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Abstract

Visual Simultaneous Localisation and Mapping (SLAM) can estimate a
camera’s pose in an unknown environment and reconstruct an online map
of it. Despite the advances in many real-time dense SLAM systems, most
still assume a static environment, which is not a valid assumption in many
real-world scenarios. This thesis aims to enable dense visual SLAM to run
robustly in a dynamic environment, knowing where the sensor is in the envir-
onment, and, also importantly, what and where objects are in the surrounding
environment for better scene understanding.

The contributions in this thesis are threefold. The first one presents one
of the first object-level dynamic SLAM systems that robustly track camera
pose while detecting, tracking, and reconstructing all the objects in dynamic
scenes. It can continuously fuse geometric, semantic, and motion information
for each object into an octree-based volumetric representation.

One of the challenges in tracking moving objects is that the object mo-
tion can easily break the illumination constancy assumption. In our second
contribution, we address this issue by proposing a dense feature-metric align-
ment to robustly estimate camera and object poses. We will show how to
learn dense feature maps and feature-metric uncertainties in a self-supervised
way. They formulate a probabilistic feature-metric residual, which can be
efficiently solved using Gauss-Newton optimisation and easily coupled with
other residuals.

So far, we only reconstruct objects’ geometry from the sensor data. Our
third contribution further incorporates category-level shape prior to the object
mapping. Conditioning on the depth measurement, the learned implicit
function completes the unseen part while reconstructing the observed part
accurately. It can yield better reconstruction completeness and more accurate

object pose estimation.



These three contributions in this thesis have advanced the state of the art
in visual SLAM. We hope such object-level dynamic SLAM systems will help

robots intelligently interact with the human-existing world.
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1. Introduction

1.1 Motivation

Simultaneous Localization and Mapping (SLAM) techniques simultaneously es-
timate a map of an unknown environment and a robot pose within that map.
Research in the real-time visual SLAM field has experienced rapid progress. It
started from the beginning of sparse SLAM [Davison et al., 2007, Klein and Murray,
2007, Leutenegger et al., 2014], and was able to enter in to dense SLAM [Newcombe
et al., 2011a, Whelan et al., 2016, Dai et al., 2017, Laidlow et al., 2017, Loop et al.,
2016, Vespa et al., 2018] thanks to the increased computational power of the Graph-
ics processing unit (GPU) and cheap depth sensors. In the past few years, many
people worked on exploiting the power of a Deep Neural Network (DNN) from large
amounts of training data and inserting the learned prior information inside the
SLAM framework. This has enabled the SLAM system to create a global dense map
from a monocular camera [Bloesch et al., 2018, Zhou et al., 2018a, Czarnowski et al.,
2020] or have a better semantic and instance scene understanding [McCormac et al.,
2017, McCormac et al., 2018, Sucar et al., 2020, Zhi et al., 2019]. The fast-evolving
research in SLAM has, since, benefited various applications, such as robotics and

Virtual Reality(VR) / Augmented Reality(AR), more than ever.

Despite this progress, most of these works still are based on the fundamental
assumption of a static environment, within which points in the 3D world would
always have the same spatial position in the global world and the only moving
object being the camera. This assumption enabled the success of early phases
of development as it creates a robust epipolar geometry constraint, conveniently
eliminating the chicken-and-egg problem between reconstructing structure and
estimating motion. A camera pose can be estimated between a live frame and its
reference frame, which is based on the assumption that the relative transformation
between those two images is caused only by the camera motion. It is this basic yet

strong assumption that allows a joint probabilistic inference (sparse SLAM [Durrant-
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Whyte and Bailey, 2006]) or an alternative optimisation (dense SLAM [Newcombe
et al., 2011a]) of the map and the pose to solve the SLAM problem. Any moving
object in the environment should be treated as outlier to the static model and

intentionally removed from the tracking and mapping process.

This idealized setup, therefore, can only deal with a small portion of dynamic
parts and distances itself from real-world applications as environments do change,
especially places where humans exist. This assumption of a static environment for
SLAM system has served as an inspirational springboard for SLAM development,
but a continuation with the same methods would halt our advancements for robust
applications and better scene understandings. Robust SLAM working in the dy-
namic environment is still an open problem and this leads to the goal of this PhD

thesis.

The definition of a dynamic environment in this thesis is a scene where objects
are moving under the perception of a camera sensor. Our main interest in this
thesis targets moving rigid objects and intentionally excludes non-rigid objects,
such as human hands or bodies. We also consider changing illuminations as part of
a dynamic environment. Instead of solely reconstructing a single static and clean
background model for robust camera tracking and ignoring all possible moving
objects, our ultimate goal is to build a multi-instance dynamic system that can
consistently and reliably estimate geometric, semantic, and motion properties for each
object in the scene. This thesis has made a few contributions towards this ultimate
goal. I believe, similar to human perception, an awareness of instances in the map
would be a more proper solution to the dynamic SLAM issue and can lead to a
semantically meaningful scene representation. Augmenting semantic and object
information in a map is also a significant step for robotic agents to advance beyond

obstacle avoidance and achieve environment interactions for human agents.

In this thesis, we begin with presenting a novel object-level dynamic SLAM
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Reconstruction

(a) MID-Fusion [Xu et al., 2019]

Input

Feature

Uncertainty

View A View B 3D alignment from two views

(b) Deep Probabilistic Feature-metric Tracking [Xu et al.,

2021a]
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(c) Object-level Dynamic SLAM with Map Completion

Figure 1.1: Demonstrations of each contributed system in this thesis

system called ‘MID-Fusion’ [Xu et al., 2019] (shown on the Figure 1.1a), which
continuously estimates the pose, semantic class, and dense geometry of each object

in the scene. The 3D geometry of each object is reconstructed in an efficient
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octree-based truncated signed distance field (TSDF) volume [Vespa et al., 2018] that
can be naturally applied for further robotic applications such as exploration and
manipulation. The poses of the camera and objects are estimated via a probabilistic
combination of photometric and geometric residuals that are also commonly used
in many direct SLAM systems. This separation of each object in the scene to
its individual representation can naturally handle the real-world dynamic scene.
The object instances are first detected and segmented using Mask R-CNN [He
et al., 2017] and further refined using motion residuals. The semantic information
is efficiently fused using a Bayesian update scheme. The often imperfect object
boundary from 2D segmentation is refined via depth segmentation and further

refined with 3D foreground probabilistic fusion.

In MID-Fusion, our experiments showed that object-level representation can lead
to more robust camera tracking in a dynamic scene and better scene understanding.
However, we also found the limitations in the conventional photometric tracking
residual, which stringently requires brightness constancy and good initialization
(close to the global minimum). These requirements often cannot be met in reality,
especially for objects that have non-Lambertian surfaces (e.g. typical plastic objects).
To overcome these limitations, we explore a new tracking pipeline [Xu et al., 2021a]
that uses Convolutional Neural Networks (CNN) to predict a good initial pose,
and learns features and feature-metric uncertainties that can be robust to lighting
changes. We solve this novel residual using the Gauss-Newton algorithm and unroll
this optimisation step to learn deep features and its associated uncertainties in an
end-to-end manner. In the experiments, we have shown that this residual is robust
to lighting changes and have a larger convergence basin, as shown in Figure 1.1b.
It provides better tracking accuracy than classic residuals or pure learning-based
approaches and can be naturally combined with other residuals, such as Iterative

Closest Point (ICP) residual, to further improve performance.

In terms of object mapping, we found that the traditional TSDF fusion [Newcombe
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etal, 2011a, Vespa et al., 2018] adopted in MID-Fusion can only reconstruct the parts
observed from the sensor. The unobserved parts, due to occlusion or being behind
the surface, cannot be reconstructed, resulting in many incomplete meshes. To
tackle this problem, we propose to learn an implicit occupancy field that conditions
on both observed reconstruction and category-shape prior. We further propose to
jointly optimise this occupancy field and object pose, which enables more robust
object pose estimation and better object reconstruction qualities. We demonstrate
the effectiveness of our proposed system in both the synthetic and real-world

experiments, as one example shown in Figure 1.1c.

A brief historical review of SLAM, from static SLAM to dynamic SLAM, is given
below. More specific discussions on work closely related to the contributions in

this thesis will be presented in each individual chapter.

1.2 Static SLAM: from Sparse, to Dense, to

Semantic

Although this thesis focuses primarily on dynamic SLAM, most existing dynamic
SLAM systems borrow ideas heavily from the existing static SLAM systems. [Engel,
2017] introduces a taxonomy of visual SLAM, categorizing systems into direct vs.
indirect and sparse vs. dense. The first axis, direct vs. indirect, is determined whether
the input measurements for camera pose and geometry estimation is directly from
the actual sensor value or pre-computed from features extracted from the image(s).
The other axis, sparse vs. dense, is determined whether the input measurements are
only from a sparse selected set of independent points (usually corners) or all image

pixels.

A real-time visual SLAM is one that can complete all processing in real time,

at the rate of operation or framerate of the camera. It is composed of at least two
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main components: tracking (online camera pose estimation) and mapping (fusing
past observations into a coherent environment model). The front-end tracking
component requires a high framerate and low latency, while the back-end mapping

can run slower than the camera framerate.

Most early successful visual SLAM systems were sparse and indirect, due to
limited computation capabilities. MonoSLAM is one of the first real-time single
camera visual SLAM systems [Davison et al., 2007]. It uses a joint state to represent
the camera pose and an extended Kalman filter (EKF) method to build a point cloud
map. When new features are observed, they are filtered into the current map with a
joint Gaussian uncertainty. However, when the map grows larger, the filter update
has an O(N?) complexity, restricting the increase of the map size. Thus, Klein and
Murray, later proposed Parallel Tracking and Mapping (PTAM) [Klein and Murray,
2007], which uses a keyframe-based bundle adjustment, rather than a filtering
method. In their work, feature points are associated with keyframes, which are
then selected based on the structural sparsity of the problem. Real-time camera
tracking given a map and slow-speed bundle adjustment optimisation to update
maps run in parallel, enabling computationally expensive bundle adjustment into
a real-time SLAM work. With the increasing computation power and advanced
feature keypoint descriptors, such as SIFT [Lowe, 1999], SURF [Bay et al., 2006], ORB
[Rublee et al., 2011], and BRISK [Leutenegger et al., 2011], Sparse indirect SLAM
systems have become mature and can provide accurate and reliable camera tracking
in mostly static environments. One of the modern SLAM systems, ORB-SLAM

[Mur-Artal and Tardos, 2017] is such an example.

One of the drawbacks of these sparse systems is that they can only estimate
the sparse geometry of the surrounding environment due to its reliance on sparse
3D landmarks from sparse 2D keypoints. However, dense geometry of the map is
desirable for some robotic applications, such as collision avoidance and scene un-

derstanding. With the emergence of commodity graphics processing units (GPUs),
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dense SLAM has also started to rise. DTAM is one of the first real-time monocular
dense SLAM systems that estimate the dense geometry of keyframes by minimizing
the photometric error between the live frame and the reference keyframes with a

small baseline into a perspective cost volume.

The emergence of low-cost 3D sensing equipment that can directly measure
depth information has further boosted the research of dense SLAM. KinectFu-
sion [Newcombe et al., 2011a] is one of the earliest systems that can build a dense
3D volumetric reconstruction of arbitrary environments in real-time by only ac-
quiring depth information from a Kinect sensor. The map representation of Kinect-
Fusion is based on a volumetric data structure, Truncated Signed Distance Function
(TSDF) [Curless and Levoy, 1996], which provides an implicit and computationally
efficient way to represent the scene and the surface. The parallel structure inside
the KinectFusion with the usage of GPU also improves its real-time performance.
The initial design of KinectFusion maps the 3D geometry as a regularly spaced 3D
grid, and thus the memory usage scales with the size of the represented volume
rather than the surface. This limits its ability to perform large-scale mappings.
Some following work proposed to use more efficient data structures, such as N*
trees [Chen et al.,, 2013], octrees [Vespa et al., 2018], and voxel hashing [Niefiner
et al., 2013, Kahler et al., 2015]. Other following works focused on solving the drift
in camera tracking. BundleFusion [Dai et al., 2017] constructs a globally consistent
3D model by using a robust pose estimation method based on both sparse features
(SIFT [Lowe, 1999]) and dense (geometric and photometric) constraints. In the
map updating process, a de-integration operation was coupled with a conventional
integration process to remove integration errors and frames can be reintegrated
with new poses when loop closure is detected. ElasticFusion [Whelan et al., 2016]
achieves global consistency by applying elastic map deformation of surfel-based
map representation upon loop closure. [Laidlow et al., 2017] extended it to RGB-D-

Inertial sensors with the camera tracking replaced by a more robust approach using
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tightly-coupled visual-inertial odometry. [Vespa et al., 2018] proposed an octree-
based volumetric mapping that can support both SDF and occupancy mapping,
and is efficient enough to run in real-time on CPU. Our first work, MID-Fusion, is

developed using this map representation for objects, including background.

In addition to geometric information, other information can also be estimated
from the input measurements. Thanks to the advancement of neural network
research, one important direction is semantic SLAM, which aims to integrate local
semantic information from 2D input images to build a global 3D semantic map inside
the SLAM framework for better scene understanding. SemanticFusion [McCormac
et al.,, 2017] combines the ElasticFusion [Whelan et al., 2016] with a semantic
segmentation CNN [Noh et al., 2015] in a Bayesian update scheme to create a
semantically fused dense reconstruction. [Nakajima et al., 2018] speeded up the
segmentation with the help of geometric segmentation on depth images and only

run expensive semantic segmentation on keyframes.

