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Abstract

Traditionally, robot manipulation tasks are solved by engineering solutions in a modular fashion —

typically consisting of object detection, pose estimation, grasp planning, motion planning, and finally

run a control algorithm to execute the planned motion. This traditional approach to robot manipulation

separates the hard problem of manipulation into several self-contained stages, which can be developed

independently, and gives interpretable outputs at each stage of the pipeline. However, this approach

comes with a plethora of issues, most notably, their generalisability to a broad range of tasks; it is

common that as tasks get more difficult, the systems become increasingly complex.

To combat the flaws of these systems, recent trends have seen robots visually learning to predict

actions and grasp locations directly from sensor input in an end-to-end manner using deep neural net-

works, without the need to explicitly model the in-between modules. This thesis investigates a sample

of methods, which fall somewhere on a spectrum from pipelined to fully end-to-end, which we believe

to be more advantageous for developing a general manipulation system; one that could eventually be

used in highly dynamic and unpredictable household environments.

The investigation starts at the far end of the spectrum, where we explore learning an end-to-end

controller in simulation and then transferring to the real world by employing domain randomisation,

and finish on the other end, with a new pipeline, where the individual modules bear little resemblance

to the ‘traditional’ ones. The thesis concludes with a proposition of a new paradigm: Tightly-coupled

Manipulation Pipelines (TMP). Rather than learning all modules implicitly in one large, end-to-end

network or conversely, having individual, pre-defined modules that are developed independently, TMPs

suggest taking the best of both world by tightly coupling actions to observations, whilst still maintaining

structure via an undefined number of learned modules, which do not have to bear any resemblance to

the modules seen in ‘traditional’ systems.

4



Acknowledgements

I am very thankful for the support given to me by many people over the course of my studies,

without which this work would not have been possible.

I cannot thank my supervisor, Prof. Andrew Davison, enough. He has taught me a great deal on

this PhD journey. In particular, he has put trust in me to pursue areas of research that fell outside the

usual scope of the lab. I would also like to say a special thank you to Dr. Edward Johns for supervising

my undergraduate project that lead me on the path to pursue my PhD in robot manipulation.

I am thankful for the advice and discussions with all other members of the Dyson Robotics Lab, past

and present: Tristan Laidlow, Daniel Lenton, Kentaro Wada, Michael Bloesch, Dorian Hennings, Charlie

Houseago, Zoe Landgraf, Robert Lukierski, John McCormac, Sajad Saeedi, Edgar Sucar, Shuaifeng Zhi,

Patrick Bardow, Ankur Handa.

Iosifina Pournara was particularly helpful to me, organising travel to conferences and ensuring that

I had access to the equipment I needed, as well as providing general support, advice and encouragement.

Finally, I would like to thank my wife for her unconditional love and unyielding support during the

PhD. Thank you for supporting me along this long journey, and for making the sacrifices that got me to

where I am now.

I am very appreciative of Dyson Technology Ltd. for funding this research.

5



Contents

Contents

1 Introduction 9

1.1 Manipulation Through The Years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Rise of End-to-End Robot Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Preliminaries 29

2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Simulation Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 PyRep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Transferring End-to-end Controllers from Simulation to Reality 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Sim-to-Real Reinforcement Learning for Deformable Object Manipulation 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6



Contents

5 Task-Embedded Control Networks 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Task-Embedded Control Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Learning from Human Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 RLBench 101

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3 Benchmark Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 RLBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 The RLBench Few-Shot Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.6 Other Applications & Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Attention Driven Robot Manipulation 117

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8 Conclusions and Future Work 131

Bibliography 137

7



8



CHAPTER 1

Introduction

Contents

1.1 Manipulation Through The Years . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Scene Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.2 Grasp Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.3 Motion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.4 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.5 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Rise of End-to-End Robot Manipulation . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Guided Policy Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 Deep Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.3 Imitation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Robot manipulation is hard. In order to truly understand the difficulty of a concept that comes so

naturally to humans, one must fully understand what it means to manipulate.

Consider the task of hammering a nail into a block of wood. The task can roughly be broken up into

the following steps: locate the hammer, grasp the hammer, locate the nail, grasp the nail, locate the

wood, hold the nail onto the wood, and finally use the hammer by swinging it at the nail with a large

force. The immediate thing to notice is that this one task actually consists of many, smaller tasks, that

even by themselves are very challenging for a robot.

A common theme in this task is to locate an object, potentially in a cluttered environment. This

requires a thorough 3D understanding of the surrounding area; an understanding that extends to new and

unfamiliar environments. Even in this first stage, the robot must be able to deal with several potential
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1. Introduction

Figure 1.1: An example of a typical manipulation pipeline for an unstructured task.

modes of failure: What if the hammer is slightly occluded? What if there are two hammers? What if

there is no hammer? What if the hammer was a toy hammer? It is clear then, that 3D understanding is,

by itself, a very hard problem.

Another common theme from the hammering task is the ability to grasp objects. A single object can

be grasped in several ways, although in practice depending on the object, only a particular subset of

these grasps are performed. For example, knives are grasped using the handle, and grasping the blade

itself would lead to harm. It is therefore vital for both humans and robots alike to be aware of what the

object is before attempting a grasp in order to allow the correct manipulation task to be performed. The

hammering task illustrates the grasping problem well, because it involves grasping two very different

objects: the hammer, which must be grasped in an appropriate way such that it can be used later in the

task, and the nail, which in comparison to the hammer is very small, and requires dexterous grasping.

With hammer and nail in hand, the hammering process can commence. During the process, the robot

needs to keep track of both hammer and nail in order to correctly bring the hammer onto the nail, and

monitor the surrounding environment for potential hazards. It is clear that accuracy at this stage of the

task is fundamental, as a small mistake due to a lack of control could lead to task failure and potentially

cause damage to the robot, onlookers, or the environment. Performing actions with skill is also important

for recovering from unanticipated situations, such as a nail bending during the hammering process. All

of these challenges sub-problems define the greater robot manipulation problem.

As has been the case for decades, many robots predominately exist in the industrial domain, and do

not have to concern themselves with the complexities discussed above. These industrial robots have

the ability to lift massive loads, move with incredible speed, and perform complex sequences of actions

with pin-point accuracy; capabilities made possible due to expensive motors and sensors, finely-tuned

controllers, and strong materials. Despite their successful application in this industrial domain, they can

give a skewed representation of what is currently possible in an everyday human environment. These

robots can only operate successfully in a pre-defined, repetitive manner and cannot operate outside of

their constrained environment. In reality, the world is highly dynamic and unpredictable, and all of these

robots would fail to adapt when they are presented with new and unfamiliar environments. How then,

do we get manipulating robots into our homes?
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Until very recently, the predominant way of building adaptive manipulation systems was in a modular,

pipelined fashion, that includes object detection and recognition, 6D pose estimation, grasp planning,

motion planning, and control. Figure 1.1 shows a simplified example of this pipeline, but in practice

these pipelines can contain many other modules. The use of a pipelined method like this comes with

a number of benefits. The hard problem of manipulation is broken into several self-contained stages,

which can be developed independently. Because of this modularity, each stage gives an interpretable

output which can be tested and understood in isolation. However, this modularity can also come at a

high cost. For starters, if there is a mistake made in the earlier part of the pipeline, then the effect can

trickle through to the rest of the modules. An example of this would be a mistake in the pose estimation

phase, which would then mean that the scene representation is incorrect, leading to an incorrect motion

plan and potentially a collision during control. While having an interpretable input and output can be

beneficial, it can also be a hindrance; a conscious decision needs to be made beforehand about what

the input-output representation for each of the modules should be and how they should be stored. This

opening up the possibility of choosing a sub-optimal representation that may be detrimental to task

performance. A possibly greater issue is the generalisability of a pipeline like this. It is usually unlikely

that one system can be applied to many different types of tasks. For example in the case of moving from

a pick-and-place task to a sweeping task, the scene understanding, planning and control modules would

need to be redesigned. Finally, as tasks get more difficult, the pipeline becomes increasingly complex.

In light of this, an emerging alternative is an end-to-end paradigm that bypasses the intermediate steps

and maps observations directly to robot actions through a deep neural network. The intuition here being

that the ‘traditional’ modules are embedded in the weights of the network, without the need to explicitly

model them. Given the success of going from modular to end-to-end in to other fields, such as computer

vision and natural language processing, this may initially seem like a good idea. However, given the

complexity of the functions we are trying to model, these end-to-end methods tend to be incredibly data

hungry. Not only that, but the data needed for robot manipulation is arguable much more difficult to

collect than conventional computer vision problems. One reason for this is that data collection usually

has to be done on the platform itself, which can be expensive in both time and hardware cost. One way

to circumvent this can be to leverage the power of simulation to produce large amounts of data. Here

we have access to a large amount of data in a safe environment without the need for human supervision.

We can train in this environment, and then deploy in the real world. However, due to both the visual and

dynamic discrepancies between the simulated world and the real world, direct transfer is not possible,

motivating the need for sim-to-real methods.

Naturally, there are trade-offs when choosing between pipelined and end-to-end methods for robot
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1. Introduction

manipulation. This thesis investigates a range of methods which fall somewhere on a spectrum from

pipelined to fully end-to-end. Our investigation focuses on areas of the spectrum that we believe to be

more advantageous for developing a general manipulation system; one that could eventually be used in

highly dynamic and unpredictable household environments. Our areas of focus tend towards the end-

to-end side of the spectrum, as is shown in Figure 1.2. As is evident by the hammering task outlined

previously, the area of robot manipulation is broad; too broad to be tackled in a single thesis. We there-

fore limit our scope of manipulation to consist only of a single-arm setup that is affixed to a stationary

surface. The tasks we consider mostly consist of rigid objects, and we disregard tasks that usually con-

tain complex physics (excluding Chapter 4). The investigation starts at the far end of the spectrum,

where we explore learning an end-to-end controller in simulation and then transferring to the real world

by employing domain randomisation [James et al., 2017a]. We train this end-to-end (image to velocity)

imitation learning method on a multi-stage task, which is analogous to a simple tidying routine, without

having seen a single real image. This involves locating, reaching for, and grasping a cube, then locating

a basket and dropping the cube inside. To achieve this, robot trajectories are computed in a simulator,

to collect a series of control velocities which accomplish the task. Then, a convolutional neural network

(CNN) is trained to map observed images to velocities, using domain randomisation to enable general-

isation to real world images. Results show that we are able to successfully accomplish the task in the

real world with the ability to generalise to novel environments, including those with dynamic lighting

conditions, distractor objects, and moving objects, including the basket itself. The result is a highly scal-

able system that is capable of learning long-horizon tasks that had not been shown with state-of-the-art

in end-to-end robot control.

The end-to-end method mentioned above fared well when dealing with rigid objects (such as the

cube), but how would it fare when faced with deformable objects? Due to the large configuration space

of deformable objects, solutions using traditional modelling approaches require significant engineering

work. Perhaps then, bypassing the need for explicit modelling and instead learning the control in an

end-to-end manner serves as a better approach? Until now, no work had explored whether it is possible

to learn and transfer deformable object control policies from simulation to reality. We believe that if sim-

to-real methods are to be employed further, then it should be possible to learn to interact with a wide

variety of objects, and not only rigid objects. To that end, in subsequent work, we use a combination of

state-of-the-art deep reinforcement learning algorithms to solve the problem of manipulating deformable

objects (specifically cloth) [Matas et al., 2018]. We evaluate our approach on three tasks — folding a

towel up to a mark, folding a face towel diagonally, and draping a piece of cloth over a hanger. We show

that we are able to fully train in simulation with domain randomisation, and then successfully deployed

in the real world without having seen any real deformable objects.
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Although the two approaches highlighted above have been successful, they have only focused on

learning a single task, from scratch, with no way of leveraging the knowledge to learn other tasks more

efficiently. Much like humans, robots should have the ability to leverage knowledge from previously

learned tasks in order to learn new tasks quickly in new and unfamiliar environments. With this in

mind, we introduce Task-Embedded Control Networks (TECNets) [James et al., 2018], which employ

ideas from metric learning in order to create a task embedding that can be used by a robot to learn new

tasks from one or more demonstrations. We show that our approach can also be used in conjunction

with domain randomisation to train our few-shot learning ability in simulation and then deploy in the

real world without any additional training. Once deployed, the robot can learn new tasks from a single

real-world teleoperated demonstration.

The above work gives an intuitive way of providing demonstrations to a robot. However, humans

can naturally learn to execute a new task by seeing it performed by other individuals once, and then

reproduce it in a variety of configurations. Endowing robots with this ability of imitating humans from

third person is a very immediate and natural way of teaching new tasks. We extend TECNets further to

infer control polices by observing videos of humans performing the desired task [Bonardi et al., 2020].

Importantly, we do not use a real human arm to supply demonstrations during training, but instead

leverage domain randomisation in an application that has not been seen before: sim-to-real transfer on

humans. Upon evaluating our approach on pushing and placing tasks in both simulation and in the real

world, we show that in comparison to a system that was trained on real-world data we are able to achieve

similar results by utilising only simulation data.

Despite achieving high success on one-shot imitation learning with TECNets, variation across tasks

was limited. This was predominantly down to the fact that we were in uncharted territory: there did not

exist a suitable benchmark or standard set of tasks for the few-shot manipulation community. It was this

that motivated the creation of a challenging new benchmark and learning-environment for robot learning:

RLBench [James et al., 2020]. The benchmark features 100 completely unique, hand-designed tasks,

ranging in difficulty from simple target reaching and door opening to longer multi-stage tasks, such

as opening an oven and placing a tray in it. We provide an array of both proprioceptive observations

and visual observations, which include rgb, depth, and segmentation masks from an over-the-shoulder

stereo camera and an eye-in-hand monocular camera. Uniquely, each task comes with an infinite supply

of demos through the use of motion planners operating on a series of waypoints given during task

creation time; enabling an exciting flurry of demonstration-based learning possibilities. RLBench has

been designed with scalability in mind; new tasks, along with their motion-planned demos, can be easily

created and then verified by a series of tools, allowing users to submit their own tasks to the RLBench
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1. Introduction

task repository. This large-scale benchmark aims to accelerate progress in a number of vision-guided

manipulation research areas, including: reinforcement learning, imitation learning, multi-task learning,

geometric computer vision, and in particular, few-shot learning.

Upon evaluating many image-based state-of-the-art reinforcement learning algorithms on RLBench,

it was clear these approaches fail catastrophically in these complex, sparsely-rewarded tasks. This mo-

tivated the need for a more structured approach to the problem. With this in mind, we present our

Attention-driven Robotic Manipulation (ARM) algorithm [James and Davison, 2021], which is a gen-

eral manipulation algorithm that can be applied to a range of real-world sparse-rewarded tasks without

any prior task knowledge. ARM splits the complex task of manipulation into a 3 stage pipeline: (1) a

Q-attention agent extracts interesting pixel locations from RGB and point cloud inputs, (2) a next-best

pose agent that accepts crops from the Q-attention agent and outputs poses, and (3) a control agent that

takes the goal pose and outputs joint actions.

There is a clear evolution through the thesis, where in the initial chapters, we scrap the ‘traditional’

manipulation pipeline, and start afresh with an end-to-end approach. As the chapters progress, we

gradually modularise, and finally end up with a new pipeline, where the individual modules bear little

resemblance to the ‘traditional’ ones. With that in mind, the thesis culminates with the proposition of

a new paradigm: Tightly-coupled Manipulation Pipelines (TMP). Rather than learning all modules

implicitly in one large, end-to-end network or conversely, having individual, pre-defined modules that

are developed independently, TMPs suggest taking the best of both world by tightly coupling actions to

observations, whilst still maintaining structure via an undefined number of learned modules, which do

not have to bear any resemblance to the modules seen in ‘traditional’ systems. This tight coupling of

TMPs can be achieved either implicitly through gradients flowing through each of the modules, such as

in Chapter 5, or implicitly via a shared reward, such as in Chapter 7. Figure 1.2 illustrates where on the

spectrum this TMP paradigm falls, and where the individual methods presented in this thesis fall. Note

that due to the limited time of the PhD, our exploration focuses on methods that are to the left of the

spectrum, focusing mostly on end-to-end rather than pipelined; we reflect on this in Chapter 8.

A brief historical review of manipulation is given below. References to more thorough historical

surveys will be given for further reading, as only a general outline of key milestones is given along with

more specific discussions on work closely related to the research presented in this thesis.
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1.1. Manipulation Through The Years

Figure 1.2: The spectrum from fully end-to-end to pipelined. The branches indicate where each piece of
work presented in the thesis lies on the spectrum.

1.1 Manipulation Through The Years

The origin of robotic manipulation research can be traced back as far as the 1950s, where teleoperated

manipulators were developed for handling nuclear materials [Goertz, 1952b, Goertz, 1952a, Goertz,

1954, Goertz and Thompson, 1954, Goertz, 1963]. Fast forward 70 years, and teleportation is still

an active area of research in a number of fields, including surgical systems [Choi et al., 2018], bomb

disposal [Lisle, 2020], underwater vehicles [Havoutis and Calinon, 2019], and space manipulators [Yoon

et al., 2004].

The emergence of industrial robotics began in the 1960s with the founding of Unimation and the first

industrial robot, the Unimate [Devol, 1961]. Today, the global industrial robot market is estimated to be

worth in excess of $21 Billion [Insights, 2020]. The first examples of what we might call general robots

today, came from Stanford Research Institutes (SRI) seminal autonomous mobile agent, Shakey [Fikes

et al., 1972, Nilsson, 1984], which applied emerging automated theorem proving techniques in robot

planning. Although Shakey did not perform manipulation, its ability to perceive, plan, and then act,

laid the foundation of the manipulation pipelines that we discussed in the opening section. Naturally

these pipelines have become more sophisticated over the past 50 years, incorporating additional sens-

ory inputs, developing rich scene understanding, more complex planning, a greater dexterous control.

Research in pipelined manipulation usually focuses on presenting improvements and evaluation of mod-

ules in isolation (e.g. presenting a novel pose estimation system), before plugging them into a standard

manipulation pipeline for a final demo. In the following sections, we will briefly overview progress

in these areas. Note that there are a large number of other areas of manipulation which we consider

out of scope of this thesis, including: in-hand manipulation, non-prehensile manipulation, and dual-arm

manipulation, to name but a few.
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1. Introduction

1.1.1 Scene Understanding

Understanding what objects are in the scene, and where they are, is a vital step in not only robot ma-

nipulation tasks [Zhu et al., 2014, Collet et al., 2011], but also many other areas, including medical

imaging [Ralovich et al., 2014] and augmented reality [Hagbi et al., 2011]. Object detection, or re-

cognition, is the process of finding objects within an image, whilst 6D pose estimation determines the

transformation of that object. Both are well studied problems in the computer vision community, with

a vast number of solutions. This section will give a brief overview of four methods: template-based

methods, sparse feature-based methods, dense methods, and more recently end-to-end methods.

Template-based methods are one of the earliest approaches to object detection and pose estimation.

Traditionally, these methods involve generating templates by collecting images of the object from vary-

ing viewpoints in an offline training stage and then scanning the template across an image to find the best

match using a distance measure [Huttenlocher et al., 1993, Steger, 2001]. These methods are sensitive to

clutter, occlusions, and lighting conditions, leading to a number of false positives, which in turn requires

greater post processing. LINEMOD [Hinterstoisser et al., 2011, Hinterstoisser et al., 2012a] attempts

to improve detection of texture-less objects in cluttered scenes by generating templates that combine

silhouette gradient orientations from RGB images and surface normal orientations from depth images.

Extensions of this method involve the use of 3D models to generate many templates of the objects from

different viewing angles [Hinterstoisser et al., 2012b], as well as an effort to increase their speed by

using a cascade framework [Rios-Cabrera and Tuytelaars, 2013].

Sparse feature-based methods have been a popular alternative to template-based methods for a number

of years [Lowe, 2001, Nister and Stewenius, 2006, Philbin et al., 2007]. These methods are concerned

with extracting scale invariant points of interest from images, describing them with local descriptors

(such as SIFT [Lowe, 2004] or SURF [Bay et al., 2008]), and then storing them in a database to be

later matched with. At test time, these descriptors are used with methods such as RANSAC [Fischler

and Bolles, 1981] to gain pose estimates. This processing pipeline can be seen in systems such as

MOPED [Collet et al., 2011]; in this system, structure from motion is used to merge the information

from each training image into a sparse 3D model, which is used to obtain the pose based on 3D point-

to-point correspondences between a stored model and the test model. MOPED has inspired further

work, such as the addition of depth information at multiple stages in the pipeline [Tang et al., 2012].

Recently, instead of using predefined hand-crafted features, features have instead been learned through

examples [Holzer et al., 2012, Rosten et al., 2010]. As these methods look for features in the input

data, they make the assumption that objects have sufficient texture, leading to poor performance on

texture-poor objects or failure on texture-less objects.
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With the increase in affordable RGB-D cameras, dense methods have become increasingly popular

for object and pose recognition [Drost et al., 2010, Shotton et al., 2013, Brachmann et al., 2014]. These

methods involve construction of a 3D point-cloud of a target object, and then matching this with a stored

model using popular algorithms such as Iterative Closest Point (ICP) [Besl and McKay, 1992].

Object detection in-itself has a large deep learning community around it. The advancements in object

recognition are in fact due to rapid progress in the image classification problem. In 1994, after 8 years

of iterative work, Yann LeCun published one of the very first convolutional neural networks (CNNs):

LeNet5 [LeCun et al., 1998]. It was not until 2012 that the deep learning boom ignited with the release

of AlexNet [Krizhevsky et al., 2012] — a much deeper and wider version of LeNet5. What followed was

a series of publications that sought to outperform previous networks on datasets such as MNIST [LeCun

et al., 2010] and ImageNet [Russakovsky et al., 2015b]. Such networks included ZF Net [Zeiler and

Fergus, 2014], which achieved a lower error rate whilst using fewer training examples than AlexNet.

Moreover, the authors reasoned that using the larger 11 × 11 filter size in the first layer skips large

amounts of relevant information, and therefore using smaller filters with a smaller stride would retain

that information (7 × 7 filter size in this case). In 2014, VGG Net [Simonyan and Zisserman, 2014]

took this further by using only 3× 3 filters in their network, reasoning that the combination of two 3× 3

filters have an effective receptive field as a 5× 5 filter, and likewise three 3× 3 filters have an effective

receptive field as a 7 × 7 filter. This results in keeping the benefits of larger filters while reducing the

number of parameters.

Instead of stacking convolution layers on top of each other in order to improve performance, GoogLe-

Net [Szegedy et al., 2015] introduced the idea of an inception module. The inception module allows the

following operations to be performed in parallel: a 1× 1 convolution, allowing fine grained detail to be

extracted, a medium and large sized convolution, which allows higher level features to be extracted, and

a pooling operation to reduce spatial sizes and overfitting.

To-date, the deepest networks have been inspired by ResNet [He et al., 2016b], which spanned an

incredible 152 layers and achieved record breaking results, not only in classification, but also in detection

and localization. The key contribution, other than the huge number of layers, was the residual block. In

a traditional convolutional layer, an input x is transformed by some function f(x). In a residual block,

the output from f(x) is instead treated as a delta that is added to the input x to give a slightly altered

representation g(x) = f(x) + x.

Alongside the advances in image classification, object recognition was impacted heavily in 2013 by

the release of Regions with CNN features (R-CNN) [Girshick et al., 2014]. Selective search [Uijlings
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et al., 2013] was used on input images to extract 2000 region proposals which are then fed into a CNN

to produce image features that are used as input to a class-specific linear SVM to output a classification.

From the success of R-CNN followed two extensions: Fast R-CNN [Girshick, 2015] and Faster R-

CNN [Ren et al., 2015]. The original R-CNN was computationally expensive and required 53 seconds

per image. Fast R-CNN [Girshick, 2015] improved on this by reducing training time by combining

the classification and localisation loss into a single multi-task loss, and by using a region of interest

(RoI) pooling layer meaning that images do not need to be scaled before entering the CNN for feature

extraction. The next version, Faster R-CNN [Ren et al., 2015], simplified the complex training pipelines

of its predecessors by producing region proposals through a region proposal network (RPN) that was

introduced after the convolutional layers, created a single, unified network for object detection.

From the success of object detection came Mask R-CNN [He et al., 2017] for instance segmentation.

The model works by first performing object detection to draw bounding boxes around each instance of

a class, and then performs semantic segmentation on each of the bounding boxes. Mask R-CNN is now

widely used in many robotic applications [Wang et al., 2019, Wada et al., 2020].

1.1.2 Grasp Planning

Robotic grasping is a well studied problem [Bohg et al., 2014], and is concerned with finding a grasp

point on an object that results in the ability to pick up the object. The method usually depends on the

type of gripper that is used.

Parallel-jaw grippers are very popular. Traditionally, grasping was usually solved analytically, where

3D meshes of objects would be used to compute the stability of a grasp against external wrenches [Prat-

tichizzo and Trinkle, 2008, Rodriguez et al., 2012] or constrain the object’s motion [Rodriguez et al.,

2012]. These solutions often assume that the same, or similar objects will be seen during testing, such

that point clouds of the test objects can be matched with stored objects based on visual and geomet-

ric similarity [Brook et al., 2011, Ciocarlie et al., 2014, Hernandez et al., 2016, Hinterstoisser et al.,

2011, Kehoe et al., 2013]. Due to this limitation, data-driven methods have become the dominant way

to solve grasping [Lenz et al., 2015, Mahler et al., 2017]. These methods commonly make use of

either hand-labeled grasp positions [Lenz et al., 2015, Kappler et al., 2015], self-supervision [Pinto

and Gupta, 2016a], or predicting grasp outcomes [Levine et al., 2016b]. To train these solutions, data

is needed, which can come from datasets such as the Cornell grasping dataset [Jiang et al., 2011];

this dataset features RGB and depth images of objects where suitable grasp points has been manually-

labelled. The dataset has been used to train a number of solutions which regress to a probability that

a particular pose will be graspable [Lenz et al., 2015, Redmon and Angelova, 2015]. Acquiring large
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amount of manually-labelled data can be time consuming, and so a number of solutions exist to combat

this. Automatic dataset generation through random grasps is an attractive approach. After 700 hours

of running, a dataset of 50,000 had been collected through performing random grasps within regions of

interest [Pinto and Gupta, 2016b]. Further work collected 800,000 grasps using 14 robots that were run

for two months [Levine et al., 2016c]. Simulators are another option when it comes to data generation.

The GraspIt! simulator [Miller and Allen, 2004] is a popular choice for evaluating grasps [Varley et al.,

2015], but most work is restricted to the virtual domain.

Suction grippers are an attractive alternative to parallel-jaw grippers, and have been incredibly popular

in the Amazon Picking Challenge (APC) due to their simplicity and effectiveness in picking up a wide

variety of objects [Eppner et al., 2015, Hernandez et al., 2016]. For suction grippers, a popular method

involves computing surface normals in a grid-like pattern across the surface of a smoothed point cloud

segment in order to generate grasp candidates, which are then ranked according to some constraints

[Leitner et al., 2016, Hernandez et al., 2016].

1.1.3 Motion Planning

Motion planning is concerned with going from one pose to another, whilst avoiding obstacles and tak-

ing into account constraints, such as joint limits, maximum velocity, and jerk. The origin of motion

planning can be traced back to two major milestones. The first was by Lozano-Perez and Wesley, who

developed the use of configuration space for collision-free motion planning [Lozano-Pérez and Wesley,

1979]. For a robot arm with n degrees of freedom (DoF), a configuration space (C-space) is defined as a

coordinate system with one dimension per DoF. The free space is defined to be the subset of the C-space

comprising all configurations that do not place the arm in an obstacle. The path planning problem is

then to find a curve in the free space that connects the start configuration with the goal configuration.

The other milestone was that of sampling-based planners [Kavraki et al., 1996]. Rather than calculating

all free configurations and planning in free space as is done in C-space planning, sampling-based plan-

ners instead continuously sample in the configuration space whilst checking for collisions as a path is

generated. There are now many sampling-based planners in use today, including PRM [Kavraki et al.,

1996], EST [Hsu et al., 1997], RRT [Kuffner and LaValle, 2000], RRT* [Karaman and Frazzoli, 2011]

and BFMT* [Starek et al., 2015], to name but a few. For a detailed survey of sampling-based planning,

see [Elbanhawi and Simic, 2014].

1.1.4 Control

The final stage of the pipeline involves taking a series of high-level actions (e.g. joint positions, joint

velocities, end-effector poses) and then apply techniques from control theory to convert these actions
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into low-level commands that drive the actuators. In robot manipulation, this is done in a closed-loop

form, where inputs (e.g. voltage applied to an electric motor) effect the outputs of the system (e.g.

the speed or torque of the motor) which are measured by sensors, that cause the controller to alter its

behaviour in order to reach a desired speed or torque. From lowest level to highest level, a selection

of action modes are: joint torques, joint velocities, joint positions, and end-effector poses. Low-level

actions, such as torque control, give much finer, predictable control, whilst higher-level actions, such as

joint velocities, removes the need for earlier components in the pipeline to reason about the low-level

dynamics of the system (e.g. gravity compensation, motor uncertainty, etc).

