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Abstract

An important challenge in visual Simultaneous Localisation and Mapping (SLAM)

has been on the design of scene representations that allow for both robust inference

and useful interaction. The rapid progression of semantic image understanding

powered by deep learning has led to SLAM systems that enrich geometric maps

with semantics, which increases the range of applications possible. However, a core

challenge remains in how to tightly integrate geometry and semantics for 3D re-

construction; we believe that their joint representation is the right direction for

actionable and robust maps. In this thesis we will address the central question on

designing efficient scene representations by the use of compressive models, which can

represent detail with the least number of parameters. We then demonstrate that

compressive models offer a solution for the joint representation of geometry and

semantics, where semantics provide priors for robust reconstruction and geometric

compression informs scene decomposition.

This work focuses on using generative neural networks, a category of compress-

ive representations, for incremental dense SLAM. We develop a volumetric rendering

formulation for the use of compressive models in generative inference from multi-

view images, enabling two novel SLAM systems. First, we learn class-level code

descriptors for object shape from aligned 3D models. At test time, the code and

object pose are optimised for efficient and complete object reconstruction from in-

stances of the learned categories. This method relaxes the assumption of fixed tem-

plates and allows for intra-class shape variation. We demonstrate the usefulness of

semantic priors for complete and precise reconstruction in a robotic packing applic-

ation. Second, we present a scene-specific multi-layered perceptron (MLP) neural

field for full generative dense SLAM. Our results show that it allows for efficient

mapping, automatic hole-filling, and joint optimisation of camera trajectory and 3D

map. Last, we demonstrate that the MLP’s automatic scene compression discovers

underlying scene structures that are revealed with sparse labeling.
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Chapter 1

Introduction

Contents

1.1 Spatial Artificial Intelligence . . . . . . . . . . . . . . . . . . . . 13

1.2 Scene Understanding . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 3D Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Simultaneous Localisation and Mapping . . . . . . . . . . . . . . 18

1.6 Semantics Abstractions . . . . . . . . . . . . . . . . . . . . . . . 20

1.7 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.8 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1 Spatial Artificial Intelligence

The goal of artificial intelligence is to develop autonomous programs which aid hu-

mans to either automate processes or make decisions. This could be in a variety of

domains such as medicine, economy, translation, recommendation systems, factory

automation, transportation, etc. This thesis is centered on a sub area of artificial

intelligence we call Spatial Artificial Intelligence or Spatial AI. The main char-

acteristic of Spatial AI is that we are concerned about making decisions about a

physical spatial environment.

13



1. Introduction

The key element of an embodied Spatial AI system is a moving platform with

sensors to capture information about its environment and possibly actuators to

interact and change its surroundings. Two significant instances of a Spatial AI

applications are augmented reality AI assistants and robotics, see Figure 1.1. The

goal of an augmented reality AI assistant is to augment the spatial capabilities of

a human through a wearable device such as augmented reality glasses. This could

include capabilities such as a spatial memory of the objects which a person has

interacted with to retrieve lost items, navigation instructions in a new indoor space,

or a virtual sports coach.

In robotics we are interested in automating a physical process through a robotic

platform. This could be a passive task where no interaction is involved such as

inspection of a factory by a flying drone, but normally the most useful robotic tasks

involve some sort of scene interaction and manipulation. With interactive robotics

there is a diversity of environments and tasks. At one hand of the spectrum we have

specialized settings, where the range of objects and/or interaction types is limited.

One example is warehouse robotics where the range of objects to be manipulated

may be limited, for example boxes of different sizes or products of a given category,

as well as the range of interaction types such as packing or stacking.

However, most of the biggest challenges in Spatial AI research are towards general

purpose robotics. One example of such a setting is a commercial future house hold

robot helper. This robot should work in a wide variety of homes with completely

different layouts and object instances. It should be able to perform varied tasks

such as tidying a room, loading and unloading a dishwasher, wiping and vacuuming

surfaces with different materials, or cooking a meal, and it should interact with

humans, for example to manually assist them. Additionally the robot should be

able to continuously learn new things and adapt, to recognize a new object it had

not previously seen, to perform a new tasks from a human demonstration, or to fix

a mistake in its performance through a user correction.

14



1.1. Spatial Artificial Intelligence

Figure 1.1: (a) A futuristic house hold humanoid cleaning robot. (b) Augmented
reality glasses used in collaborative architecture.
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1. Introduction

1.2 Scene Understanding

Two high level capabilities necessary for most Spatial AI robotic systems are nav-

igation and manipulation. Navigation is the ability to move around a space, to go

from point A to a point B, and this could be navigation on a 2D surface for a ground

mobile robot or in 3D space for a flying robot. Manipulation is the ability to interact

with objects, to change their position and configuration in order to achieve a goal,

and is done with a robotic arm end defector, such as a gripper. The design of these

capabilities is normally broken up into the following modules: scene understanding,

motion planning, and control.

Scene understanding consists of inferring and modeling what is in the environment

such as what is the geometry of the space, how can it be broken down into movable

objects, or what are the physical properties of the objects such as mass and material.

Motion planning is then about figuring out a set of actions to achieve a desired

goal; in navigation, for example, motion planning is about finding a set of valid

configurations to go from pose A to pose B while avoiding obstacles. Finally control

is about going from high level actions into low level motor command for the robot.

This pipeline can be executed in an open loop fashion where for a given goal or sub-

goal each module is performed sequentially and independently, or in a closed loop,

where scene understanding, planning and control are continuously running jointly

with feedback, this tends to be more robust as errors in one module can be corrected.

The scope of this thesis will be the scene understanding or perception compon-

ent of Spatial AI. Improvements in this area have the potential of unlocking new

capabilities in planning and control.

1.3 Machine Learning

Machine Learning ML has played an important role in the development of AI systems

in recent years. ML contrasts with hand crafted methods in that data is used to learn

a functional mapping from inputs to outputs. This is done by tuning the parameters
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1.4. 3D Representation

of a black box model, a process referred to as training, to optimise its performance

on a set of samples, the training data set, where the mapping from inputs to outputs

is known, with the purpose of generalising to new inputs with unknown outputs.

One popular choice for the black box model, and which we will employ in different

aspects of the thesis, is a Neural Network, which consists of stacked blocks of linear

functions followed by a nonlinear activation function.

With the flexibility of black box models, a Spatial AI pipeline (Scene Under-

standing, Planning, and Control) can be broken into modules in varied ways. With

a module defined as a subroutine where inputs and outputs are interpretable vari-

ables. Therefore a Spatial AI system can be composed of a combination of both

designed and learned components. At one end of the spectrum are approaches that

encompass a full robotic stack with a single learned module that maps sensor obser-

vations directly to motor controls, trained end to end either on demonstrations of

the task to be performed (imitation learning), or through an indirect downstream

reward function judging the performance of the task (reinforcement learning).

The complete lack of structural knowledge in end-to-end methods implies that

they require more training data, and the lack of modules limits the re-usability in

different settings. We argue that this is why these approaches are not practical in

many problems outside a tightly constrained task. A modular approach with inter-

mediate representations, including objects, scenes, etc., provides more flexibility, so

that the learned components can be applied to different tasks. It also facilitates the

integration of prior knowledge, such as physical laws and geometrical properties, at

different stages in this pipeline.

1.4 3D Representation

There is one common element in the Spatial AI systems we have described, the

need to move and take decisions in a 3D space, which requires a persistent memory

to plan and reason jointly about the different elements of a scene. This is the

reason that we argue that a persistent 3D scene representation should be explicitly

17



1. Introduction

modeled in a Spatial AI pipeline. This representation should allow a device to

operate for extended periods in the same space, plan and execute varied tasks, and

allow communication with a human user. There are a lot of options about on how

to design a representation to meet these requirements, with a combination of both

designed and learned elements. The thesis will explore this research area: 3D Scene

Representation.

A 3D representation is the design choice of a 3D map or scene summary storing

the spatial contents of a scene. As a robot moves around a scene it needs to both find

its position with respect to the current map: localisation, and update the state of the

map with new observations: mapping. In this thesis we will concentrate on visual

sensing, where observations are coming from a moving camera. This is because of

the richness of information captured by cameras and their affordability.

As images are a projection of the underlying 3D geometry of the environment,

mapping is related to inverting the physical image formation process. Our 3D rep-

resentation must also therefore model the relationship between the 3D map and the

visual observations. Inference is the process of recovering a complete 3D map from

a set of 2D observations. There are generally 2 strategies for inference: discrim-

inative and generative approaches. In discriminative or bottom up (from pixels to

map) approaches the image formation model is not explicitly modeled, but inverted

through machine learning. An example this could be an object detector mapping

from images to 3D object bounding boxes. More common in 3D reconstruction are

generative methods, which explicitly model a measurement function that transforms

the 3D map into a 2D observation, and then inference is done through optimisa-

tion. Many practical systems have a combination of discriminative and generative

components as in the system we present in Chapter 4.

1.5 Simultaneous Localisation and Mapping

For many applications, a robot must be reactive to its environment and take de-

cisions in real-time. For example a flying drone cannot take seconds to plan if an
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object is coming towards it, or time constraints may be of importance, such as in

warehouse robotics where efficiency is critical. This adds additional constraints on

the scene inference problem, it must be solved incrementally, that is from a stream

of incoming images rather than a batch of data, and online; the computation time

for each new image should be fast enough to match the rate of change of the desired

application. Additionally the localisation and mapping problems are simultaneous

objectives; in order to recover its position the robot must have a map of the envir-

onment, and in order to extend the map with new observations the robot must have

an estimate of its position. This problem, referred to as Simultaneous Localisation

and Mapping or SLAM, is a central component in most robotic systems, and will

encapsulate the methods developed in this thesis.

A key property of SLAM is that it forms a closed loop system, where there is

continuous feedback between tracking (estimating the pose and orientation of the

sensor) and mapping. This is enabled by a persistent map summarising past obser-

vations, and the process of data association, between the latest observation and the

corresponding elements in the map. SLAM contrasts with open loop localisation

systems, where estimation is performed frame to frame without a persistent map,

and drift accumulates even when observing a co-visible region.

The choice of scene representation for SLAM systems is tied to the estimation

methods used for scene inference, and the applications it enables. Sparse 3D point

clouds have been shown to enable very precise localisation though non-linear optim-

isation, but lack expressiveness for other tasks that involve interaction or navigation.

Dense SLAM which aims to represent the full geometry of a scene opens up applica-

tions in navigation and motion planning, but present challenges in memory resources

and normally resort to optimisation approximations. Finally, semantic SLAM meth-

ods augment dense maps with class information which is generally useful for going

beyond navigation towards interaction with a scene.
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1.6 Semantics Abstractions

For model-based robotics the available information in the scene representation is

directly related to the ability to plan how to solve a given task. For example, if

a robot aims to pick and place an object, the map must delineate its extents and

separation from the rest of the scene; if the robot is to align two objects of the same

class it must know their pose; if a mobile platform must navigate around a room it

must identify the surface it can move on: the floor; or if the robot aims to push a

box it must infer its weight to plan the force required to move the object. The map

then serves as a simulator of the world a robot can use to test for the result of its

actions to plan how to achieve a certain goal. In order to reason efficiently about

the elements in the scene the robot must use abstractions which are groupings of

finer elements with similar characteristics or a shared property. For example objects

are abstractions of elements that move coherently, or semantic classes are grouping

of objects that share a common function.

Machine learning has been used to perform abstractions on data through the

process of supervised learning. This is done by creating datasets, where manually

label elements are grouped together (commonly in images), of either object instances

or semantic classes. 3D shape estimation and abstraction are then normally treated

as independent, loosely coupled modules, for example by fusing semantic image

predictions from a CNN network on top of an already reconstructed 3D map.

Box 1.1: Research hypothesis

The efficient representation (or compression) of a scene, that is, how to rep-

resent detail with the fewest parameters is closely related to the ability to

abstract or group elements which share an underlying structure. Further, the

ability to be efficient in representation by abstraction, either reusing common

elements or finding underlying geometric structures, should aid in regularising

noisy observations or completing missing data.

The central question we will be looking at in this thesis is, how can we jointly
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model scene abstraction/compression and geometric shape inference, with feedback

between each other. We pose the hypothesis shown in Box 1.1.

Using abstractions for shape inference has been explored in previous works we will

discuss in Section 2. However the main technical contributions of this thesis revolve

around how to use a new category of compressive representations, generative 3D

neural networks, within the framework of incremental and real-time dense SLAM.

Thus, we will explore the use of Neural Scene representation, to build a new line

of SLAM systems where abstraction and shape are modeled jointly, which we define

as Tightly-Coupled Dense Semantic SLAM. We will investigate the design and

properties of this concept in three main projects outlined below:

• NodeSLAM: Neural Object Descriptors (Chapter 4) A generative auto-

encoder neural network is trained to compress a dataset of 3D shapes of known

semantic classes (common in table top settings: mugs, bowls, cans, and bottles),

into a compact and optimisable latent space representation. We formulate

a probabilistic volume rendering measurement function for multi-view shape

optimisation with respect to masked depth images (obtained with an object

detector), from which we build a SLAM system with object landmarks. We

demonstrate the ability of the system to complete partial observations of the

trained classes enabling robotic planning tasks such as object packing and

stacking.

• iMAP: iMAP: Neural Fields for Dense SLAM (Chapter 5) A Multi-

Layer Perceptron (MLP) neural network representation is used for reconstruct-

ing a room scale scene. The network is trained from scratch incrementally and

in real-time to fit depth data observations within a dense SLAM framework.

We demonstrate the representation capabilities for automatic scene compres-

sion with dynamic level of detail and the capacity to fill in holes where data

is missing.

• iLabel: Interactive Neural Scene Segmentation (Chapter 6) Building
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on top of iMAP, we demonstrate that the compressive properties of the MLP

representation present an inherent decomposition of the scene into coherent

objects which can be revealed through interactive sparse user annotations.

1.7 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 provides an overview of the representative literature works in sparse and

dense real-time SLAM, compressive representations, and semantic mapping; it

discusses their characteristics and open challenges and places our work within

their context.

Chapter 3 introduces basic notation, the concepts used for optimisation in SLAM,

and provides a primer on deep neural networks and volume rendering.

Chapter 4 presents NodeSLAM, a system for object level mapping with learned

class-level shape descriptors.

Chapter 5 describes iMAP, a real-time SLAM system with a scene-specific MLP

neural field representation.

Chapter 6 builds on top of iMAP and shows that scene specific compression dis-

covers underlying structures revealed with sparse labeling, demonstrated with

the interactive system iLabel.

Chapter 7 concludes the thesis with a discussion of the research presented and

suggestions for future work.

1.8 Publications

The work described in this thesis resulted in the following publications:

• Sucar, E., Wada, K., Davison, A. (2020), NodeSLAM: Neural Objects

22



1.8. Publications

Descriptors for Multi-View Shape Reconstruction. In Proceedings of

the International Conference on 3D Vision (3DV). [Sucar et al., 2020].

• Sucar, E., Liu, S., Ortiz, J., Davison, A. (2021), iMAP: Implicit Mapping

and Positioning in Real-Time. In Proceedings of the International Con-

ference on Computer Vision (ICCV). [Sucar et al., 2021].

• Zhi, S.*, Sucar, E.*, Mouton, A., Haughton, I., Laidlow, T., Davison, A.

(2022). iLabel: Revelaing Objects in Neural Fields. In Proceedings

of the IEEE Robotics and Automation Letters (RA-L)). [Zhi et al., 2022]. (*

denotes joint first author.)

• Haughton, I., Sucar, E., Mouton, A., Johns, E., Davison, A. (2022). Real-

time Mapping of Physical Scene Properties with an Autonomous

Robot Experimenter. In Proceedings of the Conference on Robot Learning

(CoRL)). [Haughton et al., 2022].

While not described directly, the following publications were done in conjunction

with this thesis:

• Wada, K., Sucar, E., James, S., Lenton, D., Davison, A. (2020) MoreFusion:

Multi-object Reasoning for 6D Pose Estimation from Volumetric

Fusion. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). [Wada et al., 2020].

• Ortiz, J., Evans, T., Sucar, E., Davison, A. (2022) Incremental Abstraction

in Distributed Probabilistic SLAM Graphs. Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA). [Ortiz et al.,

2022].

• Matsuki, H., Sucar, E., Laidlow, T., Wada, K., Scona, R., Davison, A. (2023)

iMODE: Real-time Incremental Monocular Dense Mapping using

Neural Field. Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). [Matsuki et al., 2023].
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• Mazur, K., Sucar, E., Davison, A. (2023) Feature-realistic neural fusion

for real-time, open set scene understanding. Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA). [Mazur et al.,

2023].

The following video material provides a visualisation of the algorithms developed

in this thesis:

• NodeSLAM: Neural Objects Descriptors for Multi-View Shape Reconstruction,

https://youtu.be/zPzMtXU-0JE.

• iMAP: Implicit Mapping and Positioning in Real-Time, https://youtu.be/

c-zkKGArl5Y.

• iLabel: Revelaing Objects in Neural Fields, https://youtu.be/bL7RZaMhRbk.
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In the thesis we build around different concepts of sparse and dense real-time

SLAM, compressive representations, and semantic mapping. In this section we will

provide an overview of representative work introducing these concepts, discussing

their characteristics and open challenges.

The problem of recovering the 3D scene structure along with camera poses from a

collection of 2D images has been traditionally explored in the structure from motion
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research area in the computer vision community, normally performed in an offline

and batch setting. Visual SLAM has focused on the problem of online and real-time

performance by combining techniques from structure from motion and Bayesian

Filtering [Kalman, 1960]. There has normally been a separation in the estimation

algorithms used for structure from motion and Visual SLAM techniques depending

on the choice of representation, between sparse and dense systems. The methods in

this thesis will borrow design elements from both paradigms

2.1 Sparse Reconstruction

In sparse reconstruction systems scene geometry is abstracted as a collection of

3D points, that lie in the surface of objects and is normally in the order of 1000’s

of points for small scale scenes (room or indoor spaces). A first process in the

reconstruction pipeline, the front end, consists of extracting and matching a set of

2D salient points in the images. Salient points, called keypoints or features, are

selected with the goal of maximising the ability to recognise them across different

viewpoints. Image corner points have this property in contrast with regions of high

ambiguity such as uniform regions or edges. [Harris and Stephens, 1988, Shi and

Tomasi, 1994, Moravec, 1977] presented pioneering algorithms for corner detection

based on patch auto-correlation.

The next part of a visual SLAM pipeline, feature matching is the process of

identifying keypoint correspondences across different images. This is done through

comparison of feature descriptors. Descriptors are vector representations of the

local image appearance of a given feature. Early SLAM systems mostly relied on

patch similiarity. A pioneering algorithm for designing improved feature descriptors

was SIFT, presented in [Lowe, 1999]. The method is based on histogram of image

gradients, and is designed to be scale and rotation invariant. A big emphasis was

placed on making keypoint detection and description more efficient, which led to a

variety of methods [Rublee et al., 2011, Calonder et al., 2010, Leutenegger et al.,

2011, Bay et al., 2008, Alcantarilla et al., 2012].
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2.1. Sparse Reconstruction

When a 3D point is projected to a 2D image position, its location depends on three

variables, the camera intrinsic geometry parameters, the camera motion, and the 3D

position of the corresponding landmarks. Initial work on recovering camera motion

from pair of images relied on solving linear systems derived from epipolar geometry

constraints, such as the 8 point algorithm [Hartley, 1995] or extensions to multi-

camera setups such as the trifocal tensor methods [Hartley, 1994, Armstrong et al.,

1996]. The position of the 3D landmarks is then recovered from triangulation. These

methods suffer from degenerate solutions and stability issues, in particular with

small baselines or noisy inputs. More relevant to us are nonlinear approaches solved

through iterative optimisation. In Horn [Horn, 1986] the fundamentals for two-frame

nonlinear structure from motion were established, where 3D landmark position as

well as relative camera orientation and translation are solved for through nonlinear

least squares optimisation. Optimisation is performed using the 2D associations with

a camera projection measurement function, which we will define in Section 3. This

approach can be directly extended to multiple images with batch optimisation over

the full set of measurements, process referred to as Bundle Adjustment [Szeliski and

Kang, 1993, Kumar et al., 1989, Vidal et al., 2001]. See Figure 2.1 for an illustration

of a sparse structure from motion pipeline.

Later methods scaled up inference techniques from structure for motion to handle

sequential and real-time operation, giving rise to visual odometry and visual SLAM.

There are two categories for doing this which we will describe next, filtering methods

and local bundle adjustment.

2.1.1 Filtering approaches

Filtering approaches initially developed for estimating the position of a ground ro-

bot moving in a plane. [Smith and Cheeseman, 1986] introduced the first probab-

ilistic formulation for SLAM. The states of the robot position and 3D landmarks

are modeled as a joint Gaussian distribution, which accounts for the correlations

between map and position imposed by re-observation across time. Incremental state

estimation is done using the Extended Kalman Filter EKF taking into account meas-
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2. Literature Review

Figure 2.1: Illustration of sparse structure from motion pipeline: image features u
are first detected and matched on the image pair, then camera poses x are jointly
estimated with 3D points y via non-linear optimisation to minimise the distances
between the projection of the 3D points and the detected ones. (Image adapted
from [Pollefeys et al., 1999].)

urement uncertainty. This formulation became standard for robot SLAM, and was

later developed in different robot applications [Leonard and Whyte, 1991, Castel-

lanos, 1998, Davison, 1998, Newman, 1999].

Robot SLAM methods were constrained to 2D maps and used robot wheel odo-

metry for motion estimation and range measurements for landmarks. [Harris and

Pike, 1987] was the first approach to tackle the general 3D problem with a free

moving camera. They presented a system capable of tracking the camera position

incrementally with respect to an estimated 3D point cloud. The system performed

iterative inference using a Kalman filter with the associated Harris features, how-

ever they assumed independent states and did not model correlations. [Broida et al.,

1990] later proposed a system which modeled the full state covariance, and included

an initial Bundle Adjustment step for initialisation, however they assumed all the

feature correspondences were given. [Chiuso et al., 2002] presented a system where

inserting new features was taking into account, however this was done is a sep-
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arate filter and limited application to a compact space of 20-40 landmarks, and

did not account for re-observing landmarks. [Davison, 2003] pioneered the first full,

automatic monocular visual SLAM system, MonoSLAM. MonoSLAM used the joint

uncertainty for efficient feature tracking, which allowed re-detection of unobserved

features. It also developed an automatic top-down feature initialisation procedure

by modeling a depth distribution, and a map management strategy for discarding

spurious landmarks and keeping a reasonable sized state. MonoSLAM showed un-

precedented performance with respect to localisation with fast camera motion, and

the ability to not accumulate drift under continious operation in a room scale scene.

2.1.2 Bundle adjustment

The limitation of filtering based SLAM are the errors introduced by accumulating

linearisation of non linear measurements, and the quadratic continuous time and

space complexity with respect to state size, which limits the number of landmarks

used. To counter these limitations a new evolution of SLAMmethods relying on local

bundle adjustment emerged. [Nistér et al., 2004] proposed a visual odometry system

for guiding a robotic outdoor car. Motion was solved for a group of frames, in a slid-

ing window of 3 frames, by the 5-point algorithm [Nistér, 2004] with Random Sample

Consensus RANSAC [Fischler and Bolles, 1981] followed by bundle adjustment us-

ing tracked 2D features, from which 3D feature positions are then triangulated.

However this system does not take into account landmark re-observation, leading to

drift in motion. [Engels et al., 2006] further expands this framework by performing

local bundle adjustment with the Levenberg-Marquardt optimiser [Levenberg, 1944]

for a window of 20 frames, achieving real-time performance by efficient optimisation

leveraging the sparsity structure in the factor graph. To avoid the windowed op-

timisation to diverge from past past measurements, the gauge is fixed by fixing the

first camera pose in the local window. They show improved stability over long term

sequences preventing gross failure modes.

[Mouragnon et al., 2006] concurrently presented a systems scaling to 1000s of

3D points for city scale trajectories and introducing the concept of keyframes. Key-
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frames are selected subset of frames used for efficiency local bundle adjustment,

chosen when few matches are obtained or when pose uncertainty is high. Finally

Parallel Tracking and Mapping (PTAM) [Klein and Murray, 2007] consolidated local

bundle adjustment developments and added new innovations to form the basis of

modern monocular sparse SLAM systems. First they introduced the concept of par-

allel tracking and mapping, where they separate camera tracking given the map,

and map building with bundle adjustment into separate threads. Tracking runs at

a higher frame rate which is important for most applications, while map building

at slower rate, allowing more accurate and bigger maps. Second they associate 3D

landmark descriptors to the keyframe image where they were initialised, allowing

reobservation of features and simplified feature tracking. PTAM demonstrated that

keyframe bundle adjustement presents much higher accuracy and robustness than

filter based methods.

[Strasdat et al., 2012] presents further analysis comparing both techniques, high-

lighting that the benefits of local bundle adjustment come from the ability to use

many more map points by leveraging factor graph sparsity, in contrast to filter

methods that introduce variable dependencies through marginalisation. However,

filtering systems still remain used in the visual odometry systems, specifically when

combined with inertial measurement units (IMU) as in [Mourikis and Roumeliotis,

2007].

2.2 Dense Reconstruction

The sparse methods presented were designed with the main objective of precise and

efficient camera localisation, and thus model the 3D scene with a sparse point cloud.

In applications such as robotics a much richer and detailed geometric reconstruction

is necessary. This led to a new category of methods for Dense Reconstruction and

SLAM. In this section we will give an overview of the 3D scene representations and

estimation methods developed for dense reconstruction.
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2.2.1 Multi-View Stereo

The first developments in dense visual reconstruction came about by tackling the ste-

reo correspondence problem; an overview is given in [Scharstein and Szeliski, 2001].

