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Abstract

Human cognition is inherently adept at concurrently managing multiple tasks, and effi-
ciently leveraging past experiences to acquire new skills. In machine learning, multi-task
learning is the learning paradigm that seeks to emulate this cognitive capability by learning
shared features from related tasks to improve training efficiency. However, the straightfor-
ward application of multi-task learning may lead to sub-optimal performance, owing to

the variations in task-specific complexity and distinct training objectives.

In this thesis, we conduct a comprehensive investigation of multi-task learning within
the domain of computer vision, resulting in novel solutions in multi-task learning for
constructing structured visual representations — a foundational building block for a wide
range of applications, spanning from visual perception and object recognition to vision-

based control and reasoning.

Our research includes a spectrum of training strategies and optimisation methods, all
intricately designed to enhance the efficacy of structured visual representations. Specifically,
we delve into three critical dimensions: i) the design strategy of harnessing multi-task
relationships to improve computer vision model performance, ii) the creation of auxiliary
tasks to improve computer vision model generalisation, and iii) the utilisation of multi-task

knowledge within pre-trained experts to improve open-ended visual reasoning.

We introduce a series of multi-task learning frameworks to address these research questions
and showcase their effectiveness in improving the generalisation, training efficiency, and
interpretability of computer vision systems. Through this comprehensive exploration of
multi-task learning and its implications, we aim to contribute to the development of more

intelligent and versatile systems for challenging real-world applications.
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Nomenclature

Symbols & Notations
X input domain
y output domain
X input dataset

Y output dataset

Xn single data point

Vn single output label

In predicted model output on input x,
€ a random variable

A task weighting

T temperature

fo(*) a function f with parameters 0
N() Gaussian (normal) distribution
B(-) Bernoulli distribution

I norm-1 distance
|12 norm-2 distance (Euclidean norm)

(5] concatenation
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Acronyms & Abbreviations

viii

NN

CNN

RNN

MTL

TL

AL

RL

RMSE

MAE

s.t.

w.r.t.

Neural Network
Convolutional Neural Network
Recurrent Neural Network
Multi-Task Learning
Transfer Learning

Auxiliary Learning
Reinforcement Learning
Root Mean Square Error
Mean Absolute Error
Relative Absolute Error
exempli gratia (for example)
id est (that is)

such that

with respect to
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Introduction and Background

In this chapter, we lay the foundations and motivations of this thesis. We first describe the
pivotal role of tasks and multi-task learning in the advancement of general-purpose Al
(Section 1.1). Then, we delve into the fundamental task definitions, providing examples
and showcasing applications of multi-task learning in different domains (Section 1.2). We
introduce the machine learning strategies designed to enhance generalisation by sharing
features among tasks (Section 1.3). Finally, we outline our research contribution and present

a roadmap of this thesis (Section 1.4).

1.1 Artificial Intelligence and Machine Learning

Tasks play a fundamental role in Al and machine learning, representing the specific prob-
lems, challenges, or objectives that Al systems aim to address or accomplish. These tasks
span a wide spectrum, ranging from relatively straightforward ones such as image classific-
ation and language translation to more intricate undertakings, such as mastering video
games and making medical diagnoses. Each task is accompanied by its unique set of
intricacies, requiring specialised design for effective solutions — the strategies devised for

one task may not readily translate to another.

Historically, the field of AI has predominantly revolved around single-task learning, where
systems are meticulously engineered and trained to excel in a single pre-defined task. This

approach often necessitates the design of hand-crafted features and algorithms tailored



1 Introduction and Background

Task A Task B Task C Task A Task B Task C Task A Task B Task C
e |
| —
_ |
Traditional Single Task Learning Traditional Multi-Task Learning Structured Multi-Task Learning
(not generalised) (not structured) (generalised and efficient)

Figure 1.1. Designing single-task learning and multi-task learning systems. Traditional single-task
learning requires designing task-specific solutions tailored for each particular task and lacks general-
isation to new tasks. Traditional multi-task learning trains a single network for all tasks concurrently,
but may lead to inferior performance in some tasks due to the inherent differences in complexity and
learning strategies required for each individual task. Structured multi-task learning can leverage shared
features from related tasks in a single network, while also considering the relationships between tasks,
leading to better generalisation and improved interpretability.

specifically to the task at hand or, alternatively, requires extensive data for end-to-end
training. While these methods can yield high accuracy within the target task, they often
lack the ability to generalise to other tasks or environments without substantial human

intervention and re-engineering.

Recognising the limitations of single-task learning, the concept of multi-task learning
(MTL) has gained prominence. In a seminal study [Cargy], MTL is described as an induct-
ive transfer mechanism whose principle goal is to improve generalisation performance. It
does this by training tasks in parallel while using a shared representation. The fundamental
premise is that knowledge acquired from one task can contribute to improved generalisa-
tion on other related tasks. However, merely grouping all tasks together for end-to-end
training is often insufficient. It is essential to consider the relationships between these tasks
thoughtfully to ensure that the model effectively leverages shared knowledge. Otherwise,
the performance of some tasks could be inferior to what can be achieved with single-task

learning, given the inherent differences in complexity for learning each individual task.

In response to the limitations of these learning strategies, we propose that structured multi-
task learning could serve as a promising alternative. Structured multi-task learning seeks to
enhance the generalisation of multi-task models by harnessing structured representations
acquired through an understanding of task relationships. These structured representations
are designed to capture the inherent structure within the data, allowing the model to learn

more efficiently and generalise more effectively.



1.2 Tasks: Definitions and Applications

By enabling Al systems to learn a diverse set of skills and tasks concurrently and efficiently,
we can push the boundaries of what Al is capable of. These systems become less rigid and
more adaptable, with the ability to creatively apply their knowledge to new and uncharted
settings. This holistic development of flexible intelligence represents a significant milestone

on the journey towards achieving more advanced and capable Al

1.2 Tasks: Definitions and Applications

The definition of a task can be thought of as a fundamental philosophy of grouping data
that shares common characteristics or attributes, with the aim of enabling the AI systems
to learn and make predictions or decisions based on this data. This grouping of data is
crucial in defining and delineating tasks, as it influences how AI models are trained, their

performance, and their ability to generalise [Cargy].

Let’s consider a scenario where we have a set of images containing cats and dogs. One
natural task in this context is the classification of these images into two categories: “cat”
and “dog” By grouping the cat and dog images together, we create a task that focuses on
distinguishing between these specific animal categories. However, the concept of a task
can expand beyond this binary classification. When we introduce more animal images,
such as lions, tigers, elephants, and giraffes, we move into a broader category: animal clas-
sification. In this case, the task includes more data, broadening the model’s understanding

and enabling it to discriminate between various animal species.

The concept of tasks doesn’t stop at data grouping; it extends to the relationships between
these tasks. The nature of these relationships can vary widely, influencing the effectiveness
of the learning system. In our previous example, we can observe the hierarchy and interplay
between tasks. The “cat and dog classification” task is a subtask of the broader “animal
classification” task. A structured multi-task learning system can inherit knowledge from
the more specialised task, leading to more efficient learning compared to a single-task
learning system that learns from scratch. This hierarchical relationship between tasks is just
one aspect of task interdependence. Tasks can be interconnected in various ways, ranging

from being subtasks of one another, mutually related to being entirely unrelated [ZY18].

Understanding the structure of tasks is critical in achieving a successful multi-task learning
system. When tasks are well-defined and their relationships are carefully considered, it can
enhance data efficiency, promote better generalisation, and improve interpretability. By
recognising how tasks relate to one another, we can optimise the sharing of knowledge and

resources, ultimately resulting in more capable and versatile Al systems.



1 Introduction and Background
Tasks in Computer Vision

In the field of computer vision, scene understanding is a critical area that aims to endow
machines with the ability to comprehend and interpret visual scenes as humans do. One
prominent subset of scene understanding [VGVG™21] involves pixel-level dense prediction
tasks. These tasks involve taking an input image and producing detailed, fine-grained
predictions by assigning labels to each pixel in the image. This pixel-level granularity

enables machines to capture intricate details and nuances present within the visual content.

Pixel-level dense prediction tasks encompass a diverse array of challenges, each marked by
unique goals and applications. Despite sharing the common input of an image, these tasks
yield distinct outputs tailored to their specific objectives, collectively contributing to a more
comprehensive grasp of the visual world. For example, semantic segmentation [HZGz20] in-
volves classifying pixels within an image into predefined categories, which equips machines
to comprehend the arrangement and composition of scenes; object detection [ZZXW19]
entails identifying and localising multiple objects within an image to let the machines not
only determine the presence of objects but also their precise locations; depth estimation
[MMFY21] revolves around inferring the distance of objects from the camera in a given
image, which facilitates the creation of 3D models from 2D images, leading to an improved
spatial understanding; and surface normal estimation [YCKog2] involves determining the

orientation of surfaces in an image, providing insights into the geometry of the scene.

Pixel-level dense prediction tasks play a pivotal role in enhancing machine perception
of visual data, empowering machines to not only recognise objects and regions but also
understand their spatial relationships and finer intricacies. A unified multi-task learning
system that can perform all these tasks simultaneously would be able to achieve a holistic
understanding of the visual world with strong robustness, and lays the foundation for a

wide spectrum of industrial applications, such as autonomous driving.

Tasks in Natural Language Processing

Natural Language Processing (NLP) includes a wide range of tasks that cater to various
aspects of language understanding and generation, such as machine translation (English
— French) [Staz2o]: I want to eat salad. — Je veux manger de la salade.; sentiment analysis
[MHK14]: I am excited to see the Oppenheimer movie! — Positive.; and sometimes also

involve machine languages like code completion [RVY14]: Revert a string s - s[::-1].

By dividing and parametrising the input and output language sequences into smaller compu-

tational units (usually tokens), the problem becomes more manageable, and deep learning
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RegNet
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Figure 1.2. Tesla FSD system [Tes22] with multi-task perception. Tesla’s Full Self-Driving (FSD)
system represents a paradigm of vision-centric multi-task learning, adeptly predicting tasks including
object detection, traffic light identification, and lane prediction, all within a singular, unified network.

models like recurrent neural networks [SP97, HS97] or transformer models [VSP*17] can
be used to learn the relationships between the input and output tokens. As we may treat both
the input and output as sequences, we may simply re-formulate all language understanding
tasks as sequence-to-sequence learning tasks, where the goal is to learn a mapping from
one sequence to another. Unlike computer vision, where different tasks may require very
different data representations and processing pipelines, NLP tasks can often be expressed
using similar tokenisation techniques. This makes the multi-task learning problem in NLP

more structured and amenable to a unified framework.

Multi-task learning has reshaped how modern language models are designed, contrib-
uting to the development of very powerful large language models like OpenAT’s GPT-4
[Ope23] and Google’s PaLM [CND*22]. These large language models (LLMs) are firstly
pre-trained by a large corpus of textual data, and then fine-tuned on a multi-task mixture
of NLP tasks described using instructions. After multi-task instruction tuning, the models
showcase a powerful ability of zero-shot generalisation on novel tasks, where tasks here can
be effectively defined with just a handful of prompt examples. Finally, we may optionally
train another reward function to align the language models more closely with human
preferences. This technique, known as Reinforcement Learning with Human Feedback
(RLHF) [CLB*17], facilitates the generated responses that better align with intricate human
values — encourages the generation of more elaborate answers, while also empowering the
model to discern and decline inappropriate queries or those that fall beyond its knowledge
scope. The combination of these techniques has significantly contributed to the remarkable

commercial success observed in models like OpenATD’s ChatGPT [Ray23].



1 Introduction and Background

Summarisation

The picture appeared on the wall of a Poundland
store on Whymark Avenue [...] How would you
rephrase that in a few words?

Graffiti artist Banksy is
believed to be behind [...]
Sentiment Analysis

Review: We came here on a Saturday night and
luckily it wasn't as packed as [ thought it would be 4
[...] On a scale of 1 to 5, | would give this a

Question Answering TO

I know that the answer to “What team did the
Panthers defeat?” is in “The Panthers finished the Arizona Cardinals
regular season [...]". Can you tell me what it is?

Multi-Task Training

Natural Language Inference

Suppose “The banker contacted the professors and
the athlete”. Can we infer that "The banker Yes
contacted the professors"?

Zero-Shot Generalisation

Figure 1.3. Multi-task training on large language models enables zero-shot generalisation. TO
[SWR*22] is an encoder-decoder language model that consumes textual inputs and produces target
responses. It is trained on a multi-task mixture of NLP datasets partitioned into different tasks. Each
dataset is associated with multiple prompt templates that are used to format example instances to
input and target pairs. After training on a diverse mixture of tasks (top), the model demonstrated
zero-shot generalisation capabilities to tasks that are not seen during training (bottom).

Tasks in Robotics

Tasks in robotics involve the execution of actions to achieve specific goals. These tasks
include fundamental actions like grasping an object or navigating to a pre-defined location,
and are progressively expanding into more intricate and complex ones, such as cooking
elaborate meals or performing surgical procedures. Unlike CV and NLP, where tasks can be
explicitly described through data representation or language instructions, defining robotic
tasks can be more challenging due to the potential ambiguity of actions [ZRH*19]. The
ambiguity may arise from the complexity of the physical world, the variability in how tasks

can be executed, and the nuanced definitions required for successful completions.

Nowadays, the high-level task representation for robotics typically takes one of the follow-
ing forms: language instructions: Like in NLP, robots can be given high-level language

instructions. This approach enables humans to communicate tasks to robots using natural
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language, by translating the instructions into actionable tasks. By jointly training the robot
to understand a variety of instructions, it becomes more versatile in its abilities and can
perform different tasks based on the provided instructions; goal state / image: Providing
the target state or visual representation of the desired outcome can help guide the robot’s
actions. For example, showing a robot an image of a completed puzzle can guide it to
place the pieces in the correct positions; demonstrations: Demonstrations involve showing
the robot how to perform a task by physically guiding its actions. This provides the most

accurate description of tasks, where the robot learns by mimicking human actions.

Once the high-level task representations are established, they need to be translated into
low-level action representations, which describe the specific actions a robot should take.
These representations can be continuous or discrete. Continuous representations involve
specifying the robot’s actions using a set of continuous variables, such as the robot’s joint
angles, velocities or torques. These provide fine-grained control and are suitable for tasks
that require smooth, continuous motion. Discrete representations, on the other hand,
involve specifying the robot’s actions using a set of discrete waypoints, within the inter-
mediate trajectories that are interpolated or generated with path-planning algorithms.
These representations are beneficial for tasks that involve discrete actions, like picking
and placing objects. It’s worth noting that even when provided with the same high-level
task description, the choice of action representation can significantly impact the robot’s
performance and its ability to generalise. Thus, the selection of the appropriate action

representation is a critical consideration in the successful execution of robotic tasks.

Tasks with Multi-Modalities

In addition to tasks within the same domain, tasks can also be extended across multiple
domains, representing correlations and shared concepts across modalities, which we refer
to as multi-modal tasks. Compared to single-modal tasks, multi-modal learning involves
processing and integrating information from multiple sensory modalities or data sources
such as text, images, audio, video, and more, in a unified manner. Multi-modal learning
often intersects with multi-task learning, where diverse tasks necessitate the processing of
data from different modalities. For example, multi-task robotic systems frequently involve

object recognition (vision) and the comprehension of natural language (text and audio).

The concepts of multi-modal learning and multi-task learning can also mutually enrich
one another. Multi-modal learning extends the multi-task learning process by providing a
broader range of input data, while multi-task learning enhances multi-modal systems by

facilitating the sharing of knowledge and features across various tasks.



1 Introduction and Background

In the following section, we will delve into commonly used learning strategies related to
multiple tasks, aimed at enhancing the generalisation of both single- and multi-modal

machine learning systems.

1.3 Learning Strategies with Multiple Tasks

Multi-task learning, transfer learning, and auxiliary learning [ZY18, ZQD"20] are com-
monly used learning strategies aimed at improving the generalisation of neural networks
by leveraging shared features from related tasks. They involve training models on multiple
tasks simultaneously or sequentially to enhance the learned representations. Throughout
this thesis, we will extensively explore and address all three of these learning strategies. In

this section, we briefly introduce these learning strategies and how they are related.

Train Test Train Test Pre-Train  Train Test Train Test
Input Input Input Input Input Input Input Input Input
| | — — | | | — |
' + ' ' ' ' + + + + + +
Task A Task A Task A Task B Task A Task B Task A TaskB TaskB Task A Task B Task A

(a) Single Task Learning (b) Multi-Task Learning (c) Transfer Learning (d) Auxiliary Learning

Figure 1.4. A visual diagram of different learning strategies. Single task learning (a) involves training
and evaluating a model on a single task. Multi-task learning (b) involves training and evaluating a
model on multiple tasks. Transfer learning (c) involves training a model on a source task and then
transferring and evaluating the learned knowledge to a target task. Auxiliary learning (d) involves
training a model on multiple tasks, while only evaluating on the primary tasks.

Multi-Task Learning

In multi-task learning as illustrated in Fig. 1.4b, a single model is trained to perform mul-
tiple tasks simultaneously. This approach fosters the sharing and leveraging of information
across tasks, resulting in enhanced generalisation across all tasks. The motivation behind
multi-task learning lies in the recognition that the knowledge and representations acquired
for one task can be utilised to improve the performance of other related tasks. Consequently,
multi-task learning fosters a symbiotic relationship among these tasks, promoting mutual

benefits and mitigating task conflicts.

Tasks that share similar objectives or features can benefit from collaborative learning, while
tasks with conflicting objectives can be managed through careful regularisation, neural

architecture designs and task weighting strategies.
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Transfer Learning

Transfer learning as illustrated in Fig. 1.4¢ involves training a model on a source task and
then transferring the learned knowledge to a target task. Unlike multi-task and auxiliary
learning which only requires one-step training, transfer learning often involves two-step
training: pre-training on a source task and fine-tuning on a target task. The idea is that the
knowledge acquired during the initial training can serve as a foundation for the new task,
thereby accelerating learning and improving generalisation. Transfer learning is particu-
larly beneficial in domains where annotated (down-steam) datasets are scarce or costly to
acquire. By leveraging pre-trained models trained on large-scale datasets, practitioners

can bootstrap learning on new tasks with limited labelled data, saving time and resources.

Auxiliary Learning

Auxiliary learning as illustrated in Fig. 1.4d, also known as auxiliary task learning or multi-
task learning with auxiliary tasks, involves training a model on primary tasks (usually
one), while simultaneously training it on one or more auxiliary tasks. These auxiliary tasks
(occasionally necessitating input from other modalities) are designed to help the model
learn more informative and robust features. It’s important to note that both multi-task
learning and auxiliary learning often adopt the same neural architecture design. However,
unlike multi-task learning, where all tasks are equally important, auxiliary learning solely
focuses on improving the performance of the primary tasks. The auxiliary tasks are included
to act as regularisers that encourage the model to learn features that are useful for both
the primary and auxiliary tasks. It’s also interesting to note that, auxiliary tasks can serve
as effective regularisers even when they are not directly related to the primary task. For
instance, introducing noise through an additional output in a neural network can enhance
generalisation by acting as a regularisation mechanism at the hidden layer, without implying

any inherent relationship between the primary and auxiliary tasks [Cargy].

Multi-task learning, transfer learning, and auxiliary learning collectively contribute to
enhancing the robustness and efficiency of learning in machine learning tasks, and they
can also be used in combination to yield even more benefits. A prevalent approach involves
multi-task pre-training which initiates with generalised feature learning, followed by task-
specific transfer learning [SWR* 22, DCLT19]. Moreover, these learning strategies can also
be seamlessly integrated with multi-modal learning by incorporating multi-modal data
as inputs to the model. While these strategies deliver benefits such as efficient knowledge
transfer and adaptability, they also pose challenges related to task interference, complexity,

and imbalance, catalyse the focus of our research direction, as outlined in the next section.
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1.4 Research Direction and Contribution

In this thesis, our primary focus is on the design of structured multi-task learning systems
for visual perception. Our goal is to improve the generalisation of multi-task systems by
learning structured visual representations. This pursuit has the potential to be not only
beneficial for advancing computer vision tasks but also holds significant value for a wide
range of vision-related multi-modal tasks — a robust and structured visual representation
serves as a foundation for understanding scenes, objects, and their relationships, benefiting
applications from classical scene understanding like object recognition and detection to
more intricate undertakings like vision-based control and reasoning. The contributions of

this thesis are guided by the following research questions, and are structured as follows:

Chapter 3 Chapter 4 Chapter 5 Chapter 6
Auto-A ReCo MAXL Prismer
A Multi-Task & Auxiliary An Auxiliary Learning An Auxiliary Learning A Transfer Learning
Learning Framework Framework Framework Framework
to learn to learn to learn to learn
Structure of Structure of Structure of Structure of
Tasks Semantics Semantics Reasoning
for for for for
Dense Prediction Tasks Visual Question Answering
Image Classification Semantic Segmenation Image Classification Image Captioning
Robotic Manipulation Image Classification

Research Question 1: How can we understand the structure between tasks and leverage

them to improve the generalisation and interpretability of neural networks?

We introduce the Auto-A framework in Chapter 3 and in [L]JDJ22]. Auto-A is an optimisa-
tion framework that learns task relationships parameterised by task weightings, termed A.
Auto-2 learns continuous and dynamic multi-task relationships, allowing optimising on any
choice of combination of tasks, and therefore effectively unifying multi-task learning and
auxiliary learning into a single optimisation problem. Auto-A has exhibited its effectiveness
in improving generalisation across both computer vision and vision-based robotics tasks
and has outperformed optimisation strategies that were specifically tailored for each of
these tasks, showcasing its versatility and potential in diverse domains. Moreover, Auto-A
showcases the ability to learn task relationships that align with human intuition, thereby
enhancing the interpretability of multi-task models.

10



1.4 Research Direction and Contribution

Research Question 2: How can we understand the structure between semantic classes

and leverage them to improve the generalisation and interpretability of neural networks?

We introduce the ReCo framework in Chapter 4 and in [LZ]D21]. ReCo is an auxiliary
learning framework that operates by conducting pixel-level contrastive learning on the
learned representations within a segmentation model. It incorporates active sampling
strategies guided by semantic class relationships, which helps in the adaptive selection of
informative training samples. ReCo consistently yields improvements across a variety of
scenarios, including both semi-supervised and supervised semantic segmentation methods.
The most substantial impact is observed in the context of semi-supervised learning, partic-
ularly when dealing with very limited labelled data. With ReCo, we achieve high-quality

semantic segmentation models requiring only five examples for each semantic class.

Research Question 3: How can we generate structured auxiliary tasks automatically to

improve the generalisation of neural networks?

We introduce the meta auxiliary learning (MAXL) framework in Chapter 5 and in [LDJ19].
MAXL represents an auxiliary learning strategy that focuses on the direct generation of
useful, structured auxiliary tasks such that any supervised learning task can be improved
without requiring access to any further data. This approach involves the training of two
neural networks: a label-generation network, responsible for predicting auxiliary labels;
and a multi-task network that trains the primary tasks concurrently with the generated
auxiliary tasks. This label-generation network’s purpose is to produce structured auxiliary
tasks that are inherently valuable, leading to improved generalisation of primary tasks by
training them alongside the generated auxiliary tasks in a standard multi-task training
setting. Remarkably, MAXL exhibits the capability to achieve performance improvements
that are on par with, and in some cases, even surpass those achieved with auxiliary tasks

designed by humans.

Research Question 4: How can we effectively transfer multi-task knowledge encoded

within pre-trained expert models to improve open-ended vision-language reasoning?

We introduce the Prismer model in Chapter 6 and in [LF]*24]. Prismer stands as a multi-
modal model that harnesses and transfers the power of an ensemble of specialised pre-
trained task experts. Prismer shows an effective way to scale-down multi-modal learning by
breaking down a complex vision-language reasoning task into structured domain-specific
reasoning. This decomposition leads to improved training efficiency, as the model can

focus on integrating specialised skills and domain-specific knowledge within each expert,
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1 Introduction and Background

rather than attempting to master all aspects simultaneously within a single model. As a
result, Prismer achieves fine-tuned and few-shot vision-language reasoning performance
which is competitive with current state-of-the-arts, while requiring up to two orders of

magnitude less training data.

A substantial portion of the research presented in this thesis is featured in the following

publications:

1. Shikun Liu, Andrew J. Davison, and Edward Johns (2019). “Self-Supervised General-
isation with Meta Auxiliary Learning” In Advances in Neural Information Processing
Systems (NeurIPS).

2. Shikun Liu, Shuaifeng Zhi, Edward Johns, and Andrew J. Davison (2022). “Bootstrap-
ping Semantic Segmentation with Regional Contrast.” In International Conference on

Learning Representations (ICLR).

3. Shikun Liu, Stephen James, Andrew J. Davison, and Edward Johns (2022). “Auto-
Lambda: Disentangling Dynamic Task Relationships.” In Transactions on Machine
Learning Research (TMLR).

4. Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, and Anima Anandku-
mar (2024). “Prismer: A Vision-Language Model with Multi-Task Experts” In Transac-
tions on Machine Learning Research (TMLR).

Additionally, the author has made contributions to the following publications:

1. Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J. Davison (2021). “iIMAP: Implicit
Mapping and Positioning in Real-Time.” In International Conference on Computer
Vision (ICCV).

2. Xin Kong, Shikun Liu, Marwan Taher, and Andrew J. Davison (2023). “vMAP: Vector-
ised Object Mapping for Neural Field SLAM.” In Conference on Computer Vision and
Pattern Recognition (CVPR).

3. Xin Kong, Shikun Liu, Xiaoyang Lyu, Marwan Taher, Xiaojuan Qi, and Andrew J.
Davison (2024). “EscherNet: A Generative Model for Scalable View Synthesis.” In
Conference on Computer Vision and Pattern Recognition (CVPR).
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1.4 Research Direction and Contribution

In addition to the main contributions highlighted above, this thesis includes a preliminary
section, which serves as a technical foundation, establishing the fundamental concepts
and necessary background knowledge for the content presented throughout the thesis
(Chapter 2). After presenting our main findings, we conclude the thesis and outline in-

triguing avenues for future research (Chapter 7).
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Preliminaries

In this chapter, we provide an extensive exploration of multi-task learning techniques
in computer vision tasks. We start with the introduction of modern neural architecture
designs (Section 2.1), and then proceed to introduce and categorise multi-task architecture
designs (Section 2.2). We survey various MTL optimisation strategies aimed at mitigating
the issue of task conflict and balancing task influences (Section 2.3). Finally, we delve
into how multi-task learning can enhance the interpretability of neural network learning

processes and uncover the relationships between tasks (Section 2.4).

Notations

In multi-task learning, we adopt a uniform notation scheme as follows. We denote a
muli-task network to be f(-;0) : X — Y, where 8 denotes the network parameters. These
parameters are trained to map inputs X;.x € X to their corresponding labels Yi.x € ) across
a total of K learning tasks. The multi-task network comprises a combination of task-shared
parameters denoted as 6, and K task-specific parameters denoted as 0., collectively
represented as 0 = {65, O1.x }. Each task is allocated a task-specific weight denoted as
A = {di:x }. We express the task spaces using a collection of task-specific inputs and outputs
pairs, denoted as T = { Ty:x }, with each T; = (X;, Y;).