Moving forward from dense semantic mapping, object-level representation
provides semantic map representation that can naturally differentiate different
instances in the same semantic class and is very important for understanding the
relationship between objects in the scene. An early version is SLAM++ [Salas-
Moreno et al., 2013] that can recognize pre-defined and repeated objects in the
environment in real-time. However, it requires collecting all possibly appearing
object instances in the environment with very detailed geometric information.
Fusion++ [McCormac et al., 2018] reconstructs arbitrary object-centric maps from
2D CNN detections [He et al., 2017] in TSDF volumes. [Siinderhauf et al., 2017]
combines ORB-SLAM2 [Mur-Artal and Tardos, 2017] with a Single-shot Multi-box
Detector (SSD) approach [Liu et al., 2016] to detect instance labels in the 3D world
and generates a global object-oriented semantic map. Kimera [Rosinol et al., 2020]
creates a dense mesh reconstruction with a VIO-frontend and provides a pose-

graph optimisation backend used upon loop closure. It can additionally provide a
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semantically annotated scene graph map for better scene understanding. Rather
than reconstructing object geometry from scratch, some other works concentrate
on extracting a compact object representation. [Nicholson et al., 2018] generates
object-centric maps using 3D quadric surface representation. DirectShape models
object shapes using PCA models and optimises these shapes using geometric, pho-
tometric, and silhouette information [Wang et al., 2020]. Deep-SLAM++ [Hu et al.,
2019], NodeSLAM [Sucar et al., 2020], FroDo [Runz et al., 2020], and DSP-SLAM
[Wang et al., 2021] represent objects in a compact latent vector that can be learned
from category-level object CAD models in ShapeNet dataset [Chang et al., 2015].
The object representations explore the variance and similarities inside an object
category and this learnt object prior is used to represent object geometries. Other
works also explore understanding the inter-relationship between objects in the
scene by learning a scene graph representation [Wald et al., 2020]. However, most
of these works only target static environments, as multi-view consistency of static

world points is required to localise the shape prior models.

One thing to be noted is that the computational requirements of SLAM algorithms
scale with the quantity of data they need to process. It is determined not only by the
resolution of the camera, but also by the design choice of the input to the tracking,
the density of the mapping model, and the network architecture, where included.
Therefore, a real-time SLAM system design is influenced by a variety of factors,
from frame resolution to point selection threshold and reconstruction density,
resulting in different hardware platform requirements. With the progress of state-
of-the-art SLAM algorithms to dense mapping and notably semantic prediction,
real-time SLAM systems demand at least desktop-grade CPUs and often one or
even a few high-end GPUs for acceleration, especially for deep neural network
inference. Many works have also been proposed in order to optimise real-time
performance on low-power platforms for mobile robot applications [Boikos and

Bouganis, 2017].
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1.3 Dynamic SLAM: from Background

Reconstruction to Object-level

By far, all the research mentioned above and most existing approaches have a basic
assumption that the environment is mostly static, and that dynamic objects can
be treated as outliers, to a certain limit and usually in a very small portion, to
the static model, and are ignored intentionally in the tracking and reconstruction
step. However, real-world scenarios are often changing, especially in the places
where humans exist. Therefore, existing dynamic systems that were originally
designed for static environments cannot work robustly in real-world dynamic
scenes. To overcome this issue, some work are coming up recently to enable SLAM
to work again in dynamic environments. In the remaining part of this section, I
will introduce some related work on the dynamic SLAM and categorize them into
three parts based on the condition if they integrate moving objects into the map

and the condition if they tackle deformable objects.

1.3.1 Removal of moving objects

When dynamic objects occupy an important part of the scene, visual SLAM systems
that do not specifically address dynamic content tend to confuse the motion of
the dynamic objects with the camera’s ego-motion, leading to wrong camera pose
estimation and distorted geometry reconstruction. Many works have proposed to
address this issue. [Jaimez et al., 2017] proposed a method to jointly estimate visual
odometry and scene flow under a dynamic environment. They estimate a dominant
rigid motion in the over-segmented clusters as the initially estimated camera motion.
Then the static parts are used to refine the camera motion estimation and the moving
parts are used to refine a piece-wise rigid scene flow. StaticFusion [Scona et al., 2018]
leverages the reconstructed model to reduce the overall drift and jointly estimates

the frame-to-model tracking and static/dynamic segmentation. The frame-to-model
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motion estimation is formulated by geometric (ICP) and photometric (RGB) re-
projection residuals. It is also weighted together by the segmentation score, which
is used to separate static and dynamic parts. The segmentation term is composed
of three parts, camera motion (ICP+RGB) residuals, depth inconsistency prior, and

a smoothness regularization.

In addition to these geometric solutions, [Barnes et al., 2018] proposed a self-
supervised learning approach to segment dynamic objects in the scene. It built
a prior 3D static map using a camera and LIDAR in the data collection step. The
prior static map is built by collecting data in the target environment in multiple
traversals and only the points that appear in different traversals are considered
static and remain in the prior map. The 3D points that are collected only in one
traversal are considered as belonging to moving objects and removed from the
3D map. In the training step, they predict both disparity and ephemerality masks
from a single RGB image using a convolutional encoder-multi-decoder network
architecture. [Bescos et al., 2018] proposed to use Mask R-CNN [He et al., 2017]
to detect prior dynamic objects, such as people, vehicles and animals. Then they
perform ORB-SLAM2 tracking module [Mur-Artal and Tardos, 2017] on the regions
outside the prior dynamic objects. Then based on this estimated camera pose, their
system checks the depth inconsistency to detect moving objects that are not a prior
dynamic. After refining the static regions, camera pose tracking is also refined.
Using the estimated camera, dynamic regions and the neighbouring regions are

inpainted using the corresponding information from keyframes.

1.3.2 Integration of moving rigid objects

Instead of only reconstructing a static background, some works explore how to track
and reconstruct rigid moving objects inside the environment. Co-Fusion [Riinz and
Agapito, 2017] is a system that is extended from ElasticFusion and can segment,

track, and reconstruct several moving objects. The segmentation is mainly based
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on motion between two consecutive frames using a fully connected Conditional
Random Field (CRF), where ICP cost is used as the unary potentials. Alternatively,
semantic segmentation can also be used to determine objects on each frame, yet
in an offline case. Co-Fusion assumes that several rigid bodies are moving in the
scene and uses geometric and photometric terms to track 6 Degrees of Freedom
(DoF) rigid pose for each object. The reconstruction and tracking use the same
method proposed in the ElasticFusion [Whelan et al., 2016]. The following work
MaskFusion[Riinz and Agapito, 2018] replaces the segmentation module of Co-
Fusion with Mask R-CNN [He et al., 2017] to segment instances in the scene
online. To compensate for the imperfect mask boundary and sometimes missed
detections from Mask R-CNN, they combine it with a geometric segmentation
method [Tateno et al., 2015] to provide a better boundary and use the rendered
masks from reconstructed models in case of failed recognition. Both Co-Fusion
and MaskFusion use surfels to represent map models, which is memory efficient
but cannot directly provide free space information in the map, and neither surface
connectivity. MID-Fusion [Xu et al., 2019], presented in Chapter 3 of this thesis,
leverages a memory efficient octree-based volumetric representation of a Signed
Distance Field (SDF) and further conducts semantic fusion for each detected object.
EM-Fusion [Strecke and Stuckler, 2019] proposes to estimate object pose by directly
align the object SDF with the input frame. A similar work is proposed by [Barsan
et al., 2018], targeting outdoor environments. From stereo cameras, depth maps
are first calculated using Efficient Large Stereo Matching [Geiger et al., 2011] or
DispNet [Mayer et al., 2016]. Then the dynamic and potentially dynamic objects are
detected using a Multi-task Network Cascades (MNC) [Dai et al., 2016]. In parallel,
sparse scene flow are calculated on the current frame and the previous frame. Based
on the estimated scene flow, camera visual odometry and each instance’s motion
are further calculated. Based on the estimated motion and the instance masks,
corresponding information on each frame is fused to each instance’s volumes using

InfiniTAM [Kahler et al., 2015].
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Similar to visual static SLAM, instead of alternating the optimisation of tracking
and mapping as most dense SLAM systems do, another direction is to formulate
a joint probabilistic inference on map and pose for higher object tracking accur-
acy [Durrant-Whyte and Bailey, 2006], with the caveat of sacrificing the dense
map representation and depth fusion. This is particularly useful in the outdoor
environment, especially for autonomous driving applications. [Li et al., 2018a]
proposes a stereo vision-based system that can track robustly both the camera pose
and 3D semantic objects in dynamic environments. It creates a dynamic object
bundle adjustment (BA) approach to fuse temporal sparse feature correspondences
and the semantic 3D measurement model for object pose, velocity and point cloud
estimations. DynaSLAM-II [Bescos et al., 2021] extends ORB-SLAM II [Mur-Artal
and Tardos, 2017] to dynamic environments by representing objects as sparse
pointclouds. It jointly optimises the camera pose, object poses, and geometries in
an object-level pose graph optimisation. ClusterSLAM [Huang et al., 2019] formu-
lates object detection and tracking as a clustering problem of landmark movements
and solves it in a batch optimization scheme. Following that, they reformulated it

as an online VO SLAM that also considers semantic detection [Huang et al., 2020].

In addition to different map representation choices for these object-level SLAM
systems, there are also different motion models for object movements. While the
majority of these dense object-level SLAM systems, such as [Riinz and Agapito,
2018, Xu et al., 2019], use a zero-velocity motion model to track objects, some other
works, such as [Bescos et al., 2021], use a constant velocity motion model, or a
white-noise-on-acceleration prior [Barfoot, 2017], for example in the [Huang et al.,

2020].

1.3.3 Integration of deformable objects

We introduced some work above on integrating multiple possible moving objects in

the SLAM framework. However, in those works, the non-rigid deformable objects
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are either out of the scope or treated as a composition of several rigid bodies. There
is another category of work specifically targeting at reconstructing 3D deformable

objects, especially human hands and bodies.

Although there have been many work being proposed to reconstruct non-rigid
objects, they are often off-line and require multiple sensor settings. DynamicFu-
sion [Newcombe et al., 2015] is the first real-time dense reconstruction in dynamic
environments using a single RGB-D camera. It extends the KinectFusion [New-
combe et al.,, 2011a] to model the dynamic scene by estimating a dense volumetric
6D motion field, which can warp the static surface into the dynamic scene input.
To efficiently estimate the motion field in real-time, the field is based on a sparse

set of rigid node motions and then refined through interpolation.

Since that, many other dense SLAM algorithms were proposed to capture the
dynamic environment. VolumeDeform [Innmann et al., 2016] proposes using both
depth and colour correspondences in the data association part for motion field
estimation. They also define the motion field points on the discretised volumetric
grids, on the same level of volume representation, instead of the interpolated field.
Later, Fusion4D extends the dynamic scene construction to a multiple RGB-D
camera set-up [Dou et al., 2016]. It estimates non-rigid tracking based on a 2D
dense correspondence field within images using a learning-based method. This
provides a more robust initialization to tackle fast motions. It also proposed to use
key-volumes, an idea similar to keyframe, instead of one fixed canonical model, to

solve the large topology change.

1.3.4 Position of thesis and quality metrics

The position of this thesis fits into the direction described in Section 1.3.2 since we
believe that, similar to human perception, an awareness of instances in the map is

significant for robots to perceive and interact with the changing environment.
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This direction is defined as object-level dynamic SLAM and aims to provide
accurate and robust pose estimation of the camera sensor in dynamic scenes while
incrementally building dense object-level maps of the surrounding environment.
The pose of the camera is typically estimated by minimising the error between the
sensor observation and the static background environment that has been generated.
The system then estimates the object poses of moving objects by minimising the
error between the newly observed object information and the reconstructed object
models. The camera pose estimation is then used to integrate the newly captured
background information to improve the accuracy of the current background map
and is combined with the estimated object poses to improve the accuracy of the

corresponding object models.

As such, the main quality metrics used for object-level dynamic SLAM can be
in three folders: the accuracy of the camera pose estimation, the accuracy of the
moving object pose estimation, and/or the accuracy of the generated object maps,

including the background map.

The accuracy of the pose is defined as the distance (error) between the real-world
position with respect to the origin point and the estimated position of the recovered
pose. To quantify the pose estimation performance on the entire captured trajectory,
one of the widely adopted metrics is the Root-Mean-Square-Error (RMSE) of the
Absolute Trajectory Error (ATE). When global consistency is not enforced, other
metrics can also be used to evaluate the pose estimation accuracy, such as relative
pose error (RPE) metrics [Sturm et al., 2012] that compares the estimated relative
transformations between nearby poses to the ground truth relative transformations,
or 3D End-Point-Error (EPE). In this thesis, we chose the widely used TUM RGB-D
dataset [Sturm et al., 2012] as our main benchmark to evaluate the camera pose

estimation accuracy.

When the origin of the estimated object map is aligned with the origin of the
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ground truth object model, the accuracy of the object pose estimation can also
be quantified using the same metrics, such as ATE, RPE, or 3D EPE. Since there
are no available real-world benchmark datasets containing ground truth origin
and the trajectory of semantic objects, we chose to use synthetic datasets, such as
MovingObjects3D [Lv et al., 2019] that contains objects from ShapeNet [Chang

et al., 2015] with random motions,to evaluate the object pose estimation accuracy.

The quality of object-level map reconstruction is also important. Similar to the
surface reconstruction accuracy evaluation in dense SLAM systems, we quantify
the reconstruction quality by computing the mean distances from each point in
the reconstructed map to the nearest surface in the ground truth 3D model. The
most commonly used metric is chamfer distance, and there are also some metrics,
such as IoU or completeness. To obtain ground truth object models, we rendered
some sequences with moving objects using the ground truth 3D CAD models from

InteriorNet [Li et al., 2018b] and Shapenet [Chang et al., 2015].

In addition to quantitative evaluations, we also conducted extensive qualitative
evaluations on pose estimation accuracy and object reconstruction quality in this

thesis. The details will be discussed in the respective chapters.

1.4 Contributions

We described three contributions in this thesis to tackle tracking and reconstructing
rigid moving objects. The main results have been presented in three different
research papers. The full list of publications done in conjunction with this work as
well as the video materials that provides visualisation of the algorithms are given
in Section 1.5. The motivation and contribution of each paper are briefly discussed

below.
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1.4.1 Paper I: Octree-based Object-Level Multi-Instance
Dynamic SLAM.

Research Question:
Can we design an object-level dynamic SLAM algorithm that can robustly estimate
camera pose and also accurately estimate all the objects’ geometric, semantic and

motion information?

