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Abstract

This thesis explores Distributed Spatial AI – how devices can coordinate to perform inference

in a decentralised manner to enhance their Spatial AI abilities beyond each device’s perceptual

capabilities while achieving low-power and scalability.

First, we investigate factorised computation, which aims to minimise the cost of data transfer

by collocating the processing near the sensor where the data is captured. We develop a Visual

Odometry (VO) system using a focal-plane sensor-processor, which enables computations such

as feature extraction to occur directly on the camera’s focal-plane. This enables our VO pipeline

to operate at 300 FPS, making it robust against violent motions while also being low-power. We

then explore the scene representation for visual Simultaneous Localisation and Mapping (SLAM).

Representing the scene with many 3D Gaussian blobs, we achieve near-photorealistic fidelity

3D reconstruction online using a single moving camera. All the images captured by the camera

are compressed into a single 3D representation from which we can re-render the images at near

original quality and perform novel-view synthesis between views.

The core of this thesis is the investigation of how scalable, accurate, and robust many-device

localisation can be achieved. We argue that Gaussian Belief Propagation (GBP) is a promising

algorithmic candidate for Distributed Spatial AI, and using GBP, we develop Robot Web, a frame-

work for decentralised localisation. Extending the formulation of GBP to support Lie groups,

we demonstrate GBPs ability to localise 1000s of devices even under challenging situations, such

as communication failures and large amounts of outlying measurements, using only ad-hoc peer-

to-peer communication. The asynchronous property of GBP enables the definition of a simple

communication protocol, which individual devices can implement to participate in co-localisation.

Finally, we enhance the Robot Web framework to enable autocalibration of the sensors’ and mark-

ers’ extrinsic while simultaneously performing localisation, further improving the accuracy of

localisation.
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CHAPTER 1

Introduction

Contents
1.1 Spatial AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Low Power and Low Latency Sensing . . . . . . . . . . . . . . . . 2

1.1.2 Collaborative Sensing . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Distributed Spatial AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Probabilistic Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Gaussian Belief Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Related Algorithms for Distributed Inference . . . . . . . . . . . . . . . . . 8

1.6 Data Locality and Near-Sensor Processing . . . . . . . . . . . . . . . . . . 10

1.6.1 Software-Hardware Co-design in SLAM . . . . . . . . . . . . . . . 10

1.6.2 Data Movement Bottlenecks . . . . . . . . . . . . . . . . . . . . . 12

1.6.3 Focal-plane Sensor-processor . . . . . . . . . . . . . . . . . . . . . 13

1.7 3D Scene Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Not only is modern computing technology faster, more affordable, and more compact compared

to the ENIAC, the first general-purpose computer built in 1945 – which weighed over 27 tonnes

and consumed 150 kW for just 500 FLOPS – but in less than a century, computing devices have

woven themselves into the fabric of our everyday lives. Looking forward, we envision a near future

where devices with computational and sensing capabilities are so ubiquitous that they seamlessly

integrate into the background [Weiser, 1991]. To achieve such a vision, the sophistication of these

devices must go beyond mere computational power; they must understand and interact with the

physical world around them.

1.1 Spatial AI

Spatial AI is an online problem where incoming data is processed in real-time to enable devices

to usefully and meaningfully interact with their surrounding environments [Davison, 2018].
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1. Introduction

At the core of the Spatial AI system is perception. Devices must in real-time perceive and up-

date the understanding of the surrounding world. Defining the exact meaning of understanding is

challenging, and here, we define such ambiguous capability to be the act of building an internal

representation necessary to usefully interact with the 3D environment. A robot might pick up an

empty coke can to trash, fold up laundry, or vacuum the room. Whatever the task is, it must ex-

plicitly or implicitly build a model which informs the robot whether the next sequence of planned

action is meaningful. Such a predictive capability, or a world model – estimating how the state of

the world would change given the current state and the action – is necessary for Spatial AI to be

truly useful. Ideally, such internal representation should be grounded in language, which opens up

a natural interface between us and robots. This motivates the need to embed semantic or language

features into the 3D map reconstructed by a SLAM system. Building them under both real-time

and power constraint is non-trivial and potentially require innovation and co-optimisation of a

full stack, from physical embodiment, software, and processor/sensor design. In this thesis, we

primarily focus on localisation, the most fundamental, and starting point of any Spatial AI prob-

lem.

1.1.1 Low Power and Low Latency Sensing

Despite significant advances in Spatial AI, with Simultaneous Localisation and Mapping (SLAM)

and Visual-Inertial Odometry (VIO) now providing localisation to centimetre accuracy, a consid-

erable gap exists between real-world systems’ needs and what the current state-of-the-art Spatial

AI systems can offer. For instance, Augmented Reality (AR) glasses should continuously log all

events experienced by the wearer throughout the day, allowing for later retrieval of any specific

entries. Such capability requires the glasses to perform always-on-sensing, consistently monit-

oring the surrounding environment and tracking the position of the glasses to detect and record

events autonomously. All these functionalities must be achieved while keeping the total weight of

the glasses below 40g to ensure wearer comfort [Kim et al., 2021].

In terms of energy consumption, current Spatial AI systems are far from meeting such demands.

For example, the capacity of a modern phone’s battery (e.g. iPhone 15) is around 13Wh, and a

modern GPU often used for recent SLAM systems (e.g. Nvidia RTX 4090) draws up to around

450W. Even if we ignore all the other components, such as the CPU, fans, and etc.,it can only

operate for approximately 100 seconds! Assuming we are awake for about 15 hours a day on a

phone’s battery, to achieve 15 hours of active use, the system can only draw 0.87W in total, which

is 1/520 of an RTX 4090’s power draw. Moreover, the battery capacity is even more limited

for wearable glasses such as Project Aria [Somasundaram et al., 2023]. With only 2.5Wh for 15

hours of operation, the system can only draw 0.17W, 1/2700 of RTX 4090s’ consumption. We

are limited to this budget unless we expect a significant leap in the battery technology.

Minimising the Spatial AI system’s end-to-end latency is also essential. When the surrounding

environment changes, robots must quickly adapt their planned actions to avoid accidents, and any

reduction in system latency provides a wider window for these adjustments. Additionally, low

2



1.1. Spatial AI

latency benefits agile robotics; for example, visual processing required to catch a ball becomes

trivial if a system can provide high-speed visual feedback [Murakami et al., 2015]. Moreover, for

AR / Virtual Reality (VR) applications to feel seamless and natural, it is recommended that the

end-to-end latency is kept below 20ms [Stauffert et al., 2020]. Reducing the latency and operating

at high speed is often beneficial (e.g. for camera pose optimisation) [Handa et al., 2012]; however,

the higher frame rate increases the volume of data that must be transferred and processed, and thus

consumes more energy.

The camera used for SLAM alone consumes 0.5-2W, already exceeding the power budget that an

always-on wearable device can afford. These cameras also produce a large amount of data; for

instance, recording full-HD frames (1920 × 1080) at 100 FPS generates around 0.2GB/sec, and

eventually, processing and handling such a large amount of information becomes an issue [Martel,

2019]. This clearly illustrates a situation where the conventional approaches fall short, motivating

us to investigate unconventional approaches for processing visual information, such as performing

pixel-parallel processing on the camera’s focal-plane.

1.1.2 Collaborative Sensing

As our environment becomes populated with intelligent devices equipped with computing capab-

ilities, these devices will operate – and possibly collaborate – within the same shared space.

Currently, Spatial AI systems assume that individual devices operate independently, which inher-

ently limits their spatial understanding to their own perceptual capabilities. The absence of know-

ledge about other devices’ observations and intentions leads to suboptimal spatial understanding,

so as the number of devices operating increases, even a simple task, such as robots navigating

around each other, becomes a challenge.

Whatever we cannot observe, we must infer. To compensate for the absence of observations, we

often rely on a data-driven prior, such as Deep Learning [Goodfellow et al., 2016], which has

seen widespread success in various fields over recent years. However, the effectiveness of these

approaches, particularly in 3D vision and robotics (and even more so in multi-robot systems), is

primarily limited by the lack of availability of high-quality data. Thus, as of now, the prospect

of developing a general-purpose Spatial AI prior capable of compensating for any missing spatial

information remains impractical. Nevertheless, relying solely on data from a single device without

any data-driven prior is severely limiting due to the incompleteness of the observations, and the

limited number of observations makes the system less robust and prone to failures.

Fortunately, we are not constrained to an environment with a single device in most realistic scen-

arios. Instead, we have abundant sensing and computing capabilities scattered throughout our

environment. These devices are equipped with various sensing capabilities, potentially reinfor-

cing, rejecting outliers, or revealing new information when the observations are jointly considered.

Hence, the question we ask is: How can we effectively cooperate and coordinate multiple devices

to create an accurate and robust, yet scalable Spatial AI system?

3



1. Introduction

1.2 Distributed Spatial AI

One clear possibility of performing inference jointly using all the available data is to upload the

captured information to a cloud. While this centralised approach is the simplest and possibly

the most accurate, it has many drawbacks, including the need for centralised authority and the

requirement to share potentially sensitive information, making such an approach unattractive for

widespread adoption. Instead, we explore an alternative direction where our system is decentral-

ised and operates only by peer-to-peer communication.

In a Distributed Spatial AI system, computation must be asynchronous. This allows for simultan-

eous operations across the network of devices without the need for synchronisation and ensures

that the network’s performance is not bottlenecked by less capable devices, thereby enhancing

overall efficiency and responsiveness. Moreover, asynchronicity enables flexible communication

methods, such as multi-hop, which allows for a much more efficient network/architecture design

(e.g. on a connected graph, messages can be directed to and from any nodes without altering the

connectivity).

The system must support heterogeneous devices. As the system scales, different devices will have

distinct processing and sensing capabilities. Heterogeneity requires the system to fuse multiple

observations with various modalities and precisions; this motivates a probabilistic approach, for

example, Bayesian inference.

In a distributed system, failures are unavoidable, and we require the algorithm to be robust. For

example, when a device moves, it connects and disconnects from the other devices, changing the

network’s topology. Furthermore, communication is not always reliable and can fail or be delayed,

and just like any other system, it must be robust against outlying measurements.

In a Distributed Spatial AI system, we require asynchronicity, heterogeneity, and robustness. To

achieve a scalable system, a probabilistic formulation, especially probabilistic graphical models,

is useful and provides the right abstraction. A global problem can be represented as a graph,

and a Distributed Spatial AI system can split the global graph into fragments and let each device

locally own its subgraph. By exchanging messages between devices using a unified probabilistic

protocol, the problem can be solved in a decentralised manner. Using a message-passing algorithm

with a straightforward inter-device interface simplifies the overall system, which is essential for

scalability.

1.3 Probabilistic Inference

In this section, we discuss some probabilistic methods commonly used to solve Spatial AI prob-

lems. The Bayesian principle offers a systematic method for fusing multiple uncertain informa-
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1.3. Probabilistic Inference

tion. In Bayesian inference, we infer the posterior distribution using Bayes’ Theorem:

p(x|z) = p(z|x)p(x)
p(z)

, (1.1)

where the posterior is p(x|z), the conditional distribution over the state x given some observations

z. This posterior can be perceived as our updated belief about the world’s state [Murphy, 2012,

Chapter 3], and our belief is iteratively refined and updated by incorporating new evidence z.

Thus, using Bayes’ Theorem enables a progressively more accurate understanding of the system’s

state from uncertain data.

The posterior summarises everything which can be inferred from z about the unknown state

x [Murphy, 2012, Chapter 5]. Here, we give two summary statistics which are often used in

Spatial AI:

Maximum a Posteriori (MAP) Inference is a point-estimate of the most likely configuration of

the states given the observations. MAP is found by finding a configuration which maximises the

posterior distribution:

x∗ = arg max
x

p(x|z) (1.2)

= arg max
x

p(z|x)p(x) (1.3)

= arg max
x

l(x; z)p(x) . (1.4)

Here, l(x; z) is the likelihood of the state x given the observations z, and is defined as a function

proportional to p(z|x):
l(x; z) ∝ p(z|x) . (1.5)

This notation clarifies that the likelihood is a function of x, and z is the function parameter [Del-

laert and Kaess, 2017].

Notice that in Equation 1.4 instead of maximising, we can equivalently minimise the negative

log-probability:

x∗ = arg min
x

− log p(x|z) , (1.6)

= arg min
x

− log l(x; z)− log p(x) . (1.7)

The first term is the negative log-likelihood, and the second term is the negative log-prior. If

the underlying distribution of the likelihood and the prior is Gaussian, then the negative log-

likelihood is equivalent to the least-squares objective function, and the negative log-prior acts as

a regularisation term [Deisenroth et al., 2020, Chapter 9]. In many Spatial AI problems such as

pose-graph optimisation [Kümmerle et al., 2011], bundle adjustment [Triggs et al., 1999], and

visual SLAM [Strasdat et al., 2012], the observations and priors are assumed to follow a Gaussian

noise and the problem is solved using efficient non-linear least squares solvers.

Marginal Inference not only estimates the most likely configuration of the state but also provides

the uncertainty for each of the estimated states. The joint posterior distribution is marginalised
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1. Introduction

over the variables of interest, which is defined as (assuming discrete variables):

p(xi) =
∑

x/xi

p(x|z) , (1.8)

summing over all the variables x except xi. Compared to MAP inference which loses information,

marginal inference retains the uncertainty, which can be useful for decision-making tasks [Deis-

enroth et al., 2020, Chapter 8].

A Factor Graph is a graphical model representing the probabilistic problem’s structure and fac-

torisation. The factorised representation reveals the locality of the problem, which the inference

algorithms can exploit. A factor graph is a bipartite graph G = (X,F,E) consisting of variable

nodes X = {xi}i=1:Nv connected by edges E to factor nodes F = {fs}s=1:Nf
. A factor graph

represents the factorisation of the joint distribution:

p(x) ∝
Nf∏

s=1

fs(xs) , (1.9)

where xs = n(fs). Here, n(x) is the set of neighbouring nodes connected via edge to the node x.

Typically for our application, we use a factor graph to factorise the joint posterior p(x|z) distri-

bution, and for the factors, we use likelihood functions f(xs) = l(xs; zs). Not only do factor

graphs reveal exploitable locality, but they also provide a clear and intuitive approach to map out

the problem in an interpretable manner, which, for example, is useful for communicating one’s

idea [Dellaert and Kaess, 2017].

1.4 Gaussian Belief Propagation

Belief Propagation (BP), as initially introduced by Judea Pearl in the early 1980s, is a seminal

message-passing algorithm to efficiently perform marginal inference on tree-structured graphical

models [Pearl, 1982]. BP computes the exact marginals on a tree. However, the algorithm’s

applicability to a more general graph (which includes cycles) was unclear. Empirically, [Murphy

et al., 1999] demonstrated that Loopy Belief Propagation (LBP) – applying BP iteratively on

a general graph – is a good approximation to the true marginal posterior when the algorithm

converges. With further theoretical analysis of LBP, it was shown that the mean estimate of LBP

at convergence is equal to the stationary point of a Bethe approximation of the free energy [Yedidia

et al., 2001]. This insight provided a theoretical underpinning for the empirical observations and

significantly broadened the understanding of LBP’s applicability and the conditions under which

it offers accurate approximations.

LBP is a local algorithm that operates by message-passing between the variable and factor nodes.

One of the remarkable characteristics of LBP is that it can converge without the need for any

global information, meaning that nodes are unaware of the broader problem structure beyond

its adjacent nodes. This local operation paradigm is particularly advantageous for distributed

computing. It allows LBP to scale efficiently across many devices as it eliminates the need for
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1.4. Gaussian Belief Propagation

any global synchronisation, which is slow and possibly impossible in many large-scale real-world

applications.

LBP’s flexible message-passing schedules are favourable from a distributed systems perspective.

It can converge under various message-passing schedules, where nodes exchange messages in no

specific order, and the absence of a requirement for global coordination among nodes makes the

algorithm robust, especially against delayed or failed communications.

Gaussian Belief Propagation (GBP) is a variant of BP that operates on Gaussian factor graphs,

where the factors and the variables are Gaussians. The Gaussianity assumption allows all opera-

tions in BP to be efficient with a closed-form solution and also enjoys stronger correctness guar-

antees compared to LBP, where the inferred point-estimate is exact upon convergence [Weiss and

Freeman, 1999]. GBP inherits all the aforementioned properties of BP, maintaining its scalability

and robustness, which are essential for applications across a broad spectrum of domains. Despite

the complexity of its theoretical proofs regarding convergence, GBP remains remarkably straight-

forward from an operational standpoint. BP has been applied widely across many applications

and fields, with its most notable success in error-correcting codes. These codes are designed to

transmit data through noisy channels by incorporating redundancy, allowing the receiver to correct

any errors encountered. To ensure bandwidth efficiency, the redundancy in error-correcting code

must be kept to a minimum. Turbo codes represent the first practical implementation of codes

nearly achieving the Shannon Limit, or maximum channel capacity [Berrou et al., 1993]. Initially,

the connection between Turbo codes and LBP was not clear, and it was only later discovered that

the decoding algorithm used in turbo codes is fundamentally equivalent to LBP [McEliece et al.,

1998].

More related to Spatial AI, BP has been applied to many vision problems such as optical flow

and stereo matching [Sun et al., 2003, Felzenszwalb and Huttenlocher, 2006]. Expanding into

the domain of SLAM, LoopySAM [Ranganathan et al., 2007] leverages GBP for efficient and

incremental SLAM, using a wild-wire algorithm, where only the nodes with large updates are

computed.

More recently, GBP has been applied to challenging 3D vision problems such as Bundle Adjust-

ment where 3D map points and camera poses are jointly optimised [Ortiz et al., 2020], incremental

planar abstraction of the 3D map points [Ortiz et al., 2022], predicting 6D scene flow [Scona et al.,

2022], and efficiently mapping gas concentration in an indoor environment [Rhodes et al., 2022].

Beyond single-device applications, BP has also been applied to multi-device optimisation. For

example, non-parametric BP [Schiff et al., 2009] or a hybrid combination of parametric and non-

parametric BP [Wan et al., 2017] is used for localisation, leveraging the distributed nature of BP

to optimise across devices. GBP has also been applied for applications such as multi-robot motion

planning [Patwardhan et al., 2023] and exploration [Patwardhan and Davison, 2023]. Additionally,

BP is a local algorithm and can be used for near-sensor processing. This opens up interesting

opportunities such as low-power, event-based computation [Nagata and Sekikawa, 2023].
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(a) Jacobi (b) Gauss-Seidel

Figure 1.1: Dependency graph for one iteration of Jacobi and Gauss-Seidel iterations.

1.5 Related Algorithms for Distributed Inference

This section discusses some of the algorithms related to GBP. Similar to GBP, these approaches

perform distributed inference in parallel across many processors or devices.

Distributed Gradient Descent Performing gradient descent on a factor graph can be viewed as

message passing, where every factor node locally computes a gradient for each adjacent variable

using the variable’s state, and these gradients are then averaged at every variable node. These

operations can be fully parallelised and are suitable for distributed optimisation. They work even if

the gradients are stochastic, making them asynchronous and robust against communication failure.

Since gradient descent is a first-order method, their convergence rate is slow; however, by applying

acceleration techniques such as preconditioning [Olson et al., 2006, Grisetti et al., 2007], it can be

used to solve a large Pose Graph Optimisation (PGO) problem.

For distributed optimisation, [Knuth and Barooah, 2013] used distributed gradient descent on

the Riemannian manifold for collaborative multi-robot localisation. In [Calafiore et al., 2010,

Calafiore et al., 2012], gradient descent is used to localise the agents using range measurements

in a decentralised manner. In [Tian et al., 2021, Tian et al., 2020], a block coordinate-descent

on a Riemannian manifold is used to solve distributed PGO problem with certifiable correctness

and robustness to asynchronous communication. Similarly, the Majorisation Minimisation (MM)

method is used to solve distributed PGO [Fan and Murphey, 2020] and distributed Bundle Ad-

justment (BA) [Fan et al., 2023]. To improve convergence rate, [Tian et al., 2021, Tian et al.,

2020, Fan and Murphey, 2020, Fan et al., 2023] uses Nesterov’s Accelerated Gradient [Nesterov,

1983].

Compared to gradient descent, the convergence rate of GBP is typically faster since messages are

a Gaussian distribution, which is more informative than the steepest direction of descent.

8



1.5. Related Algorithms for Distributed Inference

Distributed Jacobi and Gauss-Seidel Jacobi and Gauss-Seidel are parallel iterative methods

used for solving systems of linear equations. In a distributed setting, we have many nodes, each

computing a component of x, a vector we are solving for. The main difference between the

methods is that the components are computed in parallel in the Jacobi method, and x is updated

simultaneously. However, in the Gauss-Seidel method, components of x are computed in a sweep,

updated one at a time, and the most recently computed value is used to compute the other compon-

ents [Bertsekas and Tsitsiklis, 2015], as depicted in Figure 1.1. Gauss-Seidel converges signific-

antly faster than the Jacobi method; however, parallelising is less trivial. Empirically, it has been

demonstrated that GBP converges faster than Jacobi, Gauss-Seidel, and their relaxations [Bickson,

2008].

In the context of distributed Spatial AI, the Jacobi method is used by [Barooah and Hespanha,

2005] and [Aragues et al., 2011] for multi-device localisation. Both Gauss-Seidel and Jacobi

methods are used in [Choudhary et al., 2017], where distributed PGO is solved using chordal

initialisation [Martinec and Pajdla, 2007, Carlone et al., 2015b], and this approach is used as a

backend for multi-robot SLAM methods [Lajoie et al., 2020, Cieslewski et al., 2018]

Alternating Direction Method of Multipliers The Alternating Direction Method of Multipliers

(ADMM) algorithm solves optimisation problems by partitioning the problem into small pieces,

allowing them to be solved in a distributed manner. The ADMM belongs to a class of algorithms

called the method of multipliers. The method of multipliers solves a constrained optimisation

problem by converting it into an augmented Lagrangian function – a Lagrangian function with a

quadratic penalty term. The constrained optimisation problem is solved using dual ascent, which

alternates between minimising the primal problem and performing gradient ascent on the dual

problem. Here, the primal problem minimises the objective function while considering the current

penalty of violating the optimisation constraints, and the dual problem solved via the gradient

ascent step further enforces the penalties on the currently violated constraints. In ADMM, the

primal problem is partitioned, such that they can be solved in a distributed fashion, in Gauss-

Seidel-type iteration where we solve for each subproblem in a sweep, passing on the most up-to-

date solutions [Boyd et al., 2011].

Typically, ADMM requires a centralised node to perform the gradient ascent on the dual variable.

However, methods such as Consensus ADMM (C-ADMM) [Mateos et al., 2010] allow the dual

variables to be updated locally. ADMM is used widely for distributed bundle adjustments [Eriks-

son et al., 2016, Zhang et al., 2017, Bänninger et al., 2023] as well as distributed PGO [Choudhary

et al., 2015, McGann et al., 2023]. ADMM requires careful tuning of the penalty term, and also,

the ascent step introduces an additional computation, which often must occur on a centralised

node synchronously. Furthermore, as the constraints are gradually enforced, they can be slow to

converge.

Gaussian Elimination Gaussian Elimination is used in frameworks such as GTSAM [Dellaert,

2012] and can be used for distributed inference, where the devices exchange Gaussian marginals.
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In DDF-SAM [Cunningham et al., 2010] and DDF-SAM2 [Cunningham et al., 2013], Gaussian

marginals about the co-observed variables are shared. While Gaussian Elimination can operate

on any factor graph, as the cost of sharing the Gaussian marginal is quadratic in the number of

variables, a sparsification method such as [Lazaro et al., 2013] is required to minimise communic-

ation. Furthermore, as Gaussian Elimination occurs on a linearised problem, linearisation points

across devices must be consistent, which requires complex bookkeeping.

Federated Learning Federated learning is a machine learning technique designed to train mod-

els without the need to centrally collect raw user data, thereby preserving privacy [McMahan et al.,

2017]. This restriction motivates the use of distributed algorithms for model training. Each device

computes an update locally using its on-device user data, and only these updates are transmitted to

a central server for global aggregation. Compared to standard machine learning settings, federated

learning algorithms aim to address challenges such as minimising the number of communication

rounds required and handling unbalanced data distribution across users.

1.6 Data Locality and Near-Sensor Processing

With the end of Moore’s Law, historically predicting the doubling of a processor’s transistor count

approximately every two years, relying solely on improvements in processing capacity is no longer

viable. Instead, attention has shifted first towards parallel [Sutter, 2005], but now towards hetero-

geneous computing, a concept explored in “Welcome to the Jungle” [Sutter, 2011]. Although the

paper primarily concentrates on general computation, its principles apply equally to Spatial AI. As

we push Spatial AI systems to operate at much lower power, the bottleneck increasingly becomes

the energy consumption of the sensors and the data transfer from them. Hence, to minimise the

data transfer, the computation must move closer to the sensor to perform data compression on the

sensor itself.

Before we discuss the near-sensor processing, we first discuss the relationship between SLAM

and the availability of new hardware.

1.6.1 Software-Hardware Co-design in SLAM

SLAM is a key component of Spatial AI, which aims to estimate the location and the map of

the surrounding environment simultaneously in real time. It demands efficiency as real-time con-

straints impose strict limits on computational resources. Many breakthroughs are made by explor-

ing and adopting new computing paradigms that can offer more efficient processing capabilities.

MonoSLAM [Davison et al., 2007] was the pioneering monocular SLAM system. It performs

filtering of both camera poses and landmark positions and maps a small set of carefully chosen

landmarks. Following this, PTAM [Klein and Murray, 2007] enhanced accuracy and reliability

by tracking a larger amount of landmarks and implementing keyframe-based bundle adjustments.
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PTAM performs real-time tracking by separating tracking and mapping into different threads,

efficiently exploiting the capabilities of multi-core CPUs.

SLAM then gradually evolved from sparse points to dense maps, and such development was en-

abled by two key hardware: GPUs and depth cameras. Unlike the sparse set of points, the dense

map captured the surface of the objects in the scene, enabling the map to be interactive, for ex-

ample, by running a physics simulation or overlaying a AR object with sharp occlusion boundar-

ies. In a dense visual SLAM system, photometric errors of every pixel are minimised for tracking

and mapping. This is a significant amount of computation – sparse feature-based SLAM tracks

against a couple thousand of 3D points [Klein and Murray, 2007], whereas every image contains

over 30 thousand pixels even at VGA resolution. To process such a large amount of data, GPU’s

massively parallel processing capability was exploited for SLAM, enabling a live dense recon-

struction using a monocular camera [Newcombe et al., 2011b]. Another advancement in dense

SLAM can be attributed to the commodification of depth cameras. At 30 FPS, Microsoft’s Kin-

ect sensor captured both RGB and depth, and such measurements made dense SLAM not only

simpler but much more robust. KinectFusion [Newcombe et al., 2011a] was the first SLAM sys-

tem to utilise the Kinect sensor and depth camera since then is used for most dense 3D SLAM

systems [Salas-Moreno et al., 2013, Whelan et al., 2015b, Dai et al., 2017].

Deep learning has also contributed significantly to SLAM. Priors such as depth [Tateno et al.,

2017] and semantics [McCormac et al., 2017] were added to enhance robustness and versatil-

ity. In terms of tracking accuracy, DROID-SLAM [Teed and Deng, 2021] achieves state-of-the-art

performance across many SLAM benchmarks by training a learnable SLAM pipeline with a differ-

entiable Gauss-Newton optimiser. To further enhance the applicability of SLAM to more domains,

for example, planning, a semantic segmentation network and a VIO system capable of recovering

a dense mesh [Rosinol et al., 2020] was combined to produce a SLAM system, Hydra [Hughes

et al., 2022], which is capable of creating a 3D scene graph – a hierarchy of representations such

as places, objects, and the actual mesh – on the fly. All the mentioned SLAM systems utilise a

GPU for fast inference and operate in real-time.

All the methods use images captured by the camera to perform SLAM. However, images are

designed for human to look back at and capturing images at such high quality may be redundant

for machine vision. This led to investigation of event cameras, which are bioinspired sensors

that output an asynchronous stream of intensity changes. They offer attractive properties such

as high temporal resolution, high dynamic range, and low energy consumption [Gallego et al.,

2020]. Unlike conventional cameras, event cameras only output events asynchronously; hence,

new algorithmic designs were required to process such data for Visual Odometry (VO)/SLAM.

Each event does not contain sufficient information to fully constrain a camera’s 6 Degrees of

Freedom (DoF) motion. Thus many works use probabilistic filters which get updated with the

asynchronous events [Kim et al., 2014, Censi and Scaramuzza, 2014, Kim et al., 2016, Gallego

et al., 2017]. Semi-dense VO method, EVO [Rebecq et al., 2016], performs parallel tracking and

mapping of the edges detected by the event camera and tracks robustly even under aggressive

motion – benefiting from the advantageous properties of the event camera.
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As new hardware are made available to the SLAM community, we’ve repeatedly observed that

new capabilities are unlocked as such hardware gets integrated into a SLAM pipeline. However,

too often, it is the hardware evolution which dictates the improvements of SLAM system – similar

to the “hardware lottery” [Hooker, 2020] in Deep Learning. Projects such as Navion [Suleiman

et al., 2019] instead explore the potential of co-designing the hardware and the algorithm together.

They design and fabricate a stereo VIO Application-Specific Integrated Circuit (ASIC), which

only consumes 2mW, a magnitude lower than the power dissipation of embedded CPUs.

Another interesting example is GraphCore’s Intelligence Processing Unit (IPU) – a graph pro-

cessor with Single Instruction Multiple Data (MIMD) architecture – which was successfully util-

ised for bundle adjustment [Ortiz et al., 2020], performing 24x faster than the state-of-the-art CPU

implementation. The algorithm used, Gaussian Belief Propagation, is an example of an algorithm

which lost in the hardware lottery and is typically magnitudes slower than the state-of-the-art

bundle adjustment solvers on CPU or GPU. However, the IPUs have fast inter-tile (inter-core)

communication, and the fast on-tile memory fits the computational pattern of GBP, demonstrat-

ing that when an algorithm and hardware match, there are significant performance gains to be

expected.

Mobile devices require efficient, always-on Spatial AI systems as discussed in Section 1.1.1, and

clearly, many technical innovations are needed to bridge the gap between the current state-of-

the-art and the actual demands. Co-designing hardware and software, whilst challenging, has

demonstrated magnitudes of potential improvements over the current systems. This motivates

us to explore new unconventional hardware and design algorithms suitable for future chips and

hardware.

1.6.2 Data Movement Bottlenecks

Data movement consumes non-trivial energy, and many works aim to minimise the data transfer

distance by moving the computation closer to where the data is captured [Sze et al., 2017]. When

a camera observes the surrounding world, a continuous visual data stream is transferred from a

sensor to the processor. Moving data is not without cost; even converting an analog signal from

the camera’s photodiodes into a digital format consumes significant energy, and additionally, the

energy consumption is proportional to the volume of data and the distance it travels. Hence, we

want to minimise the data we digitise and then transfer.

To find an algorithm/hardware suitable for low-power/high-speed operation, we focus on data

locality. In the next section, we discuss how we minimise the data transfer and thus the energy

consumption by collocating a photodiode and a processor on the same pixel.
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Figure 1.2: Example applications of SCAMP-5 FPSP. Top Row: Depth from focus [Martel et al.,
2017]. Using a focus-tunable lens, images at different focuses are captured (left), and the sparse
depth points (middle-right) are recovered by analysing the sharpness of each image using SCAMP-
5. The right-most image is a post-processed, densified depth image. Bottom Row: HDR tone
mapping [Martel et al., 2016], the pair of images shows images captured without HDR tone map-
ping (left) and with (right). Each pixel automatically determines the suitable integration time
based on neighbouring pixel values by controlling the exposure time of individual pixels. Images
are from [Martel et al., 2017, Martel et al., 2016].

1.6.3 Focal-plane Sensor-processor

The most widespread image formation on an imaging sensor (also referred to as the focal-plane)

has two phases: exposure and readout. During the exposure, photons are captured by the photodi-

odes in each pixel, and then the stored capacity is read. The readout system is composed of one

or several signal amplifiers and Analog-to-Digital Converters (ADCs), and the digitised output is

then transferred to a host processor via a bus system for further processing.

The frame rate and latency of a real-time image processing pipeline are bounded by the maximum

speed of image formation (from the photon to the digital signal latency).

The maximum frame rate of an imaging system depends on the following factors:

1. Exposure time required by the imager, which is dependent on the dynamic range of the

camera and the lighting condition.

2. The total amount of pixels readout and the speed of the readout system.

3. The total volume of the digitised data and the data transfer rate of the interface.

The bottleneck for a fast and low-power image processing pipeline is the readout of a large number

of pixels and its transfer to the processing unit. A significant slowdown in the frame rate occurs

at the readout system when the electric charges, generated by the photons, are converted to digital
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values since all pixels should go through the readout system [El-Desouki et al., 2009]. In fact, the

readout system consumes 50% - 70% of the overall energy of the sensor [Likamwa et al., 2016].