The design of the task spaces can be further divided into two different settings: a single-

domain setting (where all inputs are the same X; = X}, i # j, i.e., one-to-many mapping),
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2.1 Advances in Neural Architecture Design

and a multi-domain setting (where all inputs are different: X; # X j»1 # J, i.e., many-to-
many mapping). We want to optimise 6 for all tasks T and obtain a good performance in
some pre-selected primary tasks T?"' ¢ T. If we choose T?" = T, we are in the multi-task

learning setting, otherwise, we are in the auxiliary learning setting.

2.1 Advances in Neural Architecture Design

The field of computer vision has witnessed remarkable progress over the past few decades,
driven by the development of increasingly sophisticated neural network architectures. These
advancements have reshaped the way we perceive, interpret, and analyse visual information.
Among the many architectural innovations that have fuelled this evolution, multi-layer
perceptrons, convolutional neural networks, and transformers stand out as transformative
milestones. In this section, we will briefly explore how these architectural designs have

evolved, and their unique properties and limitations in learning visual representations.

Multi-Layer Perceptrons: The Pioneers of Deep Learning

The journey through the evolution of neural architecture in computer vision begins with
Multi-Layer Perceptrons (MLPs), or fully-connected feed-forward neural networks. MLPs
are the fundamental building blocks of deep learning and represent a significant departure
from shallow neural networks. Unlike other supervised learning methods, such as logistic
regression and support vector machines [HDO" 98], which were limited by their capacity
to model simple linear relationships, MLPs are characterised by multiple hidden layers,

allowing them to capture intricate, non-linear patterns within data.

MLPs are capable of approximating any continuous function, known as universal function
approximators [HSW89]. They are consisted of inter-connected layers of artificial neurons,
and these neurons process information by applying weighted sums, followed by activa-
tion functions. Each layer refines the features learned in the previous layer, ultimately
culminating in a final layer that produces the networK’s output. The depth of an MLP,
achieved by stacking multiple layers, enables it to learn increasingly abstract and complex

representations of data.

However, MLPs do not naturally handle the spatial structure of images. They treat each
pixel as an independent feature, which ignores the important local relationships between
neighbouring pixels. Moreover, they tend to struggle with high-resolution images as they
may require a large number of neurons in the input layer to process all the pixels, which

can lead to a large computational cost.
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2 Preliminaries
Convolutional Neural Networks: Spatial Hierarchies and Translation Invariance

The emergence of Convolutional Neural Networks (CNNs) marked a significant turning
point in computer vision. CNNs were purposefully designed to address the challenges that

MLPs encountered in computer vision tasks.

CNNs were first proposed in [LBBH98] which leverage a unique architecture that incorpor-
ates convolutional layers, pooling layers, and fully connected layers, and later popularised by
AlexNet [KSH12] and VGGNet [SZ15] which achieved remarkable success in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [DDS" 0g].

Convolutional layers apply learnable filters to input data, enabling the network to auto-
matically learn spatial hierarchies of features. This characteristic is especially beneficial in
vision tasks, where detecting local patterns and structures is essential. Pooling layers, on
the other hand, downsample the data to reduce computational complexity while retaining
important features. The use of convolutional and pooling layers in CNNs equips them with

translation invariance, making them particularly adept at handling images.
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Figure 2.1. Visualisation of the feature maps in convolutional deep belief networks [LGRNog]. We
observe the emergence of basic features, such as edges and textures in earlier layers (top), and feature
maps become more complex and begin to form recognisable object parts in the later layers (bottom).

In addition to their capacity for spatial hierarchies and translation invariance, CNNs employ
techniques like weight sharing and local receptive fields to significantly reduce the number
of parameters in comparison to MLPs. This reduction in parameters enables the model’s
ability to generalise from large-scale data, making CNNss easier to scale and highly efficient

for computer vision tasks.
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2.1 Advances in Neural Architecture Design

CNNs have revolutionised the field of computer vision, leading to significant breakthroughs
in areas such as image classification, object detection, and medical image analysis. As
computer vision tasks have become increasingly diverse and complex, the evolution of

CNN architectures has played a pivotal role in addressing these challenges.

Traditional convolutional layers rely on fixed grid structures, which may not be the most
effective approach for all computer vision tasks. For instance, in tasks like semantic segment-
ation or object detection, the fixed grid structure struggles to capture long-range spatial
relationships between pixels. To tackle this issue, two notable techniques were introduced.
Dilated convolution, also known as atrous convolution [CPK*17], popularised by DeepLab
architectures [CPK"17], enhances the receptive field of convolution by introducing gaps
between kernel elements. These gaps allow CNNs to capture long-range dependencies,
making it particularly valuable for tasks requiring an extensive spatial context. Deformable
convolution takes flexibility in the receptive field to a new level. It allows the network to
dynamically adjust the shape and position of the receptive field for each spatial location.
This flexibility enables CNNs to learn complex spatial relationships and deformations in

the data, making it highly effective in tasks that demand precise localisation.
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Figure 2.2. Visualisation of different [3 x 3] convolutional kernel designs. Standard convolution
employs a fixed grid structure confined to neighbouring pixels, while dilated and deformable convolu-

tion introduces gaps and flexibility to the grid structure to capture long-range relationships.

In addition to innovations in convolutional layers, advancements in CNN architecture
designs have been instrumental in enhancing the performance and capabilities of computer
vision systems. ResNet [HZRS16] introduced residual connections, facilitating the training
of deeper neural networks. This architecture mitigates the vanishing gradient problem and
enables the development of extremely deep networks. DenseNet [HLVDMW1y] introduced
dense connections between layers, enhancing information flow and gradient propagation.
UNet [RFB15] is an encoder-decoder architecture tailored for image segmentation tasks.

Its U-shaped structure combines a contracting path for feature extraction and an expans-
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2 Preliminaries

ive path for precise localisation, making it a popular choice for semantic segmentation.
SENet [HSS18] focuses on feature recalibration by introducing a “squeeze-and-excitation”
mechanism. It adaptively recalibrates the importance of different channels within each

feature map, enhancing the model’s capability to focus on relevant features.

These architectural innovations represent the continuous evolution of computer vision,
unlocking new possibilities and pushing the boundaries of what machines can achieve in
terms of visual perception and understanding. As computer vision tasks continue to grow
in complexity and diversity, these advancements play a critical role in enabling AI systems

to excel in various domains.

Transformers: Representing Images as Sequences

The rise of transformers, originally introduced in the seminal work [VSP*17], represents a
paradigm shift in neural architecture design. Originally developed for natural language pro-
cessing, transformers have been adapted to computer vision, known as Vision Transformers
(ViTs) [DBK*20]. ViTs represent a fresh and compelling alternative to the long-standing

dominance of CNNs.

In the ViT framework, images are transformed into sequences of smaller, fixed-size patches,
a departure from the traditional pixel-based approach applied in CNNs. These patches
serve as the fundamental units of analysis in the ViT model, enabling it to capture both local
and global information efficiently. The heart of the ViT architecture lies in its multi-head
self-attention mechanism, a critical component that empowers the model to make sense of
the patch-based image representations. This self-attention mechanism operates through a
process known as scaled dot-product attention. In this process, each patch within the image
sequence interacts with every other patches. This interaction is achieved by computing the
dot product between a query, often representing one patch, and a set of keys, representing
all other patches. The resulting dot products are then scaled to prevent the gradients from

becoming too large or too small during training, ensuring stable and effective learning.

The scaled dot-product attention essentially evaluates the similarity between different
patches, which allows the ViT model to discern complex relationships and dependencies
within the image. By learning how each patch relates to every other patches, the model can
grasp both global context and fine-grained details, transcending the limitations of local
analysis typically associated with CNNs. Consequently, ViTs have achieved competitive
results in image classification, object detection, and semantic segmentation, challenging

the traditional dominance of CNNs in these domains.
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Figure 2.3. A visual diagram of the Vision Transformer architecture. ViT represents images as
sequences of patches, which are then processed through a multi-head self-attention mechanism which
performs scaled dot-product attention.

While ViTs emerge as a compelling alternative to CNNs, it’s essential to recognise that
these two paradigms need not be mutually exclusive. In fact, they can be combined to
harness the strengths of both and achieve even more impressive results in computer vision
tasks. Notable examples include CvT [WXC*21], CoatNet [DLLT21], and CeiT[YGL"21].
These models adopt a hybrid architecture that combines elements from both CNNs and
transformers. This integration introduces the desirable properties of CNNs, such as shift,
scale, and distortion invariance, into the transformer architecture, while preserving the
merits of transformers, such as dynamic attention, variable token length, and global context,
which eventually translates into models that are both powerful and resource-efficient, which

is a crucial consideration in modern machine learning applications.

Interestingly, recent research [THK" 21, SBBD23] highlights that the most important factors
determining the performance of a sensibly designed model are the compute and data
available for training rather than the architectural designs. This observation challenges
conventional wisdom and highlights the critical role of resources in achieving optimal
model performance. However, it’s important to recognise that architectural choices still play
a crucial role in certain contexts, particularly in scenarios that demand adaptability across
different modalities. This adaptability is particularly valuable in learning multi-modal
tasks, such as image captioning, visual question answering, text-to-image generation, and
audio-visual processing, where different types of data, such as images, text, and audio, need

to be processed in a cohesive manner.
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2.2 Multi-Task Neural Architectures

Multi-task neural architecture design is one of the most important directions in MTL
research and typically employs two main paradigms to learn shared representations: hard
parameter sharing and soft parameter sharing, incorporating explicit or implicit feature-

sharing strategies for modelling cross-task interaction.

In this section, we will primarily focus on multi-task architectures that are constructed
using CNNG, as they have established themselves as the predominant architectural choice

for addressing multi-task learning in computer vision tasks.

Hard Parameter Sharing

In hard parameter sharing, multiple tasks share the same neural network architecture,
and initial hidden representations are identical across tasks. These shared representations
then branch into independent task-specific representations at a later stage. The most
straightforward implementation, illustrated in Fig. 2.4a, is a neural network with a shared
backbone and task-specific heads at the final hidden layer that is responsible for making
task-specific predictions [KGC18, SK18, CBLR18, GHH"18]. Despite its simplicity and
lower computational requirements, this vanilla hard parameter-sharing approach might
not perform optimally when tasks have significantly different data distributions or require

varying levels of complexity.

The inherent limitations of the straightforward branching approach in hard parameter
sharing have spurred interest in designing multi-task neural architectures that facilitate
finely branched structures. In Multi-Task Network Cascades [DHS16], the output of each
task-specific branch is appended to the input of the subsequent task-specific branch, cre-
ating a “cascade” of information flow to learn causal task relationships. UberNet [Koki7]
presents another example of a hard-parameter sharing model that allows for branching at
multiple layers. This model adopts a multi-scale approach, where at each scale, the network

branches at multiple layers, with each branch dedicated to a specific task.

However, in these models, the branching points within the network are typically pre-
determined based on prior task knowledge, which can still result in sub-optimal task
groupings. To achieve even more optimal MTL architecture design, recent works like
[VGDBVG20, GLU20], as illustrated in Fig. 2.5a, have proposed efficient design methodo-

logies that automatically determine where to share or branch within the network.
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2.2 Multi-Task Neural Architectures

Soft Parameter Sharing

In contrast to hard parameter sharing, where task-specific parameters 0..x are completely
isolated, soft parameter sharing allows the parameters of different tasks to interact with
each other. The vanilla soft parameter sharing approach is designed to achieve such interac-
tion implicitly by imposing regularisation or loss components that penalise the differences
between the parameters of the task-specific models, as illustrated in Fig.2.4b. This regular-

isation term can be designed as a simple L,-norm [DCBCis] or the trace norm [YH17].

— Task A — — — — Task A
4 [ 4 4
— Task B — — — —> Task B
v ‘V Al Al
— Task C — — — — Task C
(a) Vanilla Hard Parameter Sharing (b) Vanilla Soft Parameter Sharing

Figure 2.4. A visual diagram of vanilla hard parameter sharing and soft parameter sharing design
in multi-task learning. Vanilla hard parameter sharing (a) relies on a single shared neural network
architecture for all tasks, with each task has its separate set of output layers that are task-specific. Vanilla
soft parameter sharing (b) involves separate networks for each task with regularisation techniques to
encourage parameter similarity.

Alternatively, explicit interaction can be introduced through feature fusion modules. Ex-
amples include the use of cross-stitch units [MSGH16], which apply linear combinations
of activations, and NDDR modules [GMZ*19], which employ [1 x 1] convolutions. These
modules are integrated into each layer of task-specific networks to facilitate soft feature
fusion, as illustrated in Fig. 2.5b. MTAN [L]D19], on the other hand, achieves feature fusion
through a learnable soft attention mask applied over a global feature pool 8, to construct

task-specific networks, as illustrated in Fig. 2.5c.

These aforementioned methods are designed to make predictions for all tasks directly
from the same input in a single-step process. This design, focusing on feature fusion
within the encoder part of the network, is also commonly referred to as an encoder-focused
architecture, following the categorisation introduced in the survey [VGVG" 21]. To promote
knowledge sharing directly in the task space (e.g. depth discontinuities are usually aligned
with semantic edges), some recent works employ multi-task networks to make initial task
predictions and then leverage features from these initial predictions to further refine each
task’s output in a recursive manner [BV16, XOWS18, VGVG20]. As these MTL approaches
exchange information during the decoding stage to facilitate fine-grained task refinement,

they are referred to as decoder-focused architectures.
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Figure 2.5. A visual diagram of modern multi-task neural architecture design. Modern multi-task
neural architectures employ more advanced feature fusion strategies to promote cross-task interaction.
Branched Multi-Task Network (a) automatically determines where to share or branch within the
network. Cross-Stitch Net / NDDR (b) and MTAN (c) explicitly introduce feature fusion modules to
facilitate soft feature fusion. PAD-Net (d) is a decoder-focused architecture that leverages initial task
predictions to further refine each task’s output in a recursive manner. AdaShare (e) is a NAS-based
method with a bounded network parameter count that automatically determines which layers to share

across which tasks.

For instance, PAD-Net [XOWS18], depicted in Fig. 2.5d, is one of the pioneering decoder-
focused architectures. In this network, an input image first goes through an off-the-shelf
backbone network with task-specific heads to produce initial predictions for each task, as in
the vanilla hard parameter-sharing approach. These initial task predictions are recombined
to extract cross-task information, which is then fed into another set of task-specific heads
to generate the final task predictions. Similar techniques used in advanced hard parameter
sharing approaches can also be applied in decoder-focused architectures to further improve

performance, promoting feature fusion with a multi-scale design [VGVG2o0].

Decoder-focused architectures have demonstrated significantly improved performance
compared to encoder-focused architectures and have achieved state-of-the-art performance
when further combined with more sophisticated design components within the transformer
architectures [YX22b, YX22a].

Neural Architecture Search

While both hard and soft parameter sharing approaches have exhibited promising results

in multi-task learning benchmarks, they are somewhat constrained by the manual design
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of the network architecture’ and can become computationally inefficient — the model size

scales proportionally with the number of tasks.

To address these constraints, recent research has delved into the utilisation of neural ar-
chitecture search (NAS) techniques. These NAS methods aim to automatically determine
which layers to share across which tasks in multi-task learning. For instance, AdaShare
[SPFS20], as depicted in Fig. 2.5e, employs a differentiable NAS framework to jointly learn
a feature-sharing policy and network weights. This approach adaptively selects network
layers to execute for a given task. Consequently, the network’s parameter count remains
bounded by the original backbone network, and thereby the number of parameters becomes
independent of the number of tasks. The exploration of what parameters to share across
tasks is further advanced in AutoMTL [ZLG22], which introduces a multi-task super-model
compiler to automatically transform backbone network layers into a multi-task structure
encoded with a pre-defined search space, affording greater flexibility in terms of choosing
the backbone model. These NAS-driven approaches offer a promising avenue for enhancing

the efficiency and adaptability in designing more advanced multi-task neural architectures.

2.3 Multi-Task Optimisation Strategies

In addition to neural architecture design, balancing the joint learning of multiple tasks is
another important research challenge in MTL, as we need to ensure that no single task
dominates the influence on the network weights. To address this issue, various optimisation

strategies have been proposed, which can be categorised into two main directions.

Single Objective Optimisation

In this approach, the goal is to minimise a linearly combined single-valued loss for all tasks,

with each task 7 being assigned a task-specific weighting A;:

K
mgin ;Ai'Li (f(xi;esh,ei),yi)- (2.1)

To balance the influence of each task on the shared network parameters 6, suitable task
weightings A can be determined. These weightings can be manually chosen based on the
prior task knowledge, set to be equal A;.x = I/k as a common practice, or learned adaptively.

Adaptive weightings, also known as weighting-based methods, learn to prioritise more

! Branched multi-task networks [VGDBVG20, GLU20] introduced as a hard parameter sharing approach
can also be considered as a form of NAS-based methods.
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difficult tasks, as measured by heuristics such as task uncertainty (uncertainty weighting)
[KGC18], task learning speed (dynamic weight average, DWA) [L]JD19], or relative task
loss value (dynamic task prioritisation, DTP) [GHH"18].

Gradient-based methods, on the other hand, aim to find an aggregated gradient by linearly
combining individual task gradients under various constraints. These methods offer a
more direct and nuanced means of balancing tasks compared to weighting-based methods,

as they operate on task-specific gradients, enabling fine-grained adjustments to shared

8 2

network parameters by generating suitable gradient weights A; %,

K
O =0 — 1 Z)L‘f Ve, Li (f (xi5 051, 6:), yi) - (2.2)

i=1

These constraints can include equal gradient magnitude (GradNorm) [CBLR18], equal
gradient projection (IMTL) [LLK " 21], conflicting gradient dropout (GradDrop) [CNH " 20],
or aligning the principal components of the gradient matrix (Aligned-MTL) [SPKK23].

Multi-Objective Optimisation

Multi-task learning can also be formulated as a multi-objective optimisation problem,

where the objective is to minimise a vector-valued loss,

min [L; (f (xi3 050, 0:) )] - (2.3)

This formulation proves to be more attractive because, by recasting multi-task learning as a
multi-objective optimisation problem, the process becomes more tractable to optimisation
techniques — their convergence to a Pareto optimal solution is guaranteed under mild
conditions. In contrast, seeking a global optimum in the context of a single-objective
optimisation problem often proves to be very challenging and computationally demanding.
A Pareto optimal solution implies that, for the given set of tasks, no further improvements
can be made in the loss for one task without sacrificing the loss in at least one of the other
tasks. In other words, it’s an equilibrium where we’ve reached the best trade-off between

competing objectives.

A crucial characteristic of multi-objective optimisation is that, since there’s no natural

linear ordering on vectors, it’s not always possible to compare solutions or determine a

* The gradient weights /\‘f:K will only affect the task-shared parameters 6y, but not task-specific para-
meters ., each of which is updated by the i-th task gradient Vg, L; (f (xi; 85n, 8;) , ). As such, gradient-
based methods would typically require a longer training time compared to weighting-based methods.
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Figure 2.6. Geometric visualisation of diverse multi-task optimisation methods. We show the
updated gradient direction (coloured red) obtained by various multi-task optimisation methods in a
two-dimensional parameter space for a simple two-task learning problem, labelled as g; and g». Each
method has its own way of adjusting the gradients to effectively balance the parameter space.

clear optimal value. Consequently, selecting between different Pareto optimal solutions

can be challenging without additional assumptions or prior task preferences [NSFC20].

This challenge has been observed in optimisation methods like MGDA (Multi-Gradient
Descent Algorithm) [SK18] and PCGrad [YKG*20], which are designed to converge to an
arbitrary point on the Pareto set depending on the network initialisation, without explicit
control over the specific point of convergence. To address this issue, [LZL*19] extends
MGDA to generate a set of well-representative Pareto solutions from which a preferred
solution can be selected. CAGrad [LL]"21] explores an update direction in a neighbour-
hood of the average gradient that maximises the worst improvement of any task, using
gradient conflict to regularise the optimisation trajectory. Nash-MTL [NSA*22] proposes
a Nash bargaining solution to find a Pareto optimal solution that is also proportionally fair,

ensuring that any alternative solution would have a negative average relative change.’

These methods aim to facilitate the selection of a single Pareto optimal solution from
the set of possible solutions, enhancing the practicality of multi-objective optimisation in

multi-task learning.

Meta Learning

Meta-learning, often referred to as “learning to learn,” represents the process of improving
a learning algorithm over multiple learning episodes, rather than just optimising model pre-
dictions over multiple data instances, as in traditional machine learning [VDo2, HAMS2o0].
The process of meta-learning involves two key components: base learning and meta-

learning. During base learning, an inner or lower learning algorithm solves a task defined

> While operating under distinct optimisation objectives, it’s worth noting that multi-objective optim-
isation methods can be viewed as gradient-based methods in the sense that they are designed to iteratively
adjust the direction of task-shared parameters with the same formulation of Eq. 2.2, with the aim of

converging toward a Pareto optimal solution.
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by a specific dataset and objective function. During meta-learning, an outer or upper
algorithm updates the inner learning algorithm such that the learned model improves an
outer objective, which typically involves optimising the model’s ability to adapt to new

tasks quickly and effectively.

The essence of meta-learning lies in its ability to address unknown future tasks, a goal
that differs slightly from traditional multi-task learning, which focuses on solving a pre-
determined set of known tasks. However, the principles of meta-learning can be effectively
integrated into multi-task learning frameworks to enhance performance and adaptability.
For instance, meta-learning can be used to learn a shared network initialisation that can be
adapted to new tasks with few gradient steps and minimal data [FAL17, NS18], to capture the
relatedness between tasks via hyper-gradients [FDFP17], or to adaptively prioritise among
multiple tasks [LBKH19]. Meta learning can also be directly employed as an optimisation
strategy to solve multi-task learning problems, such as within a multi-objective formulation

[YLY™21] or to balance the worst-performing tasks via a min-max game [MRY21].

2.4 Interpretability and Task Relationships

Multi-task learning can improve model accuracy, memory efficiency, and inference speed,
when compared to training tasks individually. However, it often requires careful selection
of which tasks should be trained together, to avoid negative transfer, where irrelevant tasks
produce conflicting gradients and complicate the optimisation landscape. As such, without
prior knowledge of the underlying relationships between the tasks, and hence which tasks
should be trained together, multi-task learning can sometimes have worse prediction

performance than single-task learning.

While various multi-task optimisation strategies introduced earlier have been designed
to address this issue, training non-related or conflicting tasks together can still lead to
sub-optimal model performance. Moreover, a model that is aware of the relationships
among tasks can require less supervision, consume fewer computational resources, and

provide insights into the structure of learning in a more interpretable manner.

Inferring Task Relationships by Task Grouping

The concept of the relationship among tasks is a relative metric that can be defined as how
much a group of tasks can benefit from the representations learned by another group of tasks.
The task affinity score is an absolute metric used to quantify the relationship between these

tasks, which can be defined differently depending on the learning strategies introduced in
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2.4 Interpretability and Task Relationships

Section 1.3. The term order refers to the number of tasks for which we want to compute
this relationship. It's important to note that different learning strategies can infer different

task relationships [SZC*20a].

+ In transfer learning, we say that task A is more related to task B than task C, if the
performance of task A is higher when training task A with the representations learned
from task B, compared to when training task A with the representations learned from
task C. The task affinity score between two tasks is determined by the average perform-
ance improvements observed during both forward and backward transfer, relative to

when the tasks are trained individually.

+ In multi-task and auxiliary learning, we say that task A is more related to task B than
task C, if the performance of task A is higher when training tasks A and B together,
compared to when training tasks A and C together. The task affinity score between two
tasks is determined based on the average performance improvements observed when

training the two tasks as a pair, relative to when the tasks are trained individually.

Depth  Normal Keypoint Edge Depth Normal  Keypoint Edge
Sem. Seg.  -0.62% -1.39% +0.25% -15.78% Sem. Seg.  +1.74% +1.83% +0.72% +0.70%
Depth -0.54% +2.43% +1.42% Depth +1.92% +0.41% +0.47%
Normal +0.67% +3.95% Normal +0.09% +0.12%
Keypoint -1.95% Keypoint +0.23%
(a) Multi-Task Learning (b) Transfer Learning

Table 2.1. Pairwise task affinity discovered in multi-task learning and transfer learning strategies.
We can observe that there appears to be no correlation between pairwise task affinities in multi-task
learning and transfer learning in Taskonomy dataset [ZSS*18], as observed in the results obtained
from [ZSS*18] in the transfer learning setting and [SZC*20a] in the multi-task learning setting.

In this thesis, we mainly focus on the task relationships defined in the multi-task learning
setting, to determine which tasks should be trained together. One straightforward but
computationally expensive approach would be to exhaustively search over all possible task
groupings, where tasks within a group are equally weighted, and all other tasks are ignored.*
However, this requires training 27! — 1 multi-task networks for a set of tasks 7, and the
computational cost for this search can be intractable when |77 is large. To address this chal-
lenge, prior works have developed efficient task grouping frameworks based on heuristics

to speed up training, such as using an early stopping approximation [SZC"20a] and com-

4 Task grouping can be considered as a special form of weighting-based methods, by finding fixed and
binary task weightings indicating which tasks should be trained together.
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puting a lookahead loss averaged across a few training steps [FAZ*21]. Nevertheless, these
task-grouping techniques are subject to two notable limitations. First, they are typically
two-stage methods, requiring an initial search for the optimal task structure and subsequent
re-training of the multi-task network with the identified structure. Second, these methods
are primarily designed for lower-order task relationships, making it challenging to directly
obtain higher-order task relationships for three or more tasks. In practice, higher-order
relationships are approximated using combinations of lower-order relationships. But as the
number of training tasks increases, even evaluating these combinations can also become

prohibitively computationally expensive.

Inferring Task Relationships by Neural Architecture Design

Task relationships can also be implicitly inferred from the feature-sharing strategy employed
in the design of multi-task neural architectures. For instance, in hard parameter-sharing
approaches, the branching points in the network can be seen as a form of task grouping,
indicating that tasks within the same branch are considered to have closer relationships.
In soft parameter sharing approaches, the feature fusion modules can be considered as a
way of task grouping, as tasks that share the same feature fusion module are considered
to have closer relationships. Therefore, the feature-sharing strategy, which automatically
determines where to share or branch within the network, can also be regarded as a means
of inferring the underlying task structures learned by a neural network. This strategy

implicitly captures the network’s understanding of how tasks are related to each other.

Sem. Seg. Normal Depth Keypoint Edge Sem. Seg. Normal Depth Keypoint Edge

Sem. Seg. 1.00 0.61 0.43 0.58 0.00 Sem. Seg. 1.00 0.65 0.26 0.62 0.69

Normal 1.00 0.90 0.56 0.44 Normal 1.00 0.69 0.64 0.56

Depth 1.00 0.49 0.47 Depth 1.00 0.04 0.00

Keypoint 1.00 0.67 Keypoint 1.00 0.89

Edge 1.00 Edge 1.00
(a) AdaShare (b) AutoMTL

Table 2.2. Pairwise task affinity discovered in AdaShare and AutoMTL methods. We can observe
that both methods obtained similar task relationships, despite being optimised with different backbone
architecture and search spaces. This suggests that the task relationships they’ve identified are robust
and not highly dependent on specific model architectures or search strategies.