Context:

We propose a new multi-instance dynamic RGB-D SLAM system using an object-
level octree-based volumetric representation. It can provide robust camera tracking
in dynamic environments and at the same time, continuously estimate geometric,
semantic, and motion properties for arbitrary objects in the scene. For each incom-
ing frame, we perform instance segmentation to detect objects and refine mask
boundaries using geometric and motion information. Meanwhile, we estimate the
pose of each existing moving object using an object-oriented tracking method and
robustly track the camera pose against the static scene. Based on the estimated
camera pose and object poses, we associate segmented masks with existing models
and incrementally fuse corresponding colour, depth, semantic, and foreground
object probabilities into each object model. In contrast to existing approaches, our
system is the first system to generate an object-level dynamic volumetric map from
a single RGB-D camera. Our method can run at 2-3 Hz on a CPU, excluding the
instance segmentation part. We demonstrate its effectiveness by quantitatively and

qualitatively testing it on both synthetic and real-world sequences.

This object-level dynamic SLAM and the corresponding experiments are presen-

ted in Chapter 3.
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Reference:

Binbin Xu, Wenbin Li, Dimos Tzoumanikas, Michael Bloesch, Andrew Davison,
Stefan Leutenegger (2019). MID-Fusion: Octree-based Object-Level Multi-
Instance Dynamic SLAM. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA). [Xu et al., 2019].

1.4.2 Paper II: Deep Probabilistic Feature-metric Tracking

Research Question:
Can we have a better tracking algorithm to estimate camera and object poses under

wide baseline and challenging lighting conditions?

Context:

Dense image alignment from RGB-D images remains a critical issue for real-world
applications, especially under challenging lighting conditions and in a wide baseline
setting. In this paper, we propose a new framework to learn a pixel-wise deep feature
map and a deep feature-metric uncertainty map predicted by a Convolutional Neural
Network (CNN), which together formulate a deep probabilistic feature-metric
residual of the two-view constraint that can be minimised using Gauss-Newton
in a coarse-to-fine optimisation framework. Furthermore, our network predicts
a deep initial pose for faster and more reliable convergence. The optimisation
steps are differentiable and unrolled to train in an end-to-end fashion. Due to its
probabilistic essence, our approach can easily couple with other residuals, where
we show a combination with ICP. Experimental results demonstrate state-of-the-art
performances on the TUM RGB-D dataset and the 3D rigid object tracking dataset.

We further demonstrate our method’s robustness and convergence qualitatively.

The algorithm and the corresponding experimental results on object and camera
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trackings are presented in Chapter 4.

Reference:

Binbin Xu, Andrew ]. Davison, Stefan Leutenegger (2021). Deep Probabilistic
Feature-metric Tracking. IEEE Robotics and Automation Letters (RA-L), Vol. 6,
No. 1,pp. 223-230, 2021. [Xu et al., 2021a].

This paper was elected in ICRA 2021 presentation and received a RA-L Best Paper

Honorable Mention Award.

1.4.3 Paper III: Object-level Dynamic SLAM with Map

Completion

Research Question:
Can we incorporate object shape prior into object mapping and can this shape prior

improve the object reconstruction quality and also pose estimation accuracy?

Context:

We propose a novel object-level dynamic SLAM system that can simultaneously
segment, track, and reconstruct objects in dynamic scenes. It can further predict
and complete the full geometry of the reconstructed objects by conditioning on the
measured depth and category-level canonical shape prior, leading to better tracking
accuracy. For each incoming RGB-D frame, we perform instance segmentation to
detect objects and build data associations between the detection and the existing
object maps. A new object model will be created for each unmatched detection.
For each matched object, we jointly optimise its pose and latent representations
using geometric and differential rendering residuals towards its shape prior and
completed geometry. Our approach shows better tracking and reconstruction

performance compared to methods using traditional volumetric or pure shape prior
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approaches. We evaluate its effectiveness by quantitatively and qualitatively testing

it in both synthetic and real-world sequences.

The algorithm and the corresponding experimental results on object reconstruc-

tion and pose estimation are presented in Chapter 5.

Reference:
Binbin Xu, Andrew J. Davison, Stefan Leutenegger (2022). Object-level Dynamic

SLAM with Map Completion. (under submission).

1.5 Publications

The work described in this thesis resulted in the following publications:

- Binbin Xu, Wenbin Li, Dimos Tzoumanikas, Michael Bloesch, Andrew Dav-
ison, Stefan Leutenegger (2019). MID-Fusion: Octree-based Object-Level
Multi-Instance Dynamic SLAM. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). [Xu et al., 2019].

- Binbin Xu, Andrew J. Davison, Stefan Leutenegger (2021). Deep Probabil-
istic Feature-metric Tracking. IEEE Robotics and Automation Letters (RA-
L), Vol. 6, No. 1,pp. 223-230, 2021. (RA-L Best Paper Honorable Mention
Award and selected in ICRA 2021 presentation) [Xu et al., 2021a].

and the following work that is currently under preparation for submission:

- Binbin Xu, Andrew J. Davison, Stefan Leutenegger (2022). Object-level
Dynamic SLAM with Map Completion. (under submission).
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The following video material provides visualisation of some of the algorithms

developed in this thesis:

- MID-Fusion supplementary video at:

https://youtu.be/gturboN19gg.

- Deep Probabilistic Feature-metric Tracking supplementary video at:

https://youtu.be/6pMosl6ZAPE.

While not described directly, the following work was conducted in conjunction

with this thesis:

- Binbin Xu*, Lingni Ma*, Yuting Ye, Tanner Schmidt, Christopher D. Twigg,
and Steven Lovegrove (2021). DiForm: Identity-Disentangled Neural De-
formation Model for Dynamic Meshes. Arxiv preprint arXiv:2109.15299.
[Xu et al., 2021b]

This work was conducted during a research internship at Facebook Reality

Labs Research.

*: equal contribution

1.6 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 introduces basic notation, the transformation groups and sensor models
used in dense SLAM, and provides a primer on non-linear least-squares optimisation
methods and tracking methods used in this work as well as a brief introduction on

the map representation and deep neural networks related to this work.
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1.6. Thesis Structure

Chapter 3 describes an octree-based object-level dynamic SLAM system. It can
provide robust camera tracking in dynamic environments and at the same time,
continuously estimate geometric, semantic, and motion properties for arbitrary
objects in the scene. It is one of the first systems to generate an object-level dynamic
volumetric map from a single RGB-D camera and can run at 2-3 Hz on a CPU, ex-
cluding the instance segmentation part. We demonstrate its effectiveness in robust

camera tracking in a dynamic scene and accurate object geometry reconstruction.

Chapter 4 describes a probabilistic deep feature-metric tracking method to over-
come the limitations of photometric residual used in Chapter 3. It is quantitatively
evaluated on camera tracking and object tracking benchmarks and shows state-
of-the-art performance. Qualitative demonstrations also show its robustness to

lighting changes and large convergence basin.

Chapter 5 further improves object mapping component by incorporating category-
level shape prior. Conditioning on both actual observations and latent codes, a
learnt implicit function can predict complete object shape geometry. Experiments
demonstrate this shape completion leads to better object reconstruction quality

and also better object pose estimations.

Chapter 6 concludes this thesis with a summary of the results presented and dis-

cussions for promising future work.
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CHAPTER 2

Preliminaries

In this chapter, we present fundamental concepts and related works that form the
foundations for the algorithms presented in this thesis. In terms of layout, we start
with the mathematical notation. We continue with the three-dimensional sensor
models that are used inside our state estimation algorithms. We then introduce
three-dimensional geometry knowledge, including the three-dimensional pose
transformation groups that are used to represent the states of our sensor and
object representations, and proceed with the nonlinear least-squares optimisation
algorithms that are used to solve state estimation problems. Then we present some
related works that have been served as a fundamental part in our work, especially
the parts that are used to estimate the poses of the sensors and the object models in
the environment, as well as the parts that are used for background and object map
representations. We conclude with a general introduction to deep neural networks

that are very closely related to the works presented in this thesis.
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2.1. Notation

2.1

Notation

This section introduces the notations used throughout this thesis. We will recap in

each following chapter again the notations that are used in the respective work.

2.1.1 General notation

a A lower-case symbol denotes a scalar.

a A bold lower-case symbol denotes an m-dimensional column vector.

A A bold capital symbol denotes an m x n matrix.

I The identity matrix, optionally with dimensions as subscript.

0 The zero matrix, optionally with dimensions as subscript.

[

A

The cross-product matrix that produces a skew symmetric matrix from a 3D

vector such that a xb = [a]"b. Given the vector a = [a,, a,, a,]', [a]" can be

y?

computed by:

[@l"=| a 0 -a] (2.1)

The properties of the cross product operation can be applied, such as the
anticommutative property: [a]'b = - [b]"a, as well as the skew-symmetric
property: ([a]")" = - [a]". The combined properties can lead some useful

equation, such asa’ [b]" = (- [b]"a)".

A calligraphic capital symbol denotes a set.

2.1.2 Spaces and manifolds

R

The set of real numbers.
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R™ The vector space of real m-dimensional vectors.

R
SO(3)

50(3)
SE(3)

H

The vector space of real m x n-dimensional matrices.

Special Orthogonal group: the group of 3D rotations.

lie algebra associated with SO(3).

Special Euclidean group: the group of 3D rigid transformations.

The “box-plus” operator that applies a small perturbation expressed in a

tangent space to a manifold state, e.g. SO(3) x R> — SO(3).

2.1.3 Frames and transformations

Fa

—

AY

Al AB

28

A cartesian coordinate frame in R°.

A vector v expressed in the framef) 4 for example a 3D world vertex position

in the frame F ,.
—)

The position vector from the origin of 7 4 to the point P represented in the

coordinate frame F 4.
e
The vector that represents the vector from F  to F ., represented in F 4.
— — —

The rotation matrix that transforms the vector zv expressed inf) 5 to one

expressed inf) 4 as: 4V = C,ppv. The inverse rotation Cpz, can be computed

. _ -1 _ T
as: CBA = CAB = CAB'

The translation vector that represents the vector fromf) ato Fp, represented

in F,.
—)A

The transformation matrix that transforms homogeneous vectors fromf) B

to F 4 as 47p = Ty gTp.
J.Aa8 4Tp ABBTP

2D pixel position represented on the framef) A



2.2. Camera Model

2.2 Camera Model

One of the most important and widely used sensors on the robot platform is the
camera as it is cheap and can capture very rich texture environment information.
We use the pinhole camera model to model the RGB and RGB-D cameras used in

this thesis.

The pinhole camera model can be mathematically described using the perspective
projection function. Assuming lens undistortion has been applied to the images,
a 2D pixel coordinate u; = (u, v), on the 2D image plane I is projected from a 3D

point position ¢r, = (x, ¥, z) in the camera coordinate_?’)c.
u; = K[”(crp)], (2.2)

where 7(-) is a perspective projection function and removes bottom row from the

homogeneous point representation

x
1| x
n(cry) = x| y = ) (2.3)
y
z

K is the camera intrinsic matrix to map the normalized image coordinates to the

actual pixel coordinates:

fu 0 ¢
K = 0 fZ} C‘U . (24)
0 0 1

The intrinsic matrix K is composed of the camera focal length expressed in hori-
zontal, f,, and vertical axis, f,, as well as the offset of the image origin from the
optical axis intersection in horizontal c,, and in vertical pixels, c,. These values can

be estimated in the calibration stage to remove the lens effects.

If the depth of a certain pixel, d, is known, we can recover its corresponding 3D
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point position by inverting the perspective projection function:

crp = ' [K7 (wy), d], (2.5)

P

where K™ is the inverse of the intrinsic matrix to normalize the pixel coordinates

to the normalized pixel coordinates:

1 c_u
0 7

K!-= 1 _& 2.6
S (2.6)
0 0 1

and z'() is a back-projection function to recover the 3D point position when its

depth is known.

2.3 Transformations

In this thesis, we proposed several novel systems to tackle the object-level visual
SLAM problem. Each camera frame, object pose, and the global world scene are
represented in their own respective frames. Rigid transformations between these
coordinate frames are used to represent the corresponding camera pose and object

poses in these scenes.

A camera pose is defined as the relative transformation of the camera coordinate
w.r.t. the world coordinate and belongs to Special Euclidean group, SE(3). It
consists of a 3DoF rotation and a 3DoF translation. One common parametrization
choice for it is using a 4x4 homogeneous matrix 71,5, and we express it as Tz =
(Cagp, aTap) € (SO(3) xR?), fromf}B toiA. The 3x3 rotation matrix C belongs to

Special Orthogonal group, SO(3), such that C'C = I and det(C) = 1.

The relationship between T3, the rotation matrix C,5z and the position vector
al'4p s given by:
Cas  ATas

TAB = > (2-7)
01><3 1
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2.3. Transformations

Figure 2.1: A depiction of a point P expressed in the world coordinate ¥, camera

coordinatef}c and object coordinatef}o as ,I'p, cI'p, and orp, respectively. The
relative transformation of the camera coordinate w.r.t the world coordinate repres-
ents the camera pose. The relative transformation of the object coordinate w.r.t the

world coordinate represents the object pose.
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(a) Static scene (b) Dynamic scene

Figure 2.2: Multi-view constraint in static and dynamic scenes

while its inverse transformation T, can be computed as:

T _CT r
_ AB AB ALY AB
TBA = TAé = (2-8)
01><3 1

Similarly, an object pose is defined as an SE(3) transformation between the object
coordinate and the world coordinate.

A visualisation of a point P expressed in these three coordinate frames and with
the transformations among them is shown in Figure 2.1. Part of the works in this

thesis focuses on estimating the camera pose Ty, and the object pose T, at
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the timestamp i by utilizing the correspondence in the multiple view constraint.
The world coordinatef)w can be arbitrarily defined, though conventionally it is
chosen to coincide with the camera coordinate on the first frame. If the world
and the object are static, the 3D landmark P has a constant spatial position vector
wTp in the world coordinatef) w- S0 we have the following multi-view constraint
when the same static landmark is observed at different timestamps in the camera

coordinate ¢ rp:
Ty, c,xp = Twe, o,¥p = wrp. (2.9)

The difference of 3D location between ¢ rp and  rp is only caused by camera
motion. However, when the object is moving, the constraint in Equation (2.9) does
not hold anymore since the ,rp can also change. Instead, we use the rigid body
constraint that the same 3D point on a rigid body remains a constant position in
the object body frame, which is set as the object canonical space. Then we can take

advantage of the following constraint:
Tv_vlo0 Ty, c,xp = T17\/101 Ty, c,Xp = oFp. (2.10)

Figure 2.2 visualizes the constraint difference. Here we slightly abuse the notation

ATp to express the homogeneous coordinates of a vector, 47p = [4rp,1]".