Focal-Plane Sensor-Processor (FPSP) is a general-purpose vision chip technology that allows user-

defined computation in a highly parallel manner on the focal-plane of the sensor at high frame

rates [Zarándy, 2011]. The low energy, high frame rate nature of the FPSP – consuming only

1.23W even when operating at its maximum effective frame rate of 100,000 FPS [Carey et al.,

2013b] – makes the device appealing for high speed and always-on applications. The key to the

efficiency of FPSP is the ability to reduce the amount of data transferred. Compared to traditional

camera sensors, FPSPs perform image processing at the earliest stage of the pipeline, on the focal-

plane where the images are captured. The processed data is often more compact than the original

image, and only the compressed data is transferred to the later stages, reducing bandwidth and

energy consumption.

We focus on SCAMP-5 [Carey et al., 2013b], a 256 × 256 FPSP totaling 65,536 pixels. Each

pixel combines a photodiode with a Processing Element (PE). PEs can execute an instruction

simultaneously on their local data, resulting in Single Instruction Multiple Data (SIMD) parallel

processing.

Each PE can store local data using 7 analog and 13 1-bit registers and perform simple computa-

tions such as logical and arithmetic operations. The arithmetic operations are carried out in the

analog domain directly on the analog registers, eliminating the need for digitisation [Carey et al.,

2013b]. Processing in analog is more efficient; however, this, in turn, introduces limitations [Carey

et al., 2013a]. For instance, arithmetic operations become noisy. Moreover, analog values stored

on the registers degrade gradually. After computation, data can be read out in different forms such

as coordinates, binary frames, analog frames, or global data (e.g. regional summation) [Dudek

and Hicks, 2005]. The device supports event readout for coordinate readout, where the cost is

proportional to the number of events rather than the image dimension.

The small size of the sensor-processor chip limits the resources available on each PE. Such lim-

itation can be addressed by registers shared among the pixel; however, at the cost of reducing the

resolution of the sensor [Martel et al., 2015]. The instruction set is limited; only operations such

as addition and subtraction are available, and for example, there is no multiplication. There is

also no central memory; the PEs can only communicate data with their immediate adjacent pixels.

While pixels far apart can communicate by iteratively passing on the messages, noise degrades

the data as it is copied from one pixel to another. Despite all these constraints, several computer

vision algorithms have been implemented on SCAMP-5 FPSP. Examples include: FAST keypo-

int detection [Chen et al., 2017], 4 DoF visual odometry [McConville et al., 2020], [Bose et al.,

2017], [Debrunner et al., 2019], localisation [Castillo-Elizalde et al., 2021], target tracking [Great-

wood et al., 2017], [Liu et al., 2021], depth estimation [Martel et al., 2017] and HDR-tone map-

ping [Martel et al., 2016] (as shown in Figure 1.2).
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Figure 1.3: Comparison of different SLAM representations. Left: DSO [Engel et al., 2017],
Middle: DTAM [Newcombe et al., 2011b], Right: Gaussian Splatting SLAM [Matsuki et al.,
2024]. Images are adapted from the corresponding publications.

1.7 3D Scene Representation

Image data is large and contains many redundancies. As previously discussed, capturing images

is energy inefficient and challenging to store and process if they are recorded over a long period.

Visual SLAM provides a partial solution to this problem, whereby processing the continuous

stream of images captured by a camera, SLAM estimates a 3D map and camera poses at every

frame. This essentially is a form of compression where the input images are reduced into only the

useful spatial information that can be used for downstream applications. However, as shown in

the left and middle of Figure 1.3, most SLAM systems do not target photorealistic reconstruction;

hence, they lose the details of the natural images. Recent SLAM systems aim to reconstruct the

scene with photorealism [Rosinol et al., 2023, Sandström et al., 2023], including our system (right

Figure 1.3) which we will discuss in Chapter 4.

Sparse SLAM methods focus on pose estimation [Mur-Artal et al., 2015, Engel et al., 2017,

Forster et al., 2014] and the reconstructed 3D map is primarily useful for only localisation. Dense

SLAM approaches often use voxel grids [Newcombe et al., 2011a, Dai et al., 2017, Whelan et al.,

2015a, Prisacariu et al., 2014] or points [Keller et al., 2013, Whelan et al., 2015b, Schöps et al.,

2019] as the underlying 3D representation to recover an interactable map, where the map can

be used for downstream applications such as AR and robot navigation. While voxels enable a

fast look-up of features in 3D, the representation is expensive, and the fixed voxel resolution and

distribution are problematic when the spatial characteristics of the environment are not known

in advance. On the other hand, a point-based map representation, such as surfel clouds, enables

adaptive changes in resolution and spatial distribution by dynamically allocating point primitives

in 3D space. While these dense approaches capture the scene’s geometry well, they fail to capture

the high-fidelity of natural scenes as the primitives are uncorrelated and not jointly optimised.

To capture a scene with photorealistic quality, differentiable volumetric rendering [Niemeyer et al.,

2020] has recently been popularised with Neural Radiance Fields (NeRF) [Mildenhall et al., 2020].

Using a single Multi-Layer Perceptron (MLP) as a scene representation, NeRF performs volume

rendering by marching along pixel rays, querying the MLP for opacity and colour. Since volume

rendering is differentiable, the MLP representation is optimised to minimise the rendering loss
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using multiview information to achieve high-quality novel view synthesis. The main weakness of

NeRF is its training speed. Recent developments have introduced explicit volume structures such

as multi-resolution voxel grids [Fridovich-Keil et al., 2022, Sun et al., 2022, Liu et al., 2020] or

hash functions [Müller et al., 2022] to improve performance. Interestingly, these works demon-

strate that the main contributor to high-quality novel view synthesis is not the neural network but

rather differentiable volumetric rendering and that it is possible to avoid the use of an MLP and

yet achieve comparable rendering quality to NeRF [Fridovich-Keil et al., 2022]. However, even

with the incorporation of such explicit structures, per-pixel ray marching remains a significant

bottleneck for rendering speed.

In contrast to NeRF, 3D Gaussian Splatting (3DGS) performs differentiable rasterisation. In

3DGS, a scene is represented by a large number of Gaussian blobs with orientation, elongation,

colour and opacity, and similar to graphics rasterisations, by iterating over the primitives to be

rasterised rather than marching along rays, 3DGS leverages the natural sparsity of a 3D scene and

achieves an expressive representation that captures high-fidelity 3D scenes while offering signi-

ficantly faster rendering. Several works have applied 3D Gaussians and differentiable rendering

to static scene capture [Keselman and Hebert, 2022, Wang et al., 2022a], and in particular more

recent works utilise 3DGS and demonstrate superior results in vision tasks such as dynamic scene

capture [Luiten et al., 2024, Yang et al., 2024, Wu et al., 2024] and 3D generation [Tang et al.,

2024, Yi et al., 2024].

Since 3D representations such as 3DGS can now efficiently capture high-fidelity scenes, they can

compress all the input images into a coherent 3D scene with near-photorealistic rendering from

any viewpoint. Hence, unlike the previous sparse/dense representation used in SLAM, photo-

metric information is retained at near-original quality. The reconstructed representation is more

lightweight than the original images combined, and the synthesised images can be used as input

to a neural network such as segment anything model [Kirillov et al., 2023], Efficient SAM [Xiong

et al., 2023] and surface normal estimation [Bae and Davison, 2024] as shown in Figure 1.4, which

cannot be done with previous SLAM representations.

Having motivated Distributed Spatial AI from the perspective of near-sensor processing, scene

representation, and decentralised algorithm, we now detail the contributions in this thesis.

1.8 Contributions

This thesis covers the following works:

• Riku Murai, Sajad Saeedi, Paul H.J. Kelly, BIT-VO: Visual Odometry at 300 FPS using
Binary Features from the Focal Plane, IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2020 [Murai et al., 2020]. An extended version is published

as:

High-frame-rate Homography and Visual Odometry by Tracking Binary Features
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Figure 1.4: Running different off-the-shelf pre-trained models on a novel-view synthesis from
Gaussian Splatting SLAM [Matsuki et al., 2024]. Top Row: Self-captured monocular reconstruc-
tion is segmented using Efficient SAM [Xiong et al., 2023], Bottom Row: Reconstruction of
Replica RGB-D dataset is converted into a surface normal estimate using DSINE [Bae and Dav-
ison, 2024].

from the Focal Plane, Autonomous Robots, 2023 [Murai et al., 2023b].

• Hidenobu Matsuki*, Riku Murai*, Paul H.J. Kelly, Andrew J. Davison, Gaussian Splatting
SLAM, IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR), 2024

(*Equal contribution) [Matsuki et al., 2024]

• Riku Murai, Joseph Ortiz, Sajad Saeedi, Paul H.J. Kelly, Andrew J. Davison, A Robot
Web for Distributed Many-Device Localisation, IEEE Transactions on Robotics (T-RO),

2023 [Murai et al., 2023a].

• Riku Murai, Ignacio Alzugaray, Paul H.J. Kelly, Andrew J. Davison, Distributed Simul-
taneous Localisation and Auto-Calibration using Gaussian Belief Propagation, IEEE

Robotics and Automation Letters (RA-L), 2024 [Murai et al., 2024].

While not explicitly included in the thesis, the following works were done in conjunction:

• Matthew Lisondra, Junseo Kim, Riku Murai, Kourosh Zareinia, and Sajad Saeedi, Visual
Inertial Odometry using Focal Plane Binary Features (BIT-VIO), IEEE International

Conference on Robotics and Automation (ICRA), 2024 [Lisondra et al., 2024]
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• Aalok Patwardhan, Riku Murai, Andrew J. Davison, Distributing Collaborative Multi-
Robot Planning with Gaussian Belief Propagation, IEEE Robotics and Automation Let-

ters (RA-L), 2022 [Patwardhan et al., 2023]

• Alexandru-Iosif Toma, Hao-Ya Hsueh, Hussein Ali Jaafar, Riku Murai, Paul H.J. Kelly,

Sajad Saeedi, PathBench: A Benchmarking Platform for Classical and Learned Path
Planning Algorithms, 18th Conference on Robots and Vision (CRV), 2021 [Toma et al.,

2021] An extended version is published as:

Hao-Ya Hsueh, Alexandru-Iosif Toma, Hussein Ali Jaafar, Edward Stow, Riku Murai, Paul

H.J. Kelly, Sajad Saeedi, Systematic comparison of path planning algorithms using
PathBench, Advanced Robotics, 2022 [Hsueh et al., 2022]

• Edward Stow, Riku Murai, Sajad Saeedi, Paul H.J. Kelly, Cain: Automatic Code Gener-
ation for Simultaneous Convolutional Filters on Focal-plane Sensor-processors, Lan-

guages and Compilers for Parallel Computing (LCPC), 2020, [Stow et al., 2022b]. An

extended version is published as:

Edward Stow, Abrar Ahsan, Yingying Li, Ali Babaei, Riku Murai, Sajad Saeedi, Paul

H.J. Kelly, Compiling CNNs with Cain: focal-plane processing for robot navigation,

Autonomous Robots, 2022 [Stow et al., 2022a]

1.9 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2 – Preliminaries. We formally introduce the probabilistic inference methods and graph-

ical models, and then proceed to derive Belief Propagation, the core algorithm used in this thesis.

Here, we also introduce Lie Groups and Lie Algebras, which are useful for representing non-

Euclidean states such as rotations.

Chapter 3 – BIT-VO: Visual Odometry at 300 FPS using Binary Features from the Focal
Plane. This chapter presents the work from our paper [Murai et al., 2020], which utilises SCAMP-

5 FPSP for visual odometry. By performing image processing even before analogue-to-digital

conversion, our system can operate in real-time at 300 FPS and demonstrate robustness against

rapid, agile motions.

Chapter 4 – Gaussian Splatting SLAM. This chapter presents the work from our paper [Mat-

suki et al., 2024], which was carried out in close collaboration with Hidenobu Matsuki. We

present the first application of 3D Gaussian Splatting in monocular SLAM and demonstrate a

near-photorealistic 3D scene reconstruction, which can be used for many downstream applica-

tions (e.g. Figure 1.4).

Chapter 5 – Gaussian Belief Propagation For State Estimation. In this chapter, we derive

Gaussian Belief Propagation (GBP) and extend it to support non-linearity and robust factors re-
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quired for state estimation in robotics and computer vision. Additionally, we introduce and discuss

how GBP can be extended to handle Lie group variables, which are required for localisation tasks.

Chapter 6 – A Robot Web for Distributed Many-Device Localisation. This chapter presents the

work from our paper [Murai et al., 2023a], which performs decentralised multi-device localisation

using GBP. Utilising advantageous properties of GBP, such as asynchronicity, we localise 1000s

of robots using only ad-hoc peer-to-peer communication.

Chapter 7 – Distributed Simultaneous Localisation and Auto-Calibration using Gaussian
Belief Propagation. This chapter presents the work from our paper [Murai et al., 2024], which

extends on Robot Web to perform autocalibration of the sensors’ and markers’ extrinsic while

simultaneously performing localisation and introduce adaptive regularisation to stabilise GBPs

convergence when SE(3) variables are used.

Chapter 8 – Conclusion and Future Directions. Here, we conclude our thesis and discuss future

research directions.
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2. Preliminaries

This chapter covers the technical details used for the rest of the thesis. We primarily focus on

methods for probabilistic inference, probabilistic graphical models, Belief Propagation, and Lie

theory.

2.1 The Gaussian Distribution

The Gaussian distribution and its discovery are closely related to state estimation. Although ini-

tially discovered by Abraham de Moivre in 1733 as an approximation to a binomial distribution,

Carl Friedrich Gauss rediscovered the Gaussian distribution when developing a theory of errors to

model measurement uncertainty.

In 1801, an astronomer, Giuseppe Piazzi, observed an astronomical object, Ceres, which he be-

lieved to be a new, undiscovered planet (though now it’s classified as a dwarf planet). However,

only six weeks after the initial observation, Ceres disappeared behind the sun. Piazzi only made

a few observations of Ceres in that period and could not accurately determine the orbit, making it

challenging to estimate when and where it would reappear after passing behind the sun [Teets and

Whitehead, 1999].

Many mathematicians and astronomers attempted to solve the problem; however, the mathematical

tools used for astronomy at that time were insufficient to determine Ceres’s celestial motion and

led to many incorrect estimates. The relocalisation of Ceres was only made possible by Gauss,

who, too, was working on the problem. To infer the orbit from very few noisy observations,

he developed a theory of errors and used the least-squares method 1 to estimate the state which

minimises the observation errors.

Gauss viewed the least-squares method probabilistically, where each observation xi has a noise

that follows some distribution ϕ(xi). Gauss made the following assumption about ϕ(xi):

1. Small errors are more likely than large errors.

2. The likelihood of errors is symmetric.

3. The best summarisation of multiple observations of the same quantity is the average.

Following these assumptions, for the solution of least-squares to be the maximum-likelihood es-

timator, he found and proved that the underlying noise must follow a bell-shaped distribution, a

distribution we now call a Gaussian distribution [Stahl, 2006].

Since the discovery of the Gaussian distribution, its use in inference has been ubiquitously suc-

cessful for over two centuries and has been applied to almost all parameter estimation prob-

1It is ambiguous whether Gauss used least-squares for localisation of Ceres, and Adrien-Marie Legendre was the
first to publish least-squares method in 1806
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2.1. The Gaussian Distribution

µµ− σ µ+ σ

Figure 2.1: An example of a univariate Gaussian distribution, a symmetric bell-shaped curve.

lems [Jaynes, 2003]. Following the success, we will too use Gaussian distribution throughout

the thesis. Hence, this section discusses the key properties of Gaussian distribution.

2.1.1 Univariate Gaussian

A univariate Gaussian distribution is defined as:

N (x;µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (2.1)

where the distribution is fully characterised by the mean µ and the variance σ2. As shown in

Figure 2.1, Gaussian distribution is a bell-shaped curve. Any perturbation ε from the mean µ in

either direction assigns equal likelihood, meaning N (µ+ ε;µ, σ2) = N (µ− ε;µ, σ2).

2.1.2 Multivariate Gaussian

Multivariate Gaussian is a generalisation of univariate Gaussian to a higher dimensional variable.

A Gaussian with a d-dimensional state is defined as:

N (x;µ,Σ) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
, (2.2)

where µ ∈ Rd is the mean vector, Σ ∈ Rd×d is the covariance matrix, and |Σ| is the determinant

of the covariance matrix.

The form of Equation 2.2 is called the moment form and alternative form parameterisation of

multivariate Gaussian is called the canonical form:

N−1(x;η,Λ) ∝ exp

(
−1

2
x⊤Λx+ η⊤x

)
. (2.3)
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2. Preliminaries

Λ = Σ−1 is the precision matrix and η = Σ−1µ is the information vector. We can derive the

canonical form from the moment from by:

N (x;µ,Σ) ∝ exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
, (2.4)

= exp

(
−1

2
x⊤Σ−1x+ x⊤Σ−1µ− 1

2
µ⊤Σ−1µ

)
, (2.5)

∝ exp

(
−1

2
x⊤Σ−1x+ x⊤Σ−1µ

)
. (2.6)

By substituting in the definition of precision matrix and information vector, we have the Equa-

tion 2.3, the canonical representation. One advantage of the canonical form is that a product (up

to a scale) is simply a summation of the parameters:

N−1(xα;ηα,Λα)N−1(xβ;ηβ,Λβ) = cN−1(xγ ;ηα + ηβ,Λα +Λβ) , (2.7)

where c is the scaling term [Deisenroth et al., 2020, Chapter 6]. In the moment form, the operation

is computationally harder as it involves computing inverses:

N (xα;µα,Σα)N (xβ;µβ,Σβ) = c′N (xγ ;µγ ,Σγ) , (2.8)

where µγ = Σγ(Σ
−1
α µα +Σ−1

β µβ) and Σγ = (Σ−1
α +Σ−1

β )−1.

2.1.3 Marginalisation and Conditioning

Important and useful properties of Gaussian are that both marginalisation and conditioning of

Gaussians are Gaussians. Let a joint Gaussian distribution be expressed as:

p(x) = N (

(
xα

xβ

)
;

(
µα

µβ

)
,

[
Σαα Σαβ

Σβα Σββ

]
) , (2.9)

= N−1(

(
xα

xβ

)
;

(
ηα

ηβ

)
,

[
Λαα Λαβ

Λβα Λββ

]
) . (2.10)

Marginalisation In the moment form, marginalisation p(xα) =
∫
p(x)dxβ is simply:

p(xα) = N (xα;µM ,ΣM ) , (2.11)

where µM = µα and ΣM = Σαα, selecting the sub-block of the mean and the covariance of the

variables which we wish to keep. In the canonical form, it is more involved as it takes a Schur

complement over the kept variables:

p(xα) = N−1(xα;ηM ,ΛM ) (2.12)

where ηM = ηα −ΛαβΛ
−1
ββηβ and ΛM = Λαα −ΛαβΛ

−1
ββΛβα.

24



2.2. Methods for MAP inference

Conditioning On the other hand, conditioning p(xα|xβ) = p(xα,xβ)/p(xβ) in moment form

is hard:

p(xα|xβ) = N (xα;µC ,ΣC) , (2.13)

where µC = µα + ΣαβΣ
−1
ββ (xβ − µβ) and ΣC = Σαα − ΣαβΣ

−1
ββΣβα, and conditioning

canonical form Gaussian is easy:

p(xα|xβ) = N−1(xα;ηC ,ΛC) , (2.14)

where ηC = ηα −Λαβxβ and ΛC = Λαα.

For a more in-depth discussion about the two parameterisation and SLAM, we refer the reader

to [Eustice et al., 2005].

In summary, not only does the Gaussian distribution have many successful applications in state

estimation, but it also exhibits desirable computational properties such as:

• Simple analytical solutions for many operations.

• Closed under operations such as marginalisation, conditioning, and product (only to a scale).

2.2 Methods for MAP inference

The Maximum a Posteriori (MAP) inference finds the point-estimate of the configuration which

maximises the posterior and under a Gaussian assumption, this is equivalent to solving least-

squares / regularised least-squares.

Given a posterior distribution p(x|z), MAP inference is defined as:

x∗ = arg max
x

p(x|z) , (2.15)

where x is the state and z is the observations. Since logarithmic is a monotonically increasing

function, arg maxx p(x|z) = arg minx− log p(x|z). Taking the logarithmic can be more com-

putationally stable (as we avoid computation of the exponential if our posterior is an exponential

distribution and the products can be expressed in summation), and the addition of a negative sign

is because numerical optimisers historically tend to minimise the objective function rather than to

maximise [Deisenroth et al., 2020, Chapter 8].

As stated, MAP estimate can be found by minimising the negative-log posterior:

x∗ = arg min
x

− log p(x|z) , (2.16)

= arg min
x

− log p(z|x)p(x) , (2.17)

= arg min
x

− log p(z|x)− log p(x) . (2.18)
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And if we assume Gaussianity, both the likelihood p(z|x) and the prior p(x) are Gaussian hence:

x∗ = arg min
x

− log p(z|x)− log p(x) , (2.19)

= arg min
x

− logN (z;h(x),Σz)− logN (x;µp,Σp) . (2.20)

where h(·) is the measurement prediction function. Using Equation 2.2, the moment representa-

tion of a Gaussian distribution, and cancelling out the exponential with the logarithmic operation,

our minimisation problem becomes:

x∗ = arg min
x

(z− h(x))⊤Σ−1
z (z− h(x)) + (x− µp)

⊤Σ−1
p (x− µp) . (2.21)

To bring the equation into a least-squares form, following [Dellaert, 2005], we take the square

root of the inverse covariances:

x∗ = arg min
x

∥Σ− 1
2

z (z− h(x))∥22 + ∥Σ− 1
2

p (x− µp)∥22 , (2.22)

or such can be written using a Mahalanobis distance as a weighted least-squares:

x∗ = arg min
x

∥z− h(x)∥2Σz
+ ∥x− µp∥2Σp

. (2.23)

We see that the prior term acts as regularisation of the state x. Now that we know that MAP infer-

ence is equivalent to solving the least-squares problem, we will look at the different approaches

we can take to solve the least-squares problem.

2.2.1 Linear Least Squares

Given a system of linear equations of form:

Ax = b , (2.24)

we want to find x which satisfies this equality. Typically, we solve this by minimising the least

squares problem, which is defined as:

x∗ = arg min
x

1

2
∥Ax− b∥22 . (2.25)

Since extreme points in convex problem have zero gradient, by taking the derivative of Equa-

tion 2.25 and setting it to zero, we can see that the optimal configuration x∗ is indeed the same for

both Equation 2.24 and Equation 2.25:

∇1

2
∥Ax− b∥22 = A⊤(Ax− b) = 0 , (2.26)

Furthermore, we notice that the solution can be obtained by solving:

A⊤Ax = A⊤b , (2.27)

which is known as the normal equation.
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2.2.2 Gradient Descent

We define a general objective function to minimise:

x∗ = arg min
x

E(x) , (2.28)

to find the optimal configuration x∗.

Iterative methods, including gradient descent, can be written as finding the perturbation δx to

apply to the current state xt:

xt+1 = xt + δx . (2.29)

The iterative formulation allows the methods to solve non-linear problems, for example, non-

linear least squares, where a direct solution cannot be found (unlike a least-squares problem,

where solving a normal equation yields the solution directly). By iteratively computing the update

δx by linearising the non-linear system around the current estimate xt, the process continues until

termination criteria (e.g. δx is small, upper bound on the number of iterations) are reached.

Gradient descent is a first-order method that iteratively updates the state by taking a step in the

steepest descent:

δx = −α∇E(x)|x=xt , (2.30)

where α is the learning rate. The learning rate is a hyperparameter that trades off between conver-

gence speed and stability. If the learning rate is too large, the update step may be too large and the

algorithm may diverge. On the other hand, if the learning rate is too small, the algorithm may take

too long to converge. Alternatively, a line search can be employed to find the optimal learning

rate at each step; however, this requires evaluation of the objective function per search and can be

expensive.

A stochastic variant of gradient descent is often used in the context of Deep Learning (DL). As

only the first-order information is used, gradient descent can efficiently compute the gradient using

back-propagation, and such efficiency is crucial to DL since the number of parameters may reach

orders of millions or even billions. Vanilla gradient descent often requires careful tuning of the

learning rate, which is often challenging to do; hence, adaptive methods such as Adam [Kingma

and Ba, 2015] are commonly used, where the algorithm tunes the learning rate per variable using

past statistics.

2.2.3 Newton’s Method

Newton’s method is a second-order method that approximates the objective function as a quad-

ratic function (using second-order derivative) around the current estimate xt [Bertsekas, 1997,

Chapter 1]. First, we perform Taylor expansion of E(x) around xt:

E(x) ≈ E(xt) +∇E(x)|⊤x=xt
(x− xt) +

1

2
(x− xt)

⊤ ∇2E(x)|x=xt(x− xt) , (2.31)

E(x) ≈ E(xt) +∇E(x)|⊤x=xt
δx+

1

2
δx⊤ ∇2E(x)|x=xtδx , (2.32)
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where ∇2E(x)|x=xt is the Hessian matrix of the objective function at xt. We seek the update step

which takes us to the critical point of the E(·) by setting the first-order derivative of the quadratic

function to zero:

∇E(x)|x=xt +∇2E(x)|x=xtδx = 0 , (2.33)

and the update step is:

δx = −∇2E(x)|−1
x=xt

∇E(x)|x=xt . (2.34)

Unlike gradient descent, no learning rate is required as it computes the step size, assuming that the

underlying objective function is quadratic. Hence, when the objective function is indeed quadratic,

Newton’s method converges in a single step. While Newton’s method is powerful, the E(·) may

not be twice differentiable, and even if it is, computation of the Hessian matrix and taking its

inverse is computationally expensive, especially if the problem is large.

2.2.4 Gauss-Newton Algorithm

If we have prior knowledge of the structure of the objective function, we can find a lightweight

approximation of Newton’s method. Gauss-Newton algorithm is an approximation of Newton’s

method which is used to solve non-linear least-squares problems. Given a least-squares objective

function, we can rewrite the objective as:

x∗ = arg min
x

E(x) , (2.35)

= arg min
x

1

2
∥r(x)∥2Σ , (2.36)

= arg min
x

1

2
r(x)⊤Λr(x) , (2.37)

where r(x) = z − h(x) is the residual function and Λ = Σ−1 is the corresponding precision

matrix which weights the residuals. Let J = ∇r(x)⊤ be the Jacobian of the residual function, the

first-order derivative of the objective function is:

∇E(x) = J⊤Λr(x) , (2.38)

and the second-order derivative is:

∇2E(x) = H⊤Λr(x) + J⊤ΛJ , (2.39)

where H = ∇2r(x) is the Hessian matrix of the residual function. Assuming that the current

estimate xt is close to the true solution x∗, then r(xt) ≈ 0. Hence, the second-order derivative

can be approximated as:

∇2E(x) ≈ J⊤ΛJ . (2.40)

Substituting back to Equation 2.34, the update step for Newton’s method, we derive the update

step for the Gauss-Newton method which is:

δx = −(J⊤ΛJ)−1J⊤Λr(x) . (2.41)

28



2.2. Methods for MAP inference

This is equivalent to solving the normal equation:

A⊤Aδx = A⊤b (2.42)

where A = Λ
1
2J and b = Λ

1
2 r(x).

2.2.5 Levenberg-Marquardt Algorithm

The Gauss-Newton algorithms approximation does not hold if the initial estimate is far from the

optimal solution. To avoid this problem, we can use the Levenberg-Marquardt algorithm (first

discovered in [Levenberg, 1944] then rediscovered in [Marquardt, 1963]) which is a hybrid of

the Gauss-Newton and the gradient descent algorithm. Intuitively, in the Levenberg-Marquardt

algorithm, we take a Gauss-Newton step if we are close to the minimum, and otherwise, we take

a gradient descent step. The factor λ interpolates the step between the Gauss-Newton step and the

gradient descent step:

δx = −(J⊤ΛJ+ λI)−1J⊤Λr(x). (2.43)

A small λ factor results in a Gauss-Newton step, and a large λ factor results in a gradient descent

step. Marquardt’s version takes the diagonal of the Hessian rather than using identity [Marquardt,

1963]:

δx = −
(
J⊤ΛJ+ λ · diag(J⊤ΛJ)

)−1
J⊤Λr(x), (2.44)

The λ factor is adaptively chosen where λ increases if the objective function increases, and λ

decreases if the objective function decreases. When the objective function increases, the step is

not taken and the choice of how much to increase or decrease the λ factor by is a hyperpara-

meter [Gavin, 2019].

2.2.6 Exploiting Sparsity

For both the Gauss-Newton and Levenberg-Marquardt algorithms, we need to solve the normal

equation to compute the update step. Whether we solve the normal equation using Cholesky or QR

decomposition, the efficiency depends on the sparsity of the factorisation. Here, the elimination

order of the variables (estimated state such as camera pose) is important to minimise the fill-ins

(non-zero entries in the factorised matrix). Finding the optimal order of the variables to minimise

the fill-ins is an NP-hard problem; however, there are many heuristics to reduce fill-ins, such as

AMD [Amestoy et al., 1996], COLAMD [Davis et al., 2004] which are widely used in practice.

In some problems, exploiting the known structure of the problem enables efficient computation.

For example, in bundle adjustment, camera poses and landmarks are ordered after each other such

that the information matrix forms a block arrowhead matrix which can be efficiently solvable

using Schur Complement Trick [Triggs et al., 1999].

Hence, the majority of the research in state estimation focuses on getting the structure and the

ordering right; however, this requires knowledge of the global problem and is unsuitable for dis-

tributed computation. We imagine a network of many individual devices, and it is infeasible and
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unrealistic to create a global problem which we can inspect and analyse. Instead, the devices must

optimise locally and ideally achieve the same solution as their centralised counterparts.

2.2.7 Recovering Uncertainty using Laplace Approximation

Since MAP inference only yields a point-estimate, it is not a Bayesian procedure. However, we

can approximate the distribution around the MAP solution, assuming that the underlying posterior

distribution is a Gaussian. Such an approximation is often referred to as a Laplace approximation

or Gaussian approximation [Murphy, 2012, Chapter 8] [Bishop, 2006, Chapter 4].

Let the posterior distribution p(x|z) be approximated as a Gaussian:

p(x|z) ≈ N (x;µ,Σ) ∝ e−E(x) , (2.45)

where E(x) is a negative log of the unnormalised posterior, often referred to as an Energy Func-
tion. The energy function around MAP solution x∗ can be approximated using Taylor expansion:

E(x) ≈ E(x∗) + (x− x∗)⊤∇E(x)|x=x∗ +
1

2
(x− x∗)⊤∇2E(x)|x=x∗(x− x∗) . (2.46)

We know that the MAP solution is at the critical point (where the gradient is 0), hence:

E(x) ≈ E(x∗) +
1

2
(x− x∗)⊤∇2E(x)|x=x∗(x− x∗) , (2.47)

= E(x∗) +
1

2
(x− x∗)⊤H(x− x∗) , (2.48)

where H = ∇2E(x)|x=x∗ is the Hessian matrix.

Substituting the approximated energy function into Equation 2.45 yields us a Gaussian distribu-

tion:

p(x|z) ≈ 1

Z
exp (E(x∗)) exp

(
−1

2
(x− x∗)⊤H(x− x∗)

)
(2.49)

= N (x;x∗,H−1) . (2.50)

We can find the normalisation constant Z = p(z) using the definition of multivariate Gaussian

Equation 2.2:

Z = p(z) = exp (E(x∗))
√

(2π)d|H−1| , (2.51)

where d is the dimension of x.

Equation 2.50 is referred to as the Laplace approximation to the posterior, and Equation 2.51 is

the Laplace approximation to the marginal-likelihood. In the case of non-linear least-squares, as

the estimate is at the true solution x∗, we can approximate the Hessian using Equation 2.40.

2.3 Probabilistic Graphical Models

Real-world problems involve interactions amongst many variables, and probabilistic graphical

models (PGMs) offer a visually intuitive method for modelling such problems. Additionally, they
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(a) A graph with vertices (black circles)
and edges connecting them.

(b) An example of a subset of variables that
forms a clique (highlighted in red).

(c) An example of a subset of variables
does not form a clique (highlighted in red).

(d) An example of a subset of variables that
forms a maximal clique.

Figure 2.2: Example of a clique and maximal clique.

reveal the sparsity of problems that enable efficient computation. In this section, we focus on

factor graphs, a type of PGM which explicitly factorises a function into a set of factors.

2.3.1 Independence and Conditional Independence

First, we discuss the properties of independence and conditional independence that are essential

for PGMs. Two variables x and y are independent if the joint distribution is equal to the product

of the two marginals:

x ⊥⊥ y ⇐⇒ p(x,y) = p(x)p(y) . (2.52)

This means that the variables cannot influence each other [Murphy, 2012, Chapter 2]. Finding

independence simplifies the inference problem. However, we often don’t observe such independ-

ence in real-world problems.

Problems, however, often have conditional independence, where the two variables are independent

given knowledge of another variable. For example, x and y are conditionally independent given

z if the joint distribution factorises into a product of two conditional distributions:

x ⊥⊥ y|z ⇐⇒ p(x,y|z) = p(x|z)p(y|z) (2.53)

Conditional independence allows us to split a large probabilistic problem into small independent

pieces that are easier to solve, and as such, finding and exploiting conditional independence is

crucial for making inference tractable.
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(a) p1(x) and p2(x) modelled
using a UGM.

