

ations:

v = w(u, cA,TBA) , (4.11)

x = RBA π−1(u, DA(u)) + BTA , (4.12)

d = D(IA, cA)(u). (4.13)

Most partial derivatives involved in Equations (4.8) to (4.10) are relatively well-

known from the dense tracking literature [Kerl et al., 2013] and include the image

gradient (∂IB(v)/∂v), the differential of the projection (∂π(x)/∂x), as well as trans-

formation related derivatives (also refer to [Bloesch et al., 2016] for more details).

The last factor in Equation (4.10), ∂DA(u)/∂cA, is the derivative of the depth w.r.t.

the code. It is much more computationally costly to evaluate (up to 1 sec depending

on the size of the network) compared to a standard forward pass of the network,

as calculating the derivative involves multiple passes (at minimum, as many times

as the number of code entries). In case of a linear decoder this term can be pre-

computed which significantly accelerates the evaluation of the Jacobians.
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4.4 Inference Framework

4.4.1 N-Frame Structure from Motion (Mapping)

The proposed depth parametrisation is used to construct a dense N -frame Structure

from Motion (SfM) framework (see Figure 4.5). We do this by assigning an unknown

code and an unknown pose to every frame. All codes and poses are initialised to zero

and identity, respectively. For two frames A and B with overlapping field of view we

then derive photometric and geometric residuals, Epho and Egeo, as follows:

Epho = Lp
(
IA(u)− IB(w(u, cA,TBA))

)
, (4.14)

Egeo = Lg
(
DA(u)−DB(w(u, cA,TBA))

)
. (4.15)

The loss functions Lpho and Lgeo have the following masking and weighting func-

tionality:

(i) mask invalid correspondences,

(ii) apply relative weighting to geometric and photometric errors,

(iii) apply a Huber weighting,

(iv) down-weight errors on strongly slanted surfaces,

(v) down-weight pixels which might be occluded (only Lpho).

In order to optimise both sets of residuals w.r.t. our motion and geometry we com-

pute the Jacobians w.r.t. all codes and poses according to Section 4.3. As mentioned

above, we investigate the applicability of linear decoding networks (see Section 4.2.1)

as this allows us to compute the Jacobian of the decoder D(I, c) w.r.t. the code c

only once per keyframe. After computing all residuals and Jacobians we apply a

damped Gauss-Newton algorithm in order to find the optimal codes and poses of all

frames.
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Figure 4.5: Illustration of the SfM system. The image Ii and corresponding code
ci in each frame are used to estimate the depth Di. Given estimated poses Ti, we
derive relative error terms between the frames (photometric and geometric). We then
jointly optimise for geometry (ci) and motion (Ti) by using a standard second-order
method.

4.4.2 Tracking (Localisation)

While camera localisation is performed within the SfM approach described above,

it would very costly and impossible to perform at real-time speeds. We utilise a

separate tracking system that estimates camera pose with respect to an existing

keyframe map and run the full reconstruction system only when a new keyframe is

introduced to the map, which significantly speeds up the computation.

This tracking system can be built much in the spirit of the above SfM approach.

The current frame is paired with the last keyframe and the estimated relative pose

results from a cost-minimisation problem. In our vision-only setup we do not have

access to the current depth image (except for a rough guess), and thus in contrast

to the described SfM system we do not integrate a geometric cost.

In order to increase tracking robustness we perform a coarse to fine optimisation

by first doing the dense alignment at low depth image resolutions.
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4.4.3 SLAM System

We implement a preliminary system for Simultaneous Localisation and Mapping

inspired by PTAM [Klein and Murray, 2007] where we alternate between tracking

and mapping. The initialisation procedure takes two images and jointly optimises

for their relative pose and the codes of each frame. After that we can track the

current camera pose w.r.t. the last keyframe. Once a certain baseline is achieved we

add a keyframe to the map and perform a global optimisation, before continuing

with the tracking. If the maximum number of keyframes is reached we marginalise

old keyframes and thereby obtain a linear prior on the remaining keyframes. In a

4-keyframe setup, we achieve a map update rate of 5 Hz. The system currently

relies on Tensorflow for image warping, and could be sped up with a more targeted

warping and optimisation system which are both part of future work.

4.5 Experimental Evaluation and Discussion

Please also see our submitted video which includes demonstrations of our results

and system http://www.imperial.ac.uk/dyson-robotics-lab/projects/codeslam/.

4.5.1 Image Conditioned Depth Encoding

First we present results and insights related to our key concept of encoding depth

maps conditioned on intensity images.

We trained and compared multiple variations of our network. Our reference net-

work has a code size of 128, employs greyscale image information only, and makes

use of a linear decoder network in order to speed up Jacobian computation. The

linear version of the decoder is obtained by replacing non-linear activation functions

such as ReLU with an identity mapping. Figure 4.6 shows results on reconstruction

accuracy using different code sizes as well as setups with RGB information and non-

linear depth decoding. The use of colour or nonlinear decoding did not significantly

affect the accuracy. With regard to code size, we observe a saturation of the accuracy

at a code size of 128; there is little to be gained from making the code bigger. This
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Figure 4.6: Validation loss during training on the per-pixel proximity errors. As the
reference implementation, we use a network trained on greyscale images with a linear
decoder. Lower losses can be achieved by increasing the code size (increasing shades
of grey). Using a nonlinear decoder or colour images during training does not affect
the results in a significant way.

value may be surprisingly low, but the size seems to be large enough to transmit the

information that can be captured in the code by the proposed network architecture.

Figures 4.7 to 4.9 provide some insight into how our image conditioned depth

encoding works. In Figure 4.7 we show how we encode a depth image into a code

of size 128. Using the corresponding intensity image this can then be decoded into

a reconstructed depth image, which captures all of the main scene elements well.

We also show the reconstruction when passing a zero code to the decoder as well

as with a code that is optimised for minimal reconstruction error. The zero code

captures some of the geometrical details but fails to properly reconstruct the entire

scene. The reconstruction with the optimised code is very similar to the one with
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Figure 4.7: An example image passed through encoding and decoding. Top left:
input image. Top right: ground truth depth. Middle left: zero code reconstruction
(image only prediction). Middle right: decoded depth (code from encoder). Bottom
left: estimated reconstruction uncertainty (scaled four times for visibility). Bottom
right: optimised depth (code minimising reconstruction error).
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Figure 4.8: Encodings of different depth images. The encoding allows to capture
even fine geometrical details.
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Figure 4.9: Visualisation of the influence of the code on depth reconstruction. The
Jacobian of the depth w.r.t. a specific code entry is used to colourise the input image
(blue and red depict negative and positive values, respectively). Columns represent
code entries (1-3). Rows represent two different input images.
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Figure 4.10: Visualisation of the first three principal components of the code Jac-
obian for two different but similar viewpoint (rows) using Principal Component
Analysis (PCA). Blue and red regions in the image denote negative and positive
values, respectively. Columns represent principal components (1-3). Rows represent
different input images.

the code from the encoder which indicates that the encoder part of the network

works well. The associated depth uncertainty is also visualised and exhibits higher

magnitudes in the vicinity of depth discontinuities and around shiny image regions

(but not necessarily around high image gradients in general). Further examples of

depth encoding are shown in Figure 4.8.

