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Abstract

An important challenge in visual Simultaneous Localisation and Mapping (SLAM)
has been on the design of scene representations that allow for both robust inference
and useful interaction. The rapid progression of semantic image understanding
powered by deep learning has led to SLAM systems that enrich geometric maps
with semantics, which increases the range of applications possible. However, a core
challenge remains in how to tightly integrate geometry and semantics for 3D re-
construction; we believe that their joint representation is the right direction for
actionable and robust maps. In this thesis we will address the central question on
designing efficient scene representations by the use of compressive models, which can
represent detail with the least number of parameters. We then demonstrate that
compressive models offer a solution for the joint representation of geometry and
semantics, where semantics provide priors for robust reconstruction and geometric

compression informs scene decomposition.

This work focuses on using generative neural networks, a category of compress-
ive representations, for incremental dense SLAM. We develop a volumetric rendering
formulation for the use of compressive models in generative inference from multi-
view images, enabling two novel SLAM systems. First, we learn class-level code
descriptors for object shape from aligned 3D models. At test time, the code and
object pose are optimised for efficient and complete object reconstruction from in-
stances of the learned categories. This method relaxes the assumption of fixed tem-
plates and allows for intra-class shape variation. We demonstrate the usefulness of
semantic priors for complete and precise reconstruction in a robotic packing applic-
ation. Second, we present a scene-specific multi-layered perceptron (MLP) neural
field for full generative dense SLAM. Our results show that it allows for efficient
mapping, automatic hole-filling, and joint optimisation of camera trajectory and 3D
map. Last, we demonstrate that the MLP’s automatic scene compression discovers

underlying scene structures that are revealed with sparse labeling.
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1.1 Spatial Artificial Intelligence

The goal of artificial intelligence is to develop autonomous programs which aid hu-
mans to either automate processes or make decisions. This could be in a variety of
domains such as medicine, economy, translation, recommendation systems, factory
automation, transportation, etc. This thesis is centered on a sub area of artificial
intelligence we call Spatial Artificial Intelligence or Spatial AI. The main char-
acteristic of Spatial Al is that we are concerned about making decisions about a

physical spatial environment.

13



1. Introduction

The key element of an embodied Spatial Al system is a moving platform with
sensors to capture information about its environment and possibly actuators to
interact and change its surroundings. Two significant instances of a Spatial Al
applications are augmented reality Al assistants and robotics, see Figure 1.1. The
goal of an augmented reality Al assistant is to augment the spatial capabilities of
a human through a wearable device such as augmented reality glasses. This could
include capabilities such as a spatial memory of the objects which a person has
interacted with to retrieve lost items, navigation instructions in a new indoor space,

or a virtual sports coach.

In robotics we are interested in automating a physical process through a robotic
platform. This could be a passive task where no interaction is involved such as
inspection of a factory by a flying drone, but normally the most useful robotic tasks
involve some sort of scene interaction and manipulation. With interactive robotics
there is a diversity of environments and tasks. At one hand of the spectrum we have
specialized settings, where the range of objects and/or interaction types is limited.
One example is warehouse robotics where the range of objects to be manipulated
may be limited, for example boxes of different sizes or products of a given category,

as well as the range of interaction types such as packing or stacking.

However, most of the biggest challenges in Spatial Al research are towards general
purpose robotics. One example of such a setting is a commercial future house hold
robot helper. This robot should work in a wide variety of homes with completely
different layouts and object instances. It should be able to perform varied tasks
such as tidying a room, loading and unloading a dishwasher, wiping and vacuuming
surfaces with different materials, or cooking a meal, and it should interact with
humans, for example to manually assist them. Additionally the robot should be
able to continuously learn new things and adapt, to recognize a new object it had
not previously seen, to perform a new tasks from a human demonstration, or to fix

a mistake in its performance through a user correction.

14



1.1. Spatial Artificial Intelligence

L

i

Figure 1.1: (a) A futuristic house hold humanoid cleaning robot. (b) Augmented
reality glasses used in collaborative architecture.
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1. Introduction

1.2 Scene Understanding

Two high level capabilities necessary for most Spatial Al robotic systems are nav-
tgation and manipulation. Navigation is the ability to move around a space, to go
from point A to a point B, and this could be navigation on a 2D surface for a ground
mobile robot or in 3D space for a flying robot. Manipulation is the ability to interact
with objects, to change their position and configuration in order to achieve a goal,
and is done with a robotic arm end defector, such as a gripper. The design of these
capabilities is normally broken up into the following modules: scene understanding,

motion planning, and control.

Scene understanding consists of inferring and modeling what is in the environment
such as what is the geometry of the space, how can it be broken down into movable
objects, or what are the physical properties of the objects such as mass and material.
Motion planning is then about figuring out a set of actions to achieve a desired
goal; in navigation, for example, motion planning is about finding a set of valid
configurations to go from pose A to pose B while avoiding obstacles. Finally control
is about going from high level actions into low level motor command for the robot.
This pipeline can be executed in an open loop fashion where for a given goal or sub-
goal each module is performed sequentially and independently, or in a closed loop,
where scene understanding, planning and control are continuously running jointly

with feedback, this tends to be more robust as errors in one module can be corrected.

The scope of this thesis will be the scene understanding or perception compon-
ent of Spatial AIl. Improvements in this area have the potential of unlocking new

capabilities in planning and control.

1.3 Machine Learning

Machine Learning ML has played an important role in the development of Al systems
in recent years. ML contrasts with hand crafted methods in that data is used to learn

a functional mapping from inputs to outputs. This is done by tuning the parameters

16



1.4. 3D Representation

of a black box model, a process referred to as training, to optimise its performance
on a set of samples, the training data set, where the mapping from inputs to outputs
is known, with the purpose of generalising to new inputs with unknown outputs.
One popular choice for the black box model, and which we will employ in different
aspects of the thesis, is a Neural Network, which consists of stacked blocks of linear

functions followed by a nonlinear activation function.

With the flexibility of black box models, a Spatial AI pipeline (Scene Under-
standing, Planning, and Control) can be broken into modules in varied ways. With
a module defined as a subroutine where inputs and outputs are interpretable vari-
ables. Therefore a Spatial Al system can be composed of a combination of both
designed and learned components. At one end of the spectrum are approaches that
encompass a full robotic stack with a single learned module that maps sensor obser-
vations directly to motor controls, trained end to end either on demonstrations of
the task to be performed (imitation learning), or through an indirect downstream

reward function judging the performance of the task (reinforcement learning).

The complete lack of structural knowledge in end-to-end methods implies that
they require more training data, and the lack of modules limits the re-usability in
different settings. We argue that this is why these approaches are not practical in
many problems outside a tightly constrained task. A modular approach with inter-
mediate representations, including objects, scenes, etc., provides more flexibility, so
that the learned components can be applied to different tasks. It also facilitates the
integration of prior knowledge, such as physical laws and geometrical properties, at

different stages in this pipeline.

1.4 3D Representation

There is one common element in the Spatial Al systems we have described, the
need to move and take decisions in a 3D space, which requires a persistent memory
to plan and reason jointly about the different elements of a scene. This is the

reason that we argue that a persistent 3D scene representation should be explicitly
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1. Introduction

modeled in a Spatial AI pipeline. This representation should allow a device to
operate for extended periods in the same space, plan and execute varied tasks, and
allow communication with a human user. There are a lot of options about on how
to design a representation to meet these requirements, with a combination of both
designed and learned elements. The thesis will explore this research area: 3D Scene

Representation.

A 3D representation is the design choice of a 3D map or scene summary storing
the spatial contents of a scene. As a robot moves around a scene it needs to both find
its position with respect to the current map: localisation, and update the state of the
map with new observations: mapping. In this thesis we will concentrate on visual
sensing, where observations are coming from a moving camera. This is because of

the richness of information captured by cameras and their affordability.

As images are a projection of the underlying 3D geometry of the environment,
mapping is related to inverting the physical image formation process. Our 3D rep-
resentation must also therefore model the relationship between the 3D map and the
visual observations. Inference is the process of recovering a complete 3D map from
a set of 2D observations. There are generally 2 strategies for inference: discrim-
inative and generative approaches. In discriminative or bottom up (from pixels to
map) approaches the image formation model is not explicitly modeled, but inverted
through machine learning. An example this could be an object detector mapping
from images to 3D object bounding boxes. More common in 3D reconstruction are
generative methods, which explicitly model a measurement function that transforms
the 3D map into a 2D observation, and then inference is done through optimisa-
tion. Many practical systems have a combination of discriminative and generative

components as in the system we present in Chapter 4.

1.5 Simultaneous Localisation and Mapping

For many applications, a robot must be reactive to its environment and take de-

cisions in real-time. For example a flying drone cannot take seconds to plan if an
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1.5. Simultaneous Localisation and Mapping

object is coming towards it, or time constraints may be of importance, such as in
warehouse robotics where efficiency is critical. This adds additional constraints on
the scene inference problem, it must be solved incrementally, that is from a stream
of incoming images rather than a batch of data, and online; the computation time
for each new image should be fast enough to match the rate of change of the desired
application. Additionally the localisation and mapping problems are simultaneous
objectives; in order to recover its position the robot must have a map of the envir-
onment, and in order to extend the map with new observations the robot must have
an estimate of its position. This problem, referred to as Simultaneous Localisation
and Mapping or SLAM, is a central component in most robotic systems, and will

encapsulate the methods developed in this thesis.

A key property of SLAM is that it forms a closed loop system, where there is
continuous feedback between tracking (estimating the pose and orientation of the
sensor) and mapping. This is enabled by a persistent map summarising past obser-
vations, and the process of data association, between the latest observation and the
corresponding elements in the map. SLAM contrasts with open loop localisation
systems, where estimation is performed frame to frame without a persistent map,

and drift accumulates even when observing a co-visible region.

The choice of scene representation for SLAM systems is tied to the estimation
methods used for scene inference, and the applications it enables. Sparse 3D point
clouds have been shown to enable very precise localisation though non-linear optim-
isation, but lack expressiveness for other tasks that involve interaction or navigation.
Dense SLAM which aims to represent the full geometry of a scene opens up applica-
tions in navigation and motion planning, but present challenges in memory resources
and normally resort to optimisation approximations. Finally, semantic SLAM meth-
ods augment dense maps with class information which is generally useful for going

beyond navigation towards interaction with a scene.
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1. Introduction

1.6 Semantics Abstractions

For model-based robotics the available information in the scene representation is
directly related to the ability to plan how to solve a given task. For example, if
a robot aims to pick and place an object, the map must delineate its extents and
separation from the rest of the scene; if the robot is to align two objects of the same
class it must know their pose; if a mobile platform must navigate around a room it
must identify the surface it can move on: the floor; or if the robot aims to push a
box it must infer its weight to plan the force required to move the object. The map
then serves as a simulator of the world a robot can use to test for the result of its
actions to plan how to achieve a certain goal. In order to reason efficiently about
the elements in the scene the robot must use abstractions which are groupings of
finer elements with similar characteristics or a shared property. For example objects
are abstractions of elements that move coherently, or semantic classes are grouping

of objects that share a common function.

Machine learning has been used to perform abstractions on data through the
process of supervised learning. This is done by creating datasets, where manually
label elements are grouped together (commonly in images), of either object instances
or semantic classes. 3D shape estimation and abstraction are then normally treated
as independent, loosely coupled modules, for example by fusing semantic image

predictions from a CNN network on top of an already reconstructed 3D map.

Box 1.1: Research hypothesis

The efficient representation (or compression) of a scene, that is, how to rep-
resent detail with the fewest parameters is closely related to the ability to
abstract or group elements which share an underlying structure. Further, the
ability to be efficient in representation by abstraction, either reusing common
elements or finding underlying geometric structures, should aid in regularising

noisy observations or completing missing data.

The central question we will be looking at in this thesis is, how can we jointly
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1.6. Semantics Abstractions

model scene abstraction/compression and geometric shape inference, with feedback

between each other. We pose the hypothesis shown in Box 1.1.

Using abstractions for shape inference has been explored in previous works we will
discuss in Section 2. However the main technical contributions of this thesis revolve
around how to use a new category of compressive representations, generative 3D
neural networks, within the framework of incremental and real-time dense SLAM.
Thus, we will explore the use of Neural Scene representation, to build a new line
of SLAM systems where abstraction and shape are modeled jointly, which we define
as Tightly-Coupled Dense Semantic SLAM. We will investigate the design and

properties of this concept in three main projects outlined below:

e NodeSLAM: Neural Object Descriptors (Chapter 4) A generative auto-
encoder neural network is trained to compress a dataset of 3D shapes of known
semantic classes (common in table top settings: mugs, bowls, cans, and bottles),
into a compact and optimisable latent space representation. We formulate
a probabilistic volume rendering measurement function for multi-view shape
optimisation with respect to masked depth images (obtained with an object
detector), from which we build a SLAM system with object landmarks. We
demonstrate the ability of the system to complete partial observations of the
trained classes enabling robotic planning tasks such as object packing and

stacking.

e iMAP: iMAP: Neural Fields for Dense SLAM (Chapter 5) A Multi-
Layer Perceptron (MLP) neural network representation is used for reconstruct-
ing a room scale scene. The network is trained from scratch incrementally and
in real-time to fit depth data observations within a dense SLAM framework.
We demonstrate the representation capabilities for automatic scene compres-
sion with dynamic level of detail and the capacity to fill in holes where data

is missing.

e iLabel: Interactive Neural Scene Segmentation (Chapter 6) Building
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1. Introduction

on top of iMAP, we demonstrate that the compressive properties of the MLP
representation present an inherent decomposition of the scene into coherent

objects which can be revealed through interactive sparse user annotations.

1.7 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 provides an overview of the representative literature works in sparse and
dense real-time SLAM, compressive representations, and semantic mapping; it
discusses their characteristics and open challenges and places our work within

their context.

Chapter 3 introduces basic notation, the concepts used for optimisation in SLAM,

and provides a primer on deep neural networks and volume rendering.

Chapter 4 presents NodeSLAM, a system for object level mapping with learned

class-level shape descriptors.

Chapter 5 describes iMAP, a real-time SLAM system with a scene-specific MLP

neural field representation.

Chapter 6 builds on top of iMAP and shows that scene specific compression dis-
covers underlying structures revealed with sparse labeling, demonstrated with

the interactive system iLabel.

Chapter 7 concludes the thesis with a discussion of the research presented and

suggestions for future work.

1.8 Publications

The work described in this thesis resulted in the following publications:

e Sucar, E., Wada, K., Davison, A. (2020), NodeSLAM: Neural Objects
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1.8. Publications

Descriptors for Multi-View Shape Reconstruction. In Proceedings of

the International Conference on 3D Vision (3DV). [Sucar et al., 2020].

e Sucar, E., Liu, S., Ortiz, J., Davison, A. (2021), iMAP: Implicit Mapping
and Positioning in Real-Time. In Proceedings of the International Con-

ference on Computer Vision (ICCV). [Sucar et al., 2021].

e Zhi, S.* Sucar, E.*, Mouton, A., Haughton, I., Laidlow, T., Davison, A.
(2022). iLabel: Revelaing Objects in Neural Fields. In Proceedings
of the IEEE Robotics and Automation Letters (RA-L)). [Zhi et al., 2022]. (*

denotes joint first author.)

e Haughton, 1., Sucar, E., Mouton, A., Johns, E., Davison, A. (2022). Real-
time Mapping of Physical Scene Properties with an Autonomous
Robot Experimenter. In Proceedings of the Conference on Robot Learning

(CoRL)). [Haughton et al., 2022].

While not described directly, the following publications were done in conjunction

with this thesis:

e Wada, K., Sucar, E., James, S., Lenton, D., Davison, A. (2020) MoreFusion:
Multi-object Reasoning for 6D Pose Estimation from Volumetric
Fusion. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). [Wada et al., 2020].

e Ortiz, J., Evans, T., Sucar, E., Davison, A. (2022) Incremental Abstraction
in Distributed Probabilistic SLAM Graphs. Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). [Ortiz et al.,

2022].

e Matsuki, H., Sucar, E., Laidlow, T., Wada, K., Scona, R., Davison, A. (2023)
iMODE: Real-time Incremental Monocular Dense Mapping using
Neural Field. Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA). [Matsuki et al., 2023].
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e Mazur, K., Sucar, E., Davison, A. (2023) Feature-realistic neural fusion
for real-time, open set scene understanding. Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). [Mazur et al.,

2023).

The following video material provides a visualisation of the algorithms developed

in this thesis:

e NodeSLAM: Neural Objects Descriptors for Multi-View Shape Reconstruction,

https://youtu.be/zPzMtXU-0JE.

e iMAP: Implicit Mapping and Positioning in Real-Time, https://youtu.be/

c-zkKGAr15Y.

e iLabel: Revelaing Objects in Neural Fields, https://youtu.be/bL7RZaMhRbk.
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In the thesis we build around different concepts of sparse and dense real-time
SLAM, compressive representations, and semantic mapping. In this section we will
provide an overview of representative work introducing these concepts, discussing

their characteristics and open challenges.

The problem of recovering the 3D scene structure along with camera poses from a

collection of 2D images has been traditionally explored in the structure from motion
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research area in the computer vision community, normally performed in an offline
and batch setting. Visual SLAM has focused on the problem of online and real-time
performance by combining techniques from structure from motion and Bayesian
Filtering [Kalman, 1960]. There has normally been a separation in the estimation
algorithms used for structure from motion and Visual SLAM techniques depending
on the choice of representation, between sparse and dense systems. The methods in

this thesis will borrow design elements from both paradigms

2.1 Sparse Reconstruction

In sparse reconstruction systems scene geometry is abstracted as a collection of
3D points, that lie in the surface of objects and is normally in the order of 1000’s
of points for small scale scenes (room or indoor spaces). A first process in the
reconstruction pipeline, the front end, consists of extracting and matching a set of
2D salient points in the images. Salient points, called keypoints or features, are
selected with the goal of maximising the ability to recognise them across different
viewpoints. Image corner points have this property in contrast with regions of high
ambiguity such as uniform regions or edges. [Harris and Stephens, 1988, Shi and
Tomasi, 1994, Moravec, 1977] presented pioneering algorithms for corner detection

based on patch auto-correlation.

The next part of a visual SLAM pipeline, feature matching is the process of
identifying keypoint correspondences across different images. This is done through
comparison of feature descriptors. Descriptors are vector representations of the
local image appearance of a given feature. Early SLAM systems mostly relied on
patch similiarity. A pioneering algorithm for designing improved feature descriptors
was SIFT, presented in [Lowe, 1999]. The method is based on histogram of image
gradients, and is designed to be scale and rotation invariant. A big emphasis was
placed on making keypoint detection and description more efficient, which led to a
variety of methods [Rublee et al., 2011, Calonder et al., 2010, Leutenegger et al.,
2011, Bay et al., 2008, Alcantarilla et al., 2012].
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When a 3D point is projected to a 2D image position, its location depends on three
variables, the camera intrinsic geometry parameters, the camera motion, and the 3D
position of the corresponding landmarks. Initial work on recovering camera motion
from pair of images relied on solving linear systems derived from epipolar geometry
constraints, such as the 8 point algorithm [Hartley, 1995] or extensions to multi-
camera setups such as the trifocal tensor methods [Hartley, 1994, Armstrong et al.,
1996]. The position of the 3D landmarks is then recovered from triangulation. These
methods suffer from degenerate solutions and stability issues, in particular with
small baselines or noisy inputs. More relevant to us are nonlinear approaches solved
through iterative optimisation. In Horn [Horn, 1986] the fundamentals for two-frame
nonlinear structure from motion were established, where 3D landmark position as
well as relative camera orientation and translation are solved for through nonlinear
least squares optimisation. Optimisation is performed using the 2D associations with
a camera projection measurement function, which we will define in Section 3. This
approach can be directly extended to multiple images with batch optimisation over
the full set of measurements, process referred to as Bundle Adjustment [Szeliski and
Kang, 1993, Kumar et al., 1989, Vidal et al., 2001]. See Figure 2.1 for an illustration

of a sparse structure from motion pipeline.

Later methods scaled up inference techniques from structure for motion to handle
sequential and real-time operation, giving rise to visual odometry and visual SLAM.
There are two categories for doing this which we will describe next, filtering methods

and local bundle adjustment.

2.1.1 Filtering approaches

Filtering approaches initially developed for estimating the position of a ground ro-
bot moving in a plane. [Smith and Cheeseman, 1986] introduced the first probab-
ilistic formulation for SLAM. The states of the robot position and 3D landmarks
are modeled as a joint Gaussian distribution, which accounts for the correlations
between map and position imposed by re-observation across time. Incremental state

estimation is done using the Extended Kalman Filter EKF taking into account meas-
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Xj+1 X;

Figure 2.1: Hlustration of sparse structure from motion pipeline: image features u
are first detected and matched on the image pair, then camera poses x are jointly
estimated with 3D points y via non-linear optimisation to minimise the distances
between the projection of the 3D points and the detected ones. (Image adapted
from [Pollefeys et al., 1999].)

urement uncertainty. This formulation became standard for robot SLAM, and was
later developed in different robot applications [Leonard and Whyte, 1991, Castel-
lanos, 1998, Davison, 1998, Newman, 1999).

Robot SLAM methods were constrained to 2D maps and used robot wheel odo-
metry for motion estimation and range measurements for landmarks. [Harris and
Pike, 1987] was the first approach to tackle the general 3D problem with a free
moving camera. They presented a system capable of tracking the camera position
incrementally with respect to an estimated 3D point cloud. The system performed
iterative inference using a Kalman filter with the associated Harris features, how-
ever they assumed independent states and did not model correlations. [Broida et al.,
1990] later proposed a system which modeled the full state covariance, and included
an initial Bundle Adjustment step for initialisation, however they assumed all the
feature correspondences were given. [Chiuso et al., 2002] presented a system where

inserting new features was taking into account, however this was done is a sep-
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arate filter and limited application to a compact space of 20-40 landmarks, and
did not account for re-observing landmarks. [Davison, 2003] pioneered the first full,
automatic monocular visual SLAM system, MonoSLAM. MonoSLAM used the joint
uncertainty for efficient feature tracking, which allowed re-detection of unobserved
features. It also developed an automatic top-down feature initialisation procedure
by modeling a depth distribution, and a map management strategy for discarding
spurious landmarks and keeping a reasonable sized state. MonoSLAM showed un-
precedented performance with respect to localisation with fast camera motion, and

the ability to not accumulate drift under continious operation in a room scale scene.

2.1.2 Bundle adjustment

The limitation of filtering based SLAM are the errors introduced by accumulating
linearisation of non linear measurements, and the quadratic continuous time and
space complexity with respect to state size, which limits the number of landmarks
used. To counter these limitations a new evolution of SLAM methods relying on local
bundle adjustment emerged. [Nistér et al., 2004] proposed a visual odometry system
for guiding a robotic outdoor car. Motion was solved for a group of frames, in a slid-
ing window of 3 frames, by the 5-point algorithm [Nistér, 2004] with Random Sample
Consensus RANSAC [Fischler and Bolles, 1981] followed by bundle adjustment us-
ing tracked 2D features, from which 3D feature positions are then triangulated.
However this system does not take into account landmark re-observation, leading to
drift in motion. [Engels et al., 2006] further expands this framework by performing
local bundle adjustment with the Levenberg-Marquardt optimiser [Levenberg, 1944]
for a window of 20 frames, achieving real-time performance by efficient optimisation
leveraging the sparsity structure in the factor graph. To avoid the windowed op-
timisation to diverge from past past measurements, the gauge is fixed by fixing the
first camera pose in the local window. They show improved stability over long term

sequences preventing gross failure modes.