(b) p1(x) modelled using a
factor graph.

(c) p2(x) modelled using a
factor graph.

Figure 2.3: Example demonstrating how UGM loses the factorisation information.

2.3.2 Factor Graph

In an undirected graphical model (UGM), we can use the Hammersley-Clifford theorem to factor-

ise a joint distribution p(x) into:

p(x) ∝
∏

c∈C
ϕc(xc) , (2.54)

where C is the set of maximal cliques in the graph, and xc are the variables in the clique c. A clique

is a subset of vertices where any two pairs of vertices in the subset are adjacent to each other. The

maximal clique is a clique where no additional vertex can be added without violating the adjacency

(Figure 2.2). ϕc is a potential/factor function assigned to each of the maximal cliques in the graph.

They are a non-negative function of the arguments, and the joint distribution is proportional to the

product of the potential function [Murphy, 2012, Chapter 19].

While UGM offers a method for representing factorisation, it cannot explicitly express the factors,

and the underlying factorisation may get lost. For example, modelling the following using UGM

will yield an identical graph:

p1(x) = fa(x1, x2)fb(x2, x3)fc(x3, x1) (2.55)

p2(x) = fd(x1, x2, x3) (2.56)

For both cases, the UGM will be p(x) = ϕ(x1, x2, x3) as x1, x2, x3 forms a clique as shown in

Figure 2.3. Knowledge of the exact factorisation is crucial for efficient computation, and thus, we

want to retain this information when we model the problem.

Instead of using UGM, we use a factor graph. A factor graph is an undirected bipartite graph 2

with two types of nodes: variable nodes x = {xi}i=1:Nv and factors nodes f = {fs}s=1:Nf
. The

joint distribution p(x) is factorised into:

p(x) ∝
Nf∏

s=1

fs(xs) , (2.57)

2Bipartite graph is a graph with two disjoint and independent sets of vertices, and the edges only connect from one
set to another.
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A B C

D

E

Figure 2.4: Example of a factor graph. The factor graph consists of variable nodes (circles) and
factor nodes (squares).

where xs = n(fs) and n(x), a neighbour function, returns the set of adjacent nodes directly

connected to x. Each factor fs is a function of a neighbouring set of variables xs, and unlike

UGM, the factor does not correspond to a clique [Bishop, 2006, Chapter 8].

The graph explicitly represents the factorisation of the modelled joint distribution, and variables

are conditionally independent given all other variables if they are not directly connected by an

edge. Let xi, xj be variables which are not directly connected via an edge. They are conditionally

independent given all other variables:

p(xi, xj |x/{xi, xj}) = p(xi|x/{xi, xj})p(xj |x/{xi, xj}). (2.58)

In the case of a factor graph, more specifically, two variables are conditionally independent if all

paths between the nodes are blocked by the variable in the conditional. For example, in Figure 2.4,

the variable A and C are conditionally independent given B, but B and C are not conditionally

independent given E.

By modelling the posterior distribution using a factor graph, we can perform MAP inference using

the algorithms we’ve discussed in Section 2.2. Once a MAP estimate is found, we can approximate

the posterior distribution using a Laplace approximation.

2.4 Belief Propagation

Belief Propagation (BP) [Pearl, 1982] is an algorithm discovered in the 1980s to perform marginal

inference on a factor graph. It is a Dynamic Programming (DP) algorithm where each node of the

graph computes local quantities and passes the messages to its neighbours. The key advantage of

BP is that it is a purely local algorithm, and each node independently can perform computation in

parallel. Though originally BP was developed as an efficient method for exact marginal inference

on a tree (graph which contains no cycles), the same method applied to an arbitrary graph is called

Loopy Belief Propagation (LBP), which we will discuss in a later section.

In BP, as a factor graph is bipartite, variables pass messages to factors, and factors pass mes-

sages to variables. This message-passing process is iterative, where each node computes a new
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outgoing message based on the latest messages it has received. After exchanging the messages,

the variable’s beliefs are updated based on the incoming messages. Each iteration of BP can be

summarised in the following three steps:

• Belief Update: A variable’s belief (the variable’s marginal distribution) is computed by

taking the product of all the latest incoming messages from the adjacent factors.

• Variable-to-Factor Message-Passing: The message from a variable to a factor represents

the aggregate belief of the variable made by all other adjacent factors. This can be computed

by downdating the variable’s belief with the last message a receiving factor has sent.

• Factor-to-Variable Message-Passing: The message from a factor to a variable is the

factor’s belief of the variable, computed by marginalising all other variables adjacent to

the factor.

While the order of operations does not matter and the message passing schedule can be arbitrary

for the algorithm to converge, on a tree, belief converges to the exact marginal with one sweep of

message passing from a root node to the leaf nodes and back.

BP and LBP are the key components of the thesis, and in this section, we will derive the BP

algorithm to develop a better understanding of the algorithm. For clarity, we follow [Bishop,

2006, Chapter 8] and derive the rules for discrete variables; however, extension to continuous

variables is simple, especially for the cases where we assume Gaussian distributions as we will

show in Chapter 5.

Let p(x) be a joint posterior represented by a factor graph containing no cycles, where x is the set

of all variables. The joint posterior can be factorised into a product of factors using Equation 2.57.

We are interested in computing the marginal distribution for each of the variables x = {xi}i=1:Nv

which is achieved by summing over all other variables:

p(xi) =
∑

x/xi

p(x) . (2.59)

As a factor graph is bipartite, the variable xi is connected to a neighbouring set of factors n(xi).

As shown in Figure 2.5, each factor fα ∈ n(xi) branches off from xi and forms a subtree Fα. The

joint distribution of the subtree is Fα(xi,Xα) where Xα are the variables in the subtree α and

note that since the overall graph is a tree, variables in each of the subtrees are disjoint.

With this factorisation, the joint distribution of the whole tree is:

p(x) =
∏

α∈n(xi)

Fα(xi,Xα) . (2.60)

The marginal distribution p(xi) is computed by marginalising out all the variables apart from xi:

p(xi) =
∑

x/xi

∏

α∈n(xi)

Fα(xi,Xα) . (2.61)
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Figure 2.5: A variable node xi connected to a factor fα receives a message mfα→xi
(xi).

Since the set of variables {Xα : α ∈ n(xi)} are disjoint, we can push in the summation inside the

product of the factors:

p(xi) =
∏

α∈n(xi)

∑

Xα

Fα(xi,Xα) . (2.62)

This interchange of summation and product is important. In Equation 2.61, we reconstruct the

joint distribution of the whole tree (hence all variables) and then marginalise. On the other hand,

in Equation 2.62, we first marginalise each subtree to create a function only of xi. We then take the

product of these functions to obtain the marginal distribution over xi. Not only that, the latter is

more efficient as we marginalise only the subtree. Such formulation enables a recursive definition

of the algorithm, making the algorithm iterative.

Letmfα→xi
(xi) be the message from the factor fα to the variable xi. The message is the subtree’s

marginal belief of xi:

mfα→xi
(xi) =

∑

Xα

Fα(xi,Xα) , (2.63)

and Equation 2.61, the belief of variable xi, can be written simply as the product of all incoming

messages:

p(xi) =
∏

α∈n(xi)

mfα→xi
(xi) . (2.64)

This Equation 2.64 is the rule for belief update, where we combine the incoming messages from

factors to the variable to obtain the marginal distribution of the variable xi.

Now, we will keep unfolding our message-passing iterations to derive the variable-to-factor and

factor-to-variable messages. Consider Figure 2.6 which focuses on the factor fα, the subtree Fα

is the product of fα and all other factors in the subtree:

Fα(xi,Xα) = fα(xα)
∏

xj∈xα/xi

Gj(xj ,Xj) , (2.65)
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Figure 2.6: A factor node fα connected to a variable xj receives a message mxj→fα(xj).

where xα = n(fα) is the set of parameters connected to the factor fα, Gj is the joint distribution

of the subtree stemming off variable xj ∈ xα, and Xj is the set of variables in the subtree Gj

apart from variable xj . Substituting back into Equation 2.63:

mfα→xi
(xi) =

∑

Xα

fα(xα)
∏

xj∈xα/xi

Gj(xj ,Xj) . (2.66)

We can separate Xα, all the variables in the subtree Fα, into xα/xi and Xj . The variable xj is not

part of subtree Fα hence is. Again, xα and Xj are disjoint as the graph is a tree. This allows us to

rewrite the message as:

mfα→xi
(xi) =

∑

xα/xi

∑

Xj

fα(xα)
∏

xj∈xα/xi

Gj(xj ,Xj) . (2.67)

Using the same reordering trick as Equation 2.61, Equation 2.62, we can push the summation

inside the product:

mfα→xi
(xi) =

∑

xα/xi

fα(xα)
∏

xj∈xα/xi

∑

Xj

Gj(xj ,Xj) . (2.68)

and by defining mxj→fα(xj) as the message from the variable xj to the factor fα:

mxj→fα(xj) =
∑

Xj

Gj(xj ,Xj) , (2.69)

we can write the message from the factor fs to the variable xi as:

mfα→xi
(xi) =

∑

xα/xi

fα(xα)
∏

xj∈xα/xi

mxj→fα(xj) , (2.70)

the recursive formulation of the factor-to-variable message. To find the message to xi, we mar-

ginalise out all the variables connected to the factor apart from xi from subtree Fα, which is a

joint distribution formed via a product of the factor fα and subtrees Gj ∈ n(fα)/xi.
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Finally, we expand Equation 2.69 to find the definition of variable-to-factor message. Gj is the

joint distribution of a subtree with xj as the root, and this can be factorised into:

Gj(xj ,Xj) =
∏

β∈n(xj)/α

Fβ(xj ,Xβ) . (2.71)

Substituting this into Equation 2.69, the definition of the message from the variable xj to the factor

fα:

mxj→fα(xj) =
∑

Xj

∏

β∈n(xj)/α

Fβ(xj ,Xβ) , (2.72)

and again using the reordering trick to push the summation inside:

mxj→fα(xj) =
∏

β∈n(xj)/α

∑

Xβ

Fβ(xj ,Xβ) . (2.73)

Using the definition of factor-to-variable message, Equation 2.63, we can rewrite the subtree’s Fβ

marginal belief of xj as a message mfβ→xj
(xj). This allows us to write the variable-to-factor

message as:

mxj→fα(xj) =
∏

β∈n(xj)/α

mfβ→xj
(xj) . (2.74)

To perform inference using the BP algorithm, from a tree, we arbitrarily choose a root node xi.

The marginal distributions of all the variables in the tree are computed by making a sweep of

messages along the tree, passing the messages from the leaves to the root, and then from the root

to the leaves. The recursive message passing is initialised by setting the messages from the leaf

nodes to be mfs→xj
(xj) = fs(xj) if the leaf is a factor or mxj→fs(xj) = 1 if the leaf is variable.

Summary: The marginal distribution of a variable xi is the product of all incoming messages:

p(xi) =
∏

α∈n(xi)

mfα→xi
(xi) . (2.75)

and the message from the factor fα to the variable xi is:

mfα→xi
(xi) =

∑

xα/xi

fα(xα)
∏

xj∈xα/xi

mxj→fα(xj) . (2.76)

where the message from the variable xi to the factor fα is:

mxi→fα(xi) =
∏

β∈n(xi)/α

mfβ→xi
(xi) . (2.77)

2.4.1 Loopy Belief Propagation

So far, we have assumed that the factor graph is a tree, and BP is guaranteed to converge to the

exact solution in such cases. However, most practical and interesting problems involve cycles in

the graph, which violates the independence assumption of the subtrees which we’ve made in BP

derivation.
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Although BP was not designed for non-tree graphs, as the formulation of BP is iterative, one can

directly apply the algorithm on an arbitrary graph and keep iterating until the variables converge.

Such an approach is called LBP and initially, it was simply a heuristic to perform inference on an

arbitrary graph and lacked theoretical understanding. However, empirically, LBP performed well

on an arbitrary graph with cycles and often converged to a sensible solution [Murphy et al., 1999].

Later, a mathematical grounding was provided, where LBP is actually equivalent to performing

a variational inference, minimising Bethe Free energy [Yedidia et al., 2001]. Under Gaussian

assumption, when LBP converges, the means are exact, however, the covariances are not and are

often overconfident [Weiss and Freeman, 1999].

2.5 State Estimation and Lie Groups

Up to this point, the underlying assumption has been that the state space is Euclidean. Robotics

requires rotation as part of the states; however, a naive parameterisation of 3D rotation such as

Euler angles suffers from Gimbal lock – a degenerate configuration in which the parameters can

only rotated in two-dimensions – making it unsuitable for state estimation. In order to avoid

such degeneracy, rotations are over-parameterised, with more parameters than the Degrees of

Freedom (DoF). For instance, a rotation matrix, a 3×3 matrix, has 9 parameters (thereby spanning

9 dimensions) but possesses only 3 DoF. As more parameters are used than the underlying DoF

in such parameterisation, not all 3 × 3 matrices are valid rotation matrices, and in the case of a

rotation matrix, the matrix is constrained to be orthonormal and have unit determinant, and in the

case of a quaternion, the vector must be unit-norm.

When optimising an over-parameterised representation, the dimension of the states is larger than

the DoF. Performing gradient descent may result in a state which violates the imposed constraints

and requires some projection to bring the solution back into a valid subspace. Such approaches

are indeed feasible; however, we here take an elegant alternative and utilise Lie theory to optimise

the rotations and rigid transformations. The use of Lie theory has multiple advantages:

• Commonly used states such as rotations SO(2),SO(3) and rigid transformations SE(2),SE(3)

are Lie Groups, and this allows the formulation of a general optimisation framework which

works across various states. For example, both non-linear least-squares and Extended-

Kalman filter (EKF) that work in the Euclidean space require only a simple modification

to support the Lie group. Once the Lie group is supported, the algorithm works across

different states, regardless of whether it is 2D rotation or 3D rigid transformation.

• The internal details of the representation (i.e. for rotation, whether we use a rotation matrix

or quaternion) can be abstracted away since quaternion manifold S3 is a double cover of

SO(3) and isomorphic up to the first cover (i.e. if the scalar part of quaternion is greater

than 0). An application may require or is more efficient with a different representation;

however, the core algorithm (e.g. the non-linear least-squares framework) does not need to

change if we abstract the details away using Lie theory.
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• By formulating the optimisation problem using a minimal representation, we can avoid

redundant computations. For example, the rotation matrix has 9 parameters, but only 3

DoF, so the Jacobian derived using minimal parameterisation is Rm×3 not Rm×9 (as we

will show in Chapter 4 where we derive the camera pose Jacobian on Lie group).

Now that we’ve motivated why Lie theory is useful, in the next section, we will briefly introduce

Lie theory which we will use in our thesis.

2.6 Lie Groups and Lie Algebras

Lie groups and Lie algebras, named after a Norwegian mathematician Marius Sophus Lie, are

essential components of modern robotics and state estimation to formulate the problem correctly

to obtain a precise and stable solution [Solà et al., 2018, Barfoot, 2017].

While the Lie theory is abstract and not simple, fortunately for us, only a part of the theory is

required in estimation for robotics. We will only touch on the theory and keep this section as

minimal as possible. We refer the reader to the excellent tutorial “A micro Lie theory for state

estimation in robotics” [Solà et al., 2018] for further details.

2.6.1 Group Properties

A Lie group is, as the name suggests, a group, and a group G is defined to be a set with the

following properties:

• Closure: If X ,Y ∈ G then the composition X ◦ Y is also in G.

• Associativity: The composition is associative, that is for X ,Y,Z ∈ G, (X ◦ Y) ◦ Z =

X ◦ (Y ◦ Z).

• Identity: There is an identify element I , where I ◦ X = X ◦ I = X .

• Inverse: Each element has its inverse, such that X ◦ X−1 = X ◦ X−1 = I .

Group properties provide an abstraction over the operations that we apply to the group elements,

clarifying, for example, that the composition of elements of the group remains in the group.

2.6.2 Group Action

A Lie group element can act on a non-group element (e.g. Rn). Formally, G acts on set X , if for

all point x ∈ X , a function · : G×X → X which satisfies the following:

• Identity: I · x = x
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• Compatibility: (X ◦ Y) · x = X · (Y · x).

Group actions are used to transform the non-group elements, performing rotations, translations,

scalings and combinations of them. As a concrete example, let T =

[
R t

0 1

]
∈ SE(3). The

SE(3) group action on a point x ∈ R3 is defined as: T · x ≜ Rx+ t , a rigid transformation of a

point in 3D space.

2.6.3 Manifolds

A Lie group is not only a group but is also a manifold. A d-dimensional manifold M is a topolo-

gical space where around any point X ∈ M there is a neighbourhood which is homeomorphic to

Rd (i.e. the space is locally similar to Euclidean space). Such a neighbourhood forms a tangent
space around X , denoted as TXM. Additionally, the Lie group is a smooth manifold; hence, the

manifold is differentiable everywhere.

A vector defined in the tangent space is called a tangent vector. In the Lie groups case, they are

Lie algebra m which are isomorphic to RM , which means we can perform linear algebra operations

on the tangent vector. Formally, m and RM are related to each other using Hat and Vee operators:

Hat : RM → m; τ 7→ τ∧ =

M∑

i=1

τiEi , (2.78)

Vee : m → RM ; (τ∧)∨ 7→ τ =
M∑

i=1

τiei , (2.79)

where Ei are the generators of m, and ei are the basis of RM . They are related via the Hat operator:

Ei = e∧i . As a concrete example, the Hat operator for so(3) is a skew-symmetric matrix:

Hat : R3 → so(3); τ 7→ τ∧ =




0 −τ3 τ2

τ3 0 −τ1
−τ2 τ1 0


 (2.80)

= [τ ]× . (2.81)

Vee is the inverse, whereby we select the appropriate elements from the skew-symmetric matrix.

2.6.4 Exponential Map and Logarithmic Map

Every Lie group element is associated with a Lie algebra, and is related through exponential and

logarithmic maps.

The exponential map on an arbitrary square matrix A is defined as:

exp(A) =
∞∑

n=0

An

n!
. (2.82)
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Taking an exponential of Lie algebra is an exact mapping to an element in the Lie group, defined

as, exp : m → M. Luckily, for many commonly used Lie algebras / Lie groups, the exponen-

tial and logarithmic map has a closed-form solution. For example, in case of τ∧ ∈ so(3), the

exponential map is defined as:

exp(τ∧) = I+
sin(θ)

θ
[τ ]× +

1− cos(θ)

θ2
[τ ]2× , (2.83)

where θ = ∥τ∥2.

The logarithmic map is the inverse of the exponential map, log : M → m, and hence:

τ∧ = log
(
exp(τ∧)

)
, and X = exp (log(X )) . (2.84)

The logarithmic map can be found by inverting the exponential map. To simplify the notation, we

define a direct mapping from RN to the Lie group, and vice versa:

Exp : RM → M; τ 7→ X = exp(τ∧) , (2.85)

Log : M → RM ; X 7→ τ = log(X )∨ , (2.86)

avoiding the use of Hat and Vee operators.

2.6.5 Moving on a Manifold

We define two operations on the manifold: retraction R : M × TXM → M, and its inverse

L : M×M → TXM. We can view retraction as moving a point on a manifold by a vector and

its inverse as finding a vector between two points on a manifold. While the retraction may not be

globally invertible (i.e. multiple tangent vectors can retract to the same point on the manifold due

to, for example, rotation wrap-around), locally, one can define one-to-one inversion. In the case

of a Lie group, we use the exponential map and logarithmic map:

Y = R(X , τ ) ≜ X ⊕ τ ≜ X ◦ Exp(τ ) ∈ M , (2.87)

τ = L(X ,Y) ≜ Y ⊖ X ≜ Log(X−1 ◦ Y) ∈ TXM . (2.88)

Here, we’ve introduced the ⊕ and ⊖ operators, which are the shorthand notation.

Retraction and its inverse act as a useful tool for moving freely along the surface of the manifold.

Such operations allow us to optimise states using iterative methods such as Gauss-Newton as if

they were in Euclidean space and then retract them back onto the manifold.

When using Gauss-Newton in Euclidean space, we compute the increment δx to the state x which

minimises the objective function E(x) around the current linearisation point:

δx∗ = arg min
δx

E(x+ δx) . (2.89)

As long as we formulate the optimisation problem to compute the increment, the extension to the

manifold is trivial. Given that the state x is a Lie Group, we can compute the increment δτ in the

tangent space, minimising the following:

δτ ∗ = arg min
δτ

E(x⊕ δτ ) . (2.90)
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where δτ is the increment in the tangent space. We update the state by retracting the increment

back onto the manifold:

xt+1 = xt ⊕ δτ ∗ , (2.91)

iteratively updating the state until convergence.

2.6.6 Lie Group Derivatives

Using the retraction and its inverse, we can define derivatives on functions that use Lie Group

elements. First, the standard definition of derivatives is:

df(x)

dx
= lim

x→0

f(x+ δx)− f(x)

δx
, (2.92)

where the function is multivariate f : Rm → Rn, and the resulting derivative (Jacobian matrix)

is a n×m matrix. Now, we will extend the standard definition of derivatives to a function which

operates on the Lie group elements. By redefining the function f : M → N , using {⊕,⊖}, we

get:
Df(X )

DX = lim
τ→0

f(X ⊕ τ )⊖ f(X )

τ
, (2.93)

where τ is the tangent vector in the tangent space TXM, we now express the derivative using

infinitesimal deviation in the tangent space, and the dimension of the Jacobian matrix is n × m

which corresponds to the degrees of freedom, not the dimension of M,N . We will use this to

derive the camera pose Jacobian against 3D Gaussians in Chapter 4.

2.7 Summary

This section covered the preliminary materials required for the rest of the thesis, mainly covering

probabilistic methods, Belief Propagation and Loopy BP, and an introduction to Lie theory. We

utilise MAP point-estimation for Visual Odometry (VO) (Chapter 3) and Lie theory for Simultan-

eous Localisation and Mapping (SLAM) (Chapter 4) to derive the camera pose Jacobian against a

3D Gaussian map. BP and Lie theory are utilised in Chapter 5 to derive Gaussian Belief Propaga-

tion (GBP) which we then extend to support the Lie group variables.
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BIT-VO: Visual Odometry at 300 FPS
using Binary Features from the

Focal Plane
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3. BIT-VO: Visual Odometry at 300 FPS using Binary Features from the Focal Plane

A Focal-Plane Sensor-Processor (FPSP) is a next-generation camera technology which enables

every pixel on the sensor chip to perform computation in parallel on the focal-plane where the

light intensity is captured. SCAMP-5 is a general-purpose, user-programmable FPSP used in

this work, which performs computations in the analog domain before Analog-to-Digital Con-

verter (ADC). By extracting visual features from an image on the focal-plane, we minimise the

amount of digitised and transferred data, and as a consequence, SCAMP-5 offers a high frame

rate operation while maintaining a low energy consumption. Here, we present BIT-VO, which is

the first1 6-Degrees of Freedom Visual Odometry (VO) algorithm which utilises the FPSP. Our

entire system operates at 300 FPS in a natural environment, using binary edges and corner features

detected by the SCAMP-5.

3.1 Introduction

In this chapter, we explore an unconventional approach to the problem of low-power, high-frame

rate vision. Instead of processing the captured image data on a centralised processing unit, we

compute visual features directly on the sensor, performing early-vision computation even before

the ADC.

For many reasons, vision-based pose-estimation algorithms such as VO and Visual Simultaneous

Localisation and Mapping (SLAM) benefit from higher frame rates. First, the small inter-frame

motion enables faster and more reliable camera pose tracking [Handa et al., 2012], and second,

the reduced motion blur is beneficial for feature extraction. Typically, state-of-the-art odometry

and SLAM systems operate at the frame rate of a conventional camera, which ranges from 30 to

60 FPS. While one can use a high-speed camera [Gemeiner et al., 2008], increasing the frame rate

increases the energy consumption and the volume of data to be processed. Hence, operating at

a higher frame rate demands more computation in a shorter time frame. In a sparse VO/SLAM

system such as ORB-SLAM [Mur-Artal and Tardós, 2017], a sparse set of visual features are

extracted from each image, and only such features are used for the rest of the SLAM pipeline.

Unfortunately, feature extraction is often computationally expensive (11ms for 1000 ORB fea-

tures) [Mur-Artal and Tardós, 2017], and prevents the system from running at a higher frame

rate, even if we did have access to a high-speed camera. The bottleneck is that images are first

transferred from a sensor to a processing unit, then the visual features are extracted. Instead, this

chapter explores a different way and streams just the relevant features from the image sensor.

Using an FPSP sensor discussed in Section 1.6.3, as opposed to traditional camera sensors, we

perform visual feature extraction on the sensor itself to deliver a reduced volume of data to later

stages – in this chapter, just binarised corners and edges. Offloading the feature extraction to the

FPSP reduces bandwidth, energy consumption and computational overhead on the host device.

16 DoF Visual Odometry using SCAMP-5 was attempted during a Master’s project; however, it was limited to
artificial and small scenes [Murai, 2019].
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Conventional Camera

SCAMP-5 FPSP

Figure 3.1: Comparison of the data used by our proposed VO vs conventional VOs. Our system
does not use intensity images (top row) but uses the binary edges and corners (bottom row) ex-
tracted by SCAMP-5 at 300 FPS. Notice that the edges, when extracted at a high frame rate, are
tolerant against motion blur and are sharp even when the device is subject to violent motions. For
the conventional camera, such motion severely blurs the images.

Like FPSPs, event cameras are another low-power, low-latency camera technology, which out-

puts an asynchronous stream of intensity changes [Lichtsteiner et al., 2008]. Many VO/SLAM

algorithms have been implemented using event cameras [Gallego et al., 2020] and we’ve sum-

marised them in Section 1.6.1; however, the bandwidth of data transferred is proportional to the

manoeuvre speed of the actual camera. On the other hand, an FPSP outputs data at a consistent

rate; thus, there is no significant fluctuation in the amount of data transferred under any motion.

In this chapter, we investigate how we utilise the visual feature extracted on the focal-plane of

SCAMP-5 for 6 DoF VO. The contributions of our work are:

• An efficient binary feature Visual Odometry, BIT-VO, is the first 6-DoF visual odometry

which utilises the FPSP. Given no prior information about the scene and no intensity in-

formation, our proposed method can accurately track the pose at 300 FPS, even in difficult

situations where the state-of-the-art monocular SLAM fails.

• A novel binary-edge-based descriptor, which is small and is only 44-bit long. Using noisy

features computed on the focal-plane of the SCAMP-5 image sensor, our system can track

keypoints using this binary descriptor.

• Extensive evaluation of our system against measurements from a motion capture system,

including difficult scenarios such as violently shaking the device 4-5 times a second. We

also compare against ORB-SLAM to highlight how approaches that utilise a conventional

camera struggle with rapid motions.

3.2 Background

This section provides a background and literature review on analog computation, vision sensors,

and SCAMP-5 FPSP.
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3. BIT-VO: Visual Odometry at 300 FPS using Binary Features from the Focal Plane

3.2.1 Analog Computation

Modern computers operate using digital signals, representing the data as multiple distinct bin-

ary bits. In contrast, analog processing circuits use continuous signals such as electrical voltage.

Compared to digital processing, analog processing is advantageous in terms of speed, power dis-

sipation, and total area consumed by the circuitry; however, the functionality of the system is

determined by how the components are connected, and hence, the programming of such circuit is

achieved by reconfiguring the signal path [Dudek and Hicks, 2000]. This is significantly less flex-

ible when compared to the digital circuit, where the functionality is determined by the software

and requires no modification to the hardware to perform a wide range of tasks.

3.2.2 Vision Sensors

The mainstream imaging sensor technologies are Charge-Coupled Devices (CCDs) and Comple-

mentary Metal-Oxide-Semiconductor (CMOS). The main building blocks in both sensors are pixel

array, readout system, and digital logic. The pixel array converts the captured photons to electric

charges, and the readout system converts such analog signals to digital signals, moving the data off

the focal-plane. Digital logic controls the system’s operation, such as timing and driver. Of these

three blocks, on most modern sensors, the readout system consumes over 50% of the total sensor

power [Likamwa et al., 2016], while the pixel array accounts for a small fraction of the energy con-

sumption [Kitamura et al., 2012]. These limitations motivated a design where analog processing

is collocated with the pixel array, reducing and eliminating the work to be done by the ADC.

Recent vision chips add a processing unit per pixel and operate as a Single Instruction Multiple

Data (SIMD) computational device. Examples of such vision chips includes [Dominguez-Castro

et al., 1997, Linan et al., 2002, Poikonen et al., 2009]; however, all chips have limited pixel count

with less than 20,000 pixels, making them suitable only for applications where high pixel resol-

ution is not required. SCAMP-5 (SIMD Current-mode Analog Matrix Processor), on the other

hand, contains 256× 256 pixels, which is closer to the resolution of a camera used in applications

such as SLAM (MonoSLAM [Davison et al., 2007] used 320×240 resolution hand-held camera).

3.2.3 SCAMP-5 FPSP

A conventional camera is a 2D array of light-sensitive elements known as pixels. FPSP, also

known as processor-per-pixel arrays (PPA) and cellular-processor arrays (CPA), adds a small pro-

cessor per pixel on the same die [Zarándy, 2011]. Each pixel in SCAMP-5 [Carey et al., 2013b]

combines a photodiode with a Processing Element (PE), where these PEs can execute an instruc-

tion simultaneously on their local data, resulting in SIMD parallel processing. Although the PEs

operate on an analog signal, SCAMP uses “switched-current analog microprocessor” [Dudek and

Hicks, 2000], which is an architecture similar to a general-purpose digital micro-processor (where

there are instructions from the digital controller, registers, ALU, I/O); however, all operations are
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analog. This allows the analog circuit to be software reprogrammable, increasing it’s flexibility

while being more efficient than the digital counterpart.

3.2.4 Visual Odometry Using SCAMP-5

While several works utilise FPSP for visual odometry, none support full 6-DoF pose estimation.

In [Bose et al., 2017], the proposed method is a feature-based VO algorithm, estimating yaw, pitch,

and roll rotations, as well as the translation along the z-axis. They first extract edge features and

then align them with a keyframe. The alignment is done via shift, scale, and rotation operations

performed on the sensor-processor chip. The 4-DoF algorithm can run up to 1000 FPS under

sufficient lighting. The algorithm was later extended and deployed on a UAV [Greatwood et al.,

2018, McConville et al., 2020], fusing the IMU measurements. Furthermore, [Debrunner et al.,

2019] introduced a VO algorithm that operates at 400-500 FPS, also capable of estimating 4 DoF.

Employing a direct approach that utilises image intensity, their method divides the focal-plane into

tiles to estimate the optic flow for each tile. They then determine the 4-DoF motion by solving a

least square problem.

3.3 System Overview

Our main contribution is a 6-DoF monocular visual odometry, which operates in real-time at 300

FPS. An overview of our system flow is summarised in Figure 3.2. The initialisation is omitted

for simplicity. Feature extractions are performed on SCAMP-5, while feature tracking and VO

operate on the host device, such as a consumer-grade laptop. The system operates only using the

binary edge image and corner coordinates without transferring any pixel intensity information (as

shown in Figure 3.1). Despite using limited information, we demonstrate the feasibility of creating

a robust VO system against rapid motion.

3.4 Feature Detection and Matching

This section outlines how features are detected on the FPSP device and how these features are

matched against previous ones on the host device.

3.4.1 Feature Detection

On the FPSP, we perform FAST keypoint and binary edge detection, which are computed at a

high frame rate of 330 FPS on the focal-plane. An existing implementation of FAST Keypoint

Detector for SCAMP-5 [Chen et al., 2017] is used and for edge detection, the magnitude of the

image gradient is thresholded to find edges [Bose et al., 2017]. For each frame, up to 1000 corner

features are detected and are read as pixel coordinates using an event-readout. The whole 256×256
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Figure 3.2: Tracking and Mapping pipeline. The pipeline runs on an FPSP and a host device,
minimising data flow from the sensor to the host device,

bit binary image is transferred for the binary edge image rather than the pixel coordinates. In

SCAMP-5, coordinates are expressed as an 8-bit pair. Hence, event read-outs are only efficient

if the number of events Nevents < 4096. This is only 6.25% of all the available pixels, and we

found that, in most cases, the edge image exceeds this threshold.

3.4.2 Feature Matching

Matching the corner features extracted from SCAMP-5 across multiple frames is challenging for

two reasons:

• Feature extraction suffers from noise in analog computation.

• Multiple features are detected per visual corner.
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3.4. Feature Detection and Matching

Figure 3.3: Illustration of the effect of noisy analog computation. Between two consecutive
frames, many corners appear and disappear. The device was mounted on a tripod to ensure stabil-
ity across multiple frames.

Due to the noisy nature of analog computation, corners are not repeatably extracted at every

frame as shown in Figure 3.3, causing incorrect data association if a naive method such as the

nearest neighbour matching is used. Since the features disappear between frames, we need multi-

frame matching. Although [Chen et al., 2017] performs non-maximal suppression, the suppressed

corners are inconsistent across multiple frames, so we require a method to reliably isolate features

from each other for each visual corner. To address this problem, we introduce a binary descriptor

that can be used for feature matching.