In Figure 4.9 we visualise the Jacobians of the depth image w.r.t. to the code

entries. An interesting observation is that the single code entries seem to corres-

pond to specific image regions and, to some extent, respect boundaries given by

the intensity image. While the regions seem to be slightly fragmented, the final re-

constructions will always be a linear combination of the effect of all code entries.

We also compare the regions of influence for two different but similar images and

can observe a certain degree of consistency. Figure 4.10 presents the results of Prin-

cipal Component Analysis of the same two views used in Figure 4.9. The first three

principal components are visualised instead of raw colorised jacobian entries.

110



4.5. Experimental Evaluation and Discussion

Figure 4.11: Monocular 3D reconstruction using 9 keyframes. During optimisation
a selected master keyframe is paired with the other frames. The depth images of all
frames are used for the 3D rendering. The employed geometric error term ensures
the consistency between the depth of the different views.

# frames 1 2 3 4 5 6
RMSE [10−2] 2.65 2.47 2.31 2.39 2.30 2.14

Table 4.1: RMS of pixel proximity estimation error with different amounts of
master keyframe-frame pairs in the optimisation problem. The error is evaluated
between the master keyframe proximity and its corresponding ground truth prox-
imity. Frames 1-3: downward-backwards motion. Frames 4-6: left-forward motion.

4.5.2 Structure from Motion

The proposed low dimensional encoding enables continuous refinement of the depth

estimates as more overlapping keyframes are integrated. In order to test this, we have

implemented a SfM system which incrementally pairs one pre-selected frame with all

the remaining frames (which were selected from SceneNet RGB-D). Table 4.1 shows

the obtained reconstruction error w.r.t. the number of frames that are connected to

the first frame. The observed reduction of the reconstruction error well illustrates
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Figure 4.12: Two-frame SfM on selected pairs from the NYU V2 dataset. Top row
presents one of the images used for reconstruction, while the bottom row contains
respective depth estimates. The main elements of all scenes can be well perceived in
the depth image. The overexposed image regions saturate to infinite depth values,
which is a result of using the SceneNet RGB-D dataset for training, which contains
many scenes with windows (similar to the one in the left image).

the strength of the employed probabilistic inference method, application of which

is enabled by the low dimensionality of the optimisation space. The magnitude of

depth refinement depends on the information content of the new frames (whether

they present the scene under a new view and exhibit sufficient baseline). Figure 4.11

presents a 3D reconstruction based on 9 frames for the scene used in the above error

computations. Since in this rendering all the frame depth maps are superimposed,

one can observe the quality of the alignment. In a future full SLAM system, these

keyframes would be fused together in order to form a single global scene. Before visu-

alisation, high frequency elements are removed from the depth maps with bilateral

filtering and highly slanted mesh elements are cropped.

Being exposed to a large variety of depth images during training, the proposed

network embeds geometry priors in its weights. These learned priors seem to gen-

eralise to real scenes as well: Figure 4.1 depicts a two-frame reconstruction with

images from the real image EuRoC dataset [Burri et al., 2016] taken by a drone in

an industrial setting. The result corresponds to 50 optimisation steps, each taking

around 100 ms to complete. Since significant exposure changes occur between the

images, we perform an affine illumination correction of the frames. The validation
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Figure 4.13: Translation error versus travelled distance on the EuRoC dataset MH02.
Despite training the auto-encoder on SceneNet RGB-D, its decoder generalises to
other datasets (after correcting for camera intrinsics).

of the two-frame reconstruction performance is of high importance as it is directly

connected to the initialisation procedure of the full SLAM system. In order to fur-

ther highlight its effectiveness we include results on a selection of pairs taken from

the NYU V2 dataset [Silberman et al., 2012] (Figure 4.12).

4.5.3 SLAM System

In contrast to most dense approaches, our low dimensional geometry encoding allows

joint optimisation of motion and geometry. Furthermore, due to the inherent prior

contained in the encoding, the framework is able to deal with pure rotation motions.

The system is tested in a sliding window visual odometry mode on the EuRoC data-

set on the MH 02 easy trajectory. Even though the dataset is significantly different
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Figure 4.14: Example structure from motion results on frames from the EuRoC
dataset. From the left: image, estimated proximity, shaded proximity.

from the data the network is trained on (with many metallic parts and many re-

flections), the proposed system is able to run through most of this dataset that is

arguably very difficult for visual systems (we do not use the available IMU data).

Figure 4.13 shows the error against travelled distance. While this cannot compete

with a state-of-the art visual-inertial system, it performs respectably for a vision

only-system and exhibits an error of roughly 1 m for a travelled distance of 9 m.

In Figure 4.14 the first and last key-frame of our 4-frame sliding window system

are illustrated. This shows the intensity image of the encountered scene together

with the estimated proximity image and a normal based shading. Considering that

the network was trained on artificial images only which were very different in their

nature, the reconstructed depth is sensible and allows for reliable camera tracking.

4.6 Conclusions and Future Work

We have shown that a learned representation for depth which is conditioned on image

data provides an important advance towards future SLAM systems. By employing

an auto-encoder like training setup, the proposed representation can contain generic
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and detailed dense scene information while allowing efficient probabilistic joint op-

timisation together with camera poses. This allows to tackle the correlation problem

described in Section 1.2 which is prevalent in current dense SLAM methods.

In the longer term, we would like to move beyond a keyframe-based approach,

where our dense geometry representations are tied to single images, and work on

learned but optimisable compact representations for general 3D geometry, eventu-

ally tying our work up with 3D object recognition. Especially interesting would be

learning minimal parametrisations of objects to build a hierarchical semi-semantic

map for SLAM, more efficient for both inference and storage compared to the fully

dense approach. Learning a code representation for larger entities such as rooms or

buildings rather than depth maps is also an interesting research direction.

By replacing the input modalities (image, depth) the method presented in this

chapter can also be extended to different applications. An example would be learn-

ing a manifold of human skeleton poses and optimising a photometric discrepancy

between the observed image and a rendering of a view of the skeleton estimate.

Other modalities such as force sensors in robotic grippers and different manifolds

such as kinematic joint space models could be also used here.