[Mouragnon et al., 2006] concurrently presented a systems scaling to 1000s of

3D points for city scale trajectories and introducing the concept of keyframes. Key-
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frames are selected subset of frames used for efficiency local bundle adjustment,
chosen when few matches are obtained or when pose uncertainty is high. Finally
Parallel Tracking and Mapping (PTAM) [Klein and Murray, 2007] consolidated local
bundle adjustment developments and added new innovations to form the basis of
modern monocular sparse SLAM systems. First they introduced the concept of par-
allel tracking and mapping, where they separate camera tracking given the map,
and map building with bundle adjustment into separate threads. Tracking runs at
a higher frame rate which is important for most applications, while map building
at slower rate, allowing more accurate and bigger maps. Second they associate 3D
landmark descriptors to the keyframe image where they were initialised, allowing
reobservation of features and simplified feature tracking. PTAM demonstrated that
keyframe bundle adjustement presents much higher accuracy and robustness than

filter based methods.

[Strasdat et al., 2012] presents further analysis comparing both techniques, high-
lighting that the benefits of local bundle adjustment come from the ability to use
many more map points by leveraging factor graph sparsity, in contrast to filter
methods that introduce variable dependencies through marginalisation. However,
filtering systems still remain used in the visual odometry systems, specifically when
combined with inertial measurement units (IMU) as in [Mourikis and Roumeliotis,

2007].

2.2 Dense Reconstruction

The sparse methods presented were designed with the main objective of precise and
efficient camera localisation, and thus model the 3D scene with a sparse point cloud.
In applications such as robotics a much richer and detailed geometric reconstruction
is necessary. This led to a new category of methods for Dense Reconstruction and
SLAM. In this section we will give an overview of the 3D scene representations and

estimation methods developed for dense reconstruction.
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2.2.1 Multi-View Stereo

The first developments in dense visual reconstruction came about by tackling the ste-
reo correspondence problem; an overview is given in [Scharstein and Szeliski, 2001].
This category of methods aim at establishing a dense correspondence between a
pair of calibrated images. In contrast to sparse methods, they aim to establish
correspondence in a dense manner, introducing the concept of a disparity image
(analogous to inverse depth image) [Okutomi and Kanade, 1993]. The disparity
image defines for every pixel in a reference frame the vector to the pixel corres-
ponding to the same 3D point in the other image, across the epipolar line. A
big family of algorithms exist for stereo correspondence, but rely on the two main
concepts of photo-metric matching cost and reqularisation. The photo-metric cost
measures the appearance agreement between corresponding pixels, and is normally
aggregated across a small local window, such as with Sum of Squared Differences
SSD [Anandan, 1989]. Because of the under-constrained solution space, especially in
smoothly textured areas, a regularisation penalty to encourage local smoothness is
added [Yang et al., 1993]. The disparity image is solved for to maxisimise the photo-
metric cost given the regularisation. A wide variety of optmisation algorithms exist
for solving two view disparity optimisation, including quantised local optmisation
such as plane-sweep [Collins, 1996], combinatorial global optimisation as graph-
cut [Kolmogorov and Zabih, 2001], dynamic programming [Cox et al., 1996], and

cooperative algorithms [Zitnick and Kanade, 2000].

2.2.2 Dense Monocular SLAM

[Pollefeys et al., 1999] introduced one of the first full automatic dense reconstruction
systems, using sparse local bundle adjustment for camera pose estimation, followed
by dense multi-view stereo matching with dynamic programming, then fusing the
depth maps into a volumetric map [Curless and Levoy, 1996] and extracting a a full
geometric mesh with marching cubes [Lorensen and Cline, 1987]. [Pollefeys et al.,
2008] extended the system for real-time incremental reconstruction using GPU hard-

ware acceleration. DTAM [Newcombe et al., 2011b] pioneered dense SLAM, showing
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unprecedented real-time reconstruction with a monocular video stream, by combin-
ing primal-dual non convex optimisation [Chambolle and Pock, 2011] with cost
volumes using GPU hardware acceleration [Hosni et al., 2013]. Furthermore camera
tracking was done within the dense representation using Lukas-Kanade non-linear

least squares optimisation [Lucas and Kanade, 1981].

In this thesis we will not directly tackle the multi-view stereo problem, since
the development of depth camera commodity sensors provides accurate dense depth
image measurements for indoor environments by using active infrared projection,

with the first commercial product introduced by Kinect [Microsoft Corp, 2010].

2.2.3 Depth Fusion

Given a set of depth image measurements, the next problem in dense reconstruction
is measurement fusion, that is how to combine the underlying depth measurements
into a coherent 3D map. This is to build a persistent scene model, avoiding geometric
redundancy of depth measurements averaging out measurement noise. We will next
describe different 3D representations with their corresponding estimation algorithms
for dense fusion. A common representation is to discretise space into a uniformly
spaced grid. This technique was originally developed for building occupancy grid
maps for robotic localisation and navigation from range measurements coming from
sonar, ultra-sound or stereo camera sensors [Moravec and Elfes, 1985, Thrun, 1998,
Buhmann et al., 1995]. Originally these methods were developed for 2D grid maps
representing horizontal slices parallel to the ground plane, but were later generalised
to full 3D voxel grids [Martin and Moravec, 1996]. An occupancy grid map stores for
each cell the probability of it being occupied by an object, and these are estimated
with inverse sensor models, back projecting range measurements into the grid and

solving a an estimation problem for each cell independently.

3D voxel grid maps were then extended to store signed distance, which is more
informative than occupancy as it represents the distance to the closest surface, and

allow for recovering if desired more precise explicit surface geometry. [Curless and
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Figure 2.2: Normals render of dense reconstruction from KinectFusion obtained by
fusing depth image measurements into a signed distance function voxel grid. (Image
adapted from [Newcombe et al., 2011al].)

Levoy, 1996] presented an incremental algorithm for incremental fusion of range
measurements into a Signed Distance Function (SDF) grid. The method works by
using the range measurement to approximates the signed distance function near
the surface, under a truncation distance, and accumulating or fusing measurements
through a weighted average for each voxel, where the weight takes into account geo-
metric properties to reflect how well the range measurement approximated the SDF.
KinectFusion [Newcombe et al., 2011a], see Figure 2.2, builds on top of this tech-
nique a full Dense SLAM system than runs in real-time on a desktop computer with
parallel GPU implementation and using a Kinect depth sensor camera. Through
ray-casting [Parker et al., 1998] of the SDF volume grid, they can render or predict
a depth image from a given camera pose. Given the rendered image, camera track-
ing is performed in an alternating manner with map fusion, via point-plane Iterative
Closest Point ICP [Chen and Medioni, 1992] with projective data association. By
doing model to frame camera tracking KinectFusion displays less drift than frame

to frame depth tracking such as in [Rusinkiewicz et al., 2002].

Dense SLAM methods with voxel grids cannot scale to bigger spaces because of cu-

bic memory and computation complexity. To tackle this, methods leveraging data
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structures for efficient spatial decomposition, such as hierarchical octrees [Wurm
et al., 2010, Vespa et al., 2018] or hash-tables [Niefiner et al., 2013a, Kahler et al.,
2015], expanded on voxel-based dense SLAM. Another category of Dense SLAM
methods directly model surface geometry as a map representation, in contrast to
occupancy or SDF which are implicit surface representations. In ElasticFusion
[Whelan et al., 2015] the map is represented as a dense collection of surfels (similar
to a point cloud), which are small oriented discs. ElasticFusion adds a deformation
graph on top of the surfels, which allows non-rigid deformation to correct for local
loop closures. BAD SLAM [Schops et al., 2019] extends this, and allows an alternat-
ing bundle adjustment optimisation of surfels and camera poses, by limiting surfels

to move along the normal direction.

The algorithmic simplicity with natural parallelisation, and reconstruction accur-
acy has made voxel fusion based dense SLAM systems dominant in the robotics
community. However, several of the assumptions made impose important limita-
tions as outlined in the future work section of [Newcombe, 2012]. First, tracking
and mapping are separated into independent alternating optimisation procedures.
This is because the full dense probabilistic SLAM problem considering the joint
distribution of camera trajectory and map is not modeled. Instead the problem is
split into independent estimation problems for each cell and each frame. This causes
drift and map error accumulation, as the solution with this method is only optimal
when each tracking and mapping step also yields an optimal state. More over, the
assumption that each voxel is independent disregards spatial relationships between

them and leads to maps with holes.

2.2.4 (Generative dense reconstruction

A generative formulation for dense reconstruction requires the definition of a forward
sensor model, for computing the the probability of the observation (depth or colour
images) given the full map model. One setting where generative approaches have
been developed is surface reconstruction. In [Cheeseman et al., 1996, Morris et al.,

2001] the surface is modeled using a discrete uniform 2D grid storing elevation
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and surface emitance. A likelihood function is defined for intensity images given
surface parameters, which is solved for using a Bayesian approach which also models
smoothness constraints between adjacent cells. [Zienkiewicz et al., 2016] further
developed this method into an incremental and real-time formulation also integrating
camera tracking, by instead using depth image measurement images obtained from
stereo. OpenDR [Loper and Black, 2014] provided a suite for differential rendering
of arbitrary meshes by approximating derivatives of the standard graphics rendering
pipeline, which can serve as a generative model for solving computer vision problems,

a process referred to as inverse graphics.

For implicit reconstruction, [Thrun, 2003] presents an approach for 2D occupancy
mapping using a sonar sensor with forward sensor models, by defining a Gaussian
mixture model over possible distances along each each measurement cone. The
likelihood is then optimised using an alternating Expectation Maximisation EM ap-
proach. [Liu and Cooper, 2010, Liu and Cooper, 2011, Liu and Cooper, 2014] present
a Bayesian formulation for 3D reconstruction through inverse ray-tracing. The map
is represented by a grid of voxels which store opacity and color. For MAP estimation
of the voxel parameters a ray Markov Fields is formulated, in which factors connect
a pixel color to the voxels along the back projected ray, and are derived from the
rendering equation [Kajiya, 1986]. Additional factors between voxels are added to
impose smoothness constraints. Inference is done with an efficient implementation

of loopy belief propagation, and this runs in an offline batch setting.

One challenge with generative approaches for volumetric implicit 3D reconstruc-
tion is the expensive memory and computation cost of a full voxel grid. Hierarch-
ical representations such as octrees can be difficult to employ because the pruning
operations are not differentiable. An alternative representation which has been ex-
plored for representing implicit volumes is the use of a continuous function, without
any explicit discretisation. One example combining hierarchical space decomposi-
tion with a basis of continuous functions is Poisson Surface Reconstruction [Bolitho
et al., 2009]. This method represents space through a linear combination of cubic

b-splines at different hierarchical levels. The coefficients are solved for given a point
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cloud with normals by solving the Poission equations they define using non-linear
optimisation. By modeling spatial continuity the method can fill in surface holes
in the data. Hilbert Maps [Ramos and Ott, 2016] are a method for 2D occupancy
mapping without any discretisation of space by modeling reconstruction as logistic
regression of occupancy on point coordinates. The regression is learned on a semi-
dense point cloud, where the datastet is such that the 2D coordinates are the input
to the classifier and binary occupancy is the output. The method demonstrates
that the formulation allows better generalisation in areas with no measurments and
robustness to outliers. To be able to model complex scenes regression is performed
on Fourier features of the 2D coordinates, approximating Kernel regression. More
recently and relevant to iMAP, Chapter 5, NeRF [Mildenhall et al., 2020a] uses an
MLP (which maps coordinates to volume density and color) as a continious 3D scene
representation for novel view synthesis. The MLP is supervised through a dataset
of RGB images with known camera poses through a differential formulation of the

volume rendering equation, achieving unprecedented novel view synthesis quality.

In iMAP, Chapter 5, we will present a full generative dense SLAM formulation
for room-scale reconstruction by combining a continuous 3D map represented with
an MLP with a probabilistic differential volume renderer of depth and color. We
present a system which runs in incrementally real-time on a GPU from a stream of
depth images using the following design components: keyframe selection, parallel
tracking and mapping, and active sparse optimisation. Our method enables joint
graph optimisation, automatic hole filling and map compression with dynamic level

of detail.

2.3 Semantics

To move beyond pure geometric understanding of a scene, a useful representation
must contain information about abstractions, such as a decomposition into objects
or information about semantics. Furthermore the ability to abstract a dense map

into object models offers opportunities for efficient scene representation, to handle
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moving objects, and for providing strong priors on reconstruction with incomplete

data.

Finding what and where are the objects in an image has been widely studied in the
computer vision community. Object detection aims to estimate the region within the
image where an object is, and pose estimation is finding the transformation of a 3D
object with respect to the camera. Initial approaches for object detection focused on
detecting specific objects through template matching [Fischler and Elschlager, 1973,
Huttenlocher et al., 1993]. The basic idea is to collect a set of patch templates from
an object and use this library to detect the object in the new image by using some
patch correlation distance. These methods have been extended to be more robust to
changes in illumination through the use of depth and edge cues, such as LINEMOD
[Hinterstoisser et al., 2012], as well as to be robust to different viewpoints by using 3D
CAD models to collect more templates [Hinterstoisser et al., 2013]. However these
methods are still not robust in cluttered settings and with very different viewing
conditions. The development of local image descriptors such as SIFT [Lowe, 1999]
designed to be invariant to viewpoint and lighting led to more robust and efficient
object matching algorithms, such as the system presented in MOPED [Collet et al.,
2011].

In order to go beyond detecting specific object instances to detect objects within
a semantic category such as chair, statistical machine learning methods are used.
These methods consist of a first stage of image feature extraction such as Bag of
Words [Csurka et al., 2004] which accumulates local descriptors into a histogram or
convolving a bank of filters such as Haar wavelets [Viola and Jones, 2001], followed by
applying a classifier such as SVM [Dalal and Triggs, 2005], a random forest [Bosch
et al., 2007], or boosting [Torralba et al., 2004]. The classifier is learned using a
dataset of labeled training images. Object detection methods normally provide a
coarse estimate, such as a rectangular bounding box, of the object’s position in
the image. The problem of obtaining a precise pixelwise separation of the object is
referred to as image segmentation. [Shi and Malik, 2000] formulated segmentation as

a graph partitioning problem, where pixels are nodes and edge strength is determined
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intensity and location similarity. A probabilistic formulation for segmentation was
proposed with the use of Conditional Random Fields (CRF) [Lafferty et al., 2001],
for example objcut [Kumar et al., 2005] proposes a method for object detection and

segmentation by combining shape templates with CRFs.

The advent of deep learning has provided a unified framework for object detection,
image segmentation, and object pose estimation which has dominated recent years
because of its simplicity and improved accuracy. The basic backbone for modern
methods is the Convolutional Neural Network architecture which was introduced by
Yann LeCUn in LeNet5 [LeCun et al., 1998]. Inspired by hand crafted filter banks,
CNN stack layers of optimisable or learnable convolutional filters followed by non
linear activations with a classifier at the end. All the parameters are trained in
an end to end manner by supervised learning in a dataset with images and ground
truth labels. 2012 was the year when the domination of deep learning started with
AlexNet [Krizhevsky et al., 2012] which outperformed all other methods in the
challenging large scale ImageNet [Krizhevsky et al., 2012] classification challenge by
leveraging GPU parallelisation of CNNs. VGG-net [Simonyan and Zisserman, 2015]
showed that the use of smaller 3x3 filters allowed for more layers to be stacked and
get better performance. This network architecture is the backbone used for pose
prediction used in the NodeSLAM system, Chapter 4, presented in this thesis. This
was taken even further in ResNet [He et al., 2016] by stacking 157 layers, and forms
the backbone of many image recognition modules. CNNs were adapted beyond
classification for object detection in works such as R-CNN [Girshick et al., 2014],
and Faster-RCNN [Ren et al., 2015] by using regions of interest, and for instance
segmentation in Mask-RCNN [He et al., 2017]. Mask-RCNN is used for the object

detection and segmentation modules we use in NodeSLAM Chapter 4.

2.3.1 Geometry and semantics

For going beyond images to performing object detection or semantic segmentation
in 3D maps, a process referred to as scene labeling, earlier approaches relied using

geometric cues from an already reconstructed map to group elements. In [Niichter
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et al., 2003] planar regions are extracted from a point cloud using Random Sample
Consensus RANSAC, and classified into floor, wall, or celling based on hand designed
relative orientation and position constraints. In [Mozos et al., 2007] an Adaboost
classifier is trained to separate a 2D occupancy map into semantic classes from
geometric cues. [Brostow et al., 2008] leveraged a dense point cloud obtained from
SfM to project geometric cues into the image and then combine with appearance for
segmentation with a random forest. [Koppula et al., 2011] perform segmentation on
a 3D point cloud scan obtained from an RGB-D sensor by aggregating appearance
and geometric features into the 3D map, and performing classification with a Markov
Random Field with log-linear nodes and edge potentials, trained on a dataset of 50
scenes. In SemanticPaint [Valentin et al., 2015], rather than pre-training on a labeled
dataset, training is done interactively in for a specific scene. For this KinectFusion
is run for real-time voxel-based reconstruction, then a user interactively annotates
sparse labels indicating objects in the voxel map. The user labels are propagated
through a CRF and fed to a random forest classifier which is trained online with
geometric features concurrent to the reconstruction and labelling. The method of

SemanticPaint inspired our work of iLabel in Chapter 6.

With the popularity and accuracy of image based recognition due to easier data
availability, another category of methods for scene labeling first performs image
segmentation and then fuses the labels into a 3D map. These methods accumulate
2D labels into a 3D structure with Bayesian updates and then regularise the labels
in 3D using a Conditional Random Field (CRF). [Stiickler et al., 2015, Hermans
et al., 2014] both use a Random Decision Forest for 2D classification and point
cloud or surfel 3D structures for label fusion. [Kundu et al., 2014] accumulates 2D
labels into an octree representation which scales to bigger scenes. [Cavallari and
Di Stefano, 2016] and Semantic Fusion [McCormac et al., 2017] leverage improved
CNN 2D classifiers for semantic fusion jointly with dense real-time SLAM systems

KinectFusion and SemanticFusion respectively.

In iLabel, Chapter 6, we build on top of iMAP to test the hypothesis that auto-

matic compression of a scene should discover underlying structure in the form of
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object abstractions. For this, we extend the scene representation MLP of iMAP to
produce semantic outputs, thereby modeling geometry, color, and semantics with a
unified generative model. The semantic outputs are then supervised interactively
through sparse pixel anchors provided by the user. We show that the MLP auto-
matically propagates the anchors into full object instance segmentations. We find
that the propagation is correlated to local geometry and color, respecting object
boundaries, and global color appearance, providing evidence that scene compression
is enabled by scene decomposition and grouping. iLabel serves as a practical system

for efficient open-set scene labeling.

2.3.2 Object based reconstruction

For efficient 3D scene reasoning a category of methods aim to abstract a 3D map
through the detection of object templates from a pre-built dataset. [Castle et al.,
2007] was one of the first sustems to integrate object templates into a SLAM pipeline.
They detect the position of known planar objects such as posters through SIFT
descriptor matching and insert them into the MonoSLAM system. They show that
constraints the planar objects impose on 3D features improves tracking robustness
and allows for scale estimation within the monocular setup. [Civera et al., 2011] goes
beyond planar objects and inserts pre-scanned dense objects point-clouds detected
with SURF descriptors into MonoSLAM. [Kim et al., 2012] leverages a dense scan
to replace common office objects such as chairs, desks, and monitors with templates
of these objects constructed using basic cubic primitives. The detection components

of this method are geometric using point cloud clustering principal axis detection.

SLAM++ [Salas-Moreno et al., 2013] shown in Figure 2.3, pioneered object based
SLAM, where objects, templates serve as the landmarks of a real-time SLAM sys-
tem. As a first pre-processing stage a high quality dataset of objects meshes is
constructed by KinectFusion scanning. Then a new scene is reconstructed under
the assumption that it contains enough instances of some of the object templates.
During live operation from a depth camera input stream, the 6-DoF pose of the

objects is estimated by Hough forest voting with geometric Point Pair Features, and
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~/

Figure 2.3: Example from SLAM-++ where the 3D map is abstracted into a sparse
graph of objects. The inserted objects are rigid templates from a pre-scanned data-
set. (Image adapted from [Salas-Moreno et al., 2013].)

these are inserted into the map model. The camera position is tracked with ICP
with respect to the map of object meshes. The full optimisation problem can be
abstracted into a sparse graph with the objects and history of camera poses as vari-
ables, and ICP constraints between them, which allows a joint graph optimisation
reminiscent of sparse SLAM bundle adjustment. The general pipeline of NodeSLAM
in Chapter 4 is inspired by SLAM++, with object detection and joint graph optim-
isation components. In follow up work Fusion++ [McCormac et al., 2018], rather
than use a pre-scanned template library a generic image object detector is used and
SDF fusion is done in a per-object voxelgrid. The objects are then used in a joint

graph optimisation similar to SLAM++.

2.3.3 Semantic shape priors

In order to go beyond a fixed shape template a category of methods increase flex-
ibility in shape variations within objects of a given class (such as cars) through
parametric object models. Initial parametric shape priors developed as a top down
approach to guide 2D segmentation and make it more robust to noise in local stat-

istics. In [Cremers et al., 2001] an approach is proposed where segmentation is
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modeled through a spline curve with control points, referred to as snake-based seg-
mentation. A prior distribution over the control points is learned from a dataset
of hand images. Then segmentation is formulated as a variational energy min-
imisation problem, with a term encouraging the spline to be within the training
distribution and another term measuring how well the spline segments the image,
such as smoothness within the regions and following image gradients. [Dambreville
et al., 2008b] extends this formulation by modeling the segmentation curve impli-
citly through a 2D SDF. Principal Component Analysis PCA is then performed on
a set of aligned 2D shapes to obtain a low dimensional latent space. By modeling
the contour implicitly this method has more robust optimisation and can handle
topological changes. More expressive latent spaces were developed by introducing
non-linearities with Kernel-PCA [Dambreville et al., 2008a] or probabilistic latent
spaces such as GP-LVM [Prisacariu and Reid, 2011]. The overall category of meth-
ods where a 2D boundary is obtained by the projection of a higher level function is

referred to as level-set based segmentation.

The later evolution of these methods obtains the 2D contour as a projection of a
3D model, thus modeling shape variation due to viewpoint explicitly. In [Tsai et al.,
2003] the same variational energy approach is used for segmentation, but the contour
is modeled through the projection of the 3D surface from a known model, then the
energy is minimised with respect to the pose parameters of the 3D shape. To allow
variation in shape, in [Yingze Bao et al., 2013] the 3D surface has a mean shape
plus anchor points associated with it, which allow smooth deformations through a
thin plate splice formulation. This method then uses the shape prior to densify and

complete a multi-view stereo sparse reconstruction by matching the anchor points.

PWP3D [Prisacariu and Reid, 2012] proposed an energy based formulation for
both 2D segmentation and real-time 3D object pose tracking of a known model. In
this method a vertex based 3D model is first rendered and then converted into a 2D
implicit distance transform. [Prisacariu et al., 2013] adopted an implicit voxel based
representation for 3D object shape. A latent space is then learned by GP-LVM using

a dataset of aligned 3D car shapes. This representation is then used for recovering
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Figure 2.4: Example of using shape prior from car class to complete and regularise
a dense reconstruction. (Image adapted from [Dame et al., 2013].)