3.4.3 Local Binary Descriptors from Edges

We propose a feature descriptor that only uses the local binary edge information to establish

robust correspondences across multiple feature frames. Our descriptor is tiny – only 44-bit long

in length; thus, it is space-efficient and is fast to compute. Unlike other binary descriptors such as

LBP [Ojala et al., 2002], BRIEF [Calonder et al., 2010], and BRISK [Leutenegger et al., 2011], we

do not have access to the image intensity information. As shown in Figure 3.4, three independent

rings {r1, r2, r3} are formed around a corner of interest, and each element of the ring contains

a bit from the corresponding pixel of the binary edge image. We use a 7 × 7 patch to store

them with a single 64-bit unsigned integer, making it efficient to create and compare by bitwise

manipulation. Each feature’s orientation is computed to add a rotation invariance to our descriptor.

Assuming a coordinate frame with the origin set to the corner feature of interest, the intensity

gradient magnitude G(x, y) [Rosin, 1999] is used to compute the orientation:

θ = tan−1

∑
x,y yG(x, y)∑
x,y xG(x, y)

, (3.1)
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Figure 3.4: Descriptor sampling pattern. Different colours denote a different ring, and indices
correspond to the bit index.

where x, y are the coordinates of the 7 × 7 patch. Since the gradient image is binarised, we

approximate by setting G(x, y) to 1 if image point (x, y) is classified as an edge, and setting

it to 0 otherwise. Each ring’s rotation invariance is achieved by applying a circular shift to the

elements based on the orientation θ [Ojala et al., 2002]. At each ring, the number of bits to rotate

is determined by:

R(θ, r) =

⌊
θ ·Nr

2π

⌋
(3.2)

where ⌊·⌋ is the floor operation, r ∈ {r1, r2, r3} and Nr is the number of elements in the given

ring. The descriptor d is computed by:

d =
(
r1′ << (Nr2 +Nr3)

)
|
(
r2′ << Nr3

)
| r3′ (3.3)

where<< operator is bit-wise shift, and | operator is bit-wise or. r′ denotes a ring compensated for

the rotation using Equation 3.2. The descriptors are compared using the Hamming distance, per-

formed efficiently using Streaming SIMD Extensions (SSE) instructions. Although our descriptors

are not scale-invariant, we found them to be sufficient for small indoor scenes.

3.4.4 Frame-to-Frame Matching

Our system’s high frame rate enables efficient frame-to-frame feature matching. Given frames,

{F1, . . . , Fn}, a local neighbourhood around a feature in Fi is matched against features in Fi+1.

Similarly, features in Fi+1 are matched against features in Fi+2. By following these matches,

features in Fi can be matched against any arbitrary frames as long as they remain in sight. We

take advantage of the small inter-frame motion and only search a small radius of 3−5 pixels to find

correspondence. Here, we select the corner from the search radius that minimises the Hamming

distance as a candidate match. If the descriptor distance to the candidate exceeds a threshold, the

candidate does not form a correspondence, and in our implementation, the threshold is set to 10.
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3.4.5 Map-to-Frame Matching

All visible map points are projected onto the image plane to find correspondences. Again, only a

small radius is searched. Each map point stores multiple descriptors as they are observed across

multiple keyframes. Following ORB-SLAM2 [Mur-Artal and Tardós, 2017], we select the most

descriptive descriptor for each map point by finding the descriptor that minimises the median

distance to all other descriptors.

3.5 Visual Odometry

This section summarises the implementation details of our VO system; however, it is kept brief as

it is very similar to the standard VO systems like PTAM [Klein and Murray, 2007]. A set of 3D

map points of the scene is used to estimate the pose of SCAMP-5 by minimising the reprojection

error. After every keyframe insertion, we perform structure-only bundle adjustment [Strasdat

et al., 2012] to refine the 3D map. These non-linear problems are solved using the Levenberg-

Marquardt algorithm, which is implemented using Ceres Solver [Agarwal et al., 2010]. The non-

linear optimisation converges with little iterations as the inter-frame motion is small.

3.5.1 Pose Estimation

Given a set of 3D map points and their correspondences on an image plane, poses can be estimated

by minimising the reprojection error, which can be formulated as [Strasdat et al., 2012]:

TCW = arg min
TCW

1

2

∑

i

ρ
(
∥ui − π(TCW · Wpi)∥2

)
, (3.4)

where the error between the projected 3D points π(TCW · Wpi) and the corresponding feature

coordinates ui is minimised. ρ(·) is the Huber loss function, which reduces the effect of outlying

data [Zhang, 1997]. Unlike PTAM [Klein and Murray, 2007] or ORB-SLAM [Mur-Artal and

Tardós, 2017], the constant velocity model is not used in pose estimation.

3.5.2 Bootstrapping

The 5-point algorithm [Nistér, 2004] with RANSAC [Fischler and Bolles, 1981] is used to perform

bootstrapping. This gives a relative pose estimate and is used to triangulate the initial 3D map.

During the initialisation process, features in the reference frame are tracked using frame-to-frame

tracking until sufficient disparities exist. Disparities are computed by taking the median of the

feature’s pixel displacements. If the disparity is greater than 20 pixels, relative pose estimation

and triangulation are attempted. Upon triangulation, if any 3D map point has a parallax of fewer

than 5 degrees or is behind either of the two cameras, it is removed from the map. We only

successfully initialise the system once 100 map points are triangulated; otherwise, we will attempt

this bootstrapping repeatedly.
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3.5.3 Keyframe Selection

To determine which frames are suitable as keyframes, we adopt a selection process similar to

PTAM [Klein and Murray, 2007] and SVO [Forster et al., 2014], [Forster et al., 2016]. This

process is based on the camera displacement relative to the scene’s depth. A frame is designated

as a keyframe if it meets the following criteria:

• At least 200 frames have elapsed since the previous keyframe insertion.

• At least 50 features are tracked.

• Euclidean distances between the current frame and all the other keyframes are greater than

12% of the median scene depth.

When a frame is selected as a keyframe, first, 2D-3D correspondences are established through the

projection of the map points into the image plane. This links the map point to the keyframes that

were observed. If some features have not yet been triangulated, the Frame-to-Frame tracker is

checked to see if any matches satisfy the epipolar constraint. If fewer than 30 matches are found,

brute-force matching of all the features is performed between the current and the last keyframe.

This ensures that a sufficient number of map points are generated with every keyframe insertion.

3.6 Experiments

We have evaluated our proposed system against ground-truth data captured using a Vicon motion-

capture system. As our method is a monocular VO, the estimated trajectory is scaled and aligned to

the ground truth data before computing the Absolute Trajectory Error (ATE) [Sturm et al., 2012].

All experiments are conducted using SCAMP-5 [Carey et al., 2013b]. SCAMP-5 does not record

raw-intensity images because, in this case, it would act as a conventional camera and operate at a

low frame rate. Thus, a direct comparison against other VO/SLAM using a monocular camera or

SCAMP-5 is not possible. Instead, a webcam that operates at 20 FPS was attached to SCAMP-

5 as a qualitative demonstration of how SLAM systems such as ORB-SLAM2 [Mur-Artal and

Tardós, 2017] which uses conventional camera loses track under dynamic motions. Since the two

cameras’ fields of view are different, best efforts were made to ensure that both devices observed

the same scene. All host computations were made on a laptop with a 4-core Intel i7-6700HQ CPU

at 2.60GHz. Mapping and tracking used a single core, and visualisation and communication with

SCAMP-5 used an extra core each.

We evaluate our system against four recordings: Long, Rapid Shake, Jumping, and Circle se-

quences. The test scene consisted of tabletop objects like desktop monitors and books. Videos of

the live running system are available on the project page2.

2https://rmurai.co.uk/projects/BIT-VO/
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Figure 3.5: Top: Estimated x, y, z translations for “Long” sequence. Bottom: Estimated x, y, z
rotations for “Long” sequence. Solid lines show our estimate and dotted line are the ground truth.

Table 3.1: Absolute Trajectory Error of different sequences, computed using evo [Grupp, 2017].
The total length of the trajectory, Root Mean Square Error and Median Error are reported.

Sequence Length[m] RMSE [m] Median [m]

Long 68.5 0.108 0.078
Rapid Shake 5.6 0.015 0.011
Jumping 32.9 0.056 0.040
Circle 38.3 0.128 0.084

Table 3.2: Absolute Trajectory Error comparison of using our proposed descriptor and using ro-
tated BRIEF, computed using evo [Grupp, 2017]. The total length of the trajectory, Root Mean
Square Error and Median Error are reported.

Descriptor Length[m] RMSE [m] Median [m]

Ours 38.3 0.128 0.084
Rotated BRIEF 38.3 0.123 0.107

3.6.1 Accuracy and Robustness

The “Long” test sequence involves repeatedly traversing a test area for a total of 68.5m, with many

features appearing and disappearing from the view of SCAMP-5. The translation and rotation of
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Figure 3.6: Top: Estimated x, y, z rotations for “Rapid Shake” sequence. Bottom: Close-up view
of rotation estimates for “Rapid Shake” sequence. Solid lines show our estimate and dotted line
are the ground truth. Our method is able to track rapid rotations accurately.

our system over time are depicted in Figure 3.5. We report the ATE error of all of our runs in

Table 3.1.

Similar to a 4-DoF VO for SCAMP-5 [Bose et al., 2017], our system is able to track violent

rotations, as shown in Figure 3.6. The system was subject to 4-5 shakes per second but was able

to track rotations along all three axes successfully and accurately.

3.6.2 Comparison Against Visual SLAM

This section presents the advantage of our high frame rate VO, running at 300 FPS, compared

with ORB-SLAM2 [Mur-Artal and Tardós, 2017] running on images from a conventional camera.

For a fair comparison, in all runs, the images were resized and cropped to 256 × 256 pixels to

match the resolution of SCAMP-5. An inherent limitation of SCAMP-5 is that it is not possible

to record image intensity, as only the processed features are transferred to the host device. Any

attempt to save images will require ADC and slow down the entire pipeline; thus, for comparisons

against other SLAM systems, the intensity images must be captured using an external conventional
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Figure 3.7: Top: Estimated x, y, z rotations for “Jumping” sequence. Bottom: Estimated x, y, z
rotations for “Jumping” sequence. Solid lines show our estimate and dotted line are the ground
truth. The pink region indicates that the ORB-SLAM2 lost track due to rapid motion.

camera.

In the “Jumping” sequence, the device is subject to violent translational motions, including sudden

∼80cm change in the z-axis caused by jumping as shown in seconds 42-48 of Figure 3.7. This

comparison highlights the clear advantage of operating at 300 FPS. The pink highlighted regions

in Figure 3.7 are where ORB-SLAM lost track (in VO mode, it recovers using relocalisation). As

shown, the images captured by the conventional camera suffer from severe motion blur, while the

features from SCAMP-5 do not.
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Figure 3.8: Top: Estimated x, y, z translation for “Circle” sequence. Bottom: Estimated x, y,
z rotations for “Circle” sequence. Solid lines show results from using our proposed descriptor,
while dotted lines used rotated BRIEF. The estimated data x, y, z is plotted using red, green, blue
and the ground truth data x, y, z is plotted using purple, orange, cyan respectively. Note rotations
along z-axis wraps as full 360 degrees loops are made.

3.6.3 Comparison Against Other Descriptors

Another possible choice of descriptor would have been to employ other binary descriptors like

BRIEF [Calonder et al., 2010] or BRISK [Leutenegger et al., 2011]. However, these methods

construct the descriptor by comparing pixel intensities. To compare against our approach, the

BRIEF descriptor was modified by using XOR operation instead of pixel intensity comparison.

To achieve rotation invariance, we adopt the same methodology as ORB [Rublee et al., 2011],

where the feature’s orientation is calculated using Equation 3.1.

To compare our descriptor against BRIEF, we have recorded the output features from SCAMP-

5. The Vicon room was explored in a circular motion while the camera was pointing toward the

centre of the room. A modified version of 256-bit long rotated BRIEF from OpenCV [Bradski,

2000] was used for the experiments. Figure 3.8 shows no major differences in the two approaches,

apart from 60 seconds onward where VO using rotated BRIEF fails. Figure 3.9 depicts the 3D tra-

jectories of our approaches together with the ground truth. We notice that there are high-frequency
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Figure 3.9: Estimated 3D trajectory of “Circle” sequence using our proposed method: our pipeline
(in red), rotated BRIEF descriptors (in green), and ground truth (in black).

noises present in our trajectories. The SCAMP-5 camera’s low resolution means there is a large

round-off error in the pixel positions of the features. Furthermore, due to the noise present in the

analog computation of each frame, a different set of corners is extracted for the same visual scene,

leading to incorrect feature correspondences and, thus, a shaky trajectory. Table 3.2 compares

the absolute trajectory error using two descriptors. To ensure a fair comparison, measurements

after 58 seconds were excluded for rotated BRIEF when it failed to track the trajectory. The

results show no significant difference in the tracking accuracy when using either descriptor. How-

ever, our descriptor has a significant advantage in terms of computational efficiency, as shown

in Figure 3.10. The runtime for computing the descriptors per frame was measured offline over

ten iterations for the “Circle” sequence for both our descriptor and rotated BRIEF. The median

runtime for our approach was more than five times faster than rotated BRIEF.

3.6.4 Runtime Evaluation

A breakdown of the runtime of the motion estimation that occurs on the host device is provided

in Figure 3.10. The timing is measured offline over ten iterations of the “Circle” sequence. Our

motion estimation is highly efficient, and the median time required to estimate the pose is 1.10

ms when executed offline, which translates to a frame rate of over 900 FPS. Our system does not
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Total Motion Estimation: 1.10ms
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Descriptor Computation: 0.12ms
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Figure 3.10: Runtime breakdown of the system. Top: Comparison of the processing time of
our descriptor against rotated BRIEF. Middle: Breakdown of the processing time required by
our motion estimation. Bottom: Processing time per frame while running the system online on
different sequences. Note that the bottleneck is SCAMP-5, which outputs features at 300 FPS.

separate map refinement onto different threads during keyframe insertion. The median processing

time for keyframe insertion is 3.17ms, with 2.22ms and 3.98ms at 0.25 and 0.75 quantiles, re-

spectively. The keyframe insertion combined with motion estimation exceeds the time budget of

3.33ms when operating at 300 FPS. However, the excess is resolved within one or two frames. For

latency-critical applications, offloading the keyframe insertion onto a different thread is possible.

The runtime of the different sequences when operating the system live is also reported. For stable

frame rates, we execute SCAMP-5 at 300 FPS, not at full capacity of 330 FPS. Execution of the

feature extraction on SCAMP-5 is our bottleneck, which limits the overall frame rate of BIT-VO.

The rest of the pipeline can run at a much higher frame rate; thus, our approach is applicable to

the next-generation FPSP devices, which may have much faster computation.

Finally, the “Circle” sequence has the largest inter-quantile range, as it required more keyframe

insertions compared to other sequences.
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3.7 Conclusion

We presented BIT-VO, a VO framework capable of operating at 300 FPS using binary edges and

corners computed on the focal-plane. Our system is simple and minimal yet sufficient to work

in challenging conditions, highlighting the advantage of operating at high effective frame rates.

The proposed pipeline implemented a robust feature-matching scheme using small 44-bit long

descriptors. FPSP’s analog computation introduces noise to the values, but the proposed method

can distinguish the noisy features. We demonstrated that processing data in the focal-plane and

limiting data movement only to important features could increase the frame rate of VO system and

achieve low latency without consuming much energy.

While SCAMP-5 offers many promising potentials, the fill factor of the sensor is low because the

processing elements are collocated with the photodiode on each pixel. This means that BIT-VO

requires the scene to be well-illuminated, and all of our experiments were conducted in well-

lit rooms. However, this limitation could potentially be addressed by using modern fabrication

technologies, such as stacked CMOS. Additionally, the instruction set and registers available on

the device are limited. Ideally, rather than performing feature matching on the host device, one

would perform more advanced computation (e.g., feature matching or dense optical flow) directly

on the focal-plane. However, these are challenging to implement on the current iteration of the

SCAMP-5 camera. We hope this work will inform the design of future FPSP devices with higher

computational capability, light sensitivity, and pixel count. The FPSP device’s programmable

nature, in contrast to, for example, event cameras, offers the prospect of higher accuracy and

enhanced robustness through greater adaptivity.
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Work within this chapter results from a close collaboration with Hidenobu Matsuki, leading to a

paper: Gaussian Splatting SLAM, Hidenobu Matsuki*, Riku Murai*, Paul H.J. Kelly, Andrew

J. Davison, CVPR 2024 (*denotes equal contribution) [Matsuki et al., 2024].

This chapter presents the first application of 3D Gaussian Splatting in monocular SLAM, the most

fundamental but the hardest setup for Visual SLAM. Our method, which runs live at 3 FPS, util-

ises Gaussians as the only 3D representation, unifying the required representation for accurate,
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Figure 4.1: From a single monocular camera, we reconstruct a high-fidelity 3D scene live at
3 FPS. For every incoming RGB frame, 3D Gaussians are incrementally formed and optimised
together with the camera poses. We show both the rasterised Gaussians (left) and Gaussians
shaded to highlight the geometry (right). Notice the details and the complex material properties
(e.g. transparency) captured. Thin structures such as wires are accurately represented by numerous
small, elongated Gaussians, and transparent objects are effectively represented by placing the
Gaussians along the rim. Our system significantly advances the fidelity a live monocular SLAM
system can capture.

efficient tracking, mapping, and high-quality rendering. Designed for challenging monocular set-

tings, our approach is seamlessly extendable to RGB-D SLAM when an external depth sensor

is available. Several innovations are required to continuously reconstruct 3D scenes with high

fidelity from a live camera. First, to move beyond the original 3DGS algorithm, which requires

accurate poses from an offline Structure from Motion (SfM) system, we formulate camera track-

ing for 3DGS using direct optimisation against the 3D Gaussians and show that this enables fast

and robust tracking. Second, by utilising the explicit nature of the Gaussians, we introduce geo-

metric verification and regularisation to handle the ambiguities occurring in incremental 3D dense

reconstruction. Finally, we introduce a full SLAM system which not only achieves state-of-the-art

results in novel view synthesis and trajectory estimation but also reconstruction of tiny and even

transparent objects.

4.1 Introduction

A long-term goal of online reconstruction with a single moving camera is near-photorealistic

fidelity, which will surely allow new levels of performance in many areas of Spatial AI and robotics

as well as opening up a whole range of new applications. While we increasingly see the benefit

of applying powerful pre-trained priors to 3D reconstruction, a key avenue for progress is still

the invention and development of core 3D representations with advantageous properties. Many

“layered” SLAM methods exist which tackle the SLAM problem by integrating multiple different

3D representations or existing SLAM components; however, the most interesting advances are

when a new unified dense representation can be used for all aspects of a system’s operation:

local representation of detail, large-scale geometric mapping and also camera tracking by direct

alignment.

We present the first online visual SLAM system based solely on the 3D Gaussian Splatting (3DGS)
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representation [Kerbl et al., 2023] recently making a big impact in offline scene reconstruction.

In 3DGS a scene is represented by a large number of Gaussian blobs with orientation, elongation,

colour and opacity. Other previous world/map-centric scene representations used for visual SLAM

include occupancy or Signed Distance Function (SDF) voxel grids [Newcombe et al., 2011a];

meshes [Schöps et al., 2019]; point or surfel clouds [Keller et al., 2013, Schöps et al., 2019]; and

recently neural fields [Sucar et al., 2021]. Each of these has disadvantages: grids use significant

memory and have bounded resolution, and even if octrees or hashing allow more efficiency they

cannot be flexibly warped for large corrections [Vespa et al., 2018, Nießner et al., 2013]; meshes

require difficult, irregular topology to fuse new information; surfel clouds are discontinuous and

difficult to fuse and optimise; and neural fields require expensive per-pixel raycasting to render.

We show that 3DGS has none of these weaknesses. As a SLAM representation, it is most similar

to point and surfel clouds and inherits their efficiency, locality and ability to be easily warped

or modified. However, it also represents geometry in a smooth, continuously differentiable way:

a dense cloud of Gaussians merge together and jointly define a continuous volumetric function.

Crucially, modern graphics card’s increased compute capabilities and large VRAM (video random

access memory) allows for fast radix-based sorting and software rasterisation which means that

a large number of Gaussians can be efficiently rendered via “splatting” rasterisation, up to 200

FPS at 1080p. This rapid, differentiable rendering is integral to the tracking and map optimisation

loops in our system.

Up until now, the 3DGS representation has only been used in offline systems for 3D reconstruction

with known camera poses, and we present several innovations to enable online SLAM. We first

derive the analytic Jacobian on Lie group of camera pose with respect to a 3D Gaussian map. We

show that this can be seamlessly integrated into the existing differentiable rasterisation pipeline

to optimise camera poses alongside scene geometry. Second, we introduce a novel Gaussian iso-

tropic shape regularisation to ensure geometric consistency, which we have found is important for

incremental reconstruction. Third, we propose a novel Gaussian resource allocation and pruning

method to keep the geometry clean and enable accurate camera tracking. Our experimental results

demonstrate photorealistic online local scene reconstruction, as well as state-of-the-art camera

trajectory estimation and mapping for larger scenes compared to other rendering-based SLAM

methods. Our method works with only monocular input, which is one of the most challenging

scenarios in SLAM. To highlight the intrinsic capability of 3D Gaussian for camera localisation,

our method does not use any pre-trained monocular depth predictor or other existing tracking

modules but relies solely on RGB image inputs in line with the original 3DGS. Since this is one

of the most challenging SLAM scenarios, we also show our method can easily be extended to

RGB-D SLAM when depth measurements are available.

In summary, our contributions are as follows:

• The first near real-time SLAM system which works with a 3DGS as the only underlying

scene representation, which can handle monocular only inputs.

• Novel techniques within the SLAM framework, including the analytic Jacobian on Lie
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group for direct camera pose estimation, isotropic regularisation of the Gaussian shape,

and geometric verification.

• Extensive evaluations on a variety of datasets both for monocular and RGB-D settings,

demonstrating competitive performance, particularly in real-world scenarios.

4.2 Related Work

Dense visual SLAM focuses on reconstructing detailed 3D maps, unlike sparse SLAM methods

which excel in pose estimation [Mur-Artal et al., 2015, Engel et al., 2017, Forster et al., 2014] but

typically yield maps useful mainly for localisation. In contrast, dense SLAM creates interactive

maps beneficial for broader applications, including AR and robotics. Dense SLAM methods are

generally divided into two primary categories: Frame-centric and Map-centric.

4.2.1 Frame-centric SLAM

In frame-centric SLAM, photometric errors are minimised across consecutive frames by jointly

estimating per-frame depth and frame-to-frame camera motion. Frame-centric approaches [Teed

and Deng, 2021, Czarnowski et al., 2020] are efficient, as individual frames host local rather than

global geometry (e.g. depth maps), and are attractive for long-session SLAM, but if a dense global

map is needed, it must be constructed on demand by assembling all of these parts which are not

necessarily fully consistent.

4.2.2 Map-centric SLAM

Map-centric SLAM uses a unified 3D representation in contrast across the SLAM pipeline, en-

abling a compact and streamlined system. Compared to purely local frame-to-frame tracking,

a map-centric approach leverages global information by tracking against the reconstructed 3D

consistent map. We’ve reviewed the use of classical map-centric 3D representations such as

voxels and surfels for SLAM in Section 1.7. Recently, in addition to classical graphic primitives,

neural network-based map representations are a promising alternative. iMAP [Sucar et al., 2021]

demonstrated the interesting properties of neural representation, such as sensible hole filling of

unobserved geometry. Many recent approaches combine the classical and neural representations

to capture finer details [Zhu et al., 2022, Sandström et al., 2023, Johari et al., 2023, Zhu et al.,

2024, Rosinol et al., 2023]; however, a large amount of computation required for neural rendering

makes the live operation of such systems challenging.

Our method adopts a Map-centric approach, utilising 3D Gaussians as the only SLAM repres-

entation. Similar to surfel-based SLAM, we dynamically allocate the 3D Gaussians, enabling us

to model an arbitrary spatial distribution of the scene. Unlike other methods such as ElasticFu-

sion [Whelan et al., 2015b] and PointFusion [Keller et al., 2013], however, by using differentiable
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Figure 4.2: SLAM System Overview: Our SLAM system uses 3D Gaussians as the only repres-
entation, unifying all components of SLAM, including tracking, mapping, keyframe management,
and novel view synthesis.

rasterisation, our SLAM system can capture high-fidelity scene details and represent challenging

object properties by direct optimisation against information from every pixel.

4.3 Gaussian Splatting SLAM

Our main contribution is the full SLAM system, which uses 3DGS as the only SLAM represent-

ation. Here, we give an overview of 3DGS, how we perform camera pose optimisation against

3DGS, and the implementation details of the SLAM system. The overview of the system is sum-

marised in Figure 4.2.

4.3.1 Gaussian Splatting

Our SLAM representation is 3DGS, mapping the scene with a set of anisotropic Gaussians G.

Each Gaussian Gi contains optical properties: colour ci and opacity αi. For continuous 3D rep-

resentation, the mean µi
W and covariance Σi

W , defined in the world coordinate, represent the

Gaussian’s position and its ellipsoidal shape. For simplicity, we omit the spherical harmonics

(SHs) representing view-dependent radiance. Since 3DGS uses volume rendering, explicit extrac-

tion of the surface is not required. Instead, by splatting and blending N Gaussians, a pixel colour

Cp is synthesised:

Cp =
∑

i∈N
ciαi

i−1∏

j=1

(1− αj) . (4.1)

3DGS performs rasterisation, iterating over the Gaussians rather than marching along the camera

rays, and hence, free spaces are ignored during rendering. During rasterisation, the contributions

of α are decayed via a Gaussian function, based on the 2D Gaussian formed by splatting a 3D

Gaussian. The 3D Gaussians N (µW ,ΣW ) in world coordinates are related to the 2D Gaussians

N (µI ,ΣI) on the image plane through a projective transformation:

µI = π(TCW · µW ) ,ΣI = JWΣWWTJT , (4.2)
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where π is the projection operation and TCW ∈ SE(3) is the camera pose of the viewpoint. J

is the Jacobian of the linear approximation of the projective transformation, and W is the rota-

tional component of TCW . This formulation enables the 3D Gaussians to be differentiable, and

the blending operation provides gradient flow to the Gaussians. Using first-order gradient des-

cent [Kingma and Ba, 2015], Gaussians gradually refine both their optic and geometric parameters

to represent the captured scene with high fidelity.

4.3.2 Camera Pose Optimisation

To achieve accurate tracking, we typically require at least 50 iterations of gradient descent per

frame. This requirement emphasises the necessity of a representation with computationally effi-

cient view synthesis and gradient computation, making the choice of 3D representation a crucial

part of designing a SLAM system.

In order to avoid the overhead of automatic differentiation, 3DGS implements rasterisation with

CUDA with derivatives for all parameters calculated explicitly. Since rasterisation is performance

critical, we similarly derive the camera Jacobians explicitly.

To the best of our knowledge, we provide the first analytical Jacobian of SE(3) camera pose with

respect to the 3D Gaussians used in EWA splatting [Zwicker et al., 2002] and 3DGS. This opens

up new applications of 3DGS beyond SLAM.

We use Lie algebra to derive the minimal Jacobians, ensuring that the dimensionality of the Jac-

obians matches the degrees of freedom, eliminating any redundant computations. The terms of

Equation 4.2 are differentiable with respect to the camera pose TCW ; using the chain rule:

∂µI

∂TCW
=
∂µI

∂µC

DµC

DTCW
, (4.3)

∂ΣI

∂TCW
=
∂ΣI

∂J

∂J

∂µC

DµC

DTCW
+
∂ΣI

∂W

DW

DTCW
. (4.4)

where TCW represents the 3D position of Gaussian in the camera coordinate. We take the de-

rivatives on the manifold to derive minimal parameterisation. Borrowing the notation from [Solà

et al., 2018], let T ∈ SE(3) and τ ∈ se(3). We define the partial derivative on the manifold as:

Df(T)

DT
≜ lim

τ→0

Log(f(Exp(τ) ◦T) ◦ f(T)−1)

τ
, (4.5)

With this, we derive the following:

DµC

DTCW
=
[
I −[µC ]×

]
,

DW

DTCW
=



0 −[W:,1]×

0 −[W:,2]×

0 −[W:,3]×


 , (4.6)

where [·]× denotes the skew symmetric matrix of a 3D vector, and W:,i refers to the ith column

of the matrix. We provide the full derivation in Section 9.1.
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4.3.3 Tracking

In tracking, only the current camera pose is optimised without updates to the map representation.

In the monocular case, we minimise the following photometric residual:

Epho =
∥∥I(G,TCW )− Ī

∥∥
1
, (4.7)

where I(G,TCW ) renders the Gaussians G from TCW , and Ī is an observed image.

We further optimise affine brightness parameters for varying exposure and penalise non-edge or

low-opacity pixels. When depth observations are available, we define the geometric residual as:

Egeo =
∥∥D(G,TCW )− D̄

∥∥
1
, (4.8)

where D(G,TCW ) is depth rasterisation and D̄ is the observed depth. Rather than simply using

the depth measurements to initialise the Gaussians, we minimise both photometric and geometric

residuals: λphoEpho + (1− λpho)Egeo, where λpho is a hyperparameter.

As in Equation 4.1, per-pixel depth is rasterised by alpha-blending:

Dp =
∑

i∈N
ziαi

i−1∏

j=1

(1− αj) , (4.9)

where zi is the distance to the mean µW of Gaussian i along the camera ray. We derive analytical

Jacobians for the camera pose optimisation in a similar manner to Equation 4.3, Equation 4.4.

4.3.4 Keyframing

Since using all the images from a video stream to jointly optimise the Gaussians and camera poses

online is infeasible, we maintain a small window Wk consisting of carefully selected keyframes

based on inter-frame covisibility. Ideal keyframe management will select non-redundant key-

frames observing the same area, spanning a wide baseline to provide better multiview constraints.

Selection and Management Every tracked frame is checked for keyframe registration based

on our simple yet effective criteria. We measure the covisibility by measuring the intersection

over the union of the observed Gaussians between the current frame i and the last keyframe j. If

the covisibility drops below a threshold, or if the relative translation tij is large with respect to

the median depth, frame i is registered as a keyframe. For efficiency, we maintain only a small

number of keyframes in the current window Wk following the keyframe management heuristics

of DSO [Engel et al., 2017]. The main difference is that a keyframe is removed from the current

window if the overlap coefficient with the latest keyframe drops below a threshold.

Gaussian Covisibility An accurate estimate of covisibility simplifies keyframe selection and

management. 3DGS respects visibility ordering since the 3D Gaussians are sorted along the cam-

era ray. This property is desirable for covisibility estimation as occlusions are handled by design.
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A Gaussian is marked to be visible from a view if used in the rasterisation and if the ray’s accu-

mulated α has not yet reached 0.5. This enables our estimated covisibility to handle occlusions

without requiring additional heuristics.

Gaussian Insertion and Pruning At every keyframe, new Gaussians are inserted into the scene

to capture newly visible scene elements and to refine the fine details. When depth measurements

are available, Gaussian means µW are initialised by back-projecting the depth. In the monocular

case, we render the depth at the current frame. For pixels with depth estimates, µW are initialised

around those depths with low variance; for pixels without the depth estimates, we initialise µW

around the median depth of the rendered image with high variance.

In the monocular case, the positions of many newly inserted Gaussians are incorrect. While the

majority will quickly vanish during optimisation as they violate multiview consistency, we further

prune the excess Gaussians by checking the visibility amongst the current window Wk. If the

Gaussians inserted within the last 3 keyframes are unobserved by at least 3 other frames, we prune

them out as they are geometrically unstable.

4.3.5 Mapping

The purpose of mapping is to maintain a coherent 3D structure and to optimise the newly inserted

Gaussians. During mapping, the keyframes in Wk are used to reconstruct currently visible regions.

Additionally, two random past keyframes Wr are selected per iteration to avoid forgetting the

global map. Rasterisation of 3DGS imposes no constraint on the Gaussians along the viewing

ray direction, even with a depth observation. This is not a problem when sufficient carefully

selected viewpoints are provided (e.g. in the novel view synthesis case); however, in SLAM, where

viewpoints are incrementally added, this causes many artefacts, making tracking challenging. We

therefore introduce an isotropic regularisation:

Eiso =

|G|∑

i=1

∥si − s̃i · 1∥1 (4.10)

to penalise the scaling parameters si (i.e. stretch of the ellipsoid) by its difference to the mean

s̃i. As shown in Figure 4.3, this encourages sphericality and avoids the problem of Gaussians

which are highly elongated along the viewing direction, creating artefacts. Let the union of the

keyframes in the current window, and the randomly selected one be W = Wk∪Wr. For mapping,

we solve the following problem:

min
Tk

CW∈SE(3),G,
∀k∈W

∑

∀k∈W
Ek

pho + λisoEiso . (4.11)

If depth observations are available, as in tracking, geometric residuals Equation 4.8 are added to

the optimisation problem:

min
Tk

CW∈SE(3),G,
∀k∈W

∑

∀k∈W
(λphoE

k
pho + (1− λpho)E

k
geo) + λisoEiso .
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w/o 𝐸!"# w/ 𝐸!"#Figure 4.3: Effect of isotropic regularisation: Top: Rendering close to a training view (looking
at the keyboard). Bottom: Rendering 3D Gaussians far from the training views (view from a
side of the keyboard) without (left) and with (right) the isotropic loss. When the photometric
constraints are insufficient, the Gaussians tend to elongate along the viewing direction, creating
artefacts in the novel views and affecting the camera tracking.