There are many tasks that go beyond moving an object from one place to another, and instead involve

complex contact dynamics. Imagine a robot tasked with drawing a circle with a pencil on a piece of

paper. If the table is slightly closer than expected, or the pencil is slightly longer than expected, then

the pencil lead will break; conversely, if the table is further, or the pencil is shorter than expected,

then the pencil will not make contact with the paper. This motivates the need for compliant motion; a

control method that deals with uncertainties, and was first discussed in area of teleoperation [Goertz,

1952b]. One of the most common approaches to accomplish compliant behaviour is through impedance

control [Hogan, 1984], where the goal is to achieve a desired impedance of the robot at the end effector,

felt by the environment.

1.1.5 Benchmarking

Although manipulation belongs under the general field of AI, it has not seen the same speed of pro-

gress in comparison to other related fields, such as machine learning. One of the reasons that robotics

has not progressed as fast is because, unlike machine learning, comparison across systems is difficult.

Challenges such as the Amazon Picking Challenge (APC) [Correll et al., 2016] and DARPA Robotics

Challenge (DRC) [Pratt and Manzo, 2013] are effective ways of driving progress, especially in two dis-

tinct areas: picking and storing, and task completion in dangerous and degraded environments. Despite

this, they have a number of drawbacks, including their lack of reproducibility, their nature of being held

once a year, and their restriction in the number of teams.

In addition to the general computer vision datasets that focus on perception [Russakovsky et al.,

2015b, Lin et al., 2014, Everingham et al., 2015], there exist a number of datasets that are more ap-

plicable to the robot setting; including image and point-cloud datasets [Singh et al., 2014], a 2D/3D

database for detection in clutter [Tejani et al., 2014], and datasets consiting of RGB-D images for object

segmentation [Lai et al., 2013] and pose estimation [Rennie et al., 2016]. In comparison to perception,

grasping is harder to benchmark as it is difficult to classify a solution as correct or incorrect. Nowadays,
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manipulation capabilities can be compared in simulation through tools such as OpenGRASP [Ulbrich

et al., 2011] and VisGraB [Popović et al., 2011], or through real-world experiments using datasets such

as YCB [Calli et al., 2015] which can be tedious to compare.

The problem with benchmarking each of the components separately is that we do not know how

the system would behave overall. That is, the perception benchmarks are disjoint from robot applica-

tion, while the grasping benchmarks remove the emphasis on perception and planing. To combat this,

attempts have been made to offer a benchmark that encompasses the entire picking task to allow com-

parison of complete robot systems [Leitner et al., 2016]. In Chapter 6 of this thesis, we present our own

new benchmark called RLBench, which addresses the issues discussed above.

1.2 Rise of End-to-End Robot Manipulation

As has been mentioned at the beginning of this chapter, a recent trend has been to tightly couple sensing

and action via a single deep learning network that maps observations directly to actions. This removes

the need to implicitly model the scene and perform planning, and instead learn this implicitly in the

weights of the network. This style of learning was made popular by the work of [Levine and Abbeel,

2014], where Guided Policy Search (GPS) [Levine and Koltun, 2013] was used to train deep visuomotor

policies that mapped camera observations to motor torques of a PR2 robot. This method trained a range

of manipulation tasks, including bottle-cap screwing, and inserting a block into a shape sorting cube in

under 200 episodes; this is a large difference in comparison to other RL methods that require orders of

magnitude more data [Lillicrap et al., 2015a, Schulman et al., 2015].

1.2.1 Guided Policy Search

Guided Policy Search (GPS) [Levine and Koltun, 2013, Levine and Abbeel, 2014], which in addition to

classic control benchmarks, has achieved success in aerial flight [Zhang et al., 2016b, Kahn et al., 2016],

and manipulation [Levine et al., 2016a, Montgomery and Levine, 2016, Montgomery et al., 2016].

GPS provides a means to optimise non linear policies, such as neural networks [Levine and Abbeel,

2014], without the need to compute policy gradients. GPS uses guiding samples produces by a ‘teacher’

algorithm, such as trajectory optimisers or trajectory-centric reinforcement learning methods, to train

policies in a supervised manner. In addition to this, GPS adapts the guiding samples produced by the

teacher so that they are more suited for training the final policy. Many methods have been proposed

to improve the converge guarantees of the policy and teacher, including BADMM-GPS [Levine et al.,

2016a], Mirror Descent GPS [Montgomery and Levine, 2016], as well as extentions that improve the

teacher algorithm, such as adding ability to handle random initial states [Montgomery et al., 2016], and
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using model-free optimiser based on path integral stochastic optimal control (PI2) [Chebotar et al.,

2016].

Later work derived a new variant called Mirror Descent (MD-GPS) [Montgomery and Levine, 2016],

which showed GPS could be interpreted as an approximate variant of mirror descent to simplify con-

vergence guarantees in the convex and linear settings. BADMM-GPS and MD-GPS require a consistent

set of initial states after each episode, which is not always a practical assumption outside of simulation,

and limits the generalisation of the resulting global policy. Reset-Free GPS (RF-GPS) [Montgomery

et al., 2016] is an extension to MD-GPS that allowed random initial starts, and as a result, the trained

policies improved generalisability in comparison to prior methods, and with two orders of magnitude

fewer samples.

So far we have seen the teacher algorithm implemented in a model-free method (such as the PI2

method, which is efficient and fast), along with model-based methods (such as LQR with fitted local lin-

ear dynamics, which have the ability to handle complex dynamics). In order to combine the advantages

of both these methods, a hybrid trajectory-centric RL method has been proposed to solve manipulation

problems that prior methods were not able to solve, such as hitting a hockey puck into a goal and insert-

ing a plug into a power socket [Chebotar et al., 2017]. Other interesting extensions to GPS include the

addition of memory states that outperforms baselines that naively replaces the policy with a recurrent

neural network [Zhang et al., 2016a], as well as adaptions to both BADMM-GPS and MD-GPS to work

in a asynchronous manner distributed across 4 robots [Yahya et al., 2016].

As described above, guided policy search is a combination of trajectory optimisation or reinforce-

ment learning with imitation learning; but these two fields have since had an abundance of end-to-end

manipulation work in their own right, which we now discuss.

1.2.2 Deep Reinforcement Learning

Reinforcement learning (RL) [Sutton and Barto, 1998] has become a popular solution for learning the

problem of control (see Section 2.5 for a brief overview of RL). It has been particularly successful in

playing games such as Go [Silver et al., 2016], and Atari [Mnih et al., 2015] to a super-human level

by adapting a classic RL algorithm to be used with function approximators, such as neural networks,

spawning a Deep Reinforcement Learning (DRL) domain. The Deep Q-network (DQN) [Mnih et al.,

2015] reinvigorated research into RL by addressing the unstable and divergent property of the action-

value (Q) function when using a non-linear function approximator. This was addressed by using CNN’s

with experience replay [Lin, 1992] and adding a second ‘target’ network. This ‘target’ network outputs

target-Q values that are used to compute the loss for every action during training in order to mitigate
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the network becoming destabilised by falling into a feedback loop. Following the introduction of DQN,

many extensions were proposed, including Double DQN (D-DQN) [Van Hasselt et al., 2016], Prioritized

experience replay [Schaul et al., 2015a], Dueling DQN [Wang et al., 2015], Bootstraped DQN [Osband

et al., 2016], and DQN using optimality tightening [He et al., 2016a].

Given that DQN [Mnih et al., 2015] is a discrete-action RL algorithm, there is a need to discretise

the action space in order to use this method for end-to-end manipulation. Although there has been work

with that aim [James and Johns, 2016a], the problem seems naturally more suited for a solution that

can operate with continuous actions. One of the first DRL continuous control algorithms was Deep

Deterministic Policy Gradients DDPG [Lillicrap et al., 2015a], which is an improvement to the original

DPG algorithm [Lever, 2014], by adding experience replay and target networks — much like DQN.

This work lead to a vast number of continuous control algorithms for both on-policy data, such as

TRPO [Schulman et al., 2015], PPO [Schulman et al., 2017], and MPO [Abdolmaleki et al., 2018],

and off-policy data, such as TD3 [Fujimoto et al., 2018a] and SAC [Haarnoja et al., 2018a]. These

continuous control algorithms have been used for numerous tasks over the years, including: grasping

arbitrary objects [Kalashnikov et al., 2018], block stacking [Nair et al., 2018], peg-in-hole [Vecerik

et al., 2017], ball-in-cup [Schwab et al., 2019], rotating a valve [Haarnoja et al., 2018b], and cloth

manipulation [Matas et al., 2018]. For further reading of (pre deep) reinforcement learning applied in

robotics, see [Kober et al., 2013, Kormushev et al., 2013].

1.2.3 Imitation Learning

Learning from demonstration (also known as Imitation Learning) is an attractive idea. It allows us to

teach a robot how to perform a task without the need to design reward functions which can be sub-

optimal and inaccurate. Moreover, it is not always desired to have a robot learn from exploration data,

especially in tasks where choosing random actions could be dangerous. Imitation learning can broadly be

classified into two key areas: (1) behaviour cloning, where an agent learns a mapping from observations

to actions given demonstrations [Pomerleau, 1989, Ross et al., 2011], and (2) inverse reinforcement

learning [Ng et al., 2000], where an agent attempts to estimate a reward function that describes the

given demonstrations [Abbeel and Ng, 2004, Finn et al., 2016].

The majority of work in behaviour cloning operates on a set of configuration-space trajectories that can

be collected via teleoperation [Calinon et al., 2009, Zhang et al., 2018], kinesthetic teaching [Kormushev

et al., 2011, Pastor et al., 2011, Akgun et al., 2012], sensors on a human demonstrator [Dillmann,

2004, Ekvall and Kragic, 2004, Calinon and Billard, 2006, Kruger et al., 2010], through motion planners

[James et al., 2017a], or even by observing humans directly. Expanding further on the latter, learning

23



1. Introduction

by observing humans has previously been achieved through hand-designed mappings between human

actions and robot actions [Lee et al., 2013, Yang et al., 2015, Rothfuss et al., 2018], visual activity

recognition and explicit hand tracking [Lee and Ryoo, 2017, Ramirez-Amaro et al., 2017], and more

recently by a system that infers actions from a single video of a human via an end-to-end trained system

[Yu et al., 2018].

We have barely scratched the surface of the abundance of work that now falls under the domain of end-

to-end manipulation. Here we have briefly discussed two key areas in the literature today: reinforcement

learning and imitation learning. Of course, the question still remains about how both of these data-driven

methods compare to the pipelines that we discussed in the beginning of this section. The reality is that it

is difficult to compare these two paradigms, given that manipulation pipelines are usually designed with

one task in mind, while end-to-end methods are designed with the aim of solving many different tasks

with the same method. This means that more often that not, a well designed pipeline should always

outperform an end-to-end method, given that they are designed on a per-task basis. It suggests then,

that perhaps the metric used to compare end-to-end and pipelined methods should not solely rest on

a task-completion metric, but also on a time-spent metric that measures the amount of time that went

into designing, implementing, training, and testing the system. This thesis does not aim to compare

these two paradigms, but instead investigates a sample of methods, which fall somewhere on a spectrum

from pipelined to fully end-to-end, which we believe to be more advantageous for developing a general

manipulation system; one that could eventually be used in highly dynamic and unpredictable household

environments.

1.3 Publications

The work described in this thesis resulted in the following publications:

• James, S. and Davison, A. J. (2021), Attention-driven Robotic Manipulation. Under Review.

[James and Davison, 2021].

• James, S., Ma, Z., Arrojo, D., and Davison, A. J. (2020), RLBench: The Robot Learning Bench-

mark & Learning Environment. In IEEE Robotics and Automation Letters (RAL) with present-

ation at the IEEE International Conference on Robotics and Automation (ICRA). [James et al.,

2020].

Video: https://www.youtube.com/watch?v=F2PqREHT3F8

Code: https://github.com/stepjam/RLBench
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• James, S., Freese, M., and Davison, A. J. (2019), PyRep: Bringing V-REP to Deep Robot

Learning. In CoRR, arXiv.org. [James et al., 2019a].

Code: https://github.com/stepjam/PyRep

• James, S., Bloesch, M., and Davison, A. J. (2018), Task-embedded Control Networks for Few-

shot Imitation Learning. In Proceedings of the Conference on Robot Learning (CoRL) (Oral &

Best Paper Finalist). [James et al., 2018].

Video: https://www.youtube.com/watch?v=iCdTo_1mHy8

Code: https://github.com/stepjam/TecNets

• James, S., Davison, A. J., and Johns, E. (2017), Transferring End-to-end Visuomotor Control

from Simulation to Real World for a Multi-stage Task. In Proceedings of the Conference on

Robot Learning (CoRL). [James et al., 2017a].

Video: https://www.youtube.com/watch?v=k7dom7fRb8I

The following publications were co-supervised by myself and Prof. Andrew Davison during the course

of this thesis:

• Bonardi, A., James, S., and Davison, A. J. (2020), Learning One-shot Imitation from Humans

Without Humans. In IEEE Robotics and Automation Letters (RAL) with presentation at the IEEE

International Conference on Robotics and Automation (ICRA). [Bonardi et al., 2020].

Video: https://www.youtube.com/watch?v=ur40SLN0_AQ

The work in this paper was led by Alessandro Bonardi, an undergraduate student at Imperial

College London. Implementation and experimentation were contributed by Alessandro Bonardi,

while I contributed the method formulation, learning framework, and supervision.

• Matas, J., James, S., and Davison, A. J. (2018), Sim-to-real Reinforcement Learning for De-

formable Object Manipulation. In Proceedings of the Conference on Robot Learning (CoRL).

[Matas et al., 2018].

Video: https://www.youtube.com/watch?v=Dr0RvX1F-YQ

Code: https://github.com/JanMatas/Rainbow_ddpg

The work in paper was led by Jan Matas, an undergraduate student at Imperial College London.

Experimentation and simulation modifications were contributed by Jan Matas, while I contributed

the method formulation, learning framework, and supervision.

While not described directly, the following publications were done in conjunction with this thesis:
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• James, S., Wohlhart, P., Kalakrishnan, M., Kalashnikov, D., Irpan, A., Ibarz, J., Levine, S., Had-

sell, R., and Bousmalis, K. (2019), Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasp-

ing via Randomized-to-Canonical Adaptation Networks. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). [James et al., 2019b].

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 introduces the manipulation hardware used, the simulation stack used for learning control

policies, and finally a brief overview of deep neural networks and reinforcement learning.

Chapter 3 explores some of the first work in the domain of transferring end-to-end controllers from

simulation to the real world. We explore using imitation learning to learn a long-horizon multi-

stage task that is analogous to a simple tidying task, and involves locating a cube, reaching,

grasping, and locating a basket to drop the cube in.

Chapter 4 continues to explore transferring end-to-end controllers from simulation to the real world.

In this case, we explore using a combination of state-of-the-art deep reinforcement learning al-

gorithms to learn how to manipulating deformable objects, which includes folding a towel up to

a mark, folding a face towel diagonally, and draping a piece of cloth over a hanger.

Chapter 5 introduces Task-Embedded Control Networks, which employs ideas from metric learning in

order to create a task embedding that can be used by a robot to learn new tasks from one or more

teleoperated demonstrations, or by observing videos of humans performing the task. Importantly,

all of this is learned in simulation, without the need for expensive real-world data collection during

training.

Chapter 6 presents RLBench: a challenging new benchmark and learning-environment for robot learn-

ing. The benchmark features 100 completely unique, hand-designed tasks, with the aim to facilit-

ate research in a number of vision-guided manipulation research areas, including: reinforcement

learning, imitation learning, multi-task learning, geometric computer vision, and few-shot learn-

ing.

Chapter 7 presents our Attention-driven Robotic Manipulation (ARM) algorithm, which is a general

manipulation algorithm that can be applied to a range of real-world sparse-rewarded tasks without

any prior task knowledge. ARM splits the complex task of manipulation into a 3 stage pipeline:

(1) a Q-attention agent extracts interesting pixel locations from RGB and point cloud inputs, (2)
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a next-best pose agent that accepts crops from the Q-attention agent and outputs poses, and (3) a

control agent that takes the goal pose and outputs joint actions. We show that ARM is successful

on a range of RLBench tasks, whilst current state-of-the-art reinforcement learning algorithms

catastrophically fail.

Chapter 8 concludes the thesis with a discussion of the research presented and suggestions for future

work.
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This chapter introduces the hardware, simulation platform, and background concepts that are used

throughout this thesis.

2.1 Hardware

In this thesis, we predominantly work on 2 robotic platforms: the Kinova Mico and the Franka Emika

Panda, both shown in Figure 2.1. We will briefly introduce these two arms below.

Kinova Mico

The Mico is a 6DoF arm, with a maximum reach of 70cm, and total weight of 4.6kg. Kinova has a

library of C++ functions to control its lineup of various robots, and is referred to as the Kinova API.

The API (.dll files and .h files) can be downloaded from Kinova’s website as part of the Kinova software

development kit (SDK). The SDK is supplemented by HTML-based documentation detailing all the

available functions. The Kinova API is supported on both Windows and Ubuntu. Kinova also offers

developers the possibility for developers to control the robot through a ROS interface.
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Figure 2.1: Kinova Mico (left) and Franka Emika Panda (right).

Franka Emika Panda

The Franka Emika Panda is a 7DoF arm with torque sensors in all 7 axes, a maximum reach of 85.5cm,

and a total weight of 18kg. The franka can be controlled via the Franka Control Interface (FCI), which

consists of: libfranka, a C++ library that provides low-level control of the robot, and franka ros, the ROS

integration, which includes support for ROS Control and MoveIt. The ROS integration also contains

franka description, a collection of URDF models and 3D meshes that can be useful outside of ROS.

2.2 Simulation Platform

It was highlighted in Section 1.1.1 that in recent years, deep learning has significantly impacted nu-

merous areas in machine learning, improving state-of-the-art results in tasks such as image recognition,

speech recognition, and language translation. Robotics has benefited greatly from this progress, with

many robotics systems opting to use deep learning in many or all of the processing stages of a typical

robotics pipeline [Zeng et al., 2018b, Morrison et al., 2018]. As we aim to endow robots with the ability

to operate in complex and dynamic worlds, it becomes important to collect a rich variety of data of

robots acting in these worlds. If we are to use deep learning however, it comes at a cost of requiring

large amounts of training data, which can be particularly time consuming to collect in these dynamic

environments. Simulations then, can help in one of two primary ways:

• Rapid prototyping of learning algorithms in the hope to find data-efficient solutions that can be

trained on small real-world datasets that are feasible to collect.
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Figure 2.2: A scene from CoppeliaSim [Rohmer et al., 2013].

• Training on a large amount of simulation data with potentially a small amount of real-world data,

and find ways of transferring this knowledge from simulation to the real world [James et al.,

2019b, Tobin et al., 2017a, James et al., 2017a, Matas et al., 2018].

Two common simulation environments in the literature today are Bullet [Coumans, 2015] and Mu-

JoCo [Todorov et al., 2012a]. However, given that these are physics engines rather than robotics frame-

works, it can often be cumbersome to build rich environments and integrate standard robotics tooling

such as inverse & forward kinematics, user interfaces, motion libraries, and path planners.

Fortunately, CoppeliaSim (formerly called V-REP) [Rohmer et al., 2013] is a general-purpose robot

simulation framework maintained by Coppelia Robotics. An example scene from CoppeliaSim can be

seen in Figure 2.2. Some of its many features include:

• Cross-platform content (Linux, Mac, and Windows).

• Several means of communication with the framework (including embedded Lua scripts, C++ plu-

gins, remote APIs in 6 languages, ROS, etc).

• Support for 4 physics engines (Bullet, ODE, Newton, and Vortex), with the ability to quickly

switch from one engine to the other.
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Figure 2.3: Example images of environments using the new renderer.

• Inverse & forward kinematics.

• Motion planning.

• Distributed control architecture based on embedded Lua scripts.

It is these features that make CoppeliaSim an appealing choice to use as our standard simulation

platform. Python and C++ are primary languages for research in deep learning and robotics, and so it

is imperative that communication times between a learning framework and CoppeliaSim are kept to a

minimum. Given that CoppeliaSim was introduced in 2013 when deep learning was in its infancy, prior-

itisation was not given to rapid external API calls, which currently rely on inter-thread communication.

As a result, this makes CoppeliaSim slow to use for external data-hungry applications.

2.3 PyRep

Although CoppeliaSim is highly customisable and ships with several API, including a Python remote

API, it was not developed with the intention to be used for large-scale data collection. As a result,

CoppeliaSim, when accessed via Python, is currently too slow for the rapid environment interaction

that is needed in many robot learning methods, such as reinforcement learning (RL). To that end, we

developed PyRep1, as an attempt to bring the power of CoppeliaSim to the robot learning community.

In addition to a new intuitive Python API and rendering engine, we modify the open-source version of

CoppeliaSim to tailor it towards communicating with Python; as a result, we achieve large speed boosts

in comparison of the original CoppeliaSim Python API.

Modifications

Below we outline the modifications that were made to CoppeliaSim.

1https://github.com/stepjam/PyRep
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from pyrep import PyRep
from pyrep.objects import VisionSensor, Shape
from pyrep.arms import Franka

pr = PyRep()
pr.launch(’my_scene.ttt’, headless=True) # Launch CoppeliaSim in a headless

window
pr.start() # Start the physics simulation

# Grab robot and scene objects
franka = Franka()
camera = VisionSensor(’my_camera’)
target = Shape(’target’)

while training:
target.set_position(np.random.uniform(-1.0, 1.0, size=3))
episode_done = False
while not episode_done:

# Capture observations from the vision sensor
rgb_obs = camera.capture_rgb()
depth_obs = camera.capture_depth()
action = agent.act([rgb_obs, depth_obs]) # Neural network predicting

actions
franka.set_target_joint_velocities(action) # Send actions to the robot
pr.step() # Step the physics simulation
# Check if the agent has reached the target
episode_done = target.get_position() == franka.get_tip().get_position()

Figure 2.4: PyRep API Example. Many more examples can be seen on the GitHub page.

Speed. The 6 remote APIs offered suffer from 2 communication delays. One of these comes from

the socket communication between the remote API and the simulation environment (though this can

be decreased considerably using shared memory). The second delay, and most notable, is inter-thread

communication between the main thread and the various communication threads. This communication

latency can become noticeable when the environment needs to be queried synchronously at each timestep

(which is often the case in RL). To remove these latencies, we have modified the open-source version of

CoppeliaSim such that Python now has direct control of the simulation loop, meaning that commands

sent from Python are directly executed on the same thread. With these modifications we were able

to collect robot trajectories/episodes over 4 orders of magnitude faster than using the original remote

Python API; making PyRep an attractive platform for evaluation of robot learning methods.

Renderer. CoppeliaSim ships with 2 main renderers: a default OpenGL 2.0 renderer, and the POV-Ray

ray tracing renderer. POV-Ray produces high quality images but at a very low framerate. The OpenGL

2.0 renderer on the other hand uses basic shadow-free rendering, and uses the old-style fixed-function

pipeline OpenGL. We therefore release a new OpenGL 3.0+ renderer which supports shadow render-

ing from all CoppeliaSim supported lights, including directional, spotlight, and pointlight. Examples

renderings can be seen in Figure 2.3.
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Figure 2.5: Artificial neuron model.

PyRep API. The new API manages simulation handles and provides an object-oriented way of inter-

facing with the simulation environment. Moreover, we have made it easy to add new robots with motion

planning capabilities with only a few lines of Python code. An example of the API in use can be seen in

Figure 2.4.

CoppeliaSim has been used extensively over the years in more traditional robotics research and de-

velopment, but has been overlooked by the growing robot learning community. The new PyRep toolkit

brings the power of CoppeliaSim to the community by providing a simple and flexible API, significant

speedup in run-time, and integration of an OpenGL 3.0+ renderer to CoppeliaSim.

2.4 Deep Neural Networks

Artificial neural networks (ANNs) are quite possibly one of the greatest computational tools currently

available for solving complex problems. These biologically-inspired models can be defined as a collec-

tion of densely interconnected processing units called neurons, that work in unison to perform massively

parallel computations.

What makes ANNs particularly appealing is the possibility of mimicking many of the desirable char-

acteristics of the human brain. These include massive parallelism, distributed representation and com-

putation, learning ability, generalization ability, adaptivity, inherent contextual information processing,

fault tolerance and low energy consumption [Jain et al., 1996].

The biological neuron is one of 100 billion in the human brain. Its main features consist of a cell body

(soma) with branching dendrites (signal receivers) and a projection called an axon, which conduct the

nerve signal. Dendrites receive electro-chemical impulses from other neurons which pass over the soma

and then travel along the axon until reaching the axon terminals. Finally, the electro-chemical signal is

then transmitted across the gap (synapses) between the axon terminal and a receiving cell’s dendrites.
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Figure 2.6: A 2 layer neural network.

Due to the large number of dendrites and synapses, it is able to receive many signals simultaneously.

These signals alter the cells membrane potential which is governed by the intensity of the signal and the

synaptic strength. These synapses can be adjusted by the signal passing through it, allowing them to

learn the activity in which they participate.

Like its biological counterpart, the artificial neuron shown in Figure 2.5, is a model with many inputs

and one output.

The neuron computes a weighted sum of its inputs to give:

N∑
i=1

xiwi. (2.1)

This can be seen as modelling the function of the dendrites. The soma is modelled via an activation

function that determines when the neuron should fire. Common activation functions are step functions,

sign functions, sigmoid function, and linear functions, as well as more recent ones like rectified linear

functions.

Neurons are arranged in a weighted directed graph with connections between the inputs and outputs.

The two most common networks are feed-forward networks — which contain no loops, and recurrent

networks — which contain feedback connections causing loops. The networks are organized according

to layers, where each neuron’s output in one layer is connected to every neuron’s input in the next layer.

Between the input and output layers exist the hidden layers, as illustrated in Figure 2.6 — note that input

layers do not count as a layer. These hidden nodes do not directly receive inputs or send outputs to the

external environment.

Gradient Descent

Gradient descent is a first-order optimisation algorithm and one of the most common ways to optimise

neural networks. It is a way to find local minimum of a function by starting with an initial set of values
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and then iteratively stepping the solution in the negative direction of the gradient until it eventually

converges to zero. We define such a function as a loss function.

Consider a loss function F (w) with parameters w, each iteration we wish to update the weights in the

direction that reduces the loss in order to minimise F . Taking the gradient of the curve will point to an

increase in F , so we instead negate the inverse to lower the function value:

wi+1 = wi − η
∂F

∂wi
, (2.2)

where η is the learning rate which determines the size of the steps taken to minimise the function. Great

care must be taken when choosing a learning rate — too large will result in divergence, but too small

will result in a long convergence time. Below we discuss three variants of gradient descent which differ

in the amount of data needed to compute the gradient of the loss function. A tradeoff must be made

depending on the amount of data available and time taken to perform an update.

Stochastic gradient descent performs weight updates after the presentation of each training example.

Through these frequent updates, local gradients are used to determine the direction to step, resulting in

a fluctuating loss function that will on average move in the direction of the true gradient [Wilson and

Martinez, 2003]. Stochastic gradient descent tends to be computationally fast due to its ability to hold

its data in RAM. Moreover, it has the ability to follow curves in the error surface throughout each epoch,

allowing the use of a larger learning rate which results in less iterations through training data.

Batch gradient descent uses the entire training dataset to compute the gradient of the loss function.

This method tends to be slower than stochastic gradient descent, especially with large training sets where

it is often orders of maginitude slower [Wilson and Martinez, 2003].

Mini-Batch gradient descent offers a hybrid of both stochastic and batch gradient descent, perform-

ing an update every n training examples. This method reduces the variance of weight updates which

results in a more stable convergence than in stochastic gradient descent. Altering the batch-size n de-

cides whether it will behave more like its stochastic version or its batch version — setting n = 1 results

in stochastic training, while n = N results in batch training, where N is the number of items in the

training dataset.

Each of the 3 methods mentioned above have their strengths and weaknesses, but ultimately a choice

should be made based on the expected loss function. As batch gradient descent uses the entire dataset,

it is most applicable to situations where we expect a convex or smooth loss function, where we are able

to move almost directly to a local or global minimum. Both stochastic gradient descent and mini-batch
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Figure 2.7: 10× 10 input neurons.

gradient descent (providing n is small enough) perform better when applied to functions with many

local minima. The smaller number of training samples has the ability to nudge the model out of a local

minima and potentially into a more optimal minima. Mini-batch gradient descent has the capability of

averaging out the noise of stochastic gradient descent by reducing the amount of jerking that is caused

by single sample updates. This makes mini-batch gradient descent an ideal balance between avoiding

the local minima and finding the global minima.