In Table 2.2, we present the pairwise task affinity scores derived from the NAS methods
AdaShare [SPFS20] and AutoMTL [ZLGz22], as discussed in Section 2.2. The pairwise
task affinity score here is defined as the normalised cosine similarity between the final

task-specific policy logits discovered by the NAS methods. Interestingly, it is evident that
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2.4 Interpretability and Task Relationships

both methods, despite being optimised with different backbone architectures and search
spaces, have yielded similar task relationships. For instance, we can observe that in both
methods, 2D tasks such as keypoints prediction and edge detection are highly related, and

3D tasks like surface normal prediction and depth estimation are also highly related.

However, it’s important to note that the task affinity scores derived from the feature-sharing
strategies provide insights into the task structure learned by the multi-task neural network
during architecture search, they might not directly reflect optimal task performance. Task
grouping methods, which explore various combinations of tasks to identify global optimal
structures, offer a more direct approach to uncovering the true task relationships and

thereby can obtain optimal performance based on any selection of primary tasks.
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Exploring Task Relationships
with Automated Weightings

Understanding the structure of multiple tasks allows for multi-task learning to improve
the generalisation ability of one or all of them. However, it usually requires training each
pairwise combination of tasks together in order to capture accurate task relationships, at

an extremely high computational cost, as discussed in Section 2.4.

In this chapter, we introduce a novel weighting framework called Auto-A to automate the
discovery of multi-task relationships. Unlike previous methods that assume fixed task
relationships, Auto-A dynamically explores continuous task relationships via task-specific
weightings. It has the flexibility to optimise any combination of tasks, making it a versatile
tool for various multi-task and auxiliary learning problems in computer vision and robotics.
The results show that Auto-1 achieves state-of-the-art performance, even when compared
to optimisation strategies tailored for specific problems and data domains. Finally, we
observe that Auto-A can reveal intriguing learning behaviours, providing new insights in

understanding multi-task relationships.

3.1 Rethinking Multi-Task Relationships: Static or Dynamic?

Imagine a determined student who wants to learn advanced mathematics topics like calcu-

lus and linear algebra. However, before diving into these complex subjects, it is essential
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3.2 Related Work

to establish a strong foundation in basic arithmetic and algebra. Let’s consider learning
advanced and fundamental mathematics as two individual tasks, we argue that a better
learning strategy is to craft a curriculum that dynamically tailors itself to the learner’s cur-
rent knowledge and skill level. Instead of rigidly following a fixed curriculum, the learning
system adjusts the emphasis on different mathematical concepts based on the learner’s
progress. This approach ensures a solid foundation before moving on to more advanced

topics, improving the overall learning experience and comprehension of mathematics.

Building upon this design insight, we present a novel perspective on the relationships
among tasks: it’s dynamic, continually evolving based on the current state of the multi-task
network during training, as a form of automated curriculum learning [BLCWog]. We
propose that task relationships can be deduced within a single optimisation problem that
iteratively operates throughout training, automatically refining the significance of each
task in line with our optimisation goals. In this way, we aspire to merge multi-task learning

and auxiliary learning into a singular, unified framework.

3.2 Related Work

Multi-task Network Design Multi-Task Learning (MTL) aims at simultaneously solving
multiple learning problems while sharing information across tasks. The techniques used
in multi-task architecture design can be categorised into hard-parameter sharing [Kokiy,
HMBS21], soft-parameter sharing [MSGH16, LJD19, MRK19], and neural architecture
search [GBJ" 20, SPFS20, RKR18]. Please refer to Sec. 2.2 for a detailed review.

Multi-task and Auxiliary-task Optimisation In an orthogonal direction to advance ar-
chitecture design, significant efforts have been invested to improve multi-task optimisation
strategies. Although this is a multi-objective optimisation problem [SK18, LZL"19, YLY"21],
a single surrogate loss consisting of linear combination of task losses are more commonly
studied in practice. Notable works have investigated finding suitable task weightings based
on different criteria, such as task uncertainty [KGC18], task prioritisation [GHH"18] and
task loss magnitudes [LJD1g]. Other works have focused on directly modify task gradi-
ents [CBLR18, CNH*20, YKG" 20, JV22, LLJ 21, NSA*22]. Please refer to Sec. 2.3 for a

detailed review.

Similar to multi-task learning, there is a challenge in choosing appropriate tasks to act as
auxiliaries for the primary tasks. [DCJ*18] proposed to use cosine similarity as an adaptive
task weighting to determine when a defined auxiliary task is useful. [NAM*21] applied

neural networks to optimally combine auxiliary losses in a non-linear manner.
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Our approach is essentially a weighting-based optimisation framework by parameterising
these task relationships via learned task weightings. Though these multi-task and auxiliary
learning optimisation strategies are encoded to each problem, Auto-A is designed to solve

multi-task learning and auxiliary learning in a unified framework.

Understanding Task Grouping and Relationships These optimisation methods typically
assume all training tasks are somewhat related, and the problem of which tasks should be
trained together is often overlooked. In general, task relationships are often empirically
measured by human intuition rather than prescient knowledge of the underlying structures
learned by a neural network. This motivated the study of task relationships in the trans-
fer learning setting [ZSS*18, DR1g]. However, [SZC"20a] showed that transfer learning
algorithms do not carry over to the multi-task learning domain and instead propose a
multi-task specific framework to approximate exhaustive search performance. Further
work improved the training efficiency for which the task groupings are computed with
only a single training run [FAZ" 21]. Rather than exploring fixed relationships, our method

instead explores dynamic relationships directly during training.

Meta Learning for Multi-task Learning Meta learning [VDo2, HAMS20] has been
often used in the multi-task learning setting, such to generate auxiliary tasks in a self-
supervised manner [LDJ19, NAM™21] and improve training efficiency on unseen tasks
[FAL17, WZL21]. Our work is also closely related to [KS*20, LWS*20] which proposed a
task scheduler to learn a task-agnostic features for supervised pre-training, whilst ours
learns features that adapt specifically to the primary task; [YLY"21] which applied meta
learning to solve multi-objective problems, whilst ours focuses on single-objective prob-
lems; [MRY21] which applied meta learning to balance worst-performing tasks, whilst
ours balances multi-task learning by finding optimal task relationships. Related to meta
learning, our framework is learning to generate suitable and unbounded task weightings as

a lookahead method, as a form of gradient-based meta learning.

Meta Learning for Hyper-parameter Optimisation Since Auto-A’s design models multi-
task learning optimisation as learning task weightings A dynamically via gradients, we may
also consider Auto-A as a meta learning-based hyper-parameter optimisation framework
[MDAu15, FFS*18, BCC*20] by treating A as hyper-parameters. Similar to these frameworks,
we also formulate a bi-level optimisation problem. However, different to these frameworks,
we offer training strategies specifically tailored to the problem of multi-task learning whose
goal is not only to obtain good primary task performance, but also explore interesting
learning behaviours of Auto-A from the perspective of task relationships.
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3.3 Auto-A: Unifying Multi-Task and Auxiliary Learning

We now introduce our simple but powerful optimisation framework called Auto-A, which

explores dynamic task relationships through task-specific weightings.

The Design Philosophy. Auto-) is a gradient-based meta learning framework, a unified
optimisation strategy for both multi-task and auxiliary learning problems, which learns
task weightings, based on any combination of primary tasks. The design of Auto-A borrows
the concept of lookahead methods in meta learning literature [FAL17, NAS18], to update
parameters at the current state of learning, based on the observed effect of those parameters
on a future state. A recently proposed task grouping method [FAZ*21] also applied a similar
concept, to compute the relationships based on how gradient updates of one task can
affect the performance of other tasks, additionally offering the option to couple with other
gradient-based optimisation methods. Auto-A however is a standalone framework and
encodes task relationships explicitly with a set of task weightings associated with training

loss, directly optimised based on the validation loss of the primary tasks.

Semantic Depth Normal
Segmentation Prediction Prediction
‘ T
Network
SN
L
Start of Start of
Trainin, Trainin,
Auto-A Y Y
Framework ~  ~ oo oe L oo
Middle of Middle of
Training Training
@ 0 aee e
Weighting End of End of
Training Training
ER T e e S N | I e e e e e e e
Tasks Auxiliary Learning — Semantic Segmentation Time Multi-task Learning — All Tasks Time

Figure 3.1. Auto-) framework overview. In Auto-A, task weightings are dynamically changed along
with the multi-task network parameters, in joint optimisation. The task weightings can be updated in
both the auxiliary learning setting and the multi-task learning setting. In this example, in the auxiliary
learning setting, semantic segmentation is the primary task which we are optimising for. During
training, task weightings provide interpretable dynamic task relationships, where high weightings
emerge when tasks are strongly related (e.g. normal prediction to segmentation) and low weightings
when tasks are weakly related (e.g. depth prediction to segmentation).
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3 Exploring Task Relationships with Automated Weightings

Bi-level Optimisation. Let us denote P as the set of indices for all primary tasks defined in
75 (%!, y¥°") and (x!™™", y'™") are sampled from the validation and training sets of
the i"" task space, respectively. The goal of Auto-A is to find optimal task weightings A*,
which minimise the validation loss on the primary tasks, as a way to measure generalisation,
where the optimal multi-task network parameters 8" are obtained by minimising the 1*
weighted training loss on all tasks. This implies the following bi-level optimisation problem:
min 3 Li(f (x5 05, 67), i)
ieP
K 4 _ (3.1)
st. 0" =argminy A Li(f(xi""; 0, 0:), yi™").
0

i=1

Approximation via Finite Difference. Now, we may rewrite Eq. 3.1 with a simple approxim-

ation scheme by updating 6 and A iteratively with one gradient update each':

K A .

0=0- aVe Z/L' 'Li(f(xfmm; Osn» 9,-),)/7“'"), (3.2)
i=1

A =BV S Li(f (x5 00, 00), yi), (3.3)
ieP
K trai trai

0—0-avy Z/li . Li(f(ximm;gsh) 9i),)’imm)> (3.4)

i=1

for which «, § are manually defined learning rates.

The above optimisation requires computing second-order gradients which can produce
large memory and slow down training speed. Therefore, we apply finite difference ap-
proximation to reduce complexity, similar to other gradient-based meta learning meth-
ods [FAL1y, LSY19]. For simplicity, let’s denote £(8, A), £?"'(8, 1) represent A weighted
loss produced by all tasks and primary tasks respectively. The gradient to update A can be
approximated by:

VALY (0%,1) » VALY (0 - aVeL(0,A),1)
=VaL"(0',1) - avp 1 L(0,A)Ve L7 (0',1)

. VaL(0, 1) -V, L(07,))
2¢€ ’

(3.5)

~0 -

where 8" < 6 — aV¢L(0, 1) denotes the updated network weights for a one-step forward
model, and 8* = @ x¢- Vo L7 (0, 1), with a small constant e. 1 indicates that all primary

! It’s easy to extend such formulation for more than one gradient update, while we did not observe

significant performance gain.
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tasks are of equal importance, but we can also apply different constants based on prior
knowledge.” We optimise A with vanilla ADAM optimiser [KB14] without any additional

regularisation.

Swapping Training Data. In practice, instead of splitting training data into training and
validation sets as in the standard meta learning setup, we sample training and validation
data to be the different batches in the same training dataset and refresh them for every
iteration. We find that this simple swapping training data strategy can learn similar weight-
ings compared to sampling batches in different datasets, making Auto-A a single-stage

framework with end-to-end optimisation.

Stochastic Task Sampling. Eq. 3.2 requires to compute gradients for all training tasks. This
can lead to significant GPU memory consumption, particularly in the multi-domain setting
for which the task-shared parameters are accumulating gradients for all training tasks. To
further save memory, we optimise A in multiple steps, and for each step, we only compute
gradients for K’ <« K tasks sampled uniformly. This design allows Auto-A to be optimised
with a constant memory, independent of the number of training tasks. In practice, we
choose the largest possible K’ in each dataset that fits in a GPU to speed up training, and

we observe that the performance is robust to a wide range of selections of K'.

3.4 Experiments

To validate the generalisation of Auto-A, we experiment on both single-domain and multi-
domain computer vision and robotics datasets, in multi-task learning and auxiliary learning

settings, with various choices of multi-task architectures.

Baselines. In multi-task experiments, we compare Auto-A with various weighting-based
multi-task optimisation methods introduced in Section 2.3: i) Equal weighting, ii) Uncer-
tainty weighting [KGC18], and iii) DWA (Dynamic Weight Average) [L]D19]. In auxiliary
learning experiments, we only compare with GCS (Gradient Cosine Similarity) [DCJ*18]

due to the limited work for this setting.

Optimisation Strategies. By default, we consider each single task as the primary task in
the auxiliary learning setting, unless labelled otherwise. In all experiments, Auto-A’s task

weightings are initialised to 0.1, a small weighting which assumes that all tasks are equally

* Note that, A is only applied on the training loss not validation loss, otherwise, we would easily reach
trivial solutions A = 0. In addition, assuming 0’ = 0% is also not applicable, otherwise we have V, = 0.
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not related. The learning rate to update these weightings is hand-selected for each dataset.
For a fair comparison, the optimisation strategies used in all baselines and our method are

the same with respect to each dataset and in each data domain.

Results on Dense Prediction Tasks

Training Setup. First, we evaluate Auto-A with dense prediction tasks in NYUv2 [NSF12]
and CityScapes [COR*16], two standard multi-task datasets in a single-domain setting. In
NYUvz, we train on 3 tasks: 13-class semantic segmentation, depth prediction, and surface
normal prediction, with the same experimental setting as in [LJD1g]. In CityScapes, we
train on 3 tasks: 19-class semantic segmentation, disparity (inverse depth) estimation, and
a recently proposed 10-class part segmentation [dAGML" 21], with the same experimental
setting as in [KGC18]. In both datasets, we train on two multi-task architectures: Split: the
standard multi-task learning architecture with the vanilla hard parameter sharing, which
splits at the last layer for the final prediction for each specific task; MTAN [L]D19]: a
state-of-the-art multi-task architecture based on task-specific feature-level attention. Both

networks are based on ResNet-50 [HZRS16] as the backbone architecture.

Evaluation Metrics. We evaluate segmentation, depth and normal via mean intersection
over union (mIoU), absolute error (aErr.), and mean angle distances (mDist.), respectively.
Following [MRK19], we also report the overall relative multi-task performance AyrL of

model m averaged with respect to each single-task baseline b:
1 & L
AmrtL = X D (=1) (Mm,i = My,i)[My,i» (3.6)
i=1
where /; = 1if lower means better performance for metric M; of task i, and 0 otherwise.

Noise Prediction as Sanity Check. In auxiliary learning, we additionally train with a noise
prediction task along with the standard three tasks defined in a dataset. The noise prediction
task is generated by assigning a random noise map sampled from a Uniform distribution
for each training image. This task is designed to test the effectiveness of different auxiliary
learning methods in the presence of useless gradients. In all experiments, we train from
scratch for a fair comparison among all methods, following the same training setup used
in prior works [LJD19, SPFS20, KGC18].

Results. Table 3.1 shows results for CityScapes and NYUv2 datasets in both Split and

MTAN multi-task architectures. We can observe that Auto-A outperforms all baselines

in multi-task and auxiliary learning settings across both multi-task networks, and has a
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Sem. Seg. Depth Normal
NYUv2 Method (mIoU 1] [aErr. ] [mDist. |] Amre 1
Single-Task - 43.37 52.24 22.40 -
Equal 44.64 43.32 24.48 +3.57%
Split DWA 45.14 43.06 24.17 +4.58%
Multi-Task Uncertainty 45.98 41.26 24.09 +6.50%
Auto-1 47.17 40.97 23.68 +8.21%
Uncertainty 45.26 42.25 24.36 +4.91%
Split GCS 45.01 42.06 24.12 +5.20%
Auxiliary-Task Auto-A [3 Tasks] 48.04 40.61 23.31 +9.66%
Auto-A [1 Task] 47.80 40.27 23.09 +10.02%
Equal 44.62 42.64 24.29 +4.27%
MTAN DWA 45.04 42.81 24.02 +4.89%
Multi-Task Uncertainty 46.41 40.94 23.65 +7.69%
Auto-1 47.63 40.37 23.28 +9.54%
Uncertainty 44.56 42.21 24.26 +4.55%
MTAN GCS 44.28 44.07 24.03 +3.49%
Auxiliary-Task Auto-A [3 Tasks] 47.35 40.10 23.41 +9.30%
Auto-A [1 Task] 47.70 39.89 22.75 +10.69%
. Sem. Seg. Part Seg. Disp.
CityScapes Method [mIoU 1] [mlIoU 1] [aErr, |] Ayt b
Single-Task - 56.20 52.74 0.84 -
Equal 54.03 50.18 0.79 -0.92%
Split DWA 54.93 50.15 0.80 -0.80%
Multi-Task Uncertainty 56.06 52.98 0.82 +0.86%
Auto-1 56.08 51.88 0.76 +2.56%
Uncertainty 55.72 52.62 0.83 +0.04%
Split GCS 55.76 52.19 0.80 +0.98%
Auxiliary-Task Auto-A [3 Tasks] 56.42 52.42 0.78 +2.31%
Auto-A [1 Task] 57.89 53.56 0.77 +4.30%
Equal 55.05 50.74 0.78 +0.43%
MTAN DWA 54.71 51.07 0.80 -0.35%
Multi-Task Uncertainty 56.28 53.24 0.82 +1.16%
Auto-1 56.57 52.67 0.75 +3.75%
Uncertainty 56.13 52.78 0.83 +0.38%
MTAN GCS 55.47 52.75 0.76 +2.75%
Auxiliary-Task Auto-A [3 Tasks] 57.64 52.77 0.78 +3.25%
Auto-A [1 Task] 58.39 54.00 0.78 +4.48%

Table 3.1. Performance on NYUv2 and CityScapes datasets with multi-task learning and auxiliary

learning methods in Split and MTAN multi-task architectures. Auxiliary learning is additionally

trained with a noise prediction task. Results are averaged over two independent runs, and the best

results are highlighted in bold.

particularly prominent effect in the auxiliary learning setting, where it doubles the relative

overall multi-task performance compared to auxiliary learning baselines.

We show results for two auxiliary task settings: optimising for just one task (Auto-A [1

Task]), where the other three tasks (including noise prediction) are purely auxiliary, and

37



3 Exploring Task Relationships with Automated Weightings

optimising for all three tasks (Auto-A [3 Tasks]), where only the noise prediction task is
purely auxiliary. Auto-A [3 Tasks] has nearly identical performance to Auto-A in a multi-
task learning setting, whereas the best multi-task baseline Uncertainty achieves notably
worse performance when trained with noise prediction as an auxiliary task. This shows
that standard multi-task optimisation is susceptible to negative transfer, whereas Auto-A
can avoid negative transfer due to its ability to minimise A for tasks that do not assist with
the primary task. We also show that Auto-A [1 Task] can further improve performance

relative to Auto-A [3 Tasks], at the cost of task-specific training for each individual task.

Results on Multi-domain Classification Tasks

Training Setup. We now evaluate Auto-A on image classification tasks in a multi-domain
setting. We train on CIFAR-100 [Kriog] and treat each of the 20 “coarse” classes as one
domain, thus creating a dataset with 20 tasks, where each task is a 5-class classification
over the dataset’s “fine” classes, following [RKR18, YKG™*20]. For multi-task and auxiliary
learning, we train all methods on a VGG-16 network [SZ15] with the vanilla hard parameter

sharing (Split), where each task has a task-specific prediction layer.

Aquatic Small .

CIFAR-100 Method People Animals Mammals Trees Reptiles Avg.

Single-Task - 55.37 68.65 72.79 75.37 75.84 82.19

Equal 57.73 73.59 74.41 74.64 76.69 82.46

i 4.14 .62 4. 4.62 .62 2.

Multi-Task Uncertainty 5 70.6 74.08 74.6 75.6 82.03

DWA 55.25 71.54 74.12 75.68 76.26 82.26

Auto-1 57.57 74.00 75.05 75.15 77.55 83.92

- GCS 56.45 71.05 72.93 74.45 76.29 82.58
Auxiliary-Task

Auto-1 60.89 75.70 75.64 77.38 81.75 84.92

Table 3.2. Performance of 20 tasks in CIFAR-100 dataset with multi-task Learning and auxiliary
learning methods. We report the performance from 5 domains giving the lowest single-task per-
formance along with the averaged performance across all 20 domains. Results are averaged over two
independent runs, and the best results are highlighted in bold.

Results. In Table 3.2, we show accuracy on the 5 most challenging domains that have the
lowest single-task performance, along with the average performance across all 20 domains.
Multi-task learning in this dataset is particularly demanding, since we optimise with a x20
smaller parameter space per task compared to single-task learning. We observe that all
multi-task baselines achieve similar overall performance to single-task learning, due to
limited per-task parameter space. However, Auto-A is still able to improve the overall per-

formance by a non-trivial margin. Similarly, Auto-A can further improve performance in
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the auxiliary learning setting, with significantly higher per-task performance in challenging

domains with around 5 — 7% absolute improvement in test accuracy.

Results on Robot Manipulation Tasks

Finally, to further emphasise the generality of Auto-A, we also experiment on visual imita-

tion learning tasks within a multi-domain robotic manipulation setting.

Training Setup. Naively applying behaviour cloning (e.g. mapping observations to joint
velocities or end-effector incremental poses) for robot manipulations tasks often require
thousands of demonstrations [JDJ17]. To circumvent that, we first pre-process the demon-
strations by running keyframe discovery [JD21]; a process that iterates over each of the
demo trajectories and outputs the transitions where interesting things happen, e.g. change
in gripper state, or velocities approach zero. The result of the keyframe discovery is a
small number of end-effector poses and gripper actions for each of the demonstrations,
essentially splitting the task into a set of simple stages. The goal of our behaviour cloning

setup is to predict these end-effector poses and gripper actions for new task configurations.

To train and evaluate our method, we select 10 tasks (visualised in Fig. 3.2) from the
robot learning environment, RLBench [JMAD2o0]. Training data are then acquired by first
collecting 100 demonstrations for each task, and then running keyframe discovery, to split

the task into a smaller number of simple stages to create our behavioural cloning dataset.

Architecture Design and Optimisation Strategies. We optimise an encoder-decoder network
which takes the inputs of RGB and point clouds captured by three different cameras (left
shoulder, right shoulder and wrist camera), and outputs a continuous 6D pose and a
discrete gripper action. The visualisation of the architecture design is illustrated in Fig. 3.3.
The 6D pose is composed of a 3-dimensional vector encoding spatial position and a 4-
dimensional vector encoding rotation (parameterised by a unit quaternion); the gripper
action is represented by a binary scalar indicating gripper open and close. The position
and rotation are learned through two separate decoders. The position decoder predicts
attention maps based on RGB images, and then we apply spatial (soft) argmax [LFDA16]
on the corresponding point cloud to output a 3D spatial position of the attended pixel. We
additionally optimise a position offset for each stage of the task, so the predicted position
will not be bounded by the position only available in the images. The rotation encoder
predicts quaternion and gripper action via direct regression. A learnable task-specific
embedding is concatenated to the network bottleneck to distinguish among different tasks

in multi-task and auxiliary learning.
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Figure 3.2. A visual illustration of 10 RLBench tasks from the front-facing camera. From top-to-
bottom and left-to-right, task names are: reach target, push button, pick and lift, pick up cup, put knife
on chopping board, take money out of safe, put money in safe, take umbrella out of umbrella stand, stack
wine, and slide block to target.

Point Clouds

Position Attention Spatial
Decoder [ Map Position

- ;” R — Encoder Position Offset
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RGB Images Rotation

Decoder
Task-Specific - Gripper
Embedding Open/Close

Figure 3.3. Visualisation of the network design for RLBench tasks. We propose a network design
that takes in RGB images and point clouds and predicts the next-best end-effector pose and gripper
action through two individual decoders. A learnable task-specific embedding is included to distinguish

among different tasks in multi-task and auxiliary learning.

Results. In Table 3.3, we report the success rate of each and averaged performance over 10
RLBench tasks. Similar to computer vision tasks, Auto-A achieves the best performance
in both multi-task and auxiliary learning setups, particularly can improve up to 30 — 40%

success rate in some multi-stage tasks compared to single-task learning.
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3.5 Visualisations and Interpretability of Task Relationships

Reach Push Pick and Pick Up Put Knife Take Money Put Money Pick Up Stack Slide Block

RLBench Method Target Button  Lift Cup On Board Out Safe In Safe Umbrella Wine To Target

Single-Task - 100 95 82 72 36 38 31 37 23 36 55.0
Equal 100 92 86 69 40 57 57 44 16 40 60.1
Uncert. 100 95 75 56 19 60 79 70 16 65 63.5
Multi-Task DWA 100 90 88 82 35 66 57 61 16 66 66.1
Auto-A 100 95 87 78 31 64 62 80 19 77 69.3
GCS 100 97 81 67 42 56 58 60 14 77 65.2

Auciliary Task 00 100 93 90 85 49 64 75 74 20 78 728

Table 3.3. Performance of 10 RLBench tasks with multi-task and auxiliary learning methods. We
report the success rate with 100 evaluations for each task averaged across two random seeds. Best
results are highlighted in bold.

3.5 Visualisations and Interpretability of Task Relationships

In this section, we visualise and analyse the learned weightings from Auto-A, and find that
Auto-A produces interesting learning strategies with interpretable relationships. Specifically,
we focus on using Auto-A to understand the underlying structure of tasks and transferred

task knowledge, introduced next.

Understanding The Structure of Tasks

Task relationships are consistent. Firstly, we observe that the structure of tasks is consistent
across the choices of learning algorithms. As shown in Fig. 3.4, the learned weightings with
both the NYUv2 and CityScapes datasets are nearly identical, given the same optimisation
strategies, independent of the network architectures. This observation is also supported by
the empirical findings in [ZSS*18, SZC" 20a], introduced in Section 2.4, in both transfer

and multi-task learning settings.

Train Tasks Train Tasks Train Tasks Train Tasks
L .
T 1 T 1 —— ——
Sem.Seg. Depth Normal Noise Sem.Seg. Depth  Normal Noise Sem. Seg. PartSeg. Disp.  Noise Sem. Seg. PartSeg.  Disp.  Noise

0.84

Normal Depth  Sem. Seg.

Primary Tasks
Primary Tasks
Primary Tasks

4

Split - NYUv2 MTAN - NYUv2 Split - CityScapes MTAN - CityScapes

Figure 3.4. Auto-) explores consistent task relationships in NYUv2 and CityScapes datasets for
both Split and MTAN architectures. Higher task weightings indicate stronger relationships and lower
task weightings indicate weaker relationships.
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Figure 3.5. Auto-A learns dynamic relationships based on the choice of primary tasks and can
avoid negative transfer. While other baselines such as uncertainty weighting are not able to avoid
negative transfer, having a constant weighting on noise prediction task across the entire training stage.