This category of methods aim at establishing a dense correspondence between a

pair of calibrated images. In contrast to sparse methods, they aim to establish

correspondence in a dense manner, introducing the concept of a disparity image

(analogous to inverse depth image) [Okutomi and Kanade, 1993]. The disparity

image defines for every pixel in a reference frame the vector to the pixel corres-

ponding to the same 3D point in the other image, across the epipolar line. A

big family of algorithms exist for stereo correspondence, but rely on the two main

concepts of photo-metric matching cost and regularisation. The photo-metric cost

measures the appearance agreement between corresponding pixels, and is normally

aggregated across a small local window, such as with Sum of Squared Differences

SSD [Anandan, 1989]. Because of the under-constrained solution space, especially in

smoothly textured areas, a regularisation penalty to encourage local smoothness is

added [Yang et al., 1993]. The disparity image is solved for to maxisimise the photo-

metric cost given the regularisation. A wide variety of optmisation algorithms exist

for solving two view disparity optimisation, including quantised local optmisation

such as plane-sweep [Collins, 1996], combinatorial global optimisation as graph-

cut [Kolmogorov and Zabih, 2001], dynamic programming [Cox et al., 1996], and

cooperative algorithms [Zitnick and Kanade, 2000].

2.2.2 Dense Monocular SLAM

[Pollefeys et al., 1999] introduced one of the first full automatic dense reconstruction

systems, using sparse local bundle adjustment for camera pose estimation, followed

by dense multi-view stereo matching with dynamic programming, then fusing the

depth maps into a volumetric map [Curless and Levoy, 1996] and extracting a a full

geometric mesh with marching cubes [Lorensen and Cline, 1987]. [Pollefeys et al.,

2008] extended the system for real-time incremental reconstruction using GPU hard-

ware acceleration. DTAM [Newcombe et al., 2011b] pioneered dense SLAM, showing
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unprecedented real-time reconstruction with a monocular video stream, by combin-

ing primal-dual non convex optimisation [Chambolle and Pock, 2011] with cost

volumes using GPU hardware acceleration [Hosni et al., 2013]. Furthermore camera

tracking was done within the dense representation using Lukas-Kanade non-linear

least squares optimisation [Lucas and Kanade, 1981].

In this thesis we will not directly tackle the multi-view stereo problem, since

the development of depth camera commodity sensors provides accurate dense depth

image measurements for indoor environments by using active infrared projection,

with the first commercial product introduced by Kinect [Microsoft Corp, 2010].

2.2.3 Depth Fusion

Given a set of depth image measurements, the next problem in dense reconstruction

is measurement fusion, that is how to combine the underlying depth measurements

into a coherent 3D map. This is to build a persistent scene model, avoiding geometric

redundancy of depth measurements averaging out measurement noise. We will next

describe different 3D representations with their corresponding estimation algorithms

for dense fusion. A common representation is to discretise space into a uniformly

spaced grid. This technique was originally developed for building occupancy grid

maps for robotic localisation and navigation from range measurements coming from

sonar, ultra-sound or stereo camera sensors [Moravec and Elfes, 1985, Thrun, 1998,

Buhmann et al., 1995]. Originally these methods were developed for 2D grid maps

representing horizontal slices parallel to the ground plane, but were later generalised

to full 3D voxel grids [Martin and Moravec, 1996]. An occupancy grid map stores for

each cell the probability of it being occupied by an object, and these are estimated

with inverse sensor models, back projecting range measurements into the grid and

solving a an estimation problem for each cell independently.

3D voxel grid maps were then extended to store signed distance, which is more

informative than occupancy as it represents the distance to the closest surface, and

allow for recovering if desired more precise explicit surface geometry. [Curless and
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Figure 2.2: Normals render of dense reconstruction from KinectFusion obtained by
fusing depth image measurements into a signed distance function voxel grid. (Image
adapted from [Newcombe et al., 2011a].)

Levoy, 1996] presented an incremental algorithm for incremental fusion of range

measurements into a Signed Distance Function (SDF) grid. The method works by

using the range measurement to approximates the signed distance function near

the surface, under a truncation distance, and accumulating or fusing measurements

through a weighted average for each voxel, where the weight takes into account geo-

metric properties to reflect how well the range measurement approximated the SDF.

KinectFusion [Newcombe et al., 2011a], see Figure 2.2, builds on top of this tech-

nique a full Dense SLAM system than runs in real-time on a desktop computer with

parallel GPU implementation and using a Kinect depth sensor camera. Through

ray-casting [Parker et al., 1998] of the SDF volume grid, they can render or predict

a depth image from a given camera pose. Given the rendered image, camera track-

ing is performed in an alternating manner with map fusion, via point-plane Iterative

Closest Point ICP [Chen and Medioni, 1992] with projective data association. By

doing model to frame camera tracking KinectFusion displays less drift than frame

to frame depth tracking such as in [Rusinkiewicz et al., 2002].

Dense SLAMmethods with voxel grids cannot scale to bigger spaces because of cu-

bic memory and computation complexity. To tackle this, methods leveraging data
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structures for efficient spatial decomposition, such as hierarchical octrees [Wurm

et al., 2010, Vespa et al., 2018] or hash-tables [Nießner et al., 2013a, Kahler et al.,

2015], expanded on voxel-based dense SLAM. Another category of Dense SLAM

methods directly model surface geometry as a map representation, in contrast to

occupancy or SDF which are implicit surface representations. In ElasticFusion

[Whelan et al., 2015] the map is represented as a dense collection of surfels (similar

to a point cloud), which are small oriented discs. ElasticFusion adds a deformation

graph on top of the surfels, which allows non-rigid deformation to correct for local

loop closures. BAD SLAM [Schops et al., 2019] extends this, and allows an alternat-

ing bundle adjustment optimisation of surfels and camera poses, by limiting surfels

to move along the normal direction.

The algorithmic simplicity with natural parallelisation, and reconstruction accur-

acy has made voxel fusion based dense SLAM systems dominant in the robotics

community. However, several of the assumptions made impose important limita-

tions as outlined in the future work section of [Newcombe, 2012]. First, tracking

and mapping are separated into independent alternating optimisation procedures.

This is because the full dense probabilistic SLAM problem considering the joint

distribution of camera trajectory and map is not modeled. Instead the problem is

split into independent estimation problems for each cell and each frame. This causes

drift and map error accumulation, as the solution with this method is only optimal

when each tracking and mapping step also yields an optimal state. More over, the

assumption that each voxel is independent disregards spatial relationships between

them and leads to maps with holes.

2.2.4 Generative dense reconstruction

A generative formulation for dense reconstruction requires the definition of a forward

sensor model, for computing the the probability of the observation (depth or colour

images) given the full map model. One setting where generative approaches have

been developed is surface reconstruction. In [Cheeseman et al., 1996, Morris et al.,

2001] the surface is modeled using a discrete uniform 2D grid storing elevation
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and surface emitance. A likelihood function is defined for intensity images given

surface parameters, which is solved for using a Bayesian approach which also models

smoothness constraints between adjacent cells. [Zienkiewicz et al., 2016] further

developed this method into an incremental and real-time formulation also integrating

camera tracking, by instead using depth image measurement images obtained from

stereo. OpenDR [Loper and Black, 2014] provided a suite for differential rendering

of arbitrary meshes by approximating derivatives of the standard graphics rendering

pipeline, which can serve as a generative model for solving computer vision problems,

a process referred to as inverse graphics.

For implicit reconstruction, [Thrun, 2003] presents an approach for 2D occupancy

mapping using a sonar sensor with forward sensor models, by defining a Gaussian

mixture model over possible distances along each each measurement cone. The

likelihood is then optimised using an alternating Expectation Maximisation EM ap-

proach. [Liu and Cooper, 2010, Liu and Cooper, 2011, Liu and Cooper, 2014] present

a Bayesian formulation for 3D reconstruction through inverse ray-tracing. The map

is represented by a grid of voxels which store opacity and color. For MAP estimation

of the voxel parameters a ray Markov Fields is formulated, in which factors connect

a pixel color to the voxels along the back projected ray, and are derived from the

rendering equation [Kajiya, 1986]. Additional factors between voxels are added to

impose smoothness constraints. Inference is done with an efficient implementation

of loopy belief propagation, and this runs in an offline batch setting.

One challenge with generative approaches for volumetric implicit 3D reconstruc-

tion is the expensive memory and computation cost of a full voxel grid. Hierarch-

ical representations such as octrees can be difficult to employ because the pruning

operations are not differentiable. An alternative representation which has been ex-

plored for representing implicit volumes is the use of a continuous function, without

any explicit discretisation. One example combining hierarchical space decomposi-

tion with a basis of continuous functions is Poisson Surface Reconstruction [Bolitho

et al., 2009]. This method represents space through a linear combination of cubic

b-splines at different hierarchical levels. The coefficients are solved for given a point
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cloud with normals by solving the Poission equations they define using non-linear

optimisation. By modeling spatial continuity the method can fill in surface holes

in the data. Hilbert Maps [Ramos and Ott, 2016] are a method for 2D occupancy

mapping without any discretisation of space by modeling reconstruction as logistic

regression of occupancy on point coordinates. The regression is learned on a semi-

dense point cloud, where the datastet is such that the 2D coordinates are the input

to the classifier and binary occupancy is the output. The method demonstrates

that the formulation allows better generalisation in areas with no measurments and

robustness to outliers. To be able to model complex scenes regression is performed

on Fourier features of the 2D coordinates, approximating Kernel regression. More

recently and relevant to iMAP, Chapter 5, NeRF [Mildenhall et al., 2020a] uses an

MLP (which maps coordinates to volume density and color) as a continious 3D scene

representation for novel view synthesis. The MLP is supervised through a dataset

of RGB images with known camera poses through a differential formulation of the

volume rendering equation, achieving unprecedented novel view synthesis quality.

In iMAP, Chapter 5, we will present a full generative dense SLAM formulation

for room-scale reconstruction by combining a continuous 3D map represented with

an MLP with a probabilistic differential volume renderer of depth and color. We

present a system which runs in incrementally real-time on a GPU from a stream of

depth images using the following design components: keyframe selection, parallel

tracking and mapping, and active sparse optimisation. Our method enables joint

graph optimisation, automatic hole filling and map compression with dynamic level

of detail.

2.3 Semantics

To move beyond pure geometric understanding of a scene, a useful representation

must contain information about abstractions, such as a decomposition into objects

or information about semantics. Furthermore the ability to abstract a dense map

into object models offers opportunities for efficient scene representation, to handle
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moving objects, and for providing strong priors on reconstruction with incomplete

data.

Finding what and where are the objects in an image has been widely studied in the

computer vision community. Object detection aims to estimate the region within the

image where an object is, and pose estimation is finding the transformation of a 3D

object with respect to the camera. Initial approaches for object detection focused on

detecting specific objects through template matching [Fischler and Elschlager, 1973,

Huttenlocher et al., 1993]. The basic idea is to collect a set of patch templates from

an object and use this library to detect the object in the new image by using some

patch correlation distance. These methods have been extended to be more robust to

changes in illumination through the use of depth and edge cues, such as LINEMOD

[Hinterstoisser et al., 2012], as well as to be robust to different viewpoints by using 3D

CAD models to collect more templates [Hinterstoisser et al., 2013]. However these

methods are still not robust in cluttered settings and with very different viewing

conditions. The development of local image descriptors such as SIFT [Lowe, 1999]

designed to be invariant to viewpoint and lighting led to more robust and efficient

object matching algorithms, such as the system presented in MOPED [Collet et al.,

2011].

In order to go beyond detecting specific object instances to detect objects within

a semantic category such as chair, statistical machine learning methods are used.

These methods consist of a first stage of image feature extraction such as Bag of

Words [Csurka et al., 2004] which accumulates local descriptors into a histogram or

convolving a bank of filters such as Haar wavelets [Viola and Jones, 2001], followed by

applying a classifier such as SVM [Dalal and Triggs, 2005], a random forest [Bosch

et al., 2007], or boosting [Torralba et al., 2004]. The classifier is learned using a

dataset of labeled training images. Object detection methods normally provide a

coarse estimate, such as a rectangular bounding box, of the object’s position in

the image. The problem of obtaining a precise pixelwise separation of the object is

referred to as image segmentation. [Shi and Malik, 2000] formulated segmentation as

a graph partitioning problem, where pixels are nodes and edge strength is determined
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intensity and location similarity. A probabilistic formulation for segmentation was

proposed with the use of Conditional Random Fields (CRF) [Lafferty et al., 2001],

for example objcut [Kumar et al., 2005] proposes a method for object detection and

segmentation by combining shape templates with CRFs.

The advent of deep learning has provided a unified framework for object detection,

image segmentation, and object pose estimation which has dominated recent years

because of its simplicity and improved accuracy. The basic backbone for modern

methods is the Convolutional Neural Network architecture which was introduced by

Yann LeCUn in LeNet5 [LeCun et al., 1998]. Inspired by hand crafted filter banks,

CNN stack layers of optimisable or learnable convolutional filters followed by non

linear activations with a classifier at the end. All the parameters are trained in

an end to end manner by supervised learning in a dataset with images and ground

truth labels. 2012 was the year when the domination of deep learning started with

AlexNet [Krizhevsky et al., 2012] which outperformed all other methods in the

challenging large scale ImageNet [Krizhevsky et al., 2012] classification challenge by

leveraging GPU parallelisation of CNNs. VGG-net [Simonyan and Zisserman, 2015]

showed that the use of smaller 3x3 filters allowed for more layers to be stacked and

get better performance. This network architecture is the backbone used for pose

prediction used in the NodeSLAM system, Chapter 4, presented in this thesis. This

was taken even further in ResNet [He et al., 2016] by stacking 157 layers, and forms

the backbone of many image recognition modules. CNNs were adapted beyond

classification for object detection in works such as R-CNN [Girshick et al., 2014],

and Faster-RCNN [Ren et al., 2015] by using regions of interest, and for instance

segmentation in Mask-RCNN [He et al., 2017]. Mask-RCNN is used for the object

detection and segmentation modules we use in NodeSLAM Chapter 4.

2.3.1 Geometry and semantics

For going beyond images to performing object detection or semantic segmentation

in 3D maps, a process referred to as scene labeling, earlier approaches relied using

geometric cues from an already reconstructed map to group elements. In [Nüchter
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et al., 2003] planar regions are extracted from a point cloud using Random Sample

Consensus RANSAC, and classified into floor, wall, or celling based on hand designed

relative orientation and position constraints. In [Mozos et al., 2007] an Adaboost

classifier is trained to separate a 2D occupancy map into semantic classes from

geometric cues. [Brostow et al., 2008] leveraged a dense point cloud obtained from

SfM to project geometric cues into the image and then combine with appearance for

segmentation with a random forest. [Koppula et al., 2011] perform segmentation on

a 3D point cloud scan obtained from an RGB-D sensor by aggregating appearance

and geometric features into the 3D map, and performing classification with a Markov

Random Field with log-linear nodes and edge potentials, trained on a dataset of 50

scenes. In SemanticPaint [Valentin et al., 2015], rather than pre-training on a labeled

dataset, training is done interactively in for a specific scene. For this KinectFusion

is run for real-time voxel-based reconstruction, then a user interactively annotates

sparse labels indicating objects in the voxel map. The user labels are propagated

through a CRF and fed to a random forest classifier which is trained online with

geometric features concurrent to the reconstruction and labelling. The method of

SemanticPaint inspired our work of iLabel in Chapter 6.

With the popularity and accuracy of image based recognition due to easier data

availability, another category of methods for scene labeling first performs image

segmentation and then fuses the labels into a 3D map. These methods accumulate

2D labels into a 3D structure with Bayesian updates and then regularise the labels

in 3D using a Conditional Random Field (CRF). [Stückler et al., 2015, Hermans

et al., 2014] both use a Random Decision Forest for 2D classification and point

cloud or surfel 3D structures for label fusion. [Kundu et al., 2014] accumulates 2D

labels into an octree representation which scales to bigger scenes. [Cavallari and

Di Stefano, 2016] and Semantic Fusion [McCormac et al., 2017] leverage improved

CNN 2D classifiers for semantic fusion jointly with dense real-time SLAM systems

KinectFusion and SemanticFusion respectively.

In iLabel, Chapter 6, we build on top of iMAP to test the hypothesis that auto-

matic compression of a scene should discover underlying structure in the form of
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object abstractions. For this, we extend the scene representation MLP of iMAP to

produce semantic outputs, thereby modeling geometry, color, and semantics with a

unified generative model. The semantic outputs are then supervised interactively

through sparse pixel anchors provided by the user. We show that the MLP auto-

matically propagates the anchors into full object instance segmentations. We find

that the propagation is correlated to local geometry and color, respecting object

boundaries, and global color appearance, providing evidence that scene compression

is enabled by scene decomposition and grouping. iLabel serves as a practical system

for efficient open-set scene labeling.

2.3.2 Object based reconstruction

For efficient 3D scene reasoning a category of methods aim to abstract a 3D map

through the detection of object templates from a pre-built dataset. [Castle et al.,

2007] was one of the first sustems to integrate object templates into a SLAM pipeline.

They detect the position of known planar objects such as posters through SIFT

descriptor matching and insert them into the MonoSLAM system. They show that

constraints the planar objects impose on 3D features improves tracking robustness

and allows for scale estimation within the monocular setup. [Civera et al., 2011] goes

beyond planar objects and inserts pre-scanned dense objects point-clouds detected

with SURF descriptors into MonoSLAM. [Kim et al., 2012] leverages a dense scan

to replace common office objects such as chairs, desks, and monitors with templates

of these objects constructed using basic cubic primitives. The detection components

of this method are geometric using point cloud clustering principal axis detection.

SLAM++ [Salas-Moreno et al., 2013] shown in Figure 2.3, pioneered object based

SLAM, where objects, templates serve as the landmarks of a real-time SLAM sys-

tem. As a first pre-processing stage a high quality dataset of objects meshes is

constructed by KinectFusion scanning. Then a new scene is reconstructed under

the assumption that it contains enough instances of some of the object templates.

During live operation from a depth camera input stream, the 6-DoF pose of the

objects is estimated by Hough forest voting with geometric Point Pair Features, and
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Figure 2.3: Example from SLAM++ where the 3D map is abstracted into a sparse
graph of objects. The inserted objects are rigid templates from a pre-scanned data-
set. (Image adapted from [Salas-Moreno et al., 2013].)

these are inserted into the map model. The camera position is tracked with ICP

with respect to the map of object meshes. The full optimisation problem can be

abstracted into a sparse graph with the objects and history of camera poses as vari-

ables, and ICP constraints between them, which allows a joint graph optimisation

reminiscent of sparse SLAM bundle adjustment. The general pipeline of NodeSLAM

in Chapter 4 is inspired by SLAM++, with object detection and joint graph optim-

isation components. In follow up work Fusion++ [McCormac et al., 2018], rather

than use a pre-scanned template library a generic image object detector is used and

SDF fusion is done in a per-object voxelgrid. The objects are then used in a joint

graph optimisation similar to SLAM++.

2.3.3 Semantic shape priors

In order to go beyond a fixed shape template a category of methods increase flex-

ibility in shape variations within objects of a given class (such as cars) through

parametric object models. Initial parametric shape priors developed as a top down

approach to guide 2D segmentation and make it more robust to noise in local stat-

istics. In [Cremers et al., 2001] an approach is proposed where segmentation is
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modeled through a spline curve with control points, referred to as snake-based seg-

mentation. A prior distribution over the control points is learned from a dataset

of hand images. Then segmentation is formulated as a variational energy min-

imisation problem, with a term encouraging the spline to be within the training

distribution and another term measuring how well the spline segments the image,

such as smoothness within the regions and following image gradients. [Dambreville

et al., 2008b] extends this formulation by modeling the segmentation curve impli-

citly through a 2D SDF. Principal Component Analysis PCA is then performed on

a set of aligned 2D shapes to obtain a low dimensional latent space. By modeling

the contour implicitly this method has more robust optimisation and can handle

topological changes. More expressive latent spaces were developed by introducing

non-linearities with Kernel-PCA [Dambreville et al., 2008a] or probabilistic latent

spaces such as GP-LVM [Prisacariu and Reid, 2011]. The overall category of meth-

ods where a 2D boundary is obtained by the projection of a higher level function is

referred to as level-set based segmentation.

The later evolution of these methods obtains the 2D contour as a projection of a

3D model, thus modeling shape variation due to viewpoint explicitly. In [Tsai et al.,

2003] the same variational energy approach is used for segmentation, but the contour

is modeled through the projection of the 3D surface from a known model, then the

energy is minimised with respect to the pose parameters of the 3D shape. To allow

variation in shape, in [Yingze Bao et al., 2013] the 3D surface has a mean shape

plus anchor points associated with it, which allow smooth deformations through a

thin plate splice formulation. This method then uses the shape prior to densify and

complete a multi-view stereo sparse reconstruction by matching the anchor points.

PWP3D [Prisacariu and Reid, 2012] proposed an energy based formulation for

both 2D segmentation and real-time 3D object pose tracking of a known model. In

this method a vertex based 3D model is first rendered and then converted into a 2D

implicit distance transform. [Prisacariu et al., 2013] adopted an implicit voxel based

representation for 3D object shape. A latent space is then learned by GP-LVM using

a dataset of aligned 3D car shapes. This representation is then used for recovering
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Figure 2.4: Example of using shape prior from car class to complete and regularise
a dense reconstruction. (Image adapted from [Dame et al., 2013].)

3D shape and pose, and 2D segmentation from one or more images by a level set

energy minimsation from the rendered contours. [Dame et al., 2013], see Figure 2.4,

extended this by combining the shape priors into a monocular SLAM systems. The

energy formulation for the object shape is extended to account for the estimated

surface from the SLAM system. [Engelmann et al., 2016] applied similar techniques

to a larger scale setting, reconstructing the shape of cars in a city scale dataset.

Neural networks were used to develop more expressive compressive generative

models than linear models such as PCA. Initially these methods were developed for

compression of images such as in Variational Auto-Encoders (VAEs) which learned

probabilistic compact latent space through a bottleneck CNN network or a Gener-

ative Adversarial Network (GAN) which learned to generate images by competing

generative and discriminative networks. These generative methods allow sampling

new data that resembles the training distribution. With the development of datasets

for 3D shapes such as ShapeNet [Chang et al., 2015], these methods were extend

to 3D by using 3D CNNs [Wu et al., 2016] or coordinate-based MLPs as in [Park

et al., 2019].

In NodeSLAM, Chapter 4, we present an object-level SLAM system which

combines class-level parametric objects models within a sparse graph optimisation

pipeline as in SLAM++. The parametric models are learned on occupancy 3D grids

by a VAE neural network trained on a dataset of object shapes, and at inference

time we leverage a CNN detector. The ability to go beyond the fixed templates

of SLAM++ allows us to model variation within a semantic class such as mugs.
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We show our system produces accurate and complete object reconstructions from

partial observations, and demonstrate this in a robotic object packing application.
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In this section we will describe the technical components that will form the basis

for the systems we develop throughout the thesis, encompassed by the use of neural

representation for dense semantic SLAM. In Sections 3.2 and 3.3 we present the

basics of 3D geometry for visual SLAM, describing the camera model and rigid

transformations respectively. In Section 3.4 we describe the probabilistic language

of SLAM, factor graphs, and in Section 3.5 how to do inference in them through

non-linear optimisation. In Section 3.6 we talk about neural networks which we

will use both as building blocks for both discriminative inference and generative

representations. Finally in Section 3.9 we describe differential volumetric rendering

which will serve as the measurement function we use in generative dense SLAM.

3.1 Notation

This thesis makes use of the following notation:

3.1.1 General Notation

𝑎 This font is used for scalars.
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a This font is used for 𝑀-dimensional column vectors, where 𝑎𝑖 is the 𝑖
th

element of the vector:

a =



𝑎1

𝑎2
...

𝑎𝑀


, a𝑇 =

[
𝑎1 𝑎2 . . . 𝑎𝑀

]
. (3.1)

A This font is for 𝑀 × 𝑁-dimensional matrices, where 𝑎𝑖 𝑗 is the matrix

element at the 𝑖th row and 𝑗
th column:

A =



𝑎11 𝑎12 . . . 𝑎1𝑁

𝑎21 𝑎22 . . . 𝑎2𝑁
...

...
. . .

...

𝑎𝑀1 𝑎𝑀2 . . . 𝑎𝑀𝑁


. (3.2)

I This represents the identity matrix.

0 This represents the zero matrix.

3.1.2 Probability

𝑝(x) This represents the probability density of x.

𝑝(x|y) This represents the probability density of x given y.

3.1.3 Spaces and Manifolds

R This denotes the set of real numbers.

R𝑀 This denotes the vector space of real 𝑀-dimensional vectors.

R𝑀×𝑁 This denotes the vector space of real 𝑀 × 𝑁-dimensional matrices.

𝑆𝑂 (3) This denotes the 3D rotation group.

𝑆𝐸 (3) This denotes the Special Euclidean group.

3.1.4 Frames and Transformations
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a𝐴 The represents the vector a expressed in Frame A in R3.

R𝐴𝐵 This represents a 3D rotation expressed as a rotation matrix (i.e. R𝐴𝐵 ∈

𝑆𝑂 (3)).

T𝐴𝐵 This represents the homogeneous transformation matrix that trans-

forms homogeneous points from frame B in R3 to frame A in R3.

3.1.5 Camera Models and Images

𝑓𝑥 This represents the horizontal focal length of the camera, in pixels.

𝑓𝑦 This represents the vertical focal length of the camera, in pixels.

𝑐𝑥 This represents the horizontal coordinate of the camera centre, in

pixels.

𝑐𝑦 This represents the vertical coordinate of the camera centre, in pixels.

K This represents the intrinsic camera matrix:

K =


𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1


. (3.3)

π(·) This denotes the perspective projection function:

π(a) = π

©­­­­«

𝑎1

𝑎2

𝑎3


ª®®®®¬
=

1

𝑎3


𝑎1

𝑎2

 . (3.4)

𝐼 (u) This represents the intensity at pixel coordinate u.

𝐷 (u) This represents the depth value corresponding to the pixel coordinate

u.

3.2 Camera Model

We use a pinhole camera to model the relation between points in the 3D world

and 2D points in the image plane (modeling the captured image of a CCD type
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Figure 3.1: Pinhole camera model

sensor). This model will form a core component of the methods developed for 3D

reconstruction: going from images to a 3D map.