Deep Convolutional Neural Networks

Convolutional neural networks (CNNs) [LeCun et al., 1998] use many of the same ideas of neural

networks and have shown to eliminate the need for hand-crafted feature extraction in image analysis.

CNN’s differ in that of fully-connected networks by taking into account the spatial structure of images —

meaning that pixels which are far apart are treated differently than pixels that are close together. Today,

deep convolutional networks, or some close variant, are used in most computer vision applications.

The architecture of CNNs are best explained through an example. A 10× 10 image is a grid of pixel

intensity values. In a CNN, we think of these as a grid of 10× 10 neurons, as in Figure 2.7

In a fully-connected network, this would be treated as a network with 100 (10 × 10) input neurons,

with every neuron in the network being connected to every neuron in an adjacent layer. As mentioned

above, this has the disadvantage that the spatial structure of the images is not represented. Instead, we

only make connections in small, localized regions of the input image — called the receptive field. This

can be treated as a small window, where each of the neurons in the receptive field is connected to one

hidden neuron.
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Figure 2.8: 3× 3 receptive fields.

The receptive field is slid across the input image with each position of the receptive field mapping to

a different hidden neuron. This continues until hitting the bottom right of the image. The amount the

receptive field is slid each time is defined by the stride length. Figure 2.8 shows an example of a 3 × 3

receptive field with a stride length of 1.

With a 10 × 10 input image and a 3 × 3 receptive field, we get an 8 × 8 hidden layer. Just like a

fully-connected network, each of the connections has an associated weight, meaning that each of the

hidden neurons in an CNN has 9 (3 × 3) weights (and a bias) connected to it from its corresponding

receptive field. Unlike a fully-connected network, these weights and bias will be the same for each of

the hidden neurons, giving rise to the names shared weights and shared bias. The shared weights and

bias are often said to define a kernel or filter. This gives each hidden neuron an output of:

σ(b+

3∑
i=1

3∑
j=1

wi,jak+i,l+j), (2.3)

where σ is the activation function, b is the shared bias, wi,j is the shared weights of the 3 x 3 receptive

field, and ax,y is the input activation at position (x, y).

Keeping the weights and bias the same means that the neurons in the hidden layer detect the same

features at different locations in the image. This brings us to one of the fundamental properties of CNNs

— feature maps. Feature maps are the map from one layer to the next layer, allowing us to learn features

from the image instead of defining features manually.
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Figure 2.9: Multiple feature maps.

Figure 2.10: 2× 2 pooling layer.

Generally we would want to extract more than one feature from an image, requiring more feature

maps. Thus, a convolutional layer itself consists of several feature maps, as shown in Figure 2.9.

When sharing weights and biases we get a reduction in the number of parameters involved in a CNN

in comparison to a fully-connected network. In our example, each feature map needs 9 (3 × 3) shared

weights and a shared bias, giving a total of 10 parameters for each feature map. Suppose we use 12

feature maps giving a total of 120 (12 × 10) parameters for the first convolutional layer. Now suppose

using a fully-connected network with 100 (10×10) input neurons representing the image, and 30 hidden

neurons. With a fully connected first layer we would end up with 3,000 (30 × 100) weights, with an

additional 30 biases, giving a total of 3,030 parameters — over 25 times the number for a CNN. This

allows for faster training and construction of deep convolutional networks.

Pooling layers usually follow the convolutional layers and are responsible for taking each of the

feature map’s outputs to create a condensed feature map. These pooling layers are similar to the convo-

lutional layers except that they take input from the hidden layers and summarise a region of pixels, such

as the 2× 2 region in Figure 2.10.

One example of a pooling layer is max-pooling, which involves taking the maximum activation in an

input region (like a 2×2 region in Figure 2.10). Max-pooling is useful in highlighting whether a feature

is found anywhere in a region of the image. As with the convolutional layers, usually there are many
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Figure 2.11: Convolutional layer, followed by a max pooling layer, and finally a fully connected layer.

feature maps, and so max-pooling is applied to each feature map separately.

The convolutional network usually ends with at least one fully connected layer. Every neuron from the

final pooling layer is connected to every one of the fully connected layer — which could be the output

layer at this point. Adding a pooling layer followed by a fully connected output layer to our ongoing

example gives the final CNN in Figure 2.11

In a typical network, there may be several layers of convolution and pooling before the final fully

connected layers.

Overall, the performance of computer vision systems depends significantly on implementation details.

Generally, deeper networks perform better than shallow networks at a cost of more data and increased

complexity of learning. Having said that, the dimensionality of the output layer can sometimes be re-

duced significantly without adverse effects on performance, as pointed out in a paper that found reducing

the output layer from 4096 to 2048 actually resulted in a marginal performance boost [Chatfield et al.,

2014]. Tradeoffs must be made when deciding on the size of a filter. Generally small filters are used to

allow for capturing very fine details of an image and to preserve the spatial resolution, while choosing

large filters could miss out on these finer details.

CNNs are used extensively throughout this thesis. Please see [O’Shea and Nash, 2015] for further

reading.

2.5 Reinforcement Learning

Reinforcement learning [Sutton and Barto, 1998] falls under the wider field of machine learning. In-

spired by behavioural psychology, it allows an agent — the learner and decision maker, to autonomously

discover optimal behaviour through trial and error interactions with its surrounding environment in an

attempt to solve the problems of control. The environment is defined as everything outside of the agent

that can be interacted with, while a learning task is the complete specification of the environment.
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In a given time step t, both the agent and environment can be modelled as being in a state s ∈ S,

which contain all relevant information about the current situation, e.g. a position in a navigation task.

From this state, action a ∈ A can be performed. Both s and a can be members of either discrete or

continuous sets. Upon advancing to the next time step, the agent receives a reward r ∈ R, and transfers

to the next state. A mapping from states to actions is given by a policy π. Policies can be deterministic

— where the exact same action is used for a given state, or probabilistic — where the action is chosen

through drawing a sample from a distribution over actions for a given state. The reinforcement learning

framework defined above can be summarised in Figure 2.12.

Figure 2.12: The reinforcement learning framework.

Within a task, learning is split into episodes. An episodes consists of trajectory τ , which is a sequence

of states and actions:

τ = (s0, a0, ..., sT , aT ). (2.4)

These trajectories depend on the state-transition dynamics of the environment; giving us the next state

when given the current state and action: st+1 ∼ P (·|st, at).

Return

So far we have mentioned that upon advancing to the next time step, the agent receives a reward. The

agent’s goal is to maximise the cumulative rewards (return) over a trajectory:

R(τ) = r0 + r1 + ...+ rT =

T∑
t=0

rt. (2.5)

where T is the final timestep. Here the final timestep is a natural break point at the end of a sequence

which puts the agent in a special state called the terminal state — signalling the end of an episode. Tasks

such as this are called episodic tasks. Following this, the agent is reset to a standard starting state or a

state sampled from a standard distribution of starting states (i.e. s0 ∼ ρ0(·), where ρ0 is the start-state

41



2. Preliminaries

distribution). Conversely, we have continuing tasks where the agent-environment interactions go on

continuously without any natural breaks (i.e. T =∞).

As we can see, the return as defined in Equation (2.5) may not be suitable for all tasks, as rewards

gained now are worth just as much as rewards gained in the future. This brings us to the concept of

discounting, where we introduce a parameter γ (the discount rate) that ranges 0 ≤ γ ≤ 1. This is used

to determine the present value of future rewards the agent may receive. Adding the discount rate to our

return, gives us the new discounted return:

R(τ) = r0 + γr1 + γ2r2 + ... =

T∑
t=0

γtrt. (2.6)

Great care must be taken when choosing an appropriate value for γ as it often qualitatively changes

the form of the optimal solution [Kaelbling et al., 1996]. As γ approaches 0, the agent becomes myopic,

only choosing actions that maximise its immediate reward, leading to poor performance in long term

tasks. On the contrary, as γ approaches 1, the agent becomes more far-sighted, leading to the problem

that it cannot distinguish between policies that immediately gain a large amount of reward, and those

that gain a reward in the future.

Model-Free Reinforcement Learning

Reinforcement learning is a large field, and at the highest level of abstraction can be broken into two

main areas: model-based and model-free. Model-based approaches use a predictive model of the world

(either given or learned) which can be used to query and plan, while model-free approaches forgoes

the model and learns a policy directly on observed data from the environment. In robot manipulation,

a ground-truth model of the world and its dynamics is not available, and so usually this requires a

model to be learned from experience, which itself can be a challenge. For this reason, model-free

algorithms are particularly popular for learning end-to-end control policies for manipulation. This thesis

does not contain any model-based contributions, and so the remaining sections will focus on model-free

approaches.

Model-free methid can be broken down into 3 core areas: value-based methods, policy gradient meth-

ods, and actor-critic methods. Below, we briefly describe each of these.

Value-based Methods

When an agent enters into a new state, it is beneficial for it know how valuable it is to be in this new state.

The value of a state can be measured in two ways — state-value functions and action-value functions.
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The state-value function for a policy π is the expected return when starting in a state s and following π

thereafter and is defined as:

V π(s) = Eτ∼π[R(τ)|st = s] = Eτ∼π[
T∑
t=0

γkrt|st = s], (2.7)

where Eτ∼π described the expected value of following policy π.

The action-value function for a policy π, is the expected return when starting in state s, taking action

a, and following π thereafter, and is defined as:

Qπ(s, a) = Eτ∼π[R(τ)|st = s, at = a] = Eτ∼π[

T∑
t=0

γtrt|st = s, at = a]. (2.8)

The action-value function, or Q-function, brings us to one of the most widely used value-based meth-

ods: Q-learning. Q-learning [Watkins, 1989] is an temporal-difference (TD) algorithm; where Temporal-

difference (TD) learning is a combination of Dynamic Programming (DP) — the ability to learn through

bootstrapping, and Monte Carlo (MC) — the ability to learn directly from samples taken from the

environment without access to the Markov Decision Process (MDP). Q-learning is also an off-policy

algorithm, and so directly approximates Q independent of the policy being followed.

In Q-learning we aim to estimate the optimal Q-function Q∗(s, a), which is defined to be the max-

imum return that can be obtained by starting at state s, taking action a, and following the optimal policy

thereafter. The optimal Q-function obeys the Bellman optimality equation:

Q∗(st, at) = E[r + γmax
a

Q∗(st, a)]. (2.9)

.

We can learn the Q function by using temporal errors to inform us how different the new value is

from the old prediction. Given an experience (s, a, r, s′), in which the agent starts in state s, performs

action a, receives a reward r, and transfers to state s′, we can then define the update to Q as:

Qi+1(st, at)← Qi(st, at) + α[r + γmax
a

Qi(st+1, a)−Qi(st, at)]. (2.10)

By definition of the Bellman optimality equation, it has been shown that the above equation converges

to the optimal Q-function as i approaches infinity: Qi → Q∗ as i→∞.
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Historically, value functions were represented as tables with one entry for each state. The question

is: what happens when we are given a large, or even continuous state space, such as the case with our

robot arm? With a continuous state space, comes large, memory consuming tables that require a large

amount of time and data. Therefore, the only way to learn in situations like these, is to generalise from

previous states to ones that we have not seen before. This motivates the need for function approximation

methods, such as Deep Q-Learning [Mnih et al., 2015], which is discussed further and expanded upon

in Section 7.3.

Policy Gradient Methods

Policy gradient methods directly optimises a policy πθ(a|s) without the need for a value function by

optimising the parameters θ directly via gradient ascent on a policy objective J(πθ):

θt+1 ← θt + α∇θJ(πθ). (2.11)

.

Here, the gradient of the policy objective ∇θJ(πθ) is called the policy gradient. To compute this

analytically, we assume πθ to be differential and that we know the gradient of the policy. Below, we

show the derivation of one of the simplest forms of the gradient. Recall that the goal of the agent is to

maximise the expected reward. We therefore define the objective function as: J(πθ) = Eτ∼πθ [R(τ)],

and retrieve the policy gradient as follows:

∇θJ(πθ) = ∇θEτ∼πθ [R(τ)]

=

∫
τ
∇θπθ(τ)R(τ)

=

∫
τ
∇θ log πθ(τ)R(τ)

= Eτ∼πθ [
T∑
t=0

∇θ log πθ(s|a)R(τ)],

(2.12)

where πθ(τ) = ρ0(s0)
∏T
t=0 P (st+1|st, at)πθ(at|st), and where ρ0(s0) represents sampling from the

start-state distribution. Note that we retrieve∇θπθ(τ) = πθ(τ)∇θ log πθ(τ) via the log-derivative trick.

Due to the fact that each trajectory during training can greatly deviate from each other, policy gradient

methods tend to have high variance. Consequently, this high variance will make noisy gradients, cause

unstable learning, and skew the policy distribution in an undesired direction. It is for this reason that

actor-critic methods exist.
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Actor-Critic Methods

Actor-critic methods take the best of both value-based and policy gradient methods by using the value

function (critic) as a way to inform the direction of the policy (actor) gradient. Action-value actor-critic

can be considered one of the simplest actor-critic methods, and involves modifying the policy gradient

equation to instead follow an approximate policy gradient:

∇θJ(πθ) = Eτ∼πθ [
T∑
t=0

∇θ log πθ(s|a)Q(s, a)], (2.13)

Two actor-critic methods that are used in this thesis are Deep Deterministic Policy Gradients (DDPG),

which is described in Section 4.3, and Soft Actor-Critic (SAC), which is described in Section 7.3. We

point the reader to those sections for a description of these algorithms.
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3.1 Introduction

As described in Chapter 1, an emerging trend for robot manipulation is to learn controllers directly from

raw sensor data in an end-to-end manner. This is an alternative to traditional pipelined approaches which

often suffer from propagation of errors between each stage of the pipeline. End-to-end approaches have

had success both in the real world [Levine et al., 2016a, Montgomery and Levine, 2016, Montgomery

et al., 2016] and in simulated worlds [Popov et al., 2017, James and Johns, 2016a, Zhang et al., 2015,

Higgins et al., 2018]. Learning end-to-end controllers in simulation is an attractive alternative to using

physical robots due to the prospect of scalable, rapid, and low-cost data collection. However, these

simulation approaches are of little benefit if we are unable to transfer the knowledge to the real world.

What we strive towards are robust, end-to-end controllers that are trained in simulation, and can run in

the real world without having seen a single real world image.
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Figure 3.1: Our approach uses simulation to collect a series of control velocities to solve a multi-stage
task. This is used to train a reactive neural network controller which continuously accepts images and
joint angles, and outputs motor velocities. By using domain randomisation, the controller is able to run
in the real world without having seen a single real image.

In this chapter, we present work that accomplishes the goal of transferring end-to-end controllers to

the real world and demonstrate this by learning a long-horizon multi-stage task that is analogous to a

simple tidying task, and involves locating a cube, reaching, grasping, and locating a basket to drop the

cube in. This is accomplished by using demonstrations of linear paths constructed via inverse kinematics

(IK) in the Cartesian space, to construct a dataset that can then be used to train a reactive neural network

controller which continuously accepts images along with joint angles, and outputs motor velocities. We

also show that task performances improves with the addition of auxiliary outputs (inspired by [Jaderberg

et al., 2016, Dilokthanakul et al., 2017]) for positions of both the cube and gripper. Transfer is made

possible by simply using domain randomisation [Sadeghi and Levine, 2016, Tobin et al., 2017a], such

that through a large amount of variability in the appearance of the world, the model is able to generalise

to real world environments. Figure 3.1 summarises the approach, whilst our video demonstrates the

success of the final controller in the real world 1.

Our final model is not only able to run on the real world, but can accomplish the task with variations in

the position of the cube, basket, camera, and initial joint angles. Moreover, the model shows robustness

to distractors, lighting conditions, changes in the scene, and moving objects (including people).

Our contributions in this work are 2 fold. Firstly, we show that end-to-end control of a robot arm

can be transferred to the real world through the use of procedural domain randomisation. Secondly,

we perform a detailed ablation study to answer several important questions, such as: how performance

1Video: https://youtu.be/X3SD56hporc
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varies as we alter dataset size? What is most important to randomise during domain randomisation?

And how do architectural decisions affect performance?

3.2 Related Work

End-to-end methods for control are often trained using Reinforcement Learning (RL). In the past few

years, classic RL algorithms have been fused with function approximators, such as neural networks, to

spawn the domain of deep reinforcement learning, which is capable of playing games such as Go [Silver

et al., 2016] and Atari [Mnih et al., 2015] to a super-human level. There have been advances in applying

these techniques to both simulated robotic platforms [Popov et al., 2017, James and Johns, 2016a], and

real-world platforms [Gu et al., 2017], but fundamental challenges remain, such as sample inefficiency,

slow convergence, and the algorithm’s sensitivity to hyperparameters. There have been attempts at

transferring trained polices from the real world following training in simulation, but these attempts have

either failed [James and Johns, 2016a], or required additional training in the real world [Rusu et al.,

2017a]. Although applying RL can work well for computer games and simulations, the same cannot be

said as confidently for real-world robots, where the ability to explore sufficiently can become intractable

as the complexity of the task increases. To counter this, imitation learning can be used by providing

demonstrations in first [Duan et al., 2017, Lee et al., 2015a, Hausman et al., 2017] or third [Stadie

et al., 2017] person perspective. Our method uses the full state of the simulation to effectively produce

first-person demonstrations for supervision without the need for exploration.

A different approach for end-to-end control is guided policy search (GPS) [Levine and Koltun, 2013,

Levine and Abbeel, 2014], which has achieved great success particularly in robot manipulation [Levine

et al., 2016a, Montgomery and Levine, 2016, Montgomery et al., 2016]. Unlike most RL methods,

these approaches can be trained on real world robotic platforms, but therefore have relied on human

involvement which limits their scalability. To overcome human involvement, GPS has been used with

domain adaptation of both simulated and real world images to map to a common feature space for pre-

training [Tzeng et al., 2016]; however, this still requires further training in the real world. In comparison,

our method has never seen a real world image before, and learns a controller purely in simulation.

One approach to scale up available training data is to continuously collect data over long periods of

time using one [Pinto and Gupta, 2016b] or multiple robots [Levine et al., 2016c, Finn and Levine,

2017a]. This was the case for [Levine et al., 2016c], where 14 robots were run for a period of 2 months

and collected 800, 000 grasp attempts by randomly performing grasps. A similar approach was used to

learn a predictive model in order to push objects to desired locations [Finn and Levine, 2017a]. Although

the results are impressive, there is some doubt in scalability with the high purchase cost of robots, in
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addition to the question of how you would get data for more complex and long-horizon tasks. Moreover,

these solutions typically cannot generalise to new environments without also training them in that same

environment.

There also exist a number of works that do not specifically learn end-to-end control, but do in fact use

simulation to learn behaviours with the intention to use the learned controller in the real world. Such

works include [Johns et al., 2016], which uses depth images from simulated 3D objects to train a CNN

to predict a score for every possible grasp pose. This can then be used to locate a grasp point on novel

objects in the real world. Another example is [Christiano et al., 2016], where deep inverse models are

learned within simulation to perform a back-and-forth swing of a robot arm using position control. For

each time step during testing, they query the simulated control policy to decide on suitable actions to

take in the real world.

Transfer learning is concerned with transferring knowledge between different tasks or scenarios.

Works such as [Devin et al., 2017, Gupta et al., 2017] show skill transfer within simulation, whereas

we concentrate on simulation-to-real transfer. In [Sadeghi and Levine, 2016], the focus is on learning

collision-free flight in simulated indoor environments using realistic textures sampled from a dataset.

They show that the trained policy can then be directly applied to the real world. Their task differs to ours

in that they do not require hand-eye coordination, and do not need to deal with a structured multi-stage

task. Moreover, rather than sampling from a dataset of images, ours are procedurally generated, which

allows for much more diversity. During development of our work, a related paper emerged which uses

the domain randomisation [Tobin et al., 2017a] method in a similar manner to us, except that the focus

is on pose estimation rather than end-to-end control. We operate at the lower level of velocity control,

to accomplish a multi-stage task which requires not only pose estimation, but also target reaching and

grasping. In addition, we show that our learned controller can work in a series of stress tests, including

scenes with dramatic illumination changes and moving distractor objects.

3.3 Approach

Our aim is to create an end-to-end reactive controller that does not require real-world data to train, and is

able to learn complex behaviours in a short period of time. To achieve this, we generate a large number

of trajectories in simulation, together with corresponding image observations, and then train a controller

to map observed images to motor velocities, which are effected through a PID controller. Through the

use of domain randomisation during the data generation phase, we are able to run the controller in the

real world without having seen a single real image. We now describe in detail the dataset generation and

training method.

50



3.3. Approach

Figure 3.2: A collection of generated environments as part of our domain randomisation method.

3.3.1 Data Collection

The success of this work comes down to the way in which we generate the training data (Figure 3.2).

Our approach uses a series of linear paths constructed in the Cartesian space via inverse kinematics (IK)

in order to construct the task sequence. At each simulation step, we record motor velocities, joint angles,

gripper actions (open or close command), cube position, gripper position, and camera images. We split

the task into 5 stages, and henceforth, we refer to the sequence of stages as an episode. At the start of

each episode, the cube and basket is placed randomly within an area that is shown in Figure 3.3. We use

the V-REP [E. Rohmer, 2013] simulator during all data collection.

In the first stage of the task, the arm is reset to an initial configuration. We place a waypoint above the

cube and plan a linear path which we then translate to motor velocities to execute. Once this waypoint

has been reached, we execute the second stage, where by a closing action on the gripper is performed.

The third stage sets a waypoint a few inches above the cube, and we plan and execute a linear path in

order to lift the cube upwards. The fourth stage places a waypoint above the basket, where we plan

and execute a final linear path to take the grasped cube above the basket. Finally, the fifth stage simply

performs a command that opens the gripper to allow the cube to fall into the basket. A check is then

carried out to ensure that the location of the cube is within the basket; if this is the case, then we save the

episode. We do not consider obstacle avoidance in this task, and so episodes that cannot find a linear set

of paths due to obstacles are thrown away. The data generation method can be run on multiple threads,

which allows enough data for a successful model to be collected within a matter of hours, and increasing

the number of threads would further reduce this time further.

Using this approach, it is already possible to train a suitable neural network to learn visuomotor control
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Figure 3.3: Variations in the positioning of the cube, basket, and camera, during both training and
testing. In all three images, the yellow area represents the possible locations of the cube, and the green
areas represent the possible locations of the basket. (a) shows variations of the camera pose, illustrated
by the orange cuboid. (b) shows an example view from the camera in simulation. (c) shows an example
view from the camera in the real world. Note that the yellow, green, and orange shapes are purely for
visualisation here, and are not seen during training or testing.

of the arm and perform the task to succeed 100% of the time when tested in simulation. However, we

are concerned with applying this knowledge to the real world so that it is able to perform equally as well

as it did in simulation. By using domain randomisation, we are able to overcome the reality-gap that is

present when trying to transfer from the synthetic domain to the real world domain. For each episode,

we list the environment characteristics that are varied, followed by an explanation of why we vary them:

• The colour of the cube, basket, and arm components are sampled from a normal distribution, with

the mean set as close to the estimated real world equivalent; though these could also be sampled

uniformly.

• The position of the camera, light source (shadows), basket, and cube are sampled uniformly.

Orientations are kept constant.

• The height of the arm base from the table is sampled uniformly from a small range.

• The starting joint angles are sampled from a normal distribution with the mean set to the config-

uration in Figure 3.3.

• We make use of Perlin noise [Perlin, 2002] composed with functions (such as sine waves) to

generate textures, which are then applied to the table and background of the scene.

• We add random primitive shapes as distractors, with random colours, positions, and sizes sampled

from a uniform distribution.

A selection of these generated environments can be seen in Figure 3.2. We chose to vary the colours

and positions of the objects in the scene as part of a basic domain randomisation process. Slightly less

obvious is varying the height of the arm base; this is to avoid the network learning a controller for a
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Figure 3.4: Our network architecture continuously maps sequences of the past 4 images and joint angles
to motor velocities and gripper actions, in addition to 2 axillary outputs: the 3D cube position and 3D
gripper position. These axillary outputs are not used during testing, but are instead present to help the
network learn informative features.

set height, that we cannot guarantee is the true height in the real world. In order to successfully run

these trained models in the real world, we also must account for non-visual issues, such as the error in

the starting position of the joints when run on the real world. Although we could send the real world

arm to the same starting position as the synthetic arm, in practice the joint angles will be slightly off,

and this could be enough to put the arm in configurations that are unfamiliar and lead to compounding

errors along its trajectory. It is therefore important that the position of the robot at the start of the task is

perturbed during data generation. This leads to controllers that are robust to compounding errors during

execution, since a small mistake on the part of the learned controller would otherwise put it into states

that are outside the distribution of the training data. This method can also be applied to the generated

waypoints, but in practice this was not needed. We use procedural textures rather than plain uniform

textures, to achieve sufficient diversity which encompasses background textures of the real world.

Note that no dynamics randomisation is performed during data collection; this is because the task

considered in this chapter does not contain any complex contact dynamics (e.g. pushing, insertion, etc),

and the task can be completed without taking into account physics.

3.3.2 Network Architecture

The network, summarised in Figure 3.4, consists of 8 convolutional layers each with a kernel size of

3 × 3, excluding the last, which has a size of 2 × 2. Dimensionality reduction is performed at each

convolutional layer by using a stride of 2. Following the convolutional layers, the output is concatenated

with the joint angles and then fed into an LSTM module (we discuss the importance of this in the results).

Finally, the data goes through a fully-connected layer of 128 neurons before heading to the output layer.

We chose to output velocities, effected via a PID controller, rather than to output torques directly, due to

the difficulty in transferring complex dynamics from simulation.
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Figure 3.5: A sequence of images showing the network’s ability to generalise. Whilst a person is
standing in the view of the camera, the robot is able to grasp the cube and proceed to the basket. As the
arm progresses towards the basket, the person moves the basket to the other side of the arm. Despite this
disruption, the network alters its course and proceeds to the new location. During training, the network
had never seen humans, moving baskets, or this particular table.

The network outputs 6 motor velocities, 3 gripper actions, and 2 auxiliary outputs: cube position

and gripper position. We treat the 3 gripper actions as a classification problem, where the outputs are

{open, close, no-op}. During testing, the auxiliary outputs are not used at any point, but are present to

aid learning and conveniently help debug the network. By rendering a small marker at the same positions

as the auxiliary outputs, we are able to observe where the controller estimates the cube is, in addition to

where it estimates the gripper is, which can be helpful during debugging.

Our loss function LTotal is a combination of the mean squared error of the velocities (LV ) and gripper

actions (LG), together with the gripper position (LGP ) auxiliary and cube position (LCP ) auxiliary,

giving

LTotal = LV + LG + LGP + LCP . (3.1)

We found that simply weighting the loss terms equally resulted in effective and stable training. The

model was trained with the Adam optimiser [Kingma and Ba, 2015] with a learning rate of 10−4.

3.4 Experiments

In this section we present results from a series of experiments, not only to show the success of running

the trained models in different real world settings, but also to show what aspects of the domain ran-

domisation are most important for a successful transfer. Figure 3.5 shows an example of the controller’s

ability to generalise to new environments in the real world, although many more are shown in the video2.

We focused our experiments to answer the following questions:

1. How does performance vary as we alter the dataset size?

2Video: https://youtu.be/X3SD56hporc
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2. How robust is the trained controller to new environments?

3. What is most important to randomise during domain randomisation?

4. Does the addition of auxiliary outputs improve performance?

5. Does the addition of joint angles as input to the network improve performance?

Figure 3.6: Controller evaluation example. Green signifies

a success, whilst red signifies a failure. In this case, success

would be 91%.

Experimental Setup We first define how

we evaluate the controller in both the sim-

ulation and real world. We place the cube

using a grid-based method, where we split

the area in which the cube was trained into

a grid of 10cm × 10cm cells. Using the

grid, the cube can be in one of 16 posi-

tions, and for each position we run a trial

twice with the basket on each side of the

arm, resulting in 32 trials; therefore, all of

our results are expressed as a percentage

based on 32 trials. This number of trails is

sufficient for a trend to emerge, as shown later in Figure 3.7. In Figure 3.6, we summarise the testing

conditions, where each square represents a position, and the two triangles represent whether the basket

was on the left or right side of the robot at that position.

Figure 3.7: How dataset size effects performance in both

simulation and real world.