[-] represents the choice of primary tasks.

Task relationships are asymmetric. We also find that the task relationships are asymmetric,
i.e. learning task A with the knowledge of task B is not equivalent to learning task B
with the knowledge of task A. A simple example is shown in Fig. 3.5 bottom, where the
semantic segmentation task in CityScapes helps the part segmentation task much more
than the part segmentation helps the semantic segmentation. This also follows intuition:
the representation required for semantic segmentation is a subset of the representation
required for part segmentation. This observation is also consistent with recent multi-
task learning frameworks focusing on modelling cross-task relationships [LYH16, LYH18,
ZSC*20, YKZ21].

Task relationships are dynamic. A unique property of Auto-A is the ability to explore
dynamic task relationships. As shown in Fig. 3.5, we can observe a weighting cross-
over appears in NYUv2 optimised for 3 tasks auxiliary learning near the end of the
training, which can be considered as a learning strategy of automated curricula. Fur-
ther, in Fig. 3.6, we verify that Auto-A achieves higher per-task performance com-

pared to every combination of fixed task groupings in NYUv2 and CityScapes datasets.
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3.5 Visualisations and Interpretability of Task Relationships

‘We can also observe that the task re- The Performance of The Performance of
l—‘—|

Sem. Seg. Depth Normal Sem.Seg.  Part Seg Disp.

- -4.87%
+6.62% +18.42% =

+2.93% [EESVALTY 9.29%

lationships inferred by the fixed task
groupings are perfectly aligned with

Trained with

the relationships learned with Auto-
A. For example, the performance of

semantic segmentation trained with

AutoA  MTL  Normal
AutoX  MTL  Disp.

+10.21% +2291%

normal prediction (+6.6%) is higher

than the performance trained with
depth prediction (-6.0%), which is NYUv2 CityScapes

consistent with the fact that the weight- Figure 3.6. Auto-1 achieves best per-task performance
ing of normal prediction (0.84) is compared to every combination of fixed task group-

. o ings in NYUv2 and CityScapes trained with Split archi-
higher than depth prediction (0.52) as

tecture. This result provides further confirmation that
shown in Fig. 3.4. In addition, we can  Ayto-2, with its capability to encode dynamic task rela-

observe that the uncertainty weight- tionships, excels at learning superior representations.
ing [KGCi8] is not able to avoid neg-

ative transfer from the noise prediction task, having a constant weighting across the entire
training stage, which leads to a degraded multi-task performance as in Table 3.1. These
observations confirm that Auto-A is an advanced optimisation strategy, and is able to learn

accurate and consistent task relationships.

Understanding Transferred Task Knowledge

Apart from understanding task relationships, we find that Auto-A can also help us uncover
valuable transferred task knowledge. This newfound knowledge can become a valuable
resource for making informed decisions when it comes to the manual selection or design

of appropriate auxiliary tasks.

Skill v.s. Geometry. In our exploration of robot manipulation tasks, we find that Auto-A
consistently demonstrates a clear preference for optimising weightings based on skills or
task trajectories, rather than focussing on object geometry or appearance. An example
can be observed in Fig. 3.7, where tasks like “pick up umbrella,” “pick up cup,” and “pick
and lift” emerge as the top three tasks for learning all robot manipulation tasks. This
intriguing observation underscores the pivotal importance of the skill of object grasping
as a fundamental and versatile capability that proves valuable across a variety of robotic

manipulation tasks, notwithstanding the differences in the objects involved.

Moreover, in the case of tasks such as “put knife on board” and “put money out safe”

benefit significantly from the task of “slide block to target”, indicating the critical role of
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Figure 3.7. Learning dynamics of Auto-1 in the auxiliary learning setting for 4 selected RLBench
tasks. Specifically, we highlight the top three tasks with the highest task weightings observed in each
experiment. We can observe that Auto-1 exhibits a deliberate emphasis on mastering fundamental
tasks such as object grasping and pushing during the initial phases of training. It is only after consol-
idating these foundational skills that the system gradually shifts its focus towards the primary tasks,
providing a clear indication of automated curriculum learning.

object pushing as another fundamental skill in robotic manipulation. Across all these four
experiments, it’s noteworthy that these fundamental tasks initially carry higher weightings
than the primary tasks during the early stages of training and gradually diminish as training
progresses, signifying a strategic shift towards prioritising the acquisition of foundational
skills early as part of an automated curriculum learning process. This strategy enhances

the multi-task model’s overall generalisation and ultimately leads to better performance.

In-Domain v.s. Out-of-Domain. In multi-domain classification tasks, our observations
reveal that Auto-A occasionally identifies related domains to the primary task that lack
semantic connections. For instance, it recognises a relationship between “Fish” and “Small
Mammals” in connection with “Aquatic Mammals,” justified by their shared characteristic
of small size and their potential commonality in water-related environmental features.
However, such connections do not align with human intuition when it comes to domains

like ”Trees,” which appear semantically unrelated.

Trees People
M» Small Mammals M» Aquatic Mammals
i Fish Small Mammals
Aquatic | Reptiles —|
Mammals . .
Vehicles 2 Large Carnivores
| Not Related to_ vepicles 1 Not Related 10 gt and Vegetables
Large Man-Made Outdoor Things Medium-Sized Mammals

Figure 3.8. Top 3 most related and unrelated domains when classifying Reptiles and Aquatic Mam-
mals in the auxiliary learning setting on the CIFAR-100 dataset. Notably, the domain relationships
discovered by Auto-A do not conform to conventional human intuition. Instead, they suggest that the
generalisation capabilities might be rooted in non-obvious and unexpected associations, emphasising
the intriguing potential of automated learning systems to unveil novel insights beyond traditional

human understanding.
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3.6 Robustness and Ablation Analysis

Similarly, Auto-A establishes a connection between “Aquatic Mammals” and “Small Mam-
mals” in relation to “Reptiles” but not when considering “People”. This observation un-
derscores the intriguing notion that domain-specific knowledge sometimes necessitates
the inclusion of out-of-domain knowledge to enhance generalisation. This observation
highlights the complex and nuanced nature of domain relationships, requiring a broader

perspective beyond the immediate domain semantics to improve generalisation effectively.

3.6 Robustness and Ablation Analysis

Finally, we present some additional analyses on NYUv2 dataset with Split multi-task archi-
tecture to understand the behaviour of Auto-A with respect to different hyper-parameters

and other types of optimisation strategies.

Robustness on Training Strategies

Here, we evaluate different hyper-parameters trained with Auto-A [3 Tasks] in the auxiliary
learning setting. As seen in Fig. 3.9, we find that Auto-A optimised with direct second-
order gradients offers very similar task weightings compared to when optimised with
approximated first-order gradients (< 0.05 averaged difference across training time in all
three tasks), resulting a near-identical multi-task performance. In addition, we discover

that using first-order gradients may speed up training time roughly x2.3.

0.10 Task Weightings
AmTL
Sem. Seg. Depth Normal Noise
Init = 0.01 0.97 0.95 1.1 0.02  +8.98%
0.05 4 Init = 1.0 2.00 2.11 2.08 1.00  +1.42%
—|_ LR=3-10"° 0.43 0.37 0.46 0.11  +8.53%
l J —l— LR=3-10"*% 3.10 3.34 3.26 0.15  +8.56%
T LR=1-10"3 10.5 10.5 10.3 0.23  +5.04%
[ L L No Swapping 2.67 2.76 2.98 0.20 +8.17%
SemA‘ Seg. De‘pth Nor‘mal No‘ise Our Setting 1.11 1.06 1.26 0.12  +9.66%

Figure 3.9. Mean and the range of per-task Table 3.4. Multi-task performance in NYUv2 data-
weighting difference for Auto-1 [3 Tasks] set trained with Auto-) [3 Tasks] with different
optimised with direct and approximated hyper-parameters. The default setting is Init = 0.1,
gradients in NYUvz dataset. We confirm LR = 1-10~* and with training data swapping. Auto-1
that Auto-A optimised with direct second- is sensitive to hyper-parameters, and initialising with
order and approximated first-order gradients a small weighting and a suitable learning rate is im-
would obtain near identical task weightings.  portant to achieve a good performance.

In Table 3.4, we show that initialising with a small weighting and a suitable learning rate

is important to achieve a good performance. A larger learning rate leads to saturated
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3 Exploring Task Relationships with Automated Weightings

weightings which cause unstable network optimisation; and a larger initialisation would
not successfully avoid negative transfer. In addition, optimising network parameters and
task weightings with different data is also essential (to properly measure generalisation),

which otherwise would slightly decrease performance.

Comparison to Gradient-based Methods

Finally, since Auto-A is a weighting- Bqual  DWA  Uncertainty  Autod

based optimisation method, it can Vanilla +3.57%  +4.58%  +6.50% +8.21%
naturally be combined with gradient- + GradDrop ~ +4.65%  +5.93% +6.22% +8.12%
Y & +PCGrad  +5.09% +4.37%  +6.20% +8.50%

based methods to further improve  +CAGrad  +7.05% +8.08% +9.65% +11.07%

performance. We evaluate Auto-1
Table 3.5. NYUv2 multi-task performance trained

along with the other weighting-based with weighting-based and gradient-based methods

baselines described in Sec. 3.4, when  j; the multi-task learning setting. Auto-) surpasses
combined with recently proposed state- other gradient-based methods in the vanilla setting,
of-the-art gradient-based methods de- and can further improve performance when combined
signed for multi-task learning: Grad- with a more advanced gradient-based method.

Drop [CNH"20], PCGrad [YKG"20] and CAGrad [LLJ*21]. We train all methods in

NYUv2 dataset with standard 3 tasks in the multi-task learning setup.

In Table 3.5, we can observe that Auto-A remains the best optimisation method even
compared to other gradient-based methods in the vanilla setting (with Equal weighting).
Further, combined with a more advanced gradient-based method such as CAGrad [LLJ*21],

Auto-A can reach even higher performance.

Comparison to Strong Regularisation Methods

Finally, recent works [LYZT22, KDPK*22] suggest that many multi-task optimisation
methods can be interpreted as forms of implicit regularisation. They show that when using
strong regularisation and stabilisation techniques from single-task learning, training by
simply minimising the sum of task losses, or with randomly generated task weightings, can

achieve performance competitive with complex multi-task methods.

As such, we now evaluate Auto- A, along with all multi-task baselines evaluated in Section 3.4,
as well as all multi-task methods included in the original work of [KDPK™22], coupled with
this strong regularisation on CelebA dataset [LLWT15], for a challenging 40-task classifica-
tion problem. We train these multi-task methods with the exact same experimental setting
in [KDPK*22] for a fair comparison. To conclude, we compare with: Equal (Unit. Scal.)
[KDPK"22], DWA [LJD19], RLW (with weights sampled from a Dirichlet and a Normal
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(b) Mean per-epoch training time (10 repetitions)
Figure 3.10. Average test accuracy and per-epoch training time of various multi-task optimisation
methods trained with strong regularisation on CelebA dataset. Multi-task methods tend to yield
equivalent or worse performance compared to equal weighting. However, Auto-A emerges as the
exception to this trend, showcasing superior results. It’s worth noting that Auto-A does demand a
longer training time than most weighting-based methods but still runs considerably faster compared
to gradient-based methods. Part of the results are directly borrowed from [KDPK*22].

Distribution) [LYZT22], IMTL [LLK"21], MGDA [SK18], GradDrop [CNH"20], PCGrad
[YKG*20], and CAGrad [LLJ*21], for a total of 10 multi-task optimsiation methods.

To our surprise, though most methods achieve similar performance, which is consistent
with the findings in [KDPK*22], Auto-A is still able to improve performance (marginally
in the multi-task learning setting, and significantly in the auxiliary learning setting) with a
clear statistical significance. The improvement is especially pronounced in the auxiliary
learning mode, which is the unique learning mode of Auto-A, showing the multi-task

network’s generalisation imposed from Auto-A is more than implicit regularisation.

In addition, we also compare training time across these multi-task methods, and we re-scale
the training time in our implementation to [KDPK"22]’s setting for a fair comparison. We
can observe that Auto-A requires three times longer the training time than Equal weighting
(Unit. Scal.) [KDPK*22], in consistent with its theoretical design, since Auto-A needs to
compute additional two forward and two backward passes to approximate the second-order
gradients. Though Auto-A requires longer training time, it can outperform other multi-task
methods, and is still an order of magnitude faster than some gradient-based methods such
as PCGrad [YKG*20] and CAGrad [LLJ*21].
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3 Exploring Task Relationships with Automated Weightings
3.7 Conclusions, Limitations and Discussions

In this chapter, we have presented Auto-A, a unified multi-task and auxiliary learning
optimisation framework. Auto-A operates by exploring task relationships in the form of
task weightings in the loss function, which are allowed to dynamically change throughout
the training period. This allows optimal weightings to be determined at any one point
during training, and hence, a more optimal period of learning can emerge than if these
weightings were fixed throughout training. Auto-A achieves state-of-the-art performance in
both computer vision and robotics benchmarks, for both multi-task learning and auxiliary
learning, even when compared to optimisation methods that are specifically designed for

just one of those two settings.

For transparency, we now discuss some limitations of Auto-A that we have noted during

our implementations, and we discuss our thoughts on future directions with this work.

Advanced Training Strategies To achieve optimal performance, Auto-A still requires
hyper-parameter search (although the performance is primarily sensitive to only one
parameter, the learning rate, making this search relatively simple). Some advanced training
techniques, such as incorporating weighting decay or bounded task weightings, might be

helpful to find a general set of hyper-parameters that work for all datasets.

Training Speed The design of Auto-A requires computing second-order gradients, which
is computationally expensive. To address this, we apply a finite-difference approximation
to reduce the complexity, which requires the addition of only two forward passes and two

backward passes. However, this may still be slower than alternative optimisation methods.

Single Task Decomposition Auto-A can optimise on any type of task. Therefore, it is
natural to consider a compositional design, where we decompose a single task into a series
of smaller sub-tasks, e.g. to decompose a multi-stage manipulation task into a sequence
of discrete stages. By applying Auto-A to these individual sub-tasks, we open the door
to intriguing possibilities for exploring novel learning behaviours that can enhance the

efficiency of single-task learning.

Open-ended Learning Given the dynamic and adaptable nature of task exploration by
Auto-), it presents an intriguing avenue for investigation into its integration within an
open-ended learning system. In such a system, tasks are continuously introduced and

incorporated during the training process. The inherent flexibility of Auto-A to dynamically
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3.7 Conclusions, Limitations and Discussions

optimise task relationships suggests that it could serve as a natural fit for open-ended learn-
ing, where this integration could occur seamlessly without the need for manual balancing

or adjusting the learning system for each new task addition.

Impact on Future Research Auto-A has become widely recognised as a prominent
and competitive baseline for advancing multi-task and auxiliary learning optimisation
research [MVS22, JCP*24, DFL23, SNG* 23, SRZP23, LFSL24]. Its applications extends
across various domains, including computational pathology [ZWP22] and blind image
quality assessment [ZZW ™ 23], where it has demonstrated the capability to improve model
generalisation and performance. Additionally, Auto-A has sparked a line of new research
in multi-task robot manipulation, particularly in neural architecture and action space
design. These efforts have led to significant breakthroughs in general-purpose multi-modal

robotics research guided by natural language [GCG™ 22, GXGF23, SMF23].
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Exploring Semantic Relationships
with Contrastive Learning

In the previous chapter, we have delved into the intricate dynamics of task relationships
within a multi-task learning framework. In this chapter, we shift our focus to the exploration
of structured relationships in an auxiliary learning setting, particularly within the domain
of semantic segmentation. As such, we introduce a contrastive learning method designed
at a regional level named as ReCo, to improve the performance of semantic segmentation

models by leveraging the inherent structure of semantic class relationships.

ReCo employs pixel-level contrastive learning, targeting a sparse selection of challenging
negative pixels, imposing minimal additional memory footprint. ReCo is designed as an
auxiliary learning framework, that can seamlessly complement existing segmentation net-
works, providing consistent performance improvements across both semi-supervised and
supervised semantic segmentation methods, achieving smoother segmentation boundaries
and faster convergence. The strongest effect is in a semi-supervised learning setting with
a very limited number of labels. Remarkably, ReCo empowers us to achieve high-quality
semantic segmentation models to be trained with minimal labelled data, requiring as few

as just five labelled examples for each semantic class.
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4.1 The Challenge of Semantic Segmentation
4.1 The Challenge of Semantic Segmentation

Semantic segmentation is an essential part of applications such as scene understanding
and autonomous driving, whose goal is to assign a semantic label to each pixel in an image.
Significant progress has been achieved by the use of large datasets with high-quality human
annotations. However, labelling images with pixel-level accuracy is time-consuming and
expensive; for example, labelling a single image in CityScapes can take more than 9o
minutes [COR*16]. When deploying semantic segmentation models in practical applica-
tions where only limited labelled data are available, high-quality ground-truth annotation

is a significant bottleneck.

To reduce the need for labelled data, there is a recent surge of interest in leveraging
unlabelled data for semi-supervised learning. Previous methods include improving seg-
mentation models via adversarial learning [HTL" 19, MTB1g] and self-training [ZYL*19,
ZYKW18, ZZW ™ 21]. Others focus on designing advanced data augmentation strategies to

generate pseudo image-annotation pairs from unlabelled images [OTPS21, FAL" 20].

In both semi-supervised and supervised learning, a semantic segmentation model often
predicts smooth label maps, because neighbouring pixels are usually of the same class,
and rarer high-frequency regions are typically only found in object boundaries. This
learning bias naturally produces blurry contours and regularly mislabels rare objects. After
carefully examining the label predictions, we further observe that wrongly labelled pixels
are typically confused with very few other classes; e.g. a pixel labelled as “rider” has a much
higher chance of being wrongly classified as “person”, compared to “building” or “bus” By
understanding this class structure, learning can be actively focused on the most challenging

pixels to improve overall segmentation quality.

4.2 Related Work

Semantic Segmentation The advances of semantic segmentation commonly rely on
designing more powerful deep convolutional neural networks. Fully convolutional net-
works (FCNs) [LSD15] are the foundation of modern segmentation network design. They
were later improved with dilated/atrous convolutions with larger receptive fields, capturing
more long range information [CPK 17, CZP*18]. Alternative approaches include encoder-
decoder architectures [RFB15, KGHD19], sometimes using skip connections [RFB15] to
refine filtered details.

A parallel direction is to improve optimisation strategies, by designing loss functions that
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4 Exploring Semantic Relationships with Contrastive Learning

better respect class imbalance [LGG*17] or using point-wise rendering strategy to refine un-
certain pixels from high-frequency regions improving the label quality [KWHG20]. ReCo
is built upon this line of research, a model-agnostic framework to improve segmentation by

providing additional supervision on hard pixels.

Semi-supervised Classification and Segmentation The goal of semi-supervised learning
is to improve model performance by taking advantage of a large amount of unlabelled
data during training. Here consistency regularisation and entropy minimisation are two
common strategies. The intuition is that the network’s output should be invariant to data per-
turbation and geometric transformation. Based on these strategies, many semi-supervised
methods have been developed for image classification [SBC* 20, TV17, BCG*19, KMHK20].

However, for segmentation, generating effective pseudo-labels and well-designed data
augmentation are non-trivial. Some solutions improved the quality of pseudo-labelling,
using adversarial learning [HTL*19, MTB19] and class activation maps [ZZZ*21]; or enfor-
cing consistency from different augmented images [FAL" 20, OTPS21], perturbed features
[OHT20] and different networks [KQL*20]. In this work, we show that rather than design-
ing a more advanced pseudo-labelling strategy, we can improve the performance of current

semi-supervised segmentation methods by jointly training with a suitable auxiliary task.

Contrastive Learning Contrastive learning learns a similarity function to bring views of
the same data closer in representation space, whilst pushing views of different data apart.
Most recent contrastive frameworks learn similarity scores based on global representations
of the views, parameterising data with a single vector [HEW*20, CKNH20, KTW*20].
Dense representations, on the other hand, rely on pixel-level representations and naturally
provide additional supervision, capturing fine-grained pixel correspondence. Contrastive
pre-training based on dense representations has recently been explored, and shows better
performance in dense prediction tasks, such as object detection and keypoint detection
[WZS*21, OPAB*20].

Contrastive Learning for Semantic Segmentation Contrastive learning has been re-
cently studied to improve semantic segmentation, with a number of different design
strategies. [ZTRR21] and [ZVM™21] both perform contrastive learning via pre-training,
based on the generated auxiliary labels and ground-truth labels respectively, but at the
cost of huge memory consumption. In contrast, ours performs contrastive learning whilst
requiring much less memory, via active sampling. In concurrent work, [WZY" 21, ASF*21]

also perform contrastive learning with active sampling. However, whilst both these meth-
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ods are applied to a stored feature bank, ours focuses on sampling features on-the-fly. Active
sampling in [ASF*21] is further based on learnable, class-specific attention modules, whilst
ours only samples features based on relation graphs and prediction confidence, without
introducing any additional computation overhead, which results in a simpler and much

more memory-efficient implementation.

4.3 ReCo: Regional Contrast Learning for Semantic Segmentation

Here we propose ReCo, a contrastive learning framework designed at a regional level.
Specifically, ReCo is a new auxiliary loss that helps semantic segmentation to not only learn
from local context from neighbouring pixels, but also from global semantic class relation-
ships across the entire dataset. ReCo performs supervised or semi-supervised contrastive
learning on a pixel-level dense representation, as visualised in Fig. 4.1. For each semantic
class in a training mini-batch, ReCo samples a set of pixel-level representations (queries),
and encourages them to be close to the class mean averaged across all representations
in this class (positive keys), and simultaneously pushes them away from representations

sampled from other classes (negative keys).

Query Class Sampling Distribution

Bicycle Person Horse  Sheep
Sheep Horse Person Bicycle
Horse Sheep Person  Bicycle
Class Mean
Pulling from Pushing to Representation Representation

Figure 4.1. ReCo framework overview. ReCo pushes representations within a class closer to the
class mean representation, while simultaneously pushing these representations away from negative
representations sampled from different classes. The sampling distribution from negative classes is
adaptive to each query class, and dynamically updated during training. For example, due to the strong
relation between “bicycle” and “person” class, ReCo will sample more representations in “bicycle”
class, when learning “person” class, compared to other classes.
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4 Exploring Semantic Relationships with Contrastive Learning
Pixel-Level Contrastive Learning

Let (X,)) be a training dataset with training images x € X and their corresponding C-
class pixel-level segmentation labels y € ), where y can be either provided in the original
dataset (supervised learning setting) or generated automatically as pseudo-labels (semi-
supervised learning setting). A segmentation network f is then optimised to learn a
mapping fg : X — Y, parameterised by network parameters 6. This segmentation network
f can be decomposed into two parts: an encoder network: f; : X + Z, and a decoder
classification head f‘fc : Z ). To perform pixel-level contrastive learning, we additionally
attach a decoder representation head f‘f,iy on top of the encoder network f;, parallel to
the classification head, mapping the encoded feature into a higher m-dimensional dense
representation with the same spatial resolution as the input image: f‘f,ir 2R, ReR™
This representation head is only applied during training to guide the classifier using the

ReCo loss as an auxiliary task, and is removed during inference.'

A pixel-level contrastive loss is a function which encourages queries r, to be similar to the
positive key r;, and dissimilar to the negative keys ;. All queries and keys are sampled
from the decoder representation head: 4, r;"~ € R. In ReCo, we use a pixel-level contrast-
ive loss in a supervised or semi-supervised manner across all available semantic classes in
each mini-batch, with the distance between keys and queries measured by their normalised

dot product. The general formation of the ReCo 10ss Lreco is then defined as:

C,+
Lreco:Z Z —10g exp(rq il /T) > (4-1)

&5 Eep(ry 1 1)+ S exp(rg 1 /T)

for which C is a set containing all available classes in the current mini-batch, 7 is the tem-
perature control of the softness of the distribution, R represents a query set containing all
representations whose labels belong to class ¢, R} represents a negative key set containing
all representations whose labels do not belong to class ¢, and r}"* represents the positive
key which is the mean representation of class c. Suppose P is a set containing all pixel

coordinates with the same resolution as R, these queries and keys are then defined as:

Re= U 10wn =97t Ri= U 10w # 0 rm (4.2)
[u, v]s’P [u,v]eP

et | > Ta (4.3)
‘R rqERC

! Using the notations introduced in Chapter 2, we are optimising a 2-task auxiliary learning problem
with 8 = {¢, y., ¥, }, where ¢ is the task-shared parameters and y,,. are task-specific parameters.
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4.3 ReCo: Regional Contrast Learning for Semantic Segmentation
Active Hard Sampling on Queries and Keys

To perform pixel-level contrastive learning on all available pixels in high-resolution training
images would be computationally expensive and require massive memory. To address this
challenge, we introduce active hard sampling strategies to optimise the selection of only a
sparse set of queries and keys, focusing computational efforts on the most informative and

challenging pixel pairs.

Active Key Sampling. When classifying a pixel, a semantic network often exhibits uncer-
tainty only for a very few number of candidates among all available classes. This uncertainty
typically arises from either close spatial relationships (e.g. “rider” and “bicycle”) or semantic
similarities (e.g. “chair” and “sofa”). To reduce this uncertainty, we propose a novel ap-
proach for sampling negative keys in a non-uniform manner, based on the relative distance

between each negative key class and the query class.

This involves constructing a pair-wise class relationship graph, denoted as G, where G ¢
RICIICl The relationship graph is computed and dynamically updated for each mini-batch,
serving as a dynamic representation of the relationships and affinities between different
classes. This concept aligns with a similar approach introduced in Auto-A, where dynamic
relationships play a crucial role in the learning process, allowing the model to adapt and

respond to the evolving nature of the data and tasks.

The pair-wise relationship is measured by the normalised dot product between the mean

representation from a pair of two classes and is defined as:

Glp.ql= (0" r{"), Vp,qeC, andp#q. (4.4)

We further apply SoftMax to normalise these pair-wise relationships among all negative
classes j for each query class ¢, producing a distribution: exp(G[c, i])/ ¥ jcc, j-c exp(G[c, ])-
We sample negative keys for each class i based on this distribution, when optimising the
corresponding query class c. By leveraging this relationship graph, we can intelligently se-
lect negative keys that are more relevant to the query class, effectively reducing uncertainty

by focusing on classes that are closely related or similar to the target class.

Active Query Sampling. In semantic segmentation, class imbalance is a natural challenge
that can lead to overfitting on common classes, such as “road” and “building” in the
CityScapes dataset, or the ubiquitous “background” class in the Pascal VOC dataset. These

common classes occupy the majority of pixel space in training images, and as a result,
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4 Exploring Semantic Relationships with Contrastive Learning

randomly sampling queries would disproportionately undersample rare classes, providing

minimal supervision to these crucial but less frequent classes.