In the next chapter, we will use the components demonstrated here to build a full

real-time keyframe-based SLAM system and explore the impact of the optimisable

code representation on traditional SLAM pipelines.
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5.1 Introduction

The previous chapter has introduced the concept of learning a compact optimisable

representation and utilising it to solve the dense structure-from-motion problem.

The feasibility of this idea has been proved by implementing a windowed 3D recon-

struction/visual odometry (CodeSLAM). The presented system lacked features of

full SLAM, was not capable running fast enough to be used with a live camera and

did not generalise to real handheld camera scenes very well.

This chapter describes DeepFactors, a real-time SLAM system that builds and

maintains a dense reconstruction but allows for probabilistic inference and combines

the advantages of different SLAM paradigms. It also presents a tight integration of

learning and model based methods through a learned compact dense code repres-

entation that drives significant changes to the core mapping/tracking components

of the SLAM pipeline. The main contributions of this work can be summarised as

follows:

• The first real-time probabilistic dense SLAM system — capable of joint op-

timisation of dense depth and camera poses.

• A system that integrates learned priors over geometry with classical SLAM

formulations in a probabilistic factor-graph formulation.

We build on the idea of compact code optimisation and explore its impact on tra-

ditional SLAM pipelines. DeepFactors is a complete new SLAM system built from

scratch with a different mapping backend, error formulations (the sparse geometric

and reprojection errors) and all the various design choices within the SLAM al-

gorithm like keyframing, map maintenance and tracking. It contains features that

CodeSLAM was missing – local and global loop closure or relocalisation and optim-

ises the full map in batch instead of a fixed window only. The optimised GPU usage,
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Figure 5.1: Example reconstructions of scenes from the ScanNet validation set cre-
ated with our system. Reflective shading has been exaggerated in order to highlight
structure.

efficient implementation and SLAM design choices enable real-time performance and

the use of a standard factor graph software backend (GTSAM [Dellaert, 2012]) al-

lows for straightforward probabilistic integration of different sensor modalities which

was not possible with the previous formulations of dense SLAM.

An example of other directly comparable work is CNN-SLAM [Tateno et al.,

2017]. Although with a substantially different principle of operation, the authors

present a real-time full SLAM system that builds a large scale map and supports

loop closures by utilising LSD-SLAM [Engel et al., 2014] and incorporating learned

priors. It doesn’t, however, optimise the full depth maps during mapping. We use

CNN-SLAM as a baseline comparison for our method.

There exists a range of systems with learned components which are not fully-

featured SLAM systems but instead focus on multi-frame dense reconstruction [Laid-
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low et al., 2019, Clark et al., 2018, Liu et al., 2019, Weerasekera et al., 2017]. In

BA-Net [Tang and Tan, 2019] the authors use a technique similar to CodeSLAM

where a set of basis depth maps is predicted from the image and optimised in a

bundle adjustment problem to find a dense per-pixel reconstruction. The system

has been trained end-to-end with the optimisation included which might result in

a learned representation better suited for the structure from motion problem. In

contrast to our work, BA-Net is not a real-time SLAM system that builds and

optimises a consistent multi-keyframe map. In [Tulsiani et al., 2017], the authors

introduced a differentiable ray consistency metric that allowed them to use various

types of 2D observations of simple 3D objects to train a network that predicts their

3D reconstruction from a single camera view.

A different approach is to build a fully differentiable pipeline and train it on

either navigation or trajectory estimation tasks. In [Gupta et al., 2017], the authors

propose a network architecture that unifies mapping and navigation, estimating an

egocentric 2D occupancy map which is used by a differentiable path planner to solve

synthetic navigation tasks generated from 3D scene scans. In the test dataset, the

2D agent moves on a ground plane, with the rotation restricted to 90 degree turns.

Moreover, the method requires perfect odometry as input, which is problematic for

real use-cases.

In MapNet [Henriques and Vedaldi, 2018], the authors propose a learned mapping

system that estimates an allocentric rather than egocentric 2D top-down map. The

method takes in RGB-D images and extracts multi-channel features, then projects

them onto the ground plane and registers the result against the previous map using

convolutions. The map is then updated using the registered features. In contrast

to [Gupta et al., 2017], the ground orientation of the camera is not restricted.

In [Savinov et al., 2018] the authors propose a learned topological map called semi-

parametric topological memory (SPTM), which consists of a (non-parametric) graph

with nodes corresponding to locations in the environment. A neural network retrieves

relevant graph nodes based on observations and a planning module computes actions
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to reach the set goal. This approach was tested on planar mazes in a simulated

environment based on the game Doom with the camera rotation restricted to ground

plane rotation only.

A notable learned tracking and mapping system is DeepTAM [Zhou et al., 2018],

which builds upon DTAM [Newcombe et al., 2011] by replacing both the TV-L1

optimisation and camera tracking with a deep convolutional neural network and

achieves results outperforming standard model-based methods. In contrast to our

work, it follows the same tracking and mapping split used in all dense methods

and is not capable of real-time operation. Although the authors took special care

to address the generalisation problem, their system still ultimately relies on seeing

all possible variations of input data, which is hard in the case of full 6 DoF motion

in real world conditions. Our approach relies less on the network generalisation

as we perform optimisation that allows to correct for bad network predictions. In

our system, neural networks are mainly used for obtaining an image conditioned

manifold to optimise over.

In contrast to the previously mentioned methods, our work strives towards the

goal of a unified real-time 6 DoF SLAM framework that works on real imagery and

which incorporates both learned and model-based methods as well as dense and

sparse approaches to localisation and mapping and possibly points towards a new

generation of SLAM systems. In the remainder of our paper, we explain the building

blocks of our system and show evaluation on real world sequences.

5.2 Code Based Optimisation

To reconstruct a dense representation of the scene geometry and estimate the camera

motion we formulate a multi-view dense bundle adjustment problem. We parametrise

the reconstructed geometry G as a set of depth maps at each camera frame G =

{D0, D1, ..., Dn}. In a näive formulation, pixels of each depth are uncorrelated and

optimised independently, which makes the problem too ill-posed and costly to solve

due to the large number of parameters.
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Figure 5.2: Dense multi-frame Structure From Motion problem using an optimisable
compact dense code representation. Each camera frame i consists of a 6DoF world
pose pi and an associated code ci. We minimise various pairwise consistency losses
eij in order to find the best estimate for scene geometry G = {D0(c0), ..., Dn(cn)}
and camera poses p0...pN .

Following the methodology from Chapter 4 we optimise depth on a learned com-

pact manifold (code) to mitigate both of these problems (Figure 5.2). We express

the depth map Di of a frame i as a function of code ci and the associated image Ii.