Altering Dataset Size To answer the

first question of how the dataset size effects

performance, we train several instances of

the same network on dataset sizes ranging

from 100,000 to 1 million images. Figure

3.7 shows the success rates in both simula-

tion and real world, for the task in an en-

vironment with no distractors (such as in

Figure 3.3). The graph shows that a small

dataset of 200,000 images achieves good

performance in simulation, but 4 times

more data is needed in order to achieve approximately the same success rate in the real world. In-
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terestingly, both simulation and real world achieve 100% for the first time on the same dataset size (1

million).

Robustness to New Environments We now turn our attention to Figure 3.8 and Table 3.1, which

provide a summary of our results for the remaining research questions. First, we discuss the results

in the top half of Table 3.1, where we evaluate how robust the network is to changes in the testing

environment. Successes are categorised into cube vicinity (whether the gripper’s tip reached within

≈ 2cm of the cube), cube grasped (whether the gripper lifted the cube off the table), and full task

(whether the cube was reached, grasped, and dropped into the basket). The first two results show our

solution achieving 100% when tested in both simulation and the real world. Although the network was

trained with distractors, it was not able to achieve 100% with distractors in the real world. Note that the

controller does not fail once the cube has been grasped, but rather fails during the reaching or grasping.

The majority of failures in this case where when the cube was closest to the distractors in the scene.

In the moving scene test, a person waved their arm back and forth such that each frame saw the arm

in a different location. Reaching was not affected in this case, but grasping performance was. The

moving camera test was performed by continuously raising and lowering the height of the tripod where

the camera was mounted within a range of 2 inches during each episode. Although never experiencing

a moving scene or camera motion during training, overall task success remained high at 81% and 75%

respectively. To test invariance to lighting conditions, we aimed a bright spotlight at the scene and then

moved the light as the robot moved. The results show that the arm was still able to recognise the cube,

achieving a 84% cube vicinity success rate, but accuracy in the grasp was affected, resulting in the cube

only being grasped 56% of the time. This was also the case when we replaced the cube with one that

was half the length of the one seen in training. The 89% vicinity success in comparison to the 41%

grasp success shows that this new object was too different to perform an accurate grasp, and the gripper

would often only brush the cube. Interestingly, when the cube was replaced with a novel object such as

a stapler or wallet, the task was occasionally successful. One explanation for this behaviour could be

down to a clear colour discontinuity in comparison to the background in the area in which the cube is

normally located.

Ablation Study The bottom half of Table 3.1 focuses on the final 3 questions regarding which aspects

are important to randomise during simulation, and whether auxiliary tasks and joint angles improve

performance. Firstly, we wish to set a baseline which shows that naively simulating the real world

is difficult for getting high success in the real world. We generated a dataset based on a scene with

colours close to the real world. The baseline is unable to succeed at the overall task, but performs

well at reaching. This conclusion is in line with other work [James and Johns, 2016a, Zhang et al.,
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Figure 3.8: Images (a) to (e) are taken from the real world, whilst images (f) to (j) are taken from
simulation. The real world images show the testing scenarios from Table 3.1, whilst the simulated
images shows samples from the training set from Table 3.1.

2015]. It is clear that having no domain randomisation does not transfer well for tasks that require

accurate control. Whilst observing the baseline in action, it would frequently select actions that drive

the motors to force the gripper into the table upon reaching the cube. Training a network without

distractors and testing without distractors yields 100%, whilst testing with distractors unsurprisingly

performs poorly. A common characteristic of this network is to make no attempt at reaching the cube,

and instead head directly to above the basket. We tested our hypothesis that using complex textures

yields better performance than using colours drawn from a uniform distribution. Although reaching is

not affected, both grasping and full task completion degrade to 69% and 44% respectively. Moreover,

swapping to the table illustrated in Figure 3.5 leads to complete failure when using plain colours.

Without moving the camera during training, the full task is not able to be completed. Despite this,

target reaching seems to be unaffected. We cannot guarantee the position of the camera in the real world,

but the error is small enough such that the network is able to reach the cube, but large enough that it

lacks the ability to achieve a grasp. Results show that shadows play an important role following the

grasping stage. Without shadows, the network can easily become confused by the shadow of both the

cube and its arm. Once grasped, the arm frequently raises and then lowers the cube, possibly due to the

network mistaking the shadow of the cube for the cube itself.

We now observe which aspects of the network architecture contribute to success when transferring the

controllers. We alter the network in 3 distinct ways – no LSTM, no auxiliary output, and no joint angles

– and evaluate how performance differs. Excluding the LSTM unit from the network causes the network

to fail at the full task. Our reasoning for including recurrence in the architecture was to ensure that state
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Scenario Successes
Train Test Cube vicinity Cube grasped Full task

Sim (full) Sim (full) 100% 100% 100%
Sim (full) Real 100% 100% 100%
Sim (full) Real (distractors) 89% 75% 75%
Sim (full) Real (moving scene) 100% 89% 89%
Sim (full) Real (moving camera) 97% 89% 75%
Sim (full) Real (spotlight) 84% 56% 56%
Sim (full) Real (small cube) 89% 41% 41%

Sim (baseline) Real 72% 0% 0%
Sim (no distractors) Real 100% 100% 100%
Sim (no distractors) Real (distractors) 53% 0% 0%

Sim (no textures) Real 100% 69% 44%
Sim (no moving cam) Real 100% 9% 3%

Sim (no shadows) Real 81% 46% 19%
Sim (no LSTM) Real 100% 56% 0%

Sim (no auxiliary) Real 100% 84% 84%
Sim (no joint angles) Real 100% 44% 25%

Table 3.1: Results based on 32 trials from a dataset size of 1 million images (≈ 4000 episodes) run on
a square table in the real world. Successes are categorised into cube vicinity (whether the arm reached
within ≈ 2cm of the cube, based on human judgement), cube grasped, and full task (whether the cube
was reached, grasped and dropped into the basket). The top half of the table focuses on testing the
robustness of the full method, whilst the bottom half focuses on identifying what are the key aspects that
contribute to transfer. A sample of the scenarios can be seen in Figure 3.8.

was captured. As this is a multi-stage task, we felt it important for the network to know what stage of

the task it was in, especially if it is unclear from the image whether the gripper is closed or not (which is

often the case). Typical behaviour includes hovering above the cube, which then causes the arm to drift

into unfamiliar states, or repeatedly attempting to close the gripper even after the cube has been grasped.

Overall, the LSTM seems fundamental in this multi-stage task. The next component we analysed was

the auxiliary outputs. The task was able to achieve good performance without the auxiliaries, but not as

high as with the auxiliaries, showing the benefit of this auxiliary training. Finally, the last modification

we tested was to exclude joint angles. We found that the joint angles helped significantly in keeping the

gripper in the orientation that was seen during training. Excluding the joint angles often led to the arm

reaching the cube vicinity, but failing to be precise enough to grasp. This could be because mistakes by

the network are easier to notice in joint space than in image space, and so velocity corrections can be

made more quickly before reaching the cube.

3.5 Conclusion

In this chapter, we have shown transfer of end-to-end controllers from simulation to the real world,

where images and joint angles are continuously mapped directly to motor velocities, through a deep
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neural network. The capabilities of our method are demonstrated by learning a long-horizon multi-stage

task that is analogous to a simple tidying task, and involves locating a cube, reaching the cube, grasping

the cube, locating a basket, and finally dropping the cube into the basket. We expect the method to

work well for other multi-stage tasks, such as tidying other rigid objects, stacking a dishwasher, and

retrieving items from shelves, where we are less concerned with dexterous manipulation. However, we

expect that the method as is, would not work in instances where tasks cannot be easily split into stages,

or when the objects require more complex grasps. We also expect that longer tasks with many stages

will require an increasingly larger dataset and network capacity. One key limitation of the work in this

chapter is perhaps the decision to use imitation learning; although we are able to recover from small

deviations from the dataset through our data augmentation, large deviations, such as dropping the cube

or overshooting the basket, will not be recoverable. Perhaps more importantly, this method does not

allow for continual learning, i.e. once the system is deployed, the method will not be able to learn from

its mistakes. This motivated the use of an alternative learning method: reinforcement learning, which

we investigate in the following chapter.
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4.1 Introduction

Much like our end-to-end method presented in Chapter 3, the majority of state-of-the-art work in robotic

manipulation focuses on working with rigid objects, that either do not deform when they are grasped

or have negligible deformation. However, deformable object manipulation has many important real-

world applications. Key domains of interest are home assistance robotics (cloth folding [Miller et al.,

2014], bed making [Laskey et al., 2017], getting dressed [Gao et al., 2016, Tamei et al., 2011]); medicine

(robot surgery [Thananjeyan et al., 2017], suturing [Schulman et al., 2013]); and industry (cable insertion

[Večerı́k et al., 2017]). Robots attempting to work with these objects are however presented with many
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new challenges, most notably the large object configuration spaces, the difficulty of accurate object

behaviour modelling, and the large change in the configuration resulting from manipulation attempts.

Of the limited amount of work in deformable object manipulation, the majority focuses on folding

2D deformable objects, such as towels or articles of clothing. One approach employed explicit mod-

elling of cloth deformation in simulation and then attempted to find an optimal trajectory based on the

model [Li et al., 2015, Cusumano-Towner et al., 2011, Yamakawa et al., 2011]. However, those models

tend to be very sensitive to the deformation parameters of the objects (stiffness, shear resistance, fric-

tion) and therefore do not generalise well to unseen objects or environments. The second approach does

not attempt to model the cloth but instead relies on visuomotor servoing to achieve the task. The robot

identifies ideal grasping points based on heuristics (e.g. large curvature corresponds to a corner) and

then executes a folding routine [Maitin-Shepard et al., 2010, Osawa et al., 2007, Bersch et al., 2011].

Both approaches require a significant amount of engineering specific to the manipulation task, and it

would be cumbersome to extend them to achieve success in a wholly different scenario. An alternative

direction is to learn deformable object manipulation in an end-to-end manner, mapping observations dir-

ectly to actions, and bypassing the need for explicit modelling. Specifically, we employ Reinforcement

Learning (RL) to create an algorithm that is task agnostic and can learn many different behaviours based

on the definition of a reward and a couple of provided demonstrations. This has been extensively studied

in the context of rigid object manipulation (see [Quillen et al., 2018] for a comprehensive evaluation),

but only a small amount of work has focused on deformable objects. Moreover, no study has previously

investigated the applicability of sim-to-real methods (such as domain randomisation) to transfer deform-

able object policies. We believe that if sim-to-real methods are to be employed further, then it should

be possible to learn to interact with a wide variety of objects, and not only rigid objects, which has been

the case to-date. To the best of our knowledge, deep RL and sim-to-real have not yet been applied to the

domain of deformable object manipulation.

In this chapter, we use an improved version of Deep Deterministic Policy Gradients (DDPG) [Lillicrap

et al., 2015b], seeded with 20 demonstrations, to train an agent purely in simulation on three different

tasks: folding a small towel diagonally, folding a towel up to a specific point and draping a towel over

a small hanger. All tasks are learned via a single sparse reward on task completion. The agent receives

only RGB images and the proprioceptive state (joint angles, gripper position) during test time. We

employed domain randomisation [Tobin et al., 2017b, James et al., 2017b] in simulation to simplify the

policy transfer from simulation to the real world without further training. Qualitative results can be seen

in the video1.

1https://sites.google.com/view/sim-to-real-deformable
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Figure 4.1: We learn robot policies in simulation and test them in the real-world. The algorithm was
evaluated on 3 different tasks: folding a large towel up to a tape (top row), hanging a small towel on a
hanger (middle row) and diagonally folding a square piece of cloth (bottom row).

Our contributions in this chapter are 2 fold. Firstly, we present the first work in transferring end-to-

end controllers for deformable object manipulation through the use of domain randomisation. Secondly,

we present and perform ablations on an improved version of Deep Deterministic Policy Gradients

(DDPG) [Lillicrap et al., 2015b], which includes a number of extensions from the literature and brings

considerable performance boosts.

4.2 Related Work

Cloth manipulation tasks solved by conventional robotics methods include cloth flattening [Sun et al.,

2013], cloth folding [Yamakawa et al., 2011, Li et al., 2015] or bringing cloth into a desired configura-

tion [Cusumano-Towner et al., 2011]. The robots identify the cloth configuration based on visual inform-

ation with hand-engineered heuristics and then use this either directly to parametrise a pre-programmed

trajectory or indirectly by feeding the information to a mathematical model of the cloth. Some methods

have also leveraged demonstrations for cloth manipulation, either through the use of behavioural cloning

with noise injection [Laskey et al., 2017, Lee et al., 2015b] or by creating a trajectory-aware registration

method that becomes robust to distractions by observing the action multiple times [Lee et al., 2015b].

Other work has combined imitation learning and the PoWER RL algorithm to learn a policy for folding

a towel by observing human demonstrations [Balaguer and Carpin, 2011]. The towel was equipped with

reflective markers and a complex system was employed to reconstruct the missing data if the markers

were occluded or not detected.

Reinforcement learning has not yet been extensively applied to cloth manipulation, even though it

has found applications in many other robotic domains, including rigid object manipulation [Gu et al.,

2016, Peters and Schaal, 2008], UAV control [Abbeel et al., 2006] or bipedal robot control [Peng et al.,

2017]. One of the most prevalent deep RL methods in robotics is DDPG [Lillicrap et al., 2015b].
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Figure 4.2: Examples of domain randomisation for the hanger environment. During randomisation, we
vary the table textures, cloth and arm colours, light position, camera position and orientation, cloth size
and position, hanger size and position, initial arm position and size of arm base.

The algorithm allows control in continuous space without discretisation, which makes it a good fit for

controlling robot joint velocities. The algorithm has been the basis for a large number of extensions

[Fujimoto et al., 2018b, Andrychowicz et al., 2017, Barth-Maro et al., 2018, Nair et al., 2017, Schaul

et al., 2015b, Pinto et al., 2017] which have further improved the performance of the agent. DDPG

can also be extended with demonstrations to considerably speed up the learning process [Večerı́k et al.,

2017].

Transferring policies learned in simulation into the real world is a challenging task. Previous work

has shown that direct transfer was not possible [James and Johns, 2016b], while others have shown that

transfer only works after the agent has received additional training in the real world [Rusu et al., 2017b].

A promising technique to accomplish a successful transfer from simulation to the real world is domain

randomisation [Tobin et al., 2017b, Pinto et al., 2017, James et al., 2017b], which samples simulation

parameters (e.g. camera position, light position, textures etc.) from probability distributions centred

at a noisy estimate of the ground truth. As a result, the agent learns to ignore minor variations in the

environment, so it becomes robust to domain changes, including the sim-to-real transfer. This was the

approach taken in the pick-and-place task, presented in Chapter 3.

4.3 Background

DDPG [Lillicrap et al., 2015b] is a deep RL algorithm for learning control policies in a continuous action

domain. It uses an actor neural network, parametrised by a set of parameters θπ, that maps observations

to actions π : O → A and tries to maximise Q(st, π(ot)) at each time-step t. However, the Q function

is not known and DDPG employs a critic neural network, parametrised by parameters θQ, to estimate Q

by minimising the Bellman loss:

Lcritic = (Q(st, at)− rt −Q′(st+1, π(ot+1)))
2 .

During training, the agent acts in the environment according to noisy policy at = π(ot)+N(0, σ). The

Gaussian noise facilitates exploration. Each transition the agent generates is stored in a replay buffer

from where it is sampled in batches to train the networks. Sampling from a replay buffer stabilises
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training by removing temporal correlations and therefore reduces the changes in the distributions the

networks are trying to learn. DDPG also employs a target networks Q′ to reduce the risk of Q-value

estimates oscillating or diverging due to the recursive Q-value definition in the Bellman equation.

DDPG became the primary building block of many other algorithms trying to improve on it. We give

here a brief summary of the selected DDPG extensions that we incorporated into our algorithm.

Prioritised Replay Prioritised replay [Schaul et al., 2015b] assigns a priority pi to each transition,

computed as a sum of the last temporal difference (TD) error and small hyper-parameter ε. TD error

is defined as the difference between critic prediction and critic target, so it serves as a proxy for the

learning progress induced by the transition. ε guarantees that even transitions with small TD errors

can be sampled in the future, which is necessary because the critic changes its estimates as learning

progresses. All new transitions are added to the replay buffer with priority equal to the current maximal

priority in the buffer. The sampling probability is computed as P (i) = pαi∑
k p

α
k

, where α is a parameter

controlling the strength of the prioritisation. Prioritised sampling introduces a bias that needs to be

corrected by multiplying the TD error of the transition when training by the importance sampling weight:

wi = ( 1
NP (i))

β , where β is a hyper-parameter controlling the magnitude of bias correction and N is the

replay buffer size.

N-Step returns N-Step returns help to quickly propagate the reward signal throughout the robot tra-

jectory by looking at N subsequent transitions instead of just one. It has been shown to accelerate and

stabilise learning [Barth-Maro et al., 2018]. N-step returns change the critic loss to:

Lnstep = (Q(st, at)−
N∑
i=0

γirt+i − γNQ′(st+N , π(ot+N )))2 .

It is possible to use both 1-step loss and N-step loss at the same time, in which case the critic loss

becomes the sum of the losses weighted by two hyper-parameters λnstep and λ1step.

DDPGfD The original DDPG usually does not perform well on complex multi-step tasks with sparse

rewards, because it is statistically improbable that the agent would often discover the right behaviour by

random exploration. DDPGfD [Večerı́k et al., 2017] overcomes this limitation by seeding the training

with demonstrations, which are inserted into the prioritised replay buffer along with normal transitions.

Demonstration transitions are never deleted from the replay buffer, and their priority is increased by

a small constant εD to make them more likely to be sampled. DDPGfD begins with a pre-training

phase, where it executes a fixed number of training steps using the replay buffer initialised with demo

transitions. Following pre-training, it begins collecting new experiences. DDPGfD also employs N-Step

returns and adds L2-regularisation on both actor and critic.
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Behavioural Cloning [Nair et al., 2017] DDPG can be further adapted to take advantage of demon-

strations by introducing behavioural cloning loss to the actor network. This loss is applied only when

a demonstration is sampled from the replay buffer for training. It encourages the actor to propose the

same action as the demonstrator in the given state. After sufficient training, the agent might surpass the

performance of the demonstrator and LBC would then become detrimental to agent performance. The

Q-filter mitigates this problem by only applying LBC if the critic judges that the action proposed by the

actor is worse than the action of the demonstrator.

LBC =


|π(oi)− ai|2, if Q(si, ai) > Q(si, π(oi))

0 otherwise

Reset to demonstration Reset to demonstration [Nair et al., 2017] aims to make it easier for the agent

to receive a reward in sparse long-horizon tasks. After the end of an episode, the environment will

have a small probability of being placed into a random state encountered during demonstrations. In

those cases, the agent only needs to complete the sub-task starting at the sampled state. This sub-task

is usually substantially easier, particularly if the demonstration state was sampled near the end of the

episode.

TD3 DDPG is prone to overestimating Q-values, which in turn leads to sub-optimal policies. TD3

[Fujimoto et al., 2018b] implements 3 improvements to address the overestimation resulting from ap-

proximation errors. Firstly, it maintains 2 independent critic networks and always takes the minimum

Q-value as the optimisation target for both actor and critic. Secondly, it proposes to delay the propaga-

tion of weight updates to target network by a couple of steps, so they have time to converge to a better

quality update. Finally, it regularises the target Q-value by adding a clipped normal noise to the action

proposed by the target actor to explicitly increase the smoothness of the Q-function prediction. The TD3

1-step target of the critic is defined to be:

y = rt + min
i=1,2

Q′i(st+1, π(ot+1) + clip(N (0, σ),−c, c)) .

Asymmetric actor-critic The simulator always has a perfect understanding of the environment, which

can be leveraged during the training phase. Asymmetric actor-critic [Pinto et al., 2017] uses high di-

mensional (RGB) partial observations as an input to the actor, whilst using low-dimensional environment

state (object positions, arm state, etc.) as the input for the critic. This extension significantly reduces the

number of trainable parameters and increases the accuracy of the critic.
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4.4 Method

4.4.1 Simulation

This chapter is the only one that does not use CoppeliaSim for the simulation environment, and instead

uses Pybullet [Coumans and Bai, 2016]. This is because CoppeliaSim does not have support for de-

formable objects. Pybullet implements some rudimentary and experimental functionality for simulating

deformable objects. Even though the simulator implements 2D rectangular cloth creation in its C++

API, we found the out-of-the-box simulation behaviour impractical for our purposes. We initially tried

to rely on physics simulation to create a lasting grasp, which was not possible. The gripper either tun-

nelled through the cloth (low collision margin) or the gripper repelled it before the grasp attempt (high

collision margin). We were only able to resolve the issue by creating a fake grasp implemented as a set

of anchors between cloth nodes and gripper fingers.

The grasp creation was stochastic and deliberately failed in 5% of the cases to expose the agent to

unsuccessful grasp scenarios. Moreover, the creation of the constraint was subject to the gripper endpoint

being in close proximity to a cloth node. Creating the constraint only to a single point on each gripper

causes the cloth to spin unnaturally, so multiple anchors were used — one at the middle and one at both

extremities of each fingertip. Finally, we found that the existing implementation of anchors between

soft bodies and rigid bodies was not sufficient because it reached an equilibrium of forces with the cloth

hanging approximately 5 cm below the gripper. We adapted the implementation so the anchor between

cloth node and rigid object is honoured regardless of other forces acting on the cloth.

We employed domain randomisation to facilitate a smooth domain transfer of the learned policy.

More specifically, we randomised the textures using Perlin noise [Perlin, 1985]; object and background

colours; object parameters and positions; arm spawn position and joint angles; camera position, orient-

ation and intrinsics; light source position and colour; and all reflectance coefficients. The values were

sampled from either normal or uniform distributions around the noisy ground truth estimates.

4.4.2 Learning algorithm with integrated improvements

During initial experimentation, we found that DDPG was not successful in solving any of the proposed

environments, and so investigated possible improvements. We have taken inspiration from the success of

the Rainbow DQN agent [Hessel et al., 2017] integrating all recently proposed extensions and achieving

state-of-the-art performance on a set of benchmark tasks. Starting with the DDPG baseline available

in the OpenAI repository [Dhariwal et al., 2017], we implemented all DDPG extensions listed in Sec-

tion 4.3. We however did not use the Q-value target regularisation in TD3 because we found it to be
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Figure 4.3: The network architecture uses 3 different inputs — RGB images from the camera looking
at the scene, joint angles and gripper position (available at test time from the robot API) and full state,
which is only available at training time. The top half of the figure corresponds to the actor, while
the bottom half corresponds to twin critics. The actor receives joint angles, gripper position and RGB
images while the critic receives full-low dimensional state. Auxiliary outputs of the actor are only used
during training to help the network quickly recognise essential scene features. However, they were also
useful for debugging purposes at test time, because we can plot the estimate of cloth position and target
position to verify that the actor understands the scene.

detrimental to the agent performance for these particular tasks. This results in the following critic loss,

applied to at during training:

Lcritic(a) = λnstepLnstep(a)wi + λ1stepL1step(a)wi + λL2L
Q
reg(θ

Q),

Lnstep(a) = (Q(st, a)−
N∑
i=0

γirt+i − γN min
i=1,2

Q′i(st+N , π(ot+N )))
2,

L1step(a) = (Q(st, a)− rt − min
i=1,2

Q′i(st+1, π(ot+1)))
2.

The auxiliary outputs predict the key features of the environments (in our case those are cloth corner

positions, tape y-coordinate and hanger y-coordinate). Laux is the mean square error between the pre-

diction and the actual value. Each component of the auxiliary predictions can be weighted by separate

weightings, although this was rarely used in practice. The resulting actor loss is:

Lactor = −Lcritic(π(ot)) + λBCLBC + Laux

LBC =


(π(oi)− ai)2, if Q(si, ai) > Q(si, π(oi)) and i is demonstration

0 otherwise .

The priority of each transaction is updated after each training step according to:

pi = Li,nstep(ai) + Li,1step(ai) + ε+ εD max
k∈minibatch

(Lk,nstep(ak) + Lk,1step(ak)) ,

where ε = 10−6 is a small constant. We found that it was impossible to tune the fixed constant εD (as

suggested by DDPGfD) to boost the priority of demonstrations further because the TD error magnitude

varied by multiple orders of magnitude across training epochs. We instead made the further demo
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priority boost term proportional to the maximal losses in the current mini-batch. εD is set to 0 for

updating priorities of all transitions apart from demonstrations. We used the same network architecture

(Figure 4.3) for all 3 experiments. The full learning algorithm with all improvements are available

online.2.

4.5 Experiments

4.5.1 Cloth manipulation environments

All standard RL environments for manipulation tasks only contain rigid objects, so we designed and im-

plemented 3 new environments for solving deformable object tasks. Each environment exposes an RGB

observation with dimensions 84x84x3, a low dimensional state and low dimensional actor input (joint

angles and gripper position). The robotic arm in the environments is 7DOF Kinova Mico controlled by

4-dimensional action. First 3 dimensions are the velocity of the end effector while the last dimension is

a gripping velocity (negative for opening and positive for closing). The reward is sparse with +100 for

success and 0 otherwise. Gripper rotation is not necessary for the tasks and is therefore kept fixed. The

origin of the coordinate system is at the base of the arm, with z-axis perpendicular to the table and x-axis

pointing towards the camera. The environments implement OpenAI gym [Brockman et al., 2016a] API

and use Pybullet as a simulation engine [Coumans and Bai, 2016]. We call the 3 environments Tape,

Hanging and Diagonal Folding:

1. Tape: The robot needs to fold a large towel up to a mark identified by a piece of black tape. The

tape can be in 3 different positions: 5/8th, 7/8th and at the end of the towel. The robot receives a

reward if both corners of the lifted side of the cloth are within a threshold distance from the tape.

The gripper is fixed to point downwards with fingers parallel to the y-axis. This task was proposed

by [Lee et al., 2015b].

2. Hanging: The robot needs to grasp the piece of cloth and drape it over a small hanger. The cloth

appears on the left side of the scene, and we sample its position from a uniform distribution. The

reward is given when the cloth is released from the gripper, and all corners stay 5 or more cm over

the ground for 20 simulation steps (this rules out cloth sliding off the hanger). The gripper has

fingers parallel to the x-axis.

3. Diagonal folding: The robot needs to fold a rectangular face towel (∼ 28 × 28cm) diagonally.

The reward is given if the diagonal corners are within a threshold distance from each other and all

pairs of corners on the same side of the rectangle are at distances larger than 3/4 of the side length
2https://sites.google.com/view/sim-to-real-deformable
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Figure 4.4: Ablation studies on the Diagonal Folding task, where “Ours” shows the result of the al-
gorithm with all improvements. The reward for success was set to be 100, and therefore it is equal to the
percentage of successes. Two evaluation episodes were performed after each epoch. Curves report the
mean of 2 random seeds, and they were smoothed to improve legibility.

when flat (this is to prevent the robot simply crumpling the cloth to align corners, which we have

observed before). The gripper is parallel to the x-axis.

4.5.2 Simulation results and ablation studies

Success rates (Sim)

Diagonal folding 90%

Hanging 77%

Tape 86%

Table 4.1: Success rates in

simulation

We ran the training algorithm with all implemented improvements (la-

belled “Ours”) on the three task, as none of the improvements had an

adverse effect. Each training run was seeded with 20 demos. Each exper-

iment took approximately 24 hours to run on one GeForce GTX TITAN.

The success rates (mean of 3 random seeds) in the final evaluations of the

experiments are shown in Table 4.1, which were achieved after approxim-

ately 80k transitions and in the presence of domain randomisation.

The most likely failure case across all environments is a failure to grasp

the cloth. Even though the agent has learned to do multiple re-grasps, in some situations, it repeatedly

fails (e.g. by closing the gripper above the towel). We believe this is due to an outlier in the camera

configuration sampled from a normal distribution. Secondly, too fast or inaccurate motion usually causes

the agent to crumple the towel after which it is no longer able to achieve the task. Thirdly, in the Hanging

task, the agent sometimes drapes the cloth too far, causing it to fall.