We set λpho = 0.9 for all RGB-D experiments, and λiso = 10 for both monocular and RGB-D

experiments.

4.4 Evaluation

We conduct a comprehensive evaluation of our system across a range of both real and synthetic

datasets. Additionally, we perform an ablation study to justify our design choices. Finally, we

present qualitative results of our system operating live using a monocular camera, illustrating its

practicality and high-fidelity reconstruction.

4.4.1 Datasets

For our quantitative analysis, we evaluate our method on the TUM RGB-D dataset [Sturm et al.,

2012] (3 sequences) and the Replica dataset [Straub et al., 2019] (8 sequences), following the eval-

uation in [Sucar et al., 2021]. For qualitative results, we use self-captured real-world sequences

recorded by Intel Realsense d455. Since the Replica dataset is designed for RGB-D SLAM evalu-

ation, it contains challenging purely rotational camera motions. Hence, we use the Replica dataset
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only for RGB-D evaluation. The TUM RGB-D dataset is used for both monocular and RGB-D

evaluation.

4.4.2 Implementation Details

We run our SLAM on a desktop with Intel Core i9 12900K 3.50GHz and a single NVIDIA Ge-

Force RTX 4090. We present results from our multi-process implementation aimed at live, near

real-time1 applications. For a fair comparison with other methods on Replica, we additionally

report results for single-process implementation, which performs more mapping iterations. As

with 3DGS, time-critical rasterisation and gradient computation are implemented using CUDA.

The rest of the SLAM pipeline is developed with PyTorch.

We use the Adam Optimiser for both camera poses and Gaussian parameter optimisation. For

camera poses, we used 0.003 for rotation and 0.001 for translation. For 3D Gaussians, we used

the default learning parameters of the original Gaussian Splatting implementation [Kerbl et al.,

2023], apart from in monocular setting where we increase the learning rate of the positions of the

Gaussians µW by a factor of 10.

4.4.3 Metrics

For camera tracking accuracy, we report the Root Mean Square Error (RMSE) of the Absolute

Trajectory Error (ATE) of the keyframes. To evaluate map quality, we report standard photomet-

ric rendering quality metrics (PSNR, SSIM and LPIPS) following the evaluation protocol used

in [Sandström et al., 2023]. To evaluate the map quality, rendering metrics are computed on every

fifth frame. We exclude the keyframes (training views). We report the average across three runs

for all our evaluations. In the tables, the best result is in bold, and the second best is underlined.

4.4.4 Baseline Methods

We primarily benchmark our SLAM method against other approaches that, like ours, do not

have explicit loop closure. In monocular settings, we compare with state-of-the-art classical and

learning-based direct visual odometry (VO) methods. Specifically, we compare DSO [Engel et al.,

2017], DepthCov [Dexheimer and Davison, 2023], and DROID-SLAM [Teed and Deng, 2021] in

VO configurations. These methods are selected based on their public reporting of results on the

benchmark (TUM dataset) or the availability of their source code for getting the benchmark result.

In the RGB-D case, we compare against neural-implicit SLAM methods [Sucar et al., 2021, Zhu

et al., 2022, Huang et al., 2021, Yang et al., 2022, Johari et al., 2023, Wang et al., 2023, Sandström

et al., 2023] which are also map-centric, rendering-based and do not perform loop closure.

1By real-time performance, we mean that the tracking is performed at frame rate (e.g., 30 FPS)
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Input
Loop-
closure

Method fr1/desk fr2/xyz fr3/office Avg.

M
on

oc
ul

ar w/o

DSO [Engel et al., 2017] 22.4 1.10 9.50 11.0
DROID-VO [Teed and Deng, 2021] 5.20 10.7 7.30 7.73

DepthCov-VO [Dexheimer and Davison, 2023] 5.60 1.20 68.8 25.2
Ours 3.78 4.60 3.50 3.96

w/
DROID-SLAM [Teed and Deng, 2021] 1.80 0.50 2.80 1.70

ORB-SLAM2 [Mur-Artal and Tardós, 2017] 1.90 0.60 2.40 1.60

R
G

B
-D

w/o

iMAP [Sucar et al., 2021] 4.90 2.00 5.80 4.23
NICE-SLAM [Zhu et al., 2022] 4.26 6.19 3.87 4.77
DI-Fusion [Huang et al., 2021] 4.40 2.00 5.80 4.07
Vox-Fusion [Yang et al., 2022] 3.52 1.49 26.01 10.34
ESLAM [Johari et al., 2023] 2.47 1.11 2.42 2.00

Co-SLAM [Wang et al., 2023] 2.40 1.70 2.40 2.17
Point-SLAM [Sandström et al., 2023] 4.34 1.31 3.48 3.04

Ours 1.50 1.44 1.49 1.47

w/
BAD-SLAM [Schöps et al., 2019] 1.70 1.10 1.70 1.50
Kintinous [Whelan et al., 2015a] 3.70 2.90 3.00 3.20

ORB-SLAM2 [Mur-Artal and Tardós, 2017] 1.60 0.40 1.00 1.00

Table 4.1: Camera tracking result on TUM for monocular and RGB-D. ATE RMSE in cm
is reported. In both monocular and RGB-D cases, we achieve state-of-the-art performance. In
particular, in the monocular case, not only do we outperform systems which use deep prior, but
we achieve comparable performance with many of the RGB-D systems.

4.4.5 Camera Tracking Accuracy

Table 4.1 shows the tracking results on the TUM RGB-D dataset. In the monocular setting, our

method surpasses other baselines without requiring any deep priors. Furthermore, our perform-

ance is comparable to systems which perform explicit loop closure. This clearly highlights that

there still remains potential for enhancing the tracking of monocular SLAM by exploring funda-

mental SLAM representations.

Our RGB-D method shows better performance than any other baseline method. Notably, our

system surpasses ORB-SLAM in the fr1/desk sequence, narrowing the gap between Map-centric

SLAM and the state-of-the-art sparse frame-centric methods. Table 4.2 reports results on the

synthetic Replica dataset. Our single-process implementation shows competitive performance and

achieves the best result in 6 out of 8 sequences. Our multi-process implementation which performs

fewer mapping iterations, still performs comparably. In contrast to other methods, our system

demonstrates higher performance on real-world data (TUM RGB-D) as the Gaussian positions are

optimised to compensate for the sensor noise.

4.4.6 Novel View Rendering

Table 4.6 summarises the novel view rendering performance of our method with RGB-D input.

We consistently show the best performance across most sequences and are at least second best.
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Method r0 r1 r2 o0 o1 o2 o3 o4 Avg.
iMAP [Sucar et al., 2021] 3.12 2.54 2.31 1.69 1.03 3.99 4.05 1.93 2.58

NICE-SLAM [Zhu et al., 2022] 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13 1.07
Vox-Fusion [Yang et al., 2022] 1.37 4.70 1.47 8.48 2.04 2.58 1.11 2.94 3.09
ESLAM [Johari et al., 2023] 0.71 0.70 0.52 0.57 0.55 0.58 0.72 0.63 0.63

Point-SLAM [Sandström et al., 2023] 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72 0.53
Ours 0.44 0.32 0.31 0.44 0.52 0.23 0.17 2.25 0.58

Ours (sp) 0.33 0.22 0.29 0.36 0.19 0.25 0.12 0.81 0.32

Table 4.2: Camera tracking result on Replica for RGB-D SLAM. ATE RMSE in cm is repor-
ted. We achieve best performance across most sequences. Here, Ours is our multi-process imple-
mentation and Ours (sp) is the single-process implementation which ensures a certain amount of
mapping iteration similar to other works.

Input Method fr1/desk fr2/xyz fr3/office Avg.

M
on

o w/o Eiso 4.16 4.66 5.73 4.83
w/o kf selection 13.2 4.36 8.65 8.73

w/o pruning 78.2 4.5 57.0 46.6
Ours 3.78 4.60 3.50 3.96

R
G

B
-D w/o Egeo 2.39 0.62 4.98 2.66

w/o kf selection 1.64 1.49 2.60 1.90
w/o Eiso 1.60 1.42 1.32 1.43

Ours 1.50 1.44 1.49 1.47

Table 4.3: Ablation Study on TUM RGB-D dataset. We analyse the usefulness of isotropic
regularisation, geometric residual, keyframe selection and pruning to our SLAM system.

Method r0 r1 r2 o0 o1 o2 o3 o4 Avg.
w/o Eiso 0.44 0.86 0.28 0.75 0.99 0.36 0.28 2.6 0.82

Ours 0.44 0.32 0.31 0.44 0.52 0.23 0.17 2.25 0.58

Table 4.4: Isotropic Loss Ablation Study on Replica dataset (RGB-D input). Numbers are
camera tracking error (ATE RMSE) in cm.

Memory Usage [MB]
iMAP [Sucar et al., 2021] NICE-SLAM [Zhu et al., 2022] Co-SLAM [Wang et al., 2023] Ours (Mono) Ours (RGB-D)

0.8MB 40.3.4MB 6.4MB 2.6MB 3.97MB

Table 4.5: Memory Analysis on TUM RGB-D dataset. The baseline numbers are computed
from the parameter numbers in [Wang et al., 2023]

Our rendering FPS is hundreds of times faster than other methods, offering a significant advant-

age for applications which require real-time map interaction. While Point-SLAM is competitive,

the method focuses on view synthesis rather than novel-view synthesis. Their view synthesis is

conditional on the availability of depth due to the depth-guided ray-sampling, making novel-view

synthesis challenging. On the other hand, our rasterisation-based approach does not require depth

guidance and achieves efficient, high-quality, novel view synthesis. Figure 4.4 provides a qualit-

ative comparison of the rendering of ours and Point-SLAM (with depth guidance).
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Method Metric room0 room1 room2 office0 office1 office2 office3 office4 Avg. Rendering FPS

NICE-SLAM [Zhu et al., 2022]
PSNR[dB] ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42

0.54SSIM ↑ 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856 0.809
LPIPS↓ 0.33 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Vox-Fusion [Yang et al., 2022]
PSNR[dB] ↑ 22.39 22.36 23.92 27.79 29.83 20.33 23.47 25.21 24.41

2.17SSIM ↑ 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847 0.801
LPIPS↓ 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199 0.236

Point-SLAM [Sandström et al., 2023]
PSNR[dB] ↑ 32.40 34.08 35.5 38.26 39.16 33.99 33.48 33.49 35.17

1.33SSIM ↑ 0.974 0.977 0.982 0.983 0.986 0.96 0.960 0.979 0.975
LPIPS↓ 0.113 0.116 0.111 0.1 0.118 0.156 0.132 0.142 0.124

Ours
PSNR[dB] ↑ 34.83 36.43 37.49 39.95 42.09 36.24 36.7 36.07 37.50

769SSIM ↑ 0.954 0.959 0.965 0.971 0.977 0.964 0.963 0.957 0.960
LPIPS↓ 0.068 0.076 0.075 0.072 0.055 0.078 0.065 0.099 0.070

Table 4.6: Rendering performance comparison of RGB-D SLAM methods on Replica. Our
method outperforms most of the rendering metrics compared to existing methods. Note that Point-
SLAM uses sensor depth (ground-truth depth in Replica) to guide sampling along rays, which
limits the rendering performance to existing views. The numbers for the baselines are taken
from [Sandström et al., 2023].

Point-SLAM Ours GT

Figure 4.4: Rendering examples on Replica. Point-SLAM struggle with rendering fine details
due to the stochastic ray sampling.
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4. Gaussian Splatting SLAM

Figure 4.5: Monocular SLAM result on fr1/desk sequence: We show the reconstructed 3D
Gaussian maps (Left) and novel view synthesis result (Right).

4.4.7 Ablative Analysis

In Table 4.3, we perform ablation to confirm our design choices. Isotropic regularisation and geo-

metric residual improve the tracking of monocular and RGB-D SLAM respectively, as they aid in

constraining the geometry when photometric signals are weak. For both cases, keyframe selection

significantly improves systems performance, as it automatically chooses suitable keyframes based

on our occlusion-aware keyframe selection and management. In TUM, for RGB-D SLAM, as

Table 4.3 shows, isotropic regularisation does not improve the performance but only shows a mar-

ginal difference. However, for Replica, as summarised in Table 4.4, isotropic loss significantly

improves camera tracking performance. Even with the depth measurement, since rasterisation

does not consider the elongation along the viewing axis. Isotropic regularisation is required to

prevent the Gaussians from over-stretching, especially for textureless regions, which are common

in Replica. We further compare the memory usage of different 3D representations in Table 4.5.

MLP-based iMAP is clearly more memory efficient, but it struggles to express high-fidelity 3D

scenes due to the limited capacity of small MLP. Compared with a voxel grid of features used in

NICE-SLAM, our method uses significantly less memory.

4.4.8 Qualitative Results

We report both the 3D reconstruction of the SLAM dataset and self-captured sequences. In Fig-

ure 4.5, we visualise the monocular SLAM reconstruction of fr1/desk. The placements of the
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Figure 4.6: Self-captured Scenes: Challenging scenes and objects, for example, transparent
glasses and the crinkled texture of salad, are captured by our monocular SLAM running live.

Gaussians are geometrically sensible and coherent in 3D, and our rendering from the different

viewpoints highlights the quality of our systems’ novel view synthesis. In Figure 4.6, we self-

capture challenging scenes for monocular SLAM. By not explicitly modelling a surface, our sys-

tem naturally handles transparent objects which is challenging for many other SLAM systems.

4.5 Conclusion

We have proposed the first SLAM method using 3D Gaussians as a SLAM representation. Via ef-

ficient volume rendering, our system significantly advances the fidelity and diversity of object ma-

terials a live SLAM system can capture. Our system achieves state-of-the-art performance across

benchmarks for both monocular and RGB-D cases. Targetting photorealistic reconstruction, our

system compresses the input images into a unified 3D representation that is much smaller than the

original images in terms of memory (e.g. Replica/Office0 contains over 500 MB of images, and

the reconstruction size is only 13 MB), and as shown in Figure 1.4, we can apply off-the-shelf pre-

trained models to rendered images as our reconstruction retained, though not perfect, the details

of the natural images.

One of the limitation of our approach is that our method requires relatively slow motion for

monocular tracking since our system is slower than other state-of-the-art SLAM systems such

as ORB-SLAM. Speeding up the tracking by preconditioning or approximate second-order op-
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timiser would be an interesting and practical future direction.
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CHAPTER 5

Gaussian Belief Propagation For
State Estimation
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In this section, we first introduce the technical derivation of Gaussian Belief Propagation (GBP)

following [Davison and Ortiz, 2019] and detail how we can extend GBP to handle non-linearity

and outlying measurements. We then extend GBP to support variables that belong to Lie Groups.

5.1 Gaussian Belief Propagation

GBP is a specialisation of Loopy Belief Propagation (LBP), where all variables, factors, and

hence, all the inter-node messages are Gaussian. Here, all the Gaussians are parameterised in the

canonical form unless otherwise specified.
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5. Gaussian Belief Propagation For State Estimation

5.1.1 Belief Propagation

Here, we reiterate the summary of the message-passing rules in Belief Propagation (BP) from

Section 2.4 for convenience.

Belief Update The marginal distribution of a variable xi is the product of all incoming messages:

p(xi) =
∏

α∈n(xi)

mfα→xi
(xi) . (5.1)

Variable-to-factor Message The message from the variable xi to the factor fα is:

mxi→fα(xi) =
∏

β∈n(xi)/α

mfβ→xi
(xi) . (5.2)

Factor-to-variable Message The message from the factor fα to the variable xi is:

mfα→xi
(xi) =

∑

xα/xi

fα(xα)
∏

xj∈xα/xi

mxj→fα(xj) . (5.3)

5.1.2 Belief Update

Following Equation 5.1, belief update is a product of all the incoming Gaussians. A product of

the Gaussians in a canonical form is a summation of the parameters (Equation 2.7). Hence, to

update the belief of a variable node xi, we simply take the summation of the parameters of all the

incoming factor-to-variable messages:

ηi =
∑

fα∈n(xi)

ηfα , Λi =
∑

fα∈n(xi)

Λfα , (5.4)

and the updated belief is p(xi) = N−1(x;ηi,Λi).

5.1.3 Variable to Factor Message

As shown in Equation 5.2, the message from a variable xi to a factor fα is the product of all the

incoming factor-to-variable messages except the one from the outgoing factor:

ηxi→fα =
∑

fβ∈n(xi)/fα

ηfβ
, Λxi→fα =

∑

fβ∈n(xi)/fα

Λfβ , (5.5)

where we define the incoming messages as mfβ→xi
(xi) = N−1(ηfβ

,Λfβ ), and the outgoing

message as mxi→fα(xi) = N−1(ηxi→fα ,Λxi→fα).

We also can view the message as downdating the belief of xi with the message from fα:

mxi→fα(xi) =
p(xi)

mfα→xi
(xi)

=

∏
fβ∈n(xi)

mfβ→xi
(xi)

mfα→xi
(xi)

, (5.6)

which avoids recomputing the partial sum for every outgoing message.
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5.1.4 Factor to Variable Message

Given a measurement function h, we can define a likelihood, the conditional probability of z given

x as:

p(z|x) = K exp

(
−1

2
(z− h(x))⊤Σ−1(z− h(x))

)
, (5.7)

= K exp (−E(x; z)) , (5.8)

where K is the normalisation constant, and Σ is the covariance matrix of the measurement noise,

and z is the measurement. We define an energy function E(x; z) which is proportional to the

negative log of the likelihood.

To derive the Gaussian factor over x, we begin with our general factor energy E(x; z), and our

goal is to manipulate the energy into the form of a Gaussian function over x in the canonical form:

E(x; z) =
1

2
x⊤Λx− η⊤x . (5.9)

After transforming the energy into this form, we can identify the canonical parameters η and Λ of

the factor distribution.

To begin with, any linear measurement function can be generally written as:

h(x) = Ax+ b , (5.10)

where b ∈ Rm is a constant vector and A ∈ Rm×n is a constant matrix for z ∈ Rm and x ∈ Rn.

By substituting Equation 5.10 into Equation 5.7, we can write the energy function as:

E(x; z) =
1

2
(z−Ax− b)⊤Λ(z−Ax− b) , (5.11)

where Λ = Σ−1. Re-arranging the terms, we can write the energy function as:

E(x; z) =
1

2
[z−Ax− b]⊤Λ [z−Ax− b]

=
1

2
[(z− b)−Ax]⊤Λ [(z− b)−Ax]

=
1

2

[
(z− b)⊤Λ(z− b) + (Ax)⊤ΛAx− (z− b)⊤ΛAx− (Ax)⊤Λ(z− b)

]
.

The first of the four terms here is a constant which doesn’t depend on x, so we can drop it into the

normalising constant c. The third and fourth are equal (one is the transpose of the other, and both

are scalars), so we can simplify to:

E(x; z) =
1

2
(Ax)⊤ΛAx− (z− b)⊤ΛAx+ c

=
1

2
x⊤(A⊤ΛA)x−

(
A⊤Λ(z− b)

)⊤
x+ c . (5.12)

Matching this with the Equation 5.9, we can identify the canonical form parameters of the factor

as:

ηf = A⊤Λ(z− b), (5.13)

Λf = A⊤ΛA . (5.14)
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r

l

Σ =

[
1.0 0.0
0.0 0.25

] r

l

Σ =

[
1.0 0.0
0.0 1.0

]

Figure 5.1: Linear approximation (orange) of the true non-linear range-bearing factor (blue). Fig-
ure adapted from [Ortiz et al., 2021].

The constant c can be ignored as it will be absorbed into the normalisation constant K.

Following Equation 5.3, the message from the factor fα to the variable xi is the marginal of

the joint distribution of the factor fα and all the incoming messages except from xi. Again, the

joint distribution is computed by the product, which simply is the summation of the parameters.

Marginalisation in a canonical form involves the Schurs complement of the joint Gaussian (Equa-

tion 2.12); however, typically, since the factors are only adjacent to a small number of variables,

the operation is efficient.

5.2 Beyond Gaussian Factors

In any realistic problem, the Gaussian assumption about the sensor measurement may not hold as

a sensor model might be non-linear or observations may contain outlying noise. Here, we discuss

how GBP can be extended to support the non-linearity of the measurement function and also how

we can robustify the inference against outlying measurement.

5.2.1 Non-linear Factors

We have so far assumed that the factors are linear; however, most problems involve factors with

non-linearity in their measurement prediction function h(·), which means that the factor distribu-

tion over the variables x is no longer Gaussian. The common practice is to linearise the problem

by local linear approximation of the functions, and following [Davison and Ortiz, 2019], we ap-

ply the same approach for GBP. First, we take the Taylor approximation of the measurement
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1
2
x2

Huber Loss
Tukey Loss

Figure 5.2: Huber and Tukey loss plotted against a quadratic loss. We set the parameters to the
commonly used value of c = 1.345, 4.685, respectively.

prediction function around the current state xt:

h(x) ≈ h(xt) +∇h(x)|⊤x=xt
(x− xt) . (5.15)

Let J = ∇h(x)|⊤x=xt
be the Jacobian of the measurement prediction function evaluated at the

current state xt, them the linearised function can be written as:

h(x) ≈ Jx+ (h(xt)− Jxt) . (5.16)

By comparing against Equation 5.10, we identify that A = J and b = h(xt)− J(xt). Substitut-

ing them into Equation 5.13 and Equation 5.14, we get the canonical parameters of a linearised

approximation of a non-linear factor to be:

ηf = J⊤Λ(z− h(xt) + Jxt), (5.17)

Λf = J⊤ΛJ . (5.18)

For example, we use Figure 5.1 to visualise the linear approximation of the range-bearing factor,

which is defined as:

h(x) =

[
∥r − l∥2

arctan(ly − ry, lx − rx)

]
, (5.19)

where r is the robot pose and l is the landmark pose. The linear approximation is in orange, and

the true non-linear factor is in blue. As shown, the approximation becomes worse as we increase

the measurement uncertainty.

5.2.2 Robust Factors

Practically, for any problem, we have a certain ratio of outlying measurements which does not

follow the assumed Gaussian distribution. Outlying observations yield a high residual due to the

quadratic cost. Thus, the presence of even a single outlier can cause optimisation to fail and

produce a distorted solution.
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Figure 5.3: We visualise how the parabola is scaled to match the gradient of the robust cost
function. Left: Huber Loss, Right: Tukey Loss.

This problem is encountered commonly in a non-linear least-squares problem. Here, we will apply

the same strategy to mitigate the outlying measurements and extend the GBP algorithm to handle

such cases.

First, let us revisit the standard non-linear least-squares problem:

xt+1 = arg min
x

1

2

n∑

i=1

∥zi − hi(x)∥2Σ , (5.20)

where h(·) is a non-linear measurement function. As discussed in Section 2.2.4, algorithms such as

Gauss-Newton avoid the costly computation of the Hessian by exploiting the objective function’s

least-squares structure. In order to down-weight the influence of the outlying measurement while

retaining the least-squares structure, we add a scalar weighting function wi(·):

xt+1 = arg min
x

1

2

n∑

i=1

wi(xt)∥zi − hi(x)∥2Σ , (5.21)

which is computed based on the current state xt for each of the energies. This form of the problem

is called Iteratively Reweighted Least Squares and can be interpreted as dynamically scaling per

measurement covariance as:

xt+1 = arg min
x

1

2

n∑

i=1

wi(xt)∥zi − hi(x)∥2Σ , (5.22)

= arg min
x

1

2

n∑

i=1

wi(xt) (zi − hi(x))
⊤Σ−1

i (zi − hi(x)) , (5.23)

= arg min
x

1

2

n∑

i=1

(zi − hi(x))
⊤ (wi(xt)Σ

−1
i

)
(zi − hi(x)) , (5.24)

since wi(x) is a scalar. Since we are simply re-scaling the covariance, the problem structure

remains unchanged, and we can use efficient algorithms such as Gauss-Newton as Levenberg-

Marquardt.

Let now discuss how we can find a good weighting function. One way to reduce the effect of

the outlying measurements is to avoid quadratic costs. Hence, by switching from a quadratic
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to a linear cost after a certain threshold c, we can reduce the overall influence of the outlying

measurements. Such loss function is called the Huber Loss, as shown in Figure 5.2, which is a

piecewise cost function which assigns less energy to the outlying measurements. Tukey’s Biweight

on the other hand clips the cost at a certain value and practically ignores the measurements in

the outlying region during optimisation. Both Huber Loss and Tukey’s Biweight belong to M-

estimators, a robust alternative to the quadratic cost [Zhang, 1997].

To replace the standard quadratic cost function with a robust function ρ(·), we refine the energy

as:

E(x; z) = ρ (∥z− h(x)∥Σ) . (5.25)

Note, we get the standard least-square by setting ρ(u) = 1
2u

2.

The definitions of commonly used M-estimators are:

Huber Loss:

ρ(x) =





x2

2 if |x| ≤ c

c(|x| − c
2) otherwise

(5.26)

Tukey’s Biweight:

ρ(x) =





c2

6

(
1−

(
1−

(
x
c

)2)3
)

if |x| ≤ c

c2

6 otherwise
(5.27)

Notice that we cannot simply replace ρ(·) from a quadratic function to Huber as they will no

longer have the least-squares form. Instead of solving the problem directly, we derive appropriate

weighting functions and solve it using iteratively reweighted least-squares.

Let define a general robust optimisation problem as:

xt+1 = arg min
x

n∑

i=1

ρ (∥zi − hi(x)∥Σ) , (5.28)

= arg min
x

n∑

i=1

ρ (ri(x)) . (5.29)

Taking the partial derivative with respect to x:

∇x

n∑

i=1

ρ (ri(x)) =

n∑

i=1

ρ′ (ri(x))∇xri(x) = 0 , (5.30)

where ρ′ (ri(x)) =
∂ρ(ri(x))
∂ri(x)

and is referred to as an influence function ψ(·):

∇x

n∑

i=1

ρ (ri(x)) =

n∑

i=1

ψ (ri(x))∇xri(x) = 0 . (5.31)

83



5. Gaussian Belief Propagation For State Estimation

We now want to find a weighting function w(·) which matches against the above robust optimisa-

tion problem. Taking the partial derivative of Equation 5.21:

∇x
1

2

n∑

i=1

wi(xt)∥zi − hi(x)∥2Σ = ∇x
1

2

n∑

i=1

wi(x)ri(x)
2 = 0 , (5.32)

=
n∑

i=1

wi(x)ri(x)∇xri(x) . (5.33)

Equating Equation 5.31 to Equation 5.33, we get:

wi(x)ri(x) = ψ (ri(x)) , (5.34)

and by rearranging:

wi(x) =
ψ (ri(x))

ri(x)
. (5.35)

Solving iteratively reweighted least-squares problems with such a weighting function yields the

same solution as solving the robustified problem (as the gradient is the same at every step of the

optimisation problem), and we still get to exploit the problem structure and use algorithms such

as Gauss-Newton / Levenberg-Marquardt.

Returning to GBP, we can simply robustify the factors by applying the same modifications. Fol-

lowing Equation 5.24, for each factor energy, we dynamically re-scale the inverse measurement

covariance, thus the measurement precision. With this, we define the canonical parameter of the

factors of Iteratively Reweighted GBP as:

ηf = wi(xt) · J⊤Λ(z− h(xt) + Jxt), (5.36)

Λf = wi(xt) · J⊤ΛJ (5.37)

5.3 Gaussian Belief Propagation with Lie Groups

The use of Lie theory is a key component of modern state estimation. So far, we have assumed

that all of the variables are in Euclidean space; however, such an assumption does not hold in most

robotics / 3D vision applications as a state of a pose is represented using rotation and translation,

where careful thought about parameterisation is needed.

Here, we detail how we extend GBP to support inference of variables which belong to Lie Groups,

and although optimisation on the manifold is well studied [Absil et al., 2008, Barfoot, 2017,

Lynch and Park, 2017] and is used in many numerical optimisation libraries [Agarwal et al., 2010,

Kümmerle et al., 2011, Dellaert, 2012], application of these machinaries to GBP is novel.

The core of how we use Lie Theory within GBP is the choice that all messages to or from a

Lie Group variables take the form of a point estimate, represented by the full over-parameterised

Group element, together with a minimal precision matrix defined in the tangent space around that

element. So, when variable X represents a transformation which is a member of a Lie Group, all
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messages to it will take the form N (X̄ ,Λ−1), where Λ is a precision matrix in the tangent space

at the point-estimate X̄ .

This approach gives maximum flexibility and minimises the need for independent nodes to have

knowledge or memory of each other (which might be required with alternative ideas, such as that

messages would represent perturbations around some remembered linearisation point).

5.3.1 Uncertainty on the Manifold

First, we discuss how the uncertainty on the manifold is defined. Rotations and poses can be

described as an element in a Lie group free from singularities but with some constraints such

as orthonormality. Alternatively, it can be represented as an element in Lie algebra, which can

be treated as vectors (since they are isomorphic to elements in a vector space); however, we

must worry about singularities as we move far away from the origin of the tangent space. When

expressing uncertainties of rotations and rigid transforms, we are motivated to exploit the vector

space characteristics of Lie algebra, as we can reuse all the tools we commonly use in probabilistic

methods [Barfoot, 2017, Chapter 7].

A random variable for elements on the manifold such as SO(3) can be defined in many different

ways but in this thesis, we use the right perturbation convention, following the tutorial by [Solà

et al., 2018]. For SO(3), the random variable X is defined as:

X = X̄ ⊕ ξ , (5.38)

where X̄ ∈ SO(3) is a noise-free mean rotation and ξ ∈ so(3) is a small noisy component (i.e.,

a regular random variable in a vector space). If we assume that the random variable follows a

Gaussian noise, we define the random variable as ξ ∼ N (0,ΣX ). Importantly, even though we

write ΣX , the covariance is defined for the perturbation vector ξ, and such covariance is well

defined as the dimension of the perturbation vector ξ matches the Degrees of Freedom (DoF) of

M, whereas the dimension of X is greater than the DoF for any non-trivial manifolds, hence the

covariance will be ill-defined 1. For the rest of the thesis, we use the notation N (X ; X̄ ,ΣX ) to

denote a random variable on a manifold.

5.3.2 Linearising Factors

Consider a measurement function h(·) which is a function of a Lie group element X̄ ∈ M. To

linearise such a function, same as Equation 5.15 we perform Taylor expansion but we define the

1For example, if we choose quaternion parameterisation for X̄ ∈ SO(3), the covariance defined on the perturb-
ation vector is well-defined as dim(ξ) = 3 and we get 3 × 3 covariance matrix which matches the dof(X̄ ) = 3.
Whereas, if we’ve defined the covariance on the group element, we get 4 × 4 covariance matrix since dim(X̄ ) = 4
which is greater than degrees of freedom, making the covariance matrix ill-defined.
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small perturbation vector τ̄ ∈ TX̄t
M to be on a tangent plane of X̄t:

h(X̄ ) ≈ h(X̄t) +∇h(X̄ )|⊤X̄=X̄t
(X̄ ⊖ X̄t) , (5.39)

= h(X̄t) + Jτ̄ . (5.40)

In Section 5.2.1, we compared the linearised h(x) against h(x) = Ax+ b to identify the canon-

ical parameters of the factor potential f(x; z,xt) ∝ N−1(x;ηf ,Λf ). Here, repeating the same

process yields a factor potential which is a function of τ , where f(X̄ ; z, X̄t) ∝ N−1(τ ;ηf ,Λf ):

ηf = J⊤Λ(z− h(X̄t)), (5.41)

Λf = J⊤ΛJ . (5.42)

where we’ve identified A = J and b = h(X̄t). It is important to note that the factor potential is a

function of τ , and we are finding an increment which minimises the energy:

E(τ̄ ; z, X̄t) =
1

2
τ̄⊤Λf τ̄ − η⊤

f τ̄ , (5.43)

and not directly optimising the variable X . Computing the increment and applying them via

retractions makes sure that X̄ always stays on the manifold.

The above calculation can be applied to a composite manifold; for example, let a factor be con-

nected to one variable in R2 and two variables in M.:

X̄ =




X̄1

X̄2

X̄3


 ∈ ⟨R2,M,M⟩ , (5.44)

then the factor potential will be formed on the composite tangent space:

τ̄ =




τ̄ 1

τ̄ 2

τ̄ 3


 ∈ ⟨R2, TX̄2

M, TX̄3
M⟩ , (5.45)

where the increments τ̄ are defined in Euclidian space or around the tangent space defined by the

group elements X̄2, X̄3.

Measurement z may belong to a manifold. In such case, we can compute the residual as:

r(X̄ , z) = z −⋄ h(X̄ ) , (5.46)

where −⋄ is a notation from [Solà et al., 2018], which is an operation on the composite manifold

(⊖ operation is applied to each of the blocks of the composite separately).