Projection: We will derive the equations for projecting a point in a 3D Euclidean

space into a 2D point in the image plane. Consider a 3D point P with coordinates

[𝑥, 𝑦, 𝑧]𝑇 and an image plane defined by 𝑍 = 𝑓 , with 𝑓 defined as the focal distance,

see Figure 3.1. The projection is given by the intersection of the image plane and the

line joining the camera centre (origin of the 3D Euclidean space) and point P. By

similar triangles we see [𝑥, 𝑦, 𝑧]𝑇 is mapped into [ 𝑓 𝑥
𝑧
, 𝑓

𝑦

𝑧
, 𝑓 ]𝑇 , so in the image plane

coordinate system p = [ 𝑓 𝑥
𝑧
, 𝑓

𝑦

𝑧
]𝑇 . We define the line perpendicular to the image

plane passing through the camera centre as the principal axis and the intersection

of image plane and principal axis as the principal point,.

Intrinsic matrix: It is convenient to express this equation in matrix form as :

p = 𝜋(𝐾P), (3.5)
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whose

K =


𝑓 0 0

0 𝑓 0

0 0 1


(3.6)

is the intrinsic matrix describing the projection parameters of our camera sensor,

and:

𝜋

©­­­­«

𝑥

𝑦

𝑧


ª®®®®¬
=


𝑥
𝑧

𝑦

𝑧

 (3.7)

the projection operator.

Two extensions are needed for the general pinhole camera model. First, we model

a displacement, 𝑐𝑥 , 𝑐𝑦, between the image plane origin and the principal point.

Second we model the scaling of the different image axes (due to rectangular pixels)

by using different focal components for each axes 𝑓𝑥 , 𝑓𝑦. This gives the full pinhole

model equation:

KP =


𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1



𝑥

𝑦

𝑧


=


𝑓𝑥𝑥 + 𝑐𝑥𝑍

𝑓𝑦𝑦 + 𝑐𝑦𝑍

𝑧


, (3.8)

and

p = 𝜋(KP) =

𝑓𝑥𝑥 + 𝑐𝑥
𝑓𝑦𝑦 + 𝑐𝑦

 . (3.9)

Back projection: We are often interested in modelling the inverse operation to

projection, back projection. As projection collapses all the points that lie in a ray into

a single point (that is it is not an injective function), it is not invertible. Therefore

back projection maps a point in the image plane into a 3D ray, represented by the

following vector:
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K−1


𝑢

𝑣

1


=


1
𝑓𝑥

0 − 𝑐𝑥
𝑓𝑥

0 1
𝑓𝑦

− 𝑐𝑦
𝑓𝑦

0 0 1



𝑢

𝑣

1


=


𝑢−𝑐𝑥
𝑓𝑥

𝑣−𝑐𝑦
𝑓𝑦

1


. (3.10)

We define the depth of a 3D point as the distance from the point to the plane the

camera origin and orthogonal to the principal axis. Given the depth of a 3D point,

𝑑, and its projection, [𝑢, 𝑣]𝑇 , we can recover the point as:

P = 𝑑


𝑢−𝑐𝑥
𝑓𝑥

𝑣−𝑐𝑦
𝑓𝑦

1


=


𝑑
𝑥−𝑐𝑥
𝑓𝑥

𝑑
𝑦−𝑐𝑦
𝑓𝑦

𝑑


. (3.11)

3.3 Transformations

In the previous section we described how to model the relation between 3D points

and an image, with the camera is at the world origin, which assumes the camera

is static. We are interested in modelling a moving camera for which we need to

model its position in space. We describe the pose of the camera using a rigid point

transformation T𝐶𝑊 ∈ SE(3):

T𝐶𝑊 =


𝑅𝐶𝑊 t𝑊
01×3 1

 (3.12)

with R𝐶𝑊 ∈ SO(3) and t𝑊 ∈ R3.

In this way, to project a 3D point P𝑊 , we first transform it from the world frame

into the camera frame, and then proceed with the pinhole projection:

P𝐶 = R𝐶𝑊P𝑊 + t𝑊 , (3.13)

p = 𝜋(𝐾P𝐶). (3.14)
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Lie Groups and Tangent Space As we will see in future chapters, rigid trans-

formations will be unknown variables which we solve for through optimisation tech-

niques. As rotations cannot be modeled as Euclidean vector space, which is an

assumption in optimisation, we will describe how to associate members of the Lie

group of rotations, SO(3), into a vector space where we can use optimisation tech-

niques, the Lie algebra: 𝔰𝔬(3).

The Lie algebra is defined as the tangent space around the identity of the lie group.

In the case of SO(3), its Lie algebra is the vector space spanned by the following

basis vectors:

G1 =


0 0 0

0 0 −1

0 1 0


, G2 =


0 0 1

0 0 0

−1 0 0


, G2 =


0 −1 0

1 0 0

0 0 0


. (3.15)

We define the the []× operator as the mapping of the basis coefficients ω ∈ R3

into its corresponding element in the Lie algebra, such that:

[ω]× :=


0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0


. (3.16)

ω can be directly interpreted as a compact representation of a 3D rotation, where

the direction of the vector gives the axis of rotation and the magnitude the angle of

rotation. This also shows that a 3D rotatin has 3 degrees of freedom.

Exponential and logarithmic maps: For associating elements of 𝔰𝔬(3) to ele-

ments of SO(3), and vice versa, we use the exponential map and logarithmic map

respectively. The exponential map refers to the matrix exponential map, defined as

follows:

exp : 𝔰𝔬(3) −→ SO(3) (3.17)
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exp(𝜔×) =
∞∑︁
𝑘=0

1

𝑘!
𝜔
𝑘
× = 𝐼 + 𝜔× + 𝜔

2
×
2!

+ 𝜔
3
×
3!

+ ... (3.18)

.

In the case of SO(3) the exponential map has a closed form, known as the Rodrig-

uez formula:

exp(𝜔×) =


𝐼 + [ω]× + 1

2 [ω]2× = 𝐼, for 𝜃 = 0

𝐼 + sin(𝜃)
𝜃

[ω]× + 1−cos(𝜃)
𝜃
2

1
2 [ω]2×, otherwise

(3.19)

with

𝜃 = | |ω | |2 (3.20)

.

The logarithmic map is the inverse to the exponential map, and is given by:

exp : SO(3) −→ 𝔰𝔬(3), (3.21)

log(R) =


1
2 (R − R𝑇 ) = 0, for 𝑑 = 1

arccos(𝑑)
2
√
1−𝑑2

(R − R𝑇 ), for 𝑑 ∈ (−1, 1)
(3.22)

with:

𝑑 =
1

2
(trace(R) − 1). (3.23)

Derivatives: Given the mapping from the rotation Lie group SO(3) into its lie

algebra vector space 𝔰𝔬(3), we can now perform optimisation of rotation matrices

parameterised through the compact representation ω. The partial derivatives of the

exponential map with respect to the k-th element of ω is given by its corresponding

generator, that is:

𝜕

𝜕𝜔𝑘
exp(ω]×)

����
ω=0

= G𝑘 . (3.24)

53



3. Technical Preliminaries

𝑥" 𝑥# 𝑥$

𝑙" 𝑙#

Figure 3.2: A SLAM example where a robot is moving, robot position in time
shown though green nodes, and landmark position with blue nodes. The dashed
lines represent indicate landmark observations.

Because the tangent space is defined around the identity, we calculate the partial

of the increment around 𝑅 as:

𝜕 exp(ω]×)𝑅
𝜕𝜔𝑘

����
ω=0

= G𝑘R. (3.25)

3.4 Factor Graphs

For inference problems, factor graphs, a type of probabilistic graphical model (PGM),

are a useful visual representation for the structure of the problem, illustrating the

independence relationships between the variables. A full exposition on the subject

can be found in [Dellaert et al., 2017].

Bayes Network: First we introduce Bayes nets, which are a directed graph where

each node represents a random variable and arrows represent a factorization over

the joint probability density over them. More precisely, for a set of random variables

Θ = 𝜃1, ..., 𝜃𝑛, a Bayes net defines the joint probability distribution as:

𝑝(Θ) =
∏
𝑗

𝑝(𝜃 𝑗 |𝜋 𝑗), (3.26)

where 𝜋 𝑗 are the parents of 𝜃 𝑗 in the graph.
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SLAM example: We illustrate the definition of Bayes net with an abstract SLAM

example shown in Figure 3.2, this problem will have the same core structure to the

systems we will present later (Sections 4, 5). We have a robot moving through

space with a sensor that allows it to make measurements of landmarks in the scene,

visualised in Figure 3.2. In this case the we are interested in estimating both the

pose of the robot at discrete timestamps x1, x2, x3 and the landmarks positions l1, l2,

given measurements z1, z2, z3, z4. So in this case Θ = X,Z, with landmarks and

poses X, and measurements Z, and 𝑝(X,Z) = 𝑝(x1, x2, x3, l1, l2, l3, z1, z2, z3). By the

definition of the Bayes net visualised in Figure 3.2, the joint distribution can be

factorized as:

𝑃(X,Z) = 𝑝(x1)𝑝(x2 |x1)𝑝(x3 |x2)

∗ 𝑝(l1)𝑝(l2)

∗ 𝑝(z1 |x1)

∗ 𝑝(z2 |x1, l1)𝑝(z3 |x2, l1)𝑝(z4 |x3, l2)

(3.27)

.

This factorization helps with providing a qualitative description of the problem:

• 𝑝(x1)𝑝(x2 |x1)𝑝(x3 |x2) is a Markov chain on the robot poses, and describes our

knowledge of the robot movement dynamics.

• 𝑝(l1)𝑝(l2) is a prior distribution on the landmark poses.

• 𝑝(z1 |x1) describes an absolute measurement of the first robot pose.

• Finally 𝑝(z2 |x1, l1)𝑝(z3 |x2, l1)𝑝(z4 |x3, l2) describes the measurement model, which

will be an important design element for the choice of representation of our

SLAM system.

Factor graph: Factor graphs are a more general model than Bayes nets, better

suited for representing inference problems as we will describe in the next section 3.5.
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They make a distinction between the unknown variables X and the given measure-

ments Z. Figure 3.3 shows the factor graph for the previously described Bayes net,

nodes represent the unknown variables or states X which are not directly observed

and which we wish to estimate, and the factors are the constraints on these variables

imposed by the measurements Z, visualised as black dots. Formally a factor graph

is bipartite graph, with two types of nodes factors 𝜙𝑖 and variables x 𝑗 , with edges

only connecting factors to variables. We define X𝑖 as the set of variables adjacent to

the factor 𝜙𝑖. Then the factor graph defines the factorisation of the following global

function:

𝜙(X) =
∏
𝑖

𝜙𝑖 (X𝑖). (3.28)

One distinction with a Bayes net is that the factors can be un-normalised densit-

ies, we see how this distinction is useful when solving inference problems as in the

next section. Factor graphs are a very general language for a probabilistic descrip-

tion of inference problems, they are independent of the choice of representation or

measurement function.

3.5 Nonlinear Optimisation

Returning to the SLAM example we are interested in finding the unknown state

variables X from the given measurements Z. The maximum a posterior or MAP

estimate are the values that maximise the posterior density 𝑃(X|Z). Using Bayes

theorem we see that:

X𝑀𝐴𝑃
= arg max

X
𝑃(X|Z)

= arg max
X

𝑃(Z|X)𝑃(X)
𝑃(Z) ,

(3.29)

Where 𝑃(X) is a prior distribution on the states, 𝑃(Z|X) is the measurement likeli-

hood, and 𝑃(Z) is a normalisation constant. Now in this form, we can discard the
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𝑥! 𝑥" 𝑥#

𝑙! 𝑙"

Figure 3.3: Factor graph of SLAM example, nodes represent variables with unknown
state to be estimated, black squares are factors which constrain the variables on
observed measurements.

term 𝑃(Z), as the measurements are given and do not affect the optimisation result.

The numerator can then be computed from our factor graph.

Gaussian distributions: We will now look at a particular case in which we as-

sume that the factor densities have the form of a multinomial Gaussian distribu-

tion. For example, we assume the density of the measurements given the variables,

has the following normal distribution:

𝑝(Z|X) = N(Z, ℎ(X)) ∝ exp(−(Z − ℎ(X))𝑇Σ−1
Z (Z − ℎ(X))) (3.30)

. Where ℎ(X) is the measurement prediction function and ΣZ is the measure-

ment covariance matrix. When conditioned on given measurements Z we denote the

density as 𝑙 (X;Z) = 𝑝(Z|X) to make it explicit it is only a function of the unknown

variables X. This function is not a Gaussian distribution on X, because of the gen-

erally non-linear function ℎ(). Hence, we can now formulate the SLAM problem
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introduced earlier using our factor graph definition, the likelihood is the product of

all factors:

Φ(l1, l2, x1, x2, x3) = 𝜙(x1)𝜙(x2 |x1)𝜙(x3 |x2)

∗ 𝜙(l1)𝜙(l2)

∗ 𝜙(x1)

∗ 𝜙(x1, l1)𝜙(𝑥2, l1)𝜙(𝑥3, l2)

(3.31)

, where the factors are given by likelihood functions, as described above.

We will now introduce different optimisation techniques for solving the MAP

optimisation problem for the unknown variables X. For convenience in optimisation

this is equivalent to minimizing the negative logarithm of the function:

X𝑀𝐴𝑃
= arg max

X
Φ(X)

= arg min
X

−𝑙𝑜𝑔(Φ(X))
(3.32)

.

Because of the nonlinear measurement function, this optimisation problem can

not be solved directly, and iterative techniques must be used.

Gradient descent: If Φ() is differentiable we can use gradient descent to find a

local minimum in the neighbourhood of an initial estimate X(0) . Given the property

that the negative gradient of Φ() gives the direction of steepest descent, we perform

the following iterative optimisation algorithm:

X(𝑘+1)
= X(𝑘+1) − 𝛼𝑘∇Φ(X(𝑘) ) (3.33)

The factor 0 < 𝛼𝑘 < 1 is the step size, and controls the trade-off between conver-

gence speed and stability.
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Newton Method A more efficient optimisation algorithm requires Φ to be twice

differentiable (that is 𝐻Φ is positive semi-definite in this neighbourhood), and that

we have an estimate of X(0) close to the local minimum X̄, which satisfies ∇Φ(X̄) = 0.

Given that X(0) is in the neighborhood of X̄, we can estimate ∇Φ(X̄) using its first

order Taylor expansion:

∇Φ(X̄) ≈ ∇Φ(X0) + 𝐻Φ(X0) (X̄ −X0). (3.34)

And then following the condition ∇Φ(X̄) = 0 we get the iterative following update

rule:

X(𝑘+1)
= X(𝑘) − 𝐻−1

Φ (X(𝑘) )∇Φ(X(𝑘) ). (3.35)

This is equivalent to performing the following update:

X(𝑘+1)
= X(𝑘) + δ, (3.36)

where 𝛿 is obtained by solving the following linear system, which were refer to as

normal equation:

𝐻Φ(X(𝑘) )δ = −∇Φ(X(𝑘) ). (3.37)

This formulation is preferred for numerical stability in implementation.

Gauss-Newton In the case of assuming a Gaussian density likelihood then we

have:

X𝑀𝐴𝑃
= arg min

X
− log(Φ(X))

= arg min
X

− log(exp(−(Z − ℎ(X))𝑇Σ−1
Z (Z − ℎ(X))))

= arg min
X

(Z − ℎ(X))𝑇Σ−1
Z (Z − ℎ(X)).

(3.38)

This category of problems is referred to as least squares. In this case the gradient

and Hessian are give by:
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∇Φ(X) = 𝐽ℎ (X)𝑇Σ−1
Z 𝑟 (X), (3.39)

𝐻Φ(X) = 𝐽ℎ (X)𝑇Σ−1
𝑧 𝐽ℎ (X) + 𝐻ℎ (X)Σ−1

Z 𝑟 (X), (3.40)

where 𝐽ℎ and 𝐻ℎ are the Jacobian and Hessian matrices of ℎ(X) respectively, and

𝑟 (X) = Z − ℎ(X), is referred to as the residual. We can therefore approximate the

Hessian of Φ through:

𝐻Φ(X) ≈ 𝐽ℎ (X)𝑇Σ−1
Z 𝐽ℎ (X) (3.41)

We can then substitute this approximation into the Newton normal equation, to

get the Gauss-Newton update:

(𝐽𝑇ℎ Σ
−1
𝑧 𝐽ℎ)δ = −𝐽𝑇ℎ Σ

−1
𝑧 𝑟. (3.42)

3.6 Deep Neural Networks

We will use Neural Networks (NNs) as learnable modules for machine learning, both

for discriminative inference as well as generative representation in the presented

systems. In this section we give a brief overview of the architectures relevant in our

presented works. An in depth exposition can be found in [Goodfellow et al., 2016].

An NN is a function 𝐹 that maps some input 𝑥 ∈ R𝑁 to an output 𝑦 ∈ R𝑀 that

depends on some learnable parameters Θ, such that 𝑦 = 𝐹 (𝑥,Θ). The choice of input

and output depends on the application to be modeled. In classification for example

𝑥 is an image and 𝑦 is a class label. The parameters Θ are learned through gradient

based optimisation (Section 3.5) to approximate a unknown function with a dataset

of input output pairs {𝑥𝑖 , 𝑦𝑖}, a process known as deep learning.

3.6.1 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) or fully-connected network is the basic neural

network architecture and is the model used for neural fields (Section 3.8.3), and the
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Hidden LayerInput Layer Output Layer

Figure 3.4: Diagram of a Multi-Layer Perceptron (MLP) with 1 hidden layer.

map representation in iMAP, Chapter 5. The MLP consists of stacked blocks of

linear transformations followed by an element-wise non-linearity referred to as an

activation function. For each of these blocks (except the last one) is referred to as

a hidden layer and is defined as:

x𝑖+1 = 𝑓𝑖 (W𝑖x𝑖 + b𝑖), 𝑖 ∈ (1, ..., 𝐿), (3.43)

Where 𝐿 − 1 is the number of hidden layers, 𝑥0 and 𝑥𝐿+1 are the input and output

to the neural network respectively, W𝑖 ∈ R𝑁×𝑁 are the weights, 𝑏𝑖 ∈ R𝑁 the biases,

and 𝑓𝑖 the activation function. The intermediate network outputs 𝑥𝑖 , 𝑖 ∈ (1, ..., 𝐿)

are referred to as features. A schematic of an MLP can be seen in Figure 3.4; the

nodes are normally referred to as neurons.

A common choice for the activation function for hidden layers is ReLU, which is

a hockey-stick shaped function which can “switch off” neurons below 0, defined as:

ReLU(x) 𝑗 = max[0, x 𝑗] (3.44)

For the output layer two common activation functions that will be relevant for us
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are the sigmoid, used for binary classification, which squashes the output into the

[0, 1] range:

𝜎(x) 𝑗 =
1

1 + 𝑒𝑥 𝑗
, (3.45)

and softmax used for multi-class classification, and makes a vector sum to 1 so it

becomes a discrete probability distribution:

softmax(x) 𝑗 =
𝑒
𝑥 𝑗∑
𝑘 𝑒

𝑥𝑘
. (3.46)

3.6.2 Convolutional Neural Networks

A specific case of fully-connected networks which are particularly suited for grid-

like structures such as images or voxel grids is the Convolutional Neural Network

(CNN). This architecture leverages the self-similar and local structure in images for

efficiency through a representation with sparsity, parameter sharing, and translation

equivariance. This is done by substituting the fully connected layer with a special

case the discrete convolution:

I𝑖+1 = 𝑓𝑖 (K𝑖 ⊛ I𝑖 + b𝑖), (3.47)

where the ⊛ is the convolution operator. In the case where I is a two-dimensional

image, convolving the kernel K ∈ R𝐾×𝐾 is defined as:

𝑆(𝑖, 𝑗) = K ⊛ I =
𝐾∑︁
𝑘

𝐾∑︁
𝑙

𝐼 (𝑖 − 𝑘, 𝑗 − 𝑙)𝐾 (𝑘, 𝑙), (3.48)

an operation visualised in Figure 3.5.

In practice at each layer several kernels are applied, stacking the output images

to form a three-dimensional grid referred to as a tensor. In this case the kernels

applied thereafter are three-dimensional. Therefore the weights of a hidden layer

have dimension R𝑁×𝑀×𝐾×𝐾 , where 𝑁 is the number of kernels to be applied, 𝑀
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Kernel

Input

Output

Figure 3.5: Visualisation of convolving a kernel with an input image.

the number of kernels applied in the previous layer (referred to as channel size

of the input tensor), and 𝑘 the kernel size normally taking in the range of values

(𝑘 = 3, 5, 7). As we can see the weight size is independent of the image size, which

leads to smaller networks than using an MLP to process images.

An important property of a CNN, is that the spatial structure is preserved in

intermediate feature outputs, which allows spatial resizing such down-sampling or

up-sampling operations, which will be particularly relevant in the bottleneck CNN

architectures discussed in Subsection 3.7.1. The resizing operation is a common fixed

function (no learnable parameters) applied after the activation function of each layer

in a CNN. Down-sampling reduces the spatial dimensions of the input tensor. One
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common operation for this is pooling which summarises the local neighborhood in

a local window, and is applied in a similar way to a convolution but with a fixed

operation, such as taking the maximum in the window (max-pooling) or the average

(average-pooling). For increasing the spatial dimension of an input up-sampling

operations such as bi-linear interpolation or nearest neighbor are used. The output

of a CNN is an image of features, which in a discriminative network is normally

much smaller than the original input, and can therefore be vectorised and processed

by a fully.connected layer to obtain classification scores.

3.7 Deep Generative Models

In Section 3.4 we described probabilistic graphical models for calculating the dis-

tribution of the observed measurements Z given some hidden variables or states X,

𝑝(Z|X), where we have an explicit model of the problem. However, for certain ap-

plications we may want to learn or discover a relationship between some hidden or

latent variable z, and the observed data x (notice we are using the opposite nota-

tion in this case where x is now the observed variable). An example would be if

we have a dataset of faces we may want to discover some low dimensional features,

such as the shape of the nose or the distance between the eyes, to represent without

explicitly modeling it. The use of neural networks for learning generative models is

called Deep Generative Models (DGM), and in the next section we will describe one

particular instance we use in NodeSLAM, Chapter 4, the Variational Auto-Encoder

(VAE) [Kingma and Welling, 2014].

3.7.1 Variational Auto-Encoder

DGMs can perform different tasks such as density estimation, data generation, data

compression, and data interpolation. For our applications we are interesting in

discovering a latent space which is compact and smooth, to be used within an

optimisation framework. For this reason we choose a probabilistic auto-encoder

model, the Variational Auto-Encoder (VAE).
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Given a dataset 𝑥𝑁𝑖=1 of samples from a random variable x which we assume is

generated from some underlying latent variable z (of much smaller dimension), we

wish to learn a generative model 𝑝Θ(x, z). For this first we define a deterministic

auto-encoder (AE) neural network. An AE is a bottleneck network with two com-

ponents: an encoder network 𝐸Φ(𝑥𝑖) = 𝑧𝑖 that maps a data point to a compressed

vector 𝑧𝑖, and a decoder network that aims to reconstruct the data point from the

compressed vector 𝐷Θ(𝑧𝑖) = 𝑥𝑖; see Figure 4.4. This networks are optimised to max-

imise the conditional data likelihood, whose form for example inthe case of Bernoulli

variables is given by:

𝑝Θ(x|z) =
∏
𝑖

Ber(𝑥𝑖 |𝜎(𝐷Θ(𝐸Φ(𝑧𝑖)))). (3.49)

Now a VAE extends an AE so that the latent space is probabilistic, and we can

sample from it (in an AE there is no structure imposed on a latent space). To do this

we assume a prior on the latent space 𝑝(z), taken to be a unit Gaussian distribution.

To optimise the data likelihood given the prior, variational inference [Murphy, 2023]

is used by approximating the posterior with a recognition model:

𝑞Φ(z|x) = 𝑞Φ(z|𝐸Φ(x)) ≈ 𝑝(x|z), (3.50)

where 𝑞Φ(z|x) is a Gaussian with parameters predicted by the encoder network:

𝑞Φ(z|x) = N(z|µ, diag(exp(ℓ))), (3.51)

(µ, ℓ) = 𝐸Φ(z), (3.52)

where ℓ = log(σ). See Figure 4.4 for an illustration of the VAE architecture. The

process of using an inference network for inverting the generative model rather

than optimisation of the latent code is known as amortised inference. However

in NodeSLAM (Section 4) we will do latent code optimisation as we do not have

direct access to the data x, but a partial measurement.
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Encoder Decoder

Figure 3.6: Architechture of Variational Autoencoder network.

To optimise the model parameters, the evidence lower bound (ELBO) of the joint

likelihood 𝑝(x, z) is maximised, which is given by:

𝐿 (x)Φ,Θ = E[log(𝑝Θ(x|z))] − 𝐾𝐿 (𝑞Φ(z|x)) | |𝑝Θ(z)). (3.53)

The first therm is the conditional log-likelihood (equation 3.49) and the second

term is the KL-divergence between the prior on the latent space and the inference

likelihood, which in the case that the prior is a unit Gaussian is given by the closed

form equation:

−𝐾𝐿 (𝑞Φ(z|x)) | |𝑝Θ(z) =
1

2
(1 + log(σ2) − σ2 + −µ2). (3.54)

The code z is sampled from the distribution N(µ,σ) by the re-paremeterisation

trick: z = 𝜖 ⊙ σ + µ with 𝜖 sampled from a unit Gaussian.
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3.8 Geometry

In this thesis we aim at reconstructing the 3D geometry of a scene. The properties of

the 3𝐷 representation affect both the choice of inference algorithms and the applic-

ations it enables. There are two categories of method for modeling the 3D structure

of a scene implicit or volumetric and explicit or parametric surface representation.