We performed ablation studies to verify the contributions of selected modifications to DDPG. The

agent integrating all improvements either outperforms or matches the performance of all training runs

with an ablation. Two implemented improvements do not seem to increase the agent performance: reset

to demonstration and adding gripper position to the low dimensional actor input. In the first case, we
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Hanging task

Vicinity 100%
Grasp 76.6%

Drape over 70%
Full success 46.6%

Diagonal folding task

Grasp 66.6%
Not crumpled 66.6%

d ≤ 0.15m 53.3%
d ≤ 0.1m 40%
d ≤ 0.05m 20%

Tape folding task

Grasp 90%
d ≤ 0.15m 90%
d ≤ 0.1m 76.6%
d ≤ 0.05m 43%

Table 4.2: The success rates for each environment in the real world. Note that these are run in the real
world without additional training. For the hanging task, vicinity means the gripper being within 5cm
from the cloth, drape over means the cloth is touching the top part of the hanger and full success is
achieved if the cloth does not fall after it is released. For diagonal folding, not crumpled means that
adjacent corners are more than 15cm from each other and the d is the distance between diagonal corners
(lower is better). For tape folding, d is the distance between towel edge and the tape mark.

hypothesise that due to the BC loss, the agent can complete successful full-length tasks early in training

so it can quickly form a diverse set of successful episodes. This might be preferable over repeatedly

resetting to similar states from demonstrations. In the second case, we removed gripper position from

actor input, instead making it an auxiliary output. The agent accurately learned to predict the forward

kinematics, so the gripper position input was not necessary. However, also removing joint angles (No

Low-Dim Data in actor) was detrimental to performance which indicates that the agent cannot infer

gripper position accurately from images only.

The features with questionable value are Twin Critic and Pre-training. Although they seem to provide

improvement, the trade-off is increased computational cost. Pre-training has a constant cost of 7 minutes

at the start of training and maintaining two critics increased runtime by 1%. However, Twin Critic would

be substantially more expensive if it also used RGB observations.

The improvements that convincingly demonstrated a positive contribution to agent performance are

Auxiliary predictions, Behavioural Cloning and Demo prioritisation. Without boosting the priority of

the demonstrations (adding the εD term to priority equation), they are much less likely to be sampled

because they form only a tiny portion of the replay buffer.

4.5.3 Sim-to-real transfer

In real-world experiments, we use the Kinova Mico 7DOF robotic arm mounted in the middle of a table,

and we collect the RGB observation using a low-cost Genius C170 web camera mounted on a fixed

tripod next to the table. We report the results of 30 trials on the real robot for each task in Table 4.2. As

in simulation, the most prominent failure case is failed grasping, particularly with thin face towels (used

in Hanging and Diagonal folding). The robot has only a small acceptable margin of error (roughly 1

cm) in the z-axis for a successful grasp — going too low will prevent the gripper from closing and going
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too high will not grasp the cloth. The other common failure case was an imprecise movement resulting

in crumpling of the fabric from which the agent was not able to recover. this was partly caused by low

simulation fidelity. The real cloth was much stiffer and therefore less forgiving to imprecise movement

and the agent could not learn this in simulation.

When experimenting with various levels of domain randomisation, we found that heavy randomisa-

tion can be detrimental to learning. Specifically, we tried sampling the texture colours from a uniform

distribution across all colours and the performance of the agent after the transfer was significantly worse.

We believe that it then became much harder for the network to identify invariant environment features it

could use for orientation. Consistently with the work presented in Chapter 3, we found that camera ran-

domisation is essential for successful transfer; even with randomisation, the agent was still very sensitive

to the camera position.

4.6 Conclusion

Building up on recent work in end-to-end learning for rigid object manipulation, we have extended

those ideas to the domain of deformable objects and specifically, we have addressed the problem of

cloth manipulation. We proposed a task agnostic algorithm based on Deep RL which bypasses the need

to explicitly model cloth behaviour and does not require reward shaping to converge. The agent was

able to learn 3 long horizon tasks: folding a towel to a tape mark, diagonal folding of face towel and

draping a small towel over a hanger. Training was seeded with 20 demonstrations and happened entirely

in simulation with a couple of adaptations to account for imperfections in experimental deformable body

support, and with domain randomisation to enable easy transfer of the policy. The learning algorithm

incorporated 9 improvements proposed in the recent literature and we have presented ablation studies to

understand the role of these improvements.

The core limitations of this work lie in the simulation itself. Despite making various changes to the

Pybullet codebase to improve deformable simulation, many issues still remained. One of the biggest

issues was a lack of self-collision capability which resulted in a number of visual and behavioural arte-

facts. Another issue was the lack of deformation stability. In the real world, when a cloth is crumpled,

it tends to stay in a crumpled state. However, in our simulation, the cloth would slowly unroll into its

original shape. To some degree this can be mitigated by selecting correct cloth parameters (large mass,

small stiffness coefficients, large damping), but a change to these values can then negatively affect the

behaviour of the cloth in other situations. Because of this, many tasks that would be appealing to learn

in simulation, such as cloth dewrinkling or flattening, were not able to be correctly simulated.
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Despite these issues, the goal of this work was not to create an accurate cloth environment, but to

explore transferring deformable manipulation policies from simulation to reality. The fact that we were

able to achieve success despite all of the simulation issues is encouraging, and suggest that there are easy

real-world performance gains to be had by simply improving simulation fidelity. One of our real-world

failure modes supports this claim. In the diagonal folding task, rather than moving straight from one

corner to another, the agent would often lift the cloth too high and perform a suboptimal trajectory which

deviated to a side, resulting in the cloth crumpling. By investigating the trained agent in simulation, we

found that the same motion was performed, but the cloth behaved differently and was able to achieve

the reward. This was due to its lower linear stiffness that would allow it to stretch when pulled up, and

avoid crumpling.

To conclude this chapter, we believe that the primary factor limiting further research into deformable

object manipulation is the lack of support for those objects in most robotic simulators. We are hoping

that further research into simulation will allow us to create an accurate model of deformable object

grasping, incorporate it into a widely used simulator and release the environments to create a set of

benchmark tasks for future research in the domain.
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Task-Embedded Control Networks
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5.1 Introduction

Humans and animals are capable of learning new information rapidly from very few examples, and

apparently improve their ability to ‘learn how to learn’ throughout their lives [Harlow, 1949]. Endowing

robots with a similar ability would allow for a large range of skills to be acquired efficiently, and for

existing knowledge to be adapted to new environments and tasks. An emerging trend in robotics is

to learn control directly from raw sensor data in an end-to-end manner. Such approaches have the

potential to be general enough to learn a wide range of tasks, and they have been shown to be capable
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Figure 5.1: The robot gains its few-shot learning ability in simulation, and can then learn a new task
from a single demonstration.

of performing tasks that traditional methods in robotics have found difficult, such as when close and

complicated coordination is required between vision and control [Levine et al., 2016a], or in tasks with

dynamic environments [James et al., 2017a]. However, these solutions often learn their skills from

scratch and need a large amount of training data [James et al., 2017a, Zhang et al., 2018, James and

Johns, 2016a]. A significant goal in the community is to develop methods that can reuse past experiences

in order to improve the data efficiency of these methods.

To that end, one significant approach is Meta-Imitation Learning (MIL) [Finn et al., 2017b], in which

a policy is learned that can be quickly adapted, via one or few gradient steps at test time, in order to

solve a new task given one or more demonstrations. The underlying algorithm, Model-Agnostic Meta-

Learning (MAML) [Finn et al., 2017a] can be very general, but lacks some of the properties that we

might hope for in a robotic system. For one, once the policy is trained, it cannot accomplish any of the

tasks seen during training unless it is given an example again at test time. Also, once a specific task is

learned, the method can lose its ability to meta-learn and be stuck with a set of weights that can only be

used for that one task. One way around this is to make a copy of the weights needed for each task, but

this raises scalability concerns.

Our new approach, Task-Embedded Control Networks (TecNets), is centred around the idea that there

is an embedding of tasks, where tasks that are similar (in terms of visual appearance) should be close

together in space, whilst ones that are different should be far away from one another. Having such an

expressive space would not only allow for few-shot learning, but also opens the possibility of inferring

information from new and unfamiliar tasks in a zero-shot fashion, such as how similar a new task may

be to a previously seen one.

TecNets, which are summarised in Figure 5.2, are composed of a task-embedding network and a

control network that are jointly trained to output actions (e.g. motor velocities) for a new variation

of an unseen task, given a single or multiple demonstrations. The task-embedding network has the

responsibility of learning a compact representation of a task, which we call a sentence. The control
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Figure 5.2: Task-Embedded Control Networks (TecNets) allow tasks to be learned from single or mul-
tiple demonstrations. Images of demonstrations are embedded into a compact representation of a task,
which can be combined to create a sentence. This sentence is then expanded and concatenated (channel-
wise) to the most recent observation from a new configuration of that task before being sent through
the control network in a closed-loop manner. Both the task-embedding net and control net are jointly
optimised to produce a rich embedding.

network then takes this (static) sentence along with current observations of the world to output actions.

TecNets do not have a strict restriction on the number of tasks that can be learned, and do not easily

forget previously learned tasks during training, or after. The setup only expects the observations (e.g.

visual) from the demonstrator during test time, which makes it very applicable for learning from human

demonstrations.

To evaluate our approach, we present simulation results from two experimental domains proposed in

MIL [Finn et al., 2017b], and demonstrate that we can train our meta-learning ability in simulation and

then deploy in the real world without any additional training. We believe this to be a desirable property

given that large amounts of data are needed to end-to-end solutions. Despite being trained to meta-learn

in simulation, the robot can learn new tasks from a single demonstration in the real world.

Our contributions in this work are threefold. We demonstrate the ability to one-shot and few-shot

learn visuomotor control through the use of TecNets in a selection of visually-guided manipulation

tasks. Secondly, we show that TecNets are able to achieve higher success rates compared to MIL [Finn

et al., 2017b] when using only visual information from each demonstration. Finally, we demonstrate the

first successful method of a few-shot learning approach trained in simulation and transferred to the real

world, which we believe is an important direction for allowing large-scale generalisation.

5.2 Related Work

Our work lies at the intersection of imitation learning [Schaal, 1999, Argall et al., 2009] and meta-

learning [Thrun and Pratt, 2012, Lemke et al., 2015]. Imitation learning aims to learn tasks by observing

a demonstrator. One focus within imitation learning is behavioural cloning, in which the agent learns

a mapping from observations to actions given demonstrations, in a supervised learning manner [Pomer-
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leau, 1989, Ross et al., 2011]. Another focus is inverse reinforcement learning [Ng et al., 2000], where

an agent attempts to estimate a reward function that describes the given demonstrations [Abbeel and

Ng, 2004, Finn et al., 2016]. In our work, we focus on behavioural cloning in the context of learning

motor control directly from pixels. A common issue in behavioural cloning is the large amount of data

needed to train such systems [James et al., 2017a], as well as the fact that tasks are often learned in-

dependently, where learning one task does not accelerate the learning of another. Recently, there has

been encouraging work to address this problem [Finn et al., 2017b], and our approach provides a further

advance.

One-shot and few-shot learning is the paradigm of learning from a small number of examples at test

time, and has been widely studied in the image recognition community [Vinyals et al., 2016, Koch et al.,

2015, Santoro et al., 2016, Ravi and Larochelle, 2017, Triantafillou et al., 2017, Snell et al., 2017].

Many one-shot and few-shot learning methods in image recognition are a form of meta-learning, where

the algorithms are tested on their ability to learn new tasks, rather than the usual machine learning

paradigm of training on a single task and testing on held out examples of that task. Common forms

of meta-learning include recurrence [Santoro et al., 2016], learning an optimiser [Ravi and Larochelle,

2017], and more recently Model Agnostic Meta-Learning (MAML) [Finn et al., 2017a]. Many works in

metric learning, including ours, can be seen as forms of meta-learning [Vinyals et al., 2016, Snell et al.,

2017], in the sense that they produce embeddings dynamically from new examples during test time; the

difference to other more common meta-learning approaches is that the embedding generation is fixed

after training.

The success of our new approach comes from learning a metric space, and there has been an abund-

ance of work in metric learning for image classification [Kulis et al., 2012, Bellet et al., 2013], from

which we will summarise the most relevant. Matching Networks [Vinyals et al., 2016] use an attention

mechanism over a learned embedding space which produces a weighted nearest neighbour classifier

given labelled examples (support set) and unlabelled examples (query set). Prototypical Networks [Snell

et al., 2017] are similar, but differ in that they represent each class by the mean of its examples (the pro-

totype) and use a squared Euclidean distance rather than the cosine distance. In the case of one-shot

learning, matching networks and prototypical networks become equivalent. Our approach is similar in

that our sentence (prototype) is created by averaging over the support set, but differs in the way we

couple the learned embedding space with the control network. These metric learning methods have all

been developed for image classification, and in the visuomotor control domain of our method, we do not

explicitly classify sentences, but instead jointly optimise them with a control network.

Recently, [Hausman et al., 2018] proposed learning a skill embedding space via reinforcement learn-
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ing that led to speed-ups during training time. Although impressive, that method does not focus on

few-shot learning, and the experiments are run within simulation with low dimensional state spaces.

Another piece of work that uses embedding spaces is [Sung et al., 2017], where a multimodal embed-

ding is learned for point-clouds, language and trajectories. This work involves pre-training the parts

of the network, and also relies on accurate models of the world. Our approach has the benefit that we

map directly from images to motor actions and train jointly embedding and control networks, with no

pre-training.

In terms of setup, the closest related work to ours is MIL [Finn et al., 2017b], where they apply

MAML [Finn et al., 2017a] and behaviour cloning to learn new tasks, end-to-end from one visual demon-

stration. The underlying algorithm, MAML, learns a set of weights that can be quickly adapted to new

tasks. If we were to use this approach to retain information we had previously learnt, we would need to

hold copies of weights for each task. In comparison, our method relies on storing a compact sentence

for every task we want to remember.

5.3 Task-Embedded Control Networks

We now formally summarise the notation for our method. A policy π for task T maps observations

o to actions a, and we assume to have expert policies π∗ for multiple different tasks. Corresponding

example trajectories consist of a series of observations and actions: τ = [(o1,a1), . . . , (oT ,aT )] and

we define each task to be a set of such examples, T = {τ1, · · · , τK}. TecNets aim to learn a universal

policy π(o, s) that can be modulated by a sentence s, where s is a learned description of a task T. The

resulting universal policy π(o, s) should emulate the expert policy π∗ for task T.

5.3.1 Task Embedding

We now introduce our task embedding, which can be used independently in other fields, such as image

classification, and so we keep this section general. Assume we are given a small set of K examples of

a task Tj . Our task embedding network fθ : RD → RN computes a normalised N -dimensional vector

sjk ∈ RN for each example τ jk ∈ Tj . A combined sentence sj ∈ RN is then computed for that task by

taking the normalised mean of the example vectors:

sj =

[
1

K

∑
τ jk∈Tj

fθ(τ
j
k)

]∧
, (5.1)

where v∧ = v
‖v‖ . We then need to define a loss function that can be used to learn an ideal embedding.

We use a combination of the cosine distance between points and the hinge rank loss (inspired by [Frome
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Figure 5.3: A visualisation of how the embedding is learned. Imagine a simple case where we have 2
tasks (or classes): llamas and dogs. We have a support set of 4 examples, which are then embedded and
averaged in order to get a sentence for each task. The hinge rank loss drives the dot product of the query
image (sjk) with the difference between the actual sentence and the negative sentences (δ) to be at least a
factor of margin away (M in the Figure above). In other words, sjk should point in the opposite direction
to δ by at least a factor of margin.

et al., 2013]). The loss for a task Tj is defined as:

Lemb =
∑
τ jk∈Tj

∑
Ti 6=Tj

max[0,margin− sjk · s
j + sjk · s

i] , (5.2)

which trains the model to produce a higher dot-product similarity between a task’s example vectors sjk

and its sentence sj than to sentences from other tasks si. We illustrate the intuition behind this loss in

Figure 5.3.

Additionally, we pick two disjoint sets of examples for every task Tj : a support set TjU and a query

set TjQ. In the above embedding loss, the support set is used to compute the task sentences, si and sj ,

and only the examples picked from the query set are used as example vectors, sjk. Given that each of the

sampled tasks in a training batch are unique, the negatives Ti can be chosen to be all the other tasks in

the batch. Therefore, for each task within a batch, we also compare to every other task. Further details

are given in Algorithm 1.

In all of our experiments, we set margin = 0.1, though in practice we found a wide range of values

between 0.01 ≤ margin ≤ 1.0 that would work. Although not used, we can treat this embedding as

a classification of tasks, whose accuracy we can estimate by computing the sentence sk of an example

and then performing a nearest neighbour search in the embedding space over all task sentences sj . In

addition to the dot-product similarity and hinge rank loss, we also tried other distances and losses. One

such distance and loss was the squared Euclidean distance used in [Snell et al., 2017], but we found that

this did not work as well for our case.
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Algorithm 1 Training loss computation for one batch. B is the batch size,KU andKQ are the number of
examples from the support and query set respectively, and RandomSample(S,N) selects N elements
uniformly at random from the set S.

1: procedure TRAINING ITERATION

2: B = RandomSample({T1, · · · ,TN},B)
3: for Tj ∈ B do
4: TjU = RandomSample(Tj ,KU )

5: TjQ = RandomSample(Tj\TjU ,KQ)

6: sjU =
[

1
KU

∑
τ∈TjU

fθ(τ)
]∧

7: sjq = fθ(τq) ∀τq ∈ TjQ
Lemb = LUctr = L

Q
ctr = 0

8: for Tj ∈ B do
9: Lemb +=

∑
q

∑
i 6=jmax[0,margin− sjq · sjU + sjq · siU ]

10: LUctr +=
∑

τ∈TjU

∑
(o,a)∈τ ‖π(o, s

j
U )− a‖22

11: LQctr +=
∑

τ∈TjQ

∑
(o,a)∈τ ‖π(o, s

j
U )− a‖22

12: Ltec = λembLemb + λUctrLUctr + λQctrL
Q
ctr

13: return Ltec

Algorithm 2 How TecNets operate during test time. D is the set of demonstrations for a task, Env is
the environment in which to act.

1: procedure TEST(D,Env)

2: s =
[

1
|D|
∑

τ∈D fθ(τ)
]∧

3: while task not complete do
4: o = Env.GetObservation()
5: a = π(o, s)
6: Env.Act(a)

5.3.2 Control

In contrast to metric learning systems for classification, which would use some sort of nearest neighbour

test to find the matching class, here the embedding is relayed to the control network and both networks

are trained jointly. Given a sentence sjU , computed from the support set TjU , as well as examples from

the query set TjQ we can compute the following loss for the policy π:

LQctr =
∑
τ jq∈TjQ

∑
(o,a)∈τ jq

‖π(o, sjU )− a‖22 . (5.3)

This allows the embedding not only to be learned from the embedding loss Lemb, but also from the

control loss, which can lead to a more meaningful embedding for the control network than if they were

trained independently. Though appropriate weightings must be selected, as the control network needs

the embedding in order to know which task to perform, but the embedding network may have to wait for

a reasonable control output before being able to enrich its structure.

We found it helpful for the control network to also predict the action for the examples in the support
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Figure 5.4: Here we show the first and last timestep of a single example (i.e. one-shot) from the support
and query set for each of the 3 experimental domains. The support examples are used to describe the
task, whilst the query set examples test the networks ability to perform a modified version of the task.
We now highlight each of the tasks in the support set. Left: the simulated reaching experiment, where
the robot must reach a specified colour. Centre: the simulated pushing experiment, where the robot must
push a specified object to the red target. Right: the real world placing experiment, where the robot must
place an item into a specified container.

set TjU and training with a control loss LUctr. This has the advantage that it makes the task of learning

LQctr easier, as learning LUctr can be seen as an easier version of minimising the former (since example

dependent information can be passed through the embedding space). Thus, the final loss is:

LTec =
∑
T

λembLemb + λUctrLUctr + λQctrL
Q
ctr. (5.4)

Input to the task-embedding network consists of (width, height, 3 × |τ |), where 3 represents the

RGB channels. For all of our experiments, we found that we only need to take the first and last frame

of an example trajectory τ for computing the task embedding and so discarded intermediate frames,

resulting in an input of (width, height, 6). The sentence from the task-embedding network is then tiled

and concatenated channel-wise to the input of the control network (as shown in Figure 5.2), resulting in

an input image of (width, height, 3+N), where N represents the length of the vector. Pseudocode for

both the training and testing is provided in Algorithms 1 and 2 respectively.

5.4 Experiments

In this section, we aim to answer the following: (1) Is it possible to learn a task embedding that can

directly be used for visuomotor control? (2) Does our metric loss lead to a better embedding rather

than allowing the control network to have free rein on the embedding? (3) How do we compare to a

state-of-the-art one-shot imitation learning method? (4) How is our performance affected as we go from

one-shot to many-shot? (5) Does this method apply to sim-to-real?

We begin by presenting results from two simulated experimental domains that were put forward for

MIL [Finn et al., 2017b]. We then continue to present results for our own experiment where we perform
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a placing task using a real-world robot arm, similar to that of MIL’s third experimental domain. All 3

experiments are shown in Figure 5.4. For all experiments, we ensure that our control network follows a

similar architecture to MIL [Finn et al., 2017b] in order to allow fair comparison. In all cases the task-

embedding network and control network use a convolutional neural network (CNN), where each layer

is followed by layer normalisation [Ba et al., 2016] and an elu activation function [Clevert et al., 2016],

except for the final layer, where the output is linear for both the task-embedding and control network.

Optimisation was performed with Adam [Kingma and Ba, 2015] with a learning rate of 5 × 10−4, a

batch size of 64, and lambdas were set as follows: λemb = 1.0, λUctr = 0.1, λQctr = 0.1.

Our approach only uses visual information for the demonstrations whilst MIL reports results where

the input demonstrations are given with and without actions and robot arm state. For completeness,

we have reported all of MIL’s results, but our aim is to compare against the results where only visual

information is used for input demonstrations. Qualitative results for our approach can be seen in the

video1.

5.4.1 Simulated Reaching

Figure 5.5: How the percentage of success changes as the

size of the embedding varies for the simulated reaching do-

main.

The aim of this first experimental domain

is to reach a target of a particular colour in

the presence of two distractors with differ-

ent colours. Input to the control network

consist of the (current) arm joint angles,

end-effector position, and the 80×64 RGB

image, whilst the task-embedding network

receives only images (first and last). For

details regarding data collection, we point

the reader to the Appendix of [Finn et al.,

2017b]. Our results (presented in Table

5.1) show that we outperform MIL by a

large margin, as well as other variations of our approach. The results show that the embedding loss

is vital for the high success rate, with the exclusion leading to a drop in success of over 70%. In addi-

tion to the embedding loss, the inclusion of the support loss heavily assists the network in learning the

task. Note that it is possible to achieve 33% on this task by randomly choosing one target to reach for.

We believe this is an important note, as it appears that MIL is not capable of learning from one visual

1https://sites.google.com/view/task-embedded-control
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demonstration alone on this task, resulting in a policy that randomly selects a colour to reach for. As

with MIL, only 1-shot capabilities were explored for this domain.

We also use this experimental domain to see how the embedding size effects the performance, and we

show the results in Figure 5.5. By increasing the embedding size, we are increasing the dimensionality

of our vector space, allowing a greater number of tasks to be learned. But as Figure 5.5 shows, increasing

the dimensionality can lead to poor performance. We hypothesise that increasing the embedding size too

much can lead to a trivial embedding that does not look for similarities and will thus generalise poorly

when encountering new tasks. A balance must be struck between the capacity of the embedding and the

risk of overfitting. Although this is an extra hyperparameter to optimise for, Figure 5.5 encouragingly

suggest that this can take on a wide range of values.

For these experiments, the CNN consisted of 3 strided convolution layers, each with 40 (3× 3) filters,

followed by 4 fully-connected layers consisting of 200 neurons. Input consists of a 80 × 64 RGB

image and the robot proprioceptive data, including the arm joint angles and the end-effector position.

The proprioceptive is concatenated to the features extracted from the CNN layers of the control network,

before being sent through the fully-connected layers. The output of the embedding network is a vector of

length 20. The output corresponds to torques applied to the two joints of the arm. The task is considered

a success if the end-effector comes within 0.05 meters of the goal within the last 10 timesteps. Further

information regarding this task can be accessed from [Finn et al., 2017b].

5.4.2 Simulated Pushing

The second experimental domain from [Finn et al., 2017b] involves a simulated robot in a 3D environ-

ment, where the action space is 7-DoF torque control. The goal is to push a randomly positioned object

to the red target in the presence of another randomly positioned distractor, where the objects have a

range of shapes, sizes, textures, frictions, and masses. The control network input consists of a 125×125

RGB image and the robot joint angles, joint velocities, and end-effector pose, whilst the task-embedding

network again receives images only. For details regarding data collection, we point the reader to the

Appendix of [Finn et al., 2017b]. In both the 1-shot and 5-shot case, our method surpasses MIL when

using its few-shot ability on visual data alone. Unlike the previous experiment, excluding the support

loss is less detrimental and leads to better results than MIL in both the 1-shot and 5-shot case.

For these experiments, the CNN consisted of 4 strided convolution layers, each with 16 (5× 5) filters,

followed by 3 fully-connected layers consisting of 200 neurons. Input consists of a 125 × 125 RGB

image and the robot proprioceptive data, including the joint angles, joint velocities, and end-effector

pose. The proprioceptive is concatenated to the features extracted from the CNN layers of the control
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Method Success (%)

1-
Sh

ot

MIL (vision+state+action) 93.00
MIL (vision) 29.36*
Ours (vision) 86.31
Ours (λUctr = 0) 25.68
Ours (λemb = 0) 10.48
Ours (s = ~0) 20.30
Ours (contextual) 19.17

(a) Simulated Reaching Results

Method Success (%)

1-
Sh

ot

MIL (vision+state+action) 85.81
MIL (vision+state) 72.52
MIL (vision) 66.44
Ours (vision) 77.25
Ours (λUctr = 0) 70.72
Ours (λemb = 0) 58.56
Ours (s = ~0) 02.49
Ours (contextual) 37.61

5-
Sh

ot

MIL (vision+state+action) 88.75
MIL (vision+state) 78.15
MIL (vision) 70.50
Ours (vision) 80.86
Ours (λUctr = 0) 72.07
Ours(λemb = 0) 67.12
Ours (s = ~0) -
Ours (contextual) -

(b) Simulated Pushing Results

Table 5.1: The result for both simulated reaching (a) and simulated pushing (b), for both our full solution,
and a series of ablations. In the tables, λUctr = 0 refers to excluding the support loss, λemb = 0 refers
to excluding the embedding loss, s = ~0 refers to ignoring the output of the embedding, and instead
passing in a zero sentence, and ‘contextual’ refers to ignoring the output of the embedding, and passing
in one of the support example’s images directly to the control network. There is no entry for the final 2
rows of Table (b) as these are equivalent to their 1-shot counterpart. *Note that in Table (a), the results
reported here for MIL were not reported in the paper, and so the results here are reported from running
their publicly available code.

network, before being sent through the fully-connected layers. The output of the embedding network is

a vector of length 20. The output of the control network corresponds to torques applied to the 7 joints of

the arm. The task is considered a success if the robot pushes the centre of the target object into the red

target circle for at least 10 timesteps within 100-timestep episode. Further information regarding this

task can be accessed from [Finn et al., 2017b].

5.4.3 Real-world Placing via Sim-to-Real

The final experiment tests how well our method works when applied to a real robot. Not only that,

but we also look at the potential of our method to be used in a sim-to-real context; where the goal is

to learn policies within simulation and then transfer these to the real world with little or no additional

training (we focus on the latter). This is an attractive idea, as data collection in the real world is often

cumbersome and time consuming.

For these experiments, the CNN consisted of 4 strided convolution layers, each with 16 (5× 5) filters,

followed by 4 fully-connected layers consisting of 100 neurons. Input consists of a 125×125 RGB image
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and the robot proprioceptive data, including just the joint angles. The proprioceptive is concatenated to

the features extracted from the CNN layers of the control network, before being sent through the fully-

connected layers. The output of the embedding network is a vector of length 20. The output of the

control network corresponds to torques applied to the 7 joints of a Kinova Mico 7-DoF arm. There is

also an additional auxiliary end-effector position output that is learned via an L2 distance between the

prediction and the ground truth during simulation training. The task is considered a success if the robot

drops the held object into the correct target container.

As a note, we also experimented with using a U-Net architecture [Ronneberger et al., 2015] for the

control network, where the sentence is concatenated to the image features at the bottleneck, but our

experiments showed that channel-wise concatenation at the input layer of the control network worked

just as well.

Figure 5.6: The real world test set for the placing

domain. Holding objects on the left and placing ob-

jects (consisting of bowls, plates, cups, and pots) on

the right.

We run a robotic placing experiment much like

the one proposed in MIL, where a robot arm is

given the task of placing a held object into a spe-

cified container whilst avoiding 2 distractors. The

key difference is that our data is collected in sim-

ulation rather than real world. As summarised

in Figure 5.1, our TecNet is trained in simulation

with a dataset of 1000 tasks with 12 examples per

task. Our containers consist of a selection of 178

bowls from the ShapeNet database [Chang et al.,

2015]. To enable transfer, we use domain randomisation; a method that is increasingly being used trans-

fer learned polices from simulation to the real world [James et al., 2017a, Tobin et al., 2017a, Matas

et al., 2018]. We record RGB images of size 160 × 140 from an external camera positioned above the

robot arm, joint angles, and velocities along a planned linear path for each example. During domain

randomisation, we vary the lighting location, camera position, table texture, target object textures and

target object sizes, and create procedurally generated holding objects. An example of the randomisation

can be seen in Figure 5.1.