In order to avoid costly relinearisations during optimisation, we require this relation

to be linear:

Di = f(ci, Ii) = D0
i + J(Ii)ci, (5.1)

where D0
i = f(0, Ii) is the depth map resulting from decoding an all-zero code and

J(Ii) = ∂Di
∂ci is the image-conditioned Jacobian.

When optimising on the code manifold, groups of depth pixels are correlated

together which makes the optimisation problem more tractable. Figure 5.3 presents

the pixels affected by perturbing different elements of the latent code vector.
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Figure 5.3: Visual representation of the code Jacobian ∂Di
∂ci . Perturbing different code

elements affects various regions of the depth image.

Using the code representation, we reformulate three different objective functions

found in the SLAM literature: photometric, reprojection and geometric error. These

functions measure consistency between observations from the overlapping camera

frames and allow for finding the best estimate of scene geometry and camera motion.

We use them as pairwise constraints in the factor graph used by our SLAM system.

The following sections describe the different factors in greater detail.

5.2.1 Photometric Factor

A consistency loss typically used in Dense SLAM is the photometric error, which is

based on differences between the RGB pixel values and forms the foundation of our

method. Due to its whole-image nature, it is resilient to image blurring and provides

a signal in most areas of the image, which is strongest in the areas with good image
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gradient. The photometric factor measures the difference directly between source

image intensities Ii and the target image Ij warped into frame i:

eijpho =
∑

x∈Ωi

||Ii(x)− Ij(ωji(x, ci, Ii))||2, (5.2)

where ωji warps pixel coordinates x in frame i to frame j:

ωji(x, ci, Ii) = π(Tji(π−1(x, Di(x)))), (5.3)

where π and π−1 are the projection and reprojection function respectively, Di(x) =

D(x, ci, Ii) is the depth map decoded from code ci and Tji ∈ SE(3) is the relative

6DoF transformation from frame i to j.

5.2.2 Reprojection Factor

We also use the indirect reprojection error widely used in classical structure from

motion. This error is based on detecting sparse keypoints in the images, typically

corners. The small number of features are matched using their descriptors, one of

them is reprojected in the 3D space using depth obtained from the code repres-

entation and projected onto the other camera. The error is measured in the image

plane — a distance between the reprojected feature and the location of its matched

counterpart. Finding explicit correspondences between point features is very robust

and provides a strong signal for the camera pose and the keyframe depth, but lacks

information for the rest of the image in the traditional formulation of the reprojec-

tion error. Using our code representation, the reprojection error ‘pins’ the depth in

the feature locations and the optimisation over the learned manifold adapts the rest

of the depth map according to the priors learned from data.

Given a set of salient image features Mij matched between frame i and j, the

reprojection factor measures the differences between their observed and hypothesised

locations:

eijrep =
∑

(x,y)∈Mij

||ωji(x, ci, Ii)− y||2. (5.4)
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To handle mismatched features, we use the Cauchy robust cost function that has

a constant response to outliers. We use BRISK [Leutenegger et al., 2011] to detect

and describe key points in images.

5.2.3 Sparse Geometric Factor

Another way to express consistency is to measure differences between the scene

geometry in the 3D space. In our simplified, form, we compare depth map Dj with

depth map Di warped into frame j:

eijgeo =
∑

x∈Ωi

||[Tji(π−1(x, Di(x)))]z −Dj(x̂)||2, (5.5)

where x̂ = ωji(x, ci, Ii) and [x]z denotes taking the z component of the vector x.

Maximising the consistency of the estimated geometry ensures that the optimised

keyframes align in the 3D space. This is especially important for untextured, flat

objects, which result in parts of depth not being constrained by the photometric and

the reprojection error. Since there is no signal in these areas during the optimisation,

the learned manifold might produce unrealistic results in order to fit to the other

image regions where the signal is stronger. Therefore, it is important to constrain

the two depth maps to remain similar, which introduces a prior about existence of

a single observed surface and allows estimating geometrically consistent keyframe

maps.

We use the Huber norm [Huber, 1964] on the error as a robust cost function. In

order to save computation, we evaluate the loss only for a sparse set of uniformly

sampled pixels. It is possible to sample a different set of pixels at each iteration to

stochastically optimise the loss over the whole image.

5.3 Network Architecture

For learning the compact code representation we use an improved version of the

network used in CodeSLAM. The full network architecture is presented in Fig-

ure 5.4. The middle part represents a U-Net [Ronneberger et al., 2015] extracting
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Figure 5.4: Network architecture. The bottom path is a U-Net depth auto-encoder
without skip connections that learns the optimisable compact code c. Its encoder and
decoder are conditioned on image features concatenated from the Feature Network.
The top part of the network learns to predict optimal code cpred from the input RGB
image that is decoded into a mono depth prediction. The depth decoder is shared
between the two networks (light blue).
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5.3. Network Architecture

Figure 5.5: A comparison of two ways of initialising new depth maps given an input
intensity image: zero-code and explicit code prediction. The inclusion of an addi-
tional network that predicts an initial code directly from the image allows for better
initial depth estimates.

features from the input RGB image. The input is processed with blocks of con-

volutions with each block reducing the size and applying multiple convolutions on

the reduced resolution. The bottom part of the figure depicts the main Variational

Auto-Encoder(VAE) [Kingma and Welling, 2014] that learns the optimisable com-

pact depth representation. The encoder and decoder are conditioned on the above-

mentioned features using concatenations.

Similar to CodeSLAM, in order to keep the relation between the reconstructed

depth Drec and the code c linear, we do not use any non-linear activations in the

depth decoder. To also ensure that the input image retains influence on that rela-

tion, we add an element-wise multiplication of each two concatenated layers in the

conditioning concatenations.

Due to the KL-divergence based latent loss applied to the code of the depth VAE,

an all-zero code corresponds to a most likely depth map for the input image I. In our

experiments with running the system on a real camera, we have found that we can

achieve better initial depth predictions by augmenting the network with a separate

encoder that explicitly predicts an optimal code from the input image I. For the

predicted code to lie in the same space as the learned code c, we apply the same

latent loss to it. The added explicit network path is less constrained than the zero

code prediction, which allows us to achieve better results, as shown in Figure 5.5.

The network also predicts an uncertainty parameter b with the Feature Network
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5. Dense Probabilistic Monocular SLAM

which is used in a multi-resolution negative log of Laplacian likelihood loss for the

reconstructed depth Drec:∑
x∈Ω

|Drec(x)−D(x)|
b(x)

+ log(b(x)),

where Ω is the set of all pixel coordinates of the input depth D. The predicted depth

map is supervised with an L1 loss:

∑
x∈Ω

|Dpred(x)−D(x)|. (5.6)

5.4 System

The system builds and maintains a keyframe map. Incoming new camera images

are resized and corrected to match the network focal length and tracked against the

nearest keyframe (Section 5.4.1). Once sufficient baseline and other criteria are met,

a new keyframe is initialised at the estimated pose with an initial code prediction

and added to the graph (Section 5.4.3).