3D shape and pose, and 2D segmentation from one or more images by a level set
energy minimsation from the rendered contours. [Dame et al., 2013], see Figure 2.4,
extended this by combining the shape priors into a monocular SLAM systems. The
energy formulation for the object shape is extended to account for the estimated
surface from the SLAM system. [Engelmann et al., 2016] applied similar techniques

to a larger scale setting, reconstructing the shape of cars in a city scale dataset.

Neural networks were used to develop more expressive compressive generative
models than linear models such as PCA. Initially these methods were developed for
compression of images such as in Variational Auto-Encoders (VAEs) which learned
probabilistic compact latent space through a bottleneck CNN network or a Gener-
ative Adversarial Network (GAN) which learned to generate images by competing
generative and discriminative networks. These generative methods allow sampling
new data that resembles the training distribution. With the development of datasets
for 3D shapes such as ShapeNet [Chang et al., 2015], these methods were extend
to 3D by using 3D CNNs [Wu et al., 2016] or coordinate-based MLPs as in [Park
et al., 2019].

In NodeSLAM, Chapter 4, we present an object-level SLAM system which
combines class-level parametric objects models within a sparse graph optimisation
pipeline as in SLAM-++. The parametric models are learned on occupancy 3D grids
by a VAE neural network trained on a dataset of object shapes, and at inference
time we leverage a CNN detector. The ability to go beyond the fixed templates

of SLAM++ allows us to model variation within a semantic class such as mugs.
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We show our system produces accurate and complete object reconstructions from

partial observations, and demonstrate this in a robotic object packing application.
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In this section we will describe the technical components that will form the basis
for the systems we develop throughout the thesis, encompassed by the use of neural
representation for dense semantic SLAM. In Sections 3.2 and 3.3 we present the
basics of 3D geometry for visual SLAM, describing the camera model and rigid
transformations respectively. In Section 3.4 we describe the probabilistic language
of SLAM, factor graphs, and in Section 3.5 how to do inference in them through
non-linear optimisation. In Section 3.6 we talk about neural networks which we
will use both as building blocks for both discriminative inference and generative
representations. Finally in Section 3.9 we describe differential volumetric rendering

which will serve as the measurement function we use in generative dense SLAM.

3.1 Notation

This thesis makes use of the following notation:

3.1.1 General Notation

a This font is used for scalars.
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a This font is used for M-dimensional column vectors, where a; is the ith

element of the vector:

a
as
T
a= 5 a = a, das 2573 (3 1)
am
A This font is for M x N-dimensional matrices, where a;; is the matrix

J

element at the i*® row and jth column:

aqq a9 Ce ain
-aMl aM2 DY aMN-
I This represents the identity matrix.
0 This represents the zero matrix.
3.1.2 Probability
p(x) This represents the probability density of x.

p(x|ly)  This represents the probability density of x given y.

3.1.3 Spaces and Manifolds

R This denotes the set of real numbers.
RrRM This denotes the vector space of real M-dimensional vectors.
RM*N This denotes the vector space of real M X N-dimensional matrices.

SO(3) This denotes the 3D rotation group.
SE(3) This denotes the Special Euclidean group.

3.1.4 Frames and Transformations
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a, The represents the vector a expressed in Frame A in R3.

R,z This represents a 3D rotation expressed as a rotation matrix (i.e. Ryp €
SO(3)).

Tup This represents the homogeneous transformation matrix that trans-

forms homogeneous points from frame B in R3 to frame A in R>.

3.1.5 Camera Models and Images

Ix This represents the horizontal focal length of the camera, in pixels.
Iy This represents the vertical focal length of the camera, in pixels.
Cy This represents the horizontal coordinate of the camera centre, in
pixels.
cy This represents the vertical coordinate of the camera centre, in pixels.
K This represents the intrinsic camera matrix:
fo 0 o
K=10 f ¢l (3.3)
0 0 1
() This denotes the perspective projection function:
ay
1 |a;
w(@) =7 |a,||=— . (3.4)
as |q,
as
I(u) This represents the intensity at pixel coordinate u.
D(u) This represents the depth value corresponding to the pixel coordinate
u.

3.2 Camera Model

We use a pinhole camera to model the relation between points in the 3D world

and 2D points in the image plane (modeling the captured image of a CCD type
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X P
B

\

WV

Figure 3.1: Pinhole camera model

sensor). This model will form a core component of the methods developed for 3D

reconstruction: going from images to a 3D map.

Projection: We will derive the equations for projecting a point in a 3D Euclidean
space into a 2D point in the image plane. Consider a 3D point P with coordinates
[x,y,z]" and an image plane defined by Z = f, with f defined as the focal distance,
see Figure 3.1. The projection is given by the intersection of the image plane and the
line joining the camera centre (origin of the 3D Euclidean space) and point P. By
similar triangles we see [x, y, z]7 is mapped into [fZ f%, f]T7 so in the image plane
coordinate system p = [fZ, f %]T We define the line perpendicular to the image
plane passing through the camera centre as the principal axis and the intersection

of image plane and principal axis as the principal point,.

Intrinsic matrix: It is convenient to express this equation in matrix form as :

p = 7(KP), (3.5)
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whose
f 00
K=[0 £ 0 (3.6)
0 01

is the intrinsic matriz describing the projection parameters of our camera sensor,

and:

(3.7)

N N

the projection operator.

Two extensions are needed for the general pinhole camera model. First, we model
a displacement, c,,c,, between the image plane origin and the principal point.
Second we model the scaling of the different image axes (due to rectangular pixels)
by using different focal components for each axes f,, f,. This gives the full pinhole

model equation:

KP: 0 fy Cy y = fyy+cyz ’ (38)
0 0 1]|z Z
and
fix+c,
p=n(KP) = . (3.9)
fyy +cy

Back projection: We are often interested in modelling the inverse operation to
projection, back projection. As projection collapses all the points that lie in a ray into
a single point (that is it is not an injective function), it is not invertible. Therefore
back projection maps a point in the image plane into a 3D ray, represented by the

following vector:
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1 CX M—CX
ul g O =F e |TE
| ool 2]
Ko lvf=10 & 2|y 7=~ (3.10)
1 0 0 1 1 1

We define the depth of a 3D point as the distance from the point to the plane the
camera origin and orthogonal to the principal axis. Given the depth of a 3D point,

d, and its projection, [u, v]T | we can recover the point as:

U—Cc, X—c,
A B
_ v—cy [ y-c,
P=d|—=>|=|d7>|. (3.11)
1 d

3.3 Transformations

In the previous section we described how to model the relation between 3D points
and an image, with the camera is at the world origin, which assumes the camera
is static. We are interested in modelling a moving camera for which we need to
model its position in space. We describe the pose of the camera using a rigid point

transformation Ty, € SE(3):

Rew tw (3.12)

with Ry € SO(3) and ty, € R®.

In this way, to project a 3D point Py, we first transform it from the world frame

into the camera frame, and then proceed with the pinhole projection:

p =n(KPe). (3.14)
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Lie Groups and Tangent Space As we will see in future chapters, rigid trans-
formations will be unknown variables which we solve for through optimisation tech-
niques. As rotations cannot be modeled as Euclidean vector space, which is an
assumption in optimisation, we will describe how to associate members of the Lie
group of rotations, SO(3), into a vector space where we can use optimisation tech-

niques, the Lie algebra: so(3).

The Lie algebra is defined as the tangent space around the identity of the lie group.
In the case of SO(3), its Lie algebra is the vector space spanned by the following

basis vectors:

00 0 0 01 0 -1 0
G, =10 0 -1|, Gy=]|0 0 0|, Gy=|1 0 0. (3.15)
01 0 -1 0 0 0 0 O

We define the the [], operator as the mapping of the basis coefficients w € R3

into its corresponding element in the Lie algebra, such that:

0 —Wsg Wy
(Wl =|w; 0 -w- (3.16)
—wy W1 0

w can be directly interpreted as a compact representation of a 3D rotation, where
the direction of the vector gives the axis of rotation and the magnitude the angle of

rotation. This also shows that a 3D rotatin has 3 degrees of freedom.

Exponential and logarithmic maps: For associating elements of so(3) to ele-
ments of SO(3), and vice versa, we use the exponential map and logarithmic map
respectively. The exponential map refers to the matrix exponential map, defined as

follows:

exp : $0(3) — SO(3) (3.17)
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o 1 w: Wl
exp(wy) = ;} 9% = I+w,+ Q—T + 3—;( + ... (3.18)

In the case of SO(3) the exponential map has a closed form, known as the Rodrig-

uez formula:

I+ [wl+iwl=1, for =0
exp(wy) = . T ) (3:19)
I+ smg(ﬂ) [w], + 1_622(0) %[w]i, otherwise
with
0= llwll, (3.20)

The logarithmic map is the inverse to the exponential map, and is given by:

exp : SO(3) — s0(3), (3.21)

IR-R" =0, ford=1

log(R) = o
aecosld (R - R"), ford e (-1,1)
2V1-4>
with:
1
d= 5(trace(R) - 1. (3:29)

Derivatives: Given the mapping from the rotation Lie group SO(3) into its lie
algebra vector space $0(3), we can now perform optimisation of rotation matrices
parameterised through the compact representation w. The partial derivatives of the
exponential map with respect to the k-th element of w is given by its corresponding

generator, that is:

0
— exp(wl]y) = G,. 3.24
awk X w0 k ( )
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/° °

~

Figure 3.2: A SLAM example where a robot is moving, robot position in time
shown though green nodes, and landmark position with blue nodes. The dashed
lines represent indicate landmark observations.

Because the tangent space is defined around the identity, we calculate the partial

of the increment around R as:

= G,R. (3.25)

3.4 Factor Graphs

For inference problems, factor graphs, a type of probabilistic graphical model (PGM),
are a useful visual representation for the structure of the problem, illustrating the
independence relationships between the variables. A full exposition on the subject

can be found in [Dellaert et al., 2017].

Bayes Network: First we introduce Bayes nets, which are a directed graph where
each node represents a random variable and arrows represent a factorization over
the joint probability density over them. More precisely, for a set of random variables

®=20,,...,0,, a Bayes net defines the joint probability distribution as:

p©) = [p;lr)), (3.26)
J

where 7; are the parents of 6; in the graph.
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SLAM example: We illustrate the definition of Bayes net with an abstract SLAM
example shown in Figure 3.2, this problem will have the same core structure to the
systems we will present later (Sections 4, 5). We have a robot moving through
space with a sensor that allows it to make measurements of landmarks in the scene,
visualised in Figure 3.2. In this case the we are interested in estimating both the
pose of the robot at discrete timestamps X;, Xy, X3 and the landmarks positions 1,15,
given measurements zi,Z,Z3,Z,. S0 in this case ® = X,Z, with landmarks and
poses X, and measurements Z, and p(X,Z) = p(X;, Xy, X3,1;,15,13,2;,2,23). By the
definition of the Bayes net visualised in Figure 3.2, the joint distribution can be

factorized as:

P(X,Z) = p(x1)p(X|x1) p(X3]X3)
«*p(l)p(ly)

* p(21]%q)

(3.27)

* p(Z9]X1,11) p(Z3]%9, 1) p(24]x3,15)

This factorization helps with providing a qualitative description of the problem:

p(X1)p(X5]X;) p(X3]|X,) is @ Markov chain on the robot poses, and describes our

knowledge of the robot movement dynamics.

p(1;)p(l,) is a prior distribution on the landmark poses.

p(z,|x;) describes an absolute measurement of the first robot pose.

Finally p(zy|x;,1;) p(23]X9,1;) p(24|X3,1,) describes the measurement model, which
will be an important design element for the choice of representation of our

SLAM system.

Factor graph: Factor graphs are a more general model than Bayes nets, better

suited for representing inference problems as we will describe in the next section 3.5.
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They make a distinction between the unknown variables X and the given measure-
ments Z. Figure 3.3 shows the factor graph for the previously described Bayes net,
nodes represent the unknown variables or states X which are not directly observed
and which we wish to estimate, and the factors are the constraints on these variables
imposed by the measurements Z, visualised as black dots. Formally a factor graph
is bipartite graph, with two types of nodes factors ¢; and variables x;, with edges
only connecting factors to variables. We define X; as the set of variables adjacent to
the factor ¢,;. Then the factor graph defines the factorisation of the following global

function:

$(X) = ]__l $:(X,). (3.28)

One distinction with a Bayes net is that the factors can be un-normalised densit-
ies, we see how this distinction is useful when solving inference problems as in the
next section. Factor graphs are a very general language for a probabilistic descrip-
tion of inference problems, they are independent of the choice of representation or

measurement function.

3.5 Nonlinear Optimisation

Returning to the SLAM example we are interested in finding the unknown state
variables X from the given measurements Z. The maximum a posterior or MAP
estimate are the values that maximise the posterior density P(X|Z). Using Bayes

theorem we see that:

XMAP — arg max P(X|Z)
X

=ar maxw (3-29)
B gX P(Z) ’

Where P(X) is a prior distribution on the states, P(Z|X) is the measurement likeli-

hood, and P(Z) is a normalisation constant. Now in this form, we can discard the
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Figure 3.3: Factor graph of SLAM example, nodes represent variables with unknown
state to be estimated, black squares are factors which constrain the variables on
observed measurements.

term P(Z), as the measurements are given and do not affect the optimisation result.

The numerator can then be computed from our factor graph.

Gaussian distributions: We will now look at a particular case in which we as-
sume that the factor densities have the form of a multinomial Gaussian distribu-
tion. For example, we assume the density of the measurements given the variables,

has the following normal distribution:

P(ZIX) = N(Z, h(X)) o exp(=(Z - h(X)) 27" (Z = h(X))) (3.30)

. Where h(X) is the measurement prediction function and X, is the measure-
ment covariance matrix. When conditioned on given measurements Z we denote the
density as [(X;Z) = p(Z|X) to make it explicit it is only a function of the unknown
variables X. This function is not a Gaussian distribution on X, because of the gen-

erally non-linear function (). Hence, we can now formulate the SLAM problem
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introduced earlier using our factor graph definition, the likelihood is the product of

all factors:

D1y, by, X1, X9, X3) = ¢ (X)) P (Xa[x1) p(X3]%7)
* (1) (1)
* ¢(xq)
* ¢(x1,11) b (xg, 1) p(x3, 1)

(3.31)

, where the factors are given by likelihood functions, as described above.

We will now introduce different optimisation techniques for solving the MAP
optimisation problem for the unknown variables X. For convenience in optimisation

this is equivalent to minimizing the negative logarithm of the function:

XMAP _ arg max ®(X)
X

(3.32)
= arg min —log(®(X))
X

Because of the nonlinear measurement function, this optimisation problem can

not be solved directly, and iterative techniques must be used.

Gradient descent: If ®() is differentiable we can use gradient descent to find a
local minimum in the neighbourhood of an initial estimate X Given the property
that the negative gradient of ®() gives the direction of steepest descent, we perform

the following iterative optimisation algorithm:

XKD = X RD _ o, v (X9 (3.33)

The factor 0 < @ < 1 is the step size, and controls the trade-off between conver-

gence speed and stability.
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Newton Method A more efficient optimisation algorithm requires ® to be twice
differentiable (that is Hg is positive semi-definite in this neighbourhood), and that
we have an estimate of X© close to the local minimum X, which satisfies V®(X) = 0.
Given that X is in the neighborhood of X, we can estimate V®(X) using its first

order Taylor expansion:

VO(X) = VO(X,) + Hp (X)) (X - X). (3.34)

And then following the condition V®(X) = 0 we get the iterative following update

rule:

x (k1) _ x (k) _ Hg)l(X(k))VCD(X(k)). (3.35)

This is equivalent to performing the following update:

Xk = x® 4§ (3.36)

where ¢ is obtained by solving the following linear system, which were refer to as

normal equation:

Ho(X¥) 6 = —vo (X)), (3.37)

This formulation is preferred for numerical stability in implementation.

Gauss-Newton In the case of assuming a Gaussian density likelihood then we

have:
XMAP _ argxmin —log(®(X))
= argxmin —log(exp(—(Z - h(X))"2,' (Z - h(X)))) (3.38)
= argxmin(Z - h(X) 2,MZ - h(X)).

This category of problems is referred to as least squares. In this case the gradient

and Hessian are give by:
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Vo(X) = J,(X)'2, r(X), (3.39)

He(X) = J,(X) " 271,(X) + H,,(X) 27! r(X), (3.40)

where J,, and H), are the Jacobian and Hessian matrices of h(X) respectively, and
r(X) = Z — h(X), is referred to as the residual. We can therefore approximate the
Hessian of ® through:

Hy(X) ~ 1,(X)"57'7,(X) (3.41)

We can then substitute this approximation into the Newton normal equation, to

get the Gauss-Newton update:

=M )8 = —Jz] . (3.42)

3.6 Deep Neural Networks

We will use Neural Networks (NNs) as learnable modules for machine learning, both
for discriminative inference as well as generative representation in the presented
systems. In this section we give a brief overview of the architectures relevant in our

presented works. An in depth exposition can be found in [Goodfellow et al., 2016].

An NN is a function F that maps some input x € RY to an output y € RM that
depends on some learnable parameters ®, such that y = F(x,®). The choice of input
and output depends on the application to be modeled. In classification for example
x is an image and y is a class label. The parameters ® are learned through gradient
based optimisation (Section 3.5) to approximate a unknown function with a dataset

of input output pairs {x;,y;}, a process known as deep learning.

3.6.1 Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) or fully-connected network is the basic neural

network architecture and is the model used for neural fields (Section 3.8.3), and the
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Input Layer Hidden Layer Output Layer

131—)

— 0y

Figure 3.4: Diagram of a Multi-Layer Perceptron (MLP) with 1 hidden layer.

map representation in iMAP, Chapter 5. The MLP consists of stacked blocks of
linear transformations followed by an element-wise non-linearity referred to as an
activation function. For each of these blocks (except the last one) is referred to as

a hidden layer and is defined as:

Xip1 = i(Wix;+by), ie(l,..., L), (3.43)

Where L — 1 is the number of hidden layers, x, and x;,, are the input and output
to the neural network respectively, W; € RN are the weights, b; € RY the biases,
and f; the activation function. The intermediate network outputs x;,i € (1,...,L)
are referred to as features. A schematic of an MLP can be seen in Figure 3.4; the

nodes are normally referred to as neurons.

A common choice for the activation function for hidden layers is ReL U, which is

a hockey-stick shaped function which can “switch off” neurons below 0, defined as:

ReLU(x); = max[0,x;] (3.44)

For the output layer two common activation functions that will be relevant for us
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are the sigmoid, used for binary classification, which squashes the output into the

[0, 1] range:

1

X,

1+e

o(x); = (3.45)

and softmaz used for multi-class classification, and makes a vector sum to 1 so it

becomes a discrete probability distribution:

e

2k ek

softmax(x); = (3.46)

3.6.2 Convolutional Neural Networks

A specific case of fully-connected networks which are particularly suited for grid-
like structures such as images or voxel grids is the Convolutional Neural Network
(CNN). This architecture leverages the self-similar and local structure in images for
efficiency through a representation with sparsity, parameter sharing, and translation
equivariance. This is done by substituting the fully connected layer with a special

case the discrete convolution:

L= fiK; @I +b)), (3.47)

where the ® is the convolution operator. In the case where I is a two-dimensional

RKXK

image, convolving the kernel K € is defined as:

K K
SG,j)=Kel= ) > 1(i-kj-DK(kI), (3.48)
k1
an operation visualised in Figure 3.5.

In practice at each layer several kernels are applied, stacking the output images
to form a three-dimensional grid referred to as a tensor. In this case the kernels
applied thereafter are three-dimensional. Therefore the weights of a hidden layer

have dimension RY*M*KxK , where N is the number of kernels to be applied, M
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Figure 3.5: Visualisation of convolving a kernel with an input image.

the number of kernels applied in the previous layer (referred to as channel size

of the input tensor), and k the kernel size normally taking in the range of values

(k=3,5,7). As we can see the weight size is independent of the image size, which

leads to smaller networks than using an MLP to process images.

An important property of a CNN, is that the spatial structure is preserved in

intermediate feature outputs, which allows spatial resizing such down-sampling or

up-sampling operations, which will be particularly relevant in the bottleneck CNN

architectures discussed in Subsection 3.7.1. The resizing operation is a common fixed

function (no learnable parameters) applied after the activation function of each layer

in a CNN. Down-sampling reduces the spatial dimensions of the input tensor. One
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common operation for this is pooling which summarises the local neighborhood in
a local window, and is applied in a similar way to a convolution but with a fixed
operation, such as taking the maximum in the window (maz-pooling) or the average
(average-pooling). For increasing the spatial dimension of an input up-sampling
operations such as bi-linear interpolation or nearest neighbor are used. The output
of a CNN is an image of features, which in a discriminative network is normally
much smaller than the original input, and can therefore be vectorised and processed

by a fully.connected layer to obtain classification scores.

3.7 Deep Generative Models

In Section 3.4 we described probabilistic graphical models for calculating the dis-
tribution of the observed measurements Z given some hidden variables or states X,
p(Z]X), where we have an explicit model of the problem. However, for certain ap-
plications we may want to learn or discover a relationship between some hidden or
latent variable z, and the observed data x (notice we are using the opposite nota-
tion in this case where x is now the observed variable). An example would be if
we have a dataset of faces we may want to discover some low dimensional features,
such as the shape of the nose or the distance between the eyes, to represent without
explicitly modeling it. The use of neural networks for learning generative models is
called Deep Generative Models (DGM), and in the next section we will describe one
particular instance we use in NodeSLAM, Chapter 4, the Variational Auto-Encoder

(VAE) [Kingma and Welling, 2014].

3.7.1 Variational Auto-Encoder

DGMs can perform different tasks such as density estimation, data generation, data
compression, and data interpolation. For our applications we are interesting in
discovering a latent space which is compact and smooth, to be used within an
optimisation framework. For this reason we choose a probabilistic auto-encoder

model, the Variational Auto-Encoder (VAE).
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Given a dataset xil\:fl of samples from a random variable x which we assume is
generated from some underlying latent variable z (of much smaller dimension), we
wish to learn a generative model pg(x,z). For this first we define a deterministic
auto-encoder (AE) neural network. An AE is a bottleneck network with two com-
ponents: an encoder network Eg(x;) = z; that maps a data point to a compressed
vector z;, and a decoder network that aims to reconstruct the data point from the
compressed vector Dg(z;) = X;; see Figure 4.4. This networks are optimised to max-
imise the conditional data likelihood, whose form for example inthe case of Bernoulli

variables is given by:

po(x|z) = ﬂ Ber(x;|0(De (Eq(z:))))- (3.49)

Now a VAE extends an AE so that the latent space is probabilistic, and we can
sample from it (in an AE there is no structure imposed on a latent space). To do this
we assume a prior on the latent space p(z), taken to be a unit Gaussian distribution.
To optimise the data likelihood given the prior, variational inference [Murphy, 2023]

is used by approximating the posterior with a recognition model:

40 (2|x) = 4o (2|E¢(x)) ~ p(x|2), (3.50)

where g4 (2]x) is a Gaussian with parameters predicted by the encoder network:

9o (2[x) = N (z|p, diag(exp(€))), (3.51)

(1, 8) = Eg(2), (3.52)

where £ = log(o). See Figure 4.4 for an illustration of the VAE architecture. The
process of using an inference network for inverting the generative model rather
than optimisation of the latent code is known as amortised inference. However
in NodeSLAM (Section 4) we will do latent code optimisation as we do not have

direct access to the data x, but a partial measurement.
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Figure 3.6: Architechture of Variational Autoencoder network.