An explicit surface represents a direct parameterisation of a 2𝐷 manifold embedded

in a 3𝐷 space, such that the surface 𝑆 ⊂ R3 is the mapping of a 2𝐷 domain Ω ⊂ R2:

f : Ω → 𝑆. (3.55)

One example of an explicit surface is a parametric plane representation:

𝑔(𝑠, 𝑡) = a + 𝑠v1 + 𝑡v2. (3.56)

For representing complex shapes it is difficult to use a single function, so it is

common to split the domain into patches giving a piece-wise representation. The

most common piece-wise explicit surface representations are meshes, where the

surface is represented as the union of planar triangles; an example is visualised in

Figure 3.7 (a). In practice, the mesh is defined by a collection of 3𝐷 vertices 𝑃 = p𝑖
and faces 𝐹 = f𝑖:

p𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]𝑇 (3.57)

,

f𝑖 = [𝑘, 𝑙, 𝑚], 𝑘, 𝑙, 𝑚 ∈ 1, ..., |𝑃 |. (3.58)

Implicit surfaces are defined by the zero crossing of a scalar valued function, such

that:

F : R3 → R, (3.59)

𝑆 = {x ∈ R3 |𝐹 (𝑥) = 0}. (3.60)
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To choose a scalar valued function F there is a choice between discretising the 3𝐷

domain, such as with voxel representations as described in Section 3.8.1 and seen on

Figure 3.7, or using a single continuous function as described in MLP-based neural

fields in section 3.8.3.

In the presented works we use implicit surface representations for shape inference

because of their flexibility in representing arbitrary topologies, and ease for doing

modifications such as merging or separation, which allows for integration with op-

timisation based techniques. In NodeSLAM, Chapter 4, we use a discretised voxel

based representation for storing occupancy, for use with a 3D CNN VAE network.

In iMAP, Chapter 5 we use a continuous neural field representation.

We convert implicit representations into explicit meshes as a post-processing step

by using the marching cubes algorithm [Lorensen and Cline, 1987]. The benefits

of a mesh representation are rapid rendering for visualisation and queries such as

finding the object extrema points, useful for grasp planning as in NodeSLAM.

3.8.1 Voxel grids

Voxel representations discretise space into a 3D grid which maps a set of contiguous

voxels in space to a scalar value encoding information about each voxel. A common

scalar property which we use in NodeSLAM is occupancy probability. We assume an

occupancy grid G ∈ R𝑁×𝑁×𝑁 , G encodes a mapping so that for 𝑖, 𝑗 , 𝑘 ∈ {1, 2, ..., 𝑁},

G(𝑖, 𝑗 , 𝑘) ∈ [0, 1] stores the probability that voxel (𝑖, 𝑗 , 𝑘) is occupied, an example is

visualised in Figure 3.7 (c).

Let us consider a discretised cuboid in space (which encompasses the scene) and

a mapping from the index coordinates in the cuboid (𝑖, 𝑗 , 𝑘) to a voxel in space

V(𝑖, 𝑗 , 𝑘) ⊂ R3. Then let O(𝑖, 𝑗 , 𝑘) be a random variable such that:

O(𝑖, 𝑗 , 𝑘) =


1 if V(𝑖, 𝑗 , 𝑘) is occupied

0 if V(𝑖, 𝑗 , 𝑘) is free.
(3.61)

An example is visualised in Figure 3.7 (b).
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(a) Mesh (b) Binary Occupancy

(c) Occupancy probability

Figure 3.7: Different representations for 3D geometry.

Now the dsicrete occupancy probability is defined as:

G(𝑖, 𝑗 , 𝑘) = 𝑝(O(𝑖, 𝑗 , 𝑘) = 1). (3.62)

3.8.2 Trilinear Interpolation

In this section we will describe how to query for continuous coordinates from the

discretised voxel representation. This is done by interpolating the occupancy value

of a point inside a voxel grid from its 8 closest neighbours. This is called trilinear

interpolation [Kang, 2006]. First we will describe the more simple case in 2D.

Suppose we have rectangle defined by its four corners [𝑥0, 𝑦0]𝑇 , [𝑥0, 𝑦1]𝑇 , [𝑥1, 𝑦0]𝑇 ,

and [𝑦1, 𝑦1]𝑇 with associated values 𝑝00, 𝑝01, 𝑝10, and 𝑝11 respectively, as seen in

Figure 3.8. Now we have a new point [𝑥, 𝑦]𝑇 with 𝑥0 < 𝑥 < 𝑥1 and 𝑦0 < 𝑦 < 𝑦1,

and we wish to interpolate its value from the given values of the four corners of the
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Figure 3.8: Illustration of bi-linear interpolation (adapted from [Kang, 2006]).

rectangle. This is performed by doing three linear interpolations.

First we interpolate 𝑝01 and 𝑝11 as:

𝑝1 := 𝑝01 + (𝑝11 − 𝑝01)
𝑥 − 𝑥0
𝑥1 − 𝑥0

. (3.63)

And 𝑝00 and 𝑝10 as:

𝑝0 := 𝑝00 + (𝑝10 − 𝑝00)
𝑥 − 𝑥0
𝑥1 − 𝑥0

. (3.64)

We obtain the value at (𝑥, 𝑦) by interpolating 𝑝0 and 𝑝1:

𝑝(𝑥, 𝑦) = 𝑝0 + (𝑝1 − 𝑝0)
𝑦 − 𝑦0
𝑦1 − 𝑦0

= 𝑝00 + (𝑝10 − 𝑝00)
𝑥 − 𝑥0
𝑥1 − 𝑥0

+ (𝑝01 − 𝑝00)
𝑦 − 𝑦0
𝑦1 − 𝑦0

+ (𝑝11 − 𝑝01 − 𝑝10 + 𝑝00)
𝑥 − 𝑥0
𝑥1 − 𝑥0

𝑦 − 𝑦0
𝑦1 − 𝑦0

.

(3.65)

Now we will generalise the the 3D case in which we have a cuboid defined by

8 corners as illustrated on Figure 3.9. In a similar fashion we can interpolate the
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value of a point [𝑥, 𝑦, 𝑧]𝑇 inside the cuboid by performing 7 linear interpolations,

obtaining the following expansion for the value at [𝑥, 𝑦, 𝑧]𝑇 :

𝑝(𝑥, 𝑦, 𝑧) = 𝑐0 + 𝑐1Δ𝑥 + 𝑐2Δ𝑦 + 𝑐3Δ𝑧 + 𝑐4Δ𝑥Δ𝑦 + 𝑐5Δ𝑦Δ𝑧 + 𝑐6Δ𝑥Δ𝑧 + 𝑐7Δ𝑥Δ𝑦Δ𝑧, (3.66)

with

Δ𝑥 =
𝑥 − 𝑥0
𝑥1 − 𝑥0

,Δ𝑦 =
𝑦 − 𝑦0
𝑦1 − 𝑦0

,Δ𝑧 =
𝑧 − 𝑧0
𝑧1 − 𝑧0

, (3.67)

and

𝑐0 = 𝑝000,

𝑐1 = 𝑝100 − 𝑝000,

𝑐2 = 𝑝010 − 𝑝000,

𝑐3 = 𝑝001 − 𝑝000,

𝑐4 = 𝑝110 − 𝑝010 − 𝑝100 + 𝑝000,

𝑐5 = 𝑝011 − 𝑝001 − 𝑝010 + 𝑝000,

𝑐6 = 𝑝101 − 𝑝001 − 𝑝100 + 𝑝000,

𝑐7 = 𝑝111 − 𝑝011 − 𝑝101 + 𝑝110 + 𝑝100 + 𝑝001 + 𝑝010 − 𝑝000.

(3.68)

For practical reasons it can be quite useful to rewrite this in matrix form. We can

do this by defining the following matrices:

B =



1 0 0 0 0 0 0 0

−1 0 0 0 1 0 0 0

−1 0 1 0 0 0 0 0

−1 1 0 0 0 0 0 0

1 0 −1 0 −1 0 1 0

1 −1 −1 1 0 0 0 0

1 −1 0 0 −1 1 0 0

−1 1 1 −1 1 −1 −1 1



. (3.69)
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Figure 3.9: Illustration of tri-linear interpolation (adapted from [Kang, 2006]).

Q =

[
1 Δ𝑥 Δ𝑦 Δ𝑧 Δ𝑥Δ𝑦 Δ𝑦Δ𝑧 Δ𝑥Δ𝑧 Δ𝑥Δ𝑦Δ𝑧

]𝑇
. (3.70)

P =

[
𝑝000 𝑝001 𝑝010 𝑝011 𝑝100 𝑝101 𝑝110 𝑝111

]𝑇
. (3.71)

We then have:

𝑝(𝑥, 𝑦, 𝑧) = Q𝑇BP. (3.72)

In the general case we have a point s𝑖𝑂 in object voxel grid coordinates. To calcu-

late the coordinates of the cuboid for trilinear interpolation we take [𝑥0, 𝑦0, 𝑧0]𝑇 =

⌊s𝑖𝑂⌋ and [𝑥1, 𝑦1, 𝑧1]𝑇 = [𝑥0, 𝑦0, 𝑧0]𝑇 + [1, 1, 1]𝑇 . If there exist 𝑖 ∈ {0, 1} such that

𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∉ {1, ..., 𝑁} (𝑁 is the dimension of the voxel grid) then 𝑜𝑖 = 0 since the point

does not lie inside the grid. Else we take 𝑝𝑖 𝑗𝑘 = G[𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘], 𝑖, 𝑗 , 𝑘 ∈ {0, 1}, and use

the algorithm defined above for trilinear interpolation of the occupancy value.
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3.8.3 Neural fields

Neural fields are a continuous signal representation that avoid discretisation of space

as in voxel grids. The have been explored for object reconstruction [Park et al.,

2019, Mescheder et al., 2019a], object compression [Tang et al., 2020] novel view

synthesis [Mildenhall et al., 2020b], and scene completion [Sitzmann et al., 2020,

Chibane et al., 2020]. They form the 3D representation used in the works presented

in Chapter 5 and Chapter 6 for incremental dense SLAM and interactive semantic

mapping respectively.

Neural fields are defined as an MLP 𝐹Θ() for mapping 3𝐷 input coordinates x

into color and volume density scalar values (c, 𝜎):

𝐹Θ : x → (c, 𝜎). (3.73)

This representation is optimised through stochastic gradient descent with respect

to differentiable volumetric rendering, as described in Section 3.9 for depth and

extended to color and semantics in in Chapter 5 and Chapter 6. Volume density is a

generalisation of occupancy probability for rendering non solid objects as in NeRF.

A key development in NeRF for allowing a Neural Field representation to represent

higher details is positional encoding. Positional encoding is a decomposition of

the 3𝐷 Euclidean space into different frequencies and is defined as:

𝛾(x) = (𝑠𝑖𝑛(20𝜋x), 𝑐𝑜𝑠(20𝜋x), ..., 𝑠𝑖𝑛(2𝐿−1𝜋x), 𝑐𝑜𝑠(2𝐿−1𝜋x)). (3.74)

The positional embedding is applied independently to each coordinate, and con-

stitutes a mapping from R3 into a higher dimensional R6𝐿 space, which is fed into

the MLP instead of the raw coordinate. The number of frequencies 𝐿 controls the

amount of detail that can be represented, but can lead to over-fitting of a signal.

An analysis of the properties of positional encoding can be found in [Tancik et al.,

2020].
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(a) Axis aligned.

(b) Gaussian embedding.

Figure 3.10: Visualisation of positional encoding.

As the positional embedding is applied independently to each 3𝐷 coordinate this

leads to a bias in axis aligned frequency representation. A generalisation of the po-

sitional encoding to remove this bias, Gaussian positional encoding, was formulated

by projecting across random directions as:

𝛾(x) = (𝑠𝑖𝑛(2𝜋b1
𝑇x), 𝑐𝑜𝑠(2𝜋b1

𝑇x), ..., 𝑠𝑖𝑛(2𝜋bm
𝑇x), 𝑐𝑜𝑠(2𝜋bm

𝑇x)), (3.75)

Where vectors bi are sampled from a Normal distribution N(0, 𝜎2); 𝑚 controls the

number of projection directions and 𝜎 the range of frequencies. Figure 3.10 shows

a false color visualisation of positional encoding in 2𝐷 for one frequency of axis

aligned, and randomly sampled frequencies from the Gaussian embedding.
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3.9 Differential Volumetric rendering

In this section we will describe differential volume rendering, which will form our

measurement function ℎ() (Section 3.5) for generative dense SLAM in both NodeSLAM

(Section 4) and iMAP (Section 5). We will describe a function for predicting a depth

image (as defined in Section 3.2) from an occupancy map and a camera pose. We

will describe the algorithm for a map stored in an occupancy grid as in NodeSLAM,

which will be generalised to an MLP map representation in iMAP.

3.9.1 Ray integration

We will derive the depth rendering function 𝑑 = Render(G,T𝑂𝐶), which takes as an

input a voxel occupancy grid and the inverse transformation of the occuppancy grid

in the camera coordinate frame, and outputs a rendered depth image of the model

from the camera’s perspective.

Let us assume we have an intrinsic parameter matrix K for the camera we are

modeling. Now we will use a ray tracing algorithm to render a depth value for each

pixel in the image.

For each pixel [𝑢, 𝑣] in the image do:

1. Back project pixel into a ray starting from the camera center and connecting

to the center of the pixel in the image grid, r = K−1 [𝑢, 𝑣]𝑇 .

2. Sample 𝑀 times along the ray in the depth range [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥]. Each sample

𝑖 ∈ {1, ..., 𝑀} has depth 𝑑𝑖 = 𝑑𝑚𝑖𝑛 + 𝑖
𝑀
(𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛) and position in the camera

frame s𝑖𝐶 = 𝑑𝑖𝑟.

3. Convert each sampled point into the voxel grid coordinate frame: s𝑖𝑂 = T𝑂𝐶s𝑖𝐶 .

4. Obtain occupancy probability 𝑜𝑖 := G(s𝑖𝑂) for point s𝑖𝑂 from the occupancy

grid, using trilinear interpolation as described in Section 3.8.2.

5. We will consider the depth at pixel [𝑢, 𝑣] as a random variable 𝐷 [𝑢, 𝑣]. Now

we can calculate 𝑝(𝐷 [𝑢, 𝑣] = 𝑑𝑖) (that is, the termination probability at depth
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𝑑𝑖) as:

𝜙𝑖 := 𝑝(𝐷 [𝑢, 𝑣] = 𝑑𝑖) = 𝑜𝑖
𝑖−1∏
𝑗=1

(1 − 𝑜 𝑗). (3.76)

for 𝑖 ∈ {1..., 𝑀}.

6. Now we define the escape probability as:

𝜙𝑀+1 := 𝑝(𝐷 [𝑢, 𝑣] > 𝑑𝑀 ) =
𝑀∏
𝑗=1

(1 − 𝑜 𝑗). (3.77)

It will be proven next that {𝜙𝑖} forms a discrete distribution.

7. We can obtain the rendered depth at pixel [𝑢, 𝑣] as:

𝜇𝑑 [𝑢,𝑣 ] := E[𝐷 [𝑢, 𝑣]] =
𝑀+1∑︁
𝑖=1

𝜙𝑖𝑑𝑖 . (3.78)

𝑑𝑀+1 should be equal to ∞, but for practical reasons a big number is taken.

8. The uncertainty of the depth can be calculated as:

𝜎
2
𝑑 [𝑢,𝑣 ] := 𝑉𝑎𝑟 [𝐷 [𝑢, 𝑣]] =

𝑀+1∑︁
𝑖=1

𝜙𝑖 (𝑑𝑖 − 𝜇𝑑 [𝑢,𝑣 ])2. (3.79)

3.9.2 Termination Probability

We will prove by induction that {𝜙𝑖} is a discrete probability.

Lemma 1 (Termination distribution). Given values 𝑜𝑖 ∈ [0, 1] with 𝑖 ∈ {1, ..., 𝑀},

then for {𝜙𝑖} as defined above we have that:

𝜙𝑖 ∈ [0, 1] (3.80)

for 𝑖 ∈ {1, ..., 𝑀 + 1}.

And,

𝑀+1∑︁
𝑖=1

𝜙𝑖 = 1. (3.81)
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Proof. We have that 𝑜𝑖 ∈ [0, 1] and therefore 1− 𝑜𝑖 ∈ [0, 1]. As 𝜙𝑖 is then a product

of numbers between 0 and 1 the first proposition holds.

We will prove the second proposition by induction. For 𝑀 = 1:

𝑀+1∑︁
𝑖=1

𝜙𝑖 = 𝜙1 + 𝜙2

= 𝑜1 + (1 − 𝑜1)

= 1.

(3.82)

Now let us suppose it holds for 𝑀 = 𝑁. Let {𝜙𝑖} be the distribution defined for

𝑀 = 𝑁 and {𝜙𝑖} for 𝑀 = 𝑁 + 1; then:

(𝑁+1)+1∑︁
𝑖=1

𝜙𝑖 =

𝑁∑︁
𝑖=1

𝜙𝑖 + 𝜙𝑁+1 + 𝜙𝑁+2

=

𝑁∑︁
𝑖=1

𝜙𝑖 + 𝑜𝑁+1𝜙𝑁+1 + (1 − 𝑜𝑁+1)𝜙𝑁+1

=

𝑁∑︁
𝑖=1

𝜙𝑖 + (𝑜𝑁+1 + 1 − 𝑜𝑁+1)𝜙𝑁+1

=

𝑁+1∑︁
𝑖=1

𝜙𝑖

= 1

(3.83)

by the induction hypothesis.

□

3.9.3 Derivatives

The defined volumetric rendering function is differentiable with respect to the input

voxel grid and camera pose. In this section we provide the derivative of two com-

ponents of the rendering formulation with respect to the values in the occupancy

voxel grid.
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For a point p = [𝑧, 𝑦, 𝑧]𝑇 with interpolated occupancy 𝑜 𝑗 = G(𝑥, 𝑦, 𝑧), the deriv-

ative of occupancy with respect to the value of the 𝑙-th voxel 𝑜𝑙 = P𝑙 (from the 8

neighbours) is given by:

𝜕𝑜 𝑗

𝜕𝑜𝑙

����
[𝑧,𝑦,𝑧 ]𝑇

= Q𝑇B



01
...

1𝑙
...

08


, (3.84)

with Q, P and B as defined in Section 3.8.2.

The derivative of the termination probability 𝜙𝑖 is then computed by the product

rule as:

𝜕𝜙𝑖

𝜕𝑜𝑙

����
[𝑧,𝑦,𝑧 ]𝑇

=

𝑖∑︁
𝑘=0

𝜕𝑜 𝑗

𝜕𝑜𝑙
[

𝑖−1∏
𝑗=0, 𝑗≠𝑘

(1 − 𝑜 𝑗)]𝑜𝑖 , 𝑜𝑖 =


1 if 𝑘 = 1

0 otherwise.
(3.85)

3.10 System Building

Building a SLAM system requires the integration and interfacing of different com-

ponents, in particular, the systems we present at a higher level combine an optimiser

library with a neural network representation and include a variety of lower level func-

tions such as camera tracking, image object segmentation, volume rendering, bundle

adjustment, data association, and pixel sampling. Also, it is often necessary to in-

terface the SLAM systems with external modules, such as with a robotic platform

in the case of NodeSLAM in Chapter 4, and with an interactive user interface in

the case of iLabel in Chapter 6. For these reasons, an emphasis in our work on the

systems we build is to design a modular and flexible code library.
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Geometry

JacobianBundle adjustment

Track frame
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Figure 3.11: The core SLAM library for the NodeSLAM system. It is organised
in three code groups: a backend used for optimisation, a frontend for defining the
SLAM problem, and common for shared functions and classes.

3.10.1 Software Library

Our core SLAM library is implemented as a collection of classes and functions that

interface with each other and are abstracted to match the SLAM problem struc-

ture. The code organisation is inspired by modern SLAM systems such as ORB-

SLAM [Mur-Artal and Tardós, 2014], but uses a Python interface with GPU tensor

acceleration by the PyTorch backend [Paszke et al., 2019], which allows for integ-

ration of fast matrix operations for non linear optimisation with neural networks.

Figure 3.11 presents the code structure of the NodeSLAM library system, divided

into three groups backend, frontend, and common.

The SLAM pipeline is managed by a single class object system which interfaces

with the different elements of the library. The backend code group contains the func-

tions and classes associated with optimisation of the constructed SLAM problem.

We build an optimisation class inspired by the interface of the Pytorch optimiser

class, but for second order non-linear squares optimisation with Gauss-Newton, Boil-
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1 class OptimisationProblem:

2 def __init__(self):

3 self.least_squares = LeastSquares ()

4 self.variables = []

5 self.residuals = []

6 self.informations = []

7
8 def add_variable(self , variable):

9 ...

10
11 def add_residual(self , residual):

12 ...

13
14 def solve(self):

15 ...

Listing 3.1: Boilerplate code for custom second order optimisation class.

erplate code for this is shown in Listing 3.1. For calculation of Jacobians we leverage

the auto-diff engine of PyTorch. In iMAP this optimisation library is replaced with

the PyTorch optimiser for gradient descent, which shares a similar interface to our

custom one.

The frontend code group contains the elements used by the system class to build

the SLAM problem from the input image stream. The frame class encapsulates

images with their associated properties such as tracked pose, and for keyframes it

contains the association between detections, represented by the segmentation class

and 3D map elements represented by the object class. It also contains the two

main functions for interfacing with images: detection by detect masks and data

association by match masks. The common code group contains different elements

for representing and operating on the children objects of the frontend and backend.

An important commmon function element is render frame which is used as the

measurement function in SLAM mapping from map objects to image observations.

The iMAP code has a simplified code structure as it does not include the detection

and matching components.
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Figure 3.12: Demonstration of iLabel system in live operation.

Figure 3.13: Visualisation of robotic interaction demo performed with the
NodeSLAM system.

3.10.2 System Interfacing

For either interfacing the SLAM systems with external modules or parallelising sub-

modules within them, we used a multi-processing paradigm with shared queues for

resource sharing. This design allows us to standarise messages between modules

independent of the communication library and to be read/write memory safe. For

example for communication between our NodeSLAM (Chapter 4) system and the

Franka Emika Panda robotic arm, we use the ROS API [Quigley et al., 2009], while

for multiprocessing in iMAP (Chapter 5) and user interaction in iLabel (Chapter 6)

we use the PyTorch multi-processing API.

Our flexible code design is demonstrated by the practical real-time applications

and demos built with our SLAM libraries, such as the iLabel interactive real-time

demo seen in Figure 3.12 and the robotic manipulation system presented in Figure

3.13.
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4.1 Introduction

In this chapter we present NodeSLAM, a system which can build a 3D object graph

of a scene from multi-view RGB-D images by fitting learned class-level object shape

models. We build these object shape models by training a volumetric variational

autoencoder (VAE) from a 3D database of aligned CAD objects of a number of

known classes. At the bottleneck of the auto-encoder we obtain a small descriptor

representing the range of 3D shape variation within the class. At run time, as a

moving camera browses a scene and objects are detected, we add objects to our

3D scene graph frame by frame. We then perform joint optimisation of the camera

trajectory, the object poses and the shape codes to minimise the difference between

a rendering of our graph model and the depth data from multiple camera views.

We demonstrate our method in a table-top setting with a cluttered variety of

objects from four different classes, and show that we can rapidly build an object

scene graph model which is dense, precise and watertight as seen on Figure 5.1.

This enables augmented reality effects such as filling bowls and cups. Compared

to whole scene reconstruction methods, we obtain this whole dense model with

relatively few views, by not needing to make observations all around an object to fit

a watertight model. This is a strong indicator that we could also use this approach

in robotics where precise object shape information is needed for grasping.

There have been two main approaches for 3D shape reconstruction from images.

Classical reconstruction techniques infer geometry by minimizing the discrepancy

between a reconstructed 3D model and observed data through a measurement func-

tion [Izadi et al., 2011, McCormac et al., 2018, Whelan et al., 2015]. These methods

are flexible and general, but they can only reconstruct directly observed parts of

a scene and are limited in accuracy when observations are weak or noisy. On the

other hand, discriminative methods learn to map image measurements to 3D shape,

such as through a feed-forward neural network [Gkioxari et al., 2019, Kundu et al.,

2018, Wu et al., 2017, Tulsiani et al., 2017, Wang et al., 2018, Wu et al., 2015]. These

methods take advantage of regularities in data for robustness but have trouble in
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Figure 4.1: Top: Compact, optimisable shape models used in an object-level SLAM
system which maps a real world cluttered table top scene with varied object shapes
from different classes. Bottom: Class-level priors allow accurate and complete
object reconstruction (bottom-left) even from a single image in contrast to partial
reconstruction from TSDF fusion (bottom-right).
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generalisation and lack the ability to integrate multiple measurements in a principled

way.

Our work sits between these two approaches. We capture regularities in data

though a volumetric 3D generative model represented though a class conditioned

VAE, allowing us to represent object shape through a compact code. We then use

the generative model for shape inference though iterative optimisation of the latent

code with respect to any number of depth image measurements.

To use a generative method for inference we need a rendering function to transform

3D volumes into measurements; in our case depth images with object segmentation.

The design of this function will influence optimisation speed and convergence success.

Two important design considerations are (1) receptive field, the size of 3D region

which influences each rendered pixel, and (2) uncertainty modeling, the confidence of

each rendered pixel depth. We introduce a novel probabilistic volumetric rendering

function based on these two design principles, improving the state of the art in

volumetric rendering.

In scenes with many objects, our optimisable compact object models can serve as

the landmarks in a SLAM system, where we use the same measurement function for

camera tracking, object poses and shape optimisation. We quantitatively show that

joint optimisation leads to more robust tracking and reconstruction, with comparable

surface reconstruction to the data driven Fusion++ [McCormac et al., 2018], while

reaching full object reconstruction from far fewer observations.

An emphasis of this work is to design object models that work robustly in the

real world. We demonstrate the robustness of our proposed rendering function

through qualitative demonstrations of our object-level SLAM on real world image

sequences from a cluttered table-top scene obtained with a noisy depth camera,

and on an augmented reality demo. Furthermore we integrate our efficient shape

inference method into a real time robotic system, and show that the completeness

and accuracy of our object reconstructions enable robotic tasks such as packing

objects into a tight box or sorting objects by shape size.