To optimise the map, we maintain a factor graph of the batch MAP problem

and optimise it each time new observations are introduced. Each new keyframe is

connected to the last N keyframes in the map using selected pairwise consistency

factors as presented in Section 5.2. Real-time performance of solving for the batch

solution is achieved by using an incremental mapping algorithm (Section 5.4.2).

To increase performance, the system alternates between tracking and joint map-

ping. After creating a new keyframe, the graph is optimised for a set number of

iterations or until convergence. During that time the tracking and mapping optim-

isation steps are interleaved to ensure that the system keeps up with incoming new

camera images.

To obtain a good quality photometric signal a mixture of low and high baseline

image pairs is required. Since we only connect the last N keyframes with pairwise

constraints, this might not always be the case. To mitigate this while keeping the

computational complexity low we introduce “one-way” frames that do not have
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attached depth and are used to feed information to refine the latest keyframe. After

optimising for a set amount of steps, active one-way frames are marginalised and

removed from the graph. This allows for inexpensive integration of many views into

the optimisation and high quality reconstruction of depth.

The details of each component of the system are described in the following sections.

5.4.1 Camera Tracking

Each camera frame is tracked against the closest keyframe using our GPGPU imple-

mentation of a standard direct whole-image SE3 Lucas-Kanade [Lucas and Kanade,

1981, Newcombe, 2012, Lovegrove, 2011]. In case tracking is lost, we perform reloc-

alization by attempting to align a small resolution image against all keyframes.

5.4.2 Incremental Keyframe Mapping

We formulate and jointly optimise a batch MAP estimation problem involving all

keyframes in the map. Figure 5.6 presents a factor graph representation of an ex-

ample instance of a map built by our system. Each keyframe is represented by a

pose pi and a code ci variable with variables of neighbouring keyframes involved in

pairwise consistency factors (photometric, reprojection or geometric factors). Since

the factors were designed to represent a single-way warping between two keyframes,

they allow optimisation of the code/depth of only a single keyframe of the pair.

Two factors are needed to optimise both keyframes. Because during training the

code manifold is enforced to be close to a zero-mean Gaussian (variational latent

loss), the code has to be kept within the appropriate region during optimisation by

using zero-code prior factors that regularise it.

The mapping step performs batch optimisation of all keyframes in the map using

standard factor graph software (GTSAM [Dellaert, 2012]). To make optimisation

feasible in large scale scenarios we rely on an incremental mapping algorithm —

iSAM2 [Kaess et al., 2012]. It stores a factorisation of the batch Jacobian in the

form of a Bayes Tree and incrementally updates it when new variables are added.
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Figure 5.6: An example instance of the factor graph used in our system containing
three keyframes and two one-way frames attached to the latest keyframe. Multiple
different pairwise constraints can be used simultaneously (photometric, geometric or
reprojection) but for simplicity, only a single type has been presented in this figure.

Only the affected factors are relinearised and re-factorised, which greatly limits the

computation required for obtaining the batch solution and allows near constant time

updates in an exploration-type movement.

In order to enable marginalisation of one-way frames, we enforce a specific elim-

ination order of the graph variables to ensure that they are leaves in the clique tree

built and maintained by iSAM2.

5.4.3 Initialization

We use the explicit code prediction network to obtain an initial code for each new

keyframe. The depth decoder is then used to transform the codes into a depth

map estimate. On start, the system can be trivially initialised in the exact same

manner. The network prediction must be good enough for tracking the initial camera

movement so that new views can be fed into the system to refine the depth prediction.

In cases when the single image prediction fails, a multi-frame initialisation can

be used, in which a keyframe is created for each input frame and the initial graph

is optimised before starting the system. We found the single frame initialisation to

perform well enough for most scenes.
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5.5. Experimental Results

5.4.4 Loop Closure

We detect and close local and global loops. Within an active region of the last

10 keyframes, we assume the relative estimated poses to be correct and therefore

use a pose-based criteria to detect loops and add additional pairwise constraints

between keyframes. This tightens the graph and allows for more consistent local

reconstructions.

At each new input frame we also test for global loop closure events. Outside

of the active window we assume that too much drift has been accumulated and

therefore we cannot use our estimates to close loops. Initial loop candidates are

detected using a bag of words approach [Gálvez-López and Tardós, 2012] and later

further eliminated by attempting to track the current frame against each of them and

checking the resulting number of inliers and the estimated pose distance. Because

of the photometric error typically having a smaller convergence basin we add only

reprojection factors when closing a detected global loop between two keyframes.

5.5 Experimental Results

5.5.1 Training

We have trained our network on a fragment of the ScanNet dataset [Dai et al., 2017]

following the official training/test split. The depth data comes from a real sensor

and therefore contains missing values. Since the dataset provides PLY models of the

full scene reconstructions together with ground truth poses, we have rendered depth

maps from the models and combined them with the raw sensor data to obtain final

merged depth maps. We used around 1.4M images in total.

The network was trained for 13 epochs with learning rate 0.0001, image size

256 × 192 and code size 32. This is the maximum code size that we can achieve

real-time results with in our SLAM system.
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5. Dense Probabilistic Monocular SLAM

5.5.2 Ablation Studies

DeepFactors combines three different error metrics/factors – photometric, geometric

and reprojection to estimate the camera trajectory and the observed scene geometry.

In order to determine how each factor type influences the system performance, we

have evaluated various configurations in terms of the quality of the estimated tra-

jectory and reconstruction. The photometric factor is treated as a baseline system

and the other two types are included both individually and together. We perform

this evaluation on selected shortened scenes from the validation set of the ScanNet

dataset and use three error metrics: RMSE of the Absolute Trajectory Error (ATE-

RMSE), the absolute relative depth difference (absrel) [Eigen et al., 2014] and the

average percentage of pixels in which the estimated depth falls within 10% of the

true value (pc110) [Tateno et al., 2017]. The results are presented in Table 5.1.

The inclusion of either of the factors reduces the trajectory error and increases

the reconstruction accuracy, with the reprojection factor typically having a stronger

influence on the former and the geometric factor on the latter. Explicit feature

matching utilised within the reprojection error improves local minima avoidance

and increases convergence rate, which adds robustness to the system. The geometric

error introduces a prior about the world that only a single surface is observed and

pins separate depth maps together to form a single reconstruction in the textureless

areas that lack photometric information. Combining all three factors achieves the

best trajectory and reconstruction results.