To optimise the model parameters, the evidence lower bound (ELBO) of the joint

likelihood p(x,z) is maximised, which is given by:

L(X)g,e = E[log(pe(x|2))] — KL(q¢(2|x))||pO(2)). (3.53)

The first therm is the conditional log-likelihood (equation 3.49) and the second
term is the KL-divergence between the prior on the latent space and the inference
likelihood, which in the case that the prior is a unit Gaussian is given by the closed

form equation:

~KL(4(#9)llpo () = 5 (1 +1og(0?) ~ 0 + —4). (3.54)

The code z is sampled from the distribution N (u, o) by the re-paremeterisation

trick: z =€ © o + p with € sampled from a unit Gaussian.
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3.8 Geometry

In this thesis we aim at reconstructing the 3D geometry of a scene. The properties of
the 3D representation affect both the choice of inference algorithms and the applic-
ations it enables. There are two categories of method for modeling the 3D structure
of a scene implicit or volumetric and explicit or parametric surface representation.
An explicit surface represents a direct parameterisation of a 2D manifold embedded

in a 3D space, such that the surface § C R? is the mapping of a 2D domain Q C R2:

f:Q5S. (3.55)

One example of an explicit surface is a parametric plane representation:
g(s,1) =a+svy +1v,. (3.56)
For representing complex shapes it is difficult to use a single function, so it is
common to split the domain into patches giving a piece-wise representation. The
most common piece-wise explicit surface representations are meshes, where the
surface is represented as the union of planar triangles; an example is visualised in

Figure 3.7 (a). In practice, the mesh is defined by a collection of 3D vertices P = p;

and faces F =f{;:

P; = [xi’yi’zi]T (3.57)

f,=[k,I,m], k,I,mel,..|P| (3.58)

Implicit surfaces are defined by the zero crossing of a scalar valued function, such

that:

F:R®> >R, (3.59)

S ={x e R*|F(x) = 0}. (3.60)
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To choose a scalar valued function F there is a choice between discretising the 3D
domain, such as with voxel representations as described in Section 3.8.1 and seen on
Figure 3.7, or using a single continuous function as described in MLP-based neural

fields in section 3.8.3.

In the presented works we use implicit surface representations for shape inference
because of their flexibility in representing arbitrary topologies, and ease for doing
modifications such as merging or separation, which allows for integration with op-
timisation based techniques. In NodeSLAM, Chapter 4, we use a discretised voxel
based representation for storing occupancy, for use with a 3D CNN VAE network.

In iMAP, Chapter 5 we use a continuous neural field representation.

We convert implicit representations into explicit meshes as a post-processing step
by using the marching cubes algorithm [Lorensen and Cline, 1987]. The benefits
of a mesh representation are rapid rendering for visualisation and queries such as

finding the object extrema points, useful for grasp planning as in NodeSLAM.

3.8.1 Voxel grids

Voxel representations discretise space into a 3D grid which maps a set of contiguous
voxels in space to a scalar value encoding information about each voxel. A common
scalar property which we use in NodeSLAM is occupancy probability. We assume an
occupancy grid G € RV*NXN "G encodes a mapping so that for i, j, k € {1,2, ..., N},
G(i, j, k) € [0, 1] stores the probability that voxel (i, j, k) is occupied, an example is

visualised in Figure 3.7 (c).

Let us consider a discretised cuboid in space (which encompasses the scene) and
a mapping from the index coordinates in the cuboid (i, j,k) to a voxel in space

V(i,j, k) ¢ R, Then let O(i, j, k) be a random variable such that:

1 if V(i, j, k) is occupied
0, /. k) = (3.61)
0 if V(i,j,k) is free.

An example is visualised in Figure 3.7 (b).
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(a) Mesh (b) Binary Occupancy

(UL R R

(¢) Occupancy probability

Figure 3.7: Different representations for 3D geometry.

Now the dsicrete occupancy probability is defined as:

G(i, j, k) = p(O(i, j, k) = 1). (3.62)

3.8.2 Trilinear Interpolation

In this section we will describe how to query for continuous coordinates from the
discretised voxel representation. This is done by interpolating the occupancy value
of a point inside a voxel grid from its 8 closest neighbours. This is called trilinear

interpolation [Kang, 2006]. First we will describe the more simple case in 2D.

Suppose we have rectangle defined by its four corners [x, yO]T, [x0, yl]T, [xq, yO]T,
and [yl,yl]T with associated values pgy, Po1, P19, and pq; respectively, as seen in
Figure 3.8. Now we have a new point [x,y]” with Xg <x <xyand y; <y <y,

and we wish to interpolate its value from the given values of the four corners of the
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Figure 3.8: Ilustration of bi-linear interpolation (adapted from [Kang

, 2000]).

rectangle. This is performed by doing three linear interpolations.

First we interpolate py; and p;; as:

P1 = Ppo1 + (P11 — Po1)

X — X
X1 —

X

And pgyy and pyq as:

Po = Poo + (P10 — Poo)

X — X
X1 —

X

We obtain the value at (x,y) by interpolating p, and pq:

y-y
p(x,y) = po+(p1 = Po) 0
Y1 = Yo
X = Xg Yy—Yo
= poo + (P10 = Poo) +(Po1 = Poo)
00 10 ~ Poo 1 — % 01 ~ Poo Y1 — Yo

X—Xg Y= D)o
X1 =X Y1~ Yo

+ (P11 = Po1 — P10 + Poo)

(3.63)

(3.64)

(3.65)

Now we will generalise the the 3D case in which we have a cuboid defined by

8 corners as illustrated on Figure 3.9. In a similar fashion we can interpolate the
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value of a point [x,y,z]” inside the cuboid by performing 7 linear interpolations,

obtaining the following expansion for the value at [x,y, Z]T:

P(x,,2) = g+ Ax + oAy + c3Az + c,AxAy + c5AyAz + csAxAz + co AxAyAz, (3.66)

with

X—x - -
Av= 2200 Ay= 2200 A o 2720 (3.67)
X1 —Xo Y1 = Yo 21~ %0

and

€o = Pooo»

€1 = P1oo ~ Pooo»

€2 = Po1o ~ Pooo»

€3 = Poo1 ~ Pooo> (3.68)
€4 = P110 ~ Po1o — P10o T Pooos

€5 = Po11 — Poo1 — Po1o T Pooos

C¢ = P101 — Poo1 — P1oo t Pooos

C7 = P111 — Po11 — P1o1 T P11o + P1oo + Poo1 + Poio — Pooo-

For practical reasons it can be quite useful to rewrite this in matrix form. We can

do this by defining the following matrices:

— 1 0 0 0 0 0 O O-
-1 0 0 0 1 0 0 0
-1 0 1 0 0 0 0 0
B -11 0 0 0 0 0 0 ' (3.69)
1 0 -1 0 -1 0 1 O
1 -1 -1 1 0 0 0 O
1 -1 0 0 -1 1 0 O
-1 1 1 -1 1 -1 -1 1
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Figure 3.9: Illustration of tri-linear interpolation (adapted from [Kang, 2006]).

T
Q=[1 Ax Ay Az AxAy AyAz AxAz A.xAyAz] : (3.70)

T
Pz[Pooo Poo1 Poio Poir Pioo Pior Piio Pnl] : (3.71)

We then have:

p(x.y.2) = Q"BP. (3.72)

In the general case we have a point sﬁ) in object voxel grid coordinates. To calcu-
late the coordinates of the cuboid for trilinear interpolation we take [xg,yq, zO]T =
|_si0J and [xl,yl,zl]T = [xo,yO,ZO]T +[1,1,1]7. If there exist i € {0,1} such that
Xis Vi 2; € {1,..., N} (N is the dimension of the voxel grid) then o; = 0 since the point
does not lie inside the grid. Else we take p;;, = G[x;, y;,2¢], i, j, k € {0,1}, and use

the algorithm defined above for trilinear interpolation of the occupancy value.
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3.8.3 Neural fields

Neural fields are a continuous signal representation that avoid discretisation of space
as in voxel grids. The have been explored for object reconstruction [Park et al.,
2019, Mescheder et al., 2019a], object compression [Tang et al., 2020] novel view
synthesis [Mildenhall et al., 2020b], and scene completion [Sitzmann et al., 2020,
Chibane et al., 2020]. They form the 3D representation used in the works presented
in Chapter 5 and Chapter 6 for incremental dense SLAM and interactive semantic

mapping respectively.

Neural fields are defined as an MLP Fg() for mapping 3D input coordinates x

into color and volume density scalar values (¢, 0):

Fg :x— (c,0). (3.73)

This representation is optimised through stochastic gradient descent with respect
to differentiable volumetric rendering, as described in Section 3.9 for depth and
extended to color and semantics in in Chapter 5 and Chapter 6. Volume density is a

generalisation of occupancy probability for rendering non solid objects as in NeRF.

A key development in NeRF for allowing a Neural Field representation to represent
higher details is positional encoding. Positional encoding is a decomposition of

the 3D Euclidean space into different frequencies and is defined as:

y(x) = (sin(2°7x), cos(2°7x), ..., sin(2E 7 1x), cos(2F 1 nx)). (3.74)

The positional embedding is applied independently to each coordinate, and con-
stitutes a mapping from R? into a higher dimensional ROL space, which is fed into
the MLP instead of the raw coordinate. The number of frequencies L controls the
amount of detail that can be represented, but can lead to over-fitting of a signal.
An analysis of the properties of positional encoding can be found in [Tancik et al.,

2020).
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(a) Axis aligned.
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(b) Gaussian embedding.

Figure 3.10: Visualisation of positional encoding.

As the positional embedding is applied independently to each 3D coordinate this
leads to a bias in axis aligned frequency representation. A generalisation of the po-
sitional encoding to remove this bias, Gaussian positional encoding, was formulated

by projecting across random directions as:

v(x) = (sin(27rb1TX), cos(27rb1Tx), - sin(27rmeX), cos(27rmex)), (3.75)

Where vectors b; are sampled from a Normal distribution N (0, 0'2); m controls the
number of projection directions and o the range of frequencies. Figure 3.10 shows
a false color visualisation of positional encoding in 2D for one frequency of axis

aligned, and randomly sampled frequencies from the Gaussian embedding.
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3.9 Differential Volumetric rendering

In this section we will describe differential volume rendering, which will form our
measurement function i() (Section 3.5) for generative dense SLAM in both NodeSLAM
(Section 4) and iMAP (Section 5). We will describe a function for predicting a depth
image (as defined in Section 3.2) from an occupancy map and a camera pose. We
will describe the algorithm for a map stored in an occupancy grid as in NodeSLAM,

which will be generalised to an MLP map representation in iMAP.

3.9.1 Ray integration

We will derive the depth rendering function d = Render(G, T ), which takes as an
input a voxel occupancy grid and the inverse transformation of the occuppancy grid
in the camera coordinate frame, and outputs a rendered depth image of the model

from the camera’s perspective.

Let us assume we have an intrinsic parameter matrix K for the camera we are
modeling. Now we will use a ray tracing algorithm to render a depth value for each

pixel in the image.

For each pixel [u,v] in the image do:

1. Back project pixel into a ray starting from the camera center and connecting

to the center of the pixel in the image grid, r = K™ [u, v].

2. Sample M times along the ray in the depth range [d d Each sample

min>» max]'

ie{l,...,M} hasdepth d; =d,,;, + ﬁ'(dmax —d,,;,) and position in the camera

frame s = d;r.
3. Convert each sampled point into the voxel grid coordinate frame: siO = TOCSiC'

4. Obtain occupancy probability o; := G(sio) for point siO from the occupancy

grid, using trilinear interpolation as described in Section 3.8.2.

5. We will consider the depth at pixel [u,v] as a random variable D[u,v]. Now

we can calculate p(D[u,v] = d;) (that is, the termination probability at depth
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d;) as:
i—1
¢ =p(D[u,v] =d) = o; | [(1-0)). (3.76)
j=1
forie{l...,M}.

6. Now we define the escape probability as:

M
brrar = p(Dlu,v] > dyy) = ]—[(1 ~0;). (3.77)
j=1

It will be proven next that {¢;} forms a discrete distribution.

7. We can obtain the rendered depth at pixel [u,v] as:

M+1
Hdluyv] = E[D[u,v]] = Z ¢:d;. (3.78)
i=1

dys41 should be equal to oo, but for practical reasons a big number is taken.

8. The uncertainty of the depth can be calculated as:

M+1
Tatun) = VarDuvll = Y ¢,(d; = )’ (3.79)
i=1

3.9.2 Termination Probability

We will prove by induction that {¢;} is a discrete probability.

Lemma 1 (Termination distribution). Given values o; € [0,1] with i € {1,..., M},

then for {¢;} as defined above we have that:

¢; € [0,1] (3.80)
forie{l,...M+1}.
And,
M+1
Z ¢ = 1. (3.81)
i=1
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Proof. We have that o; € [0,1] and therefore 1 —o0; € [0,1]. As ¢; is then a product

of numbers between 0 and 1 the first proposition holds.

We will prove the second proposition by induction. For M = 1:

M+1

D bi=01+0

i=1
=0+ (1-0q) (382)
=1.

Now let us suppose it holds for M = N. Let {qgi} be the distribution defined for
M =N and {¢;} for M = N + 1; then:

(N+1)+1

N
D b= bt byt I
i=1

i=1 i=

i +onaPni + (1 —0oni) PN

M=

Il
—

. . 3.83
¢+ (on+1—0on)dNn (3.83)

=z
=

Il
RS

~
1l
—

Il
—_

by the induction hypothesis.

3.9.3 Derivatives

The defined volumetric rendering function is differentiable with respect to the input
voxel grid and camera pose. In this section we provide the derivative of two com-
ponents of the rendering formulation with respect to the values in the occupancy

voxel grid.

7



3. Technical Preliminaries

For a point p = [z,y,z]7 with interpolated occupancy 0; = G(x,y,z), the deriv-
ative of occupancy with respect to the value of the I-th voxel o; = P; (from the 8

neighbours) is given by:

0y
00 ;
Eri =Q'B|1,|, (3.84)
Otllz,y.2]"
08

with Q, P and B as defined in Section 3.8.2.

The derivative of the termination probability ¢; is then computed by the product

rule as:

i o, it 1 ifk=1
=D oot ] a-oplo. 6= | (3.85)
[z.y,21" %0 991 j=o,j#k 0 otherwise.

09,
601

3.10 System Building

Building a SLAM system requires the integration and interfacing of different com-
ponents, in particular, the systems we present at a higher level combine an optimiser
library with a neural network representation and include a variety of lower level func-
tions such as camera tracking, image object segmentation, volume rendering, bundle
adjustment, data association, and pixel sampling. Also, it is often necessary to in-
terface the SLAM systems with external modules, such as with a robotic platform
in the case of NodeSLAM in Chapter 4, and with an interactive user interface in
the case of iLabel in Chapter 6. For these reasons, an emphasis in our work on the

systems we build is to design a modular and flexible code library.
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NodeSLAM Library

Figure 3.11: The core SLAM library for the NodeSLAM system. It is organised
in three code groups: a backend used for optimisation, a frontend for defining the
SLAM problem, and common for shared functions and classes.

3.10.1 Software Library

Our core SLAM library is implemented as a collection of classes and functions that
interface with each other and are abstracted to match the SLAM problem struc-
ture. The code organisation is inspired by modern SLAM systems such as ORB-
SLAM [Mur-Artal and Tardds, 2014], but uses a Python interface with GPU tensor
acceleration by the PyTorch backend [Paszke et al., 2019], which allows for integ-
ration of fast matrix operations for non linear optimisation with neural networks.
Figure 3.11 presents the code structure of the NodeSLAM library system, divided

into three groups backend, frontend, and common.

The SLAM pipeline is managed by a single class object system which interfaces
with the different elements of the library. The backend code group contains the func-
tions and classes associated with optimisation of the constructed SLAM problem.
We build an optimisation class inspired by the interface of the Pytorch optimiser

class, but for second order non-linear squares optimisation with Gauss-Newton, Boil-
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class OptimisationProblem:
def __init__(self):

self.least_squares = LeastSquares ()
self.variables = []

self.residuals = []
self.informations = []

def add_variable(self, variable):

def add_residual(self, residual):

def solve(self):

Listing 3.1: Boilerplate code for custom second order optimisation class.

erplate code for this is shown in Listing 3.1. For calculation of Jacobians we leverage
the auto-diff engine of PyTorch. In iMAP this optimisation library is replaced with
the PyTorch optimiser for gradient descent, which shares a similar interface to our

custom one.

The frontend code group contains the elements used by the system class to build
the SLAM problem from the input image stream. The frame class encapsulates
images with their associated properties such as tracked pose, and for keyframes it
contains the association between detections, represented by the segmentation class
and 3D map elements represented by the object class. It also contains the two
main functions for interfacing with images: detection by detect masks and data
association by match masks. The common code group contains different elements
for representing and operating on the children objects of the frontend and backend.
An important commmon function element is render frame which is used as the
measurement function in SLAM mapping from map objects to image observations.
The iMAP code has a simplified code structure as it does not include the detection

and matching components.
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—r

Figure 3.13: Visualisation of robotic interaction demo performed with the
NodeSLAM system.

3.10.2 System Interfacing

For either interfacing the SLAM systems with external modules or parallelising sub-
modules within them, we used a multi-processing paradigm with shared queues for
resource sharing. This design allows us to standarise messages between modules
independent of the communication library and to be read/write memory safe. For
example for communication between our NodeSLAM (Chapter 4) system and the
Franka Emika Panda robotic arm, we use the ROS API [Quigley et al., 2009], while
for multiprocessing in iMAP (Chapter 5) and user interaction in iLabel (Chapter 6)
we use the PyTorch multi-processing API.

Our flexible code design is demonstrated by the practical real-time applications
and demos built with our SLAM libraries, such as the iLabel interactive real-time
demo seen in Figure 3.12 and the robotic manipulation system presented in Figure

3.13.
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4.1 Introduction

In this chapter we present NodeSLAM, a system which can build a 3D object graph
of a scene from multi-view RGB-D images by fitting learned class-level object shape
models. We build these object shape models by training a volumetric variational
autoencoder (VAE) from a 3D database of aligned CAD objects of a number of
known classes. At the bottleneck of the auto-encoder we obtain a small descriptor
representing the range of 3D shape variation within the class. At run time, as a
moving camera browses a scene and objects are detected, we add objects to our
3D scene graph frame by frame. We then perform joint optimisation of the camera
trajectory, the object poses and the shape codes to minimise the difference between

a rendering of our graph model and the depth data from multiple camera views.

We demonstrate our method in a table-top setting with a cluttered variety of
objects from four different classes, and show that we can rapidly build an object
scene graph model which is dense, precise and watertight as seen on Figure 5.1.
This enables augmented reality effects such as filling bowls and cups. Compared
to whole scene reconstruction methods, we obtain this whole dense model with
relatively few views, by not needing to make observations all around an object to fit
a watertight model. This is a strong indicator that we could also use this approach

in robotics where precise object shape information is needed for grasping.

There have been two main approaches for 3D shape reconstruction from images.
Classical reconstruction techniques infer geometry by minimizing the discrepancy
between a reconstructed 3D model and observed data through a measurement func-
tion [Izadi et al., 2011, McCormac et al., 2018, Whelan et al., 2015]. These methods
are flexible and general, but they can only reconstruct directly observed parts of
a scene and are limited in accuracy when observations are weak or noisy. On the
other hand, discriminative methods learn to map image measurements to 3D shape,
such as through a feed-forward neural network [Gkioxari et al., 2019, Kundu et al.,
2018, Wu et al., 2017, Tulsiani et al., 2017, Wang et al., 2018, Wu et al., 2015]. These

methods take advantage of regularities in data for robustness but have trouble in
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Figure 4.1: Top: Compact, optimisable shape models used in an object-level SLAM
system which maps a real world cluttered table top scene with varied object shapes
from different classes. Bottom: Class-level priors allow accurate and complete
object reconstruction (bottom-left) even from a single image in contrast to partial
reconstruction from TSDF fusion (bottom-right).
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generalisation and lack the ability to integrate multiple measurements in a principled

way.

Our work sits between these two approaches. We capture regularities in data
though a volumetric 3D generative model represented though a class conditioned
VAE, allowing us to represent object shape through a compact code. We then use
the generative model for shape inference though iterative optimisation of the latent

code with respect to any number of depth image measurements.

To use a generative method for inference we need a rendering function to transform
3D volumes into measurements; in our case depth images with object segmentation.
The design of this function will influence optimisation speed and convergence success.
Two important design considerations are (1) receptive field, the size of 3D region
which influences each rendered pixel, and (2) uncertainty modeling, the confidence of
each rendered pixel depth. We introduce a novel probabilistic volumetric rendering
function based on these two design principles, improving the state of the art in

volumetric rendering.

In scenes with many objects, our optimisable compact object models can serve as
the landmarks in a SLAM system, where we use the same measurement function for
camera tracking, object poses and shape optimisation. We quantitatively show that
joint optimisation leads to more robust tracking and reconstruction, with comparable
surface reconstruction to the data driven Fusion++ [McCormac et al., 2018], while

reaching full object reconstruction from far fewer observations.

An emphasis of this work is to design object models that work robustly in the
real world. We demonstrate the robustness of our proposed rendering function
through qualitative demonstrations of our object-level SLAM on real world image
sequences from a cluttered table-top scene obtained with a noisy depth camera,
and on an augmented reality demo. Furthermore we integrate our efficient shape
inference method into a real time robotic system, and show that the completeness
and accuracy of our object reconstructions enable robotic tasks such as packing

objects into a tight box or sorting objects by shape size.
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To summarise, the key contributions of NodeSLAM are: (i) A novel volumetric
probabilistic rendering function which enables robust and efficient multi-view shape
optimisation. (ii) The first object-level SLAM capable of jointly optimising full
object shapes and poses together with camera trajectory from real world images. (iii)
The integration into a real-time robotic system that can achieve useful manipulation
tasks with varied object shapes from different categories due to complete high quality

surface reconstructions.

4.2 Class-Level Object Shape Descriptors

Objects of the same semantic class exhibit strong regularities in shape under common
pose alignment. We make three key observations: (i) Given two objects of the same
class, there is a pose alignment between them that allows for a smooth surface
deformation between the two objects; (ii) This pose alignment is common among
all instances of the same class, which defines a class-specific coordinate frame; (iii)
If we select two random objects of a certain class and smoothly deform one into the
other, there will be other object instances of the same class which are similar to the

intermediate deformations.

We leverage these characteristics to construct a class specific smooth latent space,
which allows us to represent the shape of an instance with a small number of para-
meters. This is motivated by the fact that the space of valid inter-class surface
deformations is a much smaller sub-space than the space of all possible deforma-

tions; there are high correlations between the surface points in a valid deformation.

Rather than manually designing a parameterised shape model for a class of ob-
jects, we propose instead to learn the latent space by training a single Class-

Conditional Variational Autoencoder neural network.

4.2.1 Network Design

3D object shapes are represented by voxel occupancy grids of dimension 32X 32x 32,

with each voxel storing a continuous occupancy probability value between 0 and 1,
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Figure 4.2: Visualisation of all aligned objects instances for training the VAE net-
work, left: mesh models; right: occupancy grids.

see Section 3.8.1 for a technical description of voxel grids. A voxel grid was chosen
to enable representation of shapes of arbitrary topology. We store occupancy values

to allow a probabilistic formulation of rendering and inference.

The 3D models used were obtained from the ShapeNet database [Chang et al.,
2015], which comes with annotated model alignment, in Figure 4.2 we visualise the
aligned CAD and occupancy models of the mug category. The occupancy grids were
obtained by converting the model meshes into a high resolution binary occupancy
grid, and then down-sampling by average pooling. Figure 4.3 shows an example of a
mug object instance with a visualisation of the mesh wire-frame (vertices and edges)

and corresponding voxel occupancy grid.