86



4.2. Class-Level Object Shape Descriptors

To summarise, the key contributions of NodeSLAM are: (i) A novel volumetric

probabilistic rendering function which enables robust and efficient multi-view shape

optimisation. (ii) The first object-level SLAM capable of jointly optimising full

object shapes and poses together with camera trajectory from real world images. (iii)

The integration into a real-time robotic system that can achieve useful manipulation

tasks with varied object shapes from different categories due to complete high quality

surface reconstructions.

4.2 Class-Level Object Shape Descriptors

Objects of the same semantic class exhibit strong regularities in shape under common

pose alignment. We make three key observations: (i) Given two objects of the same

class, there is a pose alignment between them that allows for a smooth surface

deformation between the two objects; (ii) This pose alignment is common among

all instances of the same class, which defines a class-specific coordinate frame; (iii)

If we select two random objects of a certain class and smoothly deform one into the

other, there will be other object instances of the same class which are similar to the

intermediate deformations.

We leverage these characteristics to construct a class specific smooth latent space,

which allows us to represent the shape of an instance with a small number of para-

meters. This is motivated by the fact that the space of valid inter-class surface

deformations is a much smaller sub-space than the space of all possible deforma-

tions; there are high correlations between the surface points in a valid deformation.

Rather than manually designing a parameterised shape model for a class of ob-

jects, we propose instead to learn the latent space by training a single Class-

Conditional Variational Autoencoder neural network.

4.2.1 Network Design

3D object shapes are represented by voxel occupancy grids of dimension 32×32×32,

with each voxel storing a continuous occupancy probability value between 0 and 1,
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Figure 4.2: Visualisation of all aligned objects instances for training the VAE net-
work, left: mesh models; right: occupancy grids.

see Section 3.8.1 for a technical description of voxel grids. A voxel grid was chosen

to enable representation of shapes of arbitrary topology. We store occupancy values

to allow a probabilistic formulation of rendering and inference.

The 3D models used were obtained from the ShapeNet database [Chang et al.,

2015], which comes with annotated model alignment, in Figure 4.2 we visualise the

aligned CAD and occupancy models of the mug category. The occupancy grids were

obtained by converting the model meshes into a high resolution binary occupancy

grid, and then down-sampling by average pooling. Figure 4.3 shows an example of a

mug object instance with a visualisation of the mesh wire-frame (vertices and edges)

and corresponding voxel occupancy grid.

A single 3D CNN Variational Autoencoder (VAE) [Kingma and Welling, 2014] was

trained on objects from 4 classes: ‘mug’, ‘bowl’, ‘bottle’, and ‘can’, common table-

top items, see Section 3.7.1 for a technical description of VAEs. The encoder of the

network is conditioned on the class by concatenating the class one-hot vector as an

extra channel to each occupancy voxel in the input, while the decoder is conditioned

by concatenating the class one-hot vector to the encoded shape descriptor, similar

to [Sohn et al., 2015, Tan et al., 2018]. A KL-divergence loss is used in the latent

shape space, while a binary-crossentropy loss is used for reconstruction. We choose

a latent shape variable of size 16. The 3D CNN (see Section 3.6.2 for definition of
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Figure 4.3: Object instance example used for training VAE: on the left is the corres-
ponding mesh which is converted into an occupancy grid in right. Color transparency
represents occupancy probability; more transparent voxels have lower probability
values.

Encoder: 𝐸

Shape descriptor: 𝐝 

⊕

Decoder: 𝐷

Class one-hot vector: ℎ

Occupancy 
grid: 𝐺

Reconstructed 
grid: 𝐺'

Figure 4.4: Occupancy Variational Autoencoder: The class one hot vector ℎ
is concatenated channel-wise to each occupancy voxel in the input occupancy grid
G. The input is compressed into shape descriptor d by encoder network 𝐸 . The
shape descriptor and the class-one hot vector are concatenated and passed through
decoder network 𝐷 to obtain occupancy reconstruction Ĝ.

CNN) encoder has 5 convolutional layers with kernel size 4 and stride 2; each layer

doubles the channel size except the first one which increases it to 16. The decoder

mirrors the encoder using deconvolutions.
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Figure 4.5: Visualisation of back-projecting a ray from the camera frame into the
voxel grid of an object.

4.3 Probabilistic Rendering

Rendering is the process of projecting a 3D model into image space. Given the

pose of the grid with respect to the camera T𝐶𝐺, we wish to render a depth image.

We denote the rendered depth image as 𝛿𝜇 with uncertainty 𝛿𝑣𝑎𝑟 , and the rendering

function Render(), such that 𝛿𝜇, 𝛿𝑣𝑎𝑟 = Render(G,T𝐺𝐶). When designing our render

function, we wish for it to satisfy three important requirements: to be differentiable

and probabilistic so that it can be used for principled inference, and to have a wide

receptive field so that its gradients behave properly during optimisation. These

features lead to a robust function that can handle real world noisy measurements

such as depth images.

We now describe the algorithm for obtaining the depth value for pixel (𝑢, 𝑣). See

Section 3.9 for more details on the rendering algorithm

Point sampling. Sample 𝑀 points uniformly along backprojected ray r, as seen

in Figure 4.5, in depth range [𝛿𝑚𝑖𝑛, 𝛿𝑚𝑎𝑥]. Each sampled depth 𝛿𝑖 = 𝛿𝑚𝑖𝑛+ 𝑖
𝑀
(𝛿𝑚𝑎𝑥−

𝛿𝑚𝑖𝑛) and position in the camera frame s𝑖𝐶 = 𝛿𝑖r. Each sampled point is transformed

into the voxel grid coordinate frame as s𝑖𝐺 = T𝐺𝐶s𝑖𝐶 .

Occupancy interpolation. Obtain occupancy probability 𝑜𝑖 = Tril(s𝑖𝑂,G), for

point s𝑖𝑂 from the occupancy grid, using tri-linear interpolation from its 8 neigh-
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bouring voxels. See Section 3.8.2 for technical details on tri-linear interpolation.

Termination probability. We denote the depth at pixel [𝑢, 𝑣] by D[𝑢, 𝑣]. Now

we can calculate 𝑝(D[𝑢, 𝑣] = 𝛿𝑖) (that is, the termination probability at depth 𝛿𝑖)

as:

𝜙𝑖 = 𝑝(D[𝑢, 𝑣] = 𝛿𝑖) = 𝑜𝑖
𝑖−1∏
𝑗=1

(1 − 𝑜 𝑗) . (4.1)

Figure 4.6 relates occupancy and termination probabilities.

Escape probability. Now we define the escape probability (the probability that

the ray doesn’t intersect the object) as:

𝜙𝑀+1 = 𝑝(D[𝑢, 𝑣] > 𝛿𝑚𝑎𝑥) =
𝑀∏
𝑗=1

(1 − 𝑜 𝑗) , (4.2)

where {𝜙𝑖} forms a discrete probability distribution.

Aggregation. We obtain the rendered depth at pixel [𝑢, 𝑣] as the expected value

of the random variable D[𝑢, 𝑣]:

𝛿𝜇 [𝑢, 𝑣] = E[D[𝑢, 𝑣]] =
𝑀+1∑︁
𝑖=1

𝜙𝑖𝛿𝑖 . (4.3)

𝑑𝑀+1 is the depth associated to the escape probability is set to 1.1𝑑𝑚𝑎𝑥 for practical

reasons.

Uncertainty. Depth uncertainty is calculated as:

𝛿𝑣𝑎𝑟 [𝑢, 𝑣] = 𝑉𝑎𝑟 [D[𝑢, 𝑣]] =
𝑀+1∑︁
𝑖=1

𝜙𝑖 (𝛿𝑖 − 𝐷 [𝑢, 𝑣])2 . (4.4)

Mask. Note that we can render a segmentation mask as:

𝑚 [𝑢, 𝑣] = 1 − 𝜙𝑀+1. (4.5)

For multi-object rendering we combine all the renders by taking the minimum depth

at each pixel, to deal with cases when objects occlude each other:

𝛿𝜇 [𝑢, 𝑣] = Render({Ĝ𝑖}, {T𝑖𝐺𝐶},T𝑊𝐶) [𝑢, 𝑣]

= 𝑚𝑖𝑛{𝛿1𝜇 [𝑢, 𝑣], ..., 𝛿𝑁𝜇 [𝑢, 𝑣]} .
(4.6)

Figure 4.6 shows the relation between rendered depth and occupancy probabilities.

Additionally, we apply Gaussian blur down-sampling to the resulting rendered im-

age at different pyramid levels (4 levels with 1 pixel standard deviation each) to
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Occupancy Probability

Termination Probability

ɸ" ɸ#

𝛿# 𝑜" 𝑜#…

…

𝛿"

(a) (b)

Figure 4.6: Pixel rendering: Each pixel is back-projected into a ray from which
uniform depth samples 𝛿𝑖 are taken. Occupancy probability 𝑜𝑖 is obtained from the
voxel grid by trilinear interpolation, and termination probability 𝜙𝑖 is calculated.
(a): A 32× 32× 32 mug occupancy grid. (b): The derivative of the highlighted red
pixel with respect to occupancy values is shown in red.

perform coarse to fine optimisation. This increases the spatial receptive field in the

higher levels of the pyramid because each rendered pixel is associated to several back

projected rays.

4.4 Object Shape and Pose Inference

Given a depth image from an object of a known class, we wish to infer the full shape

and pose of the object. We assume we have a segmentation mask and classification

of the object, which in our case is obtained with Mask-RCNN [He et al., 2017]. To

formulate our inference method, we integrate the object shape models developed
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Figure 4.7: Initialisation: Initial object pose T0
𝐶𝐺 is estimated from a depth im-

age and masked RGB image; object class is inferred from RGB only. The shape
descriptor d is set to 0, representing the mean class shape. Optimisation: The
shape descriptor is decoded into a full voxel grid, which is used with the pose to
render an object depth map. The least squares residual between this and the depth is
used update the shape descriptor and object pose iteratively with the Gauss-Newton
algorithm.

on Section 4.2 with a measurement function, the probabilistic render algorithm

outlined in Section 5.3.3. We will now describe the inference algorithm for a single

object observation setup, and this will be extended to multiple objects and multiple

observations in the SLAM system described in Section 4.5.

4.4.1 Shape and Pose Optimisation

An object’s pose T𝐶𝐺 is represented as a 9-DoF homogeneous transform with R𝐶𝐺,

t𝐶 , and S𝐺 the rotation, translation and scale of the object.

The shape of the object is represented with latent code d, which is decoded into

a full occupancy grid Ĝ using the decoder described in Section 4.2.

We wish to find the pose and shape parameters that best explain our depth

measurement 𝛿. We consider the rendering D of the object as Gaussian distributed,

with mean 𝛿𝜇 and variance 𝛿𝑣𝑎𝑟 calculated through the render function:

𝛿𝜇, 𝛿𝑣𝑎𝑟 = 𝑅(Ĝ,T𝐺𝐶)

= 𝑅(𝐷 (d, ℎ),T𝐺𝐶) ,
(4.7)
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Figure 4.8: Shape descriptor influence: the derivative of a rendered decoded
voxel grid with respect to 8 entries of the shape descriptor.

with ℎ the class one-hot vector of the detected object.

When training the latent shape space a Gaussian prior distribution is assumed

on the shape descriptor. With this assumption and by taking 𝛿𝑣𝑎𝑟 as constant, our

MAP objective takes the form of least squares problem. We apply the Gauss-Newton

algorithm, Section 3.5, for estimation:

min
d,T𝐶𝐺

−𝑙𝑜𝑔(𝑝(𝛿 |d,T𝐶𝐺)𝑝(d))

= min
d,T𝐶𝐺

(𝐿𝑟𝑒𝑛𝑑𝑒𝑟 (d,T𝐶𝐺) + 𝐿𝑝𝑟𝑖𝑜𝑟 (d))

= min
d,T𝐶𝐺

(
∑︁
𝑢,𝑣

(𝛿[𝑢, 𝑣] − 𝛿𝜇 [𝑢, 𝑣])2

𝛿𝑣𝑎𝑟 [𝑢, 𝑣]
+

∑︁
𝑖

d2𝑖 ).

(4.8)

A structural prior is added to the optimisation loss to force the bottom of the object

to be in contact with the supporting plane. We render an image from a virtual

camera under the object and recover the surface mesh from the occupancy grid by

marching cubes. Figure 4.7 illustrates the single object shape and pose inference

pipeline.

4.4.2 Variable Initialisation

Second order optimisation methods such as Gauss-Newton require a good initial-

isation. The object’s translation and scale are intitialised using the back-projected
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Figure 4.9: Examples of the synthetic dataset used to train the pose prediction
network. First: rendered input image; second: pose prediction; third: ground truth;
fourth: render discrepancy (not used for network supervision).

point cloud from the masked depth image. The first is set to the centroid of the

point cloud, while the latter is recovered from the centroid’s distance to the point

cloud boundary. Only un-occluded objects are initialised.

For pose initialisation we use a discriminative CNN Network (Section 3.6). Given

the pose of the object T𝐶𝐺 represented as a 4 × 4 homogeneous matrix, we define

the orientation as the 3 × 3 rotation matrix R𝐶𝐺 of T𝐶𝐺. We parameterise R𝐶𝐺
as a rotation of magnitude Θ along axis normalised 𝑒. We represent 𝑒 in polar

coordinates as 𝑒𝜃 , 𝑒𝜙. The CNN orientation prediction network must predict Θ, 𝑒𝜃 ,

and 𝑒𝜙. Figure 4.9 shows some training examples from our synthetic dataset.

The CNN input is a cropped (around the object) and resized to 224×223 3-channel
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color image. The first 2 convolutional and max-pool layers are taken from the VGG-

11 architecture [Simonyan and Zisserman, 2015] pre-trained on ImageNet [Deng

et al., 2009], with frozen weights throughout training. Following these layers are

four convolutional layers with ReLu activations and batch normalisation, a kernel

size of 4 and stride 2, with 256 initial channels and doubled after each layer. The

network has two fully connected layers at the end with a final sigmoid activation

layer which is then normalized to the corresponding angle range. The network was

trained for 227375 iterations with batch size 32. Figure 4.10 shows results of the

pose prediction network on real world instances, showing generalisation from the

synthetic training. Our model classes (‘mug’, ‘bowl’, ‘bottle’, and ‘can’) are often

found in a vertical orientation in a horizontal surface. For this reason we detect

the horizontal surface using the point cloud from the depth image and initialise the

object’s orientation to be parallel to the surface normal, thereby taking only the

vertical component of the pose prediction neural network.

The shape descriptor is initialised to d = 0, which gives the mean class shape under

the Gaussian prior of a VAE. Optimisation iteratively deforms the mean shape to

best fit our observations. Figure 4.8 illustrates how changes in the shape descriptor

alter the shape of the object.

4.5 Object-Level SLAM System

We have developed class level shape models and a measurement function that allows

us to infer object shape and pose from a single RGB-D image. From stream of

images we want to incrementally build a map of all the objects in a scene while

simultaneously tracking the position of the camera. For this, we will show how

to use the render module for camera tracking, and for joint optimisation of camera

poses, object shapes, and object poses with respect to multiple image measurements.

This will allow us to construct a full, incremental, jointly optimisable object-level

SLAM system with sliding keyframe window optimisation.

96



4.5. Object-Level SLAM System

Figure 4.10: Results of pose prediction CNN (trained on a synthetic dataset) on real
world data.

4.5.1 Data association and Object Initialisation

For each incoming image, we first segment and detect the classes of all objects in

the image using Mask-RCNN [He et al., 2017]. For each detected object instance,

we try to associate it with one of the objects already reconstructed in the map. This

is done in a two stage process:

Previous frame matching: We match the masks in the image with masks from

the previous frame. Two segmentations are considered a match if their IoU is above

0.2.

Object mask rendering: If a mask is not matched in stage 1, we try to match

it directly with map objects by rendering their masks and computing IoU overlaps.

If a segmentation is not matched with any existing objects we initialise a new

object as in Section 4.4.
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4.5.2 Camera Tracking

We wish to track the camera pose T 𝑗

𝑊𝐶
for the latest depth measurement 𝛿 𝑗 . Once we

have performed association between segmentation masks and reconstructed objects

as described in Section 4.5.1, we have a list of matched object descriptors {d1, ..., dN}.

We initialise our estimate for T 𝑗

𝑊𝐶
as the tracked pose of the previous frame T 𝑗−1

𝑊𝐶
,

and render the matched objects as described in Section 5.3.3:

𝛿𝜇, 𝛿𝑣𝑎𝑟 = Render({Ĝ𝑖}, {T𝑖𝐶𝐺},T
𝑗

𝑊𝐶
) . (4.9)

The loss between rendered and measured depth is:

𝐿𝑟𝑒𝑛𝑑𝑒𝑟 ({d𝑖}, {T𝑖𝐶𝐺},T
𝑗

𝑊𝐶
) =

∑︁
𝑢,𝑣

(𝛿 𝑗 [𝑢, 𝑣] − 𝛿𝜇 [𝑢, 𝑣])2

𝛿𝑣𝑎𝑟 [𝑢, 𝑣]
. (4.10)

Notice that this is the same loss used when inferring object pose and shape, but

now we assume that the map (the object shapes and poses) is fixed and we want

to estimate the camera pose T 𝑗

𝑊𝐶
. As before, we use the iterative Gauss-Newton

optimisation algorithm.

4.5.3 Sliding-Window Joint Optimisation

We have shown how to reconstruct objects from a single observation, and how to

track the position of the camera by assuming the map is fixed. This will lead to the

accumulation of errors, causing motion drift. Integrating new viewpoint observations

for an object is also desirable, to improve its shape reconstruction. To tackle these

two challenges, we wish to jointly optimise a bundle of camera poses, object poses,

and object shapes. Doing this with all frames is however computationally infeasible,

so we jointly optimise the variables associated to a select group of frames, called

keyframes, in a sliding window manner, following the philosophy introduced by

PTAM [Klein and Murray, 2007].

Keyframe criteria: There are two criteria for selecting a frame as a keyframe.

If an object was initialised in the frame then it is selected as a keyframe, or second

if the frame viewpoint for any of the existing objects is larger than 13 degrees from

the frame in which the object was initialised.
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Figure 4.11: Optimisation graph, showing all jointly-optimised variables. Render
and prior factors connect the different variables. A render factor compares object
shape renders with depth measurements. Prior factors constrain how much each
object shape can deviate from the mean shape of its class.

Bundle Optimisation: Each time that a frame is selected as a keyframe we

jointly optimise the variables associated with a bundle of 𝑁 keyframes. In particular

we select a window of 3 keyframes, the new keyframe and its two closest keyframes,

with the previously defined distance.

To formulate the joint optimisation loss, consider, T1
𝑊𝐶 , T2

𝑊𝐶 , and T3
𝑊𝐶 , the poses

of the keyframes in the optimisation window; T1
𝑊𝐶 is held fixed. Now suppose {d𝑖}

is the set of shape descriptors for the objects observed by the three keyframes. Then

we can render a depth image and uncertainty for each keyframe as:

𝛿
𝑗
𝜇, 𝛿

𝑗
𝑣𝑎𝑟 = Render({Ĝ𝑖}, {T𝑖𝐺𝐶},T

𝑗

𝑊𝐶
) , (4.11)

with Ĝ𝑖 = 𝐷 (d𝑖 , ℎ𝑖). For each render we compute a loss with the respective depth

measurement, 𝐿
𝑗

𝑟𝑒𝑛𝑑𝑒𝑟
as in Equation 4.10, and a prior loss, 𝐿𝑖𝑝𝑟𝑖𝑜𝑟 on all codes as in

Equation 4.8. Figure 4.11 illustrates the joint optimisation problem. Our final loss,
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Figure 4.12: Synthetic scene example along with reconstruction and camera traject-
ory. Ground truth trajectory is shown in purple and tracked one in yellow, keyframes
with green frustum.

optimised using Gauss-Newton, is:

𝐿 𝑗𝑜𝑖𝑛𝑡 ({d𝑖}, {T𝑖𝐺𝐶}, {T
𝑗

𝑊𝐶
}) =∑︁

𝑗

𝐿𝑟𝑒𝑛𝑑𝑒𝑟 ({d𝑖}, {T𝑖𝐺𝐶},T
𝑗

𝑊𝐶
) +

∑︁
𝑖

𝐿𝑝𝑟𝑖𝑜𝑟 (d𝑖) .
(4.12)

Timings: Rendering a single object: 7ms; computing render jacobian: 100ms;

object reconstruction: 1.5 seconds (15 iterations); camera tracking: 7fps; joint op-

timisation: 2 seconds (3 keyframe window).
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Table 4.1: Shape reconstruction results for 1, 2, and 3 views. We do an ablation
study of our method and compare with DVR [Niemeyer et al., 2020].

Full No Unc. No Gauss. [Niemeyer et al., 2020] Mask

1 view
accuracy [mm] 4.459 4.998 4.701 8.967 15.806

chamfer-𝐿1 [mm] 4.439 4.844 4.928 11.896 18.386
completion [1cm] 93.492 91.857 90.812 43.075 30.212

2 views
accuracy [mm] 3.752 4.270 4.237 8.408 4.709

chamfer-𝐿1 [mm] 3.854 4.185 4.723 11.325 4.438
completion [1cm] 95.72 94.627 90.752 43.342 93.73

3 views
accuracy [mm] 3.484 4.158 3.827 8.277 4.620

chamfer-𝐿1 [mm] 3.648 4.010 4.281 10.913 4.210
completion [1cm] 96.065 95.165 93 44.815 95.44

4.6 Experimental Results

4.6.1 Metrics

For shape reconstruction evaluation we use three metrics: chamfer-𝐿1 distance

and accuracy as defined in [Mescheder et al., 2019b] and completeness (with 1cm

threshold) as defined in [Li et al., 2020]. We sample 20000 points on both recon-

struction and ground truth CAD model meshes.

4.6.2 Rendering Evaluation

In this evaluation we test the optimisation performance of our rendering formulation.

We perform object shape and pose optimisation on all the objects of the ‘mug’

category in the ShapeNet dataset. For each instance we generate three random

views of the object. Initial object pose is predicted from the first view. We perform

30 optimisation iterations for 1, 2, and 3 views. Table 4.1 shows median shape

accuracy, completion, and chamfer distance after optimisation. We compare our full

system with versions without uncertainty, without a Gaussian pyramid, and with a

loss only between the rendered and Mask-RCNN segmentation masks. We compare

with the state of the art volumetric differential rendering component in the paper

Differential Volumetric Rendering (DVR) [Niemeyer et al., 2020] with our shape

representation.
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Figure 4.13: Median reconstruction accuracy (95% confidence) across 150 optim-
isation iterations of all ‘mug’ objects instances comparing our proposed renderer
with [Niemeyer et al., 2020].

We observe that additional views improve shape reconstruction, more drastically

in the mask optimisation because of the scale ambiguity in a single image. We also

see that both the uncertainty and Gaussian pyramid are necessary for more accurate

and complete shape reconstructions. Our method significantly improves on DVR,

which is both less precise and has much lower shape completion, because of its local

receptive field.

To further illustrate the comparison, we plot in Figure 4.13 median reconstruction

accuracy across 150 optimisation iterations with all object instances against our

proposed method. The plot illustrates the much faster convergence of our method

and its ability to reach a lower error.

4.6.3 SLAM evauation

In this evaluation we evaluate our full SLAM system and how it generalises to new

object instances. We create a synthetic dataset shown in Figure 4.12. Random

object CAD models are spawned on top of a table model with random positions

and vertical orientation. Five scenes are created with 10 different objects on each

from three classes: ‘mug’, ‘bowl’, and ‘bottle’. The models are obtained from the
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Figure 4.14: Few-shot augmented reality: Complete and watertight meshes can
be obtained from few images due to the learned shape priors. This are then loaded
into a physics engine to perform realistic augmented reality demonstrations.

ModelNet40 dataset [Wu et al., 2015] which are not used during training of the

shape model.

For each scene a random trajectory is generated by sampling and interpolating

random camera positions and look at points in the volume bounded by the table.

Image and depth renders are obtained from the trajectory with PyBullet render,

which is different rendering engine than the one used for training pose prediction.

Fusion++ comparison

We compare our proposed method with a custom implementation of Fusion++ [Mc-

Cormac et al., 2018] using open-source TSDF fusion [Zhou et al., 2018] for each

object volume. In this experiment ground truth poses are used to decouple tracking

accuracy and reconstruction quality. Gaussian noise is added to the depth image

and camera poses (2mm, 1mm, 0.1◦ standard deviation for depth, translation and

orientation, respectively).

We evaluate shape completion and accuracy; results are accumulated for each

class from the 5 simulated sequences. Figure 4.17 shows how mean shape completion

evolves with respect to frame number. This graph demonstrates the advantage of

class-based priors for object shape reconstruction. With our method we see a jump

to almost full completion, while TSDF fusion slowly completes the object with each
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Initial scene

Resulting configuration

Picking

Placing

Figure 4.15: Robotic demonstration of packing of objects. The robot first captures
pre-defined RGB-D images for scene reconstruction. The precise object models are
used for grasp and placement planning, in this case for stacking bowls and mugs in
a tight space.

Initial scene

Resulting configuration

Picking

Placing

Figure 4.16: Robotic demonstration of packing sorting of objects. The robot first
captures pre-defined RGB-D images for scene reconstruction. The precise object
models are used for grasp and placement planning, in this case for sorting mugs and
bowls according to size.
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Table 4.2: Ablation study for tracking accuracy on 5 scenes, highlighting the im-
portance of joint optimisation with uncertainty.

Absolute Pose
Error [cm] Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

NodeSLAM 1.73 1 0.81 1.24 1.15

NodeSLAM
no joint optim. 8.6 10.17 0.7 2.14 1.25

NodeSLAM
no uncertainty 4.37 3.41 0.88 3.05 6.99

new fused depth map. Fast shape completion without the need for exhaustive 360

degree scanning is important in robotic applications and in augmented reality, as

shown in Figure 4.14. Figure 4.17 displays the median shape accuracy of Node-

SLAM compared with TSDF fusion. We observe comparable surface reconstruction

quality of close to 5mm.