Once the network has been trained, we randomly select one holding object and 3 placing targets from

our test set of real-world objects (shown in Figure 5.6); these objects have not been seen before in either

simulation or real world. The robot is shown a single demonstration via human teleoperation using the

HTC Vive controller. During demo collection, only RGB images and joint angles are collected. A trial

is successful if the held object lands in or on the target container after the gripper ihas opened.
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One-shot success rates in the real-world is 72.97%, and is based on 18 tasks with 4 examples each (72

trials total), showing that we are able to successfully cross the reality-gap and perform one-shot imitation

learning. The majority of our failure cases appeared when the target objects were cups or plates, rather

than bowls. We imagine this is due to the fact that our training set only consisted of bowls. Results for

the real world evaluation can be seen in the video2.

5.4.4 Sim-to-Real Embedding Visualisation

In this section we show t-SNE [Maaten and Hinton, 2008] visualisation of the learnt embedding of the

real-world placing task of Section 5.4.3. Note that the TecNet was trained entirely in simulation without

having seen any real-world data. In order to visualise how the embedding looks on real-world data, we

collect a dataset of 164 tasks, each consisting of 5 demonstrations. Each demonstration consists of a

series of RGB images that were collected via human teleoperation using the HTC Vive controller. Each

demonstration in these visualisations are represented via the final frame of that demonstration.

2https://sites.google.com/view/task-embedded-control
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Figure 5.7: A t-SNE visualisation of the individual sentences of each of the demonstrations learnt by the
task-embedding network. We embed 5 demonstrations (without averaging) across each of the 164 tasks.
The aim of the visualisation is to illustrate how examples of the same task relate with each other. The
result shows that the task-embedding network does indeed learn to place examples of the same tasks
next to each other, whilst also placing other, visually similar, tasks nearby.
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Figure 5.8: A t-SNE visualisation of the combined sentences learnt by the task-embedding network. We
embed 5 demonstrations and average to get the task sentence for each of the 164 tasks. Given that we are
only plotting the combined sentences, this can be seen as a more legible version of Figure 5.7, focusing
on how tasks relate to other tasks, rather than how examples of the same task relate with each other.
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5.5 Learning from Human Videos

Humans are able to learn how to perform a task by simply observing their peers performing it once; this is

a highly desirable behaviour for robots, as it would allow the next generation of robotic systems, even in

households, to be easily taught tasks, without additional technology or long interaction times. Endowing

a robot with the ability to learn from a single human demonstration rather than through teleoperation,

would allow for a more seamless human-robot interaction.

Previous work has investigated hand-engineered systems which track movements and specify a map-

ping between the human and robot domains [Lee et al., 2013, Yang et al., 2015]. Rather than explicitly

hand-engineered systems, an emerging trend in robotics is to instead learn control directly from raw

sensor data in an end-to-end manner. These systems operate well when close and complicated coordin-

ation is required between vision and control [Levine et al., 2016a].

Visuospatial skill learning (VSL) has looked at achieving desired goal configuration of objects relative

to one another [Ahmadzadeh et al., 2013], and has been demonstrated on an alphabet ordering task, an

animal puzzle task, and a Tower of Hanoi task. However, this approach has only been shown with a singe

demonstration, which opens up the possibility for ambiguity when giving a demonstration for a task. For

example, imagine a blue bowl adjacent to a plate, and a demonstration is given of a person placing an

apple into the bowl. There is inherent ambiguity in this single demonstration, as the demonstrator may

not want the robot to put the apple into this specific blue bowl, but instead by trying to demonstrate

that the apple should be put into any blue container, or that the apple should be put into a container that

is adjacent to the plate. It is therefore vital that a method has the ability to take in additional human

demonstrations in situations like this to resolve any ambiguity.

Domain-Adaptive Meta-Learning (DAML) is a recent approach that uses an end-to-end method for

one-shot imitation of humans [Yu et al., 2018] which leveraged a large amount of prior meta-training

data collected for many different tasks. This approach required thousands of examples across many

tasks during meta-training: these examples are videos of a person physically performing the tasks and

teleoperated robot demonstrations, meaning that there has to be an active and long human presence

when collecting the dataset. Is there a way to reduce, or even eliminate, the amount of human presence

that is needed when collecting datasets that require footage of humans? We propose that the recent

successes in visual simulation-to-reality transfer [James et al., 2017a, Matas et al., 2018, Bousmalis

et al., 2018, James et al., 2019b] suggest there is a way.

To that end, we present an approach to the one-shot human imitation learning problem which does

not require an active manual intervention during training, thus saving tens or hundreds of researchers
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Figure 5.9: The robot gains its ability to infer actions from humans in simulation, and can then learn a
new task from a single human demonstration in the real-world.

hours. We show that Task-Embedded Control Networks (TECNets) can be used to infer control policies

by embedding human demonstrations that can condition a control policy and achieve one-shot imitation

learning. Rather than using real humans to supply demonstrations during training, we instead leverage

domain randomisation in an application that has not been seen before: sim-to-real transfer on humans.

Similarly to the work in Chapter 3 on sim-to-real for behaviour cloning, we can learn the control

policy by constructing a dataset of both the simulated human and robot trajectories that are generated via

inverse kinematics (IK) in the Cartesian space. These can then be used to train a reactive neural network

controller which continuously accepts images along with joint angles, and outputs motor velocities.

After training, we are able to deploy a system in the real world which can perform a previously

unseen task in a new configuration after a single real-world human demonstration. Our approach, which

is summarised in Figure 5.9, is evaluated on pushing and placing tasks in both simulation and in the

real world. We show we are able to achieve similar results to a system trained on real-world data.

Moreover, we show that our approach remains robust to visual domain-shifts, such as a substantially

different background, between the human demonstrator and the robot agent performing the task.

5.5.1 Method

We expand on the TECNets method introduced in Section 5.3 section by incorporating the notion of

a human demonstrator which can be summarised in Figure 5.10. We slightly modify the definition

of a task T to instead include two collections of examples: a human demonstrator collection H =

{τH1 , · · · , τHK} and a robot agent collection R = {τR1 , · · · , τRK}, such that T = (H,R), where τR =

[(o1,a1), . . . , (oT ,aT )], similarly to Section 5.3, and τH = [o1, . . . ,oT ]. Note that the length of the

human trajectory does not have to equal the length of the corresponding robot trajectory.

From this, we now pick three disjoint sets of examples (rather than the original two) for every task Tj :

a support set of human examples HjU , a query set of human examples HjQ, and a set of robot examples

Rj
′ .
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Figure 5.10: We use Task-Embedded Control Networks (TECNets) to allow tasks to be learned from a
single human demonstration. Images of human demonstrations are embedded into a compact represent-
ation of a task, which is then expanded and concatenated (channel-wise) to the most recent observation
from a new configuration of that task before being sent through the control network in a closed-loop
manner. Both the task-embedding net and control net are jointly optimised to produce a rich embedding.

In analogy to Equation (5.1) a combined context sj ∈ RN for a task is computed by taking the

normalised mean of the context for each example in the support set of human examples HjU :

sj =

[
1

|HjU |

∑
τ∈HjU

fθ(τ)

]∧
. (5.5)

We then train the embedding model to produce a higher dot-product similarity between human demon-

strations of a task’s embedded example fθ(τ) and its context sj than to contexts of human demonstra-

tions from other tasks si:

Lemb =
∑
τ∈Hj

∑
i 6=j

max[0,margin− fθ(τ) · sj + fθ(τ) · si] . (5.6)

Additionally, given a context sj , computed from the support set HjU , as well as examples from the robot

set Rj
′ for the same task we can compute the following behaviour-cloning loss for the policy π:

Lctr =
∑
τ∈RjQ

∑
(o,a)∈τ

‖π(o, sj)− a‖22 . (5.7)

The final loss is the combination of the embedding loss Lemb, the control loss on the support set for the

human examples, and the control loss on the robot examples:

Ltec = λembLemb + λUHctrL
U
Hctr + λRctrLRctr . (5.8)

Note that only the human examples of the same task are explicitly enforced to be close together in

the embedding space, rather than human and robot examples. Although we could have also enforced

an additional embedding loss on human and robot examples being close together, in practice we found

that this was not necessary. This is due to the joint training of both task-embedding and control net-

works which enforces the network to implicitly learn to map the embedded human examples to a set of

corresponding robot actions. Pseudocode for both the training is provided in Algorithm 3.
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Algorithm 3 Training loss computation for one batch. B is the batch size, KU and KQ are the number
of examples from the support and query set respectively, KR is the number of robot examples to sample,
and RandomSample(S,N) selects N elements uniformly at random from the set S.

1: procedure TRAINING ITERATION

2: B = RandomSample({T1, · · · ,TN}, B)
3: for Tj ∈ B do
4: (Rj ,Hj)← Tj

5: HjU = RandomSample(Hj ,KU )

6: HjQ = RandomSample(Hj\HjU ,KQ)

7: Rj
′ = RandomSample(Rj ,KR)

8: sjU =
[

1
KU

∑
τ∈HjU

fθ(τ)
]∧

9: sjq = fθ(τq) ∀τq ∈ HjQ
Lemb = LUHctr = LRctr = 0

10: for Tj ∈ B do
11: Lemb +=

∑
q

∑
i 6=jmax[ 0,margin− sjq · sjU + sjq · siU ]

12: LUHctr +=
∑

τ∈HjU

∑
(o,a)∈τ ‖π(o, s

j
U )− a‖22

13: LRctr +=
∑

τ∈Rj′

∑
(o,a)∈τ ‖π(o, s

j
U )− a‖22

14: Ltec = λembLemb + λUHctrL
U
Hctr

+ λQRctrL
Q
Rctr

15: return Ltec

Input to the task-embedding network consists of (width, height, 3 × |τ |), where 3 represents the

RGB channels. As in the TECNets work, we found that we only need to take the first and last frame

of an example trajectory τ for computing the task embedding and so we discard intermediate frames,

resulting in an input of (width, height, 6). The context from the task-embedding network is then tiled

and concatenated channel-wise to the input of the control network (as shown in Figure 5.10), resulting

in an input image of (width× height× 3 +N), where N represents the length of the embedding.

Data Collection in Simulation

Many approaches to human imitation rely on training in the real world. This has many disadvantages, but

most evident is the amount of time and effort needed to collect data for the training dataset. In the case

of DAML, thousands of demonstrations had to be recorded, which rely on an active human presence

to obtain both human and robot demonstrations, as the robot still has to be controlled in some way.

For instance, in the DAML placing experiment a total of 2586 demonstrations were collected to form

the training dataset, meaning tens of research hours dedicated to collecting data, with no guarantees

that the dataset allows the network to generalise well enough. Training in simulation provides much

more flexibility and availability of data: data generation can be easily parallelised and does not require

constant human intervention. Additionally, there have been many successful examples of systems trained

in simulation and then run in the real-word; one common approach to do this is domain randomisation

[Sadeghi and Levine, 2017, Tobin et al., 2017a, James et al., 2017a, Matas et al., 2018, Bousmalis et al.,
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Figure 5.11: An example of the variations we get when we apply domain randomisation to the simulated
human arm.

2018, James et al., 2019b].

Our approach generates the training dataset using PyRep [James et al., 2019a], a recently released

robot learning research toolkit, built on top of CoppeliaSim/V-REP [E. Rohmer, 2013]. We modelled a

3D mesh of a human arm from nonecg.com, which we then broke down into rigid shapes. Our simulated

arm has 26 degrees of freedom: 3 in the shoulder, 2 in the elbow, 2 for the wrist and the remaining 19 in

the hand. 26 revolute joints link together the different rigid shapes: to emulate the soft-body behaviour

of a real arm during motion, adjacent shapes slide over each other, making previously hidden parts of

each shape visible. The resulting effect is very similar to real human arm motion.

Following previous work in behaviour cloning [James et al., 2017a], during dataset generation we

collect a series of linear paths generated in the Cartesian space via inverse kinematics (IK) in order

to construct the task sequence. At each timestep, we collect the image, the joint angles and the joint

velocities at each timestep for both human arm and robot. To achieve sim-to-real transfer we perform

domain randomisation. Specifically, we sample from a set of 5000 textures and procedurally generated

images (via Perlin noise), and apply them to all objects in the scene and to the human arm (an example

can be seen in Figure 5.11). Additionally, we sample the position, the orientation and the size of the

objects from a uniform distribution. The starting configuration of both the demonstrator and the agent,

camera pose, light directions and lighting parameters are sampled from a normal distribution. A snapshot

of the simulation and real-world setup can be seen in Figure 5.12.
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Figure 5.12: The simulation and real world setup. On the left, we see the 24 DoF arm, and in the centre
we see the 6 DoF Kinova Mico arm; both have domain randomisation applied. On the right, we see
real-world setup with the Kinova Mico. Observations come from an over-the-shoulder RGB camera in
both simulation and the real world.

Training

Our task-embedding network and control network use a convolutional neural network (CNN), which

consists of 4 convolution layers, each with 16 filters of size 5× 5, followed by 3 fully-connected layers

consisting of 200 neurons. Each layer is followed by layer normalisation [Ba et al., 2016] and an elu

activation function [Clevert et al., 2016], except for the final layer, where the output is linear for both

the task-embedding and control network.

Input consists of a 125 × 125 RGB images and the robot proprioceptive data, including the joint

angles. The proprioceptive data is concatenated to the features extracted from the CNN layers of the

control network, before being sent through the fully-connected layers. The output of the embedding

network (embedding size) is a vector of length 20. The output of the control network corresponds to

velocities applied to the 6 joints of a Kinova Mico 6-DoF arm. During training, we set the margin to be

0.1 for the embedding loss Lemb, and set both the support and query size to be 5.

Optimisation was performed with Adam [Kingma and Ba, 2015] with a learning rate of 5× 10−4 and

a batch size of 100. Lambdas were set as follows: λemb = 0.1, λUHctr = 1.0, and λRctr = 1.0.
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Figure 5.13: The three tasks that we evaluate our model on in the real world. Left: placing an object
in one container with two distractor, same camera pose for human and robot and same background.
Centre: the same placing task as on the left, but with a domain shift (cloth on the table) between the
human demonstration and the robot execution. Right: pushing one object to a target with one distractor,
same camera pose for human and robot and same background.

5.5.2 Results

In our experiments we try to answer the following questions: (1) Can TECNets learn the domain shift

between a demonstrator and an agent? In other words, can our approach learn an embedding of a task

given demonstrator examples, and also a mapping from the demonstrator domain to the agent domain

for control? (2) Is it possible to learn a task from a real-world human demonstration when all the

training is done is simulation? (3) How does our approach compare to another state-of-the-art one-shot

human imitation learning method? We consider two experiments, placing and pushing, which were

undertaken for DAML [Yu et al., 2018] in order to compare our approach with their results. We run a

set of experiments in both simulation and in the real world.

Placing

We begin by presenting our results for the placing experiment, both in simulation and in the real world:

the goal is to place a hand-held object in a container, with other two containers in the scene acting as dis-

tractors. A trial is successful if the object lands inside the container. Our dataset features a total of 2280

tasks, where each contains 15 simulated human demonstrations, and 15 simulated robot demonstrations.

For each task we sampled three objects from the MIL dataset [Finn et al., 2017b] of 105 training meshes,

and used them as target containers and distractors; we randomised the scene as described in 5.5.1 and

we trained the network in simulation with the parameters in 5.5.1.

We evaluated one-shot placing in simulation on 74 tasks, with 6 trials each, using the MIL test meshes:

in every trial we randomise the position of the objects and of the camera, and we procedurally generate

the hand-held object. We also performed evaluation for the same system in the real world (Figure

5.13 Left) on 18 tasks and 4 trials, using the containers and the held objects shown in Figure 5.14a,

maintaining the same camera pose and background between demonstration and trial.

The results for the placing experiment are shown in Table 5.2. We find that the robot is able to learn
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(a) Placing (b) Pushing

Figure 5.14: The real world test set for both the placing (a) and pushing (b) domain. For the placing
domain (a), holding objects are on the top and placing objects (consisting of bowls, plates, cups, and
pots) are on the bottom.

from just one human demonstration of a previously unseen task, and can leverage the training with do-

main randomisation to bridge the reality gap, with comparable success rates to DAML. Additionally, we

report the results of simulated placing evaluation for a network trained without the control loss on the

human examples support set LUHctr . As it was previously outlined in James at al. [James et al., 2018], the

inclusion of the support loss assists the network in learning the task and the mapping between domains.

In addition, James at al. [James et al., 2018] also showed that when setting λemb = 0, performance

degrades catastrophically, emphasising that the embedding network is learning a meaningful represent-

ation for the control network. When transferring from simulation to reality we get an expected drop

from 94.1% to 88.9% (as is common in sim-to-real related work [James et al., 2017a, Bousmalis et al.,

2018, James et al., 2019b]), which falls below DAML’s 93.8%. Given the difference in robot, sensors,

objects, and training setups, it is difficult to compare approaches evenly, but we believe this shows that

our method can get comparable performance despite using no real-world data.

We also report the results of a real world experiment with a dataset where we simply randomised the

scene and made the held object float to the target bowl, without using our simulated human arm. The

results show that without the simulated arm, the resulting real-world policy chooses a target at random;

therefore the arm model is necessary to successfully learn to imitate from a single human demonstration.
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Placing Experiment
DAML: Real World 93.8%
Ours: Real World 88.9%

Ours: Sim 94.1%
Ours: Sim λUctr = 0 78%

Ours: Real World (No Sim Arm) 39%

Table 5.2: One-shot success rate of the placing experiment, using novel objects. In simulation the scene
is randomised for every trial. In the real-world the human demonstrations are taken from the perspective
of the robot. We achieve comparable performance to DAML despite training on no real-world data.

Pushing Experiment
DAML: Real World 88.9%
Ours: Real World 84.7%

Ours: Sim 87.6%

Table 5.3: One-shot success rate of the pushing experiment. In simulation the scene is randomised for
every trial, whereas in the real-world the human demonstrations are taken from the perspective of the
robot. As in the placing results, we achieve comparable performance to DAML despite training on no
real-world data.

Pushing

In the pushing experiment the goal is to push an object against a target amid one distractor: a trial is

successful if the object hits or falls within 5cm of the target. Our dataset features a total of 1620 tasks,

with 15 domain randomised demonstrations for both robot and human, using objects from the MIL

dataset.

We evaluated one-shot pushing in both simulation and real-world (Figure 5.13 Right), with the same

number of trials as for the previous placing experiments. The objects used for the real-world experiment

are shown in Figure 5.14b. We report the results in Table 5.3 together with the DAML results to show

that our network trained in simulation has once again comparable performance to a model trained with

real data.

Large Domain Shift

As a final experiment, we tested how resilient our model is against large domain shifts in the real world,

expecting it to leverage the adaptability acquired from domain randomisation. We evaluated placing in

the real world taking the human demonstrations with a cloth on the table, and then making the robot

perform the same task with the table cloth removed, therefore with a substantial change of background

(Figure 5.13 Centre): the model placed the held object correctly 87.5% of the 72 trials.
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We have therefore shown that due to domain randomisation our performance does not degrade on

large domain shifts, whereas for example in DAML the success rate under large change of scenes drops

by up to 15%. This showcases the benefits of leveraging large scale simulations for robotic learning.

Failure Modes

Across both placing and pushing experiments, we found two common failure modes: (1) failure from

task identification, where the robot successfully executed a task, but not the one that was specified;

for example, in the pushing task, correctly pushing the distractor to the target rather than the desired

object. (2) Failure from control, where the robot (appeared) to identify the task, but did not succeed;

for example, in the placing task the robot would head towards the correct object, but would overshoot or

undershoot the target.

5.6 Conclusion

We have presented TECNets, a powerful few-shot learning approach for end-to-end few-shot imitation

learning. The method works by learning a compact description of a task via an embedding network,

that can be used to condition a control network to predict action for a different example of the same

task. Our approach is able to surpass the performance of MIL [Finn et al., 2017b] for few-shot imitation

learning in two experimental domains when only visual information is available. Unlike many other

meta-learning approaches, our method is capable of continually learning new tasks without forgetting

old ones, and without losing its few-shot ability. Moreover, we demonstrate that the few-shot ability can

be trained in simulation and then deployed in the real world. Once deployed, the robot can continue to

learn new tasks from single or multiple demonstrations.

Similar to other meta-learning approaches, we expect the approach to perform poorly when the new

task to learn is drastically different from the training domain; for example, a TECNet trained to place

items in containers would not be expected to learn few-shot pushing. Having said that, if the training set

were to include a wide range of tasks, generalising to a broad range of tasks may be possible, and so this

is something that should be looked at further.

In addition, we have presented an approach to the one-shot human imitation problem that lever-

ages zero human interaction during training time. We achieve this by the combination of 2 methods.

Firstly, we extending Task-Embedded Control Networks (TECNets) to infer control polices by embed-

ding human demonstrations that can condition a control policy and achieve one-shot imitation learning.

Secondly, and most importantly, we show that we are able to perform sim-to-real on humans which al-

lows us to train our system with no real-world data. With this approach, we are able to achieve similar
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performance to a state-of-the-art alternative method that relies on thousands of training demonstrations

collected in the real-world, whilst also remaining robust to visual domain-shifts, such as a substantially

different backgrounds.

Although we achieve this performance without real-world data, there are a few limitations. For one,

because of our data generation process, which generates linear IK trajectories for both the human arm

and the robot, we do not get a diverse range of trajectories in our dataset. This has the consequence that

when giving the few-shot demonstrations in the real world, the human may have to (undesirably) perform

the demonstrations in a certain way; nevertheless this has a small impact due to our approach taking into

consideration only the first and the last frames of the demonstration. Moreover, there is a fundamental

question about the limitations of training in simulation itself: while real-world data collection may be

time consuming, it can in principle be collected by anyone, whilst setting up a sim-to-real environment

requires greater expertise.

For future work, one way to improve data diversity could be to instead obtain the simulated human arm

trajectories from a reinforcement learning algorithm, which would offer a greater diversity of behaviours

to train the task-embedding network. Moreover, we hope to further investigate the variety of human

actions that can be transferred from simulation to reality. For example, in this work, we have shown

that a human arm can be transferred, but would the same method work for demonstrations including the

entire torso of a human? We hope this work provides the first step in answering this question.
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6.1 Introduction

In the previous chapter, we achieved high success on one-shot imitation learning with TECNets. How-

ever, one important weakness of the evaluation was the limited variation across tasks. This was predom-

inantly down to the fact that we were in uncharted territory: there did not exist a suitable benchmark or

standard set of tasks for the few-shot manipulation community. In fact, despite the large body of work

looking at increasing the capabilities of robotic agents through the use of reinforcement learning [James

and Johns, 2016a, Kalashnikov et al., 2018], meta-learning [Finn et al., 2017b, James et al., 2018, Yu

et al., 2018], multi-task learning [Devin et al., 2017, Hausman et al., 2018], etc, there is currently no

standard in place for comparing manipulation methods in these respective areas. Although there exist

benchmarks such as OpenAI Gym [Brockman et al., 2016b] and DeepMind Control Suite [Tassa et al.,
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2018] for evaluating continuous-control reinforcement learning algorithms, their focus is not on real-

world problems, and it is often the case that algorithms in these toy-benchmarks do not scale to more

complex, real-world tasks. As we have seen, few-shot learning methods for robotics also suffer from a

lack of well defined tasks; for example, in Finn et al. [Finn et al., 2017b] and our work in the previous

chapter, there is a very narrow distribution of tasks, where the task of “placing a peach into a red bowl”

would be considered a different task to “placing an apple in to a green bowl”. Despite the increase in

these data-driven approaches, it is not clear where the ideal location on this ‘learning’ spectrum lies for

complex robotics tasks that we may one day want robots performing in our homes. Given all of these

problems, there seems to be a need for a benchmark that evaluates not only the diverse range of robot

learning fields that are now emerging, but also a range of visually-guided manipulation approaches from

both sides of the spectrum.

This motivates the need for a one-size-fits-all benchmark that allows the capability to utilise large-

scale data, whilst also allowing classical systems to be compared. To that end, we present RLBench,

which is an ambitious large-scale benchmark and learning environment designed to facilitate research

in a number of both classical and deep-learning based robot manipulation areas. RLBench is deliber-

ately highly challenging and forward looking. The benchmark includes 100 completely unique, hand-

designed tasks ranging in difficulty (shown in Figure 6.1), which share a common Franka Emika Panda

robot arm, featuring a range of sensor modalities, including joint angles, velocities and forces, an eye-in-

hand camera and an over-the-shoulder stereo camera setup. Each of the 100 tasks comes with a number

of textual descriptions and an infinite set of demonstrations made possible through our task building

tools that use waypoint-based motion planning.

In this chapter, we discuss a host of research areas that would benefit from this benchmark, including,

but not restricted to, reinforcement learning, imitation learning, few-shot learning, multi-task learning,

and the incorporation of explicit model-based intermediate representations from computer vision and

SLAM. In addition to the benchmark, we also contribute an open-source set of tools that will allow

rapid development of new tasks (through the use of PyRep [James et al., 2019a]) in order to improve the

size and scope of the benchmark over time. To summarise, RLBench has the following 3 key aims:

• Provide a benchmark and learning environment for both ‘robot learning’ and ‘traditional’ methods.

• Provide the a large-scale few-shot challenge, where given M training tasks and N unseen tasks, a

system must take K different demonstrations of each of the N unseen tasks, and then be able to

perform these tasks in new configurations.

• Provide a set of tools to allow easy task creation.
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Figure 6.1: RLBench is a large-scale benchmark consisting of 100 completely unique, hand-designed
tasks. In this figure we show a sample of 24 tasks that feature in the benchmark. Example tasks include
stacking a set of 6 colored blocks in a pyramid (top left), inserting a shape onto a peg (top right),
finish setting up a checkers board (bottom left), and watering a plant (bottom right). To get a better
understanding of the variety of tasks, please watch the video.

6.2 Related Work

We review existing datasets, benchmarks, and learning environments that could be considered similar

to ours in an effort to further motivate RLBench. Firstly we cover reinforcement learning benchmarks,

followed by benchmarks designed specifically for manipulation.

Reinforcement Learning Largely as a consequence of the seminal work that saw an algorithm learn

to play a range of Atari 2600 video games to superhuman level directly from image pixels [Mnih et al.,

2015], deep reinforcement learning (DRL) has increasingly become prevalent in the literature, leading

to a number of recent further success in the games of Go [Silver et al., 2016], Chess [Silver et al.,

2017], StarCraft [DeepMind, 2019], and Dota [OpenAI, 2018]. With the success of these approaches,

there has been a surge in developing DRL algorithms to solve continuous control environments [Lilli-

crap et al., 2015a, Schulman et al., 2015, Schulman et al., 2017, Haarnoja et al., 2018a, Fujimoto et al.,

2018a]. These learned (continuous control) agents are usually tested on benchmarks such as OpenAI

Gym [Brockman et al., 2016b] or the DeepMind Control Suite [Tassa et al., 2018]. However, apart

from a small number of robotic tasks in OpenAI Gym, these benchmarks feature only toy tasks that

often do not resemble real-world problems that robots will need to overcome. To combat this, many

projects create their own manipulation tasks to evaluate their approach, making comparisons difficult.

As a direct consequence of this, these created tasks can often succumb to unintentionally introducing

another hyperparameter into the method in the form of the task design itself. For example, a method

could fail on a more challenging task, and so results would only be presented for a simpler set of tasks.

This is something a standard benchmark of tasks could alleviate. Moroever, the continuous control tasks
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in both OpenAI Gym [Brockman et al., 2016b] and the DeepMind Control Suite [Tassa et al., 2018] do

not provide an easy-to-use task building tool, and so users must define tasks in XML using the MuJoCo

interface (which is cumbersome, error prone, and time consuming). RLBench however, is built around

a CoppeliaSim/V-REP [Rohmer et al., 2013] and PyRep [James et al., 2019a] interface, allowing for

drag-and-drop style scene building, and a whole host of robotic tools, such as inverse/forward kinemat-

ics, motion planning, visualisations, etc. RoboNet [Dasari et al., 2019] is a recent real-world dataset

consisting of 15 million video frames, collected via a range of robots interacting with different objects

in a table-top setting. The aim is to use this dataset to pretrain reinforcement learning models and then

transfer knowledge to a different test environment. The aim of RLBench however, is to offer a bench-

mark platform for a number of research areas. We should also mention the very recently announced

Meta-World project [Yu et al., 2019], a multi-task simulated benchmark for meta-learning research in

manipulation, which was released concurrently with this work. Although Meta-World has a similar

goal to RLBench, our benchmark has significantly more tasks, uses many more sensor modalities, has a

visually higher fidelity, and has the ability to generate demonstrations.