2.3.1 Lie Algebra

The homogeneous matrix is convenient to express transformations via simple mul-
tiplications. However, its 9-parameter rotation matrix form is over-parameterized
for 3DoF rotations as its elements are not independent. There are also other para-
meterisations for rotations, such as Euler angles, angle-axis, quaternions, and lie
algebra. Each of these parameterisations can be useful for particular tasks. However,
the representations that have more than three parameters must have associated
constraints to limit their degrees of freedom. The representations that have exactly

three parameters have associated singularities, and thus there is no perfect repres-
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entation that is minimal and also free of singularities. In our work, we primarily

employ lie algebra to parametrise rotations for iterative pose optimisation.

Both SE(3) and SO(3) are matrix Lie groups. A group is mathematically defined as
a set of elements together with an operation that applies to any two of its elements
to form a third element that also belongs to the group. A group also must satisfy
four conditions called the group axioms. A Lie group is a specific group that is also
a differential manifold, and whose group operations are also smooth. A matrix Lie
group further specifies that the elements of the group are matrices, the combination

operation is matrix multiplication, and the inversion operation is matrix inversion.

As a smooth manifold, a Lie group has an associated Lie algebra, which is the
local tangent space around the identity of the group. For rotations, the linear

algebra associated with SO(3) is defined as
so(3) = {® = ¢" € R*® | ¢ € R*}. (2.11)

(-)" is the equivalent operation symbol as the [-]* and its inverse operation symbol
is (+)":
¢ = (2.12)

The exponential map is the key to map each element from so(3) to SO(3) using

Rodrigues’ rotation formula:

C = exp(¢"). (2.13)

Inversely, we can also map from SO(3) to so(3):

¢ = log(C ). (2.14)

The exponential mapping is subjective as its inverse log mapping is not unique.
We can find multiple elements in so(3) mapping to the same element in SO(3). Lie

algebra can be converted to the axis-angle form of a rotation matrix by setting
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¢ = ¢a, where ¢ = |@| is the rotation angle and @ = ¢/¢ is the unit-length axis
of rotation. In practice, we limit |¢| to be smaller than 7 to limit the log mapping

candidates.

The associated Lie algebra is an especially natural place to perform iterative
updates on the lie group element. It creates a vector space with the same dimen-
sionality as the group’s number of DoF, allowing each step to freely move within
the entire vector space. In each iterative optimisation, a small update presented
in a minimal parameterisation belonging to R* can be used to update the group

element on the manifold by:

C=Cmd¢ (2.15)
= exp(6¢")C, (2.16)

where the update §¢ is computed around the currently estimated C € SO(3).

Similarly, rigid transformations can also be expressed in a minimal representation

£ €R%

" A
se@ =12 =P =|? P ler|ppery (2.17)
0" o

In terms of exponential mapping, there are two choices to express it, leading to
different expressions for Jacobian computations and pose updating. The orientation
exponential mapping is the same as the one in SO(3). For translation part, one is
to map p via left Jacobian: r = Jp € R’. This is referred to as the SE(3) way as
it is consistent in SE(3) space. The other is to directly map p to the translation
component: r = p € R®. We refer to it as SO(3) way as it separates the translation
part from the orientation part. In this thesis, we adopt the second choice. When a

small pose update € € R® is computed around the currently estimated rotation C

and translation p

S5& = [5p, 5] € RS, (2.18)
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it can be applied back on the SE(3) manifold as:

p=padp,C =Cad¢. (2.19)

More details of the lie groups and lie algebra in computer vision and robotics

can be found in [Eade, 2014, Bloesch et al., 2016, Barfoot, 2017].

2.4 Nonlinear Least-Squares Optimisation

Modern SLAM systems typically formulate the tracking and mapping problem
as nonlinear least-squares optimisation problems. For a set of state parameters,
x € R™, we aim to find the parameters X that can minimize the differences between
the predicted observations, h(x), with the actual measurements, z. This difference

is measured by an error function:
e(x) = h(x) - z. (2.20)

The error function is also called a residual function in some other papers. It can be

further formulated in a cost function:

E(x) = p(/le(x)llw)- (2.21)

W is symmetric positive-definite (and often diagonal if we assume the measurement
in each different is independent) weighting matrix and can be formulated in the
Mahalanobis norm || - [|w. In robotics, this weighted matrix is often defined by the
inverse covariance matrix associated with the measurement. p(-) is a robust loss
function that is used to down-weigh outliers in the optimisation problem, and is
often chosen empirically or based on the distribution of the residuals [Concha and

Civera, 2015, MacTavish and Barfoot, 2015] .
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2.4.1 Gauss-Newton Algorithm

Equation (2.21) is typically solved using a non-linear least-squares optimisation
algorithm, such as Gauss-Newton or Levenberg-Marquardt algorithm. The conver-
gence of these approaches, however, is not guaranteed and it may lead to a local

minimum [Eade, 2009].
Each iteration k of the Gauss-Newton system solves the state update dx for
Xi = X B OX (2.22)

by linearizing the residual function e(x) using first-order Taylor expansion

Ex) = p(lle(.1)llw) (2.23)
= p(lle(x; @ 6%)[lw) (2.24)
~ p(lle(xy) + Jox]|w), (2.25)

where the Jacobian matrix J is a function of x,

J= , (2.26)

X=X}

and needs to be re-evaluated at each iteration. Equation (2.26) can be analytically

computed using the chain rule.

To minimize Equation (2.25), we can set the derivative w.r.t. the parameter update

to be zero, and obtain the normal equation:
5x = —(JTWI) ' JTWx,. (2.27)

For brevity the robust loss function p() and its derivative are dropped from Equa-

tion (2.27). In practice, they are typically included in the weight matrix W.

Here J"WJ is an approximation to the true Hessian of Equation (2.21) with
respect to the parameters X to speed up computation. As the approximate Hessian

can become ill-conditioned to compute its inverse, a damping term is added in
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practice. If the damping parameter A is adaptable in each iteration, this results in
the Levenberg—Marquardt (trust-region) update equation. Different A values can
adjust the parameter update 6x between the Gauss-Newton update (smaller 1) and
gradient descent (larger 1). The choice of the damping parameter determines the

speed of which the algorithm converges to a local optima.

The iterative optimisation begins with an initial guess of the parameters, x, and
then iteratively updates until the updates become sufficiently small, or a certain
number of iterations is reached or stops early when the residual starts to go up.
Besides, when working with image inputs, instead of repeating this process on
the same resolution, a coarse-to-fine approach is typically applied. This speeds
up the optimisation and makes it less likely to get stuck in the local minimum by

providing a wider basin of convergence.

2.4.2 Inverse Compositional Algorithm

In a non-linear least squares framework, the Jacobian in Equation (2.26) needs to be
re-computed at each iteration, as it is a function of x;. To avoid recomputing it at
every iteration, the inverse compositional algorithm [Baker and Matthews, 2004]
pre-computes the Jacobian to save computational resource. This is achieved by
computing the parameter update on the measurement part, instead of the predicted

observation part:

E(x) = p(l[e(.1)llw) (2.28)

= p((lh(xi) - 2(5%)[lw)- (2.29)

Accordingly, the state parameter is updated in the inverse way in each iteration:

X = X 8 (5x) . (2.30)
In this way, the Jacobian
0z(0)
= 2.31
1-2 (231)
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in the linearization function

E(x) = p([[h(xi) - 2(5%)[lw) (2.32)
~ p([[h(xx) - 2(0) - JOx{|w), (2.33)

does not depend on x; and thus can be pre-computed to speed up the optimisation.

2.4.3 Jacobians in Rigid Transformations

The non-linearity in the optimisation problem largely comes from the orientation
component and thus the derivative of a transformed point with respect to the Lie
algebra parameters that transforms it is of particular importance. Here we give a
short summary of the lie algebra Jacobians that will be applied in the following

chapters.
To optimise the T';z in the forward rigid transformation:
Al‘p = TAB BI‘ N (234)

The 3 x 6 Jacobian of ,r, with respect to the state update 5& for £, is:

94T,

I6E [ - [ary]” 11 ] (2.35)

To optimise the inverse rigid transformation T3 :

sty = Tah 4T, (2.36)

The 3 x 6 Jacobian of gr, with respect to the state update 6& for &5 is:

dpr,

a5 (2.37)

Cis [Arp]x | - Cls

The notation of 4r, is slightly abused here. It is expressed in the homogeneous
coordinates when expressing transformation in Equations (2.34) and (2.36) and
in the inhomogeneous coordinates when expressing Jacobians in Equations (2.35)

and (2.37).
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2.5 Dense Tracking

In this thesis, our camera and object tracking components are in the category
of dense direct SLAM that alternates between the tracking and mapping steps
without explicit feature extraction and matching steps. Unlike sparse tracking,
which estimates a camera/object pose by minimising the reprojection error over a
set of sparse keypoints, dense tracking optimises over all the pixel intensities and

geometric information.

2.5.1 Iterative Closest Point (ICP) tracking

When using a depth camera, fast Iterative Closest Point (ICP) [Rusinkiewicz and
Levoy, 2001] is often used to register an incoming live depth frame to a reference
pointcloud or a reference 3D reconstruction model [Newcombe et al., 2011a] by
minimizing the distances between the corresponding points. In each iteration,
projective data association [Blais and Levine, 1995] is used to build dense corres-
pondences between the two pointclouds rather than searching for the closest two
points in terms of Euclidean distance. After each optimisation iteration, the estim-
ated transform is applied to the source point cloud, a new set of associations are

built again based on the projectively closest points and the procedure is repeated.

In ICP tracking, we first back-project each pixel u; in the incoming live depth
image to a 3D vertex point . v in the live camera frame,_T;CL using Equation (2.5).
This creates a live 3D vertex map, which can be transformed into the reference
framef} rusing the current estimate of the camera pose with the reference camera
pose, T{VlCR Ty, . The correspondence uy in the reference image for u; can be

found by re-projecting the live pixel u; into the reference image plane:

Up = K”(Tv_vlcR Ty, (r7' K (ug, Dr[u)))). (2.38)
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The ICP residual is defined as the point-to-plane ICP residual [Chen and Medioni,
1992, Newcombe et al., 2011a] using the reference surface normal y,n" in the world

coordinatef}w as well as the correspondence vertex distance error:

eICP(TWCL) = wh'[ug] - (TWCL CLV[U’L] - er[uR]) . (2.39)

The reference vertex v'[uy] and reference normal n"[uy] are found via raycast-
ing [Parker et al., 1998] to the reference 3D model. Here we choose the reference
normal in the residual, as the reference normal vector is estimated from the fused
reference TSDF model that contains much less noise than the live depth image.
To handle the outlier noise on the live depth image, we first run bilateral filtering
on the depth image and also filter out the live vertices whose vertice distance
Twe, ,v[uL] = wv'[ug] or normal divergence yn'[ug] - Cy ¢, ¢,n[u,] with the
reference point are too large. This residual has been found to work quite well
for projective data association, as it allows the correspondences to “slide” on the

surfaces.

The ICP residual in Equation (2.39) can be iteratively solved using the Gauss-
Newton algorithm, as described in Section 2.4.1. The state parameter to be optim-
ised is &y, and its Jacobian can be computed following the chain rule and using
Equation (2.35):

aeICP(TWCL )

Jice(€we,) = 20 =—[ (Twe, o, VIug]) x wn'[ug] | wn'[ug] |- (2:40)

Here we describe the Jacobian in the forward compositional way. The inverse
compositional Jacobian will be described in the later chapters when it is used in the
corresponding system. £, can be iteratively updated using Equation (2.27). The
inverse of the approximate Hessian matrix can be efficiently solved using Cholesky

Decomposition, QR decomposition, or Singular Value Decomposition.
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2.5.2 Photometric (RGB) tracking

Photometric (RGB) tracking minimizes the photometric, i.e. pixel intensity, differ-
ence between a live RGB image and a reference one. It has been widely adopted in
many SLAM systems to optimise a relative transformation that aligns the live frame
to a reference frame since it was proposed in [Steinbriicker et al., 2011]. It works
by rendering the live frame,_f’) ;, into the reference frame,f) r» by back-projection

and re-projection operations and then minimizing the photometric residual:

ergp(0) = Ig[ug] - rlp (2.41)

= Ip[ug] - IL[Kn(TI;/lL (Tyr ”71K71(’U/R, Dglug])))] (2.42)

In the following chapter, we seek to optimise the transformation T',; using the
depth rendered from the 3D reconstruction model, which has higher depth quality

than raw depth measurements.

Some intermediate terms in Equation (2.42) have their physical meaning in this

image rendering process and can be denoted as:

v

~

ergp(0) = Ip[ug] - I (K ETv_vlL STWR ”_IK_I(URa DR[“R]))})) (2.43)

wV

With small perturbation, i.e. parameter update, & performed on the T},; we

can obtain the following equation:

erp(6€) = I[ug] - [(Ka(Ty exp((-68)")wv)) (2.44)

Thus, we can get the photometric Jacobian formula as:

_ d(eggp(3E) - ergp(0))
a(68)
0 (IL(K”(TV_VIL exp((-68)")wv) - L(Km(Ty;, (WV))

_ 50 (2.46)

(2.45)

J
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Using the chain rule, we can decompose Equation (2.46) as three parts:

42

~9(Lw) a(uy) ()
ST o) o) A(0E) (247)

1. The first term is the image gradient of the rendered image v;I; on the pixel

coordinate u; and it requires (bilinear-)interpolation if the projection pixel

coordinate w; is sub-pixel.