To tackle this issue, we adopt a different strategy by sampling hard queries — those corres-
ponding to pixel prediction confidence levels below a pre-defined threshold. By doing so,
we ensure that the ReCo loss guides the segmentation network to provide more targeted
and appropriate supervision to these less certain pixels. This approach helps balance the
learning process, ensuring that both common and rare classes receive adequate attention
and training, ultimately contributing to improved segmentation performance and reducing

the risk of overfitting on dominant classes.

The easy and hard queries are defined as follows, and visualised in Fig. 4.2,

’R;’easy= U 1(f’q>55)rq> thz)hmd: U 1()7q58s)rq’ (45)

c c
rqeRq rqe‘Rq

where J, is the predicted confidence of label ¢ after the SoftMax operation corresponding

to the same pixel location as r,, and §; is the user-defined confidence threshold.

(a) Confidence Map (b) Easy Queries (c) Hard Queries

Figure 4.2. Visualisation of easy and hard queries. Easy and hard queries (shown in white) are
determined from the predicted confidence map in the Cityscapes dataset. Here we set the confidence
threshold &5 = 0.97. We can observe that most hard queries are concentrated around small objects or
object boundaries.

Improving Semantic Segmentation with ReCo

ReCo can easily be added to modern supervised and semi-supervised segmentation meth-
ods without changing the training pipeline, with no additional cost at inference time. To in-
corporate ReCo, we simply add an additional representation head v, as described in Section
4.3, and apply the ReCo loss (in Eq. 4.1) to this representation using the sampling strategy
introduced in Section 4.3. Following prior contrastive learning methods [HFW ™ 20], we

only compute gradients on queries, for better training stabilisation.

In the supervised segmentation setting, where all training data have ground-truth annota-

tions, we apply the ReCo loss on dense representations corresponding to all valid pixels.
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4.3 ReCo: Regional Contrast Learning for Semantic Segmentation

The overall training loss is then the linear combination of the supervised cross-entropy
loss and the ReCo loss:

Liotar = Lsupervised + Lreco- (46)

In the semi-supervised segmentation setting, where only part of the training data has
ground-truth annotations, we apply the Mean Teacher framework [TV1y] following prior
state-of-the-art semi-supervised segmentation methods [OTPS21, MTBi19]. Instead of
using the original segmentation network fy (referred to as the student model), we instead
use for (referred to as the teacher model) to generate pseudo-labels from unlabelled images,
where 0’ is a moving average of the previous state of 6 during training optimisation:
07 = A0;_; + (1 - 1)0;, with a decay parameter A = 0.99. The teacher model can be viewed
as a temporal ensemble of student models across different stages of training, resulting in
more stable and consistent predictions for unlabelled images. The student model f; is then

used to train on the augmented unlabelled images, with pseudo-labels as the ground-truths.
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Figure 4.3. Visualisation of the ReCo framework applied to semi-supervised segmentation and
trained with three losses. A supervised loss is computed based on labelled data with ground-truth
annotations. An unsupervised loss is computed for unlabelled data with generated pseudo-labels.
And finally, a ReCo loss is computed based on pixel-level dense representation predicted from both
labelled and unlabelled images.

For all pixels with defined ground-truth labels, we apply the ReCo loss similarly to the super-
vised segmentation setting. For all pixels without such labels, we only sample pixels whose
predicted pseudo-label confidence is greater than a threshold §,,. This avoids sampling

pixels that are likely to have incorrect pseudo-labels.
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4 Exploring Semantic Relationships with Contrastive Learning

We apply the ReCo loss to a combined set of pixels from both labelled and unlabelled images.
The overall training loss for semi-supervised segmentation is then the linear combination
of supervised cross-entropy loss (on ground-truth labels), unsupervised cross-entropy loss

(on pseudo-labels generated by the teacher model), and ReCo loss:

Liotar = Lsupervised +n- Lunsupervised + Lrecos (4-7)

where 7 is defined as the percentage of pixels whose predicted confidence is greater than
s, a scalar coefficient that regulates the contribution for unsupervised loss, following
prior methods [OTPS21, MTB19]. This re-weighting of the unsupervised loss helps ensure
that the segmentation network does not become dominated by gradients originating from
uncertain pseudo-labels, a scenario that is more prevalent during the early stages of training.
The ReCo framework for semi-supervised segmentation is visually represented in Fig. 4.3,

providing a detailed overview of how these components interact within the training process.

4.4 Experiments

We evaluate ReCo on supervised and semi-supervised segmentation. We introduce our
new benchmark design and datasets, along with their results and visualisations presented
in this section. We provide an ablative analysis of important hyper-parameters along with

the effect of query and key sampling strategies in Section 4.5.

Experiment Setup

Semi-Supervised Segmentation Benchmark Redesign. We propose two modes of semi-

supervised segmentation tasks aimed at different applications.

1. Partial Dataset Full Labels: A small subset of the images is trained with complete
ground-truth labels, while the remaining training images are unlabelled. When creat-
ing the labelled dataset, we sample labelled images based on two conditions: i) Each
sampled image must contain a distinct number of classes greater than a manually-
defined threshold. ii) Each sampled image must contain one of the least sampled classes

in the previously sampled images.

These conditions are carefully designed to ensure a consistent class distribution across
different random seeds and guarantee the representation of all classes. This setup allows
us to evaluate the performance of semi-supervised methods with a very limited number

of labelled images, without concerns about the complete absence of rare classes. This
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4.4 Experiments

mode assesses the model’s ability to generalise to semantic classes with only a few

examples while benefiting from accurate boundary information.

2. Partial Labels Full Dataset: All images are trained with partial labels, but only a few
percentages of labels are provided for each class in each training image. We create
the dataset by first randomly sampling a pixel for each class, and then continuously

applying a [5 x 5] square kernel for dilation until we meet the percentage criteria.

This mode evaluates the model’s ability to learn the semantic class completion in the
presence of many examples but with limited or no boundary information. It simulates
scenarios where semantic class information is required to be inferred or completed

from a dataset with minimal annotations.

By introducing these two distinct modes, we can comprehensively assess the performance
and capabilities of semi-supervised segmentation methods in different practical scenarios,

aligning with the specific challenges and requirements of each application.

Datasets. We experiment on popular segmentation datasets: Cityscapes [COR*16] and
Pascal VOC 2012 [EEVG*15] in both partial and full label setting. We also evaluate on a
more difficult indoor scene segmentation dataset SUN RGB-D [SLXi5] in the full label
setting only, mainly due to the low-quality annotations making it difficult to be fairly
evaluated in the partial label setting. In the full label setting, all three datasets are evaluated
in four cases containing three semi-supervised settings, and one fully supervised setting
(training on all labelled images). In a semi-supervised setting, we sample labelled images to
make sure the least appeared class has appeared at least in 5, 15 and 50 images respectively,
in all three datasets, among which, the labelled images for CityScapes, Pascal VOC and

SUN RGB-D contain at least 12, 3 and 1 semantic classes, respectively.

In the partial label setting, both the CityScapes and Pascal VOC datasets are evaluated in
four cases, by sampling 1, 1%, 5% and 25% labelled pixels for each semantic class in each

training image. An example of the partially labelled dataset is shown in Fig. 4.4.

Strong Baselines. Prior semi-supervised segmentation methods are typically designed
with different backbone architectures, and trained with different strategies, which makes it
hard to compare them fairly. In this work, we standardise the baselines and implement
four strong semi-supervised segmentation methods ourselves: i) S4GAN [MTB1g]: an
adversarial learning based semi-supervised method, ii) CutOut [FAL*20]: an image aug-

mentation strategy to generate new data by cutting out a random patch in an image, iii)
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4 Exploring Semantic Relationships with Contrastive Learning

1 Pixel 1% Labels 5% Labels 25% Labels
; - <
]
]
hY
]
Background Boat Dog Undefined

Figure 4.4. Example of training labels for Pascal VOC dataset in Partial Labels Full Dataset setting.
1 Pixel labels are zoomed 5 times for better visualisation.

CutMix [FAL*20]: an image augmentation strategy to generate new data by attaching a
random patch extracted from one image to another image, and iv) ClassMix [OTPS21]:
an image augmentation strategy by attaching random semantic classes extracted from
one image to another image. Our implementations for all baselines obtain performance
on par with, and most of the time surpassing, the performance reported in each original
publication, giving us a set of strong baselines. Finally, we compare our method with

standard supervised learning by training purely on labelled data.

Training Strategies. All baselines and our method are implemented on the same segmenta-
tion architecture: DeepLabV3+ [CZP*18] with ResNet-101 backbone [HZRS16], trained

with the same optimisation strategies, and the same labelled and unlabelled data split.

Results on Pascal VOC, CityScapes and SUN RGB-D (Full Labels)

First, we compare our results to baselines (4 semi-supervised and 1 supervised) in a full-
label setting. For semi-supervised learning, we apply ReCo on top of ClassMix, which
consistently outperforms other semi-supervised baselines. In fully supervised learning, we

simply apply ReCo on top of standard supervised learning.

Table 4.1 shows the mean IoU validation performance in three datasets over three individual
runs (different labelled and unlabelled data split). We see that for all cases, applying the
ReCo loss improves performance in both the semi-supervised and supervised settings. In
the fewest label settings in each dataset, applying ReCo with ClassMix can improve results

by an especially significant margin, with up to 5 — 10% relative improvement.

We present qualitative results from the semi-supervised setup with the fewest labels: 20
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Pascal VOC CityScapes SUN RGB-D

Method 60 im. 200im. 600im. allim. 20im. 50im. 150im. allim. 50im. 150im. 500im. allim.

Supervised 37.79 53.87 64.04 77.79  38.12  45.42 54.93 70.48 19.79 28.78 37.73 51.06

S4GAN 47.95 61.25 66.21 - 37.65 47.08 56.46 - 20.53 29.79 38.08 -
CutOut 52.96 63.57 69.85 - 42.52  50.15 59.42 - 25.94 34.45 41.25 -
CutMix 53.71 66.95 72.42 - 44.02  54.72 62.24 - 27.60 37.55 42.69 -
ClassMix 49.06 67.95 72.50 - 45.61  55.56 63.94 - 28.42 37.55 42.46 -
ReCo 53.31 69.81 72.75 78.39 49.86 57.69 65.04 71.45 29.65 39.14 44.55  52.01

Table 4.1. mean IoU validation performance for Pascal VOC, CityScapes, and SUN RGB-D datasets.
We report the performance averaged over three independent runs for all methods. The number of
labelled images shown in the first three columns in each dataset is chosen to make sure the least
appeared classes have appeared in 5, 15, and 50 images respectively.

labelled CityScapes and 50 labelled SUN RGB-D datasets in Fig. 4.5, and 60 labelled Pascal
VOC in Fig. 4.3. In all cases, we can see the clear advantage of ReCo, where the edges
and boundaries of small objects are clearly more pronounced such as in the “person” and
“bicycle” classes in CityScapes, “boat” and “horse” classes in Pascal VOC, and the “lamp” and
“pillow” classes in SUN RGB-D. More interestingly, we find that in SUN RGB-D, though all
methods may confuse ambiguous class pairs such as “table” and “desk” or “window” and
“curtain”, ReCo still produces consistently sharp and accurate object boundaries compared

to the Supervised and ClassMix baselines where labels are noisy near object boundaries.

To further justify the effectiveness of ReCo, we also include results on existing benchmarks
in Table 4.2. Here, all baselines are re-implemented and reported in the PseudoSeg setting
[ZZZ" 21], where the labelled images are sampled from the original PASCAL dataset, with
a total of 1.4k images. In both benchmarks, ReCo shows state-of-the-art performance, and

specifically can reach PseudoSeg’s performance, while requires only half the labelled data.

Pascal VOC 1/16 [92]  1/8 [183]  1/4[366]  1/2 [732]
AdvSemSeg [HTL*19] 39.69 47.58 59.97 65.27
Mean Teacher [TV17] 48.70 55.81 63.01 69.16
CCT [OHT20] 33.10 47.60 58.80 62.10
GCT [KQL™"20] 46.04 54.98 64.71 70.67
VAT [MMKI18] 36.92 49.35 56.88 63.34
CutMix [FAL*20] 55.58 63.20 68.36 69.87
PseudoSeg [2ZZ%21] 57.60 65.50 69.14 72.41
ReCo 64.78 72.02 73.14 74.69

Table 4.2. mean IoU validation performance for Pascal VOC with data partition and training
strategy proposed in PseudoSeg [ZZZ" 21]. The percentage and the number of labelled data are listed
in the first row. ReCo achieves best performance in all cases, and with significantly less labelled data.
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Ground Truth Supervised (20 Labels) ClassMix (20 Labels) ReCo (20 Labels)

= - <

Road Sidewalk | Building Fence Vegetation
Sky Person Rider ar Truck Train  Motorcycle Bicycle Undefined

Ground Truth Supervised (50 Labels) ClassMix (50 Labels) ReCo (50 Labels)

Wall Floor Cabinet Chair Sofa Table Door Window  Bookshelf

Picture Counter Blinds Desk Shelves Curtain Pillow Mirror  Floor Mat

Clothes Ceiling Books Fridge TV Paper Bath Curtai Whiteboard

Person Toilet Sink Lamp Bathtub Undefined

Figure 4.5. Visualisation of Cityscapes (top) and SUN RGB-D (bottom) validation set trained on
20 and 50 labelled images respectively. Interesting regions are shown in white arrows.

62



4.4 Experiments

Ground Truth Supervised (60 Labels) ClassMix (60 Labels) ReCo (60 Labels)

Background Aeroplane  Bicycle i Boat Bottle Bus a Ca Chair

Cow Table Dog Horse  Motorbike = Person Plant Sheep Train

Monitor Invalid

Table 4.3. Visualisation of Pascal VOC validation set trained on 60 labelled images. Interesting
regions are shown in white arrows.

Results on Pascal VOC and CityScapes (Partial Labels)

In the partial label setting, we evaluate on the CityScapes and Pascal VOC datasets. We

show qualitative results on the Pascal VOC dataset trained on 1 labelled pixel per class per
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Figure 4.6. Visualisation of Pascal validation set with ClassMix (left) vs. with ReCo (right) trained
on 1 labelled pixel per class per image. Interesting regions are shown in white arrows.

image in Fig. 4.6. As in the full label setting, we see smoother and more accurate boundary

predictions from ReCo.

Table 4.4 compares ReCo to the two best semi-supervised baselines and a supervised
baseline. Once again, we observe that ReCo consistently enhances performance in all cases

when applied with ClassMix, resulting in approximately 1 — 5% relative improvement.

Pascal VOC CityScapes

Method 1 pixel 1% labels 5% labels 25% labels ~ Method 1 pixel 1% labels 5% labels 25% labels

Supervised 60.33  66.17 69.16 73.75 Supervised 44.08  52.89 56.65 63.43
CutMix 63.50 70.83 73.04 75.64 CutMix 46.91 54.90 59.69 65.61
ClassMix  63.69  71.04 72.90 75.79 ClassMix 47.42  56.68 60.96 66.46
ReCo 66.11 72.67 74.09 75.96 ReCo 49.66  58.97 62.32 66.92

Table 4.4. mean IoU validation performance for Pascal VOC and Cityscapes datasets trained on
1,1%, 5% and 25% labelled pixels per class per image. We report the performance averaged over
three independent runs for all methods.

However, it is worth noting that the extent of performance improvement is somewhat
less pronounced than in the full-label setting. This disparity can be attributed to the
inherent challenge of very limited ground-truth annotations in this scenario. In such

cases, ReCo may occasionally receive inaccurate supervision signals, potentially leading to
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confusion in the learning process. This limitation highlights the crucial role of accurate
object boundaries. Nonetheless, the fact that ReCo still manages to deliver improvements
in this challenging evaluation setting underscores its effectiveness in semi-supervised

segmentation, even under highly constrained conditions.

4.5 Ablation Study on Hyper-Parameters and Training Details

Next, we present an ablation study on 20 labelled CityScapes dataset to understand the
behaviour of ReCo concerning different hyper-parameters. We use our default experimental
setting from Section 4.4, using ReCo with ClassMix. All results are averaged over three

independent runs.
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Figure 4.7. mean IoU validation performance on 20 labelled CityScapes dataset based on different
choices of hyper-parameters. Grey: ClassMix (if not labelled otherwise) in our default setting. Light
Blue: ReCo + ClassMix (if not labelled otherwise) in a different hyper-parameter setting. Purple:
ReCo + ClassMix in our default setting.

Number of Queries and Keys. We first evaluate the performance by varying different
number of queries and keys used in the ReCo framework, while fixing all other hyper-
parameters in default. In Fig. 4.7a and 4.7b, we can observe that performance is better
when sampling more queries and keys, but after a certain point, the improvements would
become marginal. Notably, even in our smallest option having 32 queries per class in
a mini-batch — consisting only less than 0.5% among all available pixel space, can still
improve performance in a non-trivial margin. Compared to a concurrent work [ZTRR21]
which requires 10k queries and 4ok keys in each training iteration, ReCo can be optimised

with x50 more efficiency in terms of memory footprint.

Ratio of Unlabelled Data. We examine how effectively ReCo can generalise across varying
ratios of unlabelled data. As depicted in Fig. 4.7¢, we demonstrate that ReCo outperforms
the ClassMix baseline, even with only 10% of the original amount of unlabelled data. This
observation underscores the remarkable capacity of ReCo not only to achieve impressive

gains in label efficiency but also to excel in data efficiency.
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Choice of Semi-Supervised Method. Finally, we demonstrate the robustness of ReCo across
different semi-supervised methods. As illustrated in Fig. 4.7d, we observe that ReCo
consistently achieves higher performance across a range of semi-supervised baselines, with

similar relative improvements.

Effect of Active Sampling. Table 4.5 reveals that when queries and keys are randomly
sampled without active sampling, the performance improvement is notably lower com-
pared to the active sampling approach used in our default setting. Additionally, the active
sampling strategy that focuses on hard queries has a pronounced impact on generalisation.
In contrast, if we were to sample solely from easy queries, ReCo only yields marginal
improvements over the baseline. This observation reinforces that the strategic sampling of
queries and keys is a crucial component of the ReCo framework, demonstrating its pivotal

role in achieving superior results in semi-supervised semantic segmentation.

Random Query  Active Query  Easy Query

Random Key Random Key  Active Key Baseline  Our Setting

46.56 46.38 45.81 45.61 49.86

Table 4.5. mean IoU validation performance on 20 labelled CityScapes dataset based on different
query and key sampling strategies. Active key and query sampling offer a significant improvement
over random sampling.

Compared to Feature Bank Methods. We also test ReCo with a stored feature bank, which
is similar to the design employed in concurrent works [ASF*21, WZY*21]. We found that
replacing our batch-wise sampling with a feature bank sampling will achieve a similar
performance (49.34 mIoU) compared to our original design (49.86 mIoU) on 20 labelled
CityScapes, but with a slower training speed. This confirms that our batch-wise sampling

accurately approximates class distribution across the dataset, making it an efficient choice.

4.6 Visualisations and Interpretability of Class Relationships

In this section, we present visualisations of the pair-wise semantic class relation graph
defined in Eq. 4.4. We further enhance these visualisations with a semantic class dendro-
gram using the off-the-shelf hierarchical clustering algorithm available in SciPy [VGO™20].
These visualisations aim to provide a more comprehensive understanding of the semantic

class relationships in the learned representations.

For both visualisations, we compute the features for each semantic class by averaging the

pixel embeddings from the validation set. In all the visualisations, we compare the features
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Figure 4.8. Visualisation of semantic class relation graph and its corresponding semantic class
dendrogram on CityScapes (top) and PASCAL VOC (bottom) datasets. A brighter colour represents

a closer (more confused) relationship. Best viewed in zoom.
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learned with ReCo on top of supervised learning with a standard supervised learning
method trained on all labelled data. This comparison helps us gain insights into how ReCo
affects the semantic class relationships in the learned representations when compared to

traditional supervised learning on the full dataset.

Utilising the same definitions as in Section 4.3, we present these visualisations for two
types of embeddings: embedding Z, which is the embedding predicted from the encoder
network f; and used for pixel-level classification in supervised method, and embedding

‘R, which is the actual representation utilised for ReCo loss and active sampling.

In Fig. 4.8, we showcase the semantic class relationships and dendrograms for the City-
Scapes and PASCAL VOC dataset based on embeddings Z and R, with and without ReCo
loss. The visualisations reveal that ReCo significantly aids in disentangling features com-
pared to standard supervised learning, where many pairs of semantic classes exhibit high
similarity. Additionally, nearly all classes based on embedding R are perfectly disentangled,
except for “bus” and “train”, suggesting that the CityScapes dataset might lack sufficient

examples of these two classes to learn distinctive representations for them.

The pair-wise relation graph and dendrogram visualisations offer valuable insights into the
distribution of semantic classes within each dataset and help clarify the patterns of incorrect
predictions made by the trained semantic network. Additionally, we provide a dendrogram
based on embedding R for the SUN RGB-D dataset, which highlights ambiguous class
pairs, such as “night stand” and “dresser”, “table” and “desk’, and “floor” and “floormat”,
aligning with the results presented in Fig. 4.5. These visualisations serve as a useful tool
for understanding the relationships between semantic classes and the impact of ReCo on

feature disentanglement and class separation.
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Figure 4.9. Visualisation of semantic class dendrogram based on embedding R on SUN RGB-D
dataset using ReCo + Supervised method. Best viewed in zoom.
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4.7 Conclusion, Limitations and Discussions

In this chapter, we have presented ReCo, a new pixel-level contrastive framework with active
sampling, designed specifically for semantic segmentation. ReCo explores structured se-
mantic class relationships, and can improve performance in supervised or semi-supervised
semantic segmentation methods with minimal additional memory footprint. In particular,
ReCo has shown its strongest effect in semi-supervised learning with very few labels, where

we improved on the previous state-of-the-art by a large margin.

We now discuss some limitations of ReCo that we have noted during our implementations,

and we discuss our thoughts on future directions with this work.

Constraive Learning for Video Object Segmentation We are convinced that ReCo holds
potential for extension to other tasks beyond semantic segmentation, with a special focus
on video object segmentation. To achieve this, we can implement ReCo in the temporal
dimension, allowing the sampling of queries and keys from different sequences. We believe
the exploration of contrastive learning frameworks can be a promising and interesting

direction for improving data-efficient video object segmentation.

ReCo for Interactive Semantic Segmentation Additionally, we see the opportunity to
apply ReCo to the task of interactive semantic segmentation. In this context, ReCo can
be employed in collaboration with human experts to identify the most informative pixels
for annotation, thereby alleviating the annotation workload for human annotators. We
envision that this application of ReCo can offer significant benefits, especially in domains
like medical imaging, where the annotation of medical images often proves to be time-

consuming and resource-intensive.

Impact on Future Research The ReCo framework has demonstrated its efficacy and
efficiency in improving semantic segmentation performance across diverse settings. It has
been adapted and iteratively refined to enhance active learning [RKH22], probabilistic
representation learning [XWZ" 23], information transfer [WFL*24], and pseudo-label
generation [WWS"22]. Moreover, its application has yielded performance enhancements in

numerous domains, including remote sensing [YYD" 23] and medical imaging [YDM*24].
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Self-Supervised Generalisation
with Meta Auxiliary Learning

In the previous chapter, we explored an auxiliary learning strategy of using the inherent
structure of semantics to improve semantic segmentation tasks. In this chapter, we propose
an alternative approach, wherein we directly generate a semantic structure for auxiliary
labels, and leverage them to improve the performance of the primary task. We call this
approach Meta Auxiliary Learning (MAXL). We demonstrate that MAXL can improve
single-task learning on a range of image datasets, all while operating without the need
for extra data. Furthermore, our results indicate that MAXL outperforms other baseline
methods for generating auxiliary labels and even competes favourably with human-defined
auxiliary labels. The self-supervised aspect of MAXL introduces a promising avenue for

automated generalisation in machine learning.

5.1 Understanding Auxiliary Learning with Semantic Complexity

We first take a closer look at the generalisation of auxiliary learning, seeking to gain insights
into how the generalisation performance over the primary task behaves when we train
alongside different numbers and designs of auxiliary tasks. For simplicity, we evaluate and

perform all experiments in image classification tasks in a single-domain setting.
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5.1 Understanding Auxiliary Learning with Semantic Complexity

3 Class 10 Class 20 Class 100 Class
reptiles crocodile, dinosaur, lizard, snake, turtle
large animals large carnivores bear, leopard, lion, tiger, wolf

large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo

aquatic mammals beaver, dolphin, otter, seal, whale
medium animals
medium-sized mammals fox, porcupine, possum, raccoon, skunk
animals small mammals hamster, mouse, rabbit, shrew, squirrel
small animals
fish aquarium fish, flatfish, ray, shark, trout
insects bee, beetle, butterfly, caterpillar, cockroach
invertebrates
non-insect invertebrates crab, lobster, snail, spider, worm
people people baby, boy, girl, man, woman
flowers orchids, poppies, roses, sunflowers, tulips
vegetations vegetations fruit and vegetables apples, mushrooms, oranges, pears, peppers
trees maple, oak, palm, pine, willow
food containers bottles, bowls, cans, cups, plates
household objects household electrical devices clock, keyboard, lamp, telephone, television
household furniture bed, chair, couch, table, wardrobe
objects and scenes construction large man-made outdoor things bridge, castle, house, road, skyscraper
natural scenes large natural outdoor scenes cloud, forest, mountain, plain, sea
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vechicles
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table 5.1. A g-level hierarchy for multi-label image classification task based on CIFAR-100 dataset.
This extended dataset introduces additional complexity to the original CIFAR-100 by incorporating
two new levels of coarser labels. We define a higher complexity level for labels associated with a larger
number of classes, and a lower complexity level for labels associated with fewer classes.

Training Setup. Specifically, we employ a multi-task network to predict a set of training
tasks, where each training task is designed as one level of hierarchical label from a pre-
defined multi-label image classification dataset. In all training tasks, one task is considered
as the primary task, and all the remaining tasks are considered as auxiliary tasks. Our goal
is to understand how generalisation over the primary task is impacted by the presence of
auxiliary tasks, which exhibit varying degrees of semantic complexity. In this context, we
measure semantic complexity in each task directly by the number of classes defined in the
label, i.e. the finer classification label which describes with more detailed information gives

a higher complexity.

In the creation of this multi-label dataset, we construct a four-level hierarchy, building upon
the original CIFAR-100 dataset [Kriog]. The structure of this hierarchy is thoughtfully
defined and detailed in Table 5.1. To ensure the consistency and robustness of learning
performance across various learning methods and network architectures, we conduct ex-

periments with two well-known image classification architectures: VGG-16 [SZ15] and
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PRI [3] PRI [100]

No AUX AUX[10] AUX[20] AUX[100] No AUX AUX[3] AUX[10] AUX [20]
92.92 93.94 94.56 94.16 69.84 68.45 139  69.28 (55  68.95 (g9
(a) with Higher Auxiliary Task Complexity (b) with Lower Auxiliary Task Complexity

PRI [10] PRI [20] PRI [3]
No AUX AUX [100] NoAUX AUX [100] AUX [10+20] AUX [20+100] AUX [10+20+100]
82.52 84.36 79.28 80.37 94.51 94.54 94.55
(c) with Single Auxiliary Task (d) with Multiple Auxiliary Tasks

Table 5.2. Test performance of the primary task trained with various designs and numbers of
auxiliary tasks. The primary and auxiliary tasks are denoted as PRI [-] and AUX [-], respectively, with
the number within the square brackets indicating the number of classes within each label. Additionally,
the subscript indicates the extent of performance enhancement observed in the primary task when
paired with the corresponding auxiliary task.