5.3.3 Belief Update at a Variable Node

At any stage, we can calculate a new marginal distribution at a variable node Xi by taking the

product of all the incoming messages from its neighbours. If our variable belongs to a manifold
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M, similar to the factor linearisation, we need to work in the tangent space. As a common

tangent plane, we create one around the previously calculated belief mean, X̄i,t. All the incoming

messagesmfα→Xi
= N (X̄fα→Xi

,Λ−1
fα→Xi

) from the adjacent factors will be transformed into this

tangent space TXi,tM. To transform the means of the incoming messages, we perform:

τ̄α = X̄fα→Xi
⊖ X̄i,t ∈ TXi,tM , (5.47)

and the precision is transformed as:

Λτα = J⊤
r (τ̄α)Λfα→Xi

Jr(τ̄α) , (5.48)

where Jr(τ̄ ), right Jacobian of X̄ = Exp(τ̄ ), is:

Jr(τ̄ ) =
DExp(τ̄ )
Dτ̄

= lim
ϵ→0

Exp(τ̄ + ϵ)⊖ Exp(τ̄ )
ϵ

. (5.49)

Such transformation is derived from:

τα = Xα ⊖ X̄i,t , (5.50)

= (X̄α ⊕ ξα)⊖ X̄i,t , (5.51)

= Log(X̄−1
i,t ◦ X̄α ◦ Exp(ξα)) , (5.52)

≈ X̄α ⊖ X̄i,t + Jr(τ̄ )
−1ξα , (5.53)

using an approximation (which holds for small δτ̄ ):

Log (Exp(τ̄ )Exp(δτ̄ )) ≈ τ̄ + Jr(τ )
−1δτ̄ , (5.54)

from [Solà et al., 2018, Equation 70]. ξα in Equation 5.53 is a zero meaned random variable

ξα ∼ N (0,Σα); hence the covariance of τα ∼ N (τ̄α,Σ
−1
τα

) is:

Στα = Jr(τ̄ )
−1Σfα→Xi

Jr(τ̄ )
−⊤ , (5.55)

and taking the inverse yields us Equation 5.48.

Now we know how to transform the incoming messages and that they are all represented in a

common tangent plane, we can perform a standard belief update to compute the marginal belief;

however, unlike in standard GBP, here the belief is the increment:

ητ i
=

∑

α∈n(Xi)

Λτα τ̄α, Λτ i =
∑

α∈n(Xi)

Λτα , (5.56)

where the computed belief of the increment is N−1(τ i;ητ i
,Λτ i). To update the actual state of

the variable, we retract the mean of the computed increment:

X̄i,t+1 = X̄i,t ⊕ τ̄ i , (5.57)

and the corresponding uncertainty gets transformed similarly to Equation 5.48:

ΛXi,t+1 = J−⊤
r (τ̄ i)Λτ iJ

−1
r (τ̄ i) , (5.58)
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and such transformation is found by letting τ ∼ N (τ̄ i,Στ̄ i) = τ̄ +N (0,Στ̄ i) and:

Xi,t+1 = X̄i,t ⊕ τ i , (5.59)

= X̄i,t ◦ Exp(τ̄ i + ξi) , (5.60)

≈ X̄i,t ◦ Exp(τ̄ i) ◦ Exp(Jr(τ̄ i)ξi) , (5.61)

= X̄i,t+1 ⊕ Jr(τ̄ i)ξi , (5.62)

where ξi ∼ N (0,Στ i), and we’ve used an approximation (which holds for small δτ̄ ):

Exp(τ̄ + δτ̄ ) ≈ Exp(τ̄ )Exp (Jr(τ̄ )δτ̄ ) , (5.63)

from [Solà et al., 2018, Equation 68]. Again, the covariance is transformed by Jr(τ̄ ), and by

taking the inverse, we get Equation 5.58.

To summarise, to update a variable Xi ∈ M:

1. Transform all incoming messages to the tangent space of the previous belief X̄i,t using

Equation 5.47 and Equation 5.48.

2. Compute the incremental belief τ i ∈ TXi,t using Equation 5.56.

3. Apply the increment to the previous belief to obtain the new belief Equation 5.57 and Equa-

tion 5.58.

5.3.4 Variable to Factor Message

A variable-to-factor message is a product of all the incoming factor-to-variable messagesmfβ→Xi
=

N (X̄fβ→Xi
,Λ−1

fβ→Xi
) except for the one from the outgoing factor fα. This can be viewed as

downdating the belief with the message from fα, mfα→Xi
= N (X̄fα→Xi

,Λ−1
fα→Xi

).

For the Lie group extension, we follow the same idea and downdate the incremental belief τ i ∼
N−1(ητ i

,Λτ i) with the message from fα to compute the outgoing incremental beliefmτα→fα =

N−1(ητα→fα ,Λτα→fα):

ητα→fα = ητ i
−Λτα

(
X̄Λfα→Xi

⊖ X̄i,t

)
, (5.64)

Λτα→fα = Λτ i −Λτα , (5.65)

where Λτα = J⊤
r (τ̄α)Λfα→Xi

Jr(τ̄α).

To compute the outgoing message, we apply the outgoing incremental belief mτα→fα to the cur-

rent belief of the variable:

X̄Xi→fα = X̄i,t ⊕
(
Λ−1

Xi→fα
ηXi→fα

)
= X̄i,t ⊕ τ̄Xi→fα , (5.66)

ΛXi→fα = J−⊤
r (τ̄Xi→fα)ΛXi→fαJ

−1
r (τ̄Xi→fα) , (5.67)

In summary, at each iteration of GBP, variable Xi sends to factor fα, the new linearisation point

X̄i,t+1 and the message mXi→fα = N (X̄Xi→fα ,Λ
−1
Xi→fα

).
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5.3.5 Factor to Variable Message

A factor-to-variable message is a marginal of a product of the factor potential from Section 5.3.2

and all the incoming variable-to-factor messages mXj→fα = N (X̄Xj→fα ,Λ
−1
Xj→fα

) except for the

one from the outgoing variable Xi. Again, following the same ideas as variable-to-factor message

derivation, we work in a common tangent plane, with increments rather than full states.

For all the incoming variable-to-factor messages, we compute the increment with respect to the

current linearisation points X̄j,t:

τ̄ i = X̄Xj→fα ⊖ X̄j,t , (5.68)

Λτ i = J⊤
r (τ̄ i)ΛXj→fαJr(τ̄ i) , (5.69)

applying the transformations to the precision as we did in Equation 5.58.

Now, we need to take the product of all the messages but one and the factor potential and then

marginalise. To illustrate, consider a case where we have a factor connected to one variable in R2

and two variables in M. After applying linearisation (Section 5.3.2), the information vector and

the precision matrix will be:

ηf =




ηf1

ηf2

ηf3


 = J⊤Λ(z −⋄ h(X̄t)), (5.70)

Λf =




Λf11 Λf12 Λf13

Λf21 Λf22 Λf23

Λf31 Λf32 Λf33


 = J⊤ΛJ (5.71)

If we choose the output variable to be the third variable, we need to first combine with the factor

potential the incoming messages from variables X1 and X2:

η′
f =




ηf1 +Λτ1 τ̄ 1

ηf2 +Λτ2 τ̄ 2

ηf3


 (5.72)

Λ′
f =




Λf11 +Λτ1 Λf12 Λf13

Λf21 Λf22 +Λτ2 Λf23

Λf31 Λf32 Λf33


 (5.73)

To complete message passing, from this joint distribution, we must marginalise out X1 and X2 to

obtain an incremental marginal belief of the outgoing variable X3. Using Equation 2.12:

ηfα→τ3
= ηf3 −

(
Λf31 Λf32

)[ Λf11 +Λτ1 Λf12

Λf21 Λf22 +Λτ2

]−1(
ηf1 +Λτ1 τ̄ 1

ηf2 +Λτ2 τ̄ 2

)
,

(5.74)

Λfα→τ3 =
(

Λf31 Λf32

)[ Λf11 +Λτ1 Λf12

Λf21 Λf22 +Λτ2

]−1(
Λf12

Λf23

)
, (5.75)
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and, before sending the message, we convert the message into a full state using retraction:

X̄fα→X3 = X̄3,t ⊕Λ−1
fα→τ3

ηfα→τ3
= X̄3,t ⊕ τ̄ fα→τ3 , (5.76)

Λfα→X3 = J−⊤
r (τ̄ fα→τ3)Λτ̄ fα→τ3

J−1
r (τ̄ fα→τ3) , (5.77)

5.4 Summary

In this section, we followed the derivations from [Davison and Ortiz, 2019] to extend BP to GBP,

and demonstrated how GBP can be modified to handle non-linearity. We then extend their work

further by adding robust M-Estimators following iteratively reweighted least squares and applying

Lie theory to handle Lie group variables. Such extensions are critical for many robotics applica-

tions since real-world observations contain outliers and state space of robots are often modelled

as SE(2) or SE(3).
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Pose Variable

Inter-robot
Measurement

Odometry Factor

Robot    

Robot    

Robot    

Figure 6.1: In the Robot Web, we assume that a set of robots move through space while using
their sensors to observe each other. The circles represent the variables – where xα

t denotes a
variable at timestamp t which belongs to robot α –, and the squares are the factors. Robot γ
starts at timestamp 3 for clarity of visualisation. The full-factor graph for multi-robot localisation
is used. Responsibility for storing and updating it is divided up between the multiple robots
participating, as shown by the coloured regions separated by dotted lines. Each robot maintains
its own pose variable nodes, odometry factors, and factors for the inter-robot measurements made
by its sensors, and carries out continuous GBP on this graph fragment. Message passing across
dotted line boundaries happens on an asynchronous and ad-hoc basis.

6.8 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 117

We show that a distributed network of robots or other devices which make measurements of each

other can collaborate to globally localise via efficient ad-hoc peer-to-peer communication. Our

Robot Web solution is based on Gaussian Belief Propagation on the fundamental non-linear factor

graph describing the probabilistic structure of all of the observations robots make internally or

of each other, and is flexible for any type of robot, motion or sensor. We define a simple and

efficient communication protocol which can be implemented by the publishing and reading of

web pages or other asynchronous communication technologies. We show in simulations with

up to 1000 robots interacting in arbitrary patterns that our solution convergently achieves global

accuracy as accurate as a centralised non-linear factor graph solver while operating with high

distributed efficiency of computation and communication. Via the use of robust factors in GBP, our

method is tolerant to a high percentage of faulty sensor measurements or dropped communication

packets. Furthermore, we showcase that the system operates on real robots with limited onboard

computational resources.
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6.1 Introduction

As we head towards a future where embodied artificial intelligence is ubiquitous, we expect that

multiple robots, vehicles and other devices which share the same environment will need to com-

municate and coordinate their actions, whether their goal is explicit cooperation or just safe in-

dependent action. One clear possibility is that all devices could use a unified cloud-based ‘maps’

system, presumably owned by one company or government, which tracks and coordinates all

devices. An alternative, which we investigate here, is a distributed system-based on per-device

local computation and storage, and peer-to-peer communication between heterogeneous devices

from different makers using standardised open protocols. Inspired by the original design of the

World Wide Web, we call this concept the Robot Web.

A key outstanding problem in multi-robot systems has been true distributed localisation: how can

a set of moving devices which move and observe each other within a space estimate their locations,

using noisy actuators, sensors and realistic peer-to-peer communication?

In this chapter, we present Robot Web, a solution to general, fully distributed and asynchronous

many-robot localisation. Our solution is based on the fundamental probabilistic factor graph rep-

resentation of perception and state estimation. We show that Gaussian Belief Propagation (GBP)

[Ortiz et al., 2021] is the key algorithm with the appropriate properties of distributed processing,

storage and message passing, which permits inference on a dynamically changing estimation prob-

lem via ad-hoc communication between robot peers.

In our solution, each robot stores and maintains its own part of the full factor graph (as shown in

Figure 6.1), and updates and publishes a Robot Web Page of outgoing messages for other robots

to download and read whenever possible. Remarkably, using GBP the whole factor graph can

efficiently converge to localisation estimates as accurate as full batch optimisation but without any

device ever needing to store or process more than its own local graph fragment. Robots commu-

nicate via ad-hoc, asynchronous messages containing only small vectors and matrices. Signific-

antly, GBP can deal with graphs which have any type of parameterisation (e.g. 2D or 3D robot

movement, or any type of non-linear sensor measurements) and which can change dynamically

in arbitrary ways — for instance, robots can join or leave the web whenever needed, or recon-

figure their sensors online. We will show that it can also cope with and reject a high fraction

of outlier measurements, for instance, caused by faulty sensors, and deal with highly unreliable

communication channels.

Our approach is designed for scalability. All communication is via a simple interface, and robots

do not need any privileged information about each other, such as even how many other robots are

involved. The whole Robot Web therefore can be fully dynamic, with robots joining or leaving

at will. We believe that this formulation of many-robot localisation could be the foundation for a

new era of distributed Spatial AI.

To summarise, the key contributions of our work are:
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• A distributed, scalable localisation system based on Gaussian Belief Propagation (GBP)

— Robot Web — that can localise thousands of robots in a simulated environment. Our

method naturally handles asynchronous communication, communication failures, and a

large number of outlier sensor measurements. Additionally, because all processing is local,

our method can adapt to dynamic changes in the topology of the graph and handle disjoint

connectivity.

• Extensive evaluation of our system to demonstrate the scalability. Using simulation, com-

parisons are made against a centralised counterpart across a range of parameters. Addition-

ally, we have tested our system under challenging conditions, including the presence of a

large number of non-Gaussian outlier sensor measurements and communication failures, in

order to demonstrate its robustness.

• Real-time experiments with nine physical robots using only the limited computational re-

sources available onboard. These experiments demonstrate the practicality and effectiveness

of our approach and demonstrate that our method is feasible in real-world applications.

6.2 Related Work

Robot Web uses the standard Gaussian factor graph representing the multi-robot localisation prob-

lem and is most closely related to the wealth of factor graph formulations and solvers in robotics,

as well explained in the work of Dellaert and Kaess [Dellaert and Kaess, 2017, Dellaert, 2021].

Most methods for inference on factor graphs assume a centralised computer with access to the

whole graph and focus on either efficient batch solution or incremental inference on graphs that

are continually changing. Centralised pose-graph optimisation algorithms suitable for multiple

robots are well-explored in the literature [Indelman et al., 2014, Bailey et al., 2011, Kim et al.,

2010, Andersson and Nygards, 2008]. MR-iSAM2 [Zhang et al., 2021] extends iSAM2 [Kaess

et al., 2012] to build an incremental, centralised graph optimisation method for multiple robots.

However, centralised methods require a base station, and are vulnerable to failure of this station,

can require high communication bandwidth, create privacy concerns, and generally are not scal-

able [Lajoie et al., 2022]. Many distributed, multi-robot localisation where attempted using many

distributed algorithms. Such algorithms and literature are summarised in Section 1.5.

Many recent advancements in multi-robot localisation leverage the advancements in distributed

pose-graph optimisation (PGO). For example, [Choudhary et al., 2017] uses chordal-relaxation to

make the underlying PGO problem linear, and solves them using a Gauss-Seidel solver. This work

is used as a backend optimiser in many distributed SLAM systems [Lajoie et al., 2020, Cieslewski

et al., 2018]. Semidefinite Programming (SDP) relaxation together with Riemannian block co-

ordinate descent is used in [Tian et al., 2020, Tian et al., 2021] which enables verification of the

correctness of the estimates, and is decentralised and asynchronous. A distributed SLAM sys-

tem [Tian et al., 2022] is built upon these approaches, demonstrating their practicality. However,

the above approaches require a full relative transformation between the robots and can only handle
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isotropic covariance. This could be limiting, for example, if the inter-robot observations are all

range-bearing, as we will explore in this chapter. More recently, methods use range measure-

ments [Papalia et al., 2023] or bearing measurements [Wang et al., 2022b] and show that it is

possible to obtain certifiably optimal solutions again via SDP relaxation. While all PGO-based

methods achieve good localisation accuracy, the formulation is often tailored and these methods

do not generalise to other problem instances.

More general methods for multi-robot localisation such as DDF-SAM [Cunningham et al., 2010],

and DDF-SAM2 [Cunningham et al., 2013] operate on factor graphs. They rely on Gaussian

elimination and require robots to exchange Gaussian marginals about shared variables. The com-

munication; however, increases quadratically with the number of shared variables. Alternating

Direction Method of Multipliers (ADMM) has been employed for distributed SLAM [McGann

et al., 2023] or to efficiently share map points for distributed bundle adjustment [Bänninger et al.,

2023]. However, unlike elimination-based approaches only the point-estimates are recovered.

A significant limitation of the distributed methods above is that they are synchronous, which

means the robots must share their messages at predetermined times to ensure the shared inform-

ation is up-to-date. In contrast, asynchronous methods offer the flexibility that the robots can

operate at their own rate, without waiting for other robots. Examples includes, [Todescato et al.,

2015] and [Tian et al., 2020], and the paper discusses how the algorithms behave under bounded

message delays.

Robot Web is also asynchronous and distributed, but both much more simple in formulation and

more general than these methods. Significantly, [Tian et al., 2020] assume Gaussian noise is

unable to handle outliers. Additionally, their formulation requires the sensor measurements to be

a relative transformation. Robot Web supports general robot and sensor models and allows robust

factors, making it robust to large fractions of non-Gaussian outlier measurements.

There has been some work on multi-agent distributed localisation using variations of belief propaga-

tion in the sensor networks community. For instance, [Schiff et al., 2009] performed multi-

robot localisation using non-parametric belief propagation. In [Wymeersch et al., 2009] belief

propagation was also used to perform cooperative positioning in a distributed manner, performing

a sum-product algorithm over a factor graph in an ultra-wideband network. In [Caceres et al.,

2011], [Wymeersch et al., 2009] was extended to a network composed of GNSS nodes. In [Li

et al., 2014] and [Li et al., 2015], non-linear range measurements were solved by linear approxim-

ation. In [Wan et al., 2017] a hybrid parametric and non-parameteric Belief Propagation (BP) was

proposed to model the non-linearity and any non-Gaussian distributions. However, the method

requires sampling and does not exhibit a close-form expression.

Robot Web goes far beyond these methods to present a general framework for general robots and

sensors. It defines for the first time an open, asynchronous communication framework, and via the

focus on GBP with robust factors enables highly robust and scalable performance.
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6.3 Gaussian Belief Propagation

Robot Web’s core algorithm is GBP, which we’ve derived in Chapter 5. GBP performs marginal

inference iteratively via message passing between variable and factor nodes, which can happen in

many different message-passing schedules but still with convergent behaviour. In this section, we

summarise how we can use GBP across many devices for the task of distributed localisation.

6.3.1 Gaussian Belief Propagation with Lie Groups

It is possible to use Robot Web in vector space with no modification to the GBP as introduced in

Section 5.1. However, in most realistic robotics problems, there are additional details to consider

due to the state space being a robot pose with rotation and translation, where careful thought about

parameterisation is needed. The use of Lie theory is a key component of modern state estimation

for robotics [Barfoot, 2017], and is applied to algorithms such as Extended Kalman Filter, and

Information Filter [Ćesić et al., 2017], and thus, as derived in Section 5.3, we use an extension

of GBP, where the variables can be Lie group elements. This allows us to handle poses properly

without worrying about singularities.

6.3.2 Distributed Gaussian Belief Propagation

Extending GBP to the distributed multi-device system is straightforward. Since GBP is a node-

wise distributed algorithm and it operates via message passing, no change to the core algorithm is

required for distributed inference.

Let G be the global factor graph which we want to perform inference over. In distributed GBP,

robots own a factor graph Gω each, and their union is G =
⋃

ω∈ΩG
ω. Each robot has ownership

of its pose variables and the factors corresponding to the observations it made, i.e. the nodes that

their local graph Gω consists of. This is important as the global factor graph G is partitioned

amongst the robots Ω; hence, the marginal estimates obtained by solving the distributed problem

using GBP are exactly the same as the marginal estimates of the global problem obtained via

centralised GBP under an assumption of perfect communication.

Distributed inference is achieved by each robot α ∈ Ω performing GBP message passing on

their local graph Gα. Along the edges of a factor gα,β owned by α, a factor-to-variable message

mgα,β→xβ (xβ) (Section 5.1.4) is sent from α to β via inter-robot communication. Similarly, β

sends back to α variable-to-factor message, mxβ→gα,β (xβ) (Section 5.1.3).

Such a concept is depicted in Figure 6.1, where the graph is partitioned amongst the robots. Using

Robot α and Robot β from the figure as an example, the factors of Robot α will send factor-

to-variable messages to xβ
1 , xβ

2 , and variable-to-factor messages from xα
2 , xα

3 together with its

point-estimate µxα
2

, µxα
3

as the linearisation point. Both factor-to-variable and variable-to-factor
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(a) Observations between devices. (b) Communication pattern between devices.

(c) Localisation using only four landmarks. (d) Localisation with inter-robot observations.

Figure 6.2: Visualisation of Robot Web. Robots are instructed to follow a circular path. Four
landmarks are positioned at the corner. As the odometry of the robots is noisy, they cannot stay
on a circular path without localising and correcting for the drift.Top Row: We visualise the inter-
device observations with red lines (Left), and inter-device communication with black lines (Right).
Bottom Row: (Left:) robots only use the landmarks for localisation. (Right:) robots use inter-
robot observations to localise.

messages are a marginal distribution, which is a N × 1 vector and a N × N precision matrix,

where N is the Degrees of Freedom (DoF) of the variable.

6.4 Robot Web: Core Design and Structure

We will use the term ‘robot’ for any device involved in the Robot Web, but some of these could

be beacons, sensor nodes, or any other type of participating entity, which could be moving or

stationary.

In Figure 6.2, many devices perform localisation to maintain a circular path. As demonstrated,

robots fail to maintain the path when relying solely on landmark-based localisation, yet they suc-

cessfully maintain the path when utilising inter-robot observations for localisation. This highlights

the core goal of Robot Web, which is to enhance devices’ spatial AI capabilities beyond each
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device’s perceptual capabilities.

6.4.1 Partitioning of the Factor Graph

The fundamental structure of the Robot Web is the full probabilistic factor graph which represents

the states of robots as variables and the measurements they make, or any other information which

is available such as pose or smoothness priors, as factors. Determining estimates of the robot states

is a matter of performing inference on this factor graph to produce marginal distributions over the

variables. We will assume that all factors take the form of Gaussian functions of the involved

state variables, and use Gaussian Belief Propagation as the mechanism for inference. Note that

GBP supports robust (heavy-tailed) factors and non-linear measurement functions via the methods

proposed in [Davison and Ortiz, 2019], and therefore this model is very broadly practically ap-

plicable. These are the same assumptions behind most centralised factor graph inference libraries,

such as GTSAM [Dellaert, 2012], Ceres [Agarwal et al., 2010], and g2o [Kümmerle et al., 2011].

The key concept of the Robot Web is to distribute responsibility for storing and updating the full-

factor graph, by dividing it up between the robots taking part. Figure 6.1 illustrates this for an

elementary case of three moving robots, each with internal odometry sensing and an outward-

looking sensor able to make observations of the other robots. We use different colours to highlight

the parts of the factor graph for which each robot is responsible. A Robot α stores:

• The set of variables xα
t representing its state at discrete times t. It could store a whole

history of states or a finite window. Most commonly these states will be multi-dimensional

variables which directly represent robot pose, though any other aspects of internal state

could be included. Pose is parameterised using SE(2) as discussed in Section 5.3.

• The set of factors fαt or fαt,t+1 representing priors or internal measurements. Each of these

factors connects to one or more of the robot’s own state variables. Common examples would

be a unary factor representing a GPS pose measurement, or a binary factor connecting two

temporally consecutive states representing an odometry or inertial measurement.

• A set of factors gα,βt representing observations made by robot α of other β. Specifically,

it represents a measurement made by this robot α of another robot β at time t. This factor

connects one state variable xα
t from robot α with state variable xβ

t of robot β at the corres-

ponding time.

There is an important design choice here: factors representing inter-robot measurements are stored

by the robot making the measurement. This is because the details of measurement factors depend

on the type and calibration of the sensor involved, and in this way, those details only need to

be known to the robot carrying the sensor. Note also that we assume for now that all robots

have globally synchronised clocks for timestamping of measurements (though we will see that all

computation and communication can be asynchronous).
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The factor graph evolves and grows dynamically. At initialisation, a robot will have just one vari-

able node. As it moves, and measures its own incremental motion with odometry or similar, it

adds the appropriate variables and factors to its internal factor graph. GBP runs continuously on

the robot’s internal factor graph, producing always-updating marginal distributions for each vari-

able. The message passing pattern of GBP within a robot’s internal factor graph is not important

but should be rapid and global enough to keep the graph fragment mostly close to convergence.

6.4.2 Message Passing and Communication Model

When the robot uses an outward-looking sensor to make an observation of the relative location of

another robot, it creates a factor for this measurement, connects it to its current live pose variable,

and the factor takes part in local GBP. The other end of this factor will initially be unconnected,

because the appropriate variable to attach it to is stored by another robot: the factor-to-variable

edge crosses the ‘dotted line’ boundary (see Figure 6.1), separating factor graph fragments. When

local GBP generates an outgoing message from this factor which crosses the dotted line, that

message is made available to the other robot that needs it.

The key idea behind Robot Web is that its inter-robot communication model is flexible and does

not require synchronous or bidirectional communication. Instead, each robot can broadcast in-

formation at its own rate, which is particularly useful in large-scale systems where synchronising

communication across multiple robots can be a challenge. This is only possible as GBP can

converge even with an arbitrary message schedule [Ortiz et al., 2021] meaning that the commu-

nication between robots can be completely asynchronous and ad-hoc, but the overall graph made

up of many fragments will converge to the global estimates. We assume that communication is

the most resource-intensive operation in the overall system. The computation performed by GBP

is lightweight, especially with the sliding window optimisation, and can run on devices such as

Raspberry Pi without any additional optimisation. Therefore, a flexible inter-device communica-

tion protocol is important, as it allows the communication rate to be varied based on factors such

as the available onboard battery.

Communication Model

The asynchronous nature of the communication allows for a variety of options for message deliv-

ery, such as the publish-subscribe model used in systems like ROS/ROS2, where devices broadcast

messages and listen to topics of interest, or the pull model, where devices query each other for

information. In our work, we do not assume that messages will always be delivered, and any loss

of messages will only result in a possible decrease in localisation accuracy, rather than causing a

deadlock or critical failure. Additionally, we stress that our approach does not involve any shared

global information apart from common timestamps and unique identifiers among the robots. Each

robot only exchanges messages with the others and does not share sensor models, initialisation

status, or even the number of robots participating in the optimisation process. This combination of
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asynchronous communication and lack of shared global information allows the system to function

even if there are fewer communication rounds than the total number of robots.

Inter-device Factor Discovery

In Robot Web, the connection over the inter-device factors is formed lazily. A factor is created

when an observation occurs. However, it takes a few iterations of message passing before the

factor can be linearised. Specifically, when Robot α observes Robot β at timestamp t, a factor

gα,βt is formed. As the observation is made by Robot α, it owns the factor. Robot α publishes

an empty message m
gα,β
t →xβ

t
. Upon Robot β receiving the message, it will publish the message

m
xβ
t →gα,β

t
together with the linearisation point X̄ β

t . When Robot α receives this message, it

linearises the factor and starts the optimisation process. In the succeeding rounds, Robot β will

receive a message from Robot α which it can use to refine its pose estimate.

As GBP performs operations locally and does not use global information (e.g. topology of the

graph), this sequence of message exchange occurs asynchronously, and GBP continues optimising

as it discovers new inter-device factor connections.

Robot Web Page Interface

One of the main motivations for the design choices made in Robot Web is the desire for distrib-
uted scalability. By providing a uniform interface, the robots can be added to or removed from

the Robot Web in a fully dynamic manner, or can freely change their internal methods or software

as long as they maintain the same interface. The internal complexity of each robot’s processing

may be slightly increased because of this, but this is a small price to pay for global scalability.

To achieve this goal, one potential approach is to use a simple Web protocol (e.g. HTTP) for

all inter-robot communication, with each robot hosting outgoing messages as a Web page. This

allows inter-robot communication to happen in arbitrary patterns and in a read-only style, which

can contribute to the scalability and flexibility of the system.

6.5 Demonstrations and Experiments in a Simulated Environment

We present extensive simulation demonstrations of Robot Web localisation for the case of many

robots with planar 2D motion and noisy odometry and inter-robot range-bearing measurements.

Our simulation uses metric units and models an application like a warehouse setting where tens

or hundreds of robots roam through an environment 100m across with randomly generated paths.

Usually, we add a handful of known beacon landmarks to the environment, whose positions are

known in advance to all robots, but are widely spread so that robot-landmark measurements are

much less frequent than robot-robot measurements. The main role of the landmarks is to anchor

the whole web to an absolute coordinate frame over long periods of operation.
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Our simulation uses a fully distributed program structure equivalent to what could be achieved on

a true multi-robot system.

6.5.1 Implementation Details

In our experiments, we run the robots in a square arena of width 100m with 10 known beacons

where all robots move through 100 pose steps. All variable nodes in the current simulation are

represented using SE(2), and three different factors are implemented:

Anchor Factor: If needed, we can use unary anchor factors which are priors on the poses of robots

before they start moving. These are only added to the initial pose of each robot to establish a rough

common coordinate frame and are not added to any subsequent poses. In most experiments, we

use these factors to represent fairly well-known initial robot positions at the start of motion, though

note that in Section 6.5.7, we show that new robots can be added to an existing web without any

pose priors. The uncertainty assigned to the anchor factors in our main experiments is: σx = 0.1m,

σy = 0.1m, and σθ = 0.01 rad.

Odometry Factor: The odometry factor relating the two consecutive robot poses xα
t−1 and xα

t ,

and the likelihood is define as:

lo(x
α
t−1,x

α
t ; z̄

α
t−1,t) ∝ exp(−1

2
∥z̄α ⊖ ho(x

α
t−1,x

α
t )∥2Σo

) , (6.1)

where the measurement z̄α ∈ SE(2). For all the simulations, we set the following uncertainty per

meter step is σx = 0.1m, σy = 0.01m, and σθ = 0.01 rad. For the odometry factor, we define the

measurement prediction function as ho(xα
t−1,x

α
t ) = (xα

t+1)
−1 ◦ xα

t .

Range-Bearing Factor: We use a range-bearing sensor for the measurements between robots, or

between robots and landmarks. We parameterise the observation z̄α,βt ∈ ⟨R,SO(2)⟩ using polar

coordinate (r, θ), i.e. radial distance and azimuthal angle, respectively.

ls(x
α
t ,x

β
t ; z̄

α,β
t ) ∝ exp(−1

2
∥z̄α,βt −⋄ hs(x

α
t ,x

β
t )∥2Σs

) . (6.2)

Let tαt ∈ R2, Rα
t ∈ SO(2) be translational, rotational the part of xα

t , and similarly for xβ
t . The

relative transformation between tαt and tβt in the coordinate frame of α is: Rα⊤
t (tβt − tαt ) =

(δx, δy). The measurement prediction function is defined as hs(xα
t ,x

β
t ) = (r, θ), where r =

∥tβt − tαt ∥2 and θ = arctan2(δy, δx).

By default, the uncertainty assigned to range/bearing is: σr = 0.01m, σb = 0.05 rad, with the

sensor range limited to 30m. DSC [Agarwal et al., 2012]:

sm = min

(
1,

2Φ

Φ + Em

)
, (6.3)

is used as the robust kernel with Φ = 10. The factor therefore is down-weighted accordingly as

described in Section 5.2.2. Alongside the Gaussian noise, to 10% of all range-bearing measure-

ments, we additionally add a huge amount of uniform noise: rn ∼ U(0, 30), bn ∼ U(0, π) to

simulate non-Gaussian noise which makes these measurements essentially useless.
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Figure 6.3: In a simulated environment, N robots are moving around in an environment with
10 known landmarks for 100 poses each. GTSAM optimises the factor graph after every pose
insertion rather than solving after all poses are inserted to keep the comparison fair. GBP uses the
full factor graph to optimise, while Windowed GBP only uses only the last 5 poses. The results
are the average of 10 runs with different random initialisation, and the error bar represents one
standard deviation of uncertainty.

We use a communication pattern which simulates a limited peer-to-peer communication budget,

where each robot connects to and reads the Robot Web page from other robots in a sequential,

random pattern with closer robots are more likely to be selected. The idea is that this is similar to

a robot sequentially switching its Wi-Fi connection between peers with strong signals.

We generated a noisy distance sample between Robot α and Robot β as dα,β ∼ N (d̄α,β, 0.1),

where dα,β is the random sample and d̄α,β is the ground truth distance between Robot α and

Robot β. We define the neighbourhood of α, N(α), as the set of robots which Robot α can

communicate with. The probability Cα,β that Robot α communicates with Robot β ∈ N(α) is:

p(Cα,β) =
1/d2α,β∑

ω∈N(α) 1/d
2
α,ω

. (6.4)

In this work, we assume that N(·) includes all robots. Each robot performs 20 iterations of GBP

per movement step and at each GBP step robots communicate with only one neighbour. Factors

are dampened [Murphy et al., 1999] by 0.2, and the factors linearise at every iteration. Any

changes to the default parameters will be specified in the individual experiments.