5.5.3 Reconstruction

We evaluate our reconstruction accuracy against CNN-SLAM as it is the only rel-

evant system that evaluates reconstruction using the whole estimated trajectory

and without using the ground-truth poses. Since the authors do not provide imple-

mentation of their system, we follow their evaluation strategy by taking the results

reported in their paper and using the same sequences from the ICL-NUIM [Handa

et al., 2014] and TUM [Sturm et al., 2012] datasets. For all the keyframes produced

by each system, we compare their estimated depth against the ground-truth by cal-
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Factor Comparison

Sequence Factors Used ATE RMSE↓ absrel↓ pc110↑

scene0565 00

pho 0.128 0.108 57.56%
pho+rep 0.112 0.104 59.80%
pho+geo 0.115 0.103 59.75%
combined 0.114 0.102 60.13%

scene0084 00

pho 0.131 0.085 69.14%
pho+rep 0.074 0.082 71.05%
pho+geo 0.120 0.081 71.81%
combined 0.061 0.077 73.66%

scene0606 02

pho 0.089 0.214 37.22%
pho+rep 0.071 0.201 39.39%
pho+geo 0.067 0.168 44.45%
combined 0.066 0.162 46.16%

Table 5.1: Comparison of the influence of different factor types on the estimated
trajectory and reconstruction errors (pho: photometric. geo: geometric, rep: repro-
jection)

.

culating the percentage of the pixels for which the depth is within 10% of the true

value. The results are presented in Table 5.2.

Since our system is monocular and does not produce up-to-scale trajectories and

reconstructions, we use the optimal scale calculated with the TUM benchmark

scripts to scale both the trajectory and the depth maps (as done in e.g. [Zhou

et al., 2017]).

We outperform all compared methods on most of the sequences and on the average.

Our system performs worse on the tum/seq2 trajectory as the camera observes a

flat textured wall and due to the small code size (32) used in our system we are

typically not able to represent fully flat depth easily.

We also visually present example reconstructions created by our system in Fig-

ure 5.7.
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Perc. Correct Depth [%]

Sequence Ours CNN-SLAM LSD-BS Laina
[Tateno et al., 2017] [Engel et al., 2014] [Laina et al., 2016]

icl/office0 30.17 19.41 0.60 17.19
icl/office1 20.16 29.15 4.76 20.84
icl/living0 20.44 12.84 1.44 15.01
icl/living1 20.86 13.04 3.03 11.45
tum/seq1 29.33 12.48 3.80 12.98
tum/seq2 16.92 24.08 3.97 15.41
tum/seq3 51.85 27.40 6.45 9.45

Avg. 27.10 19.77 3.44 14.62

Table 5.2: Evaluation of average percentage of pixels across all estimated key-
frames for which the estimated depth falls within 10% of the true value on
the ICL-NUIM and TUM datasets (tum/seq1: fr3 long office household, tum/seq2:
fr3 nostructure texture near withloop, tum/seq3: fr3 structure texture far)

5.5.4 Trajectory Estimation

We evaluate the Absolute Trajectory Error (ATE) of our proposed system and com-

pare it against CNN-SLAM and CodeSLAM. For the sake of completeness, we also

include comparison with DeepTAM, despite the fact that it does not achieve inter-

active (real-time) performance. We have used the same version of CodeSLAM that

was used to generate the results in its respective paper. The code for CNN-SLAM is

not available and the authors of DeepTAM do not provide a combined tracking and

mapping system and we were not able to reproduce the results reported in the paper.

For this reason, we include the numbers from the DeepTAM paper and evaluate our

system on the same set of trajectories. We omit the room and plant sequences as

they contain significant number of dropped frames, which skew the results. In order

to limit computation we have disabled the geometric factor for the evaluation.

The results are presented in Table 5.3. We outperform CodeSLAM in all of the

sequences and CNN-SLAM in all but one. In most cases we also achieve comparable

results to DeepTAM, while still maintaining real-time performance.
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5. Dense Probabilistic Monocular SLAM

Abs. Trajectory Error [m]

Sequence Ours CNN-SLAM DeepTAM* CodeSLAM*

fr1/360 0.142 0.500 0.116 0.165
fr1/desk 0.119 0.095 0.078 0.654
fr1/desk2 0.091 0.115 0.055 0.181
fr1/rpy 0.047 0.261 0.052 0.078
fr1/xyz 0.064 0.206 0.054 0.170

Table 5.3: Evaluation of our system on the validation sequences of the TUM RGB-
D Benchmark [Sturm et al., 2012]. We compare the ATE RMSE[m] against CNN-
SLAM and DeepTAM, results for which have been taken from [Zhou et al., 2018].
CNN-SLAM was run without pose graph optimisation and our system without loop
closures. Both CNN-SLAM and DeepTAM were initialised with the network from
CNN-SLAM and we used our own initialisation. We’ve omitted the room and plant
sequences as they contain significant frame drops that might skew the results. *Not
real-time performance

5.6 Performance and Implementation

For a visual demonstration of the speed of the system please see the associated video,

which contains real-time video recordings of our system in action.

Our SLAM system has been implemented in C++ with the dense image warping,

optimisation and camera tracking offloaded to GPU with CUDA, while the repro-

jection and the sparse geometric error factors are computed on the CPU. We run

the network, CUDA kernels and visualisation on a single NVIDIA GTX 1080 GPU

and use image resolution of 256× 192.

The network is ran on initialisation of each keyframe in order to obtain an initial

code (depth) prediction and the Jacobian δD
δc that is used later in optimisation.

This requires around 340 ms, with only 16 ms of it spent on the forward pass of the

network and the rest on calculating the Jacobian using tf.gradients. This is due to the

inefficiency of its backward-mode auto-differentiation based implementation which

is optimised for gradients of scalar functions commonly used in machine learning.

In our case, obtaining the derivative of each output pixel with respect to the latent

representation requires a significant number of passes through the network. This
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time can be drastically reduced with engineering effort and we predict it should be

possible to reduce the overall time required to run the network to around 30 ms.

The incoming new camera images are tracked against the latest keyframe at

around 250 Hz. Once the system initialises a new keyframe, we optimise the whole

map representation in batch until convergence. The mapping steps are interleaved

with tracking the camera in order to keep up with new images.

The overall performance of the system varies greatly depending on the amount

of connectivity between neighbouring keyframes specified by the user, the types of

factors enabled, the number of factors relinearised within the iSAM2 algorithm and

the occurrence of loop closures. With an explorative-type motion we achieve interact-

ive real-time speeds, where we typically limit our system to only use the photometric

and reprojection error to allow it to keep up with the fast camera movement. In a

local reconstruction scenario like tabletop AR or room scale reconstruction where

there is less exploration we can enable the geometric error to obtain better quality

reconstructions. It is possible to further speed up the system performance through

engineering effort which is part of planned future work.