ResNet-50 [HZRS16]. We train these networks both with and without regularisation,

employing the vanilla hard parameter-sharing approach.

It’s noteworthy that our observations remain consistent across these different settings. As a
result, we present the test performance achieved with the VGG-16 architecture equipped
with regularisation in Table 5.2. This setting provides a representative view of the general-

isation behaviour and performance outcomes in our experiments.

Results. In our analysis, we have made several intriguing observations regarding the
performance of primary and auxiliary tasks under different conditions. These observations

are summarised as follows.

Firstly, we have noticed that when pairing primary tasks with auxiliary tasks containing
3/10/20 classes, there is a significant improvement in the performance of the primary task.
Conversely, when the primary task has 100 classes, its performance experiences a certain
degree of decline when paired with auxiliary tasks having 3/10/20 classes, compared to
single-task training. This indicates that the performance improvement in the primary
task correlates positively with the complexity of the auxiliary class. This observation is
also aligned with the learning strategy we explored in Auto-A, where we found the part
segmentation task with higher complexity can improve the performance of the semantic
segmentation task more effectively. However, this improvement rate eventually plateaus
and decreases when the auxiliary class complexity becomes excessive. This suggests that
there exists an optimal balance in auxiliary class complexity for maximising the benefit to

the primary task.
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Finally, our observation pertains to the influence of auxiliary tasks on the primary task. We
have found that the performance of the primary task depends solely on the single auxiliary
task that provides the best performance improvement. In other words, the primary task’s
performance is not influenced by the inclusion of multiple auxiliary tasks. This observation
underscores the importance of selecting the most beneficial auxiliary task, as it has a more
pronounced impact on the primary task’s performance compared to the cumulative effect

of multiple auxiliary tasks.

These observations shed light on the intricate dynamics of auxiliary learning and provide

valuable insights into optimising the performance of primary tasks in multi-task training.

5.2 Related Work

Multi-task & Transfer Learning  The aim of multi-task learning (MTL) is to achieve
shared representations by simultaneously training a set of related learning tasks. In this
case, the learned knowledge used to share across domains is encoded into the feature
representations to improve performance of each individual task, since knowledge distilled
from related tasks are interdependent. The success of deep neural networks has led to some
recent methods advancing the multi-task architecture design, such as applying a linear
combination of task-specific features [MSGH16, Kokiy]. [LJD19] applied soft-attention
modules as feature selectors, allowing learning of both task-shared and task-specific features
in an end-to-end manner. Transfer learning is another common approach to improve
generalisation, by incorporating knowledge learned from one or more related domains.
Pre-training a model with a large-scale dataset such as ImageNet [DDS*09] has become a
standard practise in many vision-based applications. Please refer to Sec. 2.2 and 2.3 for a

detailed review.

Auxiliary Learning ~ Whilst in multi-task learning the goal is high test accuracy across
all tasks, auxiliary learning differs in that high test accuracy is only required for a single
primary task, and the role of the auxiliary tasks is to assist in generalisation of this primary
task. Applying related learning tasks is one straightforward approach to assist primary
tasks. [TTLL1y] applied auxiliary supervision with phoneme recognition at intermediate
low-level representations to improve the performance of conversational speech recogni-
tion. [LK18] chose auxiliary tasks which can be obtained with low effort, such as global
descriptions of a scene, to boost the performance for single scene depth estimation and
semantic segmentation. By carefully choosing a pair of learning tasks, we may also perform
auxiliary learning without ground truth labels, in an unsupervised manner. [J[MC*17] in-

troduced a method for improving agent learning in Atari games, by building unsupervised
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auxiliary tasks to predict the onset of immediate rewards from a short historical context.
[FNPS16, ZBSL1y] proposed image synthesis networks to perform unsupervised monocular
depth estimation by predicting the relative pose of multiple cameras. [DCJ*18] proposed
to use cosine similarity as an adaptive task weighting to determine when a defined auxiliary
task is useful. Differing from these works which require prior knowledge to manually
define suitable auxiliary tasks, our proposed method requires no additional task knowledge,
since it generates useful auxiliary knowledge in a purely unsupervised fashion. The most
similar work to ours is [ZT]18], in which meta learning was used in auxiliary data selection.
However, this still requires manually-labelled data from which these selections are made,

whilst our method is able to generate auxiliary data from scratch.

Meta Learning  Meta learning (or learning to learn) aims to induce the learning al-
gorithm itself. Early works in meta learning explored automatically learning update
rules for neural models [BBCgo, BBCG92, Schg2]. Recent approaches have focussed
on learning optimisers for deep networks based on LSTMs [RL16] or synthetic gradi-
ents [ADG"16, JCO"17]. Meta learning has also been studied for finding optimal hyper-
parameters [LZCL17] and a good initialisation for few-shot learning [FAL17]. [SBB*16] also
investigated few shot learning via an external memory module. [VBL*16, SSZ17] realised
few shot learning in the instance space via a differentiable nearest-neighbour approach.
Related to meta learning, our framework is designed to learn to generate useful auxiliary

labels, which themselves are used in another learning procedure.

5.3 MAXL: Self-Supervised Auxiliary Learning for Image Classification

We now introduce our method for automatically generating optimal labels for an auxiliary
task, as a form of self-supervised auxiliary learning, which we call Meta Auxiliary Learning
(MAXL). Based on these insights we have explored in the previous section, we only consider
finding a single auxiliary task, although our method could be modified to include several
auxiliary tasks. And we only focus on classification tasks for both the primary and auxiliary
tasks, but the overall framework could also be extended to regression. As such, the auxiliary
task is defined as a sub-class labelling problem, where each primary class is associated with

some auxiliary classes, in a two-level hierarchy.

Problem Setup. The goal of MAXL is to generate labels for the auxiliary task which, when
trained alongside a primary task, improve the performance of the primary task. To accom-

plish this, we train two networks: a multi-task network, which trains on the primary and
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Figure 5.1. MAXL framework overview. (a) Illustration of the two networks which make up MAXL.
Dashed white boxes represent data generated by neural networks, solid white boxes represent given
data, and coloured boxes represent functions. The double arrow represents equivalence. (b) Illustration
of vanilla SoftMax and Mask SoftMax with 2 primary classes. Vanilla SoftMax outputs over all 4
auxiliary classes, whereas Mask SoftMax outputs over a hierarchical structure y = [2,2].

auxiliary task in a standard multi-task learning setting, and a label-generation network,
which generates the labels for the auxiliary task.

We denote the multi-task network as a function fp, (x) with parameters 6; which takes
an input x, and the label-generation network as a function g, (x) with parameters 6,
which takes the same input x. Parameters 6, are updated by losses of both the primary and
auxiliary tasks, as is standard in auxiliary learning. However, parameters 0, are updated

only by the performance of the primary task.

In the multi-task network, we apply the vanilla hard parameter sharing approach, in which
we predict both the primary and auxiliary classes using the shared features 6,. At the final
feature layer, fp, (x), we then further apply task-specific layers to output the corresponding
prediction for each task, using a SoftMax function. We denote the primary task predictions
by f(i "(x), and the auxiliary task predictions by fo*(x). And we denote the ground-truth
primary task labels by y?"*, and the generated auxiliary task labels by y***.

We found during experiments that training benefited from assigning each primary class its
own unique set of possible auxiliary classes, rather than sharing all auxiliary classes across
all primary classes. In the label-generation network, we therefore define a hierarchical
structure y, which determines the number of auxiliary classes for each primary class.
At the output layer of the label-generation network, we then apply a masked SoftMax

function to ensure that each output node represents an auxiliary class corresponding to
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only one primary class, as described further in the later section. Given input data x, the
label-generation network then takes in a fixed hierarchy y together with the ground-truth
primary task label y*”/, and applies Mask SoftMax to predict the auxiliary labels, denoted
by y** = ggj" (x, y*"', ). A visualisation of the overall MAXL framework is shown in
Fig. 5.1. Note that we allow soft assignment for the generated auxiliary labels, rather than
one-hot encoding, which we found during experiments enables greater flexibility to obtain

optimal auxiliary labels.

Model Objectives. The multi-task network is trained alongside the label-generation net-
work, with two stages per epoch. In the first stage, the multi-task network is trained
using primary task ground-truth labels, and the auxiliary labels from the label-generation
network. In the second stage, the label-generation network is updated by computing its
gradients with respect to the multi-task network’s prediction accuracy on the primary task.

We train both networks in an iterative manner until convergence.

In the first stage of each epoch, given target auxiliary labels as determined by the label-
generation network, the multi-task network is trained to predict these labels for the auxiliary
task, alongside the ground-truth labels for the primary task. For both the primary and
auxiliary tasks, we apply the focal loss [LGG"17] with a focusing parameter y = 2:

L(J,y)=-y(1-7) log(9), (5.1)

where y is the predicted label and y is the target label. The focal loss helps to focus on the in-
correctly predicted labels, which we found improved performance during our experimental

evaluation compared with the regular cross-entropy log loss.

To update 6, of the multi-task network, we define the multi-task objective as follows:
arg min (LCE Geain)s vy + LU (i) 7)) (5.2)
1

where (i) represents the i'"" batch from the training data, and ey = g‘gzeﬂ (x¢iy» yfir)i W) is

generated by the label-generation network.

In the second stage of each epoch, the label-generation network is then updated by encour-
aging auxiliary labels to be chosen such that, if the multi-task network were to be trained
using these auxiliary labels, the performance of the primary task would be maximised on
this same training data. Leveraging the performance of the multi-task network to train

the label-generation network can be considered as a form of meta learning. Therefore, to
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update parameters 6, of the label-generation network, we define the meta objective as

follows:
argeminﬁ(fepgi(x(,-)),y}():;). (5.3)
2

Here, 07 represents the weights of the multi-task network after one gradient update using

the multi-task loss defined in Equation 5.2:
0 = 01— ¥, (LU Ceen)s viny) + LU (i) 85 (5.4)
where « is the learning rate.

The trick in this meta objective is that we perform a derivative over a derivative (a Hessian
matrix) to update 0,, by using a retained computational graph of 7 in order to compute
derivatives with respect to 0,. This second derivative trick was also proposed in several

other meta-learning frameworks such as [ME14] and [LSY19]."

However, we found that the generated auxiliary labels can easily collapse, such that the label-
generation network always generates the same auxiliary label. This leaves parameters 6, in
a local minimum without producing any extra useful knowledge. Therefore, to encourage
the network to learn more complex and informative auxiliary tasks, we further apply an
entropy loss H(y***) as a regularisation term in the meta objective on all auxilairy classes.
A detailed explanation of the entropy loss and the collapsing label problem is presented
below. Finally, we update MAXLs label generation network by

02 < 62— BV, (ﬁ(fg’ll"(x@),y‘(’{)") +A-HOyGy ) (55)

Mask SoftMax for Hierarchical Predictions

As previously discussed, we include a hierarchy y which defines the number of auxiliary
classes per primary class. To implement this, we design a modified SoftMax function,
which we call Mask SoftMax, to predict auxiliary labels only for certain auxiliary classes.
This takes ground-truth primary task label y, and the hierarchy v, and creates a binary
mask M = B(y, y). The mask is zero everywhere, except for ones across the set of auxiliary
classes associated with y. For example, consider a primary task with 2 classes y = 0,1, and
a hierarchy of v = [2,2] as in Figure 5.1b. In this case, the binary masks are M = [1,1,0,0]
for y =0, and [0,0,1,1] for y = 1.

! The finite approximation used in Auto-A can also be applied here to speed up training.

77



5 Self-Supervised Generalisation with Meta Auxiliary Learning

Applying this mask element-wise to the standard SoftMax function then allows the label-

prediction network to assign auxiliary labels only to relevant auxiliary classes:

expM © j;
5, exp M o J;

exp Ji

_ s (5.6)
2i €Xp Ji

SoftMax: p(Ji) = , Mask SoftMax:  p(9;) =
where p(§;) represents the probability of the generated auxiliary label  over class i, and
© represents element-wise multiplication. Note that no domain knowledge is required to

define the hierarchy, and MAXL performs well across a range of values for y.

Finally, the complete MAXL framework is defined as follows:

1 Initialise: network parameters: 61, 0,; hierarchical structure: y
» Initialise: learning rate: «, 8; entropy weighting: A
3 while not converged do
4 for each training iteration i do
5 # fetch one batch of training data
6 (X(i)’yi‘;)x) €(x,y)
7 # auxiliary-training step
8 Update: 0) < 0, — aVy, (L(fé’l”(x(,»),yf{)’) +L(fg," (x(i))> &6, (X(i)’}’f,r;, W)))
9 end
10 for each training iteration i do
1 # fetch one batch of training data
o (x(y» 15 € (2 9)
13 # retain training computational graph
1 Compute: 6" = 61 — aVy, (ﬁ(fé’l”(xm),y‘(’,.’;) +L(f5," (x)) 86, (x(y» ¥y W)))
15 # meta-training step (second derivative trick)
16 Update: 6, < 6, — BV, ([,( é’;"(x(i)),y‘(’:;) + )L’H(y?f)"))
1
17 end
18 end

The Collapsing Class Problem

As previously discussed, we introduce an additional regularisation loss, which we call the
entropy loss H(§(;y). This encourages high entropy across the auxiliary class prediction
space, which in turn encourages the label-prediction network to fully utilise all auxiliary
classes. The entropy loss calculates the KL divergence between the predicted auxiliary label
space J(;), and a uniform distribution, for each i " batch. This is equivalent to calculating

the entropy of the predicted label space, and is defined as:

. K G o 1,
HG o) = L lgdly, I = 5 L 3o ln): (5.7)
k=1 n=1

where K is the total number of auxiliary classes, and N is the training batch size.
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5.4 Experiments

In this section, we present experimental results to evaluate MAXL with respect to several

baselines and datasets on image classification.

Experimental Setup

Datasets. We evaluate on six different datasets, with varying sizes and complexities. One of
these, CIFAR-100 [Kriog], being expanded into a 4-level hierarchy was used in Section 5.1.
This hierarchy is then used for ground-truth auxiliary labels for the Human baseline (see
below). For the other five datasets: MNIST [LBBH98], SVHN [SCLi12], CIFAR-10 [Kriog],
ImageNet [DDS" 09] and UCF-101 [SZS12], a hierarchy is either not available or difficult to
access, and so no ground-truth auxiliary labels exist. All larger datasets were rescaled to

resolution [32 x 32] to accelerate training.

Baselines. We compare MAXL to a number of baselines. First, we compare with Single
Task, which trains only with the primary class label and does not employ auxiliary learning.
This comparison was done to determine whether MAXL could improve classification
performance without needing any extra labelled data. Then, we compare to three baselines
for generating auxiliary labels: Random, K-Means, and Human, to evaluate the effectiveness
of MAXDs meta-learning for label generation. Random assigns each training image to
random auxiliary classes in a randomly generated (well-balanced) hierarchy. K-Means
determines auxiliary labels via unsupervised clustering using K-Means [HW79], performed
on the latent representation of an auto-encoder, with clustering updated after every training
iteration. Human uses the human-defined hierarchy of CIFAR-100, where the auxiliary
classes are at a lower (finer-grained) level hierarchy than the primary classes. Note that
in order to compare these baselines to Human, they were only evaluated on CIFAR-100
which is the only dataset containing a human-defined hierarchy (and hence ground-truth

auxiliary labels).

Compared to Single Task Learning

First, we compare MAXL to a single-task learning baseline, to determine whether MAXL
can improve recognition accuracy without needing access to any additional data. To test
the robustness of MAXL, we evaluate it on 3 different networks: a simple 4-layer ConvNet,
VGG-16 [SZ15], and ResNet-32 [HZRS16]. We use hyper-parameter search for all networks
and apply regularisation methods in order to achieve optimal performance. Since the

power of MAXL lies in its ability to work without domain knowledge, we test MAXL across
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a range of hierarchies y, to study if it is effective without needing to tune this hierarchy
for each dataset. Here, the hierarchies are well balanced such that y[i] (representing the

number of auxilary classes for i'" primary class) is the same for all primary classes.

Table 5.3 shows the test accuracy of MAXL and single-task learning, with each accuracy
averaged over three individual runs. We see that MAXL consistently outperforms single-
task learning across all five datasets, despite both methods using exactly the same training
data. We also see that MAXL outperforms single-task learning across all tested values
of y, showing the robustness of our method without requiring domain knowledge or a

manually-defined hierarchy.

MAXL, y[i] =

Datasets Backbone Single
2 3 5 10

MNIST 4-layer ConvNet 99.57 £0.02 99.56 £ 0.04 99.71 +£0.02 99.59 £0.03 99.57 £ 0.02
SVHN 4-layer ConvNet 94.05+0.07 94.39+£0.08 94.38+0.07 94.59+0.12 94.41 +0.09

CIFAR-10 VGG-16 92.77 £0.13 93.27+0.09 93.47+0.08 93.49+0.05 93.10+0.08
ImageNet VGG-16 46.67 £0.12 46.82+0.14 46.97+0.10 47.02+0.11 46.85+0.11
UCF-101 ResNet-32 53.15+0.12 54.19+0.18 55.39+0.16 54.70+0.12 54.32+0.18

Table 5.3. Comparison of MAXL with single-task learning, across a range of hierarchies. We report
results with the range of three individual runs, and the best performance for each dataset is marked
with bold. All larger datasets were rescaled to a resolution of [32 x 32].

Compared to Auxiliary Label Generation Baselines

Next, we compare MAXL to a number of baseline methods for generating auxiliary labels,
on CIFAR-100. Here, all the baselines are trained without any regularisation to test the
full generalisation ability purely from auxiliary tasks. This dataset has a manually-defined
hierarchy, which is used in Human for ground-truth auxiliary labels. However, MAXL,
Random, and K-Means do not require any human knowledge or manually-defined hier-
archy to generate auxiliary labels. Therefore, as in Section 5.4, a hierarchy y is defined,
assigning each primary class a set of auxiliary classes. We create well-balanced hierarchies
by assigning an equal number of auxiliary classes per primary class, and for cases when
the hierarchy is unbalanced by one auxiliary class, we randomly choose which primary
classes are assigned each number of auxiliary classes in y. We run each experiment three

times and average the results.

Test accuracies are presented in Table 5.4, using all possible combinations of the numbers
of primary classes and total auxiliary classes in CIFAR-100 (where the auxiliary classes

are at a lower level to the primary classes). We observe that MAXL outperforms Single
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PRI [3] PRI [3] PRI [3] PRI [10] PRI [10] PRI [20]
AUX [10]  AUX[20]  AUX[100]  AUX[20]  AUX[100]  AUX [10]
Single 87.49 87.49 87.49 75.15 75.15 70.71
Random 89.86 89.15 87.81 77.26 75.88 71.11
K-Means 90.16 90.57 90.43 77.68 78.63 73.35
Human 90.78 90.78 91.23 77.97 78.18 73.11
MAXL 90.59 90.68 90.61 78.64 78.43 74.28

Table 5.4. Test accuracy for the multi-level CIFAR-100 dataset, comparing MAXL with baseline
methods for generating auxiliary labels. Our version of CIFAR-100 has a four-level hierarchy of 3,
10, 20, 100 classes per level, and we use this to create the hierarchy y for auxiliary learning.

Task, Random, and K-Means. Note that K-Means requires significantly longer training
time than MAXL due to the need to run clustering after each iteration. Also, note that the
superior performance of MAXL over these three occurs despite all four methods using
exactly the same data. Finally, we observe that MAXL performs similarly and in some cases
better than Human, despite this baseline requiring manually-defined auxiliary labels for
the entire training dataset. With the performance of MAXL similar to that of a system
using human-defined auxiliary labels, we see strong evidence that MAXL is able to learn to

generalise effectively in a self-supervised manner.

Analysis on the Collapsing Class Problem

In Table 5.5, we show results on CIFAR-100 trained with and without entropy loss, for
all 6 combinations of primary and auxiliary tasks evaluated in Table 5.4. In each of these
settings, we provide the test accuracy as well as the percentage of auxiliary labels that are

effectively utilised, as determined by the label-generation network.

Notably, we observe that training MAXL with entropy loss effectively leverages the entire
auxiliary label space in all tasks, to encourage a more comprehensive exploration when
generating the auxiliary task. This utilisation of the auxiliary label space results in per-
formance improvements compared to where entropy loss is not applied. This observation
confirms the beneficial impact of entropy loss within the MAXL framework and its role in

promoting the effective utilisation of the auxiliary task.

Understanding the Utility of Auxiliary Labels

In Fig. 5.2, we show the cosine similarity measurements of gradients in the shared layers of
the multi-task network, trained on all 6 pairs of hierarchies in Table 5.4. We observe that

baseline methods Human and Random, with fixed auxiliary labels, reach their maximal

81



5 Self-Supervised Generalisation with Meta Auxiliary Learning

with entropy loss without entropy loss
PRI AUX
Label % Test Acc. Label % Test Acc.
3 10 100 90.50 100 90.26
20 100 90.65 65 90.39
3 100 100 90.66 35 90.22
10 20 100 78.40 100 77.73
10 100 100 78.46 57 78.20
20 100 100 74.27 61 73.97

Table 5.5. Comparison of test accuracies of 4-level CIFAR-100 dataset trained with and without
entropy loss. The results highlight the value of incorporating entropy loss within the MAXL framework,
as it not only ensures efficient utilisation of the auxiliary label space but also contributes to enhanced
performance across all primary and auxiliary task combinations.

similarity at an early stage during training, which then drops significantly afterwards. K-
Means produces smooth auxiliary gradients throughout training, but its similarity depends
on the number of auxiliary classes. In comparison, MAXL produces auxiliary gradients
with high similarity throughout the entire training period, and consistently so across the
number of auxiliary classes. While we cannot say what the optimal cosine similarity should
be, it is clear that MAXDs auxiliary labels affect primary task performance in a very different

way from the other baselines.

Due to MAXUDs cosine similarity measurements being greater than zero across the entire
training stage, a standard gradient update rule for shared feature space is then guaranteed

to converge to a local minima given a small learning rate [DCJ*18].

5.5 Visualisations of Generated Auxiliary Knowledge

In Fig. 5.3, we visualise 2D embeddings of examples from the CIFAR-100 test dataset, on
two different hierarchies. The visualisations are computed using t-SNE [VAMHo8] on the
final feature layer of the multi-task network, and compared across three methods: our
MAXL method, the Human baseline, and the Single Task baseline.

This visualisation shows the separability of primary classes after being trained with the
multi-task network. Qualitatively, we see that both MAXL and Human show a better
separation of the primary classes than with Single Task, owing to the generalisation effect
of the auxiliary learning. This again shows the effectiveness of MAXL while requiring no

additional human knowledge.

We also show examples of images assigned to the same auxiliary class through MAXTs
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Figure 5.2. Cosine similarity measurement between the auxiliary loss gradient and primary loss
gradient, on the shared representation in the multi-task network. We consistently observe high
similarity between the auxiliary loss gradients and the primary loss gradients throughout the entire
training duration. This consistency underlines the efficacy and reliability of MAXL in maintaining
a strong alignment between the learning objectives of auxiliary and primary tasks, regardless of the
complexity introduced by varying numbers of auxiliary classes.

Single Human MAXL

Human MAXL

(a) PRI [3] AUX [10] (b) PRI [20] AUX [100]

Figure 5.3. t-SNE visualisation of the learned final layer of the multi-task network, trained on
CIFAR-100 with two different hierarchies. Both the MAXL and human-defined auxiliary tasks
contribute to a more distinct separation of learned feature representations compared to single-task
learning. Primary classes are represented by different colours.

label-generation network. Fig. 5.4 shows example images with the highest prediction
probabilities for three random auxiliary classes from CIFAR-100, using the hierarchy of 20

primary classes and 100 total auxiliary classes (5 auxiliary classes per primary class), which
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Figure 5.4. Visualisation of 5 test examples with the highest prediction probability, for each of 3

randomly selected auxiliary classes, for different primary classes. We present the visualisation for
CIFAR-100 (top) when trained with 20 primary classes and 5 auxiliary classes per primary class, and
for MNIST (bottom) when trained with 10 primary classes and 3 auxiliary classes per primary class.

show the best performance of MAXL in Table 5.4. In addition, we also present examples of

MNIST, in which 3 auxiliary classes were used for each of the 10 primary classes.

To our initial surprise, only part of the generated auxiliary labels visualised in both datasets
show human-understandable knowledge. For example, we can observe that the auxiliary
classes #1 and #2 of digit nine are clustered by the direction of the “tail”; auxiliary classes
#2 and #3 of digit seven are clustered by the distinction of the “horizontal line”. But in
most cases, there are no obvious similarities within each auxiliary class in terms of shape,
colour, style, structure or semantic meaning, similar to the findings we explored in Auto-
A. However, this makes more sense when we re-consider the role of the label-generation
network, which is to assign auxiliary labels that assist the primary task, rather than grouping
images in terms of semantic or visual similarity. The label-generation network would
therefore be more effective if it were to group images in terms of a shared aspect of reasoning

which the primary task is currently struggling to learn.

Further, different from the consistent task relationships found in Auto-A, we discover
that the generated auxiliary knowledge here by MAXL is not deterministic, since the top

predicted candidates are different when we re-train the network from scratch. We, therefore,
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speculate that using a human-defined hierarchy is just one out of a potentially infinite
number of local optima, and on each run of training the label-generation network produces

another of these local optima.

5.6 Conclusions, Limitations and Discussions

In this paper, we have presented Meta Auxiliary Learning (MAXL) for generating optimal
auxiliary labels which, when trained alongside a primary task in a multi-task setup, im-
prove the performance of the primary task. Rather than employing domain knowledge
and human-defined auxiliary tasks as is typically required, MAXL is self-supervised and,
combined with its general nature, has the potential to automate the process of generalisation

to new levels.

Our evaluation on multiple datasets has shown the performance of MAXL in an image
classification setup, where the auxiliary task is to predict sub-class, hierarchical labels
for an image. We have shown that MAXL significantly outperforms other baselines for
generating auxiliary labels, and is competitive even when human-defined knowledge is

used to manually construct the auxiliary labels.

We now discuss some limitations of MAXL that we have noted during our implementations,

and we discuss our thoughts on future directions with this work.

MAXL with Multiple Primary Tasks Our current implementation of MAXL primarily
focuses on enhancing the performance of a single primary task within a multi-task learning
setup. One promising avenue for future research involves extending MAXL to cater to
the needs of multiple primary tasks. This extension could involve generating auxiliary
labels specific to each primary task, thereby potentially offering an alternative approach to

unifying multi-task learning and auxiliary learning to Auto-A.