6.5.2 Convergence and Computational Properties

A key property of our method is that the marginal estimates generated by message passing with

a fixed computation and communication budget on our ever-changing factor graph may not ne-

cessarily be at complete convergence during live operation, though that is often not a problem

if useful robot pose estimates are still achieved. Nevertheless, here we show that when enough

computation and communication are regularly applied, the localisation results are convergent and

estimates as accurate as a batch solution on a centralised processor can be achieved. Importantly,
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Figure 6.4: Increasing the number of iterations per step decreases the overall error. Even with a
small number of iterations, GBP is able to provide good localisation, which can be further refined
by increasing the iterations. The red line shows the median, the box extends from the first quartile
to the third quartile, the whisker extends from the box by 1.5 inter-quartile range, and the outliers
are marked with a cross. In a simulated environment, 50 robots are moving in an environment
with 10 known landmarks for 100 poses each. Each result is a summary of 50 runs with different
random initialisation.

this can be achieved with highly efficient, realistic settings for distributed GBP computation and

communication.

Here we present an experiment to compare the accuracy of distributed Robot Web GBP against a

centralised solution of the same factor graph using GTSAM [Dellaert, 2021]. GBP linearises at

every 5 iterations and is allowed to optimise for 20 iterations per step. To keep the comparison

simple, robust kernels are not applied for both GBP and GTSAM, and we do not add uniform

noise to the range-bearing measurements.

We present results for general GBP, where each robot keeps a full history of pose variables, and

Windowed GBP, where each robot maintains a sliding window of its most recent 5 poses and

only processes messages relating to these. Using a sliding window allows the average size of the

factor graph, and the amount of computation needed, to remain fixed. This allows the system to

operate over an arbitrarily long period while maintaining constant computational cost. What we

lose by doing this is the possibility to improve estimates of older variables in the graph using new

observations.

In these experiments, for both versions of GBP, all robots are allowed to communicate with each

other on every iteration.

We report the Root Mean Square Absolute Trajectory Error (RMSE ATE), and Root Mean Square

Relative Pose Error (RMSE RPE) [Sturm et al., 2012], averaged over 10 runs with randomised

robot motions in Figure 6.3, for varying numbers of robots in the area. Both ATE and RPE are

computed over the full trajectory. We see that GBP and GTSAM have similar ATE across all

evaluations, with only a small loss of accuracy for GBP when the number of robots is low.
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Table 6.1: The RMSE ATE of the trajectories for different numbers of robots in simulation. We
report the mean error and the standard deviation of 10 runs with different random initialisation.

N Range Noise GTSAM GBP Windowed
[m] [m, rad] µ± σ [m] µ± σ [m] µ± σ [m]

16 10 0.01, 0.05 0.660± 0.217 0.770± 0.183 0.934± 0.152
10 0.05, 0.1 0.690± 0.218 0.773± 0.192 0.975± 0.127
30 0.01, 0.05 0.063± 0.024 0.066± 0.025 0.088± 0.042
30 0.05, 0.1 0.081± 0.019 0.087± 0.021 0.117± 0.040

32 10 0.01, 0.05 0.314± 0.062 0.462± 0.080 0.561± 0.076
10 0.05, 0.1 0.344± 0.049 0.437± 0.058 0.597± 0.063
30 0.01, 0.05 0.015± 0.003 0.016± 0.003 0.022± 0.008
30 0.05, 0.1 0.035± 0.003 0.036± 0.004 0.043± 0.006

64 10 0.01, 0.05 0.154± 0.018 0.290± 0.072 0.358± 0.072
10 0.05, 0.1 0.181± 0.023 0.256± 0.064 0.375± 0.080
30 0.01, 0.05 0.009± 0.001 0.009± 0.001 0.010± 0.003
30 0.05, 0.1 0.023± 0.001 0.023± 0.001 0.024± 0.003

128 10 0.01, 0.05 0.060± 0.004 0.105± 0.016 0.134± 0.015
10 0.05, 0.1 0.082± 0.004 0.102± 0.009 0.158± 0.011
30 0.01, 0.05 0.006± 0.000 0.006± 0.000 0.006± 0.000
30 0.05, 0.1 0.016± 0.000 0.016± 0.000 0.016± 0.000

As the number of robots increases, the difference in ATE across the different approaches becomes

negligible. Windowed GBP reaches comparable accuracy to GTSAM and GBP, even with a sig-

nificantly smaller computational cost when compared to full GBP optimisation.

A similar pattern is observed when we vary the sensor noise and range. As we increase the number

of robots, the difference in error across different approaches reduces. The sensor noise is increased

to σr = 0.05m, σb = 0.1 rad, and the range is limited to 10m. Tables 6.1 to 6.3 summarises the

result of sweeps over the different parameters.

When the sensor range is limited or the number of robots is small, fewer observations are made and

robots will drift more from their correct trajectories. Being a local algorithm, GBP can rapidly op-

timise local, high-frequency component errors in the network [Davison and Ortiz, 2019], while it

requires more iterations for information to propagate across the graph to optimise lower frequency

component errors, such as longer drifts. This property is observable in Figure 6.3 where the dif-

ference in ATE between GTSAM and GBP for 16 robots is noticeable due to the low-frequency

noise. Since the range of the sensors is limited, fewer observations are made when the total num-

ber of robots is small, as the arena has a lower density of robots. Similarly, as shown in Table 6.1

for N=128. When the sensor range is 30m, GTSAM and GBP achieve the same ATE. However,

when the sensor range is 10m, a small difference exists. However; in both cases for the relative

metric RPE, similar performance is achieved even with a small number of robots, demonstrating

that the local/high-frequency component errors are correctly smoothened.

Increasing the number of iterations improves convergence as more messages are exchanged. We
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Table 6.2: The translational RMSE RPE of the trajectories for different numbers of robots in
simulation. We report the mean error and the standard deviation of 10 runs with different random
initialisation.

N Range Noise GTSAM GBP Windowed
[m] [m, rad] µ± σ [m] µ± σ [m] µ± σ [m]

16 10 0.01, 0.05 0.321± 0.084 0.349± 0.071 0.382± 0.064
10 0.05, 0.1 0.336± 0.082 0.356± 0.077 0.396± 0.064
30 0.01, 0.05 0.087± 0.020 0.087± 0.019 0.090± 0.018
30 0.05, 0.1 0.119± 0.025 0.118± 0.025 0.120± 0.025

32 10 0.01, 0.05 0.207± 0.028 0.235± 0.041 0.264± 0.048
10 0.05, 0.1 0.227± 0.032 0.238± 0.034 0.276± 0.039
30 0.01, 0.05 0.068± 0.015 0.068± 0.016 0.069± 0.016
30 0.05, 0.1 0.102± 0.021 0.101± 0.021 0.102± 0.020

64 10 0.01, 0.05 0.164± 0.015 0.198± 0.031 0.216± 0.033
10 0.05, 0.1 0.191± 0.015 0.197± 0.020 0.227± 0.030
30 0.01, 0.05 0.054± 0.007 0.053± 0.006 0.053± 0.006
30 0.05, 0.1 0.078± 0.009 0.077± 0.009 0.077± 0.009

128 10 0.01, 0.05 0.092± 0.009 0.105± 0.009 0.109± 0.009
10 0.05, 0.1 0.120± 0.004 0.126± 0.003 0.135± 0.005
30 0.01, 0.05 0.047± 0.002 0.047± 0.002 0.047± 0.002
30 0.05, 0.1 0.068± 0.003 0.068± 0.003 0.068± 0.003

can verify this in Figure 6.4, where we vary the number of iterations per step between 10-50. We

use 50 robots and report the average over 50 different runs. We see that as the number of iterations

per step increases, ATE decreases; however, with diminishing returns. The optimal number of

iterations per step depends on many factors (e.g. topology of the graph, communication pattern)

and is an interesting direction for further research.

6.5.3 Operation with a Large Number of Agents

In terms of computational performance, it would not be meaningful to report the speed of our

C++ CPU simulation of the Robot Web algorithm, which is designed to be fully distributed across

a large number of devices. However, in fact, our simulation can run in real-time on a laptop

for problems involving 100 robots or beyond using Windowed GBP, in particular, because it is

designed to take advantage of CPU parallelism using OpenMP.

Instead, we present an experiment which demonstrates the scaling properties of Windowed GBP

in a mode where the computation and communication work per robot is bounded. Figure 6.5

shows the average ATE of all robot pose estimates as the number of interacting robots in our arena

is raised from 32 to 1024. The result is an average of over 10 different runs. Each robot measures

nearby robots but is allowed to communicate with one other robot sampled based on Equation 6.4

per GBP iteration. Robot Web handles this extreme packing and scaling straightforwardly, and

the ATE for all robots continues to decrease as robots are added due to the favourable high inter-
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Table 6.3: The rotational RMSE RPE of the trajectories for different numbers of robots in sim-
ulation. We report the mean error and the standard deviation of 10 runs with different random
initialisation.

N Range Noise GTSAM GBP Windowed
[m] [m, rad] µ± σ [deg] µ± σ [deg] µ± σ [deg]

16 10 0.01, 0.05 0.626± 0.028 0.642± 0.025 0.776± 0.036
10 0.05, 0.1 0.639± 0.031 0.650± 0.030 0.789± 0.033
30 0.01, 0.05 0.510± 0.012 0.510± 0.012 0.528± 0.019
30 0.05, 0.1 0.535± 0.012 0.535± 0.013 0.579± 0.015

32 10 0.01, 0.05 0.574± 0.011 0.592± 0.015 0.732± 0.034
10 0.05, 0.1 0.589± 0.011 0.596± 0.012 0.750± 0.019
30 0.01, 0.05 0.496± 0.007 0.496± 0.007 0.501± 0.007
30 0.05, 0.1 0.519± 0.007 0.519± 0.007 0.545± 0.009

64 10 0.01, 0.05 0.549± 0.007 0.567± 0.013 0.695± 0.034
10 0.05, 0.1 0.569± 0.009 0.573± 0.008 0.711± 0.029
30 0.01, 0.05 0.475± 0.003 0.476± 0.003 0.477± 0.004
30 0.05, 0.1 0.506± 0.003 0.506± 0.003 0.517± 0.003

128 10 0.01, 0.05 0.518± 0.004 0.523± 0.004 0.576± 0.006
10 0.05, 0.1 0.540± 0.004 0.542± 0.004 0.614± 0.006
30 0.01, 0.05 0.443± 0.004 0.443± 0.004 0.444± 0.004
30 0.05, 0.1 0.490± 0.002 0.490± 0.002 0.495± 0.002

32 64 128 256 512 1024
Number of Robots
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Figure 6.5: Extreme scaling: in a simulated environment, we increase the number of robots in the
arena to over 1000, with each robot communicating with only one other per iteration of Windowed
GBP, and therefore having a per-robot bounded computation and communication workload. The
average ATE in all robots’ poses continues to decrease as we increase the number of robots. Each
result is a summary of 10 runs with different random initialisation.

connectedness of the whole graph, despite the minimal communication allowed. These results

indicate the true potential of Robot Web methods towards very high numbers of simple interacting

devices.
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Figure 6.6: Robust factors enable remarkable resilience to a large fraction of outlier inter-robot
sensor measurements, with ATE remaining low up to 70–80% of corrupt measurements to which
a large amount of uniform noise is added. In a simulated environment, 50 robots are moving in an
environment with 10 known landmarks for 100 poses each. Each result is a summary of 50 runs
with different random initialisation.

6.5.4 Operation with Outlier Measurements and Robust Factors

Here, we demonstrate the robustness of GBP using the method for handling robust factors from

FutureMapping 2 [Davison and Ortiz, 2019] and the robust kernel from DCS [Agarwal et al.,

2012]. 50 robots are used, each with a sliding window of 5. In Figure 6.6, we show what hap-

pens to the ATE when we increase the fraction of the range-bearing measurements containing the

uniform noise. We see that a huge fraction of up to 80% of measurements can be completely

corrupted but still handled by the robust measurement kernel with very little effect on the overall

accuracy of the network. This again shows the advantage of the heavily inter-connected network

which GBP allows us to efficiently and incrementally optimise in a distributed manner. In this

network, each pose estimate is highly over-constrained, and this is what allows the robust kernel

to weed out outlier measurements.

6.5.5 Operation with Unreliable Communication

In multi-robot systems, another potential problem is the reliability of the communications. Often

robots will communicate with best-effort, meaning messages can get lost in the network. Robust-

ness against such data loss can be challenging; however, GBP is not significantly affected, as the

message scheduling can be random. Here, we imagine that data transmission is quantised at the

level of individual messages, as it might be with certain types of communication technology, and

experiment to see the effect of the loss of a random fraction of messages between robots.

In Figure 6.7, we force the network to drop the messages randomly with a fixed probability which

we gradually increase and investigate how that affects ATE. For example, if Robot α sends 3 rows

of message {M1,M2,M3} to Robot β, the network may drop M2, and Robot β will only receive
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Figure 6.7: Robot Web is highly robust to a high fraction of randomly dropped messages. In a
simulated environment, 50 robots are moving in an environment with 10 known landmarks for
100 poses each. The result is a summary of 50 runs with different initialisation.
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Figure 6.8: Analysis of the effect of varying the allowed communication range. ‘Inf’ means all
robots are allowed to communicate with any other robot. While increasing the communication
radius improves the performance, 30m onwards, the difference is negligible. In a simulated envir-
onment, 50 robots are moving in an environment with 10 known landmarks for 100 poses each.
The result is a summary of 50 runs with different initialisation.
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Figure 6.9: Robot Web demonstrates its resilience to large initialisation errors. We add to the
initial pose a noise sampled from a Gaussian with a standard deviation of (n m, n m, n rad),
where n represents the noise level. Note that the graph is plotted on a logarithmic scale. In a
simulated environment, 50 robots are moving in an environment with 10 known landmarks for
100 poses each. The result is a summary of 50 runs with different initialisation.

{M1,M3}. In this experiment, we also see very advantageous properties for GBP, which retains

a low ATE up to at least 50% message loss in this setting.

We further evaluate the effect of poor communication in terms of communication range. The

communication radius of the robots was adjusted to range from 10m to 100m and an infinite

radius. In line with previous experiments, each robot communicates with only one other robot per

iteration. We disable the sliding window and perform a full pose update for this evaluation such

that robots can exchange messages asynchronously on rendezvous.

As shown in Figure 6.8, reducing the communication range decreases the performance; however,

beyond a radius of 25m, the performance improvements are minimal. In this configuration, there

may be robots who never communicate with one another though they’ve made measurements of

each other. As GBP has no synchronisation, such cases are simply ignored without the need for

specific procedures. The asynchronous communications; however, lead to inconsistencies in the

linearisation points across multiple robots which potentially leads to poor convergence. How-

ever, as shown in Figure 6.8, the performance gap between 25m radius and beyond is negligible,

indicating robustness against these inconsistencies.

6.5.6 Operation Under Poor Initialisation

The initialisation is important for multi-robot localisation, especially for handling outlying meas-

urements. However, good initialisation may not always be available in the real world. Here, we

analyse the effect of increasing the noise on the initialisation and when the system breaks. We vary

the (σx, σy, σθ) from (0.1m, 0.1m, 0.1 rad) to (0.5m, 0.5m, 0.5 rad). The percentage of outlier

range-bearing sensor measurements remains to be fixed at 10%.
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Table 6.4: A comparison of the different distributed solvers for solving multi-robot pose-graph
optimisation. We report the initial cost, the solution of centralised Gauss-Newton (GN), and the
cost and the number of iterations required for convergence for the different distributed solvers:
distributed Block Gauss-Seidel (DGS) and distributed Block Jacobi Method from [Choudhary
et al., 2017] and ours. Across all datasets, though distributed, our method and DGS obtains similar
cost to the centralised GN.

Dataset Initial Cost Centralised GN Block Gauss-Seidel Block Jacobi Method Ours
#Iter Cost #Iter Cost #Iter Cost

Sphere 1.28863× 106 8.43504× 102 723 8.52218× 102 10000 3.28738× 103 1240 8.58949× 102

Torus 1.88612× 106 1.21137× 104 847 1.23950× 104 6964 1.25181× 105 1495 1.22184× 104

Parking Garage 8.36192× 103 6.31262× 10−1 117 7.93764× 10−1 5142 8.16846× 103 1472 6.94700× 10−1

Cubicle 2.53917× 106 3.18310× 102 701 3.38483× 102 9709 2.20025× 103 244 3.97225× 102

Rim 4.06073× 107 1.24992× 103 2355 6.50345× 103 6142 1.00088× 1023 2932 3.60934× 103

Grid 7.21751× 107 4.21596× 104 327 4.24620× 104 5613 4.96610× 104 1608 4.23358× 104

We plot the graph on a logarithmic scale for clarity but notice that at noise level (0.5m, 0.5m,

0.5 rad), the value of the upper whisker is 3.51m whereas at (0.4m, 0.4m, 0.4 rad) it is 0.32m,

clearly showing that the error explodes. Initialisation is critical for outlier rejection, and with a

poor initialisation, good observations will have high energy and possibly lie in the outlier region

of the robust kernel, making the optimisation problem challenging. While our approach demon-

strates robustness against up to a large initialisation noise of (0.2m, 0.2m, 0.2 rad), improving the

robustness to poor initialisation is an interesting direction for future works.
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Figure 6.10: Final trajectory returned by GBP on benchmark datasets [Carlone et al., 2015a].
Here, the trajectories are split among 50 robots.
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6.5.7 Joining and Leaving the Robot Web

The Robot Web is fully dynamic because each robot does not need any information about the

group as a whole, so robots can join or leave freely. When new robots are added, randomly into

the arena, it is initialised at the centre of the arena and starts to participate in the Robot Web. It

does not start to move until it believes that it has a good pose estimate. This decision is based

on each robot monitoring the robust scaling of its factors, which is based on the Mahalanobis

distance. Our implementation checks whether (a) the average scaling for all outgoing factors is

> 0.95, and (b) that there are at least 8 different observations. Until these criteria are met, the

newly-added robots send empty messages on the inter-robot factors and therefore do not affect the

already-initialised robots until they are confident enough to start moving and properly taking part

in the web. A video demonstration of this in simulation is available here:

https://rmurai.co.uk/projects/RobotWeb#dynamic

6.5.8 Comparison against other solvers

While the focus of the work is on distributed localisation using range-bearing sensor measure-

ments, the fact that our method operates on an arbitrary factor graph enables the framework to

work with different sensor modalities, for instance, inter-robot SE(3) transformation, often used

in distributed pose-graph optimisation (PGO). Here, we solve the following problem:

min
ti∈R3,

Ri∈SO(3),∀i

1

2

∑

{i,j}∈ε

τij∥tj − ti −Rit
z
i,j∥22 + κij∥Rj −RiR

z
i,j∥2F , (6.5)

where ε is a set of all measurements, Ri is a rotation variable, ti is a translation variable, Rz
i,j is

the measured rotation from i to j and similarly tzi,j is the measured translation from i to j. τij , κij
are the noise parameter computed from the dataset as done in [Rosen et al., 2019, Tian et al.,

2020, Fan and Murphey, 2020].

The main complexities of PGO lie in how we handle poor initialisation. As the optimisation

problem is non-convex, there exist many local minima. If we directly solve Equation 6.5, we will

get stuck in a local minimum, even with small noise [Carlone et al., 2015b]. Following [Choudhary

et al., 2017], we thus solve a relaxed, linear problem in two stages in a distributed manner. First,

we solve the rotation problem:

min
Ri∈SO(3),∀i

1

2

∑

{i,j}∈ε

κij∥Rj −RiR
z
i,j∥2F . (6.6)

We solve the quadratic relaxation of this problem, by dropping the SO(3) constraint and then

projecting the solution back to SO(3) via SVD.

We then solve for the full pose using a linear approximation of rotation perturbation:

min
ti,θi∈R3,∀i

1

2

∑

{i,j}∈ε

τij∥tj − ti −Ri
˜Exp(θi)tzi,j∥22

+κij∥Rj
˜Exp(θj)−Ri

˜Exp(θi)Rz
i,j∥2F , (6.7)
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where ˜Exp(θ) = I3 + S(θ), and S(θ) is a skew symmetric matrix.

In [Choudhary et al., 2017], Equation 6.6 and Equation 6.7 is solved using distributed Block

Gauss-Seidel (DGS) or distributed Block Jacobi method. Here, we compare GBP and DGS for

solving the two-stage PGO problem. We compare against DGS as it is used as an initialisation

for other works [Tian et al., 2020, Tian et al., 2021], and relaxation is simple to perform with the

factor graph framework. In our evaluation, we report the initial and final cost and the number of

iterations required to satisfy the termination condition. We evaluate the trajectories on pose-graph

optimisation dataset [Carlone et al., 2015b]. Each trajectory is split into 50 segments to simulate

a multi-robot pose-graph.

The setup of our evaluation favours the DGS. We count one iteration as a full DGS sweep, where

the robots sequentially send the updated information to the next robots in a specific order. GBP,

on the contrary is robot-wise parallel and does not require coordinated updates. Hence, the com-

munication pattern of GBP is closer to the distributed Block Jacobi method rather than DGS.

Furthermore, we enable flagged initialisation for both DGS and distributed Block Jacobi method.

For all methods, we terminate the iterations once the norm of the change in the rotation or the

pose is below a specified threshold. Here, we use 10−2 as the threshold for both the rotation and

the pose update, for all of our distributed solvers as recommended in [Choudhary et al., 2017].

Furthermore, for DGS and distributed Block Jacobi, we use the recommended relaxation para-

meter of 1.0 which we too found to work the best. We allow all the solvers to run for up to 10000

iterations.

As shown in Table 6.4, GBP performs comparable to DGS and obtains cost close to the centralised

Gauss-Netwon solver, though the setup favours DGS, and DGS has distributed pose-graph specific

heuristics such as flagged initialisation. Compared to the distributed Block Jacobi method which

has a similar communication pattern as GBP, GBP performs significantly better, both in terms of

final cost and the number of iterations. This result highlights the generality of GBP and makes

GBP a promising alternative to the existing distributed solvers. Devising a fair and complete

evaluation of different distributed solvers is an interesting direction for future work.

6.6 Demonstrations and Experiments in a Real-World

To provide concrete evidence of the effectiveness of our approach, we have evaluated the real

robots running our system on onboard devices in a distributed manner.

6.6.1 Evaluation Setup

To evaluate our approach with real robots, we used nine TurtleBot3 Burgers as the robot platform.

The robots (as shown in Figure 6.11) were equipped with a Raspberry Pi 3B+ computer with a

Cortex-A53 64-bit 1.4GHz processor and 1GB of RAM as the onboard computer. In addition,

each robot was fitted with an AprilTag-labeled cube – with the same tag on all sides – and an
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Figure 6.11: Image of a Turtlebot3 Burger used in the real robot experiment. It is fitted with
AprilTag-labelled cubes, an Intel-Realsense D435i camera and Vicon markers. Vicon markers are
only used to obtain the ground-truth trajectories, used for the evaluation. The depth image, laser
scanner and IMU are not used in any of the experiments.

Intel-Realsense D435i camera. The RGB images captured by the camera and the data from the

wheel encoder served as the sensory input. To simplify the setup, the depth image, IMU, and laser

scanner were disabled, and for the odometry, only the wheel odometry was used. Each robot had

knowledge of the size and location of the AprilTag [Olson, 2011], the camera position, and the

calibration parameters. As we have many robots, factory calibration was used for the odometry

and the camera. This is unideal as it adds systematic bias; however, our approach was still able to

function effectively.

During the described experiment, the robots are instructed to follow a square trajectory. When the

Robot Web system detects a drift in the robot’s position, a heuristic is used to correct the pose. For

the drift of less than 5cm, proportional control is applied to bring the robot back onto the desired

trajectory. Otherwise, the robot turns to face the next corner of the trajectory to correct the pose.

All computation, including GBP optimisation, pose correction, and inter-device communication

via ROS2, runs on the onboard computer, highlighting the computational efficiency of our ap-

proach. We assume that the robots know the mapping between unique IDs and IP addresses in

advance and that there is a shared/synchronised clock for all observations. When an AprilTag is

detected, observation is transformed into a range-bearing measurement. We are unable to obtain

relative transformation measurements – which include both translation and rotation – as the same

AprilTag is used on all sides of the cube, so the orientation is ambiguous.
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Figure 6.12: Nine real robots are moving in a square trajectory, and the motion captured by the
Vicon system is plotted. It is clearly visible that using inter-device communication improves the
localisation accuracy.

6.6.2 Implementation Details

We use ROS2 Foxy [Macenski et al., 2022] for all the robots. The Publish-subscribe model, as de-

scribed in Section 6.4.2 is used for message passing. In ROS2 this entails simply subscribing to the

topics (e.g. for robot 1, it will subscribe to robot 1/variable msg, robot 1/factor msg)

and publishing to either the variable/factor of other robots along the inter-device factor.

GBP runs on its own thread, and the passing of internal messages runs as fast as possible. GBP

process is interleaved with the subscriber which receives the inter-device messages. For simplicity,

a single coarse lock is used to avoid concurrency problems (adding inter-device messages to the

internal factor graph); however, as all update operations of GBP are local, it is possible to use a

finer lock. The publisher runs at 10Hz, publishing the outgoing messages. Best-effort delivery is

used; hence, there is no delivery guarantee. We emphasise that the publishing and receiving of the

messages are not synchronised, and robots receive messages at arbitrary timings (potentially out

of order).

We set the sensor noise to be: σx = 0.01m, σy = 0.01m, and σθ = 1◦ for the prior; σx = 0.01m,

σy = 0.005m, and σθ = 1◦ for the odometry; and σb = 0.01m, and σθ = 1◦ for the range-bearing.

All robots run GBP with a window size of 5. DSC [Agarwal et al., 2012] is used for the robust

kernel with Φ = 10. The variable nodes are after any forward motion or a rotation, and in all the

experiments, 75 poses per robot were added to the graph.

6.6.3 Multi-Robot Localisation Evaluation

In this section, we evaluate the localisation accuracy of our approach. We evaluate under two

different settings, with and without landmarks. Four landmarks are used, and their position is

known to the robots in advance. Figure 6.12 shows the trajectory captured by the Vicon motion

capture system. In all runs, robots are moving for 10 minutes. It is clear that Robot Web localises

the robots well and allows them to operate for a long period without drifting.
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Table 6.5: The table below shows the RMSE ATE of the real robot experiment. The RMSE ATE
of the real robots is computed against the observations made by the Vicon motion capture system.
The table summarises the impact of inter-device communication and the availability of landmarks
on the RMSE ATE. We report the mean error and the standard deviation of the nine robots.

Communication Landmark µ± σ [m]

False False 0.162± 0.085
True False 0.043± 0.020

False True 0.071± 0.020
True True 0.028± 0.007

(a) (b) (c)

Figure 6.13: Here, nine robots are running Robot Web. Each robot starts on the vertices of the grid
on the floor and moves in a square pattern (50cm x 50cm). In (a) during operation, one robot is
removed from the system (e.g. for maintenance) and then added back with an incorrect pose. As
a result, the robot fails to follow the square pattern, as shown in (b). However, using Robot Web,
the robot is able to successfully relocalise, as shown in (c), and returns to following the square
trajectory.

The RMSE ATE of the real robots is computed against the observations made by the Vicon motion

capture system. The result is summarised in Table 6.5. As expected, whether there are landmarks

or not, using inter-device communication, i.e. Robot Web, improves the accuracy of localisation.

The use of sparse landmarks is insufficient for good localisation without inter-device communic-

ation. This is clear both qualitatively by comparing (b) and (c) of Figure 6.12, and quantitatively

in Table 6.5 by comparing: no landmarks, with inter-device communication; and with landmarks,

no inter-device communication.

6.6.4 Relocalisation Demonstration

In a multi-robot system, there are many potential sources of failure for the robots. For instance, a

robot might need to be stopped for maintenance due to a low battery, or it could be accidentally

bumped out of position by a person. These types of external influences are often non-Gaussian,

and if the system only accounts for Gaussian noise, it will not be able to accurately handle these

unexpected events.

In Robot Web, while GBP assumes a Gaussian noise, robust factors allow the system to handle
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non-Gaussian noise as well. In Figure 6.13, we lift a moving robot and place it back in the wrong

position. This disorients the robot, and it is unable to follow the square trajectory. However, after

a few observations, the robot relocalises and returns to follow the square trajectory. During this

relocalisation process, other robots are unaffected by the wrongly positioned robot as the robust

factor heavily down-weights its influence until the wrongly positioned robot is correctly localised.

Due to the error between the position of the robot and its estimate, the measurements made of this

robot by the others will have high residuals and thus will be down-weighted by the robust kernel.

A video of the relocalisation demo is available here:

https://rmurai.co.uk/projects/RobotWeb#reloc

6.7 Ongoing Research Topics

We have demonstrated the essential operation of the Robot Web both in a simulation and in a

real-world, truly distributed implementation on multiple robots. The properties of the method are

extremely promising, and here we discuss some important research directions going forward.

6.7.1 More General Parameterisation

Our current implementation makes several simplifying assumptions, but we believe that all of

these are fairly straightforward to remove within the Robot Web framework with some further

work.

• We currently assume that inter-robot measurement factors, stored by the robot with the

sensor, always correspond to observations of the position of the centre of the second robot.

This would already allow a practical implementation for 2D planar robots which each carry

a single observable beacon above their centres. More realistically, each robot might have

several or many observable features, and these will be located on any point on its structure.

We can deal with this by adding additional internal variables to the second robot, connected

to its main pose by ‘perfect’ factors, representing the positions of the observable features

relative to its body, with positions that only need to be known to the second robot.

• Our current assumption that all robots have pose variables defined at the same rate and at

corresponding times could be relaxed by measurement factors which connect to multiple

variables at the receiving robot and interpolate the measurement between poses.

We might take the Robot Web idea even further to also apply inside a single robot’s modular body.

The different parts, actuators and sensors that make up the robot might use Web interfaces between

them to enable distributed joint estimation and very general modularity.
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6.8. Discussion and Conclusions

6.7.2 Efficient Long-Term Operation

If we keep the full history of all pose variables for each robot, and all measurement factors, even-

tually the computation, storage and communication capacity of each robot would become over-

loaded. Of these, inter-robot communication is likely to be the main bottleneck. We showed one

simple approach to dealing with this via time windowing, where poses older than a threshold are

discarded, and this gives good performance when robots have bounded drift due to the presence

of known beacons.

A more general approach to bounding the growth of the graph could be based on incremental

abstraction [Ortiz et al., 2022], where past variables and factors are not deleted but grouped into

more efficient blocks with minimal loss of accuracy. For instance, a set of well-estimated pose

variables from the past could be grouped into an abstract trajectory segment, represented by far

fewer variables. Factors could also be grouped. Achieving this incremental abstraction in a fully

distributed way across multiple robots however will require substantial research.

6.8 Discussion and Conclusions

We have presented a method for distributed multi-robot localisation in the context of a larger

‘Robot Web’ vision for how heterogeneous groups of intelligent robots and devices of the future

could cooperate and coordinate. This approach could be important at a time when many different

companies and organisations are building spatially aware devices, and offers a distributed, inter-

operable alternative to a single unified cloud maps solution.

As the performance and scale of many-robot systems may greatly improve due to work such as

ours, it is important to consider potential ethical concerns. A robust, large-scale robot group or

‘swarm’ has many possible positive applications, such as the automation of farming or environ-

mental surveillance via many low-cost devices, which could be much more efficient overall than

a small number of large devices. However, there are possible ethical concerns with swarms of

autonomous, weaponised drones

We believe that our work overall could indicate a positive direction for the operation of distributed

multi-robot systems via the specification that the Robot Web allows and demands of an open com-
munication protocol. If the majority of the moving intelligent devices were to take part in such a

system by publishing and reading localisation messages via this open protocol, it would be greatly

to the advantage of any newly built devices to also take part, to exchange open messages, and to

benefit from the system. This would mean that the whole system might work in a way similar to

the World Wide Web, and some degree of global control would be possible via the interpretabil-

ity of the protocol and perhaps more specific safety measures built into it. We believe that it is

better for devices to be exchanging clearly interpretable geometric information than cryptic coded

messages (as would emerge for instance in a possible distributed ‘graph neural network’ system

for localisation, where the format of messages is learned rather than designed — and we should
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add here our view that a learned alternative to our method is also likely to be far less flexible and

efficient).

These are ongoing issues to be debated as the technology advances, and we as authors believe

that researchers should openly engage with these issues and play a part in designing the correct

principles into the technology.

GBP is a local optimiser and combined with the overconfidence problem in a loopy graph, it

struggles to remove the low-frequency error. To accelerate convergence, hierarchical optimisation

such as multi-grid methods or batching many small factors into a single large factor would be an

interesting direction.