Manipulation Most related work in benchmarking robot manipulation algorithms often concentrates

on solving only one of the manipulation sub-problems, focusing on either perception, grasping, or plan-

ning. But first, we look at benchmarks that evaluate the system as a whole. The Amazon Robotics

Challenge (ARC) [Eppner et al., 2016] was an attempt to create a benchmark for robotic picking and

stowing. Although it was a successful challenge that drew many conclusions, such as the usefulness of

a dual gripper and suction cup end-effector [Morrison et al., 2018], it was difficult to reproduce in a lab

setup. The ACRV Picking Benchmark [Leitner et al., 2017] aimed to solve this by creating a similar, but

reproducible setup to the ARC. The issue with picking and stowing is that it is but one of many possible

tasks; RLBench on the other hand comes with 100 unique tasks, many of which involve some aspect of

picking and placing. Similarly to ARC, the RoboCup@Home competition [Wisspeintner et al., 2009] is

run annually, but has a greater range of tasks that must be completed. However, given that no large-scale

data is given beforehand, this makes reinforcement learning and other end-to-end approaches difficult to

apply in the competition. RLBench is a platform that can unify both old and new methods and compare

them on an even playing field.

For evaluating imitation learning systems in particular, RoboTurk [Mandlekar et al., 2018] was a

recent attempt to leverage crowd sourcing to obtain data for tasks, but because of this the system has

only three tasks. Whilst RoboTurk is entirely in simulation, Simitate [Memmesheimer et al., 2019] on

the other hand is a hybrid approach, where real world observations (RGB-D camera calibrated against

a motion capturing system) are combined with a simulated environment for benchmarking. In contrast
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Figure 6.2: The CoppeliaSim/V-REP scene consists of a Franka Panda affixed to a wooden table, sur-
rounded by 3 directional lights. Observations include rgb, depth, and segmentation masks from an
over-the-shoulder stereo camera and a eye-in-hand monocular camera, along with robot proprioceptive
data, which includes joint angles, velocities, and torques, and the gripper pose. The arm can be easily
swapped out for another arm if required.

to RoboTurk, we do not crowd source our demonstrations, but instead rely on an infinite supply of

generated demonstrations collected via motion planners. Although Simitate offers the benefit of being

partially a real-world dataset, the addition of new tasks requires time-consuming calibration and motion

capturing; our system on the other hand sacrifices the real-world aspect, but in exchange we receive the

ability generate a diverse range of tasks in a scalable way.

Moving on from whole-system benchmarks, there are a host of benchmarks that focus on sub-problems,

for example perception datasets, from both the computer vision community (such as ILSVRC [Rus-

sakovsky et al., 2015a], COCO [Lin et al., 2014], Pascal-VOC [Everingham et al., 2015], etc), and

the robotics community (such as BigBIRD [Singh et al., 2014], YCB-Video [Xiang et al., 2018], etc).

For grasping, both OpenGrasp [Ulbrich et al., 2011] and VisGraB [Popović et al., 2011] are popular

simulation-based benchmarks, whilst the YCB dataset [Calli et al., 2015] focuses on real-world ob-

jects. In comparison to these, RLBench allows robotic systems to be evaluated on the complete robotic

pipeline, rather than limited to sub-problems such as object detection, state estimation, grasp selection,

and planning. Recently there has been an attempt to benchmark the fidelity of simulation environments
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Figure 6.3: A sample of the visual observations given from both the over-the-shoulder stereo and eye-
in-hand monocular cameras, which supply rgb, depth, and mask images.

against the real world [Collins et al., 2019].

6.3 Benchmark Properties

When designing RLBench, we have prioritised several key properties:

Diversity Algorithms we develop should be general. In order to effectively learn inter-task relation-

ships, a truly diverse range of tasks is needed to help avoid over-fitting.

Reproducibility Reproducibility is challenging in robotics as each lab has their own robotic setup.

Moving to simulation solves this, but at the risk of developing solutions that may not run as well in
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Figure 6.4: An example showing the distinction between task, variation, and episode. In this case,
the ‘stack blocks’ task has V variations, each with E episodes. Each variation comes with a list of
textual descriptions that describes the objective.All of the textual descriptions below each variation in
the Figure correspond to the same variation. Across variations, usually target objects or colours are
changed, whereas across episodes positions are changed.

the real-world. However, with the rise of deep-learning methods becoming more prominent in robotics,

we believe it is important to find the potential and limits of these methods in a controlled, reproducible

environment.

Scale Given the amount of data modern machine learning methods need, it is important to not only

have a large collection of tasks, but also the ability to produce a large number of demonstrations from

these tasks.

Extensibility Following on from the previous point, we hope to continue to grow this repository of

tasks. Therefore it is crucial that the task building system is as easy as possible to use. By leveraging

the recently released robotics toolkit, PyRep [James et al., 2019a], we are able to make a broad range of

tasks in a short amount of time.

Tiered Difficulty Attempting to get robots to do a single task can be challenging let alone expecting

them to do numerous tasks. We therefore wanted to have a range of tasks, including both easy tasks,

such as reaching, which would be well suited to new and emerging methods, to more challenging, long-

time-horizon tasks that can stress-test well known state-of-the-art algorithms in use today.

Realism Although we cannot claim full photorealism in our rendering system, or general realistic

physics, we have put substantial effort into high quality components such as using a realistic robot

model, graphics with lighting and shadows and a domain randomisation rendering option in order to

maximise the potential for research on sim-to-real transfer. Moreover, sensor noise (e.g. depth camera

noise, proprioception noise, etc) is also an important part of making the benchmark realistic.
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6.4 RLBench

RLBench is an ambitious project which we hope to grow over many years. The benchmark and learning

environment is built around a CoppeliaSim/V-REP [Rohmer et al., 2013] and PyRep [James et al., 2019a]

interface. PyRep is a toolkit for robot learning research, built on top of CoppeliaSim/V-REP that features

a number of improvements, including speed, rendering, and flexible a API for robot control and scene

manipulation. Using the combination of these two libraries, we have been able to build this ambitious

benchmark, which we now describe in greater detail.

6.4.1 Scene

The CoppeliaSim scene, shown in Figure 6.2, remains constant across all tasks and contains the Franka

Emika Panda 7 DoF arm affixed to a wooden table, surrounded by 3 directional lights. As shown in

Figure 6.3, visual observations can be perceived from a stereo camera, and a monocular wrist camera,

which supply rgb, depth, and segmentation mask data on each frame. In addition to visual observations,

robot proprioceptive data can be retrieved, which includes joint angles, velocities, and torques, along

with the end-effector pose. To satisfy the realism constraint outlined in the previous section, RLBench

comes with the ability to supply a custom noise function for each of the observations; this is vital for

ensuring that methods developed in simulation can remain robust to the type of sensor noise we can

expect in the real world.

Tasks are loaded into the scene and placed at the centre of the workspace. Each task has a completely

sparse reward of +1 which is given only on task completion, and 0 otherwise. Users have a wide

variety of action spaces at their disposal, which include absolute or delta joint velocities, absolute or

delta joint positions, absolute or delta joint torque, absolute or delta end-effector velocities, and finally

absolute or delta end-effector poses. Every task starts with the same assumption that no objects are

held, therefore, unlike many works in the literature, tasks that involve tools will first need to grasp the

object appropriately in order to accomplish the task. Although this makes the environments considerably

harder to complete, we believe it is an important assumption to make given that household robots will

one day work under such conditions.

Users will interface with the benchmark and learning environment through the Environment class.

The Environment is the entry point and can spawn child environments, called TaskEnvironment, for the

tasks you are interested in solving. The environment API, which Figure 6.5 demonstrates, is modelled

after a typical agent-environment reinforcement learning setup.
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from rlbench.environment import Environment
from rlbench.action_modes import ActionMode
from rlbench.tasks import ReachTarget

DATASET = ’path/to/demo/dataset’

env = Environment(
DATASET, ActionMode.ABS_JOINT_VELOCITY)

env.launch()

task = env.sample_task()
demos = task.get_demos(2)

agent = Agent()
agent.ingest(demos)

training_steps = 100
episode_length = 100
obs = None
for i in range(training_steps):

if i % episode_length == 0:
descriptions, obs = task.reset()

action = agent.act(obs)
obs, reward, terminate = task.step(action)

env.shutdown()

Figure 6.5: Example usage of the RLBench Environment for training a reinforcement learning agent.
When using demonstrations, users can either point to a set of saved demonstrations (as shown here), or
alternatively generate demonstrations on the fly.

6.4.2 Tasks, Variations & Episodes

RLBench employs 3 keys terms: Task, Variation, and Episode. Each task consists of one or more

variations, and from each variation, an infinite number of episodes can be drawn. Each variation of a

task comes with a list of textual descriptions that verbally summarise this variation of the task, which

could prove useful for human robot interaction (HRI) and natural language processing (NLP) research.

A summary of this can be seen in Figure 6.4. Formally, we define an episode trajectory τ to consist of a

series of observations o and actions a: τ = [(o1,a1), . . . , (oT ,aT )]. These episodes are sampled from

a variation τ ∼ ν. Finally, we define each task to be a set of variations, T = {ν1, · · · , νN}.

We now motivate the need for the concept of a ‘variation’ with an example. It is naturally difficult to

come up with a precise way to differentiate between tasks given their subjective nature. For example,

one could argue that “pick up the apple” and “pick up the banana” are different tasks, whilst one could

also equally argue that they are the same “pick up the X” task. We therefore introduce the variation

concept, which allows cases like the above to be grouped as very similar tasks. Moreover, given the

way the task building tools are designed (discussed in Section 6.4.3), the variation concept allows a

convenient way of getting as much from a task definition as possible, given that there is usually only a

small amount of additional work needed to generate a large number of variations for a given task.
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from rlbench.backend.task import Task
from rlbench.backend.conditions import DetectedCondition, GraspedCondition
from pyrep.objects.shape import Shape
from pyrep.objects.proximity_sensor import ProximitySensor

class TakeLidOffSaucepan(Task):

def init_task(self):
lid = Shape(’saucepan_lid’)
success_detector = ProximitySensor(’success’)
self.register_graspable_objects([lid])
cond_set = [
GraspedCondition(self.robot.gripper, lid),
DetectedCondition(lid, success_detector)

]
self.register_success_conditions([cond_set])

def init_episode(self, index):
return [’take lid off the saucepan’]

def variation_count(self):
return 1

Figure 6.6: An example of a task python file. When using the task building tool, users are able to
simultaneously edit the CoppeliaSim/V-REP scene whilst also changing the various behaviour of a task.
In this example, the task is to take a lid off of a saucepan. By interfacing with the scene using PyRep,
we register that the episode should terminate and be considered a success only if the saucepan lid is
detected by a proximity sensor and that the lid is being held. The backend handles the randomisation of
the position of the task at the beginning of each episode.

6.4.3 Task Builder

Two common simulation environments in the literature today are Bullet [Coumans, 2013] and MuJoCo

[Todorov et al., 2012b]. However, given that these are physics engines rather than robotics frameworks,

it can often be cumbersome to build rich environments and integrate standard robotics tooling such as

inverse and forward kinematics, user interfaces, motion libraries, and path planners. Given the scale of

RLBench, we needed a tool for designing tasks as easily as possible.

The task building tool is the interface for users who wish to create new tasks to be added to the RL-

Bench task repository. Each task has 2 associated files: a CoppeliaSim/V-REP model file (.ttm), which

holds all of the scene information and demo waypoints, and a python (.py) file, which is responsible

for wiring the scene objects to the RLBench backend, applying variations, defining success criteria, and

adding other more complex task behaviours. Figure 6.6 shows an example of how simple many tasks

files can be.

In order to use the task creator, users must understand how tasks are initialised and placed in the

scene. When a user asks for a new task from RLBench, the task is initialised by calling init task(), and

is only called once. Following that, init episode(int i) is called at the beginning of each episode, and
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gets passed the variation number, which should be less than or equal to the number of variations for that

task (which can be obtained by calling variation count()). The init episode(int i) function returns a

list of strings which provide descriptions that could be associated with the variation of the task. The list

of descriptions are generated by swapping out key words in a set of predefined sentences; for example,

a predefined sentence such as ‘put the X block in the Y container’, would allow us to swap out X and

Y with different colours depending on the variation number. An analysis of the frequency of words in

these descriptions can be seen in top of Figure 6.7.

It is our hope that the suite of tasks offered by RLBench will continue to grow via a community effort.

To maintain a high quality of tasks, all tasks submitted to RLBench will be tested using a task validation

tool on a continuous integration server. This validation tool ensures that all tasks are well defined and

solvable. This is done by sampling a number of episodes across several variations, and ensures that

demonstrations can be collected.

6.4.4 Demonstrations

RLBench, through the task building tool mentioned in Section 6.4.3, provides expert algorithm π∗ for

each different task and their corresponding variations, allowing for demonstration episodes to be gener-

ated. The episodes produced via π∗ come from using the Open Motion Planning Library [Sucan et al.,

2012].

6.5 The RLBench Few-Shot Challenge

A big gap in the literature today is a means to evaluate and compare few-shot learning methods for

robotics. We place particular emphasis on the few-shot regime, because much like humans, robots should

have the ability to leverage knowledge from previously learned tasks in order to learn new ones quickly

in new and unfamiliar environments. Despite this, most approaches in manipulation have focused on

learning a single task, with a limited notion of generalisation, and no way of leveraging the knowledge

to learn other tasks more efficiently.

The few pieces of work that perform few-shot learning in robotics [Finn et al., 2017b, James et al.,

2018, Yu et al., 2018] focused on a very narrow definition of task and often treat a variation of the same

task as another task; for example, placing a peach into a red bowl would be considered a different task

to placing an apple into a green bowl. In order to develop truly general algorithms, we feel that it is

important to have a diverse range of tasks to train and test on. To that end, we propose the following

challenge:
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Figure 6.7: Top shows the 10 most and 10 least frequent words in the variation descriptions with function
words removed, leaving only content words. Bottom shows the average length of 5 demonstrations from
a sample of 20 tasks (taken from the first variation). The tasks lengths vary from 100 to 1000 timesteps.
Longer tasks usually involve many composed sets of actions, for example, the ‘empty dishwasher’ task
involves opening the washer door, sliding out the tray, grasping a plate, and then lifting the plate out of
the tray. These long-horizon tasks can facilitate interesting research in reinforcement learning in robotic
tasks.
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Given N unseen tasks, provide the system with K different demonstrations of each of the N tasks, and

then evaluate the systems ability to perform these tasks in new configurations. Specifically, we suggest

the following procedure:

• Of the 100 unique tasks, 10% of the tasks have been selected for the test set (meta-test) which

span a range of difficulties, while the rest are chosen for training (meta-train). These train-test

splits will be made available on the benchmark’s webpage.

• The training tasks can be used in any way desired by the user. RLBench supplies a large number

of pre-generated demos for each task that can be downloaded, although there is also the option to

generate demos on the fly (or for users to create their own).

• During test time, the system is given K demonstrations of the unseen task (K-shot), and then

success should be reported on new episodes of that same task. The only information available to

the system should be the number of demos N and their corresponding observations. There must

be no prior knowledge of the unseen tasks given to the system that are not included in the training

tasks. Users report 1-shot, 5-shot, and 20-shot results for their method.

We purposefully call this challenge v 1.0 as we expect the number of tasks to grow considerably over

the years; as this happens, we will create newer versions that span a broader range of tasks; therefore, we

hope this versioning will ensure results remain meaningful and reproducible as the benchmark grows.

State-of-the-art few-shot learning methods such as recurrent methods [Santoro et al., 2016, Duan et al.,

2016, Mishra et al., 2017], metric learning methods [Vinyals et al., 2016, Snell et al., 2017], and gradient

based methods [Finn et al., 2017a, Rusu et al., 2018] have not been tested on such a grand scale, and we

look forward to seeing how they perform on this benchmark.

6.6 Other Applications & Challenges

Further to the few-shot learning challenge highlighted in Section 6.5, we briefly overview other areas of

research that could benefit from RLBench.

Reinforcement Learning There is a large body of work in continuous control reinforcement learn-

ing that evaluate their algorithms on benchmarks such as OpenAI Gym [Brockman et al., 2016b] or

DeepMind Control Suite [Tassa et al., 2018]. Unlike these benchmarks, RLBench has been tailored

for visually-guided manipulation, which makes this an ideal platform for evaluating current and fu-

ture reinforcement learning algorithms on real-world based tasks. Moreover, given the large number of
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demonstrations provided, it opens up the space to accelerate and facilitate research in bootstrapping rein-

forcement learning policies with demonstrations in order to reduce sample complexity. In addition, with

the provided eye-in-hand camera observations, we open research in partial observability or incremental

estimation for continuous control tasks.

Imitation Learning Almost all imitation learning work design their own tasks for evaluating their

method, making reproducibility difficult. A set number of demonstrations are shipped with RLBench,

but there is also the option in the framework to generate demonstrations on-the-fly, meaning that you

cam generate an infinite amount for your imitation learning algorithm.

Sim-to-Real Transfer Recently there has been a large amount of work in learning control policies in

simulation and then transferring these to the real world [James et al., 2017a, Peng et al., 2018, Matas

et al., 2018, Hwangbo et al., 2019, Bousmalis et al., 2018, James et al., 2019b]. The simulated Franka

Panda within RLBench can be easily swapped out, with one line of code, for another arm that researchers

may have in their lab; this means that sim-to-real methods could be compared more easily on a standard

set of tasks. Moreover, given the task-building tool and demonstration generation that RLbench has to

offer, new tasks can easily be designed to demonstrate particular features in novel sim-to-real methods.

Multi-task Learning In contrast to few-shot learning, multi-task learning concerns itself with learning

several tasks simultaneously without particularly being expected to generalise to radically different tasks

at test time. In this setup, all tasks from both meta-training and meta-testing can be used during training,

and then during testing, the system must be able to generalise to unseen examples of those tasks. Given

the difficulty of the challenge laid out in Section 6.5, tackling the multi-task problem could provide

valuable insights to increasing performance in the few-shot domain.

SLAM and Explicit Model-based Representations There is an increasing acknowledgement from

ML researchers that the road to pure end-to-end machine learning of complex, long-term robot behaviour

is a very long one, and that there is great value in combining learning with traditionally engineered meth-

ods for scene representation [Davison, 2018]. SLAM from moving RGB or depth cameras for instance

can build persistent and reliable scene representation at the level of raw dense geometry (e.g. [Newcombe

et al., 2011]) or recognised objects (e.g. [McCormac et al., 2018]). While these representations are not

perfect, and contain human-designed abstractions which may not be optimal for action, we feel that a

crucial and obvious significant ongoing research direction will be on their usefulness for manipulation

when combined with task-based action learning. RLBench enables this research with its wide range
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of tasks, sensor and ground truth support, and could be important in unifying SLAM and manipulation

more tightly.

6.7 Conclusion

In this chapter, we have presented RLBench, an attempt to accelerate research in robotic manipulation

that can be used in a broad range of robotic related research. We have posed the few-shot learning

challenge for manipulation, and have highlighted a number of research areas that could benefit from this

large scale benchmark and learning environment.

There are a number of limitations to our benchmark that could be improved over time. An obvious

first limitation to our benchmark is the number of tasks; despite having a large number of tasks at launch,

we believe this to be an insufficient number in order to accomplish the challenge laid out in Section 6.5.

It is our hope that over the next few years, this task repository will grow into the thousands. Another

limitation is that object models have been rescaled to unrealistic values. For example, fridges, ovens,

dishwashers, and other appliances alike, are much smaller than their real-world counterparts. This was

necessary to allow the robot to be able to interact with the object from a variety of starting positions. A

trade-off was made between realism, and diversity of starting configurations. Given the choice of robot,

we are limited to tasks that can only be accomplished with a single arm. Although RLBench allows for

the arm to be swapped with other popular arms, there is currently no support for dual-arm setups. We

suggest that this limitation should be fixed by introducing a separate benchmark, specifically aimed at

dual-arm systems.

Although benchmarks can drive progress, we must also note the dangers of them. There is a danger

that benchmarks can cause researchers to loose sight of the ‘bigger picture’, and instead focus on de-

veloping methods that perform well on a particular benchmark, but do not generalise well to others.

Moreover, benchmarks can often promote small, incremental and benchmark-specific improvements to

method which in return only give small performance gains. However, when used correctly, benchmarks

can rapidly accelerate the speed and quality of research.

Given the scale of this project, we envision that there may be teething problems as people begin using

the platform, and so we aim to maintain and continuously improve the benchmark during launch. Further

to that, we hope, along with the help of the community, to continuously expand the tasks available for

both training and evaluation. We hope RLBench will become a key resource for a broad range of robot

manipulation related research, and look forward to seeing what the community achieves with this diverse

range of tasks.
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Attention Driven Robot Manipulation
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7.1 Introduction

A common theme throughout this thesis has been the incredibly large amount of data that is needed

in order to train these data-driven imitation learning or reinforcement learning methods. In particu-

lar, continuous-control reinforcement learning (RL) algorithms are are notoriously data hungry, often

fail with sparse rewards, and struggle with long-horizon tasks. The algorithms for both discrete and

continuous RL are almost always evaluated on benchmarks that give shaped rewards [Brockman et al.,

2016b, Tassa et al., 2018], a privilege that is not feasible for training real-world robotic application

across a broad range of tasks. Motivated by the observation that humans focus their gaze close to objects

being manipulated [Land et al., 1999], we propose an Attention-driven Robotic Manipulation (ARM)

algorithm that consists of a series of algorithm-agnostic components, that when combined, results in a

method that is able to perform a range of challenging, sparsely-rewarded manipulation tasks.
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7. Attention Driven Robot Manipulation

Our algorithm operates through a pipeline of modules: our novel Q-attention module first extracts

interesting pixel locations from RGB and point cloud inputs by treating images as an environment,

and pixel locations as actions. Using the pixel locations we crop the RGB and point cloud inputs,

significantly reducing input size, and feed this to a next-best-pose continuous-control agent that outputs

6D poses, which is trained with our novel confidence-aware critic. These goal poses are then used by

a control algorithm that continuously outputs motor velocities.

As is common with sparsely-rewarded tasks, we improve initial exploration through the use of demon-

strations. However, rather than simply inserting these directly into the replay buffer, we use a keyframe

discovery strategy that chooses interesting keyframes along demonstration trajectories that is funda-

mental to training our Q-attention module. Rather than storing the transition from an initial state to a

keyframe state, we use our demo augmentation method which also stores the transition from interme-

diate points along a trajectories to the keyframe states; thus greatly increasing the proportion of initial

demo transitions in the replay buffer.

All of these improvements result in an algorithm that starkly outperforms other state-of-the-art meth-

ods when evaluated on 10 RLBench [James et al., 2020] tasks (Figure 7.1) that range in difficulty. To

summarise, we propose the following contributions: (1) An off-policy hard attention mechanism that is

learned via Q-Learning, rather than the on-policy hard attention and soft attention that is commonly seen

in the NLP and vision community; (2) A confidence-aware Q function that predicts pixel-wise Q values

and confidence values, resulting in improved convergence times; (3) A keyframe discovery strategy and

demo augmentation method that go hand-in-hand to improve the utilisation of demonstrations in RL.

7.2 Related Work

The use of reinforcement learning (RL) is prevalent in many areas of robotics, including legged ro-

bots [Kohl and Stone, 2004, Hwangbo et al., 2019], aerial vehicles [Sadeghi and Levine, 2017], and

manipulation tasks, such as pushing [Finn and Levine, 2017b], peg insertion [Levine et al., 2016a, Zeng

et al., 2018a, Lee et al., 2019], throwing [Ghadirzadeh et al., 2017, Zeng et al., 2020], ball-in-cup [Kober

and Peters, 2009], cloth manipulation [Matas et al., 2018], and grasping [Kalashnikov et al., 2018, James

et al., 2019b]. Despite the abundance of work in this area, there has yet to be a general manipula-

tion method that can tackle a range of challenging, sparsely-rewarded tasks without needing access to

privileged simulation-only abilities (e.g. reset to demonstrations [Nair et al., 2018], asymmetric actor-

critic [Pinto et al., 2018], reward shaping [Rajeswaran et al., 2018], and auxiliary tasks [James et al.,

2017a]).
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Figure 7.1: The 10 RLBench tasks used for evaluation. Current state-of-the-art reinforcement learning
algorithms catastrophically fail on all tasks, whilst our method succeeds within a modest number of
steps. Note that the positions of objects are placed randomly at the beginning of each episode.

Crucial to our method is the proposed Q-attention. Soft and hard attention are prominent methods in

both natural language processing (NLP) [Bahdanau et al., 2015, Vaswani et al., 2017, Devlin et al., 2018]

and computer vision [Xu et al., 2015, Zhang et al., 2019]. Soft attention deterministically multiplies an

attention map over the image feature map, whilst hard attention uses the attention map stochastically

to sample one or a few features on the feature map (which is optimised by maximising an approximate

variational lower bound or equivalently via (on-policy) REINFORCE [Williams, 1992]). Given that we

perform non-differentiable cropping, our Q-attention is closest to hard attention, but with the distinction

that we learn this in an off-policy way. This is key, as ‘traditional’ hard attention is unable to be used in

an off-policy setting. We therefore see Q-attention as an off-policy hard attention. We elaborate further

on these differences in Section 7.4.1.

Our proposed confidence-aware critic (used to train the next-best pose agent) takes its inspiration from

the pose estimation community [Wang et al., 2019, Wada et al., 2020]. There exists a small amount of

work in estimating uncertainty with Q-learning in discrete domains [Clements et al., 2019, Hoel et al.,

2020]; our work uses a continuous Q-function to predict both Q and confidence values for each pixel,

which lead to improved stability when training, and is not used during action selection.

Our approach makes use of demonstrations, which has been applied in a number of works [Vecerik

et al., 2017, Matas et al., 2018, Kalashnikov et al., 2018, Nair et al., 2018], but while successful, they

make limited use of the demonstrations and still can take many samples to converge. Rather than simply

inserting these directly into the replay buffer, we instead make sure of our keyframe discovery and demo

augmentation to maximise demonstration utility.
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7.3 Background

Our Q-attention module builds from Deep Q-learning [Mnih et al., 2015], a method that approxim-

ated the value function Qθ, with a deep convolutional network, whose parameters θ are optimised by

sampling mini-batches from a replay buffer D and using stochastic gradient descent to minimise the

loss: E(st,at,st+1)∼D[(r+γmaxs′Qθ′(st+1, s
′)−Qθ(st,at))2], whereQθ′ is a target network; a periodic

copy of the online network Qθ which is not directly optimised. Our next-best pose agent builds upon

SAC [Haarnoja et al., 2018a], however, the agent is compatible with any off-policy, continuous-control

RL algorithm. SAC is a maximum entropy RL algorithm that, in addition to maximising the sum of

rewards, also maximises the entropy of a policy: Eπ[
∑

t γ
t[R(st,at)+αH(π(·|st))]], where α is a tem-

perature parameter that determines the relative importance between the entropy and reward. The goal

then becomes to maximise a soft Q-function by minimising the following Bellman residual:

JQ(θ) = E
(st,at,st+1)∼D

[((r+ γQθ′(st+1, πφ(st+1))− α log πφ(at|st))−Qθ(st,at))2]. (7.1)

The policy is updated towards the Boltzmann policy with temperature α, with the Q-function taking

the role of (negative) energy. Specifically, the goal is to minimise the Kullback-Leibler divergence

between the policy and the Boltzman policy:

πnew = arg min
π′∈Π

DKL

(
π′ (·|st) ‖

1
α exp (Qπold (st, ·))

Zπold (st)

)
. (7.2)

Minimising the expected KL-divergence to learn the policy parameters was shown to be equivalent to

maximising the expected value of the soft Q-function:

Jπ(φ) = E
st∼D

[ E
s∼πφ

[α log(πφ(at|st))−Qπρ (st,at)]]. (7.3)

7.4 Method

Our method can be split into a 3-phase pipeline. Phase 1 (Section 7.4.1) consists of a high-level pixel

agent that selects areas of interest using our novel Q-attention module. Phase 2 (Section 7.4.2) consists

of a next-best pose prediction phase where the pixel location from the previous phase is used to crop

the incoming observations and then predict a 6D pose. Finally, phase 3 (Section 7.4.3) is a low-level

control agent that accepts the predicted next-best pose and executes a series of actions to reach the given

goal. Before training, we fill the replay buffer with demonstrations using our keyframe discovery and
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Figure 7.2: Summary and architecture of our method. RGB and organised point cloud crops are made by
extracting pixel locations from our Q-attention module. These crops are then fed to a continuous control
RL algorithm that suggests next-best poses that is trained with a confidence-aware critic. The next best
pose is given to a goal-condition control agent that outputs joint velocities. Conv block represented as
Conv(#channels, filter size, strides).

demo augmentation strategy (Section 7.4.4) that significantly improves training speed. The full pipeline

is summarised in Figure 7.2 and Algorithm 4.