Generality of Auxiliary Tasks MAXLs intrinsic flexibility raises intriguing questions
about the broader applicability of self-supervised auxiliary learning beyond sub-class im-
age classification. In our exploration, we conducted preliminary experiments aimed at
predicting arbitrary vectors, transforming the generated auxiliary task into a regression
problem. While the results from these preliminary experiments have yet to yield conclusive
findings, they underscore the exciting potential of MAXL in learning versatile auxiliary
tasks. The ability of MAXL to adapt and tune these auxiliary tasks automatically for the
primary task opens up a promising direction for automated generalisation across a diverse

range of more complex tasks.
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5 Self-Supervised Generalisation with Meta Auxiliary Learning

Impact on Future Research MAXL has introduced a novel paradigm by bridging meta
learning and auxiliary learning, thereby exerting a notable influence on a range of machine
learning investigations focused on improving representation learning with auxiliary tasks
[SNG*23, NAM* 21, SLO20, CWG*22, LQZ"22]. Furthermore, MAXL has found broad
applicability in facilitating fast test-time online adaptation by leveraging self-supervised
or readily accessible auxiliary tasks to improve primary tasks performance across various
domains. These domains include a wide array of applications, including human pose
estimation [CSL*23], dynamic image deblurring [CWYT21], image denoising [GNP22],
future depth prediction [LCY* 23], 3D object detection [LXW21], language understanding
[GFDZ22], and recommendation systems [LML"23].
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Vision-Language Reasoning with
Multi-Task Experts

We have examined different designs in multi-task and auxiliary learning methods to achieve
structured representations in computer vision tasks. In this chapter, we shift our focus
to explore how we can leverage multi-task knowledge to improve training efficiency on

open-ended vision-language reasoning.

We introduce Prismer, a data- and parameter-efficient vision-language model that leverages
an ensemble of task-specific experts. Prismer only requires training of a small number of
components, with the majority of network weights inherited from multiple readily-available,
pre-trained experts, and kept frozen during training. Unlike other vision-language models
that require training huge models on massive datasets, Prismer is a more scalable alternative
that can efficiently pool expert knowledge and adapt it to various vision-language reasoning
tasks. In our experiments, we show that Prismer achieves fine-tuned and few-shot learning
performance which is competitive with current state-of-the-arts, while requiring up to two

orders of magnitude less training data.

6.1 Breaking Down Vision-Language Reasoning

Large pre-trained models have demonstrated exceptional generalisation capabilities across

a wide range of tasks. However, these capabilities come at a hefty cost in terms of
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6 Vision-Language Reasoning with Multi-Task Experts

computational resources required for training and inference, as well as the need for
large amounts of training data. In the language domain, models with hundreds of bil-
lions of learnable parameters typically require a compute budget on the yottaFLOP scale
[CND*22, BMR*20, BBH" 22, RBC"21].

The problems in vision-language learning are arguably more challenging. This domain is a
strict super-set of language processing, while also requiring extra skills unique to visual and
multi-modal reasoning. For example, many image captioning and VQA problems require
the model to be capable of fine-grained object recognition, detection, counting, and 3D
perception [AAL"15, CFL*15]. A typical solution is to use a massive amount of image-text
data to train one giant, monolithic model that learns to develop these task-specific skills

from scratch, simultaneously, and within the same generic architecture.

Instead, we investigate an alternative approach to learning these skills and domain know-
ledge via distinct and separate sub-networks, referred to as “experts”. As such, each expert
can be optimised independently for a specific task, allowing for the use of domain-specific
data and architectures that would not be feasible with a single large network. This leads to
improved training efficiency, as the model can focus on integrating specialised skills and
structured domain knowledge, rather than trying to learn everything at once, making it an

effective way to scale down multi-modal learning.

6.2 Related Work

Vision-Language Models (VLMs) Inspired by the breakthrough of transformers in the
language domain [VSP*17, DCLT19], early works aimed to model the vision-language
relationship using a shared network based on transformers in a single-stream design [li220,
CLY" 20, LYL*20, SZC*20b]. These works usually leverage a pre-trained object detector,
encoding images as sequences of visual words, parameterised by object- or region-level
features. Prismer takes a different approach by including pre-trained model predictions as

auxiliary signals, whilst still relying on the original images to encode visual features.

Another line of works encodes vision and language features in separate networks in a
dual-stream design, where the vision-only and language-only features are aligned through
contrastive learning [RKH" 21, ZWM* 22, JYX* 21, LSG*21]. These works typically focus
on close-ended multi-modal alignment tasks such as image-text classification and retrieval.
In contrast, Prismer’s vision encoder also aligns its vision features with the language em-
bedding through pre-training with contrastive learning, but with a greater emphasis on

multi-modal generation tasks.
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6.2 Related Work

Both single- and dual-steam VLMs in the past years have often been pre-trained with a
combination of multiple objectives, such as masked language modelling, masked region
modelling, word-region alignment, visual grounding and more [li220, CLTB21, LLXH22,
LSG" 21, LBPL19]. These multiple objectives can make the training process more complex
and require careful balancing of the different losses. Prismer adopts a different approach,
aligning with recent developments in VLM:s that focus on language generation, and only re-
quire a single autoregressive training objective [WYH™* 22, WYY 21, HGW " 22]. Despite the
reduced complexity, training these large-scale VLMs is data intensive and computationally
demanding, often requiring billions of training data. To overcome these challenges, Pris-
mer leverages powerful pre-trained task-specific expert models for data-efficient training.
Unlike another set of works that prioritise in-context capability by conditioning on a large
frozen language model with no task-specific fine-tuning [EBW*21, TMC*21, ADL*22],
Prismer focuses on fine-tuned performance with an emphasis on parameter efficiency,

using smaller but diverse pre-trained models.

Multi-task and Auxiliary Learning Multi-task learning and auxiliary learning aim to
train models to predict multiple outputs (such as semantic segmentation, object detection,
and depth estimation) from a single input, thereby improving the performance across
one or multiple tasks. This is often achieved through the design of effective multi-task
networks that balance task-shared and task-specific features [LJD19, MSGH16, SPFS20,
XOWS18], or through the explicit modelling of task relationships [LDJ19, L]DJ22, NAM* 21,
75S"18, FAZ" 21]. Recently, multi-task learning has been further generalised to unify vision-
only, language-only, and vision-language tasks by considering them within a sequence-
to-sequence framework [WYM™* 22, LCZ"22a, ZZL"22]. Prismer also employs multiple
tasks, specifically in the vision domain, similar to these methods, but uniquely uses them
solely as input, serving as auxiliary knowledge. Prismer is more related to works such as
[BMAZ22, GZC" 21], which utilise pre-trained experts to create pseudo labels for multi-
task self-training. However, whilst those methods focus on learning task-agnostic features
through multi-task supervision, Prismer focuses purely on multi-modal reasoning with a

single-task objective. Please refer to Sec. 2.2 and 2.3 for a detailed review.

Unifying Pre-trained Experts The utilisation of diverse pre-trained domain experts
for multi-modal reasoning has been investigated in previous studies. Socratic models
[ZWW*22] use language as a one-way communication interface to connect different pre-
trained experts. ViperGPT [SMV23] and Visual Programming [GK23] harness the in-
context learning capabilities of large language models, breaking down complex multi-

modal reasoning into modular programs, which are then solved sequentially by leveraging
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6 Vision-Language Reasoning with Multi-Task Experts

pre-trained vision experts through APIs. The aforementioned methods excel at modular
problem decomposition and establishing connections among pre-trained experts, thereby
being limited to zero-shot multi-modal reasoning within the domains on which the experts
were pre-trained, and errors predicted by previous experts can be carried forward to future
experts. However, Prismer stands out with a distinct objective by aiming to better bridge
these pre-trained experts through a unified architecture design. As such, Prismer aims
to create a more seamless collaboration between these experts, optimising multi-modal

reasoning in a more integrated manner, and more robust to non-optimal experts.

Finally, we would like to highlight the distinction between the concept of “experts” defined
in “Mixture of Experts (MoE)” [RPM ™21, NC18, ME14] and in Prismer. In MoE, the “ex-
perts” are sub-modules in a single network, interconnected through their corresponding
gating networks, encoding implicit knowledge guided by a shared training objective. On
the other hand, in Prismer, the “experts” are independently pre-trained models, encoding

explicit knowledge based on their pre-trained tasks or domains.

6.3 Prismer: Unifying Multi-Task Experts for Vision-Language Reasoning

To achieve this, we propose Prismer’, a type of vision-language generative model that takes

multi-task signals as input, and outputs free-form text.

Model Overview

The design of the Prismer model is illustrated in Fig. 6.2. Prismer is an encoder-decoder
transformer model [VSP*17] that leverages a library of existing pre-trained experts. It con-
sists of a vision encoder and an auto-regressive language decoder. The vision encoder takes
an RGB image and its multi-task labels as input (e.g. depth, surface normal, segmentation
labels, predicted from the frozen pre-trained experts), and outputs a sequence of RGB and
multi-task features. The language decoder is then conditioned on these multi-task features

via cross attention, and produces a sequence of text tokens.

One of the key advantages of the Prismer model is its exceptional data efficiency during
training. This is achieved by leveraging a combined power of strong domain-specific experts,
resulting in a significant reduction in the number of GPU hours required to achieve com-
parable performance to other state-of-the-art vision-language models. Prismer is built on

top of existing pre-trained vision-only and language-only backbone models — this allows

! The model name “Prismer” draws from the analogy to an optical prism which breaks a white light
into a spectrum of colours, and here we break down a single reasoning task into diverse domain-specific

reasoning.
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OCR DETECTION

OBJECT DETECTION

SEGMENTATION

ERSON [Zison

IMAGE CAPTIONING

Amanis playing
baseball in a field.

VISUAL QUESTION ANSWERING

Q: What's this person doing?

A: Playing baseball.

Q: What's the number of this player?
A: 21,

PRISMER

Figure 6.1. Prismer model overview. Prismer is a data-efficient vision-language model that leverages
diverse pre-trained experts through its predicted multi-task signals. It can perform vision-language
reasoning tasks such as image captioning and visual question answering. The analogy is with an optical
prism: Prismer splits a single reasoning task into structured domain-specific reasoning.

us to tap into the vast amount of web-scale knowledge already stored in these pre-trained
parameters. Additionally, we also extend the vision encoder to accept multi-task signals —
this enables it to better capture semantics and information about the input image through
the help of the multi-task auxiliary knowledge. For example, we expect “text-reading” prob-
lems can be easily solved by leveraging an OCR detection expert; and “object-recognition”
problems can be easily solved by leveraging an object detection expert. A visualisation of

all expert labels we included in Prismer is shown in Fig. 6.1.

Prismer is designed to leverage pre-trained experts while keeping the number of trainable
parameters to a minimum. To do this, the network weights of the pre-trained experts
are frozen to maintain the integrity of their learned knowledge and prevent catastrophic
forgetting [KMA*18, KPR*17]. To link the multi-task knowledge as well as the vision and
language parts of Prismer, we insert two parameter-efficient trainable components: Experts
Resampler and Adaptor. The Experts Resampler is used in the vision encoder to map a
variable length of multi-task signals to a sequence of multi-task features with a fixed length.
The Adaptors are inserted in each transformer layer of the vision and language parts of the

model to better adapt the pre-trained experts to new tasks and modalities.

Prismer is a generative model, and we re-formulate all vision-language reasoning tasks

as a language modelling or prefix language modelling problem. For example, given the
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Figure 6.2. Prismer architecture design overview. Prismer has two main trainable components: the
Experts Resampler which converts variable multi-task signals to a fixed number of outputs, and the
Adaptor which enhances the model’s expressivity for vision-language reasoning. To ensure that the
model takes advantage of the rich domain-specific knowledge encoded in the pre-trained experts, the
majority of network weights are frozen during training, as represented by .

input image along with its multi-task tokens (predicted with the multi-task experts) and a
question as the prefix, the model generates the answer for the visual question answering
task; given the input image along with its multi-task tokens, the model generates its caption
for the image captioning task. Once we have a prefix prompt, we may either sample the
output text in an autoregressive manner, as in an open-ended setting; or we may rank the

log-likelihood from a fixed set of completions, as in a closed-ended setting.

Pre-trained Experts

In Prismer, we include two types of pre-trained experts:

Backbone Experts. The vision-only and language-only pre-trained models, which are
responsible for encoding images and texts into a meaningful sequence of tokens. Both

models are required to be based on the transformer architecture [VSP*17], so we can easily
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connect them with a few trainable components of similar designs. To preserve their rich
domain-specific knowledge encoded in the network parameters, the majority of the weights

are frozen during pre-training.

Task Experts. The models that can produce multiple task-specific labels depending on their
training datasets. These task experts are treated as black-box predictors, can be designed
either as a single multi-task expert or an ensemble of multiple task-specific experts, and
their predicted labels are used as input for the Prismer model. As a result, all network
weights of the task experts are frozen, and they can have any design. In Prismer, we include
up to 6 task-specific experts all in the vision domain, encoding three low-level vision
signals: depth, surface normals, and edge; and three high-level vision signals: object labels,

segmentation labels, and OCR labels.

We apply task-specific post-processing on these predicted labels, transforming them to a
RI*WXC tensor (here H, W, C represent image height, width and channels respectively. e.g.
C =1for depth and edge labels, and C = 3 for surface normals label). For all expert labels
encoding high-level signals, we tile each pixel with its corresponding text embedding from
a pre-trained CLIP text model [RKH"21], and then we apply PCA to down-sample the
dimensionality to C = 64 for efficient training. The detailed descriptions of all task experts,

including their pre-trained datasets and the architecture design, are listed in Table 6.1.

Task Dataset Model Params. Post-Processing
Semantic Mask2Former Tile each pixel with its corresponding label
Segmentation COCO-Stuff [CUF18] [CMS*t22] 215M parametrised by CLIP text embedding.
COCO [LMB*14] Tile each pixel with its corresponding label
. + : .
Object Detection T OPjects365 [SLZ 39] UniDet [ZKK22] 120M FParametrised by CLIP text embedding. The
+ Openlmages [KRA™T20] labels for the overlapping pixels are further
+ Mapillary [NORBK17] determined by the depth expert.
Text Detection ICDAR 2015 [KGBN'15] CharNet [LCW18]  89M Tile each pixel with its corresponding text
X parametrised by CLIP text embedding.
Depth Estimation MIX-6 [RBK21] DPT [RBK21] 123M  Re-normalised to [-1,1].
Surface Normal ScanNet [DCS*17] NLL-AngMF 72M  Re-normalised to [—1, 1].
[BBC21]
Edge Detection BIPED [PRS20] DexiNed [PRS20] 35M  Re-normalised to [-1,1].

Table 6.1. The detailed description of modality experts. We provide a detailed description of each
modality expert including its pre-trained dataset, parameter size, model name and type and post-

processing strategy.

Key Architectural Components

Task-Specific Convolutional Stem. All expert labels are first processed with randomly

initialised convolution layers to map them to the same dimensionality. Specifically, we
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apply 5 convolutional layers and each is composed of a small [3 x 3] kernel, which is
shown to perform better than a single convolutional layer but with a larger kernel in the
original Vision Transformer design [DBK*20], consistent with the finding in [XSM*21].
The convolutional stem is designed to be task-specific, which we have found to yield
superior performance in comparison to a shared design in a multi-task learning setting
[L)D19, MSGH16].

For high-level semantic labels such as those in object detection, semantic segmentation,
and OCR detection, we down-sample the resolution by a factor of 4 to conserve running
memory. Furthermore, for each object instance, we add a trainable and randomly sampled
embedding to distinguish among different object instances. The size of this instance embed-
ding is set to 128, which corresponds to the maximum possible number of object instances
to be present in a single image. For RGB images, we simply process with the pre-trained
convolutional stem defined by the original vision backbone. All task expert embeddings,
including RGB, are then added with a pre-trained positional embedding before being

further processed by transformer layers.

Experts Resampler The computational complexity of self-attention is quadratically pro-
portional to the number of input patches. And therefore, the vision encoder can easily
require tremendous memory when including a large number of modality experts. To
address this issue, we propose Experts Resampler, which takes a variable number of expert
labels as input and outputs a fixed number of embeddings, illustrated in Fig. 6.3 Left. Such
design produces a constant memory for the self-attention computation in the vision en-
coder, as well as the vision-text cross attention in the language decoder (shown in Fig. 6.2),
independent of the inclusion of a different number of experts. Inspired by the design in
the Perceiver [JGB*21] and the Flamingo model [ADL"22], the Experts Resampler learns
a pre-defined number of latent input queries, to cross-attend a flattened embedding concat-
enated from all multi-task features. The Resampler then compresses the multi-task features
into a much smaller number of tokens equal to the number of learned latent queries, as a
form of auxiliary knowledge distillation. We design keys and values to be a concatenation
for both multi-task features and the learned latent queries, which is shown to be more

effective, and consistent with the design in the Flamingo model [ADL*22].

Lightweight Adaptor We insert one lightweight adaptor into each transformer layer of
both vision and language backbones to improve Prismer’s expressivity and conditioning on
multi-task features, illustrated in Fig. 6.3 Right. The adaptor has an encoder-decoder design,

which has proven to be successful for efficient transfer learning in the NLP domain [HGJ 19,
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Figure 6.3. Design details in Experts Resampler and Adaptor. Left: The Experts Resampler takes

Multi-modal Features

multi-task features with variable length as input, and outputs a fixed number of tokens via cross
attention. Right: The Adaptor has a residual connection to the input and two fully-connected layers,
that down-project the input features to a smaller bottleneck dimension and then up-project back to
the original dimension.

PRP*20]. It first down-projects the input features into a smaller dimension, applies a non-
linearity, and then up-projects the features back to the original input dimension. We choose
the non-linearity function to be squared ReLU [SML*21] — a simple and parameter-free
function that delivers strong training stability. With the residual connection, we initialise
all adaptors with near-zero weights to approximate the identity function. Combined with
a standard cross attention block in the language decoder, the model is able to smoothly
transition from the domain-specific vision-only and language-only backbones to a vision-

language model during pre-training with paired image-text data.

Training Objective

For simplicity, we train Prismer with a single objective — to predict the next text token
autoregressively. Following the standard encoder-decoder architecture, the vision encoder
predicts the multi-task features z, and the language decoder learns to maximise the condi-

tional likelihood of the paired text caption y under the forward autoregressive factorisation:

L=- ZtT=l IOgP(ytI,v«, z).

In practice, our one-time pre-processing step of collecting multi-task expert labels is com-
putationally cheap and fast with data parallelism. The single generative objective then only
requires one forward pass to compute gradients, which is significantly more efficient and
streamlined than many other VLMs that may require a multi-stage and/or multi-step pre-
training [LLXH22, LSG" 21, WYM*22, DXG*22, CLY*20], with multiple objectives and
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data sources. However, because our model only focuses on multi-modal language genera-
tion, it is less suitable for multi-modal discriminative tasks such as image-text retrieval and
visual entailment, which are the focus of other types of VLMs [GCL*20, CLY " 20, JYX*21].

6.4 Experiments

Prismer Model Variants

In addition to Prismer, we also introduce a model variant named PrismerZ, which solely
relies on the power of strong backbone experts and is trained with zero task experts. Pris-
merZ has the same architectural design as the original Prismer but without the Experts
Resampler. PrismerZ simplifies the data inference process as it only requires RGB images,
making it more efficient and applicable to a wider range of applications. Prismer is less
efficient in data inference due to the need for data processing on expert labels, but as we

will show, it has better predictive performance.

Both Prismer and PrismerZ utilise ViT [DBK*20] pre-trained by CLIP [RKH"21] as the
frozen vision encoder, and RoBERTa [LOG*19] as the frozen language decoder. We have
alternatively tried using two other popular open-sourced decoder-only autoregressive
language models: OPT [ZRG*22] and BLOOM [SFA*22], but early experiments showed
that they did not perform as well.

We experiment with two model sizes, BASE and LARGE. The BASE model is built on top
of ViT-B/16 and RoBERTagsg, and the LARGE model is built on top of ViT-L/14 and
RoBERTararce. In Prismer, we apply the same Experts Resampler with roughly so0M para-

meters in both model sizes. The detailed architecture details are summarised in Table 6.2.

Resampler Vision Encoder Language Decoder Trainable  Total

Layers Width Backbone Layers Width Backbone Layers Width Params.  Params.

Prismergasg 4 768 ViT-B/16 12 768  RoBERTapjsg 12 768 160M 980M
Prismerp greE 4 1024  ViT-L/14 24 1024 RoBERTapspce 24 1024  360M 1.6B
PrismerZpyge - - ViT-B/16 12 768  RoBERTapssg 12 768 105M 275M
PrismerZiapee - - ViT-L/14 24 1024 RoBERTapapge 24 1024 270M 870M

Table 6.2. Prismer and PrismerZ architecture details. We report the backbone we choose for each
architecture size, along with its corresponding number of layers and width. We also report the number
of trainable parameters and total parameters for each architecture. We count the total parameters
required for data inference, which include the additional 6 task experts with a combined parameter

size of 654M parameters in our Prismer model.
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Training and Evaluation Details

Pre-training Datasets. We construct our pre-training data from the following datasets:
two in-domain datasets: COCO [LMB*14] and Visual Genome [KZG*17]; and three web
datasets: Conceptual Captions [SDGS18], SBU captions [OKBi1], and a much noisier
Conceptual 12M [CSDS21]. The web datasets are pre-filtered and re-captioned by a pre-
trained image captioner [LLXH22]. The pre-training datasets include 1M unique images
or 12.7M image/alt-text pairs.” All datasets are available publicly and have been widely
used for pre-training many VLMs [LSG* 21, LLXH22, CLY "20].

Optimisation and Implementation. All models are trained with AdamW optimiser [LH19]
with a weight decay of 0.05. Since only a small proportion of the model parameters are
trainable, model sharding is only applied during fine-tuning on large-resolution images.
Specifically, we employ ZeRO Stage 2 technique [RRRH20], which enables the sharding of
optimiser states and parameter gradients across all GPU instances. Additionally, we apply

Automatic Mixed Precision (AMP) with £p16 precision to further reduce training time.

Evaluation Setting. We evaluate the performance of our models through generative lan-
guage modelling, which is a more challenging task than discriminative learning (particu-
larly in VQA tasks), and aligns with that used in other vision-language generative models
[LLXH22, ADL" 22, WYH" 22, CWC"23]. For example, the model must accurately generate
all text tokens for a question (which is on average 2.2 tokens per question in the VQAv2
dataset [AAL"15] as reported in [WYH™22]), rather than just one correct prediction as

required in discriminative models.

Specifically, we evaluate image captioning tasks in an open-ended generative setting, and
we apply beam search with a beam size of 3 for text generation. A prefix prompt of “A
picture of” is added to the input text for fined-tuned image captioning tasks, similar to
previous studies in [WYY ™21, LLXH22, RKH*21], which have shown to improve the quality
of image captions. We evaluate both VQA and image classification tasks in a close-ended

generative setting, by ranking the per-token log-likelihood from a pre-defined answer list.

Training Cost. Prismer is highly efficient in terms of the training cost. The largest model
variant, Prismerragce, only requires 8 days of training on 32 NVIDIA Vioo GPUs. This is sig-
nificantly more efficient than previous state-of-the-art VLMs such as SimVLM [WYY*21]
which requires 5 days of training on 2048 TPUv3, GIT-2 [WYH"22] which requires 1.5

* This is slightly less than the theoretical number which should be 14M unique images. This is because
some image URLs in the web datasets were not valid during the time we downloaded the datasets.
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6 Vision-Language Reasoning with Multi-Task Experts

months of training on 1500 NVIDIA A10o0s, and Flamingo [ADL"22] which requires 2
weeks of training on 1536 TPUv4. A detailed breakdown of the pre-training cost can be
found in Table 6.3.

Model Pre-training Data Pre-training Cost
Params. (# Image-Text Pairs) (# PFlops Days)
BLIPy spce 583M 129M 22.2%
SimVLMpyge 1.4B 1.8B 66.9%
GIT 681M 0.8B 45.8%
PaLl 17B 2.3B 450
Flamingo 80B 2.3B 1.4K"
GIT-2 5.1B 12.9B 5.5K"
Prismerppsg 980M 12.7M 0.66
Prismerpapee 1.6B 12.7M 1.9

Table 6.3. Training cost of vision-language models. We compare the training cost of Prismer with
several other vision-language models using the approximation method in [BMR*20].  represents the
training cost estimated by [CWC™ 23], and # represents the training cost estimated by us.

Results on Vision-Language Benchmarks

Fine-tuned Performance on COCO Caption, NoCaps and VQAv2. We fine-tune our models
on COCO Caption dataset [CFL"15] on a widely adopted Karpathy split [KFF1s], with
the standard cross-entropy loss, and without metric-specific optimisation [VLZP15]. We
evaluate the fine-tuned models on the COCO Caption Karpathy test split and NoCaps
[ADW™19] validation set. We also evaluate our models on the VQAv2 dataset [AAL*15],
with additional training samples from Visual Genome [KZG*17] following [LLXH22].
We compare our models with prior state-of-the-art VLMs that are mostly pre-trained on
image-text data for a fair comparison. We sort all VLMs by their model sizes and report
the results in Table 6.4.

The results show that both Prismer and PrismerZ achieve superior performance consid-
ering their model sizes, which suggests that the strong backbone experts are primarily
responsible for good generalisation. However, the task experts provide an additional
boost in performance, particularly in image captioning tasks (such as a 6 CIDEr score
increase in the NoCaps out-of-domain set in the BASE model) and in the LARGE model
variant (such as a 1 VQAv2 accuracy increase in the LARGE model). Both Prismerssse
and Prismerpree achieve comparable image captioning performance to BLIP [LLXH22]
and LEMON [HGW*22], despite being trained on 10 and 20 times less data, respectively.
Additionally, the Prismerysree model has achieved VQAv2 accuracy comparable to GIT
[WYH"22], despite being trained on 60 times less data. while we acknowledge a noticeable

performance gap between Prismer and the current state-of-the-art VLMs (such as CoCa
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Pre-train COCO Caption NoCaps VQAv2
(# Pairs) B@4 M C S In Near Out  Overall test-dev test-std

OSCARgaSE [LYL+20] 6.5M 36.5 30.3 123.7 23.1 83.4 81.6 77.6 81.1 73.2 73.4
VinVLgsg [ZLH'21] 8.9M 38.2 303 1293 23.6 1037 956 838 943 760  76.1
GITpage [WYHT22]" 10M 40.4 30.0 131.4 23.0 100.7 97.7 89.6  96.6  72.7 -
BLIPgase [LLXHZZ]* 129M 39.7 - 133.3 - 111.8 108.6 111.5 109.6 78.3 78.3
LEMONgsg [HGW'22]  200M 403 302 1333 233 1077 1062 107.9 106.8 - -
PrismerZBASET 12.7M 39.7 31.1 133.7 24.1 108.7 107.8 105.8 107.5 76.6 -
PrismerEAsET 12.7M 40.1  31.1 135.1 24.1 108.8 108.3 111.7 109.1 76.8 77.0
OSCARpapge [LYL'20] 6.5M 37.4 307 127.8 235 854 840 80.3 834 734 738
VinVLpagee [ZLHT21] 8.9M 38.5 304 130.8 23.4 - - - - 76.5  76.6
GITpapce [WYH22] 20M 42.0 30.8 138.5 238 107.7 107.8 102.5 106.9 75.5 -
BLIP_ppee [LLXH22]" 129M 40.4 - 136.7 - 1149 1121 1153  113.2 - -
LEMONparee [HGWT22]  200M 40.6 304 1357 235 1169 113.3 111.3 113.4 -
PrismerZLARGEJr 12.7M 40.0 31.2 135.7 24.2 112.3 111.2 112.8 111.8 77.5 -
Prismerprge | 127M 404 31.4 1365 24.4 1142 1125 1135 1129 78.4 785
LEMONyyee [HGW'22]  200M 41,5 30.8 139.1 24.1 118.0 116.3 1202 117.3 - -
SimVLMyyge [WYY+21] 1.8B 40.6 337 143.3 25.4 113.7 110.9 115.2 112.2 80.0 80.3
GIT [WYH+22]7‘ 0.8B 44.1 31.5 144.8 247 129.8 124.1 127.1 125.5 78.6 78.8
GIT-2 [WYHJ'ZZ])r 12.9B 44.1 31.4 145.0 24.8 126.9 125.8 130.6 126.9 81.7 81.9
CoCa [YWV+22] 4.8B 40.9 339 143.6 24.7 - - - 122.4 82.3 82.3
PaLl [CWC+23]7‘ 1.6B - - 149.1 - - - - 127.0 84.3 84.3

Table 6.4. Fine-tuned performance on COCO Caption (Karpathy split), NoCaps (validation
set) and VQAv2. Both Prismer and PrismerZ achieve superior performance in all three datasets
compared to other VLMs with similar model sizes. Prismer can achieve competitive performance
on par with VLMs that are trained with orders of magnitude more data. {B@4, M, C, S} refer to
BLEU@4, METEOR, CIDEr, SPICE respectively. {In, Near, Out} refer to in-domain, near-domain
and out-of-domain respectively. T evaluates the VQAv2 dataset in a generative setting, while all other
models evaluate the VQAv2 dataset in a closed-ended discriminative setting.