The implementation of our system has been released on GitHub and is available

under the following link: https://github.com/jczarnowski/DeepFactors

5.7 Conclusions

We have presented DeepFactors, a real-time probabilistic dense SLAM system built

using the concept of a learned compact depth map representation. We have demon-

strated that our system achieves greater robustness and precision by combining

different paradigms from classical SLAM with priors learned from data in a stand-

ard factor-graph probabilistic framework. The use of a standard framework allows

it to be easily extended with different sensor modalities, which was not previously

possible in the context of purely dense SLAM. An efficient C++ implementation

and careful choices in the SLAM design enable real-time performance.
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Combining the strengths of different consistency metrics found in the SLAM liter-

ature allowed achieving improved results compared to the state of the art real-time

deep learning SLAM systems. Explicit feature matching used in the reprojection

factor provided robust and strong signal for camera poses and parts of depth. The

geometric factor ensured consistency in textureless, unconstrained image regions

allowing to reconstruct a geometrically coherent keyframe map.

In the future, we would like to explore the idea of including the structure-from-

motion optimisation within the compact depth code training. This could allow ob-

taining a code manifold that is specifically trained to be later used in a mapping

environment. Moreover, learning the code representation in an unsupervised manner

based on the intensity images only could be an interesting experiment. An inclusion

of a relative-pose prediction network could also robustify the camera tracking.

We would also like to work on improving the performance of the current system,

focusing on a faster method of obtaining the network Jacobian and a better GPU

implementation of the geometric factor.

While our system can achieve good results when carefully tuned, its performance

degrades rapidly when encountering an environment that is too dissimilar from the

training data, which seems to be a general issue with neural networks. This points

towards the idea that perhaps using the system in more constrained settings could

help generalisation. We would like to test its performance on simpler tasks, such

as using a camera that is always oriented horizontally, introducing a purely planar

motion constraint or utilising information from other sensors such as IMU or a depth

camera.

138



Chapter 6

Conclusions and Future Work

A number of contributions have been presented in this thesis that focused on the

search for new representations for 3D geometry, which transformed the SLAM

pipeline or increased its robustness. We proposed different ways for combining deep

learning and classic geometrical methods, addressing the shortcomings of dense

SLAM presented in Section 1.2. In particular, an image transformation was pro-

posed that allows data association without relying on the brightness constancy as-

sumption. A learned code based depth representation was developed to enable joint

solving for poses of the cameras and scene structure in real-time. This code was later

used as the foundation of a novel SLAM system, possibly pointing towards a new

branch of pipelines for Spatial AI.

Chapter 3 presented a real-time spherical mosaicing SLAM system that utilises

Semantic Texture for tracking — a hierarchy of feature maps generated by a stand-

ard CNN trained for classification. The experiments on long-term camera tracking

across dynamic lighting conditions demonstrated improved robustness and a simple

feature selection strategy was proposed that allows for tuning the robustness versus

performance trade-off to the specific task requirements.

While this idea gave us insight into the operation of convolutional neural networks

and allowed us to gain knowledge about building real-time systems involving deep

learning, a question remains open as to whether learning a specific set of features
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for tracking would provide better performance. This approach has been recently ex-

plored in work such as BA-Net [Tang and Tan, 2019], GN-Net [Stumberg et al., 2019]

or [Lv et al., 2019], which showed promising results. Our intuition is that learning

features should bring performance improvements, but might introduce other prac-

tical problems such as limited generalisation across input data. We argue that using

a generic set of features for representing the image can be useful in a general robotic

system, where it is very likely that a CNN will be present for solving a semantic task,

readily producing the Semantic Texture representation as a by-product. Moreover,

autonomous operation will require other quantities such as optical flow or geometry

to be estimated, resulting in a combination of learned and classical methods used

simultaneously. A common set of useful features could be used in all of these methods

to: a) avoid repeating computation by networks, which commonly learn the same

basic image transformations; b) transform the image into a more useful and robust

representation capturing the most important information.

In Chapter 4, we presented a learned representation for depth which is conditioned

on image data and which can be used for solving the dense bundle adjustment prob-

lem. The efficiency of the proposed method was demonstrated by building a prelim-

inary visual odometry system in python and conducting experiments on simulated

and real scenes. The use of the compact representation allowed for the first time

to solve for camera poses jointly with the scene structure and with performance

unmatched by methods found in the literature, effectively mitigating the correlation

problem described in Section 1.2.

Even though the system showed promising results on simulated data and, while

being trained on a synthetic dataset, still generalised to real sequences, we did not

succeeded in achieving good performance with live imagery from a real camera. This

was addressed in our follow-up work, DeepFactors.

We believe that the learned code is an advance towards a family of general geo-

metry representations for the next generation of SLAM systems powering advanced

robot autonomy. Scenes found in the real world have an inherent semantic structure
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that is discovered and recognised by the human brain. Exploiting that structure

enables efficient reasoning about the world and could advance robotics beyond its

current limited applications. We are interested in a general framework for Spatial

AI that allows efficient inference, at the heart of which lies some form of a hierarch-

ical semantic decomposition of the world. An interesting piece of work related to

that idea is [Rosinol et al., 2020], in which the authors propose 3D Dynamic Scene

Graphs, a unified representation for actionable spatial perception, which consists of

a connected hierarchy of entities like places, structures, rooms and their connections.

Such a level of scene understanding allows, for example, to command a robot with

voice instructions such as: “bring the red stool to the kitchen”. We predict that the

ideal hierarchical representation will likely be placed on the spectrum between raw

geometric information and semantic classes — not entirely human comprehensible

but useful, similar to our proposed Semantic Texture. Further research in the direc-

tion of high-level scene understanding appears to be critical to future intuitive and

interactive robotic products.

A different, promising direction would be to depart from the depth code tied to a

single view. Removing variations of views of scenes should reduce the complexity of

the problem, possibly improving generalisation and performance. Similarly, finding

representations for single entities, such as rooms or objects, rather than requiring

the network to encapsulate and decompose information about all possible views

could help achieve better results. This direction has recently already received some

attention [Sucar et al., 2020, Park et al., 2019].

Another venue of research would be investigating the learned code manifold more

thoroughly, which could provide insights on the behaviour of the learned representa-

tion. In particular, performing tests similar to the ones demonstrated in MapNet [Hen-

riques and Vedaldi, 2018] would be interesting, where the 2D top-down map of the

maze consists of a grid of multi-dimensional embeddings learned by the network,

similar to code from CodeSLAM. The authors have trained a Support Vector Ma-

chine (SVM) to classify each of the embedding into one of hand-crafted intuitive

classes, such as long corridors, forks and dead-ends. The accuracy achieved by the
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SVM trained on embeddings has demonstrated that they encode some recognisable

aspects of the environment, as a side effect of the localisation task the system was

trained for. A similar method could devised and used to investigate whether the

codes learned by the CodeSLAM network correlate with semantic classes of objects

found in the scene.