. The second item is the derivative towards perspective projection from the

3D world vertex ;v, (x, y, z) onto the 2D pixel position u;, expanded as (u, v)
in the coordinate F ;.
H

Using Equations (2.3) and (2.4), we can get

X
u=fi—+c, (2.48)

z

Yy
v=f,=+c¢,, 2.49
fyz y (2.49)

and then the second term in the Jacobian equation would be:

ou ou 9 fe fx

(up) _ Et a_; a_: | = 0 _z_‘f
= = . (2.50)

a(v) o v o L _hY

Jox  dy 0z z 2

. The third term is the derivative towards the vertex ;v in the live coordin-

ate I;L transformed form the v under the small perturbation §& on the

transformation T, . Using Equation (2.37), we can get

a(1v) _ a(Tﬂ/lL wV)
a(6¢) a(8¢)
T x (T
_ Cyr [wV] Cy. (2.52)
o7 o7

(2.51)

The notation of v is slightly abused here. It is expressed in the homogen-
eous coordinate from Equation (2.51) and inhomogeneous coordinate from

Equation (2.52).
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Inserting Equation (2.50), Equation (2.52) into Equation (2.47), we can get the

Jacobian used in the photometric tracking:

Lo bz
.] = VRIL(UL) (Z) £ E}y _C’I‘,;/L C’I‘,;/L I:‘,‘/V]>< (253)
z 2

2.6 Map Representations

As discussed above, the quality of depth map estimation has a large impact on
tracking performance. While we can measure depth directly from a depth sensor, the
measurement depth also has its own reliable range and measurement uncertainty.
Fusing depth maps from multiple measurements can remove outliers and reduce
noise as well as the measurement uncertainties. It can also reduce the odometry drift
and further improve the tracking accuracy when combined with other optimisation
methods, such as pose graph optimisation, or factor graph optimisation. The exact
depth fusion method largely depends on the map representation choice, which has
been explored in various ways and is still one of the hottest topics in the SLAM

community nowadays.

Scene representation in visual SLAM initially focuses on building sparse pointcloud
maps, coupled well with sparse indirect feature-based SLAM systems [Davison,
2003, Klein and Murray, 2007, Mur-Artal and Tardos, 2017]. With the advancement
of commodity Graphic Processing Units (GPU) and especially the cheap depth
sensors, dense mapping has also become a popular choice SLAM since it is useful
for other robotics tasks, such as path planning and collision avoidance. Dense map-
ping typically fuses multiple view depth measurements into a global volumetric
representation such as a signed distance function [Newcombe et al., 2011a] or oc-
cupancy map [Hornung et al.,, 2013]. The initial design of dense mapping typically
use a regularly spaced 3D voxel grid and thus the memory consumption scales with
the size of the represented volume rather than the surface, limiting its ability to

perform large-scale mapping. Some following work proposed to use more efficient
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data structures, such as N* trees [Chen et al., 2013], Octrees [Vespa et al., 2018], and
voxel hashing [Niefiner et al., 2013]. Dense mapping can also be generated in the
mesh representation directly [Rosinol et al., 2019] or via augmenting pointclouds

with knowledge of the surface orientation [Whelan et al., 2016].

Recently, learning-based representations start to gain popularity in the research
community. Recent works, such as GQN [Eslami et al., 2018] and CodeSLAM [Bloesch
et al., 2018] use keyframe-based view-based latent code representations from a
variational auto-encoder (VAE) for scene representations. In addition to the view-
dependent approaches, several methods directly learn 3D-aware neural repres-
entations by augmenting the classic volumetric representations with 3D learning
features [Sitzmann et al.,, 2019, Park et al., 2020]. They have tried to learn a 3D-
structured latent model , but memory cost of 3D convolutions on the explicit 3D grid
resolution often limit its representation capability. Instead of augmenting classical
representation with deep features, direct parametrizing 3D scenes implicitly using
network weights has also gained much attention very recently. Neural implicit
representations can implicitly represent 3D scenes using the weights of neural
networks (often MLPs) which can predict the 3D geometry in occupancy or SDF
values at any given 3D query position, yielding unlimited resolutions. It has been
applied in both view-conditioned ones, including Neural Radiance Fields (NeRF)
[Mildenhall et al., 2020], and 3D-aware representations, including DeepSDF [Park
et al., 2019] and Occupancy Networks [Mescheder et al., 2019].

In Chapter 3 we will show how an efficient octree-based TSDF volume repres-
entation is used to reconstruct moving rigid objects. In Chapter 5, we will show
how to use learning-based representations to utilize category-level shape prior and

to predict a complete shape geometry of a moving object.
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2.7 Deep Neural Networks

Deep neural networks (DNN) have led to significant performance improvements
in almost every computer vision task, including semantic segmentation, depth
prediction, 3D reconstruction, and scene understanding [He et al., 2016, He et al.,
2017, Eigen et al., 2014, Ummenhofer et al., 2016]. It has also been applied in many
robotic applications and combined well with traditional model-based methods.
A deep neural network is typically a parameteric computational graph that is
composed of biologically-inspired “neurons”. Each neuron works as a weighted
summation of inputs that is followed by a nonlinear activation function to produce
an output for the next neuron layer. The purpose of a DNN training is to learn
an approximation of an unknown mapping f, : & — Y by updating neuron
weights 6 through back-propagation to minimise a designed loss function, which
is often supervised over (x € X,y € Y) pairs in the training set. It is often not
computationally feasible to do the minimisation overall training pairs in one pass,
and the backpropagation training is conducted instead over mini-batches of training
data. As the mini-batches are randomly drawn from the full training set and
reshuffled in each epoch, the optimisation procedure resembles stochastic gradient
descent that may help avoid local minima [Goodfellow et al., 2016]. This is repeated
until convergence on the training data and periodically monitored on the designed
loss on a reserved validation to avoid overfitting. After the training finishes, it
is expected to work well on unseen testing data sampled from a similar data

distribution as the training data.

Multi Layer Perceptron

One of the simplest neural networks, called multilayer perceptrons (MLP) or fully-
connected networks, consists of solely fully connected (FC) layers and non-linear
activation functions. In each layer, a neuron is densely connected to all neurons in

the previous and next adjacent layer. There are no connections between neurons
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within the same layer.

The representation power of an MLP is that theoretically, it is a universal function
approximators [Hornik, 1989] and thus can approximate solutions for extremely
complex high-dimensional nonlinear problems in machine learning. Unlike convo-
lutional neural networks (CNN) or recurrent neural networks (RNN), it also has
little inductive bias due to its fully connected design. Therefore, the unconstrained
MLP tends to overfit training data and does not have translation invariance and
thus making it less efficient at some 2D and 3D vision tasks. Despite this, MLP has
been used in a variety of popular network architectures [Simonyan and Zisserman,
2015, Qietal., 2017a]. In recent years, MLPs have also been back to the research com-
munities’ attention and have been applied in implicit representation for 3D shape
[Park et al., 2019], 3D scene representation [Sitzmann et al., 2020], and 3D scene
view synthesis [Mildenhall et al., 2020] as well as vision transformers [Vaswani

et al., 2017] due to its strong representation power.

In Chapter 5, we will show how to use a coordinate-based MLP to learn im-
plicit map representations for category-level shape prior and conditioned shape

completion.

Convolutional Neural Networks

Compared with MLPs, Convolutional Neural Networks (CNN) incorporate stronger
inductive biases and can learn translation-invariant features that are suitable for
many 2D and 3D vision tasks. CNN typically assumes a regular grid pattern in
the input data and is composed of a sequence of layers that usually consist of
convolutional layers, pooling layers and optional fully connected layers. The
weights to be optimised in the training time are in convolutional kernels and fully

connected layers.

Each convolutional layer learns small filter kernels that are convolved against
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the entire input. This enables parameter sharing as the salient features detected at a
certain position can also be detectable at other spatial positions, enabling translation
invariance in CNN. It also helps control the number of trainable parameters in CNN,
allowing more efficient computation and deeper network design. Another property
brought by the convolutional layer is the designed assumption of local connectivity.
The convolution operation means the spatial extent of the connectivity of each
neuron, i.e. receptive field, is limited to a local region. It helps solve the scaling
issue of network size with the input dimension that exists in MLP. By carefully
designing the receptive field of the convolutional layer, it is possible to replace
large filter kernels with several small filters, enabling a more compact network
size. Modern deep neural networks often have many convolutional layers, with
deeper layers learning more abstract and higher-level features from the previous
layers. Pooling layers are periodically inserted between convolutional layers to
downsample the output feature maps. This helps reduce the dimensions of the
input to the following convolutional layers and thus reduce the trainable parameter
and the computation amount. This can also mitigate the overfitting issue. Average
pooling and maximum pooling are the two most commonly used pooling types.
Fully connected layers are typically placed at the end of CNN for feature fusion

and classification.

In Chapter 4, we will show how to use Convolutional Neural Networks to learn

dense features for robust camera and object tracking in a self-supervised way.
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CHAPTER 3

Octree-based Object-Level

Multi-Instance Dynamic SLAM

In this chapter, we propose a new multi-instance dynamic RGB-D SLAM system
using an object-level octree-based volumetric representation. It can provide robust
camera tracking in dynamic environments and at the same time, continuously
estimate geometric, semantic, and motion properties for arbitrary objects in the
scene. For each incoming frame, we perform instance segmentation to detect objects
and refine mask boundaries using geometric and motion information. Meanwhile,
we estimate the pose of each existing moving object using an object-centric tracking
method and robustly track the camera pose against the static scene. Based on the
estimated camera pose and object poses, we associate segmented masks with
existing models and incrementally fuse corresponding colour, depth, semantic,
and foreground object probabilities into each object model. In contrast to existing
approaches, our system is the first system to generate an object-level dynamic
volumetric map from a single RGB-D camera. Our method can run at 2-3 Hzon a
CPU, excluding the instance segmentation part. We demonstrate its effectiveness
by quantitatively and qualitatively testing it on both synthetic and real-world

sequences.
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3.1 Introduction

In Simultaneous Localisation and Mapping (SLAM) both, the map of the unknown
environment as well as the robot pose within it, are concurrently estimated from
the data of its on-board sensors only. In recent years, the field of SLAM has
experienced rapid progress. It started from sparse SLAM [Davison et al., 2007, Klein
and Murray, 2007], and evolved into dense SLAM [Newcombe et al., 2011a] thanks
to the increased computational power of GPU and affordability of depth sensors.
More recently, many people have begun to leverage Deep Neural Networks and
their ability to learn from large amounts of training data to improve SLAM. This
fast-evolving research in SLAM has, since then, lead to strong progress in various
fields of applications, such as robotics, Virtual Reality (VR), and Augmented Reality
(AR).

Despite this progress, much work is still based on the fundamental assumption
of a static environment, within which points in the 3D world always maintain the
same spatial position in the global world, with the only moving object being the
camera. This assumption enabled the success of early phases of development as it
alleviated the chicken-and-egg problem between map estimation and sensor pose
estimation. A camera pose can be estimated between a live frame and a reference
frame, which is based on the assumption that the relative transformation between
those two images is caused only by the camera motion. It is this basic, yet strong,
assumption that allowed a joint probabilistic inference (sparse SLAM [Durrant-
Whyte and Bailey, 2006]) or an alternating optimisation (dense SLAM [Engel et al.,
2017]) of map and pose relationship to solve SLAM. Any moving objects in the
environment would be treated as outliers to the static model and are intentionally

ignored by tracking and mapping.

This idealised setup, therefore, can only handle a small amount of dynamic

elements and disqualifies itself from many real-world applications as environments,
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7~

Input | Label Reconstruction

Figure 3.1: An overview of our system. Given RGB-D images, our system builds
an object-level dense volumetric map that deals with dynamic objects and ignores
people. Next to the input image we show the labelled object models as well as the
coloured reconstruction.

especially where humans are present, change constantly. A robust SLAM system,
which works in highly dynamic environments, is still an open problem, which we

seek to address in this work.

Although dynamic SLAM has been studied for a couple of decades [Wang et al.,
2003], approaches based on visual dense SLAM have only recently been explored.
They can be categorised into three main directions. One deforms the whole world
in a non-rigid manner in order to include a deformable/moving object [Newcombe
et al., 2015]. The second specifically aims at building a single static background
model, while ignoring all possibly moving objects and thus improving the accuracy
of camera tracking [Jaimez et al., 2017, Scona et al., 2018, Barnes et al., 2018, Bescos
et al,, 2018]. The third models dynamic components by creating sub-maps for every
possibly rigidly moving object in the scene while fusing corresponding information
into these sub-maps [Riinz and Agapito, 2017, Barsan et al., 2018, Riinz and Agapito,

2018]. We are more interested in the third direction since we believe that, similar to
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human perception, an awareness of instances in the map would be a more proper
solution for robots to perceive the changing environment and has higher potential
to achieve a meaningful map representation. However, most existing approaches
build maps using a collection of surfels, which is difficult to be used directly for
robotic tasks. The only two systems that support sub-map volumetric map, we
know of so far, are [Barsan et al., 2018] and [McCormac et al., 2018]. However, the
former has been specifically designed for an outdoor stereo camera setting and the
latter only deals with static environments. Here, we propose the first object-level
dynamic volumetric map for indoor environment applications, where free space and
surface connectivity can be represented for each object model. We further improve
its memory efficiency by utilising an octree-based structure. Despite showing
some promising results based on deep learning, most methods [Riinz and Agapito,
2017, Rinz and Agapito, 2018, Barsan et al., 2018] simply leverage predictions from
neural network without much refinement in the map fusion. In this chapter, we

integrate and refine semantic predictions by fusing them into object models.

The main contributions in this chapter are divided into four main parts. We

propose

1. the first RGB-D multi-instance dynamic SLAM system using a volumetric

representation,

2. a more robust tracking method utilising weighting via measurement uncer-

tainty and being re-parametrised for object tracking,

3. an integrated segmentation using geometric, photometric, and semantic

information,

4. a probabilistic fusion of semantic distribution and a foreground object prob-

ability into octree-based object models.
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3.2 Related Works

In the majority of SLAM systems the environment is assumed to be static. To
tackle dynamic environment in real-world applications, several solutions have
recently been proposed and they can be mainly categorised into three directions
as introduced in last section. We will introduce and compare the last two types of
approaches in further details in this section. One straightforward way for dynamic
SLAM is to segment dynamic objects out as outliers and intentionally ignore
them from tracking and reconstruction to avoid corruption in the pose estimation.
StaticFusion [Scona et al., 2018] performs segmentation by coupling camera motion
residuals, depth inconsistency and a regularisation term. Barnes et al. [Barnes
et al., 2018] learn to segment possibly moving objects in a self-supervised way,
which is limited by the availability of training data and may often misclassify static
objects. Bescos et al. [Bescos et al., 2018] combine Mask-RCNN [He et al., 2017] with
depth inconsistency checking to segment moving objects and further inpaint those
areas with static background. Those methods provide a more robust approach in
dynamic scene than conventional SLAM methods, however, information regarding
the moving objects is lost. Instead, our approach aims to simultaneously track and
reconstruct static background and dynamic and static objects in the scene, while at

the same time, provide state-of-the-art tracking accuracy.