All experiments are run in RLBench [James et al., 2020], a large-scale benchmark and learning en-

vironment for vision-guided manipulation built around CoppeliaSim [Rohmer et al., 2013] and PyRep

[James et al., 2019a]. At each time step, we extract an observation from the front-facing camera that

consists of an RGB image b and a depth image d, along with proprioceptive information z from the

arm (consisting of end-effector pose and gripper open/close state). Using known camera intrinsics and

extrinsics, we process each depth image to produce a point cloud p (in world coordinates) projected

from the view of the front-facing camera, producing a (H ×W × 3) ‘image’.

7.4.1 Q-attention

Motivated by the role of vision and eye movement in the control of human activities [Land et al., 1999],

we propose a Q-attention module that, given RGB and organised point cloud inputs, outputs 2D pixel

locations of the next area of interest. With these pixel locations, we crop the RGB and organised point

cloud inputs and thus drastically reduce the input size to the next stage of the pipeline. Our Q-attention

is explicitly learned via Q-learning, where images are treated as the ‘environment’, and pixel locations

are treated as the ‘actions’.

Given our Q-attention function QAθ, we extract the coordinates of pixels with the highest value:

(xt,yt) = argmax2D
s′

QAθ(st, s
′). (7.4)

The parameters of the Q-attention are optimised by using stochastic gradient descent to minimise the
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Figure 7.3: Visualising the Q values across 4 different points in time on 6 tasks. At each step, RGB
and organised point cloud crops are made by extracting pixel locations that have the highest Q-value;
crops are shown via the red squares. We can see that as time progresses, the attention strength shifts
depending on progress in the task; e.g. ‘stack wine’ starts with high attention on the bottle, but after
grasping, attention shifts to the wine rack.

loss:

JQA(θ) = E
(st,at,st+1)∼D

[(r+ γmax2D
s′

QAθ′(st+1, s
′)−QAθ(st,at))2 + ‖QA‖], (7.5)

where s = (b,p), QAθ′ is the target Q-function, and ‖QA‖ is an L2 loss on the per-pixel output of the

Q function (which we call Q regularisation); in practice, we found that this leads to increased robustness

against the common problem of overestimation of Q values. The Q-attention network follows a light-

weight U-Net style architecture [Ronneberger et al., 2015], which is summarised in Figure 7.2. Example

per-pixel outputs of the Q-attention are shown in Figure 7.3. With the suggested coordinates from Q-

attention, we perform a (16 × 16) crop on both the (128 × 128) RGB and organised point cloud data:

b′,p′ = crop(b,p, (x,y)).

Notably, there is no explicit reward for choosing a pixel, but instead an implicit reward that comes

from the output of the method pipeline as a whole (i.e. the same reward signal is used to train both the

Q-attention and the next-best pose agent). This leads to a cyclic dependency between the two agents:

the lower-level next-best pose agent relies on receiving good crops from the Q-attention agent, whilst

the Q-attention agent needs the next-best pose agent to perform well in order to get its implicit reward.

This is where delicate handling of demonstrations is key, which we discuss in Section 7.4.4.

The module shares similar human-inspired motivation to the attention seen in NLP [Bahdanau et al.,
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2015, Vaswani et al., 2017, Devlin et al., 2018] and computer vision [Xu et al., 2015, Zhang et al.,

2019], but differs in its formulation. Soft attention multiplies an attention map over the image feature

map, whilst hard attention uses the attention map to sample one or a few features on the feature maps

or inputs. Given that we perform non-differentiable cropping, we categorise our Q-attention as hard

attention, but with 2 core differences: (1) most importantly, ‘traditional’ hard attention is optimised

(on-policy) by maximising an approximate variational lower bound or equivalently via REINFORCE

[Williams, 1992], whereas our Q-attention is trained off-policy; this is crucial because our demonstration

data, by definition, is off-policy, and therefore renders existing hard attention approaches unusable for

demonstration-driven RL. (2) The output of ‘traditional’ hard attention carry different semantics: a

score function in the case of REINFORCE hard attention, and Q-value (expected cumulative reward of

choosing that crop) in the case of Q-attention.

7.4.2 Next-best Pose Agent

Our next-best pose agent accepts cropped RGB b′ and organised point cloud p′ inputs, and outputs a

6D pose. This next-best pose agent is run every time the robot reaches the previously selected pose.

We represent the 6D pose via a translation e ∈ R3 and a unit quaternion q ∈ R4, and restrict the w

output of q to a positive number, therefore restricting the network to output unique unit quaternions.

The gripper action h ∈ R1 lies between 0 and 1, which is then discretised to a binary open/close value.

The combined action therefore is s = {e,q,h}.

To train this next-best pose agent, we use a modified version of SAC [Haarnoja et al., 2018a] where

we modify the soft Q-function (Equation 7.1) to be a confidence-aware soft Q-function. Recent work in

6D pose estimation [Wang et al., 2019, Wada et al., 2020] has seen the inclusion of a confidence score c

with the pose prediction output for each dense-pixel. Inspired by this, we augment our Q function with

a per-pixel confidence cij , where we output a confidence score for each Q-value prediction (resulting

in a (16 × 16 × 2) output). To achieve this, we weight the per-pixel Bellman loss with the per-pixel

confidence, and add a confidence regularisation term:

JQπ(ρ) = E
(st,at,st+1)∼D

[((r+γQπρ′(st+1, πφ(st+1))−α log π(at|st))−Qπρ (st,at))2c−w log(c)], (7.6)

where s = (b′,p′, z), b′ and p′ are the cropped RGB and point cloud information, and z is the proprio-

ceptive information from the arm. With this, low confidence will result in a low Bellman error but

would incur a high penalty from the second term, and vice versa. We use the Q value that has the highest

confidence when training the actor. As an aside, we also tried applying this confidence-aware method

to the policy, though empirically we found no improvement. In practice we make use of the clipped
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Algorithm 4 ARM
Initialise Q-attention networks QAθ1 , QAθ2 , critic networks Qπρ1 , Qπρ2 , and actor network πφ with
random parameters θ1, θ2, ρ1, ρ2, φ
Initialise target networks θ′1 ← θ1, θ′2 ← θ2, ρ′1 ← ρ1, ρ′2 ← ρ2

Initialise replay buffer D with demos and apply keyframe selection and demo augmentation
for each iteration do

for each environment step do
(bt,pt, zt)← st
(xt, yt)← argmax2Ds′ QAθ((bt,pt), s

′) . Use Q-attention to get pixel coords
b′t,p

′
t ← crop(bt,pt, (xt, yt))

at ∼ πφ(at|(b′t,p′t, zt)) . Sample pose from the policy
while target not reached do

v ← f(s,at) . Get joint velocities from control agent
st+1, r← env.step(v)

D ← D ∪ {(st,at, r, st+1, (xt, yt))} . Store the transition in the replay pool
for each gradient step do

θi ← θi − λQA∇̂θiJQA(θi) for i ∈ {1, 2} . Update Q-attention parameters
ρi ← ρi − λQπ∇̂ρiJQπ(ρi) for i ∈ {1, 2} . Update critic parameters
φ← φ− λπ∇̂φJπ(φ) . Update policy weights
θ′i ← τθi + (1− τ)θ′i for i ∈ {1, 2} . Update Q-attention target network weights
ρ′i ← τρi + (1− τ)ρ′i for i ∈ {1, 2} . Update critic target network weights

double-Q trick [Fujimoto et al., 2018a], which takes the minimum Q-value between two Q networks,

but have omitted in the equations for brevity. Finally, the actor’s policy parameters can be optimised by

minimising the loss as defined in Equation 7.3.

7.4.3 Control Agent

Given the next-best pose suggestion from the previous stage, we give this to a goal-conditioned control

function f(st,gt), which given state st and goal gt, outputs motor velocities that drives the end-effector

towards the goal. This function can take on many forms, but two noteworthy solutions would be either

motion planning in combination with a feedback-control or a learnable policy trained with imitation/re-

inforcement learning. Given that the environmental dynamics are limited in the benchmark, we opted

for the motion planning solution.

Given the target pose, we perform path planning using the SBL [Sánchez and Latombe, 2003] planner

within OMPL [Şucan et al., 2012], and use Reflexxes Motion Library for on-line trajectory generation.

If the target pose is out of reach, we terminate the episode and supply a reward of−1. This path planning

and trajectory generation is conveniently encapsulated by the ‘ABS EE POSE PLAN WORLD FRAME’

action mode in RLBench [James et al., 2020].

7.4.4 Keyframe Selection & Demo Augmentation
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Figure 7.4: Keyframe selection and demo

augmentation, where the black line repres-

ents a trajectory, ’!’ represents keyframes,

and dashed blue lines represent the augmented

transitions to the keyframes.

In this section, we outline how we maximise the utility

of given demonstrations in order to complete sparsely

reward tasks. We assume to have a teacher policy π∗

(e.g. motion planners or human teleoperatives) that can

generate trajectories consisting of a series of states and

actions: τ = [(s1,a1), . . . , (sT ,aT )]. In this case, we

assume that the demonstrations come from RLBench

[James et al., 2020].

The keyframe selection process iterates over each

of the demo trajectories τ and runs each of the state-

action pairs (s,a) through a function K : RD → B

which outputs a Boolean deciding if the given traject-

ory point should be treated as a keyframe. The keyframe function K could include a number of con-

straints. In practice we found that performing a disjunction over two simple conditions worked well;

these included (1) change in gripper state (a common occurrence when something is grasped or re-

leased), and (2) velocities approaching near zero (a common occurrence when entering pre-grasp poses

or entering a new phase of a task). It is likely that as tasks get more complex, K will inevitably need

to become more sophisticated via learning or simply through more conditions, e.g. sudden changes in

direction or joint velocity, large changes in pixel values, etc. Figure 7.5 shows RGB observations from

the keyframe selection process from 4 tasks.

At each keyframe, we use the known camera intrinsics and extrinsics to project the end-effector pose

at state st+1 into the image plane of state st, giving us pixel locations of the end-effector at the next

keyframe. This stage is crucial to breaking the cyclic dependency (mentioned in Section 7.4.1) between

the Q-attention and next-best pose agent, as these projected pixel coordinates act as optimal actions for

the Q-attention agent.

Using this keyframe selection method, each trajectory results in N = length(keyframes) trans-

itions being stored into the replay buffer. To further increase the utility of demonstrations, we apply

demo augmentation which stores the transition from an intermediate point along the trajectories to the

keyframe states. Formally, for each point (st,at) along the trajectory starting from keyframe ki, we

calculate the transformation of the end-effector pose (taken from st) at time step t to the end-effector

pose at the time step associated with keyframe ki+1. This transformation can then be used as the action

for the next-best pose agent. We repeat this process for every M th point along the trajectory (which we

set to M = 5). The keyframe selection and demo augmentation is visualised in Figure 7.4.
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Figure 7.5: Visualising RGB observations of keyframes from the keyframe selection process on 4 tasks.
Here k is the keyframe number.

Figure 7.6: Learning curves for 10 RLBench tasks. Methods include Ours (ARM), SAC [Haarnoja et al.,
2018a], TD3 [Fujimoto et al., 2018a], and QT-Opt [Kalashnikov et al., 2018]. ARM uses the 3-stage
pipeline (Q-attention, next-best pose, and control agent), while baselines use the 2-stage pipeline (next-
best pose and control agent). All methods receive 200 demos which are stored in the replay buffer prior
to training. Solid lines represent the average evaluation over 5 seeds, where the shaded regions represent
the min and max values across those trials.

7.5 Results

In this section, we aim to answer the following questions: (1) Are we able to successfully learn across

a range of sparsely-rewarded manipulation tasks? (2) Which of our proposed components contribute

the most to our success? (3) How sensitive is our method to the number of demonstrations and to the

crop size? To answer these, we benchmark our approach using RLBench [James et al., 2020]. Of the

100 tasks, we select 10 (shown in Figure 7.1) that we believe to be achievable from using only the

front-facing camera. We leave tasks that require multiple cameras to future work. RLBench was chosen

due to its emphasis on vision-based manipulation benchmarking and because it gives access to a wide

variety of tasks with demonstrations. Each task has a sparse reward of +1 which is given only on task
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completion, and 0 otherwise.

The first of our questions can be answered by attending to Figure 7.6. All baseline algorithms (SAC,

TD3 and QT-Opt) are in their ‘vanilla’ form, and do not contain any of our proposed contributions: Q-

attention, confidence-aware critic, and demo augmentation, but does include the keyframe selection. All

methods receive the exact same 200 demonstration sequences, which are loaded into the replay buffer

prior to training. The baseline agents are architecturally similar to the next-best pose agent, but with a

few differences to account for missing Q-attention (and so receives the full, uncropped RGB and organ-

ised point cloud data) and missing confidence-aware critic (and so outputs single Q-values rather than

per-pixel values). Specifically, the architecture uses the same RGB and point cloud fusion as shown in

Figure 7.2. Feature maps from the shared representation are concatenated with the reshaped propriocept-

ive input and fed to both the actor and critic. The baseline actor uses 3 convolution layers (64 channels,

3× 3 filter size, 2 stride), whose output feature maps are maxpooled and sent through 2 dense layers (64

nodes) and results in an action distribution output. The critic baseline uses 3 residual convolution blocks

(128 channels, 3 × 3 filter size, 2 stride), whose output feature maps are maxpooled and sent through

2 dense layers (64 nodes) and results in a single Q-value output. All methods use the LeakyReLU ac-

tivation, layer normalisation in the convolution layers, learning rate of 3 × 10−3, soft target update of

τ = 5−4, and a reward scaling of 100. Training and exploration were done asynchronously with a single

agent (to emulate a real-world robot training scenario) that would continuously load checkpoints every

100 training steps.

The results in Figure 7.6 show that baseline state-of-the-art methods are unable to accomplish any

RLBench tasks, whilst our method is able to accomplish the tasks in small number of environment steps;

5, 000 environment steps equating to about an hour of robot interaction time (meaning ‘take lid off saucepan’

being solved in about two hours). We suggest that the reason why our results starkly outperform other

state-of-the-art methods is because of two key reasons that go hand-in-hand: (1) Reducing the input

dimensionality through Q-attention that immensely reduces the burden on the (often difficult and un-

stable to train) continuous control algorithm; (2) Combining this with our keyframe selection method

that enables the Q-attention network to quickly converge and suggest meaningful points of interest to the

next-best pose agent. We wish to stress that perhaps given enough training time some of these baseline

methods may eventually start to succeed, however we found no evidence of this.

In Figure 7.7a, we perform an ablation study to evaluate which of the proposed components contrib-

ute the most to the success of our method. To perform this ablation, we chose 2 tasks of varying diffi-

culty: ‘take lid off saucepan’ and ‘put rubbish in bin’. The ablation clearly shows that the Q-attention

(combined with keyframe selection) is crucial to achieving the tasks, whilst the demo augmentation,
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(a) Effect of removing components from
our method.

(b) Effect of number of demos on perform-
ance.

(c) Effect of crop size on performance.

Figure 7.7: Ablation study across the easier ‘take lid off saucepan’ task and harder ‘put rubbish in bin’
task.

confidence-aware critic, and Q regularisation aid in overall stability and increase final performance.

When swapping the Q-attention module with a soft attention [Xu et al., 2015] module, we found that

performance was similar to that of the ‘vanilla’ baselines. This result is unsurprising, as soft attention

is implicitly learned (i.e. without an explicit loss), where as our Q-attention is explicitly learned via

(off-policy) Q-learning, and so it can make greater use of the highly-informative keyframes given from

the keyframe selection process. Note that we cannot compare to ‘traditional’ hard attention because it

requires on-policy training, as explained in Section 7.4.1.

Figure 7.7b shows how robust our method is when varying the number of demonstrations given. The

results show that our method performs robustly, even when given 50% fewer demos, however as the task

difficulty increase (from ‘take lid off saucepan’ to ‘put rubbish in bin’), the harmful effect of having

less demonstrations is more severe. Our final set of experiments in Figure 7.7c shows how our method

performs across varying crop sizes. As the task difficulty increases, the harmful effect of a larger crop

size becomes more prominent; suggesting that one of the key benefits of the Q-attention is to drastically

reduce the input size to the next-best pose agent, making the RL optimisation much easier. It is clear that

a trade-off must be made between choosing smaller crops to increase training size, and choosing larger

crops to incorporate more of the surrounding area. We found that setting the crops at 16× 16 across all

tasks performed well.
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7.6 Conclusion

We have presented our Attention-driven Robotic Manipulation (ARM) algorithm, which is a general

manipulation algorithm that can be applied to a range of real-world sparsely-rewarded tasks. We validate

our method on 10 RLBench tasks of varying difficulty, and show that many commonly used state-of-

the-art methods catastrophically fail. We show that Q-attention (along with the keyframe selection) is

key to our success, whilst the confidence-aware critic and demo augmentation contribute to achieving

high final performance.

Despite our strong experimental results, there are undoubtedly areas of weakness. The control agent

(final agent in the pipeline) uses path planning and on-line trajectory generation, which for these tasks

are adequate; however, this would need to be replaced with an alternative agent for tasks that have

dynamic environments (e.g. moving target objects, moving obstacles, etc) or complex contact dynamics

(e.g. peg-in-hole). We look to future work for swapping this with a goal-conditioned reinforcement

learning policy, or similar. Another weakness is that we only evaluate on tasks that can be done with the

front-facing camera; however we are keen to explore many of the other tasks RLBench has to offer by

adapting the method to accommodate multiple camera inputs in future work.
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CHAPTER 8

Conclusions and Future Work

In this thesis, we have presented a number of contributions towards finding where on the spectrum,

from pipelined to fully end-to-end, is best suited for creating a general manipulation system. That is,

a system that could eventually be usable in highly dynamic and chaotic household environments. Our

investigation began in Chapter 3, at the far end of the spectrum, where we explored learning an end-to-

end controller for a cube-in-basket task in simulation. Transfer to the real world was made possible by

using domain randomisation, such that through a large amount of variability in the appearance of the

world, the model was able to generalise to real world environments. This work was the first of its kind by

showing that we could transfer end-to-end controllers for multi-stage tasks, and has since been applied in

many works [Zhang et al., 2017, Yan et al., 2017, Zhu et al., 2018, Hämäläinen et al., 2019, Iqbal et al.,

2020]. Moreover, we showed that the same trained controller worked in novel situations, including those

with dynamic lighting conditions, distractor objects, and moving objects, including the basket itself.

In Chapter 4, we push the boundaries of domain randomisation by asking if sim-to-real transfer was

possible with deformable objects, not just rigid ones. The answer turns out to be yes, which is fortunate

as deformable objects usually have large configuration spaces, meaning that solutions using traditional

modelling approaches require significant engineering work. The chapter explored the use of a combin-

ation of state-of-the-art deep reinforcement learning algorithms to solve the problem of manipulating

cloth in a variety of tasks, including: folding a towel up to a mark, folding a face towel diagonally,

and draping a piece of cloth over a hanger. We showed that we are able to fully train in simulation

with domain randomisation, and then successfully deploy in the real world without having seen any real

deformable objects.

With the knowledge that end-to-end methods work well for individual tasks, Chapter 5 explored how

best to learn new tasks from one or a few demonstrations with Task-Embedded Control Networks. This

was the first time in the thesis that we moved from a ‘monolith’ style, single network end-to-end system
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to a 2-part moduled system, which consisted of the task-embedding module and the control module.

Although being separate networks with their own responsibility and losses, it remained crucial to train

these in an end-to-end manner (i.e. propagating gradients from the control network to the embedding

network). This resulted in a far richer embedding space that was suited not only to separate tasks, but

also to produce embeddings that were interpretable by the control network. The chapter also explored a

way of endowing robots with the ability of imitating humans from third person. To do this, we extended

Task-Embedded Control Networks to infer control polices by observing videos of humans performing

the desired task. What was unique about this work was its use of domain randomisation in an application

that has not been seen before: sim-to-real transfer on humans. Upon evaluating our approach on pushing

and placing tasks in both simulation and in the real world, we showed that in comparison to a system

that was trained on real-world data we were able to achieve similar results by utilising only simulation

data.

Despite achieving high success on one-shot imitation learning with Task-Embedded Control Net-

works, the system had not been tested with limited variation across tasks. The core reason for this was

the lack of a suitable benchmark or standard set of tasks for the few-shot manipulation community.

It was this that motivated RLBench, our new benchmark and learning-environment for robot learning,

presented in Chapter 6. The benchmark featured 100 completely unique, hand-designed tasks, with

the aim to facilitate research in a number of vision-guided manipulation research areas, including: re-

inforcement learning, imitation learning, multi-task learning, geometric computer vision, and few-shot

learning. RLBench now has an active GitHub community, and has been used to benchmark several

recent papers [Chen et al., 2020, Kim et al., 2020, Choi et al., 2020, Lee et al., 2020].

What makes RLBench so appealing is how challenging it is for end-to-end methods. In fact, upon

evaluating many image-based state-of-the-art reinforcement learning algorithms on RLBench, it was

clear that all end-to-end approaches failed catastrophically in these complex, sparsely-rewarded tasks.

This motivated the need for a more structured approach to the problem, and drove our research direction

further along the spectrum, to produce a 3-stage manipulation pipeline. Our Attention-driven Robotic

Manipulation (ARM) algorithm, which we presented in Chapter 7, was a general manipulation algorithm

that could be applied to a range of real-world sparse-rewarded tasks without any prior task knowledge.

ARM split the complex task of manipulation into a 3 stage pipeline: (1) a Q-attention agent extracts

interesting pixel locations from RGB and point cloud inputs, (2) a next-best pose agent that accepts

crops from the Q-attention agent and outputs poses, and (3) a control agent that takes the goal pose and

outputs joint actions.

There is a clear evolution through the thesis, where in the initial chapters, we scrapped the ‘traditional’
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manipulation pipeline, and started afresh with an end-to-end approach. As the chapters progressed, we

gradually modularised, and finally ended with ARM, where the individual modules bare little resemb-

lance to the ‘traditional’ ones described in the opening chapters. What’s important to note here is that

it no longer makes sense to classify ARM as an end-to-end method, as there are distinct modules that

are not jointly optimised via gradients. However, this also cannot be classed as a ‘traditional’ pipelined

method because action is still tightly coupled with input observation through the shared reward, and

there is no object detection, pose estimation, grasp planning, or motion planning stages. With that in

mind, we conclude by proposing to classify this paradigm as a Tightly-coupled Manipulation Pipeline

(TMP). Rather than learning all modules implicitly in one large, end-to-end network or conversely, hav-

ing individual, pre-defined modules that are developed independently, TMPs suggest taking the best of

both world by tightly coupling actions to observations, whilst still maintaining structure via an undefined

number of learned modules, which do not have to bare any resemblance to the modules seen in ‘tradi-

tional’ systems. This tight coupling of TMPs can be achieved either implicitly through gradients flowing

through each of the modules, such as in Chapter 5, or implicitly via a shared reward, such as in Chapter

7.

In the future, we would like to explore alternative sim-to-real methods; in work external to this thesis,

we explored how domain adaptation lead to a higher zero-shot performance in the real world when

compared to domain randomisation [James et al., 2019b]. This begs the question as to what other

methods would perform better than domain randomisation? Not only this, but what methods are best

equipped to be fine-tuned on additional real-world data in order to refine a simulation-trained controller.

It has been suggested that learning a policy directly on domain randomisation can act as a very powerful

pre-training regime, where the network is forced to learn a very general feature extractor that can be

easily jointly fine-tuned to a new environment [James et al., 2019b]. If so, then what other methods exist

to achieve a similar effect? Gradient based meta learning is a powerful method for learning networks

that be quickly adapted at test time, and so perhaps a combination of sim-to-real and meta learning could

be trained in simulation for fast adaptation to real-world data at test time.

Given the potential use cases of RLBench, we envision that it will continue to grow over the years, and

so we look to maintain and continuously improve the benchmark during this time. A natural extension

to this in future work, could be the introduction of a mobile base. This would not only make the action

and state space more complex, but would dramatically increase the range of possible tasks that could

be included. A limitation of RLBench is that the breadth of tasks are limited to those that can be done

on the table-top workspace in the scene; moving to a mobile base would open up the workspace to a

much larger range of tasks. Moreover, this would bring in additional challenges, such as localisation,
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mapping, and long-horizon planning, to name but a few.

We are excited by the idea of combing our Attention-driven Robotic Manipulation (ARM) system

with few-shot learning. A future direction could be to combine ARM with Task-Embedded Control

Networks (TECNets) to solve the meta learning challenge posed in RLBench. ARM gives us a system

than can be trained quickly on individual tasks, whereas TECNets gives us a system that can adapt to

new tasks given a few demonstrations. However, given the limited variation of tasks that TECNets has

been evaluated on, and given that the diversity of tasks in RLBench is so great, it is unreasonable to

expect that TECNets will work without modification. It is therefore reasonable to accept that there will

need to be some degree of optimisation at test time; finding a method that can do this effectively in a

small amount of time will be the challenge. Finally, and possibly most importantly, we are excited to

explore other Tightly-coupled Manipulation Pipelines that go beyond ARM.

Recall that in Figure 1.2 of Chapter 1, we showed where our presented methods fell on the spectrum,

from fully end-to-end to pipelined. It is clear that the focus of this thesis has mostly been on end-to-end

rather than on pipelined methods. Given the time constraints of the PhD, developing novel pipelined

methods was not possible. However in hindsight, existing pipelines could have been implemented to act

as comparison baselines to the end-to-end approaches put forward. For example, in Chapter 3, object

detection and pose estimation networks could have been trained for various cubes and baskets and then

subsequently used for grasp planning and placement. Another example from Chapter 4, could have

been to estimate the state of the cloth and preform model-predictive control for action selection. These

pipeline baselines would have allowed the thesis to cover the entire spectrum, rather than only part of it.

To conclude this thesis, we discuss our general outlook on the future of robot manipulation given

our experience throughout the PhD. We split our outlook into 4 key areas: mobile manipulation, dex-

terous multi-finger manipulation, machine learning community shift, and Tightly-coupled Manipulation

Pipelines.

The large majority of work in robot manipulation focuses on a robot fixed to a surface operating within

a constrained workspace. Although one can do a lot in this scenario (which RLBench attests), it does

however greatly limit the number of tasks that can be achieved in a household environment. Not only

that, but it ignores many of the other problems within the area of robotics, such as navigation, spatial

awareness, spacial memory, and long term planning, to name but a few. By only evaluating systems in

these non-mobile settings, we may miss out on important insights and modes of failure that are only

present in a mobile domain.

We see dexterous multi-finger manipulation as another key exciting future area. This is already an
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active area of research, however it often seems detached from the larger problem at hand. Many papers

look at dexterous in-hand manipulation in isolation, where the hand is not attached to a manipulator. In

the rare cases when a hand is attached to a manipulator, vision is rarely used. Given the physical limit to

what a robot can accomplish with parallel-jaw grippers, we therefore speculate that soon we will have

to look at other end-effectors, and multi-finger hands seem like an attractive prospect.

There is evidence that Embodied AI (the study of intelligent systems with a physical or virtual embod-

iment, e.g. robots and egocentric personal assistants) has been gaining traction in the machine learning

and computer vision communities; this is clear by the increasing number of Embodied AI simulations

and workshops at conferences such as CVPR, ICCV, and NeurIPS, to name but a few. We therefore

predict that this move from static datasets and supervised learning, to the more dynamic and challenging

domain of Embodied AI, will continue to gain popularity. This would mean an influx of new research

working at the intersection of robotics and machine learning, potentially leading to a large surge of work.

Finally, as this thesis suggests, we see tightly-coupled manipulation pipelines playing a big role in fu-

ture manipulation systems. As our final chapter shows, taking the best of both end-to-end and pipelines

by tightly coupling actions to observations and maintaining structure leads to a powerful system. As the

tasks get more complex and have increasingly longer time horizons, it seems unlikely that a monolith

end-to-end system will be able to navigate, plan, perform scene understanding, have spacial memory,

perform complex control, and perform many other important processes. On the other end of the spec-

trum, it also seems unlikely that a pre-programmed pipeline will be general enough to operate on a

plethora of tasks without having to be re-engineered each time. It therefore seems that TMP systems are

correctly placed to be an ideal direction for future research.
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[Popović et al., 2011] Popović, M., Kootstra, G., Jørgensen, J. A., Kragic, D., and Krüger, N. (2011).
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