[YWV*22], GIT-2 [WYH"22] and PaLl [CWC*23]), these models require substantially

higher training costs and access to large-scale private training data.

Zero-shot Performance on Image Captioning. Our generative pre-training approach allows
for zero-shot generalisation, where the models can be directly applied to image captioning
tasks without additional fine-tuning. In Fig. 6.4 Left, we show that Prismer achieves
state-of-the-art performance on the NoCaps dataset similar to SimVLM [WYY"21] and
BLIP-2 [LLSH23], while using significantly smaller network parameter size and trained
with 140 times and 10 times less data respectively. Additionally, we notice that the zero-shot
performance of Prismer models even surpasses the fine-tuned performance of certain
VLMs such as OSCAR [LYL"20] and VinVL [ZLH"21], as shown in Table 6.4.

We present a list of example captions generated by Prismer in Table 6.5. The results show that

both Prismergase and Prismeryaree are capable of generating captions that are semantically
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NoCaps

C S
FewVLM [JCS*22] 477 91 2
MetaLM [HSD*22] 58.7 8.6 ;d'
VLKD [DHS*22] 63.6 12.8 T 50 |
SimVLMyyee [WYY*21] 101.4 - £ ) —e— Prismergse
BLIP-2 (Vicuna-7B) [LLSH23] 107.5 - 40 1 —e— Prismerysoz

. s —&— Flamingo - @~ ViT-B/16

BLIP-2 (Vicuna-13B) [LLSH23] 103.9 20 P . ViTLAg
Prismerppge 87.5 13.0 T T T T
Prismerarce 107.9 14.8 12 4 8 16

shots per class

Figure 6.4. Results on zero-shot image captioning and few-shot ImageNet classification. Left:
Prismer achieves state-of-the-art zero-shot image-captioning results on NoCaps (validation set),
with similar performance to SimVLM and BLIP-2, despite being trained on 140 times and 10 times
less data respectively. Right: Prismer significantly improves few-shot performance compared to its
corresponding vision backbone. However, Prismer still underperforms GIT and Flamingo which are

trained on significantly more data.

coherent and aligned with the visual content of the images. Notably, Prismeriarce generates
captions of higher quality compared to Prismerg,sg, exhibiting a deep understanding of fine-
grained object semantics such as brand recognition (e.g. Mercedes, CK One), and cultural

concepts (e.g. vintage drawing, tango), indistinguishable to human-written captions.

Few-shot Performance on ImageNet Classification. Finally, we fine-tune and evaluate Pris-
mer on ImageNet [DDS*o09] in a few-shot setting. Following the approach outlined in
[RKH™21], we convert the classification task into a language modelling problem by mapping
each category to a template caption: “A photo of a [CLASS NAME]”, and we then score
captions using the log-likelihood estimated by our model. Unlike Flamingo [ADL"22]
which performs few-shot classification via in-context examples without gradient updates,
we perform few-shot classification via lightweight fine-tuning following [WYH22]. This
is more similar to the standard linear probe setting, by considering the entire language
decoder as an image classifier. Accordingly, we also compare with the few-shot linear probe
performance of Prismer’s original vision backbones ViT-B/16 and ViT-L/14 [DBK"20], as
reported in [SBV* 22, RKH"21].

From the results shown in Fig. 6.4 Right, we observe that Prismer underperforms GIT
[WYH"22] and Flamingo [ADL"22], which both have stronger vision backbones and are

pre-trained on significantly more data. However, Prismer still outperforms its original
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Ground-Truth

Prismergpsg Prismerpapce

1. A clear bottle of CK cologne is full
of liquid.

Calvin Klein.

1. A young child stands in front of a
house.

with a white shirt on.

1. A statue has a large purple
headdress on it.

2. A woman decorated in fashioned
clothing and relics.

is in a showroom full of people.

2. A shiny white mercedes car is on
display.

1. Large piece of meat with slices of
pineapple with cherries being held on
with toothpicks on blue and white
plate.

2. A cake has several slices of
pineapple and cheries in them.

1. A man and woman is dancing as a
crowd watches them in the distance.

2. A woman in a red dress dancing
with a bald man wearing black.

1. Man in skydiving gear giving two
thumbs up with skydivers in the sky
behind him.

2. Person giving double thumbs up
sign while others are parachuting in
the background.

2. The bottle of perfume is made by ~1ext to a computer keyboard.

2. A little boy is standing in his diaper

1. A new white car with the door open

A bottle of alcohol sitting A bottle of ck one next to a

computer keyboard.

An old black and white photo
of a baby standing in front of
a house.

An old photo of a little girl
standing on a step.

A mannequin dressed in a
black dress with feathers on
her head.

The woman is wearing a
black dress.

A white mercedes car on
display at an auto show.

A white car on display at a
car show.

Pineapple upside down cake

Pineapples on a plate. on a blue and white plate.

A couple of people that are
standing in the dirt.

A couple dancing tango in
front of a crowd.

A man wearing a helmet and
goggles with parachutes in
the background.

Man wearing a blue and
purple jacket.

Table 6.5. Visualisation of zero-shot image captioning on NoCaps. Prismerpapce produces more

detailed and semantically coherent captions than Prismergase, showing an understanding of fine-

grained object recognition and abstractions.
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6 Vision-Language Reasoning with Multi-Task Experts

vision backbones ViT-B and ViT-L by a large margin, especially in a very few-shot setting.
This suggests that Prismer’s generalisation abilities are enhanced by the multi-modal train-
ing data and expert labels, and its performance can likely be improved further by using an

even stronger vision backbone.

6.5 Learning Strategy and Utility Analysis of Multi-Task Experts

We now include a comprehensive evaluation of Prismer, characterised by a meticulous and
fine-grained analysis of its learning strategy. We delve into various aspects of Prismer’s per-
formance, examining its behaviour with different types of multi-task experts (as discussed
in Sec.6.5). Additionally, we explore the individual utility of each expert in addressing
domain-specific reasoning tasks, allowing us to gain insights into the specific strengths

and contributions of each expert (as discussed in Sec.6.5).

Intriguing Learning Strategy of Prismer

To speed up training, all experiments are conducted with the BASE model on a combined
dataset of the Conceptual Captions and SBU, consisting of a total of 3M data. All experi-

ments are evaluated on the VQAv2 test-dev split in a smaller [224 x 224] resolution.

More Experts, Better Performance. We observe that the performance of Prismer improves
with more task experts, as shown in Fig. 6.5a. This is intuitive because more experts provide
a greater diversity of domain knowledge to the model. However, we also note that the
performance of the model eventually plateaus, which suggests that additional task experts

beyond a certain number do not provide any extra gains.

Better Experts, Better Performance. To evaluate the impact of expert quality on Prismer’s
performance, we construct a corrupted depth expert by replacing a certain number of
predicted depth labels with random noise sampled from a Uniform Distribution. As shown
in Fig. 6.5b, Prismer’s performance improves as the quality of the depth expert improves.
This is intuitive as better experts provide more accurate domain knowledge, allowing the

model to perceive more accurately.

Robustness to Noisy Experts. Our results also demonstrate that Prismer maintains perform-
ance even when including experts that predict noise, as shown in Fig. 6.5c. Interestingly,
adding noise can even result in a non-trivial improvement compared to training on RGB
images alone, which can be considered as a form of implicit regularisation. This property

allows the model to safely include many experts without degrading the performance, even
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Acc. (%) Acc. (%) Acc. (%)
73.0 73.0 73.0
72.79 72.82
72.64
72.52 72.59 72.59 72.58
72.5 | 72.5 | 72.44 72.5 |
72.26

72.17 72.17 72.17
72.0 T T T T 72.0 T T T T 72.0 T T T T

RGB  +2Exps +4Exps +6 Exps RGB  +Depth +Depth +Depth RGB  +Noise +Depth +Depth

25% N. 10% N. NoN. & Noise
(a) with More Experts (b) with Better Experts (c) with Noisy Experts

Figure 6.5. Prismer’s VQAv2 accuracy with different types and the number of experts. Prismer
has shown that its performance improves with an increase in the number and quality of task experts.
Additionally, Prismer also demonstrates its strong robustness to noisy experts, making it a practical
and effective multi-modal learning strategy.

when the expert is not necessarily informative. Therefore, Prismer presents a more effective
learning strategy than the standard multi-task or auxiliary learning methods, which either
require exploring task relationships [LJDJ22, FAZ" 21, ZSS*18] or designing more advanced

optimisation procedures [LDJ19, NAM*21].

Utility of Task Experts

In this experiment, we conduct a comprehensive evaluation to assess the utility of each
task expert within Prismer concerning different types of reasoning tasks. To accomplish
this, we employ Prismerparce, which was trained on the VQAv2 dataset, and evaluate its
zero-shot performance in combination with each individual task expert on two specific
domain-specific reasoning tasks: i) Visual Spatial Reasoning (VSR) [LEC23]: This task
evaluates a VLM’s spatial reasoning ability. It involves classifying image-caption pairs as
either true or false, indicating whether the caption correctly describes the spatial relation
in an image. ii) Text-VQA [SNS*19]: This task assesses a VLM’s ability to understand and
reason about text within an image. It involves comprehending and answering questions

related to text in an image.

The results presented in Table 6.6 demonstrate that Prismer consistently outperforms
several competitive baselines, such as VisualBERT [li220], LXMERT [TB1g], and ViLT
[KSK21] in the VSR dataset, all without requiring dataset-specific fine-tuning as required
by these methods. Prismer also surpasses BLIP-2 [OPT 2.7B] [LLSH23] and OFAgyce
[WYM*22], despite employing a smaller backbone network and significantly less pre-

training data respectively.

Furthermore, Prismer’s utility analysis offers valuable insights into the contributions of in-
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Baselines (fine-tuned) Prismer (zero-shot)

VisualBERT ~LXMERT ViLT +Depth +Normal +Edge +Seg. +OCR Det. | +Obj. Det. No Experts +6 Experts
51.0 61.2 63.0 68.4 68.3 67.8 68.4 67.2 68.3 65.6 68.7
(a) VSR

Baselines (zero-shot) Prismer (zero-shot)
OFA BLIP-2  Flamingo | #Depth | +Normal +Edge +Seg.  +OCR Det. +Obj. Det. No Experts +6 Experts
18.3 15.7 35.0 27.4 28.0 28.2 27.8 28.4 28.4 22.6 28.8

(b) Text-VQA

Table 6.6. Zero-shot accuracies in VSR (zero-shot split) and Text-VQA (validation split) data-
sets, considering various types of experts. These results shed light on the valuable contributions
of individual experts for domain-specific reasoning tasks, offering insights into the versatility and
adaptability of Prismer across different domains and problem-solving scenarios. The colour green
represents the most helpful experts, while the colour red represents the least helpful experts.

dividual experts in addressing specific reasoning tasks. For example, the “object detection”
expert is identified as crucial in both the VSR and Text-VQA tasks, highlighting the signi-
ficance of object recognition capability in general visual reasoning problems. Additionally,
the “depth” and “OCR detection” experts are recognised as key contributors to Prismer’s
performance in spatial reasoning and text reasoning, respectively, aligning with human
intuition — depth information enhances 3D spatial understanding, whilst OCR detection

directly improves text reading capability.

Finally, the substantial performance improvement observed (compared to standard reason-
ing tasks in Table 6.4) when comparing Prismer to PrismerZ (with no experts) underscores
the pivotal role played by the experts in domain-specific reasoning tasks. This highlights
the tangible benefits of incorporating experts within the Prismer architecture, particularly

when tackling tasks that require specialised knowledge and reasoning capabilities.

6.6 Ablation Study on Architecture Design and Training Details

To perform the ablation studies, we use the Prismergasg model and train it on the Concep-
tual Captions and SBU with a total of 3M training data. The results of the ablation studies

are presented in Table 6.7

Adaptor Design: Single and Simple In our ablation study of adaptor designs, as shown
in row (i) and (ii) of Table 6.7, we find that the simplest adaptor design, which consisted of
a standard residual connection and an encoder-decoder structure, performs the best. We

have experimented with more complex designs, such as adding an additional adaptor at
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Params.  Step Time  VQAv2

Ablated Component Our Setting Changed Setting (Rel.) (Rel) (Acc)
Prismergpgg (our setting with reduced training) 1.00 1.00 72.79
Residual MLP x2 1.04 1.02 72.36
(i) Adapter Design Residual MLP esicua . *
Gated Residual MLP 1.03 1.03 70.54
1/2 0.95 0.96 72.52
(ii) Adapter Bottleneck Dim. 1
1/4 0.93 0.93 71.66
Random Sampling 0.91 0.96 72.24
(iii) Resampler Design Experts Perceiver Full Perceiver 1.00 0.90 65.05
Dual Perceiver 1.08 1.02 71.56
1 0.94 0.93 70.61
(iv) Resampler Layers 4 2 0.96 0.96 72.39
6 1.04 1.01 72.78
32 1.00 0.95 72.44
(v) Resampler Latents 64 128 1.00 1.01 70.28
256 1.00 1.06 68.07
Freeze Vision Only 1.00 1.07 70.49
(vi) Pre-training Freeze Vision and Lang.  Freeze Lang. Only 1.00 1.05 67.77
All Parameters 1.00 1.15 68.13
Freeze Vision and Lang. 1.00 1.00 71.36
(vii) Fine-tuning Freeze Vision Freeze Lang. Only 1.00 1.00 70.37
All Parameters 1.00 1.00 68.69

Table 6.7. Ablation studies for architecture components and training strategies. We perform
ablation studies to evaluate the impact of different architectural components and training strategies
on the VQAv2 test-dev performance. We compare the performance of our default setting to other
design and training options. The number of parameters and pre-training step time of the changed
setting relative to the default setting are reported. To ensure a fair comparison, all experiments are
evaluated using a reduced amount of training data and 3 task experts: depth, normal and segmentation.

the end of each transformer layer or incorporating a learnable gating mechanism similar to
that in [LDSL21], but both have achieved worse performance. We also observe that having

a larger bottleneck hidden size for the single adaptor improves performance.

Resampler Design: Auxiliary Knowledge Distillation In our ablation study of Experts
Resampler designs and different sampling strategies for encoding multi-task signals, as
shown in row (iii) - (v) of Table 6.7, we find that keeping the number of resampler layers
and latents lightweight is essential for a stable training process. We also experiment with
replacing the resampler with a non-learnable random sampling approach, which results
in slightly worse performance compared to using the resampler. We attempt to make the
resampler more efficient by receiving full signals, including the RGB, before self-attention,
but this has resulted in significantly degraded performance. Additionally, we have tried
adding an additional resampler at the end of the vision encoder, but this design also results

in worse performance.
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Frozen Backbone to Preserve Web-Scale Knowledge In our experiments on pre-training
and fine-tuning whilst freezing different parts of the model, as shown in row (vi) and (vii)
of Table 6.7, we find that freezing pre-trained parameters is essential for achieving strong
performance and avoiding over-fitting and catastrophic forgetting of the learned web-
scale knowledge.® Freezing these parameters has also saved a significant amount of GPU
memory. Even when fine-tuning on different downstream tasks, we find that freezing
the vision encoder is beneficial (whilst keeping the resampler and adaptors trainable).
This observation is consistent with the findings in [ZWM¥22], which shows that only
fine-tuning the language model with a frozen vision model for vision-language contrastive

learning can achieve much stronger zero-shot performance.

6.7 Conclusions, Limitations and Discussion

In this chapter, we have introduced Prismer, a vision-language model designed for reasoning
tasks. Prismer is parameter-efficient and utilises a small number of trainable components to
connect an ensemble of diverse, pre-trained experts. By leveraging these experts, Prismer
achieves competitive performance in image captioning, VQA, and image classification

benchmarks, comparable to models trained on up to two orders of magnitude more data.

For full transparency, we now discuss some limitations of Prismer during our implementa-

tion and explore potential future directions for this work.

Multi-modal In-context Learning Zero-shot in-context generalisation is an emergent
property that only exists in very large language models [BMR* 20, WTB"22]. In this work,
we build Prismer on top of a small-scale language model with the main focus on parameter-
efficient learning. Therefore, it does not have the ability to perform few-shot in-context

prompting by design.

Zero-shot Adaptation on New Experts We experiment with inference on a pre-trained
Prismer with a different segmentation expert pre-trained on a different dataset. Although
we apply the same language model to encode semantic labels, Prismer shows limited
adaptability to a different expert with a different set of semantic information, which leads

to a notable performance drop.

Free-form Inference on Partial Experts Similarly, we discover that Prismer entangles its

multi-task features from all experts we include during pre-training. Therefore, only having

3 We assume the size of our pre-training data is significantly smaller than the original pre-training data
used to train these backbone models.
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a partial number of experts during inference will lead to a notable performance drop. We
attempt to use a different training objective such as masked auto-encoding [BMAZ22], to
design Prismer to reason on an arbitrary number of experts, but it eventually leads to a

degraded fine-tuned performance.

Representation of Expert Knowledge In our current design of Prismer, we convert all
multi-task expert labels into an image-like 3-dimensional tensor via task-specific post-
processing for simplicity. There are potentially other efficient methods to represent expert
knowledge, such as converting object detection into a sequence of text tokens [CSL" 21,
CSL*22]. This may lead to stronger reasoning performance and a more stable training

landscape in future works.

Impact on Future Research  Prismer has emerged as a competitive baseline for parameter-
efficient vision-language learning [WLY" 23, BDPAT23, RBB*23] and has served as in-
spiration for recently proposed multi-modal neural architecture designs, with particular
attention to expert and modality ensembling [BGM*23, SFH" 23, YYB24].
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Conclusions and Future Works

In this thesis, we have introduced several multi-task learning techniques aimed at enhan-
cing generalisation and interpretability within the field of computer vision. This concluding
chapter provides an overview of the contributions made in each preceding chapter. And

finally, we discuss potential directions for future research in this area.

7.1 Summary of Contributions

In Chapter 3, we have introduced an automated weighting framework known as Auto-A,
which is designed to streamline the process of uncovering multi-task relationships. In
contrast to typical task-grouping methods that assume fixed task relationships, Auto-A
explores dynamic task relationships by employing task-specific weightings. Its adaptability
allows for the optimisation of any combination of tasks, rendering it a versatile solution
for a wide range of multi-task and auxiliary learning challenges within the domains of
computer vision and robotics. Our experimental findings indicate that Auto-A achieves
state-of-the-art performance, even when compared to optimisation strategies tailored for
these specific problems and data domains. Furthermore, we have observed that Auto-1
has the capacity to unveil intriguing learning patterns, thus contributing novel insights

into understanding transferred task knowledge and the relationships between tasks.

In Chapter 4, we have introduced an auxiliary learning framework for semantic segmenta-

tion known as ReCo, which has proven to be a powerful framework for improving semantic
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7.1 Summary of Contributions

segmentation models. By leveraging regional-level contrastive learning and focusing on
challenging pixels guided by semantic class relationships, we have successfully achieved
significant performance gains in both semi-supervised and supervised learning settings.
ReCoss ability to facilitate high-quality segmentation models with minimal labelled data
can significantly alleviate the burden on human annotators by reducing the number of
labelled examples required for effective model training. This has promising implications for
enhancing the efficiency and accuracy of the human labelling process, thereby advancing

the field of semantic segmentation.

In Chapter 5, we have introduced and validated the effectiveness of the Meta Auxiliary
Learning (MAXL) framework, which involves the training of two neural networks: a label-
generation network and a multi-task network. The label-generation network is responsible
for generating auxiliary labels, while the multi-task network trains the primary tasks
alongside the generated auxiliary tasks. MAXLs label-generation network aims to create
well-structured auxiliary tasks that significantly improve the generalisation of primary tasks,
achieved through their simultaneous training in a standard multi-task learning setting.
MAXL demonstrates its capacity to significantly boost single-task learning across diverse
image datasets, all without the need for additional data. Importantly, our results highlight
that MAXL not only outperforms baseline methods for generating auxiliary labels but also
competes favourably with human-defined auxiliary labels, making it a promising solution

for self-supervised generalisation in machine learning.

In Chapter 6, we have introduced Prismer, a parameter-efficient vision-language model that
harnesses an ensemble of task-specific experts, a majority of whose network weights are pre-
trained and remain fixed during training. This approach offers a more scalable alternative
compared to conventional vision-language models that demand extensive training on
massive datasets, drastically reducing the need for data and training resources. Prismer
exhibits competitive fine-tuned and few-shot learning performance in image captioning,
VQA, and image classification benchmarks, while requiring up to two orders of magnitude
less training data. Moreover, it breaks away from the conventional monolithic models by
utilising separate sub-networks or “experts” that can be individually optimised for specific
tasks, thereby improving training efficiency and allowing for domain-specific data and
architectures. This approach facilitates the integration of specialised skills and structured

domain knowledge, presenting an effective way of scaling down multi-modal learning.

We can also draw more general conclusions and broader insights that extend beyond
their individual contributions. First, they underscore that the benefits and applications of

multi-task learning extend well beyond its original purpose of improving generalisation.
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Multi-task learning can play a pivotal role in improving model interpretability (shown
in Auto-1), reducing data requirements (shown in ReCo and MAXL), and scaling down
model size (shown in Prismer). This versatility highlights the adaptability and potential of
multi-task learning in addressing a variety of challenges in the fields of computer vision
and machine learning. Second, these works highlight the significance of incorporating
human guidance and prior knowledge into the design of effective optimisation strategies.
While it’s possible to employ end-to-end multi-task learning without imposing structure, it
is evident that the involvement of human insight and guidance can significantly benefit
the development of optimisation strategies by reducing the optimisation search space and
leading to more efficient and effective solutions (such as the hierarchical structure design
in MAXL and the selection of expert models in Prismer). This emphasises the importance
of a balanced and informed approach to multi-task learning, where human expertise can
play a crucial role in shaping the learning process, designing effective auxiliary signals, and

achieving superior performance.

7.2 Future Works

Undoubtedly, the scope of this thesis does not include all aspects of multi-task learning. In

this section, we explore some potential directions for future research in this area.

Vision Foundation Model for Multi-Task Perception

The remarkable zero-shot multi-task learning capabilities of large language foundation
models in language generation tasks [Ope23, CND*22] have yet to find an equivalent in
the domain of computer vision for multi-task perception tasks. Up to this point, the best-
performing models still rely on domain-specific designs and training strategies, making
them less adaptable to other tasks. For example, the Segment Anything Model [KMR" 23]
for object detection relies on a mask decoder, and the NLL-AngMF model [BBC21] for
surface normal estimation relies on uncertainty-guided sampling, both of which are specific

to their respective tasks, hindering their broader application.

Recent efforts like Unified-IO [LCZ"22b] and BEiT-3 [WBD™22] aim to unify vision and
language tasks by converting visual data into tokens for processing by language models, as a
standard sequence-to-sequence learning problem. However, these models still require task-
specific decoders and fine-tuning to achieve strong performance. Consequently, the design
of a vision foundation model that can excel in a diverse array of multi-task perception
tasks without the need for task-specific modifications and fine-tuning remains an ongoing

challenge and an area of uncertainty.
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7.2 Future Works

Multi-Modal Representation Learning

Humans possess the remarkable ability to perceive the world through multiple modalities.
For instance, we can form mental images of scenes by reading descriptions or listening to
stories, and we can discern a person’s emotions by observing their facial expressions or
listening to their voice. Therefore, the pursuit of representation learning techniques that
are universally applicable across different modalities is crucial. Currently, representation
learning strategies in various data domains remain distinct. In language, self-supervised
representation learning commonly relies on auto-regressive generation, where the goal is
to predict the next tokens based on previous tokens (such as in GPT-3 [RW19]). In vision,
self-supervised representation learning primarily employs contrastive learning objectives,
aiming to maximise the similarity between different views of the same image (as seen in
methods like SimCLR [CKNH20] and MoCo [HFW™20]), or masked auto-encoding to
predict missing pixels in an image (as seen in methods like MAE [HCX*21]).

CLIP [RKH"21], a multi-modal vision-language model, has effectively demonstrated that
the contrastive representation learning technique can be applied to align vision and lan-
guage, leading to successful methods for building vision-language models like Prismer
(as presented in Chapter 6). Nevertheless, there is an underlying importance in discov-
ering general representation learning techniques that can be applied to more modalities.
Such innovation holds the potential to construct more efficient and powerful multi-modal

learning models, enabling broader applications across many domains.

Open-Ended Exploration and Lifelong Learning

Finally, multi-task learning holds significant potential in advancing open-ended explor-
ation and lifelong learning, both critical for the pursuit of human-level AIL. Open-ended
exploration [WLCS19, TSM*21] involves the continuous acquisition of skills and know-
ledge over time without pre-defined goals or limitations, making it a highly desirable trait
for AI systems. Nevertheless, most machine learning models are tailored for specific tasks,
being trained on fixed datasets with pre-defined labels, which can lead to “catastrophic
forgetting” [Fregg] when exposed to new data, causing them to forget previously acquired
knowledge. To design AI models capable of lifelong learning and skill improvement, we
must innovate novel learning strategies that can effectively and continually integrate new

knowledge, laying the foundation for more adaptive and lifelong learning Al systems.
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