There are three approaches, to our knowledge, which provide similar functional-
ity as ours and can reconstruct multiple moving objects in the scene — the third way
to tackle dynamic SLAM. Co-Fusion [Riinz and Agapito, 2017] segments objects by
either ICP motion segmentation or semantic segmentation and then tracks objects
separately based on ElasticFusion [Whelan et al., 2016]. MaskFusion [Riinz and
Agapito, 2018] segments objects using a combination of instance segmentation
from Mask-RCNN and geometric edges, and tracks objects using the same approach

as Co-Fusion. Both Co-Fusion and MaskFusion use surfels to represent map models,
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which is also memory efficient but cannot directly provide free space information in
the map, and neither surface connectivity. DynSLAM [Béarsan et al., 2018] focuses
on outdoor environments using stereo cameras. In contrast, our system focuses
on indoor environments consisting of many (potentially) moving objects using a

single RGB-D camera.

In terms of differences in system components, our system further differentiates
itself from above approaches. In camera tracking, we weighted photometric and
geometric terms by their measurement uncertainty, instead of a single weight such
as in [Whelan et al., 2016]. Also, to be robust to depth loss, we derive two terms
from different frames to complement one another. To track objects, all previous
methods use a virtual camera pose, which is not robust to object rotation due to a
large lever arm effect in its optimisation derivative. We found best robustness by re-
parametrising it into object coordinate. To generate object masks, we combine both
information to provide better boundary conditions, instead of using just motion or
just semantic information. When fusing information to object models, we fuse not
only depth and colour information, but also semantic and foreground predictions
while previous methods just take predictions from neural network without any
refinement. In terms of speed, all three of the above require one or even two
powerful GPUs, while our method, despite running only on CPU, is capable of
performing at a similar speed to DynSLAM [Barsan et al., 2018], thanks to our

efficient octree-based data structure for object models.

Another very recent work related to ours is Fusion++[McCormac et al., 2018],
which generates an object-level volumetric map yet in static environments. In
addition to handling dynamic scenes, our system utilises a joint photometric and
geometric tracking to robustly track both camera and object poses while Fusion++
only use geometric tracking to estimate camera pose. Furthermore, to have a better
object mask boundary for fusion and tracking, we combine geometric, motion

and existing model information to refine mask boundary instead of directly using
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predicted mask as was done in Fusion++. In terms of map representation, Fusion++
is based on discrete voxel grids, which suffers from scalability issues, while we

represent all our object models in memory-efficient octree structures.

3.3 Notations and Preliminaries

In this chapter, we will use the following notation: a reference coordinate frame is
denoted F 4. The homogeneous transformation from F 5 to F , is denoted as T3,
— - -

which is composed of a rotation matrix C,z and a translation vector ,r 5. For each
pair of images, we distinguish them as live (L) and reference (R) image. For example,
a live RGB-D image contains the intensity image I; and depth image D;, with 2D
pixel positions denoted as u; and pixel lookup (including bilinear interpolation)

1

denoted as [-]. Perspective projection and back-projection are denoted 7 and 7,

respectively.

In our system, we store every detected object into a separate object coordinate
frameion, with n € {0..., N} where N is the total number of objects (excluding
background) and 0 denotes background. We assume a canonical static volumetric
model is stored in each object coordinate frame, forming the basis of our multi-
instance SLAM system. In addition, each object is also associated with a COCO
dataset [Lin et al., 2014] semantic class label ¢, € {0,...,80}, a probability dis-
tribution over its potential semantic class labels, a current pose w.r.t. the world
coordinate Ty, , and a binary label s € {0,1} denoting whether the object is
believed to be in motion or not. Each object is represented in an separate octree
structure, where every voxel stores Signed Distance Function (SDF) value, intensity,

foreground probability and the corresponding weights.
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Figure 3.2: The pipeline of the proposed method

3.4 Method

3.4.1 System Overview

Figure 3.2 shows the pipeline of our proposed system. It is composed of four
parts: segmentation, tracking, fusion and raycasting. Each input RGB-D image is
processed by Mask R-CNN to perform instance segmentation, which is followed by
geometric edge segmentation and motion residuals from tracking to refine mask
boundaries (Section 3.4.4). For the tracking, we first track the camera against all
vertices excluding the human mask area (Section 3.4.2) and then raycast from this
pose to find which objects are currently visible in this frame. This can also help
create a preliminary association between local object masks with existing object
models. We evaluate motion residuals for each object to determine if it is in motion
or not, then track moving objects (Section 3.4.3) and refine the camera pose against
the static world — which includes currently static objects (Section 3.4.2). Using
estimated poses of the camera and objects, we refine the data association between
object detections and object models and then fuse the corresponding depth and
colour information, as well as predicted semantic and foreground probabilities into
the object models (Section 3.4.5). Detection of visible objects as well as raycasting

is explained in Section 3.4.6.
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3.4.2 RGB-D Camera Tracking

This part estimates the live camera pose Ty, and is composed of two steps. First,
it tracks against all model vertices while masking out detected people; second, it
tracks against all static scene parts. Both steps are conducted by minimising the
dense point-to-plane ICP residual e, and photometric (RGB) residual e,, which are

weighted by individual measurement uncertainty, w, and w,.

Etrack(TWCL) = % < Z Wq p(eg) + Z Wp P(ep)> > (31)

u EM; UREMR

where p represents the Cauchy loss function and M is a mask excluding invalid

correspondences (for ICP), occlusions (for RGB), and humans.

For the ICP residual, we use the method proposed in [Newcombe et al., 2011a]
to minimise point-plane depth error between the live depth map and the rendered

depth map of the model on the reference frame:

eg(TWCL) = wn'[ug] - (TWCL CLV[UL] - wV [ug]), (3.2)

where ( v is live vertex map in the camera coordinate by back-projection and
wV and ,n" are the rendered vertex map and normal map expressed in world
coordinates. For each pixel u; on the live depth map, its correspondence uy on the

rendered depth map can be found using projective data association:
Up = ”(Tv_vlcR TWCL (n"Y(ug, Dr[ur)))), (3.3)
where T, is the camera pose of the reference frame.

For maximum robustness, we combine the ICP residual with a photometric one
by rendering a depth map from model in the reference frame and using that depth

map to align photometric consistency:

ep(TWCL) = Ip[ug] - IL[”(Tv_vch (TWCR 7T_1(“Ra Dr[ug]))]. (3.4)
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Different from previous approaches [Riinz and Agapito, 2017], we evaluate the
photometric residuals using rendered reference depth map other than the raw depth
map on live frame or reference frame for the de-noised depth quality from models.
This choice furthermore improves the robustness of tracking when raw input depth

is not available, e.g. when the camera is too close to a surface.

We further introduce a measurement uncertainty weight to combine ICP and
RGB residuals. For RGB residuals, the measurement uncertainty is assumed to be
constant for all pixels. For ICP residuals, the quality of input depth map is related
to the structure of the depth sensor and the depth range. We adopted the inverse
covariance definition for depth measurement uncertainty in [Laidlow et al., 2017].
Given the sensor parameters, i.e. baseline b, disparity d, focal length f, and the
uncertainties in the x-y plane o, and disparity direction o,, the standard deviation
op for depth sensor measurement in the x, y, z coordinates can be modelled as:

Dy[u;] Dy[u,] Df[’U’L]
op = ( 7 Orys 7 Orys b

The weight for ICP residuals using the inverse covariance of measurement uncer-

0,). (3.5)

tainty is then defined as:

1
Wg = nT r T : (36)
(wn")" wn'opop

The cost function is minimised using the Gauss-Newton approach in a three-level

coarse-to-fine scheme. The necessary Jacobians can be referred in Chapter 2.

After performing an initial camera tracking, we raycast to find visible objects
in the view. To find which objects are in motion, we evaluate E,,. (T, ) once
again on the finest level on the live frame. To this end, the RGB residual needs to

be re-formulated in the live frame as:

eo(Twe,) = Llur] - RIm(Twe, (Twe, 7 (ug, Difu])]. (3.7)
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To detect textureless objects in motion, we also include the geometric loss (Equa-
tion (3.2)), similar to the joint residual defined in Equation (3.1). We apply a
threshold to the combined residual E,, (T, ) to find the motion inliers. If the
inlier ratio is lower than 0.9 in the object’s rendered mask, then we consider that
object is moving and refine its pose as described in Section 3.4.3. The camera pose
is then refined by tracking against only static objects using the same objective
function and optimisation strategy explained above. Note that this hard threshold
for inlier ratio is a hyperparameter that can be tuned for different objects, but we
consistently use this number in all our experiments. Since it is a threshold applied
to the joint photometric and geometric residuals, it may miss objects that do not

contain enough information in both texture and geometric structures.

3.4.3 Object Pose Estimation

In this part, we describe how to estimate the pose of moving objects. As opposed
to virtual camera based tracking [Riinz and Agapito, 2017, Barnes et al., 2018], we
propose to employ an object-centric approach, which is less prone to bad initial
pose guesses. We still use a joint dense ICP and RGB tracking, weighted in the
same way as Equation (3.1), just with different ICP and RGB residual definitions. In
the present formulation, we estimate the current relative pose between object and
camera, T¢, o, , by aligning the live vertex map expressed in the live object frame

with the rendered vertex map expressed in the reference object frame:

eg(TCLOL) = Ci&oR wh' [ug] - (Tc_LloL CLV[U'L] - Tv_vloR wV' [ug]). (3.8)

The formulation is based on the assumption that each object coordinate frame yields
a static canonical object model and thus the point clouds must align. The proposed
parameterisation leads to more stable tracking due to a smaller lever arm effect of
the rotation. When computing the partial derivative of the above cost w.r.t. the
rotation [Bloesch et al., 2016] we get a term proportional to C¢; o, (¢, V[ur]-,¥c,0,)

which is small since we choose the object frame to be centred. In analogy, we also
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re-formulate the RGB residual as:

ep(TCLOL) = Ip[ug] - IL[”(TCLOL TC_RIOR (”_I(UR’ Dg[ug]))]. (3.9)

The above cost function is also optimised using Gauss-Newton approach in a

three-level coarse-to-fine scheme with T¢ o, initialised as Tt ), -

3.4.4 Combined Semantic-Geometric-Motion Segmentation

For each RGB-D frame, we use Mask R-CNN [He et al., 2017] to find semantic
instances, followed by geometric edge refinement to solve leaked mask bound-
aries [Riinz and Agapito, 2018]. Then we render instance masks for each map
object to the live frame by means of raycasting (explained in Section 3.4.6). We
associate local segmentation masks, which are generated from Mask R-CNN and
geometric refinement, with existing object models by calculating the intersection
of union (IoU) with the rendered masks. We assign the local segmentation mask to
the rendered mask which has the largest intersection and where the intersection
is larger than 0.5. In comparison to [Riinz and Agapito, 2018], we do not require
predicted semantic label of the local segmentation mask to be the same as object
semantic class since the prediction may be subject to high uncertainty. Instead, we
trust probabilistic fusion of semantic predictions to refine the objects’ semantic

labels (described in Section 3.4.5).

For segmentation masks that do not belong to any existing objects, a new object
model will be initialised (described in Section 3.4.5). For objects without associated
local segmentation masks, i.e. Mask R-CNN has no corresponding detection, we
choose its rendered mask from the model for the subsequent fusion process. Since
the rendered masks are associated with the object models, we do not integrate the
foreground probability and semantic predictions for these undetected objects in

this frame.
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(a) Instance segmentation with geometric re{b) Instance segmentation with geometric and
finement (hand is missed out) motion refinements

Figure 3.3: Combination of semantic, geometric and motion segmentations. Mask
regions that refined by geometric segmentation is in blue and the one further
refined by motion residual is shown in green.

After associating segmentation masks with object models, we further refine the
segmentation masks based on motion residuals of object tracking. We evaluate
Equation (3.1) again on the finest level, however, this time we evaluate photometric

residual on the live frame:

ep(TWCL) =L fu] - IR[”(TCROR Tc_LloL (”_I(UL’DE[UL])))]- (3.10)

Pixels whose joint ICP and RGB residuals are too high are treated as outliers and
filtered out in the segmentation mask. This can help detect the moving objects
when the object segmentation component misses the detection of some moving

parts, as one example shows in Figure 3.3.

Before integration, we also generate a foreground mask based on the local
segmentation mask. The use of foreground probabilities is inspired by the fore-
ground/background probabilities introduced in [McCormac et al., 2018] and allows
to avoid spurious integration due to wrong segmentation masks. Information in
both foreground and background regions are integrated into the models. In order to
avoid impairing the efficiency of the octree structure, we use dilated segmentation

masks as background mask. Pixels in the foreground are assigned an foreground
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probability of 1.0 while pixels in the dilated background are assigned 0. For undetec-
ted existing objects that Mask R-CNN fails on, we assign an foreground probability

of 0.5 to their foreground due to their lower possibility of existence.

3.4.5 Object-level Fusion

From each frame, we integrate depth, colour, semantics and foreground probability
information into object models using foreground and background masks. Using
the relative pose Tj, -, and depth, the Truncated SDF (TSDF) is updated following
the approach of Vespa et al. [Vespa et al., 2018]. Concurrently within the same
voxels, colour and foreground probability are updated using a weighted average. For
semantic fusion, we refine the semantic class probability distribution for each model
using averaging, instead of Bayesian updating which often leads to overconfidence

when used with Mask R-CNN predictions[McCormac et al., 2018].