Ablation Study

We evaluate shape reconstruction accuracy and tracking absolute pose error on 3

different versions of our system. We compare our full SLAM system (with camera

tracking) with a version without sliding window joint optimisation, and a version

without uncertainty rendering. Figure 4.17 shows the importance of these features

for shape reconstruction quality, with decreases in performance from 2 up to 7 mm.

Table 4.2 shows mean absolute pose error for each version of our system for all 5

trajectories. These results prove that the precise shape reconstructions from objects

provide enough information for accurate camera tracking with mean errors between

1 and 2 cm. It also shows how tracking without joint optimisation or uncertainty

leads to significantly lower accuracy on most trajectories.

4.7 Robot Manipulation Application

We have developed a manipulation application which uses our object reconstruction

system. We demonstrate two tasks: object packing, see Figure 4.15, and object

sorting, see Figure 4.16. A rapid pre-defined motion is first used to gather a small
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Figure 4.17: Top: Graph of mean object surface completion (95% confidence) com-
parison between NodeSLAM and TSDF fusion, with respect to the number of times
an object is updated. Bottom left: Box plots of median surface reconstruction
accuracy from our ablation study on 5 scenes with 10 objects in each. Bottom
right: The same metric but comparing our system with Fusion++.

number of RGB-D views which our system uses to estimate the pose and shape of the

objects laid out randomly on a table. Heuristics are used for grasp point selection

and a placing motion based on the class and pose of the object and the shape of the

reconstructed mesh. All the reconstructed objects are then sorted based on height

and radius. For the packing task all the scanned objects are placed in a tight box,

with bowls stacked in decreasing size order and all mugs placed inside the box with

centers and orientations aligned. In the sorting task all objects are placed in a line in

ascending size. In this robot application only, robot kinematics are used for camera

tracking.
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4.8 Conclusions

We have developed generative multi-class object models which allow for robust and

principled multi-view shape reconstruction with the integration of semantic priors,

in a subset of common tabletop object classes. This is accomplished by integrating

a learned compact latent space for objects shapes with a volumetric differntiable

rendering function. We demonstrated their practical use in an object-level SLAM

system as well as in two robotic manipulation demonstrations and an augmented

reality demo. We believe this shows evidence that semantic priors are a strong prior

for complete and precise shape reconstruction, and that decomposing a scene into

full object entities is a useful idea smart interaction. While our models go beyond

rigid templates such as pre-defined CAD models and allow certain variation within

a known semantic class, not all object classes will be well represented by the single

code object VAE we used in this paper. In Chapter 5 we look at how to go beyond

objects and use a neural network to represent whole scenes, and in Chapter 6 we look

at how to extract an object decomposition from a compressed scene representation.
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iMAP: Neural Fields for Dense

SLAM
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5. iMAP: Neural Fields for Dense SLAM

Figure 5.1: Room reconstruction from real-time iMAP with an Azure Kinect RGB-D
camera, showing watertight scene model, camera tracking and automatic keyframe
set.

5.1 Introduction

A real-time Simultaneous Localisation and Mapping (SLAM) system for an intelli-

gent embodied device must incrementally build a representation of the 3D world, to

enable both localisation and scene understanding. The ideal representation should

precisely encode geometry, but also be efficient, with the memory capacity available

used adaptively in response to scene size and complexity; predictive, able to plaus-

ibly estimate the shape of regions not directly observed; and flexible, not needing a

large amount of training data or manual adjustment to run in a new scenario.

Implicit neural representations are a promising recent advance in off-line recon-

struction, using a multilayer perceptron (MLP) to map a query 3D point to occu-

pancy or colour, and optimising it from scratch to fit a specific scene. An MLP is
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a general implicit function approximator, able to represent variable detail with few

parameters and without quantisation artifacts. Even without prior training, the in-

herent priors present in the network structure allow it to make watertight geometry

estimates from partial data, and plausible completion of unobserved regions.

In this chapter, we show for the first time that an MLP can be used as the only

scene representation in a real-time SLAM system using a hand-held RGB-D camera.

Our randomly-initialised network is trained in live operation and we do not require

any prior training data. Our iMAP system is designed with a keyframe structure and

multi-processing computation flow reminiscent of PTAM [Klein and Murray, 2007].

In a tracking process, running at over 10 Hz, we align live RGB-D observations

with rendered depth and colour predictions from the MLP scene map. In parallel, a

mapping process selects and maintains a set of historic keyframes whose viewpoints

span the scene, and uses these to continually train and improve the MLP, while

jointly optimising the keyframe poses.

In both tracking and mapping, we dynamically sample the most informative RGB-

D pixels to reduce geometric uncertainty, achieving real-time speed. Our system runs

in Python, and all optimisation is via a standard PyTorch framework [Paszke et al.,

2019] on a single desktop CPU/GPU system.

By casting SLAM as a continual learning problem, we achieve a representation

which can represent scenes efficiently with continuous and adaptive resolution, and

with a remarkable ability to smoothly interpolate to achieve complete, watertight

reconstruction (Figure 5.1). With around 10 - 20 keyframes, and an MLP with only

1 MB of parameters, we can accurately map whole rooms. Our scene representation

has no fixed resolution; the distribution of keyframes automatically achieves efficient

multi-scale mapping.

We demonstrate our system on a wide variety of real-world sequences and do

exhaustive evaluation and ablative analysis on 8 scenes from the room-scale Replica

Dataset [Straub et al., 2019]. We show that iMAP can make a more complete

scene reconstruction than standard dense SLAM systems with significantly
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smaller memory footprint. We show competitive tracking performance on the

TUM RGB-D dataset [Sturm et al., 2012] against state-of-the-art SLAM systems.

To summarise, the key contributions of this work are:

• The first dense real-time SLAM system that uses an implicit neural scene

representation and is capable of jointly optimising a full 3D map and camera

poses.

• The ability to incrementally train an implicit scene network in real-time, en-

abled by automated keyframe selection and loss guided sparse active sampling.

• A parallel implementation (fully in PyTorch [Paszke et al., 2019] with multi-

processing) of our presented SLAM formulation which works online with a

hand-held RGB-D camera.

5.2 Related Work

Visual SLAM Systems Real-time visual SLAM systems for modelling environ-

ments are often built in a layered manner, where a sparse representation is used

for localisation and more detailed geometry or semantics is layered on top. How-

ever, here we work in the ‘dense SLAM’ paradigm pioneered in [Newcombe et al.,

2011b, Newcombe et al., 2011a] where a unified dense scene representation is also the

basis for camera tracking. Dense representations avoid arbitrary abstractions such

as keypoints, enable tracking and relocalisation in robust invariant ways, and have

long-term appeal as sensor-agnostic, unified, complete representations of spaces.

Some approaches in dense SLAM explicitly represent surfaces [Keller et al., 2013,

Whelan et al., 2015], but direct representation of volume is desirable to enable a full

range of applications such as planning. Standard representations for volume using

occupancy or signed distance functions are very expensive in terms of memory if a

fixed resolution is used [Newcombe et al., 2011a]. Hierarchical approaches [Dai et al.,

2017b, Vespa et al., 2018] are more efficient, but are complicated to implement and
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usually offer only a small range of level of detail. In either case, the representations

are rather rigid, and not amenable to joint optimisation with camera poses, due to

the huge number of parameters they use.

Machine learning can discover low-dimensional embeddings of dense structure

which enable efficient, jointly optimisable representation. CodeSLAM [Bloesch et al.,

2018] is one example, but using a depth-map view representation rather than full

volumetric 3D. Learning techniques have also been used to improve dense reconstruc-

tion but require an existing scan [Dai et al., 2020] or previous training data [Peng

et al., 2020, Weder et al., 2020, Chabra et al., 2020].

Implicit Scene Representation with MLPs Scene representation and graphics

have seen much recent progress on using implicit MLP neural models for object

reconstruction [Park et al., 2019, Mescheder et al., 2019a], object compression [Tang

et al., 2020] novel view synthesis [Mildenhall et al., 2020b], and scene completion

[Sitzmann et al., 2020, Chibane et al., 2020]. Two recent papers [Wang et al.,

2021b, Yen-Chen et al., 2020] have also explored camera pose optimisation. But

so far these methods have been considered as an offline tool, with computational

requirements on the order of hours, days or weeks. We show that when depth images

are available, and when guided sparse sampling is used for rendering and training,

these methods are suitable for real-time SLAM.

Continual Learning By using a single MLP as a master scene model, we pose

real-time SLAM as online continual learning. An effective continual learning sys-

tem should demonstrate both plasticity (the ability to acquire new knowledge) and

stability (preserving old knowledge) [Rolnick et al., 2019, Grossberg, 1982]. Cata-

strophic forgetting is a well-known property of neural networks, and is a failure of

stability, where new experiences overwrite memories.

One line of work on alleviating catastrophic forgetting has focused on protecting

representations against new data using relative weighting [Kirkpatrick et al., 2017].

This is reminiscent of classic filtering approaches in SLAM such as the EKF [Smith
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and Cheeseman, 1986] and is worth future investigation. Approaches which freeze

[Rusu et al., 2016] or consolidate [Schwarz et al., 2018] sub-networks after training

on each individual task are perhaps too simple and discrete for SLAM.

Instead, we direct our attention towards the replay-based approach to continual

learning, where previous knowledge is stored either directly in a buffer [Maltoni and

Lomonaco, 2019, Rolnick et al., 2019], or compressed in a generative model [Lesort

et al., 2019, Shin et al., 2017]. We use a straightforward method where keyframes

are automatically selected to store and compress past memories. We use loss-guided

random sampling of these keyframes in our continually running map update pro-

cess to periodically replay and strengthen previously-observed scene regions, while

continuing to add information via new keyframes. In SLAM terms, this approach

is similar to that pioneered by PTAM [Klein and Murray, 2007], where a historic

keyframe set and repeated global bundle adjustment serve as a long-term scene

representation.

5.3 iMAP: A Real-Time Implicit SLAM System

5.3.1 System Overview

Figure 5.2 overviews how iMAP works. A 3D volumetric map is represented using a

fully-connected neural network 𝐹𝜃 that maps a 3D coordinate to colour and volume

density (Section 5.3.2). Given a camera pose, we can render the colour and depth

of a pixel by accumulating network queries from samples in a back-projected ray

(Section 5.3.3).

We map a scene from depth and colour video by incrementally optimising the

network weights and camera poses with respect to a sparse set of actively sampled

measurements (Section 5.3.6). Two processes run concurrently: tracking (Section

5.3.4), which optimises the pose from the current frame with respect to the locked

network; and mapping (Section 5.3.4), which jointly optimises the network and the

camera poses of selected keyframes, incrementally chosen based on information gain
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Figure 5.2: iMAP system pipeline.

(Section 5.3.5).

5.3.2 Implicit Scene Neural Network

Following the network architecture in NeRF [Mildenhall et al., 2020b], we use an

MLP (Section 3.6.1) with 4 hidden layers of feature size 256, and two output heads

that map a 3D coordinate p = (𝑥, 𝑦, 𝑧) to a colour and volume density value: 𝐹𝜃 (p) =

(c, 𝜌). Unlike NeRF, we do not take into account viewing directions as we are not

interested in modelling specularities.

We apply the Gaussian positional embedding, described in Section 3.8.3, proposed

in Fourier Feature Networks [Tancik et al., 2020] to lift the input 3D coordinate into

𝑛-dimensional space: sin(Bp), with B an [𝑛× 3] matrix sampled from a normal dis-

tribution with standard deviation 𝜎. This embedding serves as input to the MLP

and is also concatenated to the second activation layer of the network. Taking inspir-

ation from SIREN [Sitzmann et al., 2020], we allow optimisation of the embedding

matrix B, implemented as a single fully-connected layer with sine activation.

5.3.3 Depth and Colour Rendering

Our differentiable rendering engine, inspired by NeRF [Mildenhall et al., 2020b]

and NodeSLAM (Chapter 4), queries the scene network to obtain depth and colour
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images from a given view. See Section ?? for more details on differential volumetric

rendering.

Given a camera pose T𝑊𝐶 and a pixel coordinate [𝑢, 𝑣], we first back-project a nor-

malised viewing direction and transform it into world coordinates: r = T𝑊𝐶K
−1 [𝑢, 𝑣],

with the camera intrinsics matrix K. We take a set of 𝑁 samples along the ray

p𝑖 = 𝑑𝑖r with corresponding depth values {𝑑1, · · · , 𝑑𝑁 }, and query the network for a

colour and volume density (c𝑖 , 𝜌𝑖) = 𝐹𝜃 (p𝑖). We follow the stratified and hierarchical

volume sampling strategies of NeRF.

Volume density is transformed into an occupancy probability by multiplying by

the inter-sample distance 𝛿𝑖 = 𝑑𝑖+1 − 𝑑𝑖 and passing this through activation function

𝑜𝑖 = 1 − exp(−𝜌𝑖𝛿𝑖). The ray termination probability at each sample can then be

calculated as 𝑤𝑖 = 𝑜𝑖
∏𝑖−1
𝑗=1(1 − 𝑜 𝑗). Finally, depth and colour are rendered as the

expectations:

𝐷̂ [𝑢, 𝑣] =
𝑁∑︁
𝑖=1

𝑤𝑖𝑑𝑖 , 𝐼 [𝑢, 𝑣] =
𝑁∑︁
𝑖=1

𝑤𝑖c𝑖 . (5.1)

We can calculate the depth variance along the ray as:

𝐷̂𝑣𝑎𝑟 [𝑢, 𝑣] =
𝑁∑︁
𝑖=1

𝑤𝑖 (𝐷̂ [𝑢, 𝑣] − 𝑑𝑖)2. (5.2)

5.3.4 Joint optimisation

We jointly optimise the implicit scene network parameters 𝜃, and camera poses

for a growing set of 𝑊 keyframes, each of which has associated colour and depth

measurements along with an initial pose estimate: {𝐼𝑖 , 𝐷𝑖 ,T𝑖𝑊𝐶}. Figure 5.3 shows

an schematic of the joint optimisation.

Our rendering function is differentiable with respect to these variables, so we

perform iterative optimisation to minimise the geometric and photometric errors for

a selected number of rendered pixels 𝑠𝑖 in each keyframe.

The photometric loss is the L1-norm between the rendered and measured colour
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Figure 5.3: Joint optimisation. Keyframe camera poses and the implicit network are
jointly optimised with ADAM through photometric and geometric losses calculated
by rendering a sparse set of color and depth pixels.

values 𝑒𝑝
𝑖
[𝑢, 𝑣] =

��𝐼𝑖 [𝑢, 𝑣] − 𝐼𝑖 [𝑢, 𝑣]�� for 𝑀 pixel samples:

𝐿𝑝 =
1

𝑀

𝑊∑︁
𝑖=1

∑︁
(𝑢,𝑣) ∈𝑠𝑖

𝑒
𝑝

𝑖
[𝑢, 𝑣] . (5.3)

The geometric loss measures the depth difference 𝑒
𝑔

𝑖
[𝑢, 𝑣] =

��𝐷𝑖 [𝑢, 𝑣] − 𝐷̂𝑖 [𝑢, 𝑣]�� and
uses the depth variance as a normalisation factor, down-weighting the loss in uncer-

tain regions such as object borders:

𝐿𝑔 =
1

𝑀

𝑊∑︁
𝑖=1

∑︁
(𝑢,𝑣) ∈𝑠𝑖

𝑒
𝑔

𝑖
[𝑢, 𝑣]√︃

𝐷̂𝑣𝑎𝑟 [𝑢, 𝑣]
. (5.4)

We apply the ADAM optimiser [Kingma and Ba, 2015a] on the weighted sum of

both losses, with factor 𝜆𝑝 adjusting the importance given to the photometric error:

min
𝜃, {T𝑖

𝑊𝐶 }
(𝐿𝑔 + 𝜆𝑝𝐿𝑝) . (5.5)

In this work we use a first order optimisation based in gradient descent (Section 3.5)

in contrast to a second order optimiser as in NodeSLAM (Chapter 4) because of the

MLP map representation.

Camera Tracking In online SLAM, close to frame-rate camera tracking is im-

portant, as optimisation of smaller displacements is more robust. We run a parallel
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tracking process that continuously optimises the pose of the latest frame with re-

spect to the fixed scene network at a much higher frame rate than joint optimisation

while using the same loss and optimiser. The tracked pose initialisation is refined

in the mapping process for selected keyframes.

5.3.5 Keyframe Selection

Jointly optimising the network parameters and camera poses using all images from

a video stream is not computationally feasible. However, since there is huge redund-

ancy in video images, we may represent a scene with a sparse set of representative

keyframes, incrementally selected based on information gain. The first frame is al-

ways selected to initialise the network and fix the world coordinate frame. Every

time a new keyframe is added, we lock a copy of our network to represent a snapshot

of our 3D map at that point in time. Subsequent frames are checked against this

copy and are selected if they see a significantly new region.

For this, we render a uniform set of pixel samples 𝑠 and calculate the proportion

𝑃 with a normalised depth error smaller than threshold 𝑡𝐷 = 0.1, to measure the

fraction of the frame already explained by our map snapshot:

𝑃 =
1

|𝑠 |
∑︁

(𝑢,𝑣) ∈𝑠
1

( ��𝐷 [𝑢, 𝑣] − 𝐷̂ [𝑢, 𝑣]
��

𝐷 [𝑢, 𝑣] < 𝑡𝐷

)
. (5.6)

When this proportion falls under a threshold 𝑃 < 𝑡𝑃 (we set 𝑡𝑃 = 0.65), this

frame is added to the keyframe set. The normalised depth error produces adaptive

keyframe selection, requiring higher precision, and therefore more closely spaced

keyframes, when the camera is closer to objects.

Every frame received in the mapping process is used in joint optimisation for a

few iterations (between 10 and 20), so our keyframe set is always composed of the

selected set along with the continuously changing latest frame.
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Figure 5.4: Image Active Sampling. Left: a loss distribution is calculated across an
image grid using the geometric loss from a set of uniform samples. Right: active
samples are further allocated proportional to the loss distribution.

5.3.6 Active Sampling

Image Active Sampling Rendering and optimising all image pixels would be

expensive in computation and memory. We take advantage of image regularity to

render and optimise only a very sparse set of random pixels (200 per image) at each

iteration. Further, we use the render loss to guide active sampling in informative

areas with higher detail or where reconstruction is not yet precise.

Each joint optimisation iteration is divided into two stages. First, we sample a

set 𝑠𝑖 of pixels, uniformly distributed across each of the keyframe’s depth and colour

images. These pixels are used to update the network and camera poses, and to

calculate the loss statistics. For this, we divide each image into an [8 × 8] grid, and

calculate the average loss inside each square region 𝑅 𝑗 , 𝑗 = {1, 2, · · · , 64}:

𝐿𝑖 [ 𝑗] =
1

|𝑟 𝑗 |
∑︁

(𝑢,𝑣) ∈𝑟 𝑗

𝑒
𝑔

𝑖
[𝑢, 𝑣] + 𝑒𝑝

𝑖
[𝑢, 𝑣], (5.7)

where 𝑟 𝑗 = 𝑠𝑖 ∩ 𝑅 𝑗 are pixels uniformly sampled from 𝑅 𝑗 . We normalise these

statistics into a probability distribution:

𝑓𝑖 [ 𝑗] =
𝐿𝑖 [ 𝑗]∑64

𝑚=1 𝐿𝑖 [𝑚]
. (5.8)
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We use this distribution to re-sample a new set of 𝑛𝑖 · 𝑓𝑖 [ 𝑗] uniform samples per

region (𝑛𝑖 is the total samples in each keyframe), allocating more samples to regions

with high loss. The scene network is updated with the loss from active samples (in

camera tracking only uniform sampling is used). Image active sampling is illustrated

in Figure 5.4.

Keyframe Active Sampling In iMAP, we continuously optimise our scene map

with a set of selected keyframes, serving as a memory bank to avoid network for-

getting. We wish to allocate more samples to keyframes with a higher loss, because

they relate to regions which are newly explored, highly detailed, or that the net-

work started to forget. We follow a process analogous to image active sampling and

allocate 𝑛𝑖 samples to each keyframe, proportional to the loss distribution across

keyframes, See Figure 5.5.

Bounded Keyframe Selection Our keyframe set keeps growing as the camera

moves to new and unexplored regions. To bound joint optimisation computation,

we choose a fixed number (3 in the live system) of keyframes at each iteration,

randomly sampled according to the loss distribution. We always include the last

keyframe and the current live frame in joint optimisation, to compose a bounded

window with 𝑊 = 5 constantly changing frames. See Figure 5.5.

5.4 Experimental Results

Through comprehensive experiments we evaluate iMAP’s 3D reconstruction and

tracking, and conduct a detailed ablative analysis of design choices on accuracy and

speed.

5.4.1 Experimental Setup

Datasets We experiment on both simulated and real sequences. For reconstruc-

tion evaluation we use the Replica dataset [Straub et al., 2019], high quality 3D

reconstructions of real room-scale environments, with 5 offices and 3 apartments.
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Figure 5.5: Keyframe Active Sampling. We maintain a loss distribution over the
registered keyframes. The distribution is used for sampling a bounded window of
keyframes (red boxes), and for allocating pixel samples in each.

Figure 5.6: Reconstruction and tracking results for Replica room-0 along with re-
gistered keyframes.

For each Replica scene, we render a random trajectory of 2000 RGB-D frames.

For raw camera recordings, we capture RGB-D videos using a hand-held Microsoft

Azure Kinect on a wide variety of environments, as well as test on the TUM RGB-D

dataset [Sturm et al., 2012] to evaluate camera tracking.
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Figure 5.7: iMAP (left) manages to fill in unobserved regions which can be seen as
holes in TSDF fusion (right).

Implementation Details For all experiments we set the following default para-

meters: keyframe registration threshold 𝑡𝑃 = 0.65, photo-metric loss weighting

𝜆𝑝 = 5, keyframe window size 𝑊 = 5, pixel samples |𝑠𝑖 | = 200, positional embedding

size 𝑚 = 93 and sigma 𝜎 = 25, and 32 coarse and 12 fine bins for rendering. 3D

point coordinates are normalised by 1
10 to be close to the [0, 1] range.

In online operation from a hand-held camera, streamed images which arrive

between processed frames are dropped. For the experiments presented here every

captured frame is processed, running at 10 Hz. We recover mesh reconstructions if

needed by querying occupancy values from the network in a uniform voxel grid and

then running marching cubes. Meshing is for visualisation and evaluation purposes

and does not form part of our SLAM system.
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Figure 5.8: Replica reconstructions, highlighting how iMAP fills in unobserved re-
gions which are white holes in TSDF fusion.
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5.4.2 Scene Reconstruction Evaluation

Metrics We sample 200, 000 points from both ground-truth and reconstructed

meshes, and calculate three quantitative metrics: Accuracy (cm): the average dis-

tance between sampled points from the reconstructed mesh and the nearest ground-

truth point; Completion (cm): the average distance between sampled points from

the ground-truth mesh and the nearest reconstructed; and Completion Ratio (<5cm

%): the percentage of points in the reconstructed mesh with Completion under 5

cm.

The ability to jointly optimise a 3D map along with camera poses gives our system

the capacity to build full globally coherent scene reconstructions as seen in Figure

5.1 and 5.8, and accurate camera tracking as shown in Figure 5.6. The robustness

and versatility of iMAP is demonstrated on a wide variety of real world recordings,

through the reconstructions in Figures 5.11, 5.12, 5.9, and 5.10 that show its ability

to work at scales from whole rooms to small objects and thin structures.

We compare scene reconstructions from iMAP with TSDF fusion [Curless and

Levoy, 1996, Newcombe et al., 2011a], which is representative of fusion-based dense

SLAM methods. To isolate reconstruction, we use the camera tracking produced by

iMAP for TSDF fusion. The most significant advantage of our implicit representa-

tion is the ability to fill in unobserved regions as shown in Figs. 5.8 and 5.10. iMAP

achieves on average a 4% higher completion ratio across all 8 Replica scenes as seen

in Table 5.1, with an improvement of 11% in office-3.

Memory consumption for iMAP and TSDF fusion with different configuration

settings is shown in Table 5.2. With default values of 2563 voxel resolution in TSDF

fusion and 256 network width in iMAP, our system can represent scenes with a

factor of 60 less memory usage while obtaining similar reconstruction accuracy as

seen in Table 5.1.

When using a real camera, in addition to better completion our method outper-

forms TSDF fusion in places where a depth camera does not give accurate readings
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room0 room1 room2 office0 office1 office2 office3 office4 Avg.

iMAP

Keyframes 11 12 12 10 11 10 14 11 13.37
Acc. [cm] 3.58 3.69 4.68 5.87 3.71 4.81 4.27 4.83 4.43
Comp. [cm] 5.06 4.87 5.51 6.11 5.26 5.65 5.45 6.59 5.56
Comp.Ratio 83.91 83.45 75.53 77.71 79.64 77.22 77.34 77.63 79.06
[< 5cm %] 79.06

TSDF
Fusion

Acc. [cm] 4.21 3.08 2.88 2.70 2.66 4.27 4.07 3.70 3.45
Comp. [cm] 5.04 4.35 5.40 10.47 10.29 6.43 6.26 4.78 6.63
Comp.Ratio 76.90 79.87 77.79 79.60 71.93 71.66 65.87 77.11 75.09
[< 5cm %]

Table 5.1: Reconstruction results for 8 indoor Replica scenes. We report the highest
reached completion ratio in each scene along with the corresponding accuracy and
completion values at that point.

iMAP

TSDF
Fusion

Figure 5.9: Comparative reconstruction results in various real scenes mapped with
an Azure Kinect. White holes in the TDSF fusion results are plausibly filled in by
iMAP, such as in black objects where a depth camera has missing data.

iMAP [MB]
Width = 128 Width = 256 Width = 512

0.26 1.04 4.19

TSDF Fusion [MB]
Res. = 128 Res. = 256 Res. = 512

8.38 67.10 536.87

Table 5.2: Memory consumption: for iMAP as a function of network size, and for
TSDF fusion of voxel resolution.
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iMAP

TSDF
Fusion

Figure 5.10: Comparative reconstruction results in various real scenes mapped with
an Azure Kinect. iMAP can better represent thin structures and interpolate the
back of objects.