A single 3D CNN Variational Autoencoder (VAE) [Kingma and Welling, 2014] was
trained on objects from 4 classes: ‘mug’, ‘bow!l’, ‘bottle’, and ‘can’, common table-
top items, see Section 3.7.1 for a technical description of VAEs. The encoder of the
network is conditioned on the class by concatenating the class one-hot vector as an
extra channel to each occupancy voxel in the input, while the decoder is conditioned
by concatenating the class one-hot vector to the encoded shape descriptor, similar
to [Sohn et al., 2015, Tan et al., 2018]. A KL-divergence loss is used in the latent
shape space, while a binary-crossentropy loss is used for reconstruction. We choose

a latent shape variable of size 16. The 3D CNN (see Section 3.6.2 for definition of
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4.2. Class-Level Object Shape Descriptors

Figure 4.3: Object instance example used for training VAE: on the left is the corres-
ponding mesh which is converted into an occupancy grid in right. Color transparency
represents occupancy probability; more transparent voxels have lower probability
values.

Class one-hot vector: h

#

Decoder: D \

Shape descriptor: d

Encoder: E
Occupancy Reconstructed

grid: G grid: G

Figure 4.4: Occupancy Variational Autoencoder: The class one hot vector h
is concatenated channel-wise to each occupancy voxel in the input occupancy grid
G. The input is compressed into shape descriptor d by encoder network E. The
shape descriptor and the class-one hot vector are concatenated and passed through
decoder network D to obtain occupancy reconstruction G.

CNN) encoder has 5 convolutional layers with kernel size 4 and stride 2; each layer
doubles the channel size except the first one which increases it to 16. The decoder

mirrors the encoder using deconvolutions.
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Figure 4.5: Visualisation of back-projecting a ray from the camera frame into the
voxel grid of an object.

4.3 Probabilistic Rendering

Rendering is the process of projecting a 3D model into image space. Given the
pose of the grid with respect to the camera T, we wish to render a depth image.

We denote the rendered depth image as & » With uncertainty 6 and the rendering

var?

function Render(), such that é = Render(G, Tg). When designing our render

b
function, we wish for it to satisfy three important requirements: to be differentiable
and probabilistic so that it can be used for principled inference, and to have a wide
receptive field so that its gradients behave properly during optimisation. These

features lead to a robust function that can handle real world noisy measurements

such as depth images.

We now describe the algorithm for obtaining the depth value for pixel (u,v). See
Section 3.9 for more details on the rendering algorithm
Point sampling. Sample M points uniformly along backprojected ray r, as seen

N

in Figure 4.5, in depth range [ . Each sampled depth 6; = 8,,,;,, + ﬁ'(gmax -

min> 5max]
8,,in) and position in the camera frame sic = 6,r. Each sampled point is transformed
into the voxel grid coordinate frame as si; = TGSt

Occupancy interpolation. Obtain occupancy probability o; = Tril(si),G), for

point si) from the occupancy grid, using tri-linear interpolation from its 8 neigh-
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4.3. Probabilistic Rendering

bouring voxels. See Section 3.8.2 for technical details on tri-linear interpolation.

Termination probability. We denote the depth at pixel [u,v] by D[u,v]. Now
we can calculate p(D[u,v] = Si) (that is, the termination probability at depth Si)

as:
i-1
¢; = p(Duv] =) =0, [ [ -0, . (4.1)
j=1

Figure 4.6 relates occupancy and termination probabilities.
Escape probability. Now we define the escape probability (the probability that

the ray doesn’t intersect the object) as:

M
¢M+1 = p(D[M,V] > Smax) = l_[(l - oj) ’ (42)
Jj=1

where {¢;} forms a discrete probability distribution.
Aggregation. We obtain the rendered depth at pixel [u, v] as the expected value

of the random variable D[u, v]:

M+1

8, [u,v] =E[D[u,v]] = ) ¢,6; . (4.3)
i=1

dys41 is the depth associated to the escape probability is set to 1.14d,,,, for practical

reasons.

Uncertainty. Depth uncertainty is calculated as:

M+1
Svarlusv] = Var[D[u,v]] = Y ¢,(6; = D[u,v])” . (4.4)
i=1

Mask. Note that we can render a segmentation mask as:

mlu, vl =1—¢p. (4.5)

For multi-object rendering we combine all the renders by taking the minimum depth

at each pixel, to deal with cases when objects occlude each other:

~

6, [u,v] = Render({G;}. {Tg e}, Twe) [u, v] o)
= min{d}t[u, v], oo 0N [u, v]}. ‘

Figure 4.6 shows the relation between rendered depth and occupancy probabilities.

Additionally, we apply Gaussian blur down-sampling to the resulting rendered im-

age at different pyramid levels (4 levels with 1 pixel standard deviation each) to
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Occupancy Probabilit:

&
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Termination Probability

(a) (b)

Figure 4.6: Pixel rendering: Each pixel is back-projected into a ray from which
uniform depth samples d; are taken. Occupancy probability o; is obtained from the
voxel grid by trilinear interpolation, and termination probability ¢; is calculated.
(a): A 32x32x 32 mug occupancy grid. (b): The derivative of the highlighted red
pixel with respect to occupancy values is shown in red.

perform coarse to fine optimisation. This increases the spatial receptive field in the
higher levels of the pyramid because each rendered pixel is associated to several back

projected rays.

4.4 Object Shape and Pose Inference

Given a depth image from an object of a known class, we wish to infer the full shape
and pose of the object. We assume we have a segmentation mask and classification
of the object, which in our case is obtained with Mask-RCNN [He et al., 2017]. To

formulate our inference method, we integrate the object shape models developed
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Initialisation Iterative Optimisation

Depth measurement

il

.| Residual
Uncertainty '

Figure 4.7: Initialisation: Initial object pose T%G is estimated from a depth im-
age and masked RGB image; object class is inferred from RGB only. The shape
descriptor d is set to 0, representing the mean class shape. Optimisation: The
shape descriptor is decoded into a full voxel grid, which is used with the pose to
render an object depth map. The least squares residual between this and the depth is
used update the shape descriptor and object pose iteratively with the Gauss-Newton
algorithm.

Render
Predict

Pose

0
Tee

Masked image

@

on Section 4.2 with a measurement function, the probabilistic render algorithm
outlined in Section 5.3.3. We will now describe the inference algorithm for a single
object observation setup, and this will be extended to multiple objects and multiple

observations in the SLAM system described in Section 4.5.

4.4.1 Shape and Pose Optimisation

An object’s pose T is represented as a 9-DoF homogeneous transform with Rqg,

tc, and S the rotation, translation and scale of the object.

The shape of the object is represented with latent code d, which is decoded into

a full occupancy grid G using the decoder described in Section 4.2.

We wish to find the pose and shape parameters that best explain our depth
measurement 6. We consider the rendering D of the object as Gaussian distributed,

with mean 6 . and variance 5, calculated through the render function:

var

S,u’ Svar = R(G’ TGC)

= R(D(d, n),Tgc)
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Figure 4.8: Shape descriptor influence: the derivative of a rendered decoded
voxel grid with respect to 8 entries of the shape descriptor.

with /& the class one-hot vector of the detected object.

When training the latent shape space a Gaussian prior distribution is assumed

on the shape descriptor. With this assumption and by taking 5‘, as constant, our

ar

MAP objective takes the form of least squares problem. We apply the Gauss-Newton

algorithm, Section 3.5, for estimation:

dmin —log(p(6ld, Tcg)p(d))
9TCG

= d1¥1n (Lrender(d’ TCG) + Lprior (d)) (48)
(6[u,v] 9
= min + ) dj)
TCG(; Ovar [u v] Z

A structural prior is added to the optimisation loss to force the bottom of the object
to be in contact with the supporting plane. We render an image from a virtual
camera under the object and recover the surface mesh from the occupancy grid by
marching cubes. Figure 4.7 illustrates the single object shape and pose inference

pipeline.

4.4.2 Variable Initialisation

Second order optimisation methods such as Gauss-Newton require a good initial-

isation. The object’s translation and scale are intitialised using the back-projected
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4.4. Object Shape and Pose Inference

Figure 4.9: Examples of the synthetic dataset used to train the pose prediction
network. First: rendered input image; second: pose prediction; third: ground truth;
fourth: render discrepancy (not used for network supervision).

point cloud from the masked depth image. The first is set to the centroid of the
point cloud, while the latter is recovered from the centroid’s distance to the point

cloud boundary. Only un-occluded objects are initialised.

For pose initialisation we use a discriminative CNN Network (Section 3.6). Given
the pose of the object T represented as a 4 X 4 homogeneous matrix, we define
the orientation as the 3 x 3 rotation matrix Reg of Teg. We parameterise Rqg
as a rotation of magnitude ® along axis normalised e. We represent e in polar
coordinates as ey, e,. The CNN orientation prediction network must predict ©, ey,

and e,. Figure 4.9 shows some training examples from our synthetic dataset.

The CNN input is a cropped (around the object) and resized to 224x223 3-channel
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color image. The first 2 convolutional and max-pool layers are taken from the VGG-
11 architecture [Simonyan and Zisserman, 2015] pre-trained on ImageNet [Deng
et al., 2009], with frozen weights throughout training. Following these layers are
four convolutional layers with Rel.u activations and batch normalisation, a kernel
size of 4 and stride 2, with 256 initial channels and doubled after each layer. The
network has two fully connected layers at the end with a final sigmoid activation
layer which is then normalized to the corresponding angle range. The network was
trained for 227375 iterations with batch size 32. Figure 4.10 shows results of the
pose prediction network on real world instances, showing generalisation from the
synthetic training. Our model classes (‘mug’, ‘bowl’, ‘bottle’, and ‘can’) are often
found in a vertical orientation in a horizontal surface. For this reason we detect
the horizontal surface using the point cloud from the depth image and initialise the
object’s orientation to be parallel to the surface normal, thereby taking only the

vertical component of the pose prediction neural network.

The shape descriptor is initialised to d = 0, which gives the mean class shape under
the Gaussian prior of a VAE. Optimisation iteratively deforms the mean shape to
best fit our observations. Figure 4.8 illustrates how changes in the shape descriptor

alter the shape of the object.

4.5 Object-Level SLAM System

We have developed class level shape models and a measurement function that allows
us to infer object shape and pose from a single RGB-D image. From stream of
images we want to incrementally build a map of all the objects in a scene while
simultaneously tracking the position of the camera. For this, we will show how
to use the render module for camera tracking, and for joint optimisation of camera
poses, object shapes, and object poses with respect to multiple image measurements.
This will allow us to construct a full, incremental, jointly optimisable object-level

SLAM system with sliding keyframe window optimisation.
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4.5. Object-Level SLAM System

Figure 4.10: Results of pose prediction CNN (trained on a synthetic dataset) on real
world data.

4.5.1 Data association and Object Initialisation

For each incoming image, we first segment and detect the classes of all objects in
the image using Mask-RCNN [He et al., 2017]. For each detected object instance,
we try to associate it with one of the objects already reconstructed in the map. This

is done in a two stage process:

Previous frame matching: We match the masks in the image with masks from
the previous frame. Two segmentations are considered a match if their IoU is above

0.2.

Object mask rendering: If a mask is not matched in stage 1, we try to match

it directly with map objects by rendering their masks and computing loU overlaps.

If a segmentation is not matched with any existing objects we initialise a new

object as in Section 4.4.
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4.5.2 Camera Tracking

We wish to track the camera pose Tévc for the latest depth measurement ¢ ;. Once we
have performed association between segmentation masks and reconstructed objects
as described in Section 4.5.1, we have a list of matched object descriptors {dy, ..., dx}-
We initialise our estimate for Tévc as the tracked pose of the previous frame Tj“;é,
and render the matched objects as described in Section 5.3.3:

8,4s8yqr = Render({G; 1, {Tg 1. T ) - (4.9)

Il’
The loss between rendered and measured depth is:

i ; 6:[u, -6 ’ 2
Lrender({di},{TlCG},Tévc) - Z ( J[MSV] y[” v]) ‘

u,v var [

(4.10)
u,v]

Notice that this is the same loss used when inferring object pose and shape, but
now we assume that the map (the object shapes and poses) is fixed and we want
to estimate the camera pose T€VC' As before, we use the iterative Gauss-Newton

optimisation algorithm.

4.5.3 Sliding-Window Joint Optimisation

We have shown how to reconstruct objects from a single observation, and how to
track the position of the camera by assuming the map is fixed. This will lead to the
accumulation of errors, causing motion drift. Integrating new viewpoint observations
for an object is also desirable, to improve its shape reconstruction. To tackle these
two challenges, we wish to jointly optimise a bundle of camera poses, object poses,
and object shapes. Doing this with all frames is however computationally infeasible,
so we jointly optimise the variables associated to a select group of frames, called
keyframes, in a sliding window manner, following the philosophy introduced by

PTAM [Klein and Murray, 2007].

Keyframe criteria: There are two criteria for selecting a frame as a keyframe.
If an object was initialised in the frame then it is selected as a keyframe, or second
if the frame viewpoint for any of the existing objects is larger than 13 degrees from

the frame in which the object was initialised.
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Figure 4.11: Optimisation graph, showing all jointly-optimised variables. Render
and prior factors connect the different variables. A render factor compares object
shape renders with depth measurements. Prior factors constrain how much each
object shape can deviate from the mean shape of its class.

Bundle Optimisation: Each time that a frame is selected as a keyframe we
jointly optimise the variables associated with a bundle of N keyframes. In particular
we select a window of 3 keyframes, the new keyframe and its two closest keyframes,

with the previously defined distance.

To formulate the joint optimisation loss, consider, T‘l,vc, T%VC, and T%VC, the poses

of the keyframes in the optimisation window; T%VC is held fixed. Now suppose {d;}
is the set of shape descriptors for the objects observed by the three keyframes. Then

we can render a depth image and uncertainty for each keyframe as:

67,61, = Render({G, }, {T5¢ 1. Ty ) (4.11)

u Yvar

with G,- = D(d;, h;). For each render we compute a loss with the respective depth

Kl
i

prior 01 all codes as in

measurement, Li ender 3 In Equation 4.10, and a prior loss, L

de

Equation 4.8. Figure 4.11 illustrates the joint optimisation problem. Our final loss,
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Figure 4.12: Synthetic scene example along with reconstruction and camera traject-
ory. Ground truth trajectory is shown in purple and tracked one in yellow, keyframes
with green frustum.

optimised using Gauss-Newton, is:

Ljoint({di}, {Tl(;C}’ {T{/VC}) —

. . 4.12
Z Lrender({di}’ {TlGC}’ T{yc) + Z Lprior(di) . ( )
J i

Timings: Rendering a single object: 7ms; computing render jacobian: 100ms;
object reconstruction: 1.5 seconds (15 iterations); camera tracking: 7fps; joint op-

timisation: 2 seconds (3 keyframe window).
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Table 4.1: Shape reconstruction results for 1, 2, and 3 views. We do an ablation
study of our method and compare with DVR [Niemeyer et al., 2020].

| Full | No Unc. | No Gauss. | [Niemeyer et al., 2020] | Mask

1 view
accuracy [mm)] 4.459 4.998 4.701 8.967 15.806
chamfer-L, [mm] | 4.439 4.844 4.928 11.896 18.386
completion [lem] | 93.492 91.857 90.812 43.075 30.212

2 views
accuracy [mm)] 3.752 4.270 4.237 8.408 4.709
chamfer-L; [mm)] 3.854 4.185 4.723 11.325 4.438
completion [lcm] 95.72 94.627 90.752 43.342 93.73

3 views
accuracy [mm)] 3.484 4.158 3.827 8.277 4.620
chamfer-L; [mm] 3.648 4.010 4.281 10.913 4.210
completion [lem] | 96.065 95.165 93 44.815 95.44

4.6 Experimental Results

4.6.1 Metrics

For shape reconstruction evaluation we use three metrics: chamfer-L; distance
and accuracy as defined in [Mescheder et al., 2019b] and completeness (with lcm
threshold) as defined in [Li et al., 2020]. We sample 20000 points on both recon-

struction and ground truth CAD model meshes.

4.6.2 Rendering Evaluation

In this evaluation we test the optimisation performance of our rendering formulation.
We perform object shape and pose optimisation on all the objects of the ‘mug’
category in the ShapeNet dataset. For each instance we generate three random
views of the object. Initial object pose is predicted from the first view. We perform
30 optimisation iterations for 1, 2, and 3 views. Table 4.1 shows median shape
accuracy, completion, and chamfer distance after optimisation. We compare our full
system with versions without uncertainty, without a Gaussian pyramid, and with a
loss only between the rendered and Mask-RCNN segmentation masks. We compare
with the state of the art volumetric differential rendering component in the paper
Differential Volumetric Rendering (DVR) [Niemeyer et al., 2020] with our shape

representation.
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Figure 4.13: Median reconstruction accuracy (95% confidence) across 150 optim-
isation iterations of all ‘mug’ objects instances comparing our proposed renderer
with [Niemeyer et al., 2020].

We observe that additional views improve shape reconstruction, more drastically
in the mask optimisation because of the scale ambiguity in a single image. We also
see that both the uncertainty and Gaussian pyramid are necessary for more accurate
and complete shape reconstructions. Our method significantly improves on DVR,
which is both less precise and has much lower shape completion, because of its local

receptive field.

To further illustrate the comparison, we plot in Figure 4.13 median reconstruction
accuracy across 150 optimisation iterations with all object instances against our
proposed method. The plot illustrates the much faster convergence of our method

and its ability to reach a lower error.

4.6.3 SLAM evauation

In this evaluation we evaluate our full SLAM system and how it generalises to new
object instances. We create a synthetic dataset shown in Figure 4.12. Random
object CAD models are spawned on top of a table model with random positions
and vertical orientation. Five scenes are created with 10 different objects on each

from three classes: ‘mug’, ‘bowl’, and ‘bottle’. The models are obtained from the
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Figure 4.14: Few-shot augmented reality: Complete and watertight meshes can
be obtained from few images due to the learned shape priors. This are then loaded
into a physics engine to perform realistic augmented reality demonstrations.

ModelNet40 dataset [Wu et al., 2015] which are not used during training of the

shape model.

For each scene a random trajectory is generated by sampling and interpolating
random camera positions and look at points in the volume bounded by the table.
Image and depth renders are obtained from the trajectory with PyBullet render,

which is different rendering engine than the one used for training pose prediction.

Fusion++4 comparison

We compare our proposed method with a custom implementation of Fusion-++ [Mc-
Cormac et al., 2018] using open-source TSDF fusion [Zhou et al., 2018] for each
object volume. In this experiment ground truth poses are used to decouple tracking
accuracy and reconstruction quality. Gaussian noise is added to the depth image
and camera poses (2mm, 1mm, 0.1° standard deviation for depth, translation and

orientation, respectively).

We evaluate shape completion and accuracy; results are accumulated for each
class from the 5 simulated sequences. Figure 4.17 shows how mean shape completion
evolves with respect to frame number. This graph demonstrates the advantage of
class-based priors for object shape reconstruction. With our method we see a jump

to almost full completion, while TSDF fusion slowly completes the object with each

103



4. NodeSLAM: Neural Object Descriptors

Initial scene

Placing Resulting configuration

Figure 4.15: Robotic demonstration of packing of objects. The robot first captures
pre-defined RGB-D images for scene reconstruction. The precise object models are
used for grasp and placement planning, in this case for stacking bowls and mugs in
a tight space.

Placing Resulting configuration

Figure 4.16: Robotic demonstration of packing sorting of objects. The robot first
captures pre-defined RGB-D images for scene reconstruction. The precise object
models are used for grasp and placement planning, in this case for sorting mugs and
bowls according to size.
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4.7. Robot Manipulation Application

Table 4.2: Ablation study for tracking accuracy on 5 scenes, highlighting the im-
portance of joint optimisation with uncertainty.

Absolute Pose
Error [cm] Scene 1 ‘ Scene 2 ‘ Scene 3 ‘ Scene 4 ‘ Scene 5
NodeSLAM | 1.73 | 1 | 081 | 124 | 115
NodeSLAM

no joint optim. 86 | 1017 | 0.7 | 214 | 1.25
NodeSLAM

no uncertainty 4.37 ‘ 3.41 ‘ 0.88 ‘ 3.05 ‘ 6.99

new fused depth map. Fast shape completion without the need for exhaustive 360
degree scanning is important in robotic applications and in augmented reality, as
shown in Figure 4.14. Figure 4.17 displays the median shape accuracy of Node-
SLAM compared with TSDF fusion. We observe comparable surface reconstruction

quality of close to 5mm.

Ablation Study

We evaluate shape reconstruction accuracy and tracking absolute pose error on 3
different versions of our system. We compare our full SLAM system (with camera
tracking) with a version without sliding window joint optimisation, and a version
without uncertainty rendering. Figure 4.17 shows the importance of these features
for shape reconstruction quality, with decreases in performance from 2 up to 7 mm.
Table 4.2 shows mean absolute pose error for each version of our system for all 5
trajectories. These results prove that the precise shape reconstructions from objects
provide enough information for accurate camera tracking with mean errors between
1 and 2 cm. It also shows how tracking without joint optimisation or uncertainty

leads to significantly lower accuracy on most trajectories.

4.7 Robot Manipulation Application

We have developed a manipulation application which uses our object reconstruction
system. We demonstrate two tasks: object packing, see Figure 4.15, and object

sorting, see Figure 4.16. A rapid pre-defined motion is first used to gather a small

105



4. NodeSLAM: Neural Object Descriptors

100

80

shape completion [%]

a0 —— Node-SLAM
Fusion++

1 100 200
frame

iy
=)}

. Full * mEE Node-SLAM
[ No joint optim.

: 14 BB TSDF-Fusion
I No uncertainty '

s

bottle bowl cup bottle bowl cup

=
IS

=
N

=
o

reconstruction accuracy [mm]
0]
reconstruction accuracy [mm]
©

Figure 4.17: Top: Graph of mean object surface completion (95% confidence) com-
parison between NodeSLAM and TSDF fusion, with respect to the number of times
an object is updated. Bottom left: Box plots of median surface reconstruction
accuracy from our ablation study on 5 scenes with 10 objects in each. Bottom
right: The same metric but comparing our system with Fusion—++.

number of RGB-D views which our system uses to estimate the pose and shape of the
objects laid out randomly on a table. Heuristics are used for grasp point selection
and a placing motion based on the class and pose of the object and the shape of the
reconstructed mesh. All the reconstructed objects are then sorted based on height
and radius. For the packing task all the scanned objects are placed in a tight box,
with bowls stacked in decreasing size order and all mugs placed inside the box with
centers and orientations aligned. In the sorting task all objects are placed in a line in
ascending size. In this robot application only, robot kinematics are used for camera

tracking.
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4.8 Conclusions

We have developed generative multi-class object models which allow for robust and
principled multi-view shape reconstruction with the integration of semantic priors,
in a subset of common tabletop object classes. This is accomplished by integrating
a learned compact latent space for objects shapes with a volumetric differntiable
rendering function. We demonstrated their practical use in an object-level SLAM
system as well as in two robotic manipulation demonstrations and an augmented
reality demo. We believe this shows evidence that semantic priors are a strong prior
for complete and precise shape reconstruction, and that decomposing a scene into
full object entities is a useful idea smart interaction. While our models go beyond
rigid templates such as pre-defined CAD models and allow certain variation within
a known semantic class, not all object classes will be well represented by the single
code object VAE we used in this paper. In Chapter 5 we look at how to go beyond
objects and use a neural network to represent whole scenes, and in Chapter 6 we look

at how to extract an object decomposition from a compressed scene representation.
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Figure 5.1: Room reconstruction from real-time iMAP with an Azure Kinect RGB-D
camera, showing watertight scene model, camera tracking and automatic keyframe
set.