In the longer term future, the distributed coordination of intelligent moving systems is a key part

of the concept of ‘intelligent matter’, where distribution and communication might be at the mi-

croscopic level to enable new classes of technology such as micromachines [Huang et al., 2022]

which can self-organise in ways that might approach the capabilities of biological systems [Kas-

par et al., 2021]. Recently, it has been shown that essentially the same computation framework

that we have demonstrated in Robot Web using GBP can also be applied to multi-robot motion

planning [Patwardhan et al., 2023]. Efficient, robust distributed localisation will be one of the

most important enabling layers of such systems.
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Distributed Simultaneous
Localisation and Auto-Calibration

using Gaussian Belief Propagation
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We present a novel scalable, fully distributed, and online method for simultaneous localisation and

extrinsic calibration for multi-robot setups. Individual a priori unknown robot poses are probabil-

istically inferred as robots sense each other while simultaneously calibrating extrinsic parameters

of their sensors and markers using Gaussian Belief Propagation. In the presented experiments, we

show how our method not only yields accurate robot localisation and auto-calibration but also is

able to perform under challenging circumstances such as highly noisy measurements, significant

communication failures or limited communication range.
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With Calibration Parameters

Localisation

Coordinate Frames

Robot  Robot 

Robot 

Figure 7.1: Overview of the proposed auto-calibrating localisation system for three heterogeneous
robots (top). Each robot observes the markers M placed on its peers to establish measurement
z̄SM using sensor S mounted on top of a moving base B. Using the proposed methodology,
the robots’ relative positions and their calibration parameters are retrieved in a distributed and
asynchronous fashion performing probabilistic inference on a factor graph. We refer to TWB as
WB for clarity.

120



7.1. Introduction

7.1 Introduction

As we’ve motivated in Chapter 6, multi-robot co-localisation is essential for practically any multi-

robot application where the robots interact with each other. Co-localisation accuracy, however,

is heavily reliant on the quality of extrinsic calibration of the sensors (e.g. visual camera rigs,

rangefinders) and the markers they can detect on other robots (e.g. AprilTags, reflective markers).

While most works often take such extrinsic calibration for granted, in practice, the default in-

factory calibration can only be precise to a certain degree. This is particularly important in multi-

robot setups, where manual calibration becomes impractical and highly accurate in-factory; per-

robot calibration incurs high operational costs.

Extending on the distributed localisation framework, Robot Web, which we’ve introduced in

Chapter 6, in this chapter, we envision a system (see Figure 7.1) in which multiple robots co-

localise themselves as they move and sense each other while simultaneously estimating and refin-

ing the extrinsic calibration of their sensor and their onboard marker on-the-fly. In summary, the

contributions of our work are:

• A novel method for distributed multi-robot localisation and extrinsic calibration of both the

sensor and the observed marker on the robots. Our approach builds on top of Robot Web,

originally limited to pose variables in SE(2) given range-bearing observations. We extend

the framework by simultaneously estimating the SE(3) pose of the robots and their extrinsic

calibrations using Gaussian Belief Propagation (GBP) to further improve the accuracy of

multi-robot localisation.

• We present a formulation of the inter-robot factor that avoids the sharing of the calibration

variables amongst multiple robots, sparing communication effort between robots and thus

enhancing the scalability of the system.

• We provide an extensive evaluation of our approach in comparison with other state-of-the-

art alternatives and measure the performance of the method under extreme conditions such

as a large number of communication failures, a large proportion of outlying measurements,

and a limited communication range.

7.2 Related Works

We’ve reviewed multi-robot localisation in Section 6.2, hence in this section, we discuss multi-

device calibration methods.
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7.2.1 Multi-Device Calibration

Calibration is vital for robotic operations and, as such, the body of literature on the subject is

vast. Due to space limitations, our literature review focuses on calibration processes that involve

multiple cameras or multiple robots.

Accurate extrinsic calibration is often critical in multi-device systems. Different robots have dif-

ferent base frames, and within a robot, the exact position of the sensor and observable onboard

marker may not be available. A common instance of this is hand-eye calibration. From a set of

known relative transformations, the calibration process seeks to establish the undetermined rela-

tionship, often the relative transformation between the robot base frame and sensor frame [Shiu

and Ahmad, 1989]. These methods can be extended to support multiple robots using iterative

methods [Wang et al., 2014] or probabilistic approaches [Ma et al., 2018]. However, these meth-

odologies primarily focus on offline settings where calibration precedes operational activities. In

multi-robot setups, [Gowal et al., 2011] proposes a method to perform online calibration of infra-

red sensors while estimating the parameters of the underlying physical sensor model.

Multi-camera rigs are becoming increasingly popular as they can significantly extend the sur-

rounding perceptive field for any robot and even directly yield stereo-depth capabilities provided

there is view overlap. However, accurate calibration of such these rigs is often challenging, leading

to several works on automatic offline calibration [Esquivel et al., 2007, Carrera et al., 2011, Lin

et al., 2020]. The method in [Dang et al., 2009] carries out continuous self-calibration using an ex-

tended Kalman filter in a stereo setup. Beyond two cameras, self-calibration of multiple cameras

extrinsic is achieved on an aerial vehicle in [Heng et al., 2015], whereas an information-theoretic

approach described in [Dexheimer et al., 2022] is able to operate on a rig of eight cameras. Not-

ably, while these methods are online, they predominantly address setups with a single robot with

multiple onboard sensors, rather than a truly distributed, multi-robot system.

In the field of sensor networks, CaliBree [Miluzzo et al., 2008] performs fully distributed sensor

calibration by measuring disagreement between uncalibrated and calibrated sensors upon rendez-

vous event. This method, however, is only limited to calibration and does not address the localisa-

tion of the devices. In [Devarajan et al., 2008], GBP is used in a distributed fashion for intrinsic

calibration and refinement of the camera poses. The method solves structure-from-motion, where

multiple cameras are stationary; hence, it is not applicable to online robotic applications with a

moving onboard sensor. Non-parametric belief propagation is used in [Ihler et al., 2004] to per-

form calibration and localisation of sensors. The method is sampling-based; hence less efficient

than GBP and assumes that the sensors are stationally. LaSLAT [Taylor et al., 2006] performs loc-

alisation and calibration of the sensors together with tracking of a target. In LaSLAT, the sensor

poses are assumed to be static and are not suitable for localising multiple moving robots, which is

the problem we address in this work.
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Before Calibration After Calibration

Markers M

Sensors S

Figure 7.2: Example of calibration of the extrinsic of the sensors’ pose and markers’ position
using the proposed method, where we artificially set the ground-truth extrinsics to be the same for
visual clarity. We overlay the calibration estimates of 64 robots from randomly initialised states
(left), and visualise the estimated extrinsics after the calibration (right).

7.3 Distributed Localistion and Extrinsic Calibration

7.3.1 Problem Formulation

This section details how multi-robot localisation and the extrinsic calibration of their onboard

sensors and observable markers are simultaneously and distributedly performed. In the considered

setting, each robot is equipped with a range-bearing sensor S that observes the other robot’s on-

board marker M . While the addressed setup is representative of realistic constraints of many

robotic applications, here we describe the formulation in general terms, so that it can easily be

extended to support more information-rich measurements such as direct relative transformations

(e.g. using visual sensors and fiducial markers).

The relative transformation from the base of the robot B to its sensor S is TBS ∈ SE(3), where

the notation TBS represents the pose of S in the coordinate frame of B. Similarly, tBM ∈ R3

represents the marker position M relative to B. Since only range-bearing sensors are used in

the current setup, the orientation of the marker is not observable and thus not included in this

specific problem definition. When the sensor Sα in robot α observes the marker Mβ in robot β,

a relative measurement z̄αβSM is generated. The initial estimates of TBS and tBM are expected to

be noisy due to inaccurate calibration. Our work optimises over the extrinsic calibration using the

observations z̄αβSM robots accumulate over time as depicted in Figure 7.2.

Let Ω = {α, β, γ, . . .} be the set of robots, T be the number of considered time-steps, and Tω
WBt

denote the pose of the base of the robot ω at time t in the world coordinates. To perform marginal

inference over all, Tω
BS , t

ω
BM ,T

ω
WBt,∀ω ∈ Ω,∀t ∈ {1, . . . T}, we consider the following factors.
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Range Bearing Sensor

In our setup, robots can observe the other robots using range-bearing sensors. We use spher-

ical coordinate (r, θ, ϕ), i.e. radial distance, azimuthal angle, and elevation angle respectively.

All angles are parameterised using SO(2), hence; the range bearing measurement is z̄αβSM ∈
⟨R,SO(2),SO(2)⟩, a composite manifold.

The range bearing factor relating the sensor Tα
WSt and the marker tβWMt at time t is:

ls(T
α
WSt, t

β
WMt; z̄

αβ
SM ) ∝ exp(−1

2
∥z̄αβSM −⋄ hs(T

α
WSt, t

β
WMt)∥2Σs

) , (7.1)

where we use the notation −⋄ from [Solà et al., 2018], an operation on the composite manifold (⊖
operation is applied to each block of composites separately).

Here, hs is the function that predicts range bearing measurement between Tα
WSt and tβWMt. Let

tαWSt ∈ R3, Rα
WSt ∈ SO(3) be translational, rotational the part of Tα

WSt (and similarly for

Tβ
WMt). The relative translation between Tα

WSt,T
β
WMt in coordinate frame of base of α is:

Rα⊤
WSt(t

β
WMt − tαWSt) = (δx, δy, δz). Hence, measurement prediction function is defined as:

hs(T
α
WB,T

β
WB) = (r, θ, ϕ), where r = ∥tβWB − tαWB∥2, θ = arctan2(δy, δx), and ϕ = π

2 −
arccos( δzr ).

Robot Odometry

We assume that odometry measurements T̄Bt−1Bt ∈ SE(3) (e.g. IMU/wheel odometry) are made

available to each robot. An odometry factor penalises the deviation between observation T̄Bt−1Bt

and the two estimated consecutive poses TWBt−1 ,TWBt ∈ SE(3):

lo(TWBt−1 ,TWBt ; T̄Bt−1Bt) ∝ exp(−1

2
∥T̄Bt−1Bt ⊖ (T−1

WBt−1
TWBt)∥2Σo

) . (7.2)

This assumes that the odometry measurement is measured in the base frame B. This property

can be enforced by choosing a suitable base frame given prior information about the wheel/IMU

position. However, if the odometry is provided via the sensor S (i.e. visual odometry), we can

replace the transformations in the base frame B with a transformation in the sensor from S.

Calibration Factor

In Equation 7.1, we have used TWSt, tWMt position of sensor S and marker M in the world

coordinate frame W at time t. A simple solution to obtain the position in the world coordinate

is to use all Tα
WBt,T

α
BS ,T

β
WBt, t

β
BM inside the likelihood function, as shown in the left row of

Figure 7.3. However, this has a clear disadvantage: robots must communicate both the calibration

estimate and the pose estimate with each other. This not only doubles the inter-robot communica-

tion effort but also exposes internal states (i.e. sensor calibration) that do not need to be revealed

to other robots. Furthermore, it creates small cycles which often leads to overconfidence [Weiss
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Robot 

Robot 

Odometry

Range Bearing Range Bearing

Odometry

Calibration

Figure 7.3: Reducing the inter-robot communication by restructuring the factor graph. We refer
to TWB as WB for clarity. Left: The inter-robot factor (range bearing) depends on four vari-
ables: the poses of the robots, the marker M , and the sensor S pose with respect to the robot
base B. Right We introduce the marker and sensor variable in the world coordinate frame using
Equation 7.3. We follow the same assumption as Chapter 6 that communication is the dominant
cost we aim to reduce. Here, though the total number of variables increases, since the inter-robot
factors depend on fewer variables, we reduce the communication requirements which makes our
approach scalable.

and Freeman, 1999]. Hence, this motivates the redesign of a factor to only share the pose estimate

of the sensor and the marker between robots.

The objective of the calibration is to find a transformation TBS ∈ SE(3) such that: TWS =

TWBTBS . This relationship as a likelihood is defined as:

lc(TWS ,TWB,TBS) ∝ exp(−1

2
∥Log(T−1

WSTWBTBS)∥2Σc
) . (7.3)

The likelihood for calibration of the marker can be derived in a similar way. This allows us to

create a factor graph as illustrated in the right row of Figure 7.3, where only TWSt, tWMt is

connected between the robots. While this formulation increases the total number of variables in

the factor graph, fewer variables are connected to the inter-robot factor, thus reducing the data

transfer between the robots.

7.3.2 Adaptive Regulariser on the Factor

Due to the nature of SE(3), the objective function which we are minimising is non-linear and

non-convex; challenging for any iterative optimisers, but especially for local ones such as GBP

with no access to the global objective function. In our case, the Lie group extension of GBP

Section 5.3 was insufficient to consistently reach convergence. Hence, here, we introduce an ad-

aptive regularisation term in GBP to assist convergence. The idea presented is similar to diagonal

loading [Johnson et al., 2009]; however, we adaptively change the priors we load for each factor.
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Table 7.1: Accuracy of the proposed method (‘Ours’) and the global, centralised NLLS LM solver
(‘LM’) at convergence as a function of the number of robotsN and the enabling of autocalibration.
Results include the RMSE ATE and ARE of the robot poses of their bases in the world frame
TWB , the extrinsic calibration of their sensor TBS and marker tBM (only translation) where
applicable.

N T Initial LM w/ Calib. Ours w/ Calib. Ours w/o Calib.
[m] [deg] [m] [deg] [m] [deg] [m] [deg]

16 TWB 0.432 7.422 0.065 1.858 0.084 1.970 0.093 2.313
TBS 0.080 8.852 0.023 1.156 0.027 1.268 – –
tBM 0.085 – 0.020 – 0.022 – – –

32 TWB 0.434 7.471 0.051 1.742 0.062 1.811 0.075 2.138
TBS 0.082 8.856 0.021 1.035 0.025 1.251 – –
tBM 0.087 – 0.019 – 0.022 – – –

64 TWB 0.436 7.402 0.043 1.684 0.054 1.761 0.066 2.082
TBS 0.083 8.810 0.020 0.969 0.025 1.214 – –
tBM 0.088 – 0.018 – 0.020 – – –

128 TWB 0.434 7.385 0.039 1.646 0.049 1.732 0.060 2.041
TBS 0.085 8.740 0.018 0.969 0.022 1.202 – –
tBM 0.087 – 0.017 – 0.020 – – –

For each of the factors fm, we add a zero-mean prior N−1(0, λmI). The term λtm is local to the

factor and is updated adaptively based on the difference between the current local factor energy

Et
m and last iterations Et−1

m :

λtm =




λt−1
m · λ↑ Et

m − Et−1
m > ϵλ

λt−1
m /λ↓ otherwise

, (7.4)

where a threshold ϵλ is required to avoid the weighting from increasing when the factors’ energy

stops changing significantly near convergence, and λ↑, λ↓ are the increase, decrease factor respect-

ively. Intuitively, at the beginning when far from optima, the adaptive regulariser encourages small

descent steps. As the factors become more confident about their approximation of the curvature

(i.e. made multiple successive descents), larger descent steps are performed. While the principle

of this approach is the same as Levenberg-Marquardt, fundamental this weighting scheme is com-

puted and applied purely locally, and the step is always taken even if the local energy increases.

This way, no synchronisation or communication is required when applied distributedly.

Assuming that the objective function is strictly convex, the addition of the adaptive regularisation

term will not change the optimal solution. As the GBP converges, limλm→0 ls(Xs; z̄s)N−1(0, λmI) =

ls(Xs; z̄s), and λm → 0 as the energy decreases or reaches local convergence.

7.4 Evaluation

We mainly evaluate our approach in a simulated environment with a vast number of robots, as

obtaining the ground-truth extrinsic calibration and robot poses in the real-world for such experi-
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Figure 7.4: From left to right: RMSE ATE for TWB , TBS , tBM . RMSE ARE omitted as it
follows the same trend. Comparison of different distributed alternatives (Final RMSE ATE of
global, non-distributed LM shown for reference).
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Figure 7.5: From left to right: RMSE ATE for TWB , TBS , tBM . RMSE ARE omitted as it
follows the same trend. Analysis of robustness regarding communication failures by randomly
dropping a percentage of the inter-robot GBP messages in each iteration. 100% indicates that all
inter-robot messages are dropped, preventing co-localisation.
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Figure 7.6: From left to right: RMSE ATE for TWB , TBS , tBM . RMSE ARE omitted as it
follows the same trend. Effect of increasing the fraction of outlier noise. Non-Gaussian noise is
added to the inter-robot sensor measurement to simulate outliers.

ments would be extremely challenging. As a verification of the applicability of our method to the

real-world, we evaluate using UTIAS MR.CLAM dataset [Leung et al., 2011] .

To simulate sensor noise, observations are corrupted by applying zero-mean Gaussian noise. Odo-

metry measurements are corrupted with noise with σtB , a standard deviation of 0.01 meter per

meter travelled for the translation, and with σRB , a standard deviation of 1 degree per 90 degrees

rotated for the rotation. Inter-robot measurements are corrupted in their range and bearing read-
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Figure 7.7: From left to right: RMSE ATE for TWB , TBS , tBM . RMSE ARE omitted as it
follows the same trend. Impact on the overall accuracy when robots are limited to only commu-
nicating with peers within the specified range.

ings with a standard deviation of σs: (0.05m, 5◦). 3D range bearing measurements (r, θ, ϕ) are

restricted to the three closest observable robots, to imitate realistic and limited inter-robot observ-

ability. We further restrict the range-sensing to be limited to |θ| < 60◦ and |ϕ| < 60◦, to simulate

the field of view limitations of, for instance, visual sensors. Robots are randomly initialised in

translation and orientation within a 20m× 20m× 20m space. We assume that the initial pose of

the robots is known to a certain degree, within a noisy initial guess with standard deviation 0.01m,

1◦ respectively for the translation and the rotation. We simulate the robots’ motion by drawing

random samples from a uniform distribution, U(0, 1)m for translational motion and U(−π, π)◦
for rotational motion, across all three dimensions. Finally, the initial calibration of sensor S and

marker M also deviates from the ground truth with a standard deviation of the translational part

of extrinsic of sensor σtS and marker σtM set to 0.05m, and the standard deviation of the rotation

part of the sensor frame σRS = 5◦.

To enhance the stability of GBP, for the adaptive regularisation, we use the default parameter of

λm = 10, λ↓ = 9, λ↑ = 11, ϵλ = 10−4. While not sensitive to the choice of parameters, we

found GBP to diverge in many cases without adaptive regularisation. Additionally, 30% of both

internal and external GBP messages are randomly dropped, as an empirical heuristics to improve

the convergence of the system [Ortiz et al., 2022]. Unless specified otherwise, for robustness

against outlying measurements, we dynamically scale the information matrix of the range-bearing

sensor factor using a DCS robust kernel [Agarwal et al., 2012] (Equation 6.3) with Φ = 10. For

each range-bearing measurement, the information matrix Λm is scaled by s2m.

In all the presented experiments, unless specified otherwise, we consider N = 64 robots that ran-

domly execute 50 motions, incrementally growing the underlying factor graph (see Section 7.3.1)

and performing 30 GBP message-passing iterations after each of these motions. The experimental

results aggregate information from a total of 10 randomised runs, where we often report the aver-

age Root Mean Squared Error (RMSE) of Absolute Trajectory Error (ATE) and Absolute Rotation

Error (ARE) to measure the accuracy of the system as described in [Choudhary et al., 2017] for

multi-robot setup.
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7.4. Evaluation

7.4.1 Comparison with Centralised Factor-Graph Solvers

Here we compare the proposed incremental GBP-based approach with a global Non-Linear Least

Squares (NLLS) Levenberg-Marquardt (LM) solver (implemented in Theseus [Pineda et al., 2022])

that processes the full graph as a whole batch. We evaluate how the accuracy of the overall system

varies as a function of the number of robots N and the effect resulting from enabling or disabling

auto-calibration for the proposed method, i.e. whether the initial noisy calibration is optimisable

or remains fixed, respectively. The robust kernel is disabled for this experiment to simplify the

comparison. The accuracy of the different alternatives is compared in Table 7.1. Despite the

proposed method being distributed and without any global, second-order perspective of the whole

problem, experimental results show no significant differences with respect to the global LM solver

at convergence. As expected, the larger the number of robots N , the higher the accuracy of all

methods as the underlying factor graph becomes denser and thus, more information-rich. Observe

that the proposed GBP-based approach is still able to profit from a denser graph despite including

more cycles. We additionally report the results of our method while considering that the noisy

initial calibration is correct. This yields obviously worse results than when we optimise the graph

which considers the calibration parameters.

7.4.2 Comparison with Distributed Factor-Graph Solvers

We compare our method against other distributed solvers: block Gauss-Seidel (GS) and its relaxa-

tions block Successive Over-Relaxation (SOR) [Bertsekas and Tsitsiklis, 2015]. In GBP messages

are exchanged in parallel and thus do not require coordinated updates. We favour GS and SOR

by counting each iteration as an ordered sweep, where robots sequentially exchange their updated

state in a specific order. In this comparison, all the methods are provided with the whole graph

to be optimised from the beginning instead of incrementally growing and solving the problem,

with 16 robots making 10 random motions. We use the same relaxation parameter as reported

in [Choudhary et al., 2017]. The robust kernel is disabled for this experiment to simplify the

comparison.

Results are presented in the Figure 7.4. GBP shows a faster convergence rate than GS and SOR

in the number of iterations (the aforementioned global and centralised LM method is also shown

for reference). Presented results match prior comparisons between GBP and Successive Over-

Relaxation in [Weiss and Freeman, 1999]. Note that GS and SOR produce marginally better

extrinsic at by trading off a significantly worse body frame localisation.
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7.4.3 Robustness Analysis

Communication Failure and Asynchronicity

We analyse the robustness of the system regarding potential communication failures, modelled by

randomly dropping a percentage of the inter-robot GBP messages in each iteration, and present

the results in the Figure 7.5. In this experiment, the whole graph is available from the beginning of

the proposed algorithm with 64 robots and 10 random motions to clearly identify the convergence

trends. The behaviour of the system remains largely unaffected by communication failure up

to around 80%, communication failure. ATE of TWB initially increases as poses are initially

uncertain and are down-weighted by the robust kernel. However, within a few iterations, the poses

are correctly optimised, reducing the ATE. Even at an extremely high communication failure rate,

the RMSE ATE still gradually decreases as we perform more iterations and thus, more rounds of

communication. The experiment further demonstrates the asynchronicity of our approach, where

the message order does not significantly impact the overall performance. This is a crucial property

required for real-world deployment, where the communication channel is potentially unreliable,

especially at scale.

Robustness to Outlier Measurements

As real-world inter-robot sensing is often challenging (e.g. misidentification, sensor failure), we

investigate the robustness of the system to extreme, non-Gaussian outlier measurements follow-

ing a uniform noise. As presented in the Figure 7.6, results indicate that, while performance is

reasonably impacted as the fraction of outliers increases, the system remains stable even for an

extremely high percentage of non-Gaussian outliers. Even at 40%, we observe a relatively small

increase in the error compared to no outlying noise, demonstrating the robustness of our approach.

Communication Range

To mimic realistic, real-world conditions, we further limit the communication radius of the robots

to 4, 6, 8, 10 and 20m and report the results on the Figure 7.7, including also no communication

(0m) and infinite communication range (‘Inf’) for completeness. While a longer communication

range proves to be indeed beneficial, our method is able to optimise all the parameters effectively

even with a severely limited communication radius. For reference, only 24% of the robots are

within communication range at a 10m radius whereas the percentage increases to 85% at a 20m

radius and yet such a drastic increase only yields insignificant returns in terms of accuracy.

The imposed limit on the communication range also tests the system’s asynchronicity. Since an

agent cannot communicate at the time of observation if the other agent is too far away, the agent

needs to wait for a rendezvous event in order to exchange information. Our result hence further

highlights that our system is capable of handling asynchronous events.
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7.5. Conclusion

Table 7.2: Evaluation of our method on real-world data. Results include the RMSE ATE of our
system with and without the autocalibration enabled, on UTIAS MR.CLAM dataset 1-4. The
noise column indicates whether a noise was artificially added to the sensor calibration to simulate
an uncalibrated system.

Noise Auto Calib. 1 2 3 4
✗ ✗ 0.102 0.0976 0.0690 0.0712
✗ ✓ 0.102 0.0967 0.0706 0.0694
✓ ✗ 0.122 0.121 0.0974 0.0855
✓ ✓ 0.111 0.120 0.0825 0.0809

Figure 7.8: Robots used in the UTIAS MR.CLAM dataset. Each robot is equipped with a mon-
ocular camera and a barcode identifier. Images from [Leung et al., 2011].

Real-world Experiments

To verify the applicability of our approach to real-world data, we have performed localisation and

auto-calibration using UTIAS MR.CLAM dataset [Leung et al., 2011]. As the robots are ground

vehicles (Figure 7.8), we model them with SE(2) poses and 2D range-bearing observations fol-

lowing Section 6.5.1. We use datasets 1-4, where the landmarks and the robots are randomly

scattered. We set σtB = (0.05m, 0.01m), σRB = 5◦, σs = (0.08m, 2◦). The dataset is subsampled

at 1s intervals, and we use sliding window-based GBP with a window size of 30.

As presented in Table 7.2, as the robots are calibrated, autocalibration does not yield better RMSE

ATE. We simulate an uncalibrated system by artificially adding noise to the sensor calibration

with a standard deviation of 0.05m and 10◦ for translation and rotation respectively. While this

manipulation of calibration is artificial, this data still contains challenging real-world sensor and

odometry noise. In such a case, auto-calibration reduces the ATE, indicating that our method has

successfully filtered out the biases even with real-sensor data.

7.5 Conclusion

In this chapter, we presented a method for online, simultaneous localisation and automatic ex-

trinsic calibration of sensors and observable markers, by building on our previous work Robot

Web from Chapter 6. Our work performs distributed and asynchronous inference on the factor
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graph using GBP, and we have demonstrated its robustness against large amounts of communica-

tion failure, outlying measurements, and restricted communication ranges. One of the limitations

of the autocalibration is the observability problem. For example, if two robots continuously move

in a straight line, we will not be able to isolate the extrinsic calibration of the sensor/marker from

the body pose. In a multi-device setting, since more devices are moving in different directions,

these problems are less likely to occur; however, automatically identifying such an ambiguous

state would be an interesting future direction.

Distributed and asynchronous properties of GBP offer attractive features for multi-robot systems.

Automatic calibration ensures that the robots require as little maintenance as possible and the

accurate localisation provides the basis required for multi-robot interaction.
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CHAPTER 8

Conclusion and Future Directions

In this thesis, we explored Distributed Spatial AI. To conclude, we will revisit each of the contri-

butions and discuss the future directions of research.

We started by investigating near-sensor processing in Chapter 3, where we bypass the expensive

analog-to-digital conversion of the pixel intensities by performing analog computation directly on

the focal-plane. Only the meaningful visual features are transferred from the focal-plane to the

host device to save energy. Our work demonstrated that even though only a few bits of informa-

tion are transferred from the camera, Visual Odometry (VO) pipeline can still be made robust by

running the entire system at 300 FPS. In Chapter 4, we push the boundary of what the fidelity a

Simultaneous Localisation and Mapping (SLAM) system can capture by demonstrating the first

application of 3D Gaussians Splatting (3DGS) for monocular/RGB-D SLAM. Our work operates

live at 3 FPS, and the continuous stream of image data from a moving camera is processed and

compressed into a single 3D representation. While the compression is lossy and the re-rendered

images are not perfect, they are photorealistic, and we can run an off-the-shelf pre-trained found-

ation models such as Segment Anything [Kirillov et al., 2023] on the rendered image.

Both Chapter 3 and Chapter 4 approached the problem of data compression, however, from dif-

ferent ends. BIT-VO aggressively compresses the image data, even before they are digitised, to

minimise energy consumption and data transfer. On the other hand, Gaussian Splatting SLAM

assumes the availability of all the pixel intensities and investigates how we can incrementally

combine these data into a single coherent 3D representation while simultaneously tracking against

them.

To address the problem of scalability in Distributed Spatial AI, in Chapter 5, we introduce Gaus-

sian Belief Propagation (GBP), a message-passing-based algorithm, as a promising candidate for

Distributed Spatial AI systems. Extending GBP to support the Lie groups, in Chapter 6, we present

Robot Web, a framework for many device localisation. We demonstrate how 1000s of robots can

be localised using GBP, even under challenging situations, such as communication failures and

large amounts of outlying measurements. We demonstrate the applicability of our framework on

real-world robots, where autonomous robots localise each other to stay on a square trajectory. We

extend Robot Web in Chapter 7 to perform autocalibration of the sensors’ and markers’ extrinsic
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while simultaneously localising, demonstrating that our Lie group formulation does indeed work

with SE(3). We focused on scalability and simplicity in the Chapter 6 and Chapter 7. Taking in-

spiration from the World Wide Web, we envision a system where each device broadcasts selected

information, which can be asynchronously received and integrated by neighbouring devices. GBP

is an asynchronous algorithm and can converge even if the message-passing schedule is random.

The sender of the messages does not need to be acknowledged; hence, GBP can operate using a

broadcast-only communication model. Furthermore, individual nodes only communicate with the

adjacent neighbours; thus, the devices operate and co-localise even without knowing how many

devices are participating. These properties allow Robot Web to be scalable, robust, and applicable

to real-world.

Looking forward, there are many interesting research directions. Bringing the ideas of near-sensor

computation and GBP together, we can design a general-purpose vision sensor capable of perform-

ing probabilistic inference on the focal-plane. Since GBP performs better if the graph diameter

is small [Scona et al., 2022], we imagine a sensor-processor with neighbouring connectivity and

a couple of long-range, random connectivities. As long as the graph is connected, the ‘small

world’ property of a graph allows messages to be delivered from any pixel to any pixel in a few

hops, supporting dynamically changing topology of the underlying problem, similar to the idea

of routing tile in [Ortiz et al., 2022]. Such sensors can perform challenging inference tasks such

as visual odometry or even run CNN inference and training using a deep factor graph trained via

GBP [Nabarro et al., 2023].

In Gaussian Splatting SLAM, the scene representation is explicit 3D Gaussians, meaning these

Gaussians can be distributed amongst many devices. Using distributed optimisation to refine the

3D Gaussians, we can create a distributed dense SLAM with photorealistic rendering. This ap-

proach has the potential to achieve a level of fidelity that far surpasses what is currently possible

with the state-of-the-art in multi-robot SLAM. High fidelity is crucial for applications such as in-

spection, and since the reconstruction is photorealistic, we can run off-the-shelf pre-trained mod-

els to perform tasks such as segmentation and anomaly detection on the novel-view synthesised

image.

The recent advancements in AR/VR and robotics is making the necessity of local computation

and distributed algorithm ever more obvious. With so many devices requiring spatial intelligence,

distributed approaches like Robot Web is essential, both from scalability and privacy perspective.

Currently, we focused only on distributed localisaton, however; extending the approach into full

SLAM system, or even further into a dense 3D reconstruction by replacing gradient descent of

Gaussian Splatting with GBP will be and interesting future direction.
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CHAPTER 9

Appendix

9.1 Derivation of Camera Pose Jacobian

Here, we detail how the camera pose Jacobian (Equation 4.6) is derived for Gaussian Splatting

SLAM. Note that the derivation uses Lie theory and follows Section 2.6.6; however, we use the

Left Jacobians on Lie groups Equation 4.5, since the camera is defined as TCW in the camera

coordinate not the world coordinate following graphics convention.

Firstly, we derive the derivative with respect to the centre of the Gaussians:

DµC

DTCW
= lim

τ→0

Exp(τ) · µC − µC

τ
(9.1)

= lim
τ→0

(I + τ∧) · µC − µC

τ
(9.2)

= lim
τ→0

τ∧ · µC

τ
(9.3)

= lim
τ→0

[θ]×µC + ρ

τ
(9.4)

= lim
τ→0

−[µC ]×θ + ρ

τ
(9.5)

=
[
I −[µC ]×

]
(9.6)

where T · x is the group action of T ∈ SE(3) on x ∈ R3.

Similarly, we compute the Jacobian with respect to W. Since the translational component is not

involved, we only consider the rotational part RCW of TCW .

DW

DRCW
= lim

θ→0

Exp(θ) ◦W −W

θ
(9.7)

= lim
θ→0

(I + θ∧) ◦W −W

θ
(9.8)

= lim
θ→0

θ∧

θ
◦W (9.9)

= lim
θ→0

[θ]×
θ

◦W (9.10)
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9. Appendix

Since skew-symmetric matrix is:

[θ]× =




0 −θz θy

θz 0 −θx
−θy θx 0


 (9.11)

The partial derivative of one of the component (e.g. θx) is:

∂[θ]×
∂θx

=



0 0 0

0 0 −1

0 1 0


 = [e1]× (9.12)

where e1 = [1, 0, 0]⊤, e2 = [0, 1, 0]⊤, e3 = [0, 0, 1]⊤.

∂W

∂θx
= [e1]×W =




01×3

−W3,:

W2,:


 (9.13)

∂W

∂θy
= [e2]×W =




W3,:

01×3

−W1,:


 (9.14)

∂W

∂θz
= [e3]×W =



−W2,:

W1,:

01×3


 (9.15)

where Wi,: refers to the ith row of the matrix. After column-wise vectorisation of Equations 9.13

to 9.15, and stacking horizontally we get:

DW

DRCW
=



−[W:,1]×

−[W:,2]×

−[W:,3]×


 , (9.16)

where W:,i refers to the ith column of the matrix. Since the translational part is all zeros, with

this we get Equation 4.6.
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