Figure 5.11: Real-time reconstruction results from iMAP in a variety of indoor
settings.
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Figure 5.12: Real-time reconstruction results from iMAP in a variety of outdoor
settings.

fr1/desk (cm) fr2/xyz (cm) fr3/office (cm)

iMAP 4.9 2.0 5.8
BAD-SLAM 1.7 1.1 1.73
Kintinuous 3.7 2.9 3.0
ORB-SLAM2 1.6 0.4 1.0

Table 5.3: ATE RMSE in cm on TUM RGB-D dataset.

as is common for black objects (Figure 5.9), and reflective or transparent surfaces

(Figure 5.7). This performance can be attributed to the photometric loss for recon-

struction combined with the interpolation capacity of the map network.

5.4.3 TUM Evaluation

We run iMAP on three sequences from TUM RGB-D. Tracking ATE RMSE is

shown in Table 5.3. We compare with surfel-based BAD-SLAM [?], TSDF fusion

Kintinuous [Whelan et al., 2012], and sparse ORB-SLAM2 [Mur-Artal and Tardós,

2017], state-of-the-art SLAM systems. In pose accuracy, iMAP does not outperform

them, but is competitive with errors between 2 and 6 cm. Mesh reconstructions

are shown in Figure 5.13. In Figure 5.14 we highlight how iMAP fills in holes in

unobserved regions unlike BAD-SLAM.
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Figure 5.13: iMAP reconstruction results for TUM dataset.

Figure 5.14: Hole filling capacity of iMAP (top) against BAD-SLAM (bottom).
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Default
Width Window Pixels

128 512 3 10 100 400

Tracking
Time [ms]

101 80 173 84 144 74 160

Joint Optim.
Time [ms]

448 357 777 373 647 340 716

Comp. Ratio
[<5cm %]

77.22 75.79 76.91 75.82 77.35 77.33 77.49

Table 5.4: Timing results for tracking (6 iterations) and mapping (10 iterations),
running concurrently on the same GPU. Default configuration: network width 256,
window size 5, and 200 samples per keyframe. Last row: completion ratio for Replica
office-2.

5.4.4 Ablative Analysis

We analyse the design choices that affect our system using the largest Replica scene:

office-2 with three different random seeds. Completion ratio results and timings

are shown in Table 5.4. We found that network width = 256, keyframe window

size limit of 𝑊 = 5, and 200 pixels samples per frame offered the best trade-off

of convergence speed and accuracy. We further show in Figure 5.15 that active

sampling enables faster accuracy convergence and higher scene completion than

random sampling.

These design choices enable our online implicit SLAM system to run at 10 Hz

for tracking and 2 Hz for mapping. Our experiments demonstrate the power of

randomised sampling in optimisation, and highlight the key finding that it is better

to iterate fast with randomly changing information than to use dense and slow

iterations.

Combining geometric and photometric losses enables our system to obtain full

room scale reconstructions from few keyframes; 13 on average for the 8 Replica

scenes in Table 5.1. Using more keyframes does little to further improve scene

completion as shown in Table 5.5.

Implicit scene networks have the property of converging fast to low frequency
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Figure 5.15: Active sampling obtains better completion with faster accuracy con-
vergence than pure random sampling.

𝑡𝑃 = 0.55 𝑡𝑃 = 0.65 𝑡𝑃 = 0.75 𝑡𝑃 = 0.85

# Keyframes 8 10 14 24
Comp. Ratio [<5cm %] 74.11 77.22 76.84 78.03

Table 5.5: Number of keyframe and completion ratio results for different selection
thresholds in Replica office-2.
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Figure 5.16: Reaching 5cm, 2cm, 1cm and 0.75cm depth error requires around 1, 4,
20, 43 seconds respectively.

130



5.5. Conclusions

Figure 5.17: Evolution of reconstruction detail.

shapes before adding higher frequency scene details. Figure 5.16 shows network

training from a static camera averaged over 5 different real scenes. The depth

loss falls below 5cm in under a second; under 2cm in 4 seconds; then continues to

decrease slowly. When mapping a new scene our system takes seconds to get a

coarse reconstruction and minutes to add in fine details. In Figure 5.17 we show

how the system starts with a rough reconstruction and adds detail as the network

trains and the camera moves closer to objects. This is a useful property in SLAM

as it enables live tracking to work even when moving to unexplored regions.

5.5 Conclusions

We pose dense SLAM as real-time continual learning and show that an MLP can

be trained from scratch as the only scene representation in a live system, thus

enabling an RGB-D camera to construct and track against a complete and accurate

volumetric model of room-scale scenes. The keys to the real-time but long-term

SLAM performance of our method are: parallel tracking and mapping, loss-guided

pixel sampling for rapid optimisation, and intelligent keyframe selection as replay

to avoid network forgetting. We demonstrate that an MLP representation enables

automatic scene compression and hole-filling, in Chapter 6 we will investigate how
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the properties of efficient scene representation exhibit an inherent decomposition of

elements into objects.
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Chapter 6

iLabel: Interactive Neural Scene

Segmentation
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(* denotes joint first author.)

6.1 Introduction

In Chapter 5 we showed that an MLP network can be trained from scratch in

a single scene via automatic self-supervision to accurately and flexibly represent

geometry and appearance. In this chapter we demonstrate that such a network

naturally tends to discover an object-level decomposition of the scene, and that this

can be revealed and aligned with user-defined semantic segmentation categories via

extremely lightweight real-time annotation.

iLabel is the first interactive 3D semantic scene capture system with a unified

neural field representation. It allows a user to achieve high-quality, dense scene re-

construction and multi-class semantic segmentation from scratch with only minutes

of scanning and a few tens of semantic click annotations. The basis of iLabel is a

real-time neural field SLAM system, augmented with a number of extra heads to

serve as semantic outputs. These outputs inherit the coherence of the neural scene

representation, and therefore also its decomposition properties. As the user scans

a scene in real-time with a hand-held RGB-D camera, and provides very sparse se-

mantic annotations by clicking, the network is able to generate a dense semantic

segmentation of the whole scene.

Our approach requires no prior training on semantic datasets, and can therefore

be applied in novel contexts, with categories defined on-the-fly by the user in an

open-set manner. Standard methods for semantic scene segmentation use deep net-

works trained on datasets of thousands of images with dense, high-quality human
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6.1. Introduction

Figure 6.1: Whole-room semantic mesh labelled in real-time from only 140 interact-
ive clicks and no prior training data.

annotations; even then they often have poor performance when the test scene is not

a good match for the training set.

Because we render full predictions in real-time, the user can place annotations

highly efficiently, to fix parts of the segmentation that are currently incorrect or

to add new classes. This means that the quantitative labelling accuracy of iLabel

scales powerfully with the number of clicks, and rapidly surpasses the accuracy of

standard pre-trained semantic segmentation methods.

Alongside our core iLabel system for multi-class interactive scene segmentation,

we introduce two promising variations. First, we show that hierarchical semantic la-

belling can be achieved by interpreting outputs as branches in a binary tree. Second,

we demonstrate a ‘hands free’ labelling mode where an automatic uncertainty-guided

framework selects a sequence of pixels for which to ask the user for label names
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Figure 6.2: Three processes run in parallel: (i) camera tracking, (ii) mapping which
optimises geometry, colour, and semantics, and (iii) labelling where the user provides
labels through pixel selection.

without the need for clicks. We demonstrate iLabel in a wide variety of environ-

ments, from tabletop scenes to entire rooms and even outdoors. We believe iLabel

to be a powerful and user-friendly tool, with much potential for interactive scene

understanding with applications in augmented reality and robotics, as well as provid-

ing intuitive insights into the ability of neural fields to jointly represent correlated

quantities.

We demonstrate iLabel in a wide variety of environments, from tabletop scenes to

entire rooms and even outdoors. We believe iLabel to be a powerful and user-friendly

tool, with much potential for interactive scene understanding with applications in

augmented reality and robotics, as well as providing intuitive insights into the ability

of neural fields to jointly represent correlated quantities. In Section 6.5 we demon-

strate an application of iLabel for autonomous labelling of physical scene properties

through robotic experimentation.

6.2 Related Work

Existing real-time, dense semantic mapping systems typically contain two paral-

lel modules: 1) an RGB-D based geometric SLAM system, maintaining a dense

3D map of the scene, and 2) a semantic segmentation module that predicts dense
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semantic labels of the scene [Hermans et al., 2014, Nakajima et al., 2019]. Multi-

view semantic predictions are incrementally fused into the geometric model, yielding

densely-labelled, coherent 3D scenes. While semantic segmentation has been per-

formed using a variety of techniques [Nguyen et al., 2017, Krähenbühl and Koltun,

2011, Long et al., 2015, Chen et al., 2018, Xia et al., 2022], it is an inherently

user-dependent and subjective problem [Martin et al., 2001]. User-in-the-loop sys-

tems are therefore crucial in enabling full flexibility when defining semantic relations

between entities in a scene. In this context, the works most closely related to ours

are SemanticPaint [Valentin et al., 2015] and Semantic Paintbrush [Miksik et al.,

2015].

SemanticPaint [Valentin et al., 2015] is an online, user-in-the-loop system that

allows the user to label a scene during capture. To this end, the user interacts with

a 3D volumetric map, built from an RGB-D SLAM system, via voice and hand ges-

tures [Nießner et al., 2013b]. A streaming random forest classifier, using hand-crafted

features, learns continuously from the user gestures in 3D space. The forest predic-

tions are used as unary terms in a conditional random field (CRF) to propagate the

user annotations to unseen regions. As the CRFs are built upon the reconstructed

data, there is an underlying assumption that these data are good enough to sup-

port label propagation. SemanticPaint is therefore restricted to comparably simple

scenes and its efficacy in complex real-word scenarios is limited. A significant dis-

tinguishing factor between iLabel and SemanticPaint is ease-of-use. SemanticPaint

has several distinct modes, requiring the user to switch between modes repeatedly

and at well-timed intervals to obtain optimal results. In contrast, iLabel offers a

much simpler and intuitive user experience, such that high-quality segmentations are

obtained with far fewer interactions and no expert knowledge/intuition. Semantic

Paintbrush [Miksik et al., 2015] extends SemanticPaint to outdoor scenes. Using a

purely passive stereo setup for extended range and outdoor depth estimation, users

visualise the reconstruction through a pair of optical see-through glasses and can

draw directly onto it using a laser pointer to annotate objects in the scene. The

system learns in an online manner from the these annotations and is thus able to
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6. iLabel: Interactive Neural Scene Segmentation

segment other regions in the 3D map.

In contrast to [Valentin et al., 2015, Miksik et al., 2015], iLabel does not rely on

hand-crafted features, benefiting instead from a powerful joint internal representa-

tion of shape and appearance.

Hierarchical Semantic Segmentation Finding the hierarchical structure of

complex scenes is a long-standing problem. Early attempts [Arbeláez et al., 2014]

used image statistics to extract an ultrametric contour map (UCM), leading to fur-

ther work on using convolutional neural networks (CNNs) for hierarchical image

segmentation in a supervised manner [Xie and Tu, 2015, Maninis et al., 2016]. We

show that iLabel can build a user-defined hierarchical scene segmentation interact-

ively and store it within the weights of an MLP.

6.3 Method

iLabel represents 3D scenes using a neural field MLP which maps a 3D coordinate to

colour, volume density and semantic values. We use the neural SLAM system from

iMAP (Chapter 5) for real-time optimisation of the neural field [Mildenhall et al.,

2020b], such as a small MLP, depth supervision, keyframes, coarse bin rendering, and

sparse active pixel sampling. The MLP and camera poses of keyframes are jointly

optimised through differential volume rendering while also tracking the position of

a moving RGB-D camera against the neural representation.

In parallel with SLAM, a user provides annotations via clicks in the keyframes.

Scene semantics are then optimised through semantic rendering of these user-selected

pixels. The smoothness and compactness priors present in the MLP mean that the

user-supplied labels are automatically and densely propagated throughout the scene.

Thus iLabel can produce accurate, dense predictions from very sparse annotations

and often even auto-segment objects and regions not labelled by the user. The

ability to simultaneously reconstruct and label a scene in real-time allows for efficient

labelling of new regions and for easy correction of errors in the current semantic
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6.3. Method

Figure 6.3: We employ a 4-layer MLP with feature size of 256.

predictions. See Figure 6.2 for an overview of iLabel.

6.3.1 Semantics Representation and Optimisation

At the heart of iLabel is continuous optimisation of the underlying neural field

representation (Figure 6.3):

𝐹𝜃 (p) = (c, s, 𝜎), (6.1)

where 𝐹𝜃 is a 4-layer MLP parameterised by 𝜃; c, s and 𝜎 are the radiance, semantic

logits and volume density at the 3D position p = (𝑥, 𝑦, 𝑧), respectively. The scene

representation is optimised with respect to volumetric renderings of depth, colour

and semantics, computed by compositing the queried network values along the back-

projected ray of pixel [𝑢, 𝑣]:

𝐷̂ [𝑢, 𝑣] =
𝑁∑︁
𝑖=1

𝑤𝑖𝑑𝑖 , 𝐼 [𝑢, 𝑣] =
𝑁∑︁
𝑖=1

𝑤𝑖c𝑖 , 𝑆[𝑢, 𝑣] =
𝑁∑︁
𝑖=1

𝑤𝑖s𝑖 , (6.2)

where 𝑁 is the number of sampled quadrature points along the ray, 𝑤𝑖 = 𝑜𝑖
∏𝑖−1
𝑗=1(1−

𝑜 𝑗) is the ray-termination probability of sample 𝑖 at depth 𝑑𝑖 along the ray; 𝑜𝑖 =

1− exp(−𝜎𝑖𝛿𝑖) is the occupancy activation function; 𝛿𝑖 = 𝑑𝑖+1− 𝑑𝑖 is the inter-sample

distance.

As in iMAP (Chapter 5), geometry and keyframe camera poses are optimised by

minimising the discrepancy between the captured and rendered RGB-D images from

sparsely sampled pixels. Semantics are optimised with respect to the user-labelled

pixels, with two different activations and losses, corresponding to the two semantic
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Figure 6.4: Semantic logits are rendered through ray sampling, and different ac-
tivation functions are applied to the rendered logits for either flat or hierarchical
semantic outputs.

modes described below. Figure 6.4 gives an overview of the semantic rendering

process and the activation functions applied to the rendered logits.

Flat Semantics As in [Zhi et al., 2021], the network outputs s𝑖 are multi-class

semantic logits which are converted into image space by differential volume rendering

(Eq. 6.2) followed by a softmax activation 𝑆[𝑢, 𝑣] = softmax(𝑆[𝑢, 𝑣]). Semantics are

then optimised using the image cross-entropy loss between the provided class ID

and the rendered predictions.

Hierarchical Semantics We propose a novel hierarchical semantic representa-

tion through a binary tree, allowing for labelling and predicting semantics at dif-

ferent hierarchical levels. While the network output, s𝑖, is still represented by an

𝑛-dimensional flat vector, 𝑛 now corresponds to the depth of the binary tree as op-

posed to the number of semantic classes. The semantic logits are rendered in the

same manner, but the image activation and loss functions differ.

A sigmoid activation function is applied to the rendered logits, producing values

in the range [0, 1]. The 𝑗
th rendered output value, 𝑆 𝑗 [𝑢, 𝑣] = sigmoid (𝑆 𝑗 [𝑢, 𝑣]),
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6.3. Method

corresponds to the branching factor at tree level 𝑗 . To obtain a hierarchical se-

mantic prediction, each value 𝑆 𝑗 [𝑢, 𝑣] is set to 0 or 1 by thresholding 𝑆 𝑗 [𝑢, 𝑣] at 0.5,

this means that the class output at level 𝑗 depends on the values of the previous

levels. In the hierarchical setting, the user-supplied label corresponds to selecting a

specific node in the binary tree. This label is transformed into a binary branching

representation, and a binary cross-entropy loss is computed for each rendered value.

A label selecting a tree node at level 𝐿 only conditions the loss on the output values

up to and including level 𝐿: 𝑆 𝑗 [𝑢, 𝑣], 𝑗 ∈ {1, ..., 𝐿}.

With reference to the top half of Figure 6.9, the network outputs three values

corresponding to the three levels in the tree. First, the user separates the scene into

foreground and background classes. A background label corresponds to the vector

[0, ∗, ∗] where ∗ indicates that no loss is calculated for the second and third rendered

values. The user then divides the background class further into wall and floor, where

the wall label corresponds to vector [0, 1, ∗]. The binary hierarchical representation

allows the user to separate objects in stages. For example the user first separates

a whole bookshelf from the rest of the scene, and later separates the books from

the shelf without contradicting the initial labels, meaning that no labelling effort is

wasted.

6.3.2 Semantic User Interaction Modes

Our system allows for two modes of interaction: 1) manual interaction mode,

the usual interactive mode of iLabel, where users provide semantic labels in image

space via clicks, and 2) hands-free mode, where the system generates automatic

queries for the labels of informative pixels, driven by semantic prediction uncertainty

(Figure 6.5). The latter mode eases the burden of manual annotation, and users

could provide labels via text or voice.

In hands-free mode, uncertainty-based sampling actively proposes pixel positions

where there there is least confidence in the semantic class for labelling, and the user

only needs to supply a category name. This can be done with little computational
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6. iLabel: Interactive Neural Scene Segmentation

Figure 6.5: In hands-free mode with automatic query generation, semantic class
uncertainty is used to actively select a pixel for which to request a label; in this case
an unlabelled stool with ambiguous class prediction and high uncertainty is selected.

overhead [Settles, 2009, Ren et al., 2021]. We have explored several uncertainty

measures: softmax entropy, least confidence and margin sampling [Settles, 2009]. For

example, the softmax entropy is defined as 𝑢𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝐶
𝑐=1 𝑆

𝑐 [𝑢, 𝑣]log(𝑆𝑐 [𝑢, 𝑣]),

where 𝐶 is the number of semantic categories.

At system run-time, semantic labels and corresponding uncertainty maps of all

registered keyframes are rendered. To decide which keyframe to allocate queries

to, we first compute frame-level entropy by accumulating pixel-wise entropy within

frames and assign a higher probability to sampling the keyframe with higher frame-

level entropy. Given a selected keyframe, we then randomly select the queried pixel

coordinate from a pool of pixel positions with top-K highest entropy values. The

frame-level and pixel-level uncertainty are updated every certainty mapping steps.

K is set to 1% or 5% of pixel numbers to avoid repeated queries at nearby positions.

6.3.3 Implementation Details

iLabel operates on two GPUs (one for optimisation and the other only for rendering

visualisation), running three concurrent processes: 1) tracking, 2) mapping, and 3)
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labelling (see Figure 6.2).

The mapping process encompasses optimising the MLP parameters with respect to

a growing set of 𝑊 keyframes and associated RGB-D observations: {(𝐼𝑖 , 𝐷𝑖 , 𝑇𝑖)}𝑊𝑖=1,

where 𝐼𝑖, 𝐷𝑖, 𝑇𝑖 are the colour image, depth image, and camera pose of the 𝑖th

keyframe. As per iMAP (Chapter 5), the photometric loss 𝐿𝑝 and geometric loss 𝐿𝑔

are minimised on sparse, information-guided pixels. iLabel performs an additional

optimisation on 𝐾 user-selected pixels (𝜉𝑖) of keyframes and introduces a semantic

loss 𝐿𝑠, minimising the following objective function:

arg min
𝜃

1

𝐾

𝑊∑︁
𝑖=1

∑︁
(𝑢,𝑣) ∈𝜉𝑖

𝑒
𝑔

𝑖
[𝑢, 𝑣]︸   ︷︷   ︸
𝐿𝑔

+𝛼𝑝 𝑒
𝑝

𝑖
[𝑢, 𝑣]︸   ︷︷   ︸
𝐿𝑝

+𝛼𝑠 𝑒𝑠𝑖 [𝑢, 𝑣]︸   ︷︷   ︸
𝐿𝑠

, (6.3)

where:

𝑒
𝑝

𝑖
[𝑢, 𝑣] =

��𝐼𝑖 [𝑢, 𝑣] − 𝐼𝑖 [𝑢, 𝑣]�� , 𝑒𝑠𝑖 [𝑢, 𝑣] = −
𝐶∑︁
𝑐=1

𝑆
𝑐
𝑖 [𝑢, 𝑣] log(𝑆

𝑐
𝑖 [𝑢, 𝑣]), (6.4)

𝑒
𝑔

𝑖
[𝑢, 𝑣] =

��𝐷𝑖 [𝑢, 𝑣] − 𝐷̂𝑖 [𝑢, 𝑣]��√︃
𝐷̂𝑣𝑎𝑟 [𝑢, 𝑣]

, 𝐷̂𝑣𝑎𝑟 [𝑢, 𝑣] =
𝑁∑︁
𝑖=1

𝑤𝑖 (𝐷̂ [𝑢, 𝑣] − 𝑑𝑖)
2
, (6.5)

and in the hierarchical setting:

𝑒
𝑠
𝑖 [𝑢, 𝑣] =

𝐿∑︁
𝑙=1

−𝑆𝑐𝑖 [𝑢, 𝑣] log(𝑆
𝑐
𝑖 [𝑢, 𝑣]) − (1 − 𝑆𝑐𝑖 [𝑢, 𝑣]) log(1 − 𝑆

𝑐
𝑖 [𝑢, 𝑣]). (6.6)

The labelling process coordinates user interactions and controls the rendering of

semantic images and meshes (via marching cubes on a dense voxel grid queried from

the MLP). The ADAM [Kingma and Ba, 2015b] optimiser is used with poses and

map learning rates of 0.003 and 0.001. 𝛼𝑝 and 𝛼𝑠 are 5 and 8. Fourier features are

used with sigma in the range [25, 80], and input coordinated are scaled by 1
10 .

iLabel does not have an explicit/specific refinement process, and all user clicks are

involved in the joint optimisation (Eq. 6.3). The optimisation keeps working and

growing with changing sparse samples for colour and geometry reconstruction, and

increasing annotated pixels for semantics, colour and depth as well.

Timings results Run on GeForce RTX 2080 GPU for a single iteration of track-

ing/10ms, mapping/45ms, and semantics/15ms, with pixel batch sizes of 200, 1000,

and 100 respectively. Mapping and semantic optimisation run in parallel to tracking.
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Figure 6.6: Precise segmentations can be obtained from just 1 or 2 interactive clicks
per object. (Left: clicks; middle: dense labels rendered into a keyframe; right: full
3D mesh with labels.)

Figure 6.7: Segmentation results for challenging skeletal objects; left: pre-trained
CNN on ScanNet (Section 6.4.2), right: iLabel.

On average tracking converges on 6 iterations and semantics propagate in 20 iter-

ations. Rendering visualisation for labelling happens on a separate GeForce GTX

1080 GPU and takes 115ms for image size of 255x144.

6.4 Experiments

iLabel is an interactive tool intended for real-time use and we therefore emphasise

that its strengths are best illustrated qualitatively. We provide extensive examples

to demonstrate iLabel in a variety of interesting scenes. We show qualitative com-
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Figure 6.8: Catalog of object mesh assets separated with iLabel.
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Figure 6.9: Binary tree as well as the segmentations at each level from the hierarch-
ical mode of iLabel.

parisons with the only comparable system SemanticPaint and clearly demonstrate

better segmentation quality. Additionally, we perform quantitative evaluations to

show how semantic segmentation quality scales with additional user click labels, us-

ing a state-of-the-art, fully-supervised RGB-D segmentation baseline [Chen et al.,

2020].

6.4.1 Qualitative Evaluation

As the geometry, colour and semantic heads share a single MLP backbone, user

annotations are naturally propagated to untouched regions of the scene without

specifying an explicit propagation mechanism (e.g. the pairwise terms of a CRF

used in [Valentin et al., 2015]). This, together with a user-in-the-loop, enables

efficient scene labelling with only a small number of well-placed clicks.
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We have observed that the resulting embeddings are highly correlated for coherent

3D entities in the scene (e.g. objects, surfaces, etc.). Consequently, iLabel is able to

segment these entities very efficiently, even with a single click. This is illustrated in

Figure 6.6 and 6.10, where only a few clicks generate complete and precise segment-

ations for a wide range of objects and entities, ranging from small, coherent objects

(e.g. fruit) to deformable and intricate entities (clothing and furniture).

The coordinate-based representation avoids quantisation and allows the network to

be queried at arbitrary resolutions. This property allows reconstruction of detailed

geometry and skeletal shapes that, when semantically labelled, render very precise

segmentations. Figure 6.7 illustrates high-fidelity object segmentations which are

challenging for a standard CNN.

iLabel can be used as an efficient tool for generating labelled scene datasets. For

example, a scene of a complete room with 13 classes, can be fully segmented with

high precision with only 140 user clicks (Figure 6.1). Alternatively, iLabel can be

used to tag individual objects for generating object-asset catalogues (Figure 6.8) to

aid robotic manipulation tasks, for example.

While iLabel is particularly powerful at segmenting coherent entities, Figure 6.11

also demonstrates its ability to propagate user-supplied labels to disjoint objects

exhibiting similar properties. Each example shows label transfer between similar

objects where only one has been labelled (e.g. (a) boxes on the bed, (b) food boxes

and plastic cups and (c) toy dinosaurs). The table and chairs scene in Figure 6.11

(d) is especially interesting. Only four clicks are supplied: the label for the chair leg

(blue) propagates to the leg of the table and the legs of the other chairs, while the

table-top label (yellow) propagates to the seats of the chairs.

Hierarchical scene segmentation Figure 6.9 demonstrates iLabel’s hierarch-

ical mode. The colour-coded hierarchy (defined on-the-fly) is shown together with

segmentations and scene reconstructions from each level. The results show the ca-

pacity of this representation to group objects at different levels, which has potential

in applications where different tasks demand different groupings.
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Figure 6.10: Efficient label propagation: iLabel produces high-quality segmentations
of coherent 3D entities with very few user clicks, approximately 20-30 per scene.