Chapter 5 introduced DeepFactors, a real-time dense probabilistic monocular sys-

tem, which built on the learned depth representation from Chapter 4 to create a

new SLAM framework for unifying different classical paradigms. The point of that

work was to design a novel and fully featured system that is efficient and robust

from the ground up, exploring the impact of the learned code on general SLAM.

We have demonstrated that DeepFactors achieves greater robustness and precision

by combining different paradigms from classical SLAM with priors learned from data

in a standard factor-graph probabilistic framework. The use of a standard frame-

work allows it to be easily extended with different sensor modalities, which was not

previously possible in the context of purely dense SLAM. An efficient C++ imple-

mentation and careful choices in the SLAM design enabled real-time performance.

We have shared the knowledge gained by building complex SLAM systems using

deep learning by releasing a high quality code implementation online.

DeepFactors required us to assign covariances associated to the different error

factors: photometric, geometric and reprojection. While we have resorted to manual

tuning for that work, this points towards a fundamental issue in utilising deep learn-

ing for robotics. Deciding how much trust the network outputs compared to other

modalities will be required for any estimation task. On any robotic platform many

different modalities of information are present and an ideal estimation algorithm

would make careful use of them through probabilistic data fusion, requiring know-

ledge about their associated uncertainties, not straightforwardly obtained for learned

components. Most literature related to that problem focuses on predicting uncer-

tainty from the network [Kendall and Gal, 2017, Zhou et al., 2018, Peretroukhin

et al., 2019, Liu et al., 2019, Fu et al., 2018] or introspection [Gal and Ghahramani,
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2016]. We believe though that as with the predicted quantities themselves, the pre-

dicted uncertainty might not generalise to unseen data — the network will not realise

when it is wrong. This appears to be a fundamental issue and a crucial research dir-

ection to enable next-level robotics.

In the future, we would like to explore the idea of including the structure-from-

motion optimisation within the compact depth code training, which would allow

obtaining a code manifold that is specifically trained to be used in a mapping en-

vironment. Moreover, including the estimation framework in the training procedure

can allow automatic tuning of the covariances of the different factors, mentioned in

the paragraph above, by learning them together with the other quantities.

We would also like to work on improving the performance of the current system,

focusing on a faster method of obtaining the network Jacobian and a better GPU

implementation of the geometric factor.

In DeepFactors, we have also focused on achieving the best performance and

robustness of the system in real-life scenarios. While it achieves good results when

carefully tuned, the system tends to break when used in an environment that is too

dissimilar to the images from the training set. From this and our other experiences,

we have learned that we should perhaps expect less of the neural networks and utilise

them only for the tasks that they are very well suited for. Problems that at their

core are based on pattern recognition or matching seem to be easily dominated by

learned approaches, while tasks requiring knowledge about 3D geometry prove to be

more difficult. Networks trained for predicting optical flow from a pair of images are

typically trained on synthetic datasets and seem to generalise much better than, for

example, their depth prediction counterparts. This might be caused by the fact that

Convolutional Layers have been specifically designed for pattern matching, rather

than reasoning about 3D relationships. An example of a system that limits the role

of the network is DeepTAM [Zhou et al., 2018], which performs dense mapping by

constructing the photometric cost volume and feeding it to a regularisation network

that extracts the final depth estimate. The network does not have to predict the
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depth, only find a minimum surface in the volume and ensure smoothness. This

indicates that finding the right place to use the network in is crucial to ensure the

method generalises well between different data domains.

Since very few actual robotic tasks require a completely general solution, a dif-

ferent promising approach is to train or fine-tune the network specifically for the

environment it will be used in, e.g. a set of rooms in the house or the interior of

a specific factory. This brings attention to the issue of availability of labelled data,

which, if we want to enable training neural networks for specific environments, makes

unsupervised learning an important research problem. Obtaining the ground-truth

for training is costly for almost any deep learning tasks and usually involves a large

amount of human effort. In the case of SLAM, the true scene geometry or camera

poses are difficult to get, typically requiring using a costly external device for labor-

ious scanning and/or a real-time tracking system such as Vicon. An ideal solution

avoiding these problems is using an unsupervised method that learns to predict de-

sired quantities using a stream of RGB images without the need for ground-truth

labels, e.g. from a recording of the sensor stream from a robot controlled manually

around the room. This would also enable adapting to changes in the environment via

online learning during system operation or gathering much larger and more diverse

datasets which can help the generalisation problem limiting the use of deep learning

in real-world scenarios. Unsupervised learning of depth and ego-motion from RGB

images has lately received attention, resulting in a number of methods [Zhou et al.,

2017, Yang et al., 2020, Gordon et al., 2019]. Since many the proposed algorithms

have been evaluated mostly on a driving dataset (e.g. KITTI [Geiger et al., 2012]),

which poses a much simpler problem than general 6DoF motion, it seems that un-

supervised learning for general 6DoF motion and unconstrained geometry remains

an unsolved problem. Depth images from a camera mounted on a car have a very

predictable and average structure: a flat plane in the front positioned always at the

same angle. The possible movement of a car also much more limited, practically

reducing the pose estimation problem to two dimensions.

Introduction of novel computing hardware has always had a considerable impact
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on research. With the arrival of faster CPUs well-known offline methods from pho-

togrammetry could finally be used for estimating large scale camera trajectories and

scene geometry in finite time. Similarly, the availability of modern massive paral-

lel processing using GPGPU has enabled a new generation of SLAM systems that

estimate dense geometry, which fuelled research in the field of AR and scene un-

derstanding. We expect this trend to continue in the future, and wish to anticipate

the types of computer vision algorithms that will be required in the new emer-

ging computing paradigm. A promising direction is the graph processor developed

by GraphCore, which stresses the importance of distributed, independent compu-

tation and communication. The prototype that embodies this paradigm called an

IPU (Intelligent Processing Unit) was designed to cater more to the sparse nature

of intelligent algorithms such as computations on graphs or evaluating and training

neural networks. To make efficient use of it, it is imperative to understand the com-

putational structure of Spatial AI and discover how to express it as a distributed

graph problem [Davison, 2018]. This has been explored by the early work of Ortiz

et al. [Ortiz et al., 2020], who demonstrated that it is possible to achieve significant

increase of performance on an IPU for solving a sparse bundle adjustment using

Gaussian Belief Propagation.
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