5.1 Introduction

A real-time Simultaneous Localisation and Mapping (SLAM) system for an intelli-
gent embodied device must incrementally build a representation of the 3D world, to
enable both localisation and scene understanding. The ideal representation should
precisely encode geometry, but also be efficient, with the memory capacity available
used adaptively in response to scene size and complexity; predictive, able to plaus-
ibly estimate the shape of regions not directly observed; and flexible, not needing a

large amount of training data or manual adjustment to run in a new scenario.

Implicit neural representations are a promising recent advance in off-line recon-
struction, using a multilayer perceptron (MLP) to map a query 3D point to occu-

pancy or colour, and optimising it from scratch to fit a specific scene. An MLP is
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a general implicit function approximator, able to represent variable detail with few
parameters and without quantisation artifacts. Even without prior training, the in-
herent priors present in the network structure allow it to make watertight geometry

estimates from partial data, and plausible completion of unobserved regions.

In this chapter, we show for the first time that an MLP can be used as the only
scene representation in a real-time SLAM system using a hand-held RGB-D camera.
Our randomly-initialised network is trained in live operation and we do not require
any prior training data. Our iMAP system is designed with a keyframe structure and
multi-processing computation flow reminiscent of PTAM [Klein and Murray, 2007].
In a tracking process, running at over 10 Hz, we align live RGB-D observations
with rendered depth and colour predictions from the MLP scene map. In parallel, a
mapping process selects and maintains a set of historic keyframes whose viewpoints
span the scene, and uses these to continually train and improve the MLP, while

jointly optimising the keyframe poses.

In both tracking and mapping, we dynamically sample the most informative RGB-
D pixels to reduce geometric uncertainty, achieving real-time speed. Our system runs
in Python, and all optimisation is via a standard PyTorch framework [Paszke et al.,

2019] on a single desktop CPU/GPU system.

By casting SLAM as a continual learning problem, we achieve a representation
which can represent scenes efficiently with continuous and adaptive resolution, and
with a remarkable ability to smoothly interpolate to achieve complete, watertight
reconstruction (Figure 5.1). With around 10 - 20 keyframes, and an MLP with only
1 MB of parameters, we can accurately map whole rooms. Our scene representation
has no fixed resolution; the distribution of keyframes automatically achieves efficient

multi-scale mapping.

We demonstrate our system on a wide variety of real-world sequences and do
exhaustive evaluation and ablative analysis on 8 scenes from the room-scale Replica
Dataset [Straub et al., 2019]. We show that iMAP can make a more complete

scene reconstruction than standard dense SLAM systems with significantly
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smaller memory footprint. We show competitive tracking performance on the

TUM RGB-D dataset [Sturm et al., 2012] against state-of-the-art SLAM systems.

To summarise, the key contributions of this work are:

e The first dense real-time SLAM system that uses an implicit neural scene
representation and is capable of jointly optimising a full 3D map and camera

poses.

e The ability to incrementally train an implicit scene network in real-time, en-

abled by automated keyframe selection and loss guided sparse active sampling.

e A parallel implementation (fully in PyTorch [Paszke et al., 2019] with multi-
processing) of our presented SLAM formulation which works online with a

hand-held RGB-D camera.

5.2 Related Work

Visual SLAM Systems Real-time visual SLAM systems for modelling environ-
ments are often built in a layered manner, where a sparse representation is used
for localisation and more detailed geometry or semantics is layered on top. How-
ever, here we work in the ‘dense SLAM’ paradigm pioneered in [Newcombe et al.,
2011b, Newcombe et al., 2011a] where a unified dense scene representation is also the
basis for camera tracking. Dense representations avoid arbitrary abstractions such
as keypoints, enable tracking and relocalisation in robust invariant ways, and have

long-term appeal as sensor-agnostic, unified, complete representations of spaces.

Some approaches in dense SLAM explicitly represent surfaces [Keller et al., 2013,
Whelan et al., 2015], but direct representation of volume is desirable to enable a full
range of applications such as planning. Standard representations for volume using
occupancy or signed distance functions are very expensive in terms of memory if a
fixed resolution is used [Newcombe et al., 2011a]. Hierarchical approaches [Dai et al.,

2017b, Vespa et al., 2018] are more efficient, but are complicated to implement and

112



5.2. Related Work

usually offer only a small range of level of detail. In either case, the representations
are rather rigid, and not amenable to joint optimisation with camera poses, due to

the huge number of parameters they use.

Machine learning can discover low-dimensional embeddings of dense structure
which enable efficient, jointly optimisable representation. CodeSLAM [Bloesch et al.,
2018] is one example, but using a depth-map view representation rather than full
volumetric 3D. Learning techniques have also been used to improve dense reconstruc-
tion but require an existing scan [Dai et al., 2020] or previous training data [Peng

et al., 2020, Weder et al., 2020, Chabra et al., 2020].

Implicit Scene Representation with MLPs Scene representation and graphics
have seen much recent progress on using implicit MLP neural models for object
reconstruction [Park et al., 2019, Mescheder et al., 2019a], object compression [Tang
et al., 2020] novel view synthesis [Mildenhall et al., 2020b], and scene completion
[Sitzmann et al., 2020, Chibane et al., 2020]. Two recent papers [Wang et al.,
2021b, Yen-Chen et al., 2020] have also explored camera pose optimisation. But
so far these methods have been considered as an offline tool, with computational
requirements on the order of hours, days or weeks. We show that when depth images
are available, and when guided sparse sampling is used for rendering and training,

these methods are suitable for real-time SLAM.

Continual Learning By using a single MLP as a master scene model, we pose
real-time SLAM as online continual learning. An effective continual learning sys-
tem should demonstrate both plasticity (the ability to acquire new knowledge) and
stability (preserving old knowledge) [Rolnick et al., 2019, Grossberg, 1982]. Cata-
strophic forgetting is a well-known property of neural networks, and is a failure of

stability, where new experiences overwrite memories.

One line of work on alleviating catastrophic forgetting has focused on protecting
representations against new data using relative weighting [Kirkpatrick et al., 2017].

This is reminiscent of classic filtering approaches in SLAM such as the EKF [Smith
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and Cheeseman, 1986] and is worth future investigation. Approaches which freeze
[Rusu et al., 2016] or consolidate [Schwarz et al., 2018] sub-networks after training

on each individual task are perhaps too simple and discrete for SLAM.

Instead, we direct our attention towards the replay-based approach to continual
learning, where previous knowledge is stored either directly in a buffer [Maltoni and
Lomonaco, 2019, Rolnick et al., 2019], or compressed in a generative model [Lesort
et al., 2019, Shin et al., 2017]. We use a straightforward method where keyframes
are automatically selected to store and compress past memories. We use loss-guided
random sampling of these keyframes in our continually running map update pro-
cess to periodically replay and strengthen previously-observed scene regions, while
continuing to add information via new keyframes. In SLAM terms, this approach
is similar to that pioneered by PTAM [Klein and Murray, 2007], where a historic
keyframe set and repeated global bundle adjustment serve as a long-term scene

representation.

5.3 iMAP: A Real-Time Implicit SLAM System

5.3.1 System Overview

Figure 5.2 overviews how iMAP works. A 3D volumetric map is represented using a
fully-connected neural network F, that maps a 3D coordinate to colour and volume
density (Section 5.3.2). Given a camera pose, we can render the colour and depth
of a pixel by accumulating network queries from samples in a back-projected ray

(Section 5.3.3).

We map a scene from depth and colour video by incrementally optimising the
network weights and camera poses with respect to a sparse set of actively sampled
measurements (Section 5.3.6). Two processes run concurrently: tracking (Section
5.3.4), which optimises the pose from the current frame with respect to the locked
network; and mapping (Section 5.3.4), which jointly optimises the network and the

camera poses of selected keyframes, incrementally chosen based on information gain
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Figure 5.2: iMAP system pipeline.

(Section 5.3.5).

5.3.2 Implicit Scene Neural Network

Following the network architecture in NeRF [Mildenhall et al., 2020b], we use an
MLP (Section 3.6.1) with 4 hidden layers of feature size 256, and two output heads
that map a 3D coordinate p = (x, y, z) to a colour and volume density value: Fy(p) =
(c,p). Unlike NeRF, we do not take into account viewing directions as we are not

interested in modelling specularities.

We apply the Gaussian positional embedding, described in Section 3.8.3, proposed
in Fourier Feature Networks [Tancik et al., 2020] to lift the input 3D coordinate into
n-dimensional space: sin(Bp), with B an [n X 3] matrix sampled from a normal dis-
tribution with standard deviation o. This embedding serves as input to the MLP
and is also concatenated to the second activation layer of the network. Taking inspir-
ation from SIREN [Sitzmann et al., 2020], we allow optimisation of the embedding

matrix B, implemented as a single fully-connected layer with sine activation.

5.3.3 Depth and Colour Rendering

Our differentiable rendering engine, inspired by NeRF [Mildenhall et al., 2020b]
and NodeSLAM (Chapter 4), queries the scene network to obtain depth and colour
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images from a given view. See Section ?7? for more details on differential volumetric

rendering.

Given a camera pose Ty, and a pixel coordinate [u, v], we first back-project a nor-
malised viewing direction and transform it into world coordinates: r = TWCK_1 [u, v],
with the camera intrinsics matrix K. We take a set of N samples along the ray
p; = d;r with corresponding depth values {d;,--- ,dy}, and query the network for a
colour and volume density (¢;, p;) = Fy(p;). We follow the stratified and hierarchical

volume sampling strategies of NeRF.

Volume density is transformed into an occupancy probability by multiplying by
the inter-sample distance ¢; = d;,; — d; and passing this through activation function
0; =1 —exp(—p;0;). The ray termination probability at each sample can then be
calculated as w; = o; Hj;ll(l —0;). Finally, depth and colour are rendered as the

expectations:

N N
Dlu,v] = Z wid,, I[u,v] = Zwici. (5.1)
‘ i=1

N
var 9] = D w; (D[u,v] - d))*. (5.2)

5.3.4 Joint optimisation

We jointly optimise the implicit scene network parameters 6, and camera poses
for a growing set of W keyframes, each of which has associated colour and depth
measurements along with an initial pose estimate: {I;, D;, T’.WC}. Figure 5.3 shows

an schematic of the joint optimisation.

Our rendering function is differentiable with respect to these variables, so we
perform iterative optimisation to minimise the geometric and photometric errors for

a selected number of rendered pixels s; in each keyframe.

The photometric loss is the L1-norm between the rendered and measured colour
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Figure 5.3: Joint optimisation. Keyframe camera poses and the implicit network are
jointly optimised with ADAM through photometric and geometric losses calculated
by rendering a sparse set of color and depth pixels.

values ell.’[u, v] = |Il- [u,v] — ii [u, v]| for M pixel samples:

W
L,= %;( Z el [u,v]. (5.3)

u,v)€s;
The geometric loss measures the depth difference ef[u, v] = |Di[u, v] = D;lu, v]| and
uses the depth variance as a normalisation factor, down-weighting the loss in uncer-

tain regions such as object borders:

ngﬁi > M (5.4)

i=1 (u,v)es; \,Dvar [Lt, V]

We apply the ADAM optimiser [Kingma and Ba, 2015a] on the weighted sum of

both losses, with factor 1, adjusting the importance given to the photometric error:

min (L, +4,L,) . (5.5)
0Ty & 0P

In this work we use a first order optimisation based in gradient descent (Section 3.5)
in contrast to a second order optimiser as in NodeSLAM (Chapter 4) because of the

MLP map representation.

Camera Tracking In online SLAM, close to frame-rate camera tracking is im-

portant, as optimisation of smaller displacements is more robust. We run a parallel

117



5. IMAP: Neural Fields for Dense SLAM

tracking process that continuously optimises the pose of the latest frame with re-
spect to the fixed scene network at a much higher frame rate than joint optimisation
while using the same loss and optimiser. The tracked pose initialisation is refined

in the mapping process for selected keyframes.

5.3.5 Keyframe Selection

Jointly optimising the network parameters and camera poses using all images from
a video stream is not computationally feasible. However, since there is huge redund-
ancy in video images, we may represent a scene with a sparse set of representative
keyframes, incrementally selected based on information gain. The first frame is al-
ways selected to initialise the network and fix the world coordinate frame. Every
time a new keyframe is added, we lock a copy of our network to represent a snapshot
of our 3D map at that point in time. Subsequent frames are checked against this

copy and are selected if they see a significantly new region.

For this, we render a uniform set of pixel samples s and calculate the proportion
P with a normalised depth error smaller than threshold ¢, = 0.1, to measure the

fraction of the frame already explained by our map snapshot:

P:i Z L |D[u,v]—D[u,v]|

5] D] <tp]- (5.6)

(u,v)es

When this proportion falls under a threshold P < tp (we set tp = 0.65), this
frame is added to the keyframe set. The normalised depth error produces adaptive
keyframe selection, requiring higher precision, and therefore more closely spaced

keyframes, when the camera is closer to objects.

Every frame received in the mapping process is used in joint optimisation for a
few iterations (between 10 and 20), so our keyframe set is always composed of the

selected set along with the continuously changing latest frame.
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Figure 5.4: Image Active Sampling. Left: a loss distribution is calculated across an
image grid using the geometric loss from a set of uniform samples. Right: active
samples are further allocated proportional to the loss distribution.

5.3.6 Active Sampling

Image Active Sampling Rendering and optimising all image pixels would be
expensive in computation and memory. We take advantage of image regularity to
render and optimise only a very sparse set of random pixels (200 per image) at each
iteration. Further, we use the render loss to guide active sampling in informative

areas with higher detail or where reconstruction is not yet precise.

Each joint optimisation iteration is divided into two stages. First, we sample a
set s; of pixels, uniformly distributed across each of the keyframe’s depth and colour
images. These pixels are used to update the network and camera poses, and to

calculate the loss statistics. For this, we divide each image into an [8 X 8] grid, and

calculate the average loss inside each square region R, j = {1,2,---,64}:
: 1 g p
Lj]=— Z % [u,v] +eP[u,v], (5.7)
|rj| ' '
(u,v)er;
where r; = s; N R; are pixels uniformly sampled from R;. We normalise these

statistics into a probability distribution:

fil7) = =]

L 5.8
2m=1L;i[m] 68
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We use this distribution to re-sample a new set of n; - f;[j] uniform samples per
region (n; is the total samples in each keyframe), allocating more samples to regions
with high loss. The scene network is updated with the loss from active samples (in
camera tracking only uniform sampling is used). Image active sampling is illustrated

in Figure 5.4.

Keyframe Active Sampling In iMAP, we continuously optimise our scene map
with a set of selected keyframes, serving as a memory bank to avoid network for-
getting. We wish to allocate more samples to keyframes with a higher loss, because
they relate to regions which are newly explored, highly detailed, or that the net-
work started to forget. We follow a process analogous to image active sampling and
allocate n; samples to each keyframe, proportional to the loss distribution across

keyframes, See Figure 5.5.

Bounded Keyframe Selection Our keyframe set keeps growing as the camera
moves to new and unexplored regions. To bound joint optimisation computation,
we choose a fixed number (3 in the live system) of keyframes at each iteration,
randomly sampled according to the loss distribution. We always include the last
keyframe and the current live frame in joint optimisation, to compose a bounded

window with W = 5 constantly changing frames. See Figure 5.5.

5.4 Experimental Results

Through comprehensive experiments we evaluate iMAP’s 3D reconstruction and
tracking, and conduct a detailed ablative analysis of design choices on accuracy and

speed.

5.4.1 Experimental Setup

Datasets We experiment on both simulated and real sequences. For reconstruc-
tion evaluation we use the Replica dataset [Straub et al., 2019], high quality 3D

reconstructions of real room-scale environments, with 5 offices and 3 apartments.
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Figure 5.5: Keyframe Active Sampling. We maintain a loss distribution over the
registered keyframes. The distribution is used for sampling a bounded window of
keyframes (red boxes), and for allocating pixel samples in each.

Figure 5.6: Reconstruction and tracking results for Replica room-0 along with re-
gistered keyframes.

For each Replica scene, we render a random trajectory of 2000 RGB-D frames.
For raw camera recordings, we capture RGB-D videos using a hand-held Microsoft
Azure Kinect on a wide variety of environments, as well as test on the TUM RGB-D

dataset [Sturm et al., 2012] to evaluate camera tracking.
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Figure 5.7: iMAP (left) manages to fill in unobserved regions which can be seen as
holes in TSDF fusion (right).

Implementation Details For all experiments we set the following default para-
meters: keyframe registration threshold ¢p = 0.65, photo-metric loss weighting
A, =5, keyframe window size W = 5, pixel samples [s;| = 200, positional embedding
size m = 93 and sigma o = 25, and 32 coarse and 12 fine bins for rendering. 3D

point coordinates are normalised by %0 to be close to the [0, 1] range.

In online operation from a hand-held camera, streamed images which arrive
between processed frames are dropped. For the experiments presented here every
captured frame is processed, running at 10 Hz. We recover mesh reconstructions if
needed by querying occupancy values from the network in a uniform voxel grid and
then running marching cubes. Meshing is for visualisation and evaluation purposes

and does not form part of our SLAM system.
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Figure 5.8: Replica reconstructions, highlighting how iMAP fills in unobserved re-
gions which are white holes in TSDF fusion.

123



5. IMAP: Neural Fields for Dense SLAM

5.4.2 Scene Reconstruction Evaluation

Metrics We sample 200,000 points from both ground-truth and reconstructed
meshes, and calculate three quantitative metrics: Accuracy (cm): the average dis-
tance between sampled points from the reconstructed mesh and the nearest ground-
truth point; Completion (cm): the average distance between sampled points from
the ground-truth mesh and the nearest reconstructed; and Completion Ratio (<5cm
%): the percentage of points in the reconstructed mesh with Completion under 5

cim.

The ability to jointly optimise a 3D map along with camera poses gives our system
the capacity to build full globally coherent scene reconstructions as seen in Figure
5.1 and 5.8, and accurate camera tracking as shown in Figure 5.6. The robustness
and versatility of iMAP is demonstrated on a wide variety of real world recordings,
through the reconstructions in Figures 5.11, 5.12, 5.9, and 5.10 that show its ability

to work at scales from whole rooms to small objects and thin structures.

We compare scene reconstructions from iMAP with TSDF fusion [Curless and
Levoy, 1996, Newcombe et al., 2011a], which is representative of fusion-based dense
SLAM methods. To isolate reconstruction, we use the camera tracking produced by
iMAP for TSDF fusion. The most significant advantage of our implicit representa-
tion is the ability to fill in unobserved regions as shown in Figs. 5.8 and 5.10. iMAP
achieves on average a 4% higher completion ratio across all 8 Replica scenes as seen

in Table 5.1, with an improvement of 11% in office-3.

Memory consumption for iMAP and TSDF fusion with different configuration
settings is shown in Table 5.2. With default values of 256> voxel resolution in TSDF
fusion and 256 network width in iMAP, our system can represent scenes with a
factor of 60 less memory usage while obtaining similar reconstruction accuracy as

seen in Table 5.1.

When using a real camera, in addition to better completion our method outper-

forms TSDF fusion in places where a depth camera does not give accurate readings
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room0 rooml room2 office0 officel office2 office3 officed Avg.

Keyframes 11 12 12 10 11 10 14 11 13.37

IMAP Acc. [cm] 3.58 3.69 4.68 5.87 3.71 4.81 4.27 4.83 4.43
Comp. [cm] 5.06 4.87 5.51 6.11 5.26 5.65 5.45 6.59 5.56
Comp.Ratio 83.91 83.45 75.53 77.71 79.64 77.22 77.34 77.63 79.06
[< 5cm %) 79.06

TSDF Acc. [cm] 4.21 3.08 2.88 2.70 2.66 4.27 4.07 3.70 3.45

Fusion Comp. [cm] 5.04 4.35 5.40 10.47 10.29 6.43 6.26 4.78 6.63
Comp.Ratio 76.90 79.87 77.79 79.60 71.93 71.66 65.87 77.11 75.09
[< bem %)

Table 5.1: Reconstruction results for 8 indoor Replica scenes. We report the highest
reached completion ratio in each scene along with the corresponding accuracy and
completion values at that point.

iMAP

TSDF
Fusion

ol

Figure 5.9: Comparative reconstruction results in various real scenes mapped with
an Azure Kinect. White holes in the TDSF fusion results are plausibly filled in by
iMAP, such as in black objects where a depth camera has missing data.

Width = 128 Width = 256 Width = 512
0.26 1.04 4.19

Res. = 128 Res. = 256 Res. = 512
8.38 67.10 536.87

iMAP [MB]

TSDF Fusion [MB]|

Table 5.2: Memory consumption: for iMAP as a function of network size, and for
TSDF fusion of voxel resolution.
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iMAP

TSDF
Fusion

Figure 5.10: Comparative reconstruction results in various real scenes mapped with
an Azure Kinect. iMAP can better represent thin structures and interpolate the
back of objects.

Figure 5.11: Real-time reconstruction results from iMAP in a variety of indoor
settings.
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Figure 5.12: Real-time reconstruction results from iMAP in a variety of outdoor
settings.

fr1/desk (cm)  fr2/xyz (cm)  fr3/office (cm)

iMAP 4.9 2.0 5.8
BAD-SLAM 1.7 1.1 1.73
Kintinuous 3.7 2.9 3.0
ORB-SLAM2 1.6 0.4 1.0

Table 5.3: ATE RMSE in cm on TUM RGB-D dataset.

as is common for black objects (Figure 5.9), and reflective or transparent surfaces
(Figure 5.7). This performance can be attributed to the photometric loss for recon-

struction combined with the interpolation capacity of the map network.

5.4.3 TUM Evaluation

We run iMAP on three sequences from TUM RGB-D. Tracking ATE RMSE is
shown in Table 5.3. We compare with surfel-based BAD-SLAM [?], TSDF fusion
Kintinuous [Whelan et al., 2012], and sparse ORB-SLAM2 [Mur-Artal and Tardds,
2017], state-of-the-art SLAM systems. In pose accuracy, iIMAP does not outperform
them, but is competitive with errors between 2 and 6 cm. Mesh reconstructions
are shown in Figure 5.13. In Figure 5.14 we highlight how iMAP fills in holes in
unobserved regions unlike BAD-SLAM.
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Figure 5.13: iMAP reconstruction results for TUM dataset.

Figure 5.14: Hole filling capacity of iMAP (top) against BAD-SLAM (bottom).
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Width Window Pixels
Default
128 512 3 10 100 400
Tracking 101 80 173 84 144 74 160
Time [ms]

Joint Optim.

. 448 357 77T 373 647 340 716
Time [ms]

Comp. Ratio

77.22 75.79 76.91 7582 7T7.35 77.33 77.49
[<5em %]

Table 5.4: Timing results for tracking (6 iterations) and mapping (10 iterations),
running concurrently on the same GPU. Default configuration: network width 256,
window size 5, and 200 samples per keyframe. Last row: completion ratio for Replica
office-2.

5.4.4 Ablative Analysis

We analyse the design choices that affect our system using the largest Replica scene:
office-2 with three different random seeds. Completion ratio results and timings
are shown in Table 5.4. We found that network width = 256, keyframe window
size limit of W = 5, and 200 pizels samples per frame offered the best trade-off
of convergence speed and accuracy. We further show in Figure 5.15 that active
sampling enables faster accuracy convergence and higher scene completion than

random sampling.