For every segmentation mask that cannot be associated with any existing objects,
we initialise a new object model whose coordinate frame is centred around the
object itself. We back-project all points in the mask into world coordinates and then
find the centre and size of these point clouds. To account for possible occlusions,
we initialise the TSDF volume size to be 3 times the point cloud size to avoid
additional padding. We choose the volume resolution such that each voxel size is
slightly bigger than 1mm in order to support detailed object reconstruction. With
the octree-based structure, the unused voxels will not be initialised and the whole
system remains memory-efficient. The initial object translation in T, is chosen
as the left side corner of the object volume and the orientation is aligned with world

coordinates.
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3.4.6 Raycasting

We perform raycasting from camera pose to object models to render depth, normal,
intensity, and instance label maps. We use a similar method as proposed in [Mc-
Cormac et al., 2018]. However, as shown in the pipeline Figure 3.2, our system
involves at least four raycasting operations: depth rendering in tracking, finding
visible objects, IoU calculation, and visualisation. The first two operations create a
preliminary data association based on the estimated object pose in the last frame.
After camera and object motion refinement, the last two operations can refine
the data associations for dense mapping. Besides, it would be computationally
expensive if we continuously raycast all objects on each stage. To speed up, we
raycast all objects only once to find visible objects from the existing object models,
and avoid raycasting to invisible objects in the remaining steps of this frame. This
is based on the assumption that objects’ poses between consecutive frames do not

change dramatically.

For each ray originating from camera center y,¢; in the direction of r, we
warp both the origin and the direction into the object model coordinate. For
each object O,,, there will be a ray originating from Ty, ¢, in the direction
of Czp, or. Within each object octree volume, we apply the field interpolation
method [Vespa et al., 2018] to look for voxel blocks. We store the ray length of
the nearest intersection by far to avoid searching past that point in another object
volume. Since the ray is originated from the same point, even in a different object
coordinate, the ray length magnitude can be directly used to compare raycasting
intersection length. We use the closest intersected voxel for raycasting result and
only raycast voxels whose foreground probability is higher than 0.5. For one voxel
that is generated in both background and object volumes, we give a priority to
voxel in the object volumes. If two object voxels have same intersection length,
we prefer the one with higher existence probability. Objects whose voxels are not

raycasted at all are considered to be invisible from this view.
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3.5 Experiments

We evaluate our system on a Linux system with an Intel Core i7-7700 CPU at
3.50GHz with 32GB memory. Mask R-CNN segmentation is pre-computed on the
GPU using the publicly available weights and implementation [Wu et al., 2016]
without fine-tuning. Each object is stored in a separate octree-based volumetric

model, modified based on source code of Supereight [Vespa et al., 2018].

3.5.1 Robust Camera Pose Estimation

We first evaluate the camera tracking accuracy in dynamic environments using the
widely used TUM RGB-D dataset [Sturm et al., 2012]. The dataset provides RGB-D
sequences with ground truth camera trajectory, recorded by a motion capture
system. We report the commonly used Root-Mean-Square-Error (RMSE) of the
Absolute Trajectory Error (ATE). To evaluate the effect of different cameras motion
and environment change conditions, 6 different sequences are investigated. In
the f3s sequences, two people were sitting in the desk while engaging in slightly
dynamic movements. In the f3w sequences, two people were engaging in highly dy-
namic movements. For both types of sequences, three different camera movements
were involved: static with the camera kept static manually, xyz with the camera
moving along the x-y-z axes, and halfsphere with the camera moving following

the trajectory of a 1m diameter half sphere.

We compare our method with five state-of-the-art dynamic SLAM approaches:
joint visual odometry and scene flow (VO-SF) [Jaimez et al., 2017], StaticFusion
(SF) [Scona et al., 2018], DynaSLAM (DS) [Bescos et al., 2018], Co-Fusion (CF) [Riinz
and Agapito, 2017], and MaskFusion (MF) [Riinz and Agapito, 2018]. VO-SF [Jaimez
et al., 2017], SF [Scona et al., 2018], and DS [Bescos et al., 2018] were designed for
reconstructing the static background with dynamic parts ignored (or even inpainted

as in DS [Bescos et al., 2018]). CF [Riinz and Agapito, 2017] and MF [Riinz and
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Agapito, 2018] were designed for multi-object reconstruction. In all these methods,
DS [Bescos et al., 2018] is the only method using feature-based sparse tracking
(not reconstructing moving objects at all), while the remaining ones use dense
tracking methods as ours. For fair comparison, we compare first with dense tracking
methods and take DS [Bescos et al., 2018] as an additional reference. Table 3.1

reports our experimental results.

From the Table 3.1, we can see that our system achieves best results in almost all
sequences among dense tracking method. Our method even outperforms VO-SF
and SF, which were designed especially for robust camera tracking in a dynamic
environment. Figure 3.4 shows two inputs and the reconstruction results in the
challenging “f3w halfsphere” sequence. We highlight rejected segmentation masks
in the input images, with the geometrically refined mask labelled as human in
blue and the high residual regions during motion refinement in green. It can be
noted in Figure 3.4 that even when Mask R-CNN fails to recognise a person, our
combined segmentation using geometric and motion refinement can still reject
it. This, combined with the high quality depth rendered from our octree-based
TSDF model, leads to our robust and accurate camera tracking estimation in these
highly dynamic scenes. DynaSLAM achieves best tracking accuracy in almost
all sequences while it is the only sparse feature-based SLAM system among the
tested approaches. It shows the potential advantage of feature trackers in dynamic
environments. As part of future work, it would be very interesting to combine a
feature-based approach with direct dense tracking/mapping methods to further
improve camera tracking accuracy and robustness. This could also help to overcome
current failure-cases in challenging conditions such as very reflective scenes or fast

motions.
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Table 3.1: Quantitative comparison of camera tracking

Sequence ATE RMSE (cm)

VO-SF | SF | CF | MF | Ours || DS*
f3s static 2.9 13 | 11 | 21 | 1.0 -
f3s xyz 11.1 4.0 | 2.7 | 3.1 6.2 1.5
f3s halfsphere 18.0 4.0 | 3.6 | 5.2 3.1 1.7
f3w static 32.7 1.4 | 55.1 | 3.5 2.3 0.6
f3w xyz 87.4 12.7 1 69.6 | 104 | 6.8 1.5
f3w halfsphere | 73.9 | 39.1 | 80.3 | 10.6 | 3.8 2.5

*: feature-based sparse approach. The others are dense-tracking approaches.

3.5.2 Object Reconstruction Evaluation for Other

Components

We also tested our method within a fully controlled synthetic environment using
photo-realistic rendering and trajectory simulation [Li et al., 2018b]. We selected a
typical indoor scene with a sofa and a chair being translated and rotated in front
of the camera. We implicitly evaluate object pose estimation accuracy via object

reconstruction error.

To evaluate the effect of segmentation, we replaced the segmentation pipeline
with ground truth masks (G.T. Seg.). We also compared our object-oriented tracker
with virtual camera (V.C.) tracking to see if our parametrisation improves tracking
accuracy. We further compare with Co-Fusion(CF) [Rinz and Agapito, 2017]
using their public code. Table 3.2 reports the mean and standard deviation of
reconstruction error in these experiments. The results show that our system can
achieve more accurate object reconstructions. The difference between using ground
truth masks and our own segmentation component is negligible in the specific
example. The higher error obtained using virtual camera tracking demonstrates
the reliability of our object-centric tracking, especially for large object rotations.

Figure 3.5 shows the visualisation comparison results on the sofa reconstruction.
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Input with estimated masks

(a) Robust detection of dynamic objects and reconstruction of
static background

—— ground truth
— estimated
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(b) Ground truth (blue) with estimated (red) trajectories

Figure 3.4: Robust camera tracking and background reconstruction in a dynamic
environment (in “f3w halfsphere” sequence). Moving persons are rejected due to
the semantic labelling of Mask R-CNN (in blue) or during motion refinement (in
green).

3.5.3 Real-world Applications

We demonstrated our proposed method in various scenarios to show its capabilities.

Figure 3.6 shows the results in two scenes, “rotated book” and “cup and bottle”. For
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Table 3.2: Object reconstruction error (avg./std., in cm)

Ours with Ours with
Method CE v.c. tracking Ours GT-Seg
Sofa 1.72/1.62 1.68/1.90 0.74/0.79 0.46/0.59

Chair | 1.19/1.33 1.13/1.58 1.00/1.66 || 0.92/1.74

Scm

Ours with standard

virtual camera tracking Co-Fusion

Input image

]
r/ /

Ground truth mesh Ours with éfoﬁ_nd truth Ours
segmentation

Ocm

Figure 3.5: Comparison of reconstruction error for a moving sofa.

each input image, we provide label image and reconstruction to show the detailed
reconstruction, reliable tracking, and segmentation. With separate volumetric maps
for each object, our object models do not collide with each other, which is more

suitable for multiple instance SLAM than a surfel-based system.

Figure 3.7 also shows a scene where our system can simultaneously support the
robust tracking of more than 6 moving objects while maintaining a highly detailed
reconstruction. As a qualitative comparison, we also show the reconstruction
from Co-Fusion, which did not segment and reconstruct these moving objects
successfully because the motion was not of sufficient magnitude. In addition, surfel-
based systems, such as Co-Fusion and MaskFusion, do not provide the same level
of details per object. On the contrary, our system can maintain highly detailed
reconstructions and nevertheless keep efficient memory usage thanks to the octree

data structure. More results can be seen in the video attachment.
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Input

Label

Reconstruction

Input

Label

Reconstruction

(b) "cup and bottle" scene

Figure 3.6: Qualitative demonstration: input RGB (top row), semantic class predic-
tion (middle row) and geometry reconstruction result (bottom row).

3.5.4 Runtime Analysis

We evaluated the average computational time for the components of our dynamic

SLAM system in different sequences with approximately 3 to 6 objects being moved.
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Co-Fusion

Figure 3.7: Qualitative comparison with Co-Fusion: input RGB (left column), our
reconstruction results (middle) and Co-Fusion results (right column).

Table 3.3: Run-time analysis of system components (ms)

Components | Tracking | Segmentation | Integration | Raycasting
Time (ms) 43/MO 10/VO 12/VO. 8/VO

Processing time (all on CPU) for each frame averages 400 ms with more than 25
objects being generated in the scene. When a new object is detected, the initial-
isation takes around 10 ms per object. Tracking time scales mainly with moving
objects (MO) while segmentation, integration and raycasting scales with visible
objects (VO). A more-detailed breakdown of computation time for each component

is shown in Table 3.3.

We would like to highlight that our current system only runs on CPU without
being highly optimised for performance yet. We believe a high frame-rate version

of our system is achievable by exploiting GPU parallelisation.

3.6 Conclusions and Discussions

We present a novel approach for multi-instance dynamic SLAM using an octree-

based volumetric representation. It robustly tracks camera pose in dynamic en-
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vironments and continuously estimates dense geometry, semantics, and object
foreground probabilities. Experimental results in various scenarios demonstrate
the effectiveness of our method in dynamic indoor environments. We hope our
method paves the way for new applications in indoor robotic applications, where
an awareness of environment change, free space, and object-level information will

uplift the next generation of mobile robots.

Despite working generally well in most cases, our proposed method still has
several issues, which may limit its wide applications in real-world scenarios. One
issue we experimentally found is that the photometric loss employed in our object
tracking Equation (3.10) component can only work for objects showing less glossy
reflections. The camera view change or the object surface normal change caused by
object motion will violate the brightness constancy assumption used in photometric
tracking, even for objects with lambertian surfaces. In the next chapter, we will
present how we can learn some robust deep features and associated feature-metric
uncertainties to provide robust tracking under strong lighting changes and wide
baseline conditions. Besides, the projective data association method in raycasting
implies that the camera and objects do not exhibit large motion in consecutive
frames. This is a strong assumption used in many dense SLAM systems, but is
not always valid in practice. Some other works used different motion models,
such as constant velocity [Bescos et al., 2021] or a white-noise-on-acceleration
prior [Huang et al., 2020]. These SLAM systems, however, lack the capability to

reconstruct dense geometries for object models.
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CHAPTER 4‘

Deep Probabilistic Feature-metric

Tracking

Dense image alignment from RGB-D images remains a critical issue for real-world
applications, especially under challenging lighting conditions and in a wide baseline
setting. In this chapter, we propose a new framework to learn a pixel-wise deep
feature map and a deep feature-metric uncertainty map predicted by a Convo-
lutional Neural Network (CNN), which together formulate a deep probabilistic
feature-metric residual of the two-view constraint that can be minimised using
Gauss-Newton in a coarse-to-fine optimisation framework. Furthermore, our net-
work predicts a deep initial pose for faster and more reliable convergence. The
optimisation steps are differentiable and unrolled to train in an end-to-end fashion.
Due to its probabilistic essence, our approach can easily couple with other resid-
uals, where we show a combination with ICP. Experimental results demonstrate
state-of-the-art performances on the TUM RGB-D dataset and the 3D rigid object
tracking dataset. We further demonstrate our method’s robustness and convergence

qualitatively.
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4.1 Introduction

Dense image alignment [Lucas and Kanade, 1981] using the photometric residual has
been widely applied in 2D tracking [Shi and Tomasi, 1994], 3D object tracking [Xu
et al., 2019], optical flow [Horn and Schunck, 1981], and SLAM [Newcombe et al.,
2011b]. In visual SLAM, it leads to two types of estimator designs: direct sparse
[Engel et al., 2017] and direct dense type [Newcombe et al., 2011b]. There has been
an argument that dense methods that utilise information from all image pixels
should exhibit better performance in terms of robustness and accuracy. However,
this is not necessarily the case in reality, as investigated in [Platinsky et al., 2017],
especially compared to the performance achieved by systems using the indirect

sparse residual formulation (reprojection error) [Mur-Artal and Tardos, 2017].

One reason is that lighting change and reflection in real scenes break the bright-
ness constancy assumption [Horn and Schunck, 1981] commonly used in dense
image alignment. Thus the resulting dense photometric residual cannot be well ex-
plained by the Gaussian distribution assumed in the Gauss-Newton scheme, which
is in contrast to reprojection error minimisation that may still work robustly as long
as sparse feature matches can be established. Secondly, the photometric residual
considers only very local color consistency, which requires a good initialisation
close to the global minimum. This leads to a poorer estimation accuracy when the
baseline gets larger. On the contrary, the keypoint reprojection residual models a
global constraint using a sparse feature descriptor, leading to better convergence

properties.