Figure 6.11: Generalisation: iLabel is able to transfer user labels to objects exhib-
iting similar properties. It is worth highlighting that the segmentation in (d) was
achieved with only 4 clicks.

Comparison to SemanticPaint SemanticPaint (SPaint) [Valentin et al., 2015]

is currently the only comparable online interactive scene understanding system.

With several distinct modes (labelling, propagation, training, predicting, correct-

ing, smoothing), which do not operate simultaneously, users have to switch between

modes repeatedly (with careful consideration given to the duration spent in each

mode) to obtain optimal results. In contrast, iLabel presents a unified interface

for scene reconstruction, whereby user interaction, label propagation, learning and

prediction occur simultaneously. The more intuitive and simpler interface presen-

ted by iLabel means that high-quality segmentations are obtained with far fewer

interactions and no expert knowledge/intuition.
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(a) Input
annotations

(b) SPaint:
Initial strokes

(c) SPaint:
Extra strokes

(d) iLabel:
Initial strokes

Figure 6.12: Comparison results between iLabel and SemanticPaint for user annota-
tions in (a). (b) SPaint results for initial strokes; (c) SPaint results after corrections;
(d) iLabel segmentations obtained using only the input strokes in (a).

Qualitative comparisons between iLabel and SPaint is given in Figure 6.12. Scenes

with varying degrees of complexity were chosen to demonstrate the superiority of

iLabel even in scenes well-suited to SPaint (e.g. bottom row in Figure 6.12). For

each scene in Figure 6.12, users annotated objects/regions with the strokes shown

in (a). From these initial annotations only, iLabel was able to generate high-quality

segmentations (Figure 6.12 (d)). In contrast, SPaint produced comparatively noisy

and incomplete initial segmentations (Figure 6.12 (b)). Multiple mode switches

and additional corrective strokes were required to generate the final SPaint results

(Figure 6.12 (c)). We argue that the results produced by iLabel with only the

initial user inputs (< 10 strokes), surpass those of SPaint after the additional user

interactions.
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6.4.2 Quantitative evaluation

We evaluate iLabel’s 2D semantic segmentation performance in both manual inter-

action and hands-free modes, with varying numbers of clicks per scene, on the public

datasets Replica [Straub et al., 2019] and ScanNet [Dai et al., 2017a]. Both datasets

are publicly available for research purposes under their licence. We report the mean

Intersection Over Union (mIOU), averaged over ground truth labels remapped to

NYU-13 class definitions.

Baseline While pre-trained segmentation models serve a different purpose than

an interactive scene-specific system (to generalise to unseen scenes) we use them as

a baseline to demonstrate the labelling efficiency of our system. iLabel scales rapidly

with the number of clicks and rapidly surpasses the pretrained model, even when

this has been trained on very similar scenes.

Performance is evaluated against SA-Gate [Chen et al., 2020] with a ResNet-101

DeepLabV3+ backbone [Chen et al., 2018], which is the current state-of-the-art

in RGB-D segmentation. For Replica, we pre-train SA-Gate using the SUN-RGBD

dataset [Song et al., 2015] and fine-tune on our generated Replica sequences to avoid

over-fitting. We adopt a leave-one-out strategy, whereby fine-tuning is performed

independently for each test scene using the remaining Replica scenes. For ScanNet,

we train SA-Gate directly on the official training sets, achieving 63.98% mIOU on the

validation sets of 13 classes. Approximately 11k (9860 and 475 images for our SUN-

RGBD training and validation splits, 900 images for Replica fine-tuning) and 25k

training images were used for baseline CNN training on each Replica and ScanNet

experiment, respectively. The ResNet-101 backbone is initialised with ImageNet

pre-trained weights through all the experiments. As per [Chen et al., 2020], depth

maps use HHA encoding [Gupta et al., 2014], before which fast depth completion [Ku

et al., 2018] is used for hole-filling in ScanNet.

Results Figure 6.13a shows the performance of iLabel compared against the su-

pervised RGB-D CNN baseline (dashed horizontal line) on 5 Replica scenes and 6

ScanNet scenes from the validation set. The Replica dataset is a low data regime
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Figure 6.13: Quantitative evaluation of 2D semantic segmentation on the Replica
and ScanNet datasets. Both interaction modes are evaluated and outperform super-
vised baselines with a small annotation budget.
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with only 7 scenes used for fine tuning, which makes generalisation specially hard.

iLabel is specially suited for this settings, and surpasses the baseline with only 20

clicks per scene. In the ScanNet dataset where much more data is available, iLabel

reaches similar accuracy to the baseline with around 50 clicks, and continues to

improve surpassing the baseline by 20% at 120 clicks.

Figure 6.13b shows the effectiveness of automatic query generation guided by various

uncertainty measurements, which opens the possibility for hands-free scene labelling,

e.g., by voice command. As expected, this mode is less labelling efficient than manual

clicks and takes around 240 clicks to reach similar performance but involves much

less manual intervention. We show how random uniform pixel sampling achieves a

lower performance, specially when more labels have been added, highlighting the

importance of uncertainty guided pixel selection.

6.5 Robot Mapping of Physical Scene Properties

Work within this section describes was led by Iain Haughton builduing on top of the

iLabel system, leading to the paper: Haughton, I., Sucar, E., Mouton, A., Johns,

E., Davison, A. (2022). Real-time Mapping of Physical Scene Properties

with an Autonomous Robot Experimenter. In Proceedings of the Conference

on Robot Learning (CoRL)). [Haughton et al., 2022]

In this section we show an application of interactive labeling to autonomous robot

mapping of physical scene properties. We build upon the iLabel system by exploiting

an active, autonomous agent to remove the human from the loop entirely. We

extend the predictive capabilities of the underlying MLP to include physical scene

properties, which the robot autonomously queries from the scene. Here, we describe

the components of our system that enable it to operate in a fully-autonomous manner

on a physical agent to obtain rich, task-driven scene representations.

The robot builds an internal representation of its environment via a series of autonom-

ous experiments. First, it actively selects interaction locations that are both feasible

and information-rich (based on semantic entropy). Second, the selected 2D image
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(a) Rigidity classification (b) Material classification (c) Force distribution

Figure 6.14: Over a few minutes our robot makes sparse, automatic physical scene
interactions, such as touching to test rigidity, sampling local material type with
spectroscopy or pushing to determine frictional force distribution. The interaction
results are used as sparse labels to the output channels of a joint neural-field model
of 3D shape and appearance, trained in real-time. Model coherence allows the
measured physical properties to be efficiently and densely propagated to the whole
scene, without the need for prior training data.

locations are mapped to the real-world coordinate system of the robot, and a phys-

ical interaction with the scene is planned and executed. Third, the resulting meas-

urement is processed and/or classified (see specifics in Section 6.5.3) to obtain the

ground-truth semantic label. Finally, using the labels obtained in this manner, scene

semantics are optimised through semantic rendering of the robot-selected keyframe

pixels.

6.5.1 Modes of interaction

Our framework facilitates the autonomous discovery and mapping of any measurable

characteristic of a scene, provided that a suitable measurement sensor and interac-

tion protocol can be defined. We demonstrate three particular interaction types: 1)

predicting rigidity by top-down poking; 2) predicting material type using a single-

pixel multiband spectrometer1; and 3) predicting frictional force distributions by

1SparkFun Triad Spectroscopy Sensor - AS7265x (Qwiic)
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(a) Initial keyframe and uncertainty (b) Final keyframe and uncertainty

Figure 6.15: Example material type segmentations using a spectrometer. 46 interac-
tions were required to separate the pile of laundry into wool (blue), cotton (yellow)
and synthetic (green/pink) materials. Red/blue signifies high/low uncertainty in
the uncertainty map.

lateral pushing. These modes constitute the basis of our fully automatic system

described in the following sections.

6.5.2 Entropy-guided interactions

Well-placed user clicks, especially in regions where the model is performing poorly,

are the most beneficial in terms of improving segmentation quality. This observation

was exploited in an automatic query generation framework, whereby an uncertainty-

based sampling was used to actively propose pixel positions for the user to label.

Similarly, we utilise softmax entropy to guide the physical interactions that the

robot makes with the scene, encouraging interactions that are optimal in terms of

information gain and thereby minimising the number of interactions required to

produce optimal segmentations. Softmax entropy, 𝑢𝑆, is defined as [Ila et al., 2010]:

𝑢𝑆 = −
𝐶∑︁
𝑐=1

Ŝ𝑐 [𝑢, 𝑣] log
(
Ŝ𝑐 [𝑢, 𝑣]

)
, (6.7)

with Ŝ𝑐 [𝑢, 𝑣] the rendered semantic distribution and 𝐶 the number of categories.

6.5.3 Semantic representation

The inputs to the semantic head of our neural-field MLP can be one of several phys-

ical properties, measured via apposite affordances and modes of interaction. Raw

sensor measurements acquired by the robot need to be post-processed or converted

into the target variable being predicted by the semantic head of the MLP. For binary
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(a) Interaction 25 (b) Interaction 26 (c) Interaction 27

Figure 6.16: Demonstration of autonomous guidance over 3 consecutive interactions
in Figure 6.15. From left to right, the interactions (unfilled markers) follow the
highest uncertainty pixel. After interaction (filled marker), there is a localised re-
duction in uncertainty.

(a) Scene 1: material (b) Scene 2: material (c) Scene 3: rigidity

Figure 6.17: Our system can interact with and segment a variety of scenes.

prediction tasks (e.g. rigidity), this may be as simple as applying a threshold to the

raw measurement. Multi-class target variables may require additional processing.

For example, when predicting material type from a multidimensional spectrometer

reading, we use a pretrained multiclass SVM classifier which outputs predefined

material classes, which are then fed to the semantic head. In both scenarios the

semantic head of the MLP predicts a categorical value and can be optimised using

cross-entropy loss.

We additionally demonstrate for the first time the prediction of continuous-valued

target variables in the semantic head of the MLP, where the ground-truths are

sparse, in contrast to the dense ground-truths used in the optimisation of the col-

our and density heads. For example, when predicting frictional force distributions,
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(a) Scene 1 (b) Scene 2 (c) Scene 3

Figure 6.18: Comparisons of mean IoU (top) and false-confidence (bottom) vs. num-
ber of interactions for entropy-based and random exploration approaches.

we feed the minimum (stiction) force required to move an object, directly to the

semantic head and optimise using an 𝐿1 loss.

6.5.4 Single frame optimisation

During lateral pushing, interactions between the robot and the scene may intro-

duce object displacements which violates the static-scene assumption. While this

assumption allows to optimise over an expanding set of keyframes, a dynamic scene

potentially invalidates historic keyframes, ultimately leading to errors in the recon-

struction. We therefore clear the keyframe history and corresponding labels after

each interaction in this mode. Our experimentation has suggested that neural radi-

ance representations possess some form of temporal memory characteristic over the

labelled properties, whereby network weights adapt over time and maintain consist-

ency with the dynamic scene, provided scene changes are comparatively small.

6.5.5 Robotic Experiments

We demonstrate the ability of our system to perform a series of autonomous experi-

ments, using the aforementioned interactive modes, to discover and predict a variety

of physical scene properties. We demonstrate the quantitative benefits of entropy-
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(a) Scene (b) Normals rendering (c) Force rendering

Figure 6.19: Stiction force mapping. Top row: three cylindrical objects with uniform
mass of (from left to right) 0.5 kg, 1.5 kg and 0.1 kg. Guided by entropy, the robot
applies a single push to each object measuring, stiction forces of 1.0N, 3.0N and
0.2N. Bottom row: power drill with non-uniform mass distribution. The final
rendering was produced after a sequence of 3 pushes.

guided experimentation and, in the case of rigidity and material-type classification,

compare segmentation performance against two state-of-the-art, class-agnostic seg-

mentation techniques (see Sec. 6.5.5 for details). Finally, we refer the reader to our

supplementary video for additional results.

We use a Franka Emika Panda robot, anchored to a table on which a variety of

objects are arranged (Figure 6.14). The robot is equipped with a Realsense D435

RGB-D sensor [Keselman et al., 2017], tracked using the forward kinematics of the

arm, which is controlled using ROS [System, ]. Prior to physical experiments, the

robot builds a geometric reconstruction of the scene, to allow for collision-free motion

planning. For this purpose, a set of RGB-D keyframes is captured over a series of

random motions in order to optimise the 3D neural field, and subsequent querying

of the network produces a collision mesh and normal map. All objects of interest

are placed within reach of the robot arm and any points located beyond this range,

or on the plane of the table, are automatically labelled ‘table’.

Rigidity and material-type prediction may be viewed as segmentation problems.

While training any popular instance segmentation technique (e.g. Mask R-CNN [He
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(a) Crossection (b) Length distribution (c) Width distribution

Figure 6.20: Rendered stiction force distribution, compared to an analytical ap-
proach with privileged information, along the length (blue) and width (red) of a box
with non-uniform density.

et al., 2017]) on the object classes present in our scenes (e.g. material types), is

likely to produce high-quality segmentations, one would need to repeat this training

for each scenario. Therefore, instead of comparing against closed-set segmentation

techniques, we consider two state-of-the-art class-agnostic instance segmentation ap-

proaches: 1) Mask R-CNN trained to perform class-agnostic segmentation [Gouda

et al., 2022] and 2) Unseen Clustering Network (UCN) [Xie et al., 2021] with RICE

refinement [Xie et al., 2022]. For each method, we perform instance segmentation

on the keyframe and use the resulting instance mask to guide the robot-scene inter-

action. In particular, the robot takes a single sensor reading as near to the centre

of each instance in the mask as is feasible and propagates the measurement to the

rest of the region. The measurements are converted to categorical labels (binary

rigidity or material-type) in the same manner as described in Sec. 6.5.3. We report

the mean Intersection over Union (mIoU) averaged over the ground-truth labels.

Table 6.1 shows the quantitative performance comparison against the Mask R-CNN

and UCN baselines for each scene. As expected, the baselines perform well for scenes

1 and 3, which contain geometrically-coherent objects and strong colour and depth

cues. Scene 2, however, is considerably more challenging for the colour and/or depth-

based baselines, characterised by a significant drop in performance. In contrast, our

autonomous approach performs well for all three scenes, with comparable results to

the baselines in Scenes 1 and 3 and significantly superior results in Scene 2.
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Table 6.1: Classification performance for different types of scene, (examples in Figure
6.17).

Segmentation Example Ours Mask R-CNN UCN + RICE

Material Scene 1 0.91 ± 0.02 0.92 ± 0.02 0.90 ± 0.02

Material Scene 2 0.89 ± 0.03 0.56 ± 0.11 0.56 ± 0.10

Rigidity Scene 3 0.91 ± 0.04 0.92 ± 0.02 0.91 ± 0.02

6.5.6 Entropy exploration ablation study

Figure 6.15 illustrates material discovery in a complex scene containing wool (blue),

cotton (yellow) and synthetic (green/pink) materials. Prior to physical measure-

ments, there is high uncertainty (red) across the entire scene, while the final uncer-

tainty map has high confidence (blue) throughout. We show the evolution of the

uncertainty map through three consecutive interactions in Figure 6.16. The robot

is guided to a high-entropy pixel (unfilled circle). On completion of the experiment,

there is a clear, localised uncertainty reduction surrounding the target region (filled

circle).

We observe that while the uncertainty in the localised region of measurement de-

creases, it often increases in more distant regions. As the model accumulates in-

formation, it continuously adapts its predictions and corresponding confidence, ulti-

mately converging on an accurate representation. This observation motivates the use

of uncertainty as an exploration metric in neural implicit representations. To sub-

stantiate the benefits of entropy-driven exploration quantitatively, we conducted an

ablation study comparing performance to random exploration. We compare the evol-

ution of mIoU and false-confidence (where the model produces high-confidence but

incorrect predictions) with an increasing number of interactions for each technique.

Figure 6.18 demonstrates superior convergence rates for entropy-guided interaction

in all three benchmark scenes in Figure 6.17 across both metrics.

6.5.7 Force measurement analysis

Figure 6.19 illustrates the stiction force maps produced by our framework for objects

with uniform (top row) and non-uniform (bottom row) mass and friction distribu-

tions. Note that in each scene the objects are displaced following the pushes per-
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formed by the robot. The scene in the top row contains three cylindrical containers

of varying mass and material. As desired, the resulting force renderings match the

varying masses. This is potentially valuable information when planning for down-

stream manipulation tasks (e.g. distinguishing between full and empty containers).

A key observation in Figure 6.19 is that the renderings for objects remain consistent

despite displacement, demonstrating for the first time a memory quality in neural

field representations.

In the bottom row of Figure 6.19, we demonstrate the ability of the robot to predict

stiction force values reliably, even for complex geometries, with non-uniform mass

and friction distributions. We substantiate this quantitatively in Figure 6.20, where

the robot interacts with a non-uniform rectangular box containing a 5 kg weight at

one end. We show that the output of our model, after three pushes, is comparable

to that of a simple analytical physics model [Mason, 1986] with access to privileged

information, including the contact surface area, mass distribution and friction coef-

ficient.

6.6 Conclusions

We have shown that online, scene-specific training of a compact MLP model which

encodes scene geometry, appearance and semantics allows sparse interactive labelling

to produce accurate dense semantic segmentation. Despite promising results, our

system’s label propagation mechanism works well mainly for proximal regions an-

d/or those sharing similar geometry or texture. A deeper understanding of this

mechanism is necessary to enable better control of this process and to improve gen-

eralisation performance. In addition, how to improve its ability to hierarchically and

uniquely represent rich semantics within the network is worthy of further explora-

tion. As architectures and methods for neural field representation of scenes continue

to improve, we expect these gains to be passed on to our labelling approach, and for

tools like iLabel to become highly practical for applications where users are able to

teach AI systems efficiently about useful scene properties.
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6. iLabel: Interactive Neural Scene Segmentation
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Conclusions and Future Work

In this thesis, we addressed the problem of jointly modeling geometric reconstruction

and semantic abstraction using compressive representations. We presented different

contributions encompassed by the use of neural scene representations within incre-

mental real-time SLAM, tackling open challenges in designing scene representations

for both object-level and dense SLAM systems. Specifically, we presented Neural

Object Descriptors for SLAM at the level of objects, with flexibility for intra-class

shape variations, as well as an MLP Neural Scene representation for compressive

incremental dense semantic mapping of room-scale scenes. The key to generative

inference with both of these scene representations was the development of a differ-

entiable volumetric rendering function used for joint optimisation of the 3D repres-

entation and camera trajectory. We demonstrated our developments in practical

real-time systems and robotic applications.

In Chapter 4, we addressed the problem of multi-view shape reconstruction us-

ing class-level priors. The objective of this project was to extend the benefits of

template-based object mapping such as [Salas-Moreno et al., 2013] of having a com-

pact scene representation and capacity to obtain a complete reconstruction with

partial observations, but allowing for shape variation within a semantic category of

objects. To achieve this, we combined 3D generative models and rendering-based

shape optimisation. We learned a compact and continuous class-level latent space

from aligned 3D shape models using a 3D Variational Auto-Encoder (VAE) CNN.

This latent space is used for the reconstruction of new shapes from the trained

classes by optimizing the compact code with respect to depth images. For image-

based optimization, we presented a differentiable volumetric rendering function, and
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demonstrated its increased robustness to current alternative formulations both qual-

itatively and quantitatively. We showed that within the scope of the trained classes

(mug, bottle, can, and bowl), our method achieves complete and accurate shape

reconstructions with partial and noisy depth measurements. The generative formu-

lation of our representation allowed us to build a full self-contained SLAM system

with objects as landmarks. The practical nature of our representation was high-

lighted in a robotic system capable of completing the challenging task of tight object

packing.

We believe that NodeSLAM represents an important advancement in object-level

mapping, going beyond fixed shapes by incorporating shape priors based on semantic

classes. Since the paper was published, it has inspired relevant extensions, such as

those that handle dynamic scenes [Xu et al., 2022] or address large-scale object

mapping [Wang et al., 2021a]. However, important limitations of this work include

the need for a 3D dataset to learn the latent space and the use of a single uni-modal

code to represent shapes, which limits expressiveness. Ongoing research is being

conducted to tackle these challenges; for example, by learning shape models with

image observations through rendering supervision as in [Tulsiani et al., 2018, Henzler

et al., 2021], or by modelling more complex shapes through part-based models [Mo

et al., 2019], or combinations of simple geometric primitives [Landgraf et al., 2021,

Genova et al., 2019].

In Chapter 5, we proposed incremental compressive representations for fully gener-

ative dense SLAM of room-scale scenes. In this project, we addressed open prob-

lems in dense SLAM, specifically the ability to perform full joint optimization of a

dense 3D map and camera trajectory, as well as the ability to model spatial rela-

tionships between points at different levels of detail. To address these challenges,

we proposed the use of a global and continuous 3D representation modelled with

a scene-specific randomly initialized MLP Neural Field. We designed a real-time

SLAM system, iMAP, for efficiently training the MLP representation from scratch.

Our SLAM system runs from a stream of depth images, utilizing a keyframe-based

parallel tracking and mapping design, and is optimized with differentiable volume

rendering. We demonstrated the ability for efficient optimisation through random-
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ised sparse rendering with active pixel selection. We showcased our system in a

varied range of settings, and highlighted advantages over fusion-based SLAM, such

as reduced memory requirements for representation, robustness to sparse views, and

joint optimization of maps and camera poses, allowing for small drift corrections.

Furthermore, we showed that the compressive and continuous MLP-based repres-

entation allows for plausible filling in of holes where depth information is missing.

iMAP presented an important advancement in demonstrating the ability of online

training of neural fields, and providing insights into geometric reconstruction with

an MLP. The main limitations of iMAP come at the cost of computation for ren-

dering and optimisation by the use a global map representation, where computation

increases proportional to representation capacity. Further developments on 3D rep-

resentations have explored hybrid representations, a combination of local spatial

structures followed by a global MLP [Müller et al., 2022, Clark, 2022], which offer a

middle point in the trade-off between compute and memory storage. iMAP has in-

spired dense SLAM systems such [Zhu et al., 2022] that scale to bigger spaces based

on a hybrid representation or [Kong et al., 2023], where a scene is decomposed into

a per-object MLP. We believe there is a lot of open research in combining local and

global structures with questions on flexible decomposition and the type of repres-

entation function.

In Chapter 6, we investigated the automatic abstraction properties of the scene-

specific compressive representation used in iMAP. We accomplished this by con-

structing an interactive segmentation system called iLabel, where a user provides

sparse semantic labels of the scene. These labels are then automatically propagated

by the global MLP map. We demonstrated the hypothesis that an efficient repres-

entation automatically decomposes a scene into coherent regions or objects, which

can be revealed with minimal user interaction. We showed that label propagation

correlates with both the local geometric boundaries of objects and global appear-

ance properties. iLabel’s real-time interactive and open-set features enable efficient

label placement and error correction, allowing for the acquisition of full and pre-

cise segmentations of complex scenes where pre-trained neural networks struggle.

We believe that iLabel is a powerful and user-friendly tool for scene labelling that
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provides insights into the decomposition properties of Neural Fields. iLabel has

been extended to encode additional properties such as pre-trained 2D CNN features

in [Mazur et al., 2023], which allows to go beyond local segmentation to open-set

interactive semantic grouping.

6.7 Future Work

There remain many open challenges for achieving generally useful representations

and predictive models for Spatial AI and robotic systems. There are various exciting

research directions we are interested in taking this work, which we outline next.

6.7.1 Continual Learning

One big challenge for global representations such as the MLP used in iMAP is the

need of a replay buffer to avoid catastrophic forgetting. This incurs in big com-

putational costs for incremental training, and limits scaling to larger spaces as the

replay buffer grows. We believe there is potential in exploring representations which

model uncertainty in order to replace replay with proper probabilistic marginalisa-

tion. Examples of possible representation are Bayesian neural networks [Ebrahimi

et al., 2020] or Gaussian processes [Williams and Fitzgibbon, 2006]. This represent-

ations could bring additional benefits such as modeling the uncertainty of the 3D

reconstruction, as well as the probabilistic integration of 2D depth priors such as

those predicted by [Dexheimer and Davison, 2023, Laidlow et al., 2020]. It would

also be interesting to apply methods for inspecting neural networks such as [Fong

and Vedaldi, 2017] to analyse the relation between network activations and scene

structures such as the ones obtained from ilabel, which could provide insight into

how to lock network weights or prune the network to be more efficient.

6.7.2 Hybrid representations

As we mentioned before hybrid representations with a combination of local and

global functions are promising for improving computational efficiency. We believe

exploring flexible local decomposition beyond uniform grids is an interesting direc-
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tion. This could include localised basis functions such as wavelets [Rho et al., 2023]

or kernel methods with inducing points as described in [Ramos and Ott, 2016]. The

use of flexible local decompositions could be useful for modeling scene change in

dynamic environments.

6.7.3 Semantic mapping

In our previous work NodeSLAM we demonstrated how semantics can provide strong

priors for reconstruction in limited categories, and we would want to be more general

in using semantics for aiding reconstruction. In iLabel for example structural priors

could be inserted such as in regions annotated to be walls, floors or other surfaces

which tend to be planar. However, we believe the key building compact and se-

mantically meaningful representation is by exploiting repetition and self-similarity

in a scene, which could be achieved by introducing convolutional structures in the

representation which bring inductive biases for translation equivariance, ideally at

different hierarchical levels.

6.7.4 General Priors

Finally, recent progress has shown the ability to learn general 2D priors for natural

images through massive scale training [Ramesh et al., 2022]. We believe this will

play an important role on improving 3D reconstruction specially in the setting with

limited observations. We would like to explore how to incorporate this priors into an

incremental SLAM setting, or how to fine tune them to directly obtain geometrical

predictions such as depth images.
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(2013b). Real-time 3D Reconstruction at Scale using Voxel Hashing. ACM Trans-

actions on Graphics (TOG), 32(6):1–11. 137

[Nistér, 2004] Nistér, D. (2004). An Efficient Solution to the Five-Point Relative

Pose Problem. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 26(6):756–777. 29

184



[Nistér et al., 2004] Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual Odo-

metry. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 29
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