These design choices enable our online implicit SLAM system to run at 10 Hz
for tracking and 2 Hz for mapping. Our experiments demonstrate the power of
randomised sampling in optimisation, and highlight the key finding that it is better
to iterate fast with randomly changing information than to use dense and slow

iterations.

Combining geometric and photometric losses enables our system to obtain full
room scale reconstructions from few keyframes; 13 on average for the 8 Replica
scenes in Table 5.1. Using more keyframes does little to further improve scene

completion as shown in Table 5.5.

Implicit scene networks have the property of converging fast to low frequency
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Comp. Ratio
Acc. (cm) (<5cm %)
16 1 — Without Active Sampling 80 1
144 — With Active Sampling
65
50
351
— Without Active Sampling
20 - —— With Active Sampling
T T T T T T T T
0 100 200 300 400 0 100 200 300 400
Training Time (sec) Training Time (sec)

Figure 5.15: Active sampling obtains better completion with faster accuracy con-
vergence than pure random sampling.

tp =055 tp=0.65tp=0.75 tp = 0.85

# Keyframes 8 10 14 24
Comp. Ratio [<5cm %] 74.11 77.22 76.84 78.03

Table 5.5: Number of keyframe and completion ratio results for different selection
thresholds in Replica office-2.

Icm 0.75cm

3

10

g B )

Depth Error (cm)

\S}
|
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0 5 10 15 20 25 30 35 40 45 50 55
Training Time (sec)

Figure 5.16: Reaching 5cm, 2cm, 1cm and 0.75cm depth error requires around 1, 4,
20, 43 seconds respectively.
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5.5. Conclusions

Figure 5.17: Evolution of reconstruction detail.

shapes before adding higher frequency scene details. Figure 5.16 shows network
training from a static camera averaged over 5 different real scenes. The depth
loss falls below 5cm in under a second; under 2cm in 4 seconds; then continues to
decrease slowly. When mapping a new scene our system takes seconds to get a
coarse reconstruction and minutes to add in fine details. In Figure 5.17 we show
how the system starts with a rough reconstruction and adds detail as the network
trains and the camera moves closer to objects. This is a useful property in SLAM

as it enables live tracking to work even when moving to unexplored regions.

5.5 Conclusions

We pose dense SLAM as real-time continual learning and show that an MLP can
be trained from scratch as the only scene representation in a live system, thus
enabling an RGB-D camera to construct and track against a complete and accurate
volumetric model of room-scale scenes. The keys to the real-time but long-term
SLAM performance of our method are: parallel tracking and mapping, loss-guided
pixel sampling for rapid optimisation, and intelligent keyframe selection as replay
to avoid network forgetting. We demonstrate that an MLP representation enables

automatic scene compression and hole-filling, in Chapter 6 we will investigate how
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5. IMAP: Neural Fields for Dense SLAM

the properties of efficient scene representation exhibit an inherent decomposition of

elements into objects.
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6. iLabel: Interactive Neural Scene Segmentation

6.6 Conclusions . . . . . . . . e 159

Work within this chapter was conducted under close collaboration with Shuaifeng
Zhi, leading to the paper: Zhi, S.*, Sucar, E.*, Mouton, A., Haughton, I., Laidlow,
T., Davison, A. (2022). iLabel: Revelaing Objects in Neural Fields. In
Proceedings of the IEEE Robotics and Automation Letters (RA-L)). [Zhi et al., 2022].

(* denotes joint first author.)

6.1 Introduction

In Chapter 5 we showed that an MLP network can be trained from scratch in
a single scene via automatic self-supervision to accurately and flexibly represent
geometry and appearance. In this chapter we demonstrate that such a network
naturally tends to discover an object-level decomposition of the scene, and that this
can be revealed and aligned with user-defined semantic segmentation categories via

extremely lightweight real-time annotation.

iLabel is the first interactive 3D semantic scene capture system with a unified
neural field representation. It allows a user to achieve high-quality, dense scene re-
construction and multi-class semantic segmentation from scratch with only minutes
of scanning and a few tens of semantic click annotations. The basis of iLabel is a
real-time neural field SLAM system, augmented with a number of extra heads to
serve as semantic outputs. These outputs inherit the coherence of the neural scene
representation, and therefore also its decomposition properties. As the user scans
a scene in real-time with a hand-held RGB-D camera, and provides very sparse se-
mantic annotations by clicking, the network is able to generate a dense semantic

segmentation of the whole scene.

Our approach requires no prior training on semantic datasets, and can therefore
be applied in novel contexts, with categories defined on-the-fly by the user in an
open-set manner. Standard methods for semantic scene segmentation use deep net-

works trained on datasets of thousands of images with dense, high-quality human
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6.1. Introduction

Figure 6.1: Whole-room semantic mesh labelled in real-time from only 140 interact-
ive clicks and no prior training data.

annotations; even then they often have poor performance when the test scene is not

a good match for the training set.

Because we render full predictions in real-time, the user can place annotations
highly efficiently, to fix parts of the segmentation that are currently incorrect or
to add new classes. This means that the quantitative labelling accuracy of iLabel
scales powerfully with the number of clicks, and rapidly surpasses the accuracy of

standard pre-trained semantic segmentation methods.

Alongside our core iLabel system for multi-class interactive scene segmentation,
we introduce two promising variations. First, we show that hierarchical semantic la-
belling can be achieved by interpreting outputs as branches in a binary tree. Second,
we demonstrate a ‘hands free’ labelling mode where an automatic uncertainty-guided

framework selects a sequence of pixels for which to ask the user for label names
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Figure 6.2: Three processes run in parallel: (i) camera tracking, (ii) mapping which
optimises geometry, colour, and semantics, and (iii) labelling where the user provides
labels through pixel selection.

without the need for clicks. We demonstrate iLabel in a wide variety of environ-
ments, from tabletop scenes to entire rooms and even outdoors. We believe iLabel
to be a powerful and user-friendly tool, with much potential for interactive scene
understanding with applications in augmented reality and robotics, as well as provid-
ing intuitive insights into the ability of neural fields to jointly represent correlated

quantities.

We demonstrate iLabel in a wide variety of environments, from tabletop scenes to
entire rooms and even outdoors. We believe iLabel to be a powerful and user-friendly
tool, with much potential for interactive scene understanding with applications in
augmented reality and robotics, as well as providing intuitive insights into the ability
of neural fields to jointly represent correlated quantities. In Section 6.5 we demon-
strate an application of iLabel for autonomous labelling of physical scene properties

through robotic experimentation.

6.2 Related Work

Existing real-time, dense semantic mapping systems typically contain two paral-
lel modules: 1) an RGB-D based geometric SLAM system, maintaining a dense

3D map of the scene, and 2) a semantic segmentation module that predicts dense
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6.2. Related Work

semantic labels of the scene [Hermans et al., 2014, Nakajima et al., 2019]. Multi-
view semantic predictions are incrementally fused into the geometric model, yielding
densely-labelled, coherent 3D scenes. While semantic segmentation has been per-
formed using a variety of techniques [Nguyen et al., 2017, Krahenbiihl and Koltun,
2011, Long et al., 2015, Chen et al., 2018, Xia et al., 2022], it is an inherently
user-dependent and subjective problem [Martin et al., 2001]. User-in-the-loop sys-
tems are therefore crucial in enabling full flexibility when defining semantic relations
between entities in a scene. In this context, the works most closely related to ours
are SemanticPaint [Valentin et al., 2015] and Semantic Paintbrush [Miksik et al.,

2015).

SemanticPaint [Valentin et al., 2015] is an online, user-in-the-loop system that
allows the user to label a scene during capture. To this end, the user interacts with
a 3D volumetric map, built from an RGB-D SLAM system, via voice and hand ges-
tures [Niefiner et al., 2013b]. A streaming random forest classifier, using hand-crafted
features, learns continuously from the user gestures in 3D space. The forest predic-
tions are used as unary terms in a conditional random field (CRF) to propagate the
user annotations to unseen regions. As the CRF's are built upon the reconstructed
data, there is an underlying assumption that these data are good enough to sup-
port label propagation. SemanticPaint is therefore restricted to comparably simple
scenes and its efficacy in complex real-word scenarios is limited. A significant dis-
tinguishing factor between iLabel and SemanticPaint is ease-of-use. SemanticPaint
has several distinct modes, requiring the user to switch between modes repeatedly
and at well-timed intervals to obtain optimal results. In contrast, iLabel offers a
much simpler and intuitive user experience, such that high-quality segmentations are
obtained with far fewer interactions and no expert knowledge/intuition. Semantic
Paintbrush [Miksik et al., 2015] extends SemanticPaint to outdoor scenes. Using a
purely passive stereo setup for extended range and outdoor depth estimation, users
visualise the reconstruction through a pair of optical see-through glasses and can
draw directly onto it using a laser pointer to annotate objects in the scene. The

system learns in an online manner from the these annotations and is thus able to
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6. iLabel: Interactive Neural Scene Segmentation

segment other regions in the 3D map.

In contrast to [Valentin et al., 2015, Miksik et al., 2015], iLabel does not rely on
hand-crafted features, benefiting instead from a powerful joint internal representa-

tion of shape and appearance.

Hierarchical Semantic Segmentation Finding the hierarchical structure of
complex scenes is a long-standing problem. Early attempts [Arbeldez et al., 2014]
used image statistics to extract an ultrametric contour map (UCM), leading to fur-
ther work on using convolutional neural networks (CNNs) for hierarchical image
segmentation in a supervised manner [Xie and Tu, 2015, Maninis et al., 2016]. We
show that iLabel can build a user-defined hierarchical scene segmentation interact-

ively and store it within the weights of an MLP.

6.3 Method

iLabel represents 3D scenes using a neural field MLP which maps a 3D coordinate to
colour, volume density and semantic values. We use the neural SLAM system from
iMAP (Chapter 5) for real-time optimisation of the neural field [Mildenhall et al.,
2020b], such as a small MLP, depth supervision, keyframes, coarse bin rendering, and
sparse active pixel sampling. The MLP and camera poses of keyframes are jointly
optimised through differential volume rendering while also tracking the position of

a moving RGB-D camera against the neural representation.

In parallel with SLAM, a user provides annotations via clicks in the keyframes.
Scene semantics are then optimised through semantic rendering of these user-selected
pixels. The smoothness and compactness priors present in the MLP mean that the
user-supplied labels are automatically and densely propagated throughout the scene.
Thus iLabel can produce accurate, dense predictions from very sparse annotations
and often even auto-segment objects and regions not labelled by the user. The
ability to simultaneously reconstruct and label a scene in real-time allows for efficient

labelling of new regions and for easy correction of errors in the current semantic
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Figure 6.3: We employ a 4-layer MLP with feature size of 256.

predictions. See Figure 6.2 for an overview of iLabel.

6.3.1 Semantics Representation and Optimisation

At the heart of iLabel is continuous optimisation of the underlying neural field

representation (Figure 6.3):

FH(p) = (C, S, O'), (61)

where Fy is a 4-layer MLP parameterised by 6; c, s and o are the radiance, semantic
logits and volume density at the 3D position p = (x,y, z), respectively. The scene
representation is optimised with respect to volumetric renderings of depth, colour
and semantics, computed by compositing the queried network values along the back-

projected ray of pixel [u,v]:

M=
M=

N
Dlu,v] =Y wid;, I[u,v] = Zwici, Slu,vl =) wys;, (6.2)
i=1

i=1 i=1
where N is the number of sampled quadrature points along the ray, w; = o; H;-;ll(l -
0;) is the ray-termination probability of sample i at depth d; along the ray; o; =

1 —exp(—0;6;) is the occupancy activation function; ¢; = d;,; —d; is the inter-sample

distance.

As in iMAP (Chapter 5), geometry and keyframe camera poses are optimised by
minimising the discrepancy between the captured and rendered RGB-D images from
sparsely sampled pixels. Semantics are optimised with respect to the user-labelled

pixels, with two different activations and losses, corresponding to the two semantic
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Flat Semantics

Implicit Scene Network

A [}

' Hierarchical Semantics
'
N 1
sigmoid

Semantic S~ 0.5 e -
Logits :
1
Semantic Rendering L0

Figure 6.4: Semantic logits are rendered through ray sampling, and different ac-
tivation functions are applied to the rendered logits for either flat or hierarchical
semantic outputs.

modes described below. Figure 6.4 gives an overview of the semantic rendering

process and the activation functions applied to the rendered logits.

Flat Semantics As in [Zhi et al., 2021], the network outputs s; are multi-class
semantic logits which are converted into image space by differential volume rendering
(Eq. 6.2) followed by a softmax activation S[u,v] = softmaz(S[u,v]). Semantics are
then optimised using the image cross-entropy loss between the provided class 1D

and the rendered predictions.

Hierarchical Semantics We propose a novel hierarchical semantic representa-
tion through a binary tree, allowing for labelling and predicting semantics at dif-
ferent hierarchical levels. While the network output, s;, is still represented by an
n-dimensional flat vector, n now corresponds to the depth of the binary tree as op-
posed to the number of semantic classes. The semantic logits are rendered in the

same manner, but the image activation and loss functions differ.

A sigmoid activation function is applied to the rendered logits, producing values

~

in the range [0,1]. The jth rendered output value, S;[u,v] = sigmoz’d(gj[u,v]),

140



6.3. Method

corresponds to the branching factor at tree level j. To obtain a hierarchical se-
mantic prediction, each value S’j [u,v] is set to 0 or 1 by thresholding .§j [u,v] at 0.5,
this means that the class output at level j depends on the values of the previous
levels. In the hierarchical setting, the user-supplied label corresponds to selecting a
specific node in the binary tree. This label is transformed into a binary branching
representation, and a binary cross-entropy loss is computed for each rendered value.
A label selecting a tree node at level L only conditions the loss on the output values

up to and including level L: S’j[u, v],je{l,...,L}.

With reference to the top half of Figure 6.9, the network outputs three values
corresponding to the three levels in the tree. First, the user separates the scene into
foreground and background classes. A background label corresponds to the vector
[0, %, %] where * indicates that no loss is calculated for the second and third rendered
values. The user then divides the background class further into wall and floor, where
the wall label corresponds to vector [0, 1, x]. The binary hierarchical representation
allows the user to separate objects in stages. For example the user first separates
a whole bookshelf from the rest of the scene, and later separates the books from
the shelf without contradicting the initial labels, meaning that no labelling effort is

wasted.

6.3.2 Semantic User Interaction Modes

Our system allows for two modes of interaction: 1) manual interaction mode,
the usual interactive mode of iLabel, where users provide semantic labels in image
space via clicks, and 2) hands-free mode, where the system generates automatic
queries for the labels of informative pixels, driven by semantic prediction uncertainty
(Figure 6.5). The latter mode eases the burden of manual annotation, and users

could provide labels via text or voice.

In hands-free mode, uncertainty-based sampling actively proposes pixel positions
where there there is least confidence in the semantic class for labelling, and the user

only needs to supply a category name. This can be done with little computational
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6. iLabel: Interactive Neural Scene Segmentation

Figure 6.5: In hands-free mode with automatic query generation, semantic class
uncertainty is used to actively select a pixel for which to request a label; in this case
an unlabelled stool with ambiguous class prediction and high uncertainty is selected.

overhead [Settles, 2009, Ren et al., 2021]. We have explored several uncertainty
measures: softmax entropy, least confidence and margin sampling [Settles, 2009]. For
example, the softmax entropy is defined as u,,1r0py = —Zil ¢ [u,v]log(S’c[u,v]),

where C is the number of semantic categories.

At system run-time, semantic labels and corresponding uncertainty maps of all
registered keyframes are rendered. To decide which keyframe to allocate queries
to, we first compute frame-level entropy by accumulating pixel-wise entropy within
frames and assign a higher probability to sampling the keyframe with higher frame-
level entropy. Given a selected keyframe, we then randomly select the queried pixel
coordinate from a pool of pixel positions with top-K highest entropy values. The
frame-level and pixel-level uncertainty are updated every certainty mapping steps.

K is set to 1% or 5% of pixel numbers to avoid repeated queries at nearby positions.

6.3.3 Implementation Details

iLabel operates on two GPUs (one for optimisation and the other only for rendering

visualisation), running three concurrent processes: 1) tracking, 2) mapping, and 3)
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labelling (see Figure 6.2).

The mapping process encompasses optimising the MLLP parameters with respect to
a growing set of W keyframes and associated RGB-D observations: {(;, Di,Ti)}Zl,
where I;, D;, T,

. are the colour image, depth image, and camera pose of the i,

keyframe. As per iMAP (Chapter 5), the photometric loss L, and geometric loss L,
are minimised on sparse, information-guided pixels. iLabel performs an additional
optimisation on K user-selected pixels (&;) of keyframes and introduces a semantic

loss L, minimising the following objective function:

L4
1
arg min I Z Z eflu, vl +a, el [u,v] +ag e [u,v], (6.3)
0 i=1 (M,V)Gfi\—\/_—/ N——— e
L, L, L
where:
C ~
ef’ [u,v] = |Il-[u,v] - fi[u, vl el [u,v] == > S§[u,v]log(S5 [u,v]), (6.4)
c=1
D;[u,v] - D;[u,v]| . N
Sy = P Dilel] 3w (Dluv] - dp)?, (65)
Dvar [u,v] =1
and in the hierarchical setting:
L
efu,v] = Y =S [u,v]log(SS [u,v]) — (1 — S5 [u,v]) log(1 — 5 [, v]). (6.6)

=1

The labelling process coordinates user interactions and controls the rendering of
semantic images and meshes (via marching cubes on a dense voxel grid queried from
the MLP). The ADAM [Kingma and Ba, 2015b] optimiser is used with poses and

map learning rates of 0.003 and 0.001. @, and a, are 5 and 8. Fourier features are

p
used with sigma in the range [25,80], and input coordinated are scaled by %.

iLabel does not have an explicit/specific refinement process, and all user clicks are
involved in the joint optimisation (Eq. 6.3). The optimisation keeps working and

growing with changing sparse samples for colour and geometry reconstruction, and

increasing annotated pixels for semantics, colour and depth as well.

Timings results Run on GeForce RTX 2080 GPU for a single iteration of track-
ing/10ms, mapping/45ms, and semantics/15ms, with pixel batch sizes of 200, 1000,

and 100 respectively. Mapping and semantic optimisation run in parallel to tracking.
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Figure 6.6: Precise segmentations can be obtained from just 1 or 2 interactive clicks
per object. (Left: clicks; middle: dense labels rendered into a keyframe; right: full
3D mesh with labels.)

Figure 6.7: Segmentation results for challenging skeletal objects; left: pre-trained
CNN on ScanNet (Section 6.4.2), right: iLabel.

On average tracking converges on 6 iterations and semantics propagate in 20 iter-
ations. Rendering visualisation for labelling happens on a separate GeForce GTX

1080 GPU and takes 115ms for image size of 255x144.

6.4 Experiments

iLabel is an interactive tool intended for real-time use and we therefore emphasise
that its strengths are best illustrated qualitatively. We provide extensive examples

to demonstrate iLabel in a variety of interesting scenes. We show qualitative com-
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Figure 6.9: Binary tree as well as the segmentations at each level from the hierarch-

ical mode of iLabel.

parisons with the only comparable system SemanticPaint and clearly demonstrate
better segmentation quality. Additionally, we perform quantitative evaluations to
show how semantic segmentation quality scales with additional user click labels, us-
ing a state-of-the-art, fully-supervised RGB-D segmentation baseline [Chen et al.,
2020).

6.4.1 Qualitative Evaluation

As the geometry, colour and semantic heads share a single MLP backbone, user
annotations are naturally propagated to untouched regions of the scene without
specifying an explicit propagation mechanism (e.g. the pairwise terms of a CRF
used in [Valentin et al., 2015]). This, together with a user-in-the-loop, enables

efficient scene labelling with only a small number of well-placed clicks.
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We have observed that the resulting embeddings are highly correlated for coherent
3D entities in the scene (e.g. objects, surfaces, etc.). Consequently, iLabel is able to
segment these entities very efficiently, even with a single click. This is illustrated in
Figure 6.6 and 6.10, where only a few clicks generate complete and precise segment-
ations for a wide range of objects and entities, ranging from small, coherent objects
(e.g. fruit) to deformable and intricate entities (clothing and furniture).

The coordinate-based representation avoids quantisation and allows the network to
be queried at arbitrary resolutions. This property allows reconstruction of detailed
geometry and skeletal shapes that, when semantically labelled, render very precise
segmentations. Figure 6.7 illustrates high-fidelity object segmentations which are
challenging for a standard CNN.

iLabel can be used as an efficient tool for generating labelled scene datasets. For
example, a scene of a complete room with 13 classes, can be fully segmented with
high precision with only 140 user clicks (Figure 6.1). Alternatively, iLabel can be
used to tag individual objects for generating object-asset catalogues (Figure 6.8) to
aid robotic manipulation tasks, for example.

While iLabel is particularly powerful at segmenting coherent entities, Figure 6.11
also demonstrates its ability to propagate user-supplied labels to disjoint objects
exhibiting similar properties. Each example shows label transfer between similar
objects where only one has been labelled (e.g. (a) boxes on the bed, (b) food boxes
and plastic cups and (c) toy dinosaurs). The table and chairs scene in Figure 6.11
(d) is especially interesting. Only four clicks are supplied: the label for the chair leg
(blue) propagates to the leg of the table and the legs of the other chairs, while the

table-top label (yellow) propagates to the seats of the chairs.

Hierarchical scene segmentation Figure 6.9 demonstrates iLabel’s hierarch-
ical mode. The colour-coded hierarchy (defined on-the-fly) is shown together with
segmentations and scene reconstructions from each level. The results show the ca-
pacity of this representation to group objects at different levels, which has potential

in applications where different tasks demand different groupings.
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Figure 6.10: Efficient label propagation: iLabel produces high-quality segmentations
of coherent 3D entities with very few user clicks, approximately 20-30 per scene.

(@

Figure 6.11: Generalisation: iLabel is able to transfer user labels to objects exhib-
iting similar properties. It is worth highlighting that the segmentation in (d) was
achieved with only 4 clicks.

Comparison to SemanticPaint SemanticPaint (SPaint) [Valentin et al., 2015]
is currently the only comparable online interactive scene understanding system.
With several distinct modes (labelling, propagation, training, predicting, correct-
ing, smoothing), which do not operate simultaneously, users have to switch between
modes repeatedly (with careful consideration given to the duration spent in each
mode) to obtain optimal results. In contrast, iLabel presents a unified interface
for scene reconstruction, whereby user interaction, label propagation, learning and
prediction occur simultaneously. The more intuitive and simpler interface presen-
ted by iLabel means that high-quality segmentations are obtained with far fewer

interactions and no expert knowledge/intuition.
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Figure 6.12: Comparison results between iLabel and SemanticPaint for user annota-
tions in (a). (b) SPaint results for initial strokes; (c¢) SPaint results after corrections;
(d) iLabel segmentations obtained using only the input strokes in (a).

Qualitative comparisons between iLabel and SPaint is given in Figure 6.12. Scenes
with varying degrees of complexity were chosen to demonstrate the superiority of
iLabel even in scenes well-suited to SPaint (e.g. bottom row in Figure 6.12). For
each scene in Figure 6.12, users annotated objects/regions with the strokes shown
in (a). From these initial annotations only, iLabel was able to generate high-quality
segmentations (Figure 6.12 (d)). In contrast, SPaint produced comparatively noisy
and incomplete initial segmentations (Figure 6.12 (b)). Multiple mode switches
and additional corrective strokes were required to generate the final SPaint results
(Figure 6.12 (c)). We argue that the results produced by iLabel with only the
initial user inputs (< 10 strokes), surpass those of SPaint after the additional user

interactions.
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6.4.2 Quantitative evaluation

We evaluate iLabel’s 2D semantic segmentation performance in both manual inter-
action and hands-free modes, with varying numbers of clicks per scene, on the public
datasets Replica [Straub et al., 2019] and ScanNet [Dai et al., 2017a]. Both datasets
are publicly available for research purposes under their licence. We report the mean
Intersection Over Union (mIOU), averaged over ground truth labels remapped to

NYU-13 class definitions.

Baseline While pre-trained segmentation models serve a different purpose than
an interactive scene-specific system (to generalise to unseen scenes) we use them as
a baseline to demonstrate the labelling efficiency of our system. iLabel scales rapidly
with the number of clicks and rapidly surpasses the pretrained model, even when
this has been trained on very similar scenes.

Performance is evaluated against SA-Gate [Chen et al., 2020] with a ResNet-101
DeepLabV3+ backbone [Chen et al., 2018], which is the current state-of-the-art
in RGB-D segmentation. For Replica, we pre-train SA-Gate using the SUN-RGBD
dataset [Song et al., 2015] and fine-tune on our generated Replica sequences to avoid
over-fitting. We adopt a leave-one-out strategy, whereby fine-tuning is performed
independently for each test scene using the remaining Replica scenes. For ScanNet,
we train SA-Gate directly on the official training sets, achieving 63.98% mIOU on the
validation sets of 13 classes. Approximately 11k (9860 and 475 images for our SUN-
RGBD training and validation splits, 900 images for Replica fine-tuning) and 25k
training images were used for baseline CNN training on each Replica and ScanNet
experiment, respectively. The ResNet-101 backbone is initialised with ImageNet
pre-trained weights through all the experiments. As per [Chen et al., 2020], depth
maps use HHA encoding [Gupta et al., 2014], before which fast depth completion [Ku
et al., 2018] is used for hole-filling in ScanNet.

Results Figure 6.13a shows the performance of iLabel compared against the su-
pervised RGB-D CNN baseline (dashed horizontal line) on 5 Replica scenes and 6

ScanNet scenes from the validation set. The Replica dataset is a low data regime
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Figure 6.13: Quantitative evaluation of 2D semantic segmentation on the Replica
and ScanNet datasets. Both interaction modes are evaluated and outperform super-
vised baselines with a small annotation budget.
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with only 7 scenes used for fine tuning, which makes generalisation specially hard.
iLabel is specially suited for this settings, and surpasses the baseline with only 20
clicks per scene. In the ScanNet dataset where much more data is available, iLabel
reaches similar accuracy to the baseline with around 50 clicks, and continues to
improve surpassing the baseline by 20% at 120 clicks.

Figure 6.13b shows the effectiveness of automatic query generation guided by various
uncertainty measurements, which opens the possibility for hands-free scene labelling,
e.g., by voice command. As expected, this mode is less labelling efficient than manual
clicks and takes around 240 clicks to reach similar performance but involves much
less manual intervention. We show how random uniform pixel sampling achieves a
lower performance, specially when more labels have been added, highlighting the

importance of uncertainty guided pixel selection.

6.5 Robot Mapping of Physical Scene Properties

Work within this section describes was led by lain Haughton builduing on top of the
iLabel system, leading to the paper: Haughton, I., Sucar, E., Mouton, A., Johns,
E., Davison, A. (2022). Real-time Mapping of Physical Scene Properties
with an Autonomous Robot Experimenter. In Proceedings of the Conference

on Robot Learning (CoRL)). [Haughton et al., 2022]

In this section we show an application of interactive labeling to autonomous robot
mapping of physical scene properties. We build upon the iLabel system by exploiting
an active, autonomous agent to remove the human from the loop entirely. We
extend the predictive capabilities of the underlying MLP to include physical scene
properties, which the robot autonomously queries from the scene. Here, we describe
the components of our system that enable it to operate in a fully-autonomous manner
on a physical agent to obtain rich, task-driven scene representations.

The robot builds an internal representation of its environment via a series of autonom-
ous experiments. First, it actively selects interaction locations that are both feasible

and information-rich (based on semantic entropy). Second, the selected 2D image
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(a) Rigidity classification (b) Material classification (c) Force distribution

Figure 6.14: Over a few minutes our robot makes sparse, automatic physical scene
interactions, such as touching to test rigidity, sampling local material type with
spectroscopy or pushing to determine frictional force distribution. The interaction
results are used as sparse labels to the output channels of a joint neural-field model
of 3D shape and appearance, trained in real-time. Model coherence allows the
measured physical properties to be efficiently and densely propagated to the whole
scene, without the need for prior training data.

locations are mapped to the real-world coordinate system of the robot, and a phys-
ical interaction with the scene is planned and executed. Third, the resulting meas-
urement is processed and/or classified (see specifics in Section 6.5.3) to obtain the
ground-truth semantic label. Finally, using the labels obtained in this manner, scene
semantics are optimised through semantic rendering of the robot-selected keyframe

pixels.

6.5.1 Modes of interaction

Our framework facilitates the autonomous discovery and mapping of any measurable
characteristic of a scene, provided that a suitable measurement sensor and interac-
tion protocol can be defined. We demonstrate three particular interaction types: 1)
predicting rigidity by top-down poking; 2) predicting material type using a single-

pixel multiband spectrometer’; and 3) predicting frictional force distributions by

1SparkFun Triad Spectroscopy Sensor - AS7265x (Qwiic)
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(a) Initial keyframe and uncertainty (b) Final keyframe and uncertainty

Figure 6.15: Example material type segmentations using a spectrometer. 46 interac-
tions were required to separate the pile of laundry into wool (blue), cotton (yellow)
and synthetic (green/pink) materials. Red/blue signifies high/low uncertainty in
the uncertainty map.

lateral pushing. These modes constitute the basis of our fully automatic system

described in the following sections.

6.5.2 Entropy-guided interactions

Well-placed user clicks, especially in regions where the model is performing poorly,
are the most beneficial in terms of improving segmentation quality. This observation
was exploited in an automatic query generation framework, whereby an uncertainty-
based sampling was used to actively propose pixel positions for the user to label.
Similarly, we utilise softmax entropy to guide the physical interactions that the
robot makes with the scene, encouraging interactions that are optimal in terms of
information gain and thereby minimising the number of interactions required to

produce optimal segmentations. Softmax entropy, ug, is defined as [Ila et al., 2010]:

ug = —i S, [u,v] log (SC [u, v]) , (6.7)

c=1

with SC [u, v] the rendered semantic distribution and C the number of categories.

6.5.3 Semantic representation

The inputs to the semantic head of our neural-field MLP can be one of several phys-
ical properties, measured via apposite affordances and modes of interaction. Raw
sensor measurements acquired by the robot need to be post-processed or converted

into the target variable being predicted by the semantic head of the MLP. For binary
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(a) Interaction 25 (b) Interaction 26 (c) Interaction 27

Figure 6.16: Demonstration of autonomous guidance over 3 consecutive interactions
in Figure 6.15. From left to right, the interactions (unfilled markers) follow the
highest uncertainty pixel. After interaction (filled marker), there is a localised re-
duction in uncertainty.

(a) Scene 1: material (b) Scene 2: material (c) Scene 3: rigidity

Figure 6.17: Our system can interact with and segment a variety of scenes.

prediction tasks (e.g. rigidity), this may be as simple as applying a threshold to the
raw measurement. Multi-class target variables may require additional processing.
For example, when predicting material type from a multidimensional spectrometer
reading, we use a pretrained multiclass SVM classifier which outputs predefined
material classes, which are then fed to the semantic head. In both scenarios the
semantic head of the MLP predicts a categorical value and can be optimised using
cross-entropy loss.

We additionally demonstrate for the first time the prediction of continuous-valued
target variables in the semantic head of the MLP, where the ground-truths are
sparse, in contrast to the dense ground-truths used in the optimisation of the col-

our and density heads. For example, when predicting frictional force distributions,
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Figure 6.18: Comparisons of mean IoU (top) and false-confidence (bottom) vs. num-
ber of interactions for entropy-based and random exploration approaches.

we feed the minimum (stiction) force required to move an object, directly to the

semantic head and optimise using an L1 loss.

6.5.4 Single frame optimisation

During lateral pushing, interactions between the robot and the scene may intro-
duce object displacements which violates the static-scene assumption. While this
assumption allows to optimise over an expanding set of keyframes, a dynamic scene
potentially invalidates historic keyframes, ultimately leading to errors in the recon-
struction. We therefore clear the keyframe history and corresponding labels after
each interaction in this mode. Our experimentation has suggested that neural radi-
ance representations possess some form of temporal memory characteristic over the
labelled properties, whereby network weights adapt over time and maintain consist-

ency with the dynamic scene, provided scene changes are comparatively small.

6.5.5 Robotic Experiments

We demonstrate the ability of our system to perform a series of autonomous experi-
ments, using the aforementioned interactive modes, to discover and predict a variety

of physical scene properties. We demonstrate the quantitative benefits of entropy-
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(a) Scene (b) Normals rendering (¢) Force rendering

Figure 6.19: Stiction force mapping. Top row: three cylindrical objects with uniform
mass of (from left to right) 0.5kg, 1.5kg and 0.1kg. Guided by entropy, the robot
applies a single push to each object measuring, stiction forces of 1.0N, 3.0 N and
0.2N. Bottom row: power drill with non-uniform mass distribution. The final
rendering was produced after a sequence of 3 pushes.

guided experimentation and, in the case of rigidity and material-type classification,
compare segmentation performance against two state-of-the-art, class-agnostic seg-
mentation techniques (see Sec. 6.5.5 for details). Finally, we refer the reader to our
supplementary video for additional results.

We use a Franka Emika Panda robot, anchored to a table on which a variety of
objects are arranged (Figure 6.14). The robot is equipped with a Realsense D435
RGB-D sensor [Keselman et al., 2017], tracked using the forward kinematics of the
arm, which is controlled using ROS [System, ]. Prior to physical experiments, the
robot builds a geometric reconstruction of the scene, to allow for collision-free motion
planning. For this purpose, a set of RGB-D keyframes is captured over a series of
random motions in order to optimise the 3D neural field, and subsequent querying
of the network produces a collision mesh and normal map. All objects of interest
are placed within reach of the robot arm and any points located beyond this range,
or on the plane of the table, are automatically labelled ‘table’.

Rigidity and material-type prediction may be viewed as segmentation problems.

While training any popular instance segmentation technique (e.g. Mask R-CNN [He
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Figure 6.20: Rendered stiction force distribution, compared to an analytical ap-
proach with privileged information, along the length (blue) and width (red) of a box
with non-uniform density.

et al., 2017]) on the object classes present in our scenes (e.g. material types), is
likely to produce high-quality segmentations, one would need to repeat this training
for each scenario. Therefore, instead of comparing against closed-set segmentation
techniques, we consider two state-of-the-art class-agnostic instance segmentation ap-
proaches: 1) Mask R-CNN trained to perform class-agnostic segmentation [Gouda
et al., 2022] and 2) Unseen Clustering Network (UCN) [Xie et al., 2021] with RICE
refinement [Xie et al., 2022]. For each method, we perform instance segmentation
on the keyframe and use the resulting instance mask to guide the robot-scene inter-
action. In particular, the robot takes a single sensor reading as near to the centre
of each instance in the mask as is feasible and propagates the measurement to the
rest of the region. The measurements are converted to categorical labels (binary
rigidity or material-type) in the same manner as described in Sec. 6.5.3. We report
the mean Intersection over Union (mloU) averaged over the ground-truth labels.

Table 6.1 shows the quantitative performance comparison against the Mask R-CNN
and UCN baselines for each scene. As expected, the baselines perform well for scenes
1 and 3, which contain geometrically-coherent objects and strong colour and depth
cues. Scene 2, however, is considerably more challenging for the colour and /or depth-
based baselines, characterised by a significant drop in performance. In contrast, our
autonomous approach performs well for all three scenes, with comparable results to

the baselines in Scenes 1 and 3 and significantly superior results in Scene 2.
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Table 6.1: Classification performance for different types of scene, (examples in Figure

6.17).

Segmentation Example Ours Mask R-CNN  UCN + RICE

Material Scene 1 0.91 +£0.02 0.92 +£0.02 0.90 £ 0.02
Material Scene 2 0.89 +0.03 0.56 £0.11 0.56 £0.10
Rigidity Scene 3 0.91 +£0.04 0.92 +£0.02 0.91 £0.02

6.5.6 Entropy exploration ablation study

Figure 6.15 illustrates material discovery in a complex scene containing wool (blue),
cotton (yellow) and synthetic (green/pink) materials. Prior to physical measure-
ments, there is high uncertainty (red) across the entire scene, while the final uncer-
tainty map has high confidence (blue) throughout. We show the evolution of the
uncertainty map through three consecutive interactions in Figure 6.16. The robot
is guided to a high-entropy pixel (unfilled circle). On completion of the experiment,
there is a clear, localised uncertainty reduction surrounding the target region (filled
circle).

We observe that while the uncertainty in the localised region of measurement de-
creases, it often increases in more distant regions. As the model accumulates in-
formation, it continuously adapts its predictions and corresponding confidence, ulti-
mately converging on an accurate representation. This observation motivates the use
of uncertainty as an exploration metric in neural implicit representations. To sub-
stantiate the benefits of entropy-driven exploration quantitatively, we conducted an
ablation study comparing performance to random exploration. We compare the evol-
ution of mIoU and false-confidence (where the model produces high-confidence but
incorrect predictions) with an increasing number of interactions for each technique.
Figure 6.18 demonstrates superior convergence rates for entropy-guided interaction

in all three benchmark scenes in Figure 6.17 across both metrics.

6.5.7 Force measurement analysis

Figure 6.19 illustrates the stiction force maps produced by our framework for objects
with uniform (top row) and non-uniform (bottom row) mass and friction distribu-

tions. Note that in each scene the objects are displaced following the pushes per-
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formed by the robot. The scene in the top row contains three cylindrical containers
of varying mass and material. As desired, the resulting force renderings match the
varying masses. This is potentially valuable information when planning for down-
stream manipulation tasks (e.g. distinguishing between full and empty containers).
A key observation in Figure 6.19 is that the renderings for objects remain consistent
despite displacement, demonstrating for the first time a memory quality in neural
field representations.

In the bottom row of Figure 6.19, we demonstrate the ability of the robot to predict
stiction force values reliably, even for complex geometries, with non-uniform mass
and friction distributions. We substantiate this quantitatively in Figure 6.20, where
the robot interacts with a non-uniform rectangular box containing a 5 kg weight at
one end. We show that the output of our model, after three pushes, is comparable
to that of a simple analytical physics model [Mason, 1986] with access to privileged
information, including the contact surface area, mass distribution and friction coef-

ficient.

6.6 Conclusions

We have shown that online, scene-specific training of a compact MLP model which
encodes scene geometry, appearance and semantics allows sparse interactive labelling
to produce accurate dense semantic segmentation. Despite promising results, our
system’s label propagation mechanism works well mainly for proximal regions an-
d/or those sharing similar geometry or texture. A deeper understanding of this
mechanism is necessary to enable better control of this process and to improve gen-
eralisation performance. In addition, how to improve its ability to hierarchically and
uniquely represent rich semantics within the network is worthy of further explora-
tion. As architectures and methods for neural field representation of scenes continue
to improve, we expect these gains to be passed on to our labelling approach, and for
tools like iLabel to become highly practical for applications where users are able to

teach Al systems efficiently about useful scene properties.
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6. iLabel: Interactive Neural Scene Segmentation
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Conclusions and Future Work

In this thesis, we addressed the problem of jointly modeling geometric reconstruction
and semantic abstraction using compressive representations. We presented different
contributions encompassed by the use of neural scene representations within incre-
mental real-time SLAM, tackling open challenges in designing scene representations
for both object-level and dense SLAM systems. Specifically, we presented Neural
Object Descriptors for SLAM at the level of objects, with flexibility for intra-class
shape variations, as well as an MLP Neural Scene representation for compressive
incremental dense semantic mapping of room-scale scenes. The key to generative
inference with both of these scene representations was the development of a differ-
entiable volumetric rendering function used for joint optimisation of the 3D repres-
entation and camera trajectory. We demonstrated our developments in practical
real-time systems and robotic applications.

In Chapter 4, we addressed the problem of multi-view shape reconstruction us-
ing class-level priors. The objective of this project was to extend the benefits of
template-based object mapping such as [Salas-Moreno et al., 2013] of having a com-
pact scene representation and capacity to obtain a complete reconstruction with
partial observations, but allowing for shape variation within a semantic category of
objects. To achieve this, we combined 3D generative models and rendering-based
shape optimisation. We learned a compact and continuous class-level latent space
from aligned 3D shape models using a 3D Variational Auto-Encoder (VAE) CNN.
This latent space is used for the reconstruction of new shapes from the trained
classes by optimizing the compact code with respect to depth images. For image-

based optimization, we presented a differentiable volumetric rendering function, and
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demonstrated its increased robustness to current alternative formulations both qual-
itatively and quantitatively. We showed that within the scope of the trained classes
(mug, bottle, can, and bowl), our method achieves complete and accurate shape
reconstructions with partial and noisy depth measurements. The generative formu-
lation of our representation allowed us to build a full self-contained SLAM system
with objects as landmarks. The practical nature of our representation was high-
lighted in a robotic system capable of completing the challenging task of tight object
packing.

We believe that NodeSLAM represents an important advancement in object-level
mapping, going beyond fixed shapes by incorporating shape priors based on semantic
classes. Since the paper was published, it has inspired relevant extensions, such as
those that handle dynamic scenes [Xu et al., 2022] or address large-scale object
mapping [Wang et al., 2021a]. However, important limitations of this work include
the need for a 3D dataset to learn the latent space and the use of a single uni-modal
code to represent shapes, which limits expressiveness. Ongoing research is being
conducted to tackle these challenges; for example, by learning shape models with
image observations through rendering supervision as in [Tulsiani et al., 2018, Henzler
et al., 2021], or by modelling more complex shapes through part-based models [Mo
et al., 2019], or combinations of simple geometric primitives [Landgraf et al., 2021,
Genova et al., 2019).

In Chapter 5, we proposed incremental compressive representations for fully gener-
ative dense SLAM of room-scale scenes. In this project, we addressed open prob-
lems in dense SLAM, specifically the ability to perform full joint optimization of a
dense 3D map and camera trajectory, as well as the ability to model spatial rela-
tionships between points at different levels of detail. To address these challenges,
we proposed the use of a global and continuous 3D representation modelled with
a scene-specific randomly initialized MLP Neural Field. We designed a real-time
SLAM system, iMAP, for efficiently training the MLP representation from scratch.
Our SLAM system runs from a stream of depth images, utilizing a keyframe-based
parallel tracking and mapping design, and is optimized with differentiable volume

rendering. We demonstrated the ability for efficient optimisation through random-
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ised sparse rendering with active pixel selection. We showcased our system in a
varied range of settings, and highlighted advantages over fusion-based SLAM, such
as reduced memory requirements for representation, robustness to sparse views, and
joint optimization of maps and camera poses, allowing for small drift corrections.
Furthermore, we showed that the compressive and continuous MLP-based repres-
entation allows for plausible filling in of holes where depth information is missing.
iMAP presented an important advancement in demonstrating the ability of online
training of neural fields, and providing insights into geometric reconstruction with
an MLP. The main limitations of iMAP come at the cost of computation for ren-
dering and optimisation by the use a global map representation, where computation
increases proportional to representation capacity. Further developments on 3D rep-
resentations have explored hybrid representations, a combination of local spatial
structures followed by a global MLP [Miiller et al., 2022, Clark, 2022], which offer a
middle point in the trade-off between compute and memory storage. iMAP has in-
spired dense SLAM systems such [Zhu et al., 2022] that scale to bigger spaces based
on a hybrid representation or [Kong et al., 2023], where a scene is decomposed into
a per-object MLP. We believe there is a lot of open research in combining local and
global structures with questions on flexible decomposition and the type of repres-
entation function.

In Chapter 6, we investigated the automatic abstraction properties of the scene-
specific compressive representation used in iMAP. We accomplished this by con-
structing an interactive segmentation system called iLabel, where a user provides
sparse semantic labels of the scene. These labels are then automatically propagated
by the global MLP map. We demonstrated the hypothesis that an efficient repres-
entation automatically decomposes a scene into coherent regions or objects, which
can be revealed with minimal user interaction. We showed that label propagation
correlates with both the local geometric boundaries of objects and global appear-
ance properties. iLabel’s real-time interactive and open-set features enable efficient
label placement and error correction, allowing for the acquisition of full and pre-
cise segmentations of complex scenes where pre-trained neural networks struggle.

We believe that iLabel is a powerful and user-friendly tool for scene labelling that
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provides insights into the decomposition properties of Neural Fields. iLabel has
been extended to encode additional properties such as pre-trained 2D CNN features
in [Mazur et al., 2023], which allows to go beyond local segmentation to open-set

interactive semantic grouping.

6.7 Future Work

There remain many open challenges for achieving generally useful representations
and predictive models for Spatial AT and robotic systems. There are various exciting

research directions we are interested in taking this work, which we outline next.

6.7.1 Continual Learning

One big challenge for global representations such as the MLP used in iMAP is the
need of a replay buffer to avoid catastrophic forgetting. This incurs in big com-
putational costs for incremental training, and limits scaling to larger spaces as the
replay buffer grows. We believe there is potential in exploring representations which
model uncertainty in order to replace replay with proper probabilistic marginalisa-
tion. Examples of possible representation are Bayesian neural networks [Ebrahimi
et al., 2020] or Gaussian processes [Williams and Fitzgibbon, 2006]. This represent-
ations could bring additional benefits such as modeling the uncertainty of the 3D
reconstruction, as well as the probabilistic integration of 2D depth priors such as
those predicted by [Dexheimer and Davison, 2023, Laidlow et al., 2020]. It would
also be interesting to apply methods for inspecting neural networks such as [Fong
and Vedaldi, 2017] to analyse the relation between network activations and scene
structures such as the ones obtained from ilabel, which could provide insight into

how to lock network weights or prune the network to be more efficient.

6.7.2 Hybrid representations

As we mentioned before hybrid representations with a combination of local and
global functions are promising for improving computational efficiency. We believe

exploring flexible local decomposition beyond uniform grids is an interesting direc-
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tion. This could include localised basis functions such as wavelets [Rho et al., 2023]
or kernel methods with inducing points as described in [Ramos and Ott, 2016]. The
use of flexible local decompositions could be useful for modeling scene change in

dynamic environments.

6.7.3 Semantic mapping

In our previous work NodeSLAM we demonstrated how semantics can provide strong
priors for reconstruction in limited categories, and we would want to be more general
in using semantics for aiding reconstruction. In iLabel for example structural priors
could be inserted such as in regions annotated to be walls, floors or other surfaces
which tend to be planar. However, we believe the key building compact and se-
mantically meaningful representation is by exploiting repetition and self-similarity
in a scene, which could be achieved by introducing convolutional structures in the
representation which bring inductive biases for translation equivariance, ideally at

different hierarchical levels.

6.7.4 General Priors

Finally, recent progress has shown the ability to learn general 2D priors for natural
images through massive scale training [Ramesh et al., 2022]. We believe this will
play an important role on improving 3D reconstruction specially in the setting with
limited observations. We would like to explore how to incorporate this priors into an
incremental SLAM setting, or how to fine tune them to directly obtain geometrical

predictions such as depth images.
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