In this chapter, we are trying to address these issues by replacing raw intens-
ity image alignment with deep feature map alignment. Different from the exist-
ing learning-based feature-metric alighment [Czarnowski et al., 2017, Lv et al.,
2019, Tang and Tan, 2019, Schmidt et al., 2017, von Stumberg et al., 2020], we argue

that the feature-metric residual should incorporate not simply the feature difference
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Feature Input

Uncertainty

View A View B 3D alignment from two views

Figure 4.1: We propose a probabilistic feature-metric tracking method that estimates
dense feature and uncertainty maps from a pair of RGB-D images to optimise the
relative pose between them. Our method can handle strong lighting changes and
large motion scenarios by leveraging features that are robust to lighting changes,
e.g. on the desk surface, and predicting high uncertainties on areas that the network
cannot handle, e.g. for the strong lighting changes near the pens.

but also the corresponding uncertainty. Predictions from neural networks inher-
ently are uncertain, which can be estimated [Kendall and Gal, 2017]. Secondly, and
also importantly, SLAM has most successfully been posed as a probabilistic problem,
where uncertainty of the residuals has to be known [Thrun et al., 2005], in particular
when fusing different sensors and residuals. We will show how our feature-metric
residuals can be combined with geometric ICP residuals using uncertainties to
further improve results. The proposed probabilistic feature-metric residuals are
minimised using coarse-to-fine Gauss-Newton optimisation. To ensure that the
learned feature-metric cost landscape is suitable for the Gauss-Newton optimisation,
we unroll the iterative optimisation steps and train the whole pipeline end-to-end.
To handle the initialisation issue in the wide baseline case, we include training pairs
with varied baselines and propose to replace the identity initialisation with a pre-
dicted initial pose from a pose network. This can improve the system convergence

by bringing the initialisation into the convergence basin of the correct minimum.
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As shown in Figure 4.1, the proposed method can handle large motion and strong
illumination variance. The learned features are robust to lighting changes in most
regions, e.g. reflection on desk surface, and the uncertainty map (red means high
uncertainty) can downweigh the region, e.g. pens, where the feature predictions

are uncertain. In summary, we make the following contributions:

1. We propose a dense probabilistic feature-metric residual, where a CNN pre-
dicts both feature and uncertainty maps used for non-linear least-squares

minimisation to estimate the relative camera or object pose.

2. In our CNN architecture, we propose a coupled feature encoder and pose
predictor network, which combines the learning-based initial pose prediction
and the learned features/uncertainties for pose optimisation, and train them

together end-to-end.

3. We further demonstrate how our proposed probabilistic feature-metric resid-
ual can easily lend itself to integration with other residuals, where a classic

ICP residual is showcased.

We evaluate our proposed method on the TUM RGB-D SLAM dataset [Sturm et al.,
2012] and MovingObjects3D rigid motion dataset [Lv et al., 2019]. We provide
ablation studies to validate each contribution component. We further provide a
qualitative evaluation on the convergence basin and demonstrate the robustness

under strong lighting changes.

4.2 Related Work

Feature-metric Alignment: To relax the brightness constancy constraint in
direct image alignment, several recent works have exploited the feature-metric align-

ment by utilising features from neural networks. [Jaramillo et al., 2017, Czarnowski

77



4. Deep Probabilistic Feature-metric Tracking

et al., 2017] replace image intensity with high-dimensional features extracted from
a pre-trained neural network for tracking and show a better robustness than using
image intensity. However, the pre-trained features are not naturally consistent
across different views and the redundancy in the pre-trained very high-dimensional

features means a high cost of memory and computation time.

[Schmidt et al., 2017] proposes to learn a robust feature descriptor suitable for
estimating dense correspondence in different lighting conditions and viewpoints
using the contrastive loss [Hadsell et al., 2006]. [von Stumberg et al., 2020] combines
the contrastive loss with a Gauss-Newton loss, which includes a 2-dimensional
pixel position uncertainty, to train dense features. However, both of these works
generate a feature map good for correspondence matching rather than alignment.
The composed residuals do not necessarily fit well with the least square optimisation
used for pose estimation. This is why [Schmidt et al., 2017] requires a RANSAC

step for refinement and [von Stumberg et al., 2020] is only used for re-localisation.

Recently, some methods start to explore how to combine the feature map learning
more tightly with the least-square optimisation of camera tracking, based on the
differentiable property of iterative optimisation. [Wang et al., 2018] learn feature
maps for 2D image tracking in the Lucas-Kanade framework. [Tang and Tan,
2019] propose feature-metric bundle adjustment for 3D reconstruction. [Bloesch
et al., 2019] propose to use feature maps for depth prediction and pose estimation.
However, these works only consider a spatial correlation in feature generation,
ignoring the temporal correlation in input image pairs. Quite related to our work,
[Lv et al., 2019] propose a spatio-temporal feature encoder by concatenating two
views for the network input and further propose an m-estimator network and
damping network for pose optimisation. However, different from ours, none of
these works exploit feature-metric uncertainty in their settings, nor combine a pose

predictor to boost convergence.
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Deep Pose Prediction: A different way to estimate pose from a pair of images
is to leverage CNN predictions directly [Zhou et al., 2017, Ummenhofer et al.,
2016]. Learning a direct mapping from input images to 6D relative pose skips
potential convergence issues of least-squares optimisation. However, it requires a
large number of model parameters and a vast amount of training data, while not

necessarily generalising to new scenes.

To improve accuracy and generalisation, some recent works include coarse-to-
fine estimation [Zhou et al., 2018a] and iterative refinement [Li et al., 2018c] to
estimate a relative transformation. Despite some shared network parameters in
iterations, these works still come with a much larger model capacity (i.e. parameter
number) than the ones using optimisation — even those with learned features —
and do not necessarily show an advantage in terms of pose accuracy. To better
leverage both types of approaches, we propose a coarse-to-fine optimisation using
learned features and uncertainties, plus a direct pose prediction on the coarsest
layer serving as an initial guess, which takes the output from the coarsest level

two-view encoder as an input to make it compact.

Uncertainty Learning: Safety considerations have prompted recent works on
uncertainty estimation of deep learning, as discussed in [Kendall and Gal, 2017] and
applied to several tasks [Kendall et al., 2018]. [Tateno et al., 2017] fuse the predicted
depth into a monocular SLAM system and estimate the depth uncertainties via its
difference with the nearest key-frame. [Zhou et al., 2018a] propose to estimate
both depth and pose uncertainty in their depth and pose prediction networks. [Liu
et al., 2019] formulate the depth uncertainty differently using a probability volume.
Recently, D3VO [Yang et al., 2020] propose to estimate the photometric uncertainties
and predict a relative pose to initialise the pose optimisation. Most of these works,
if not all, model the uncertainty based on the difference between the prediction and

the ground truth values. In contrast to these works, we propose a novel feature-
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metric uncertainty and learn it without ground truth feature maps available in the
training. Instead, we formulate the uncertainty in a novel probabilistic feature-
metric residual and learn it implicitly as part of the least-squares optimisation.
The learned features and uncertainties should lead to a better optimised pose via

training back-propagation.

4.3 Method

Pyramid level 4 Pyramid level 3 Pyramid level 2 Pyramid level 1

L.l . L et

Final pose +——

Two-view Two-view Two-view Two-view
encoder encoder encoder encoder

Share weights —— Direct input/output ~ === Feature encoder =) Uncertainty encoder

Figure 4.2: Overview of our proposed deep probabilistic feature-metric tracking
method. For two views, we input image A and image B, by concatenating them
as {A, B} and {B, A}, respectively, to our two-view encoder pyramid network. At
each pyramid level, we extract the output from the two-view encoder and feed
it into the feature encoder and uncertainty encoder separately to extract dense
feature and uncertainty maps. Then we optimise the pose by minimising the
proposed probabilistic feature-metric residual, which is initialised by the pose from
the coarser level. On the coarsest level, we concatenate the outputs of the two
views from the two frames and run through the pose network to obtain an initial
pose prediction.

Figure 4.2 shows an overview of our system. For a pair of RGB-D frames, frame
Af) 4 and frame Bf)B, our aim is to estimate its relative transformation T, =
(Cag» aTap) € (SO(3) x R?), fromf}B tof)A. We represent Ty in twist coordinates
&by Ty (&) = exp(&,p). Each frame has a depth map D and a color image I. The
network components in our whole system are denoted as ¢, with the two-view

spatio-temporal encoder ¢, the feature encoder ¢, the uncertainty encoder ¢,,
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and the pose network ¢;. The weights are shared across the two views for ¢y, ¢,
and ¢,. The architecture details of all our network components can be found in the

Section 4.3.5.

To extract the spatial and temporal correlation between two frames, we first
concatenate the input colour and depth image along the feature channel and feed

them through the two-view spatio-temporal encoder pyramid network:

Wfq = ¢0({IA’DA>IB’DB})’ Wja = QSH({IB’DB’IA’DA})’ (4-1)

where W and W} are the outputs of the two-view encoder at level i, i € 1,2,3, 4,
for frame A and B respectively and {, } is the concatenation operation. On each
pyramid level, we extract the dense feature and uncertainty maps by feeding the
two-view encoder outputs into the feature encoder branch and the uncertainty

encoder branch:
Fy = ¢r(WY), ox = P.(WX), (4.2)

where X € A, B. i will be omitted later when we explain operation on the same
pyramid level. Different from [Lv et al., 2019] which averages the output features
map into one single channel, we maintain a same high-dimensional feature map at
different pyramid levels. This choice is motivated by the hypothesis that higher
dimensionality should lead to higher discriminative power of the features — which

we support in the experimental section.

4.3.1 Probabilistic Feature-metric Residual for Pose

Estimation
In probabilistic estimation that assumes an underlying Gaussian distribution of the
residuals, we equivalently minimise the weighted least squares, with the inverse

covariance matrix acting as the weight. Given the dense feature and uncertainty

maps on two views and an estimated pose &€,5, we propose a probabilistic feature-
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metric residual as an uncertainty-normalised feature difference:

(&) _ Falua(Gan)] - Folug(&)]
0f(Eas)  \Joh[us(Exp)] + oB[up(E)]

where u 4 and up are a pair of pixel correspondences on the two frames. u represents

l'f(fAB) = (4.3)

image pixel coordinates. ug(&,) means up is perturbed under zero transformation
& Ty is the feature difference between the correspondences on the feature map
and oy is the joint uncertainty estimate for the correspondence that we obtain as a
combination from the individual uncertainties. Note that this assumes isotropic
uncertainty w.r.t. each feature dimension - a simplification we chose (for speed)
that may be revisited. Section 4.3.1 encourages the feature map from two different
views to be as similar as possible while downweighs the features that the network is
uncertain about from the either view with the predicted uncertainties. As shown in
example Figure 4.1, the trained features are robust to moderate lighting, reflection
and view perspective variances and the trained uncertainties handle the uncertain
features caused by the extreme lighting changes (lower right corner). The dense
correspondence lookup is implemented via warping from frame B to frame A

through &,5, which can be defined as:

wu(Enp) = m(Typ (€)1 (wp, Dy[ug))), (4.4)

where [.] represents the pixel lookup (including bilinear interpolation). 7 and
7' denote the projection function to the image plane and the back-projection
function to 3D (homogeneous) coordinates, respectively. By inserting Section 4.3.1
into a Lucas-Kanade framework [Lucas and Kanade, 1981], we formulate the pose
estimation problem of an optimal pose £" as:

g = argmin 3,/ (©r(6). 5)

upel

i.e. summing all residuals over non-occluded pixels in B, U, which can be iteratively
solved by e.g. the Gauss-Newton method. To speed up the computation, we choose

the inverse compositional formulation [Baker and Matthews, 2004] that updates
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poses by applying the incremental pose on frame B. It allows for a more efficient
computation of the feature-metric Jacobians. In each iteration, the pose is updated

by A£ as:

& = EoNE, (4.6)
A& = _(JfJf)_l(J]er)- (4.7)

J; is the Jacobian of the probabilistic feature-metric residual r; w.r.t. the relative
pose &4p:

J, = ory =_< VFp +ff(§AB)UBVGB> oug
"0k \o&w ofEw ) o&

where VFy and Voy are the gradients of the feature maps and uncertainty maps

(4.8)

along the two pixel dimensions in frame B, respectively. Under this formulation,
only the components of o;(£) and r;(£) need to be re-evaluated in each iteration,
which can be shared when computing the residuals in Section 4.3.1. All the other

components in Section 4.3.1 can be pre-computed to speed up the computation.

4.3.2 A Probabilistic Combination with ICP Residual

As an uncertainty-driven residual, our proposed residual can be naturally combined
with other residuals. For example, if we assume that depth measurement from
an RGB-D sensor is reliable, we can further combine the feature-metric residual
with an ICP residual to directly add a geometric constraint. The combined residual

equation is:

£ = arg;nin rf (E)rs(€) + wyry (E)Z'r,(£), (4.9)

where r, and %, are the ICP residual and uncertainty, respectively, and w, is the
weight for ICP residual. The above equation can still be iteratively solved via the
Gauss-Newton method. The detailed definitions of the ICP residual and Jacobian

can be found in [Rusinkiewicz and Levoy, 2001]. As there are no regularisation
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terms in Section 4.3.1, our learned uncertainty is a scale-free parameter. When
combining with other residuals of different magnitudes, we need to scale them
properly before fine-tuning to bootstrap the training. The scale of ICP weight w,
is chosen (as w, = 0.01) such that the individual Chi-square errors are of similar
magnitude, after which the joint ICP/feature-metric training will scale the features

and feature-metric uncertainties to be best balanced with the ICP.

4.3.3 Coarse-to-fine Optimisation and Initialisation

The cost functions in Section 4.3.1 and Section 4.3.2 can be optimised in a coarse-to-
fine way using damped Gauss-Newton optimisations, which is applied on 4 pyramid
levels, with a fixed number of rolled-out iterations, i.e. 3, on each level. We added
a small damping constant in Section 4.3.1 to prevent the matrix inversion to be
ill-conditioned. Coarse-to-fine optimisation methods are sensitive to coarse-level
estimation, where the incorrect estimations will be propagated to finer levels and
the iterative optimisation may get stuck in a wrong local minimum, especially in a
wide-baseline setting. To tackle this issue, we train a pose network to bootstrap
the optimisation by predicting an initial relative pose on the coarsest level, instead
of using a conventional identity pose initialisation. To make the network compact,
the concatenated outputs from the coarsest-level two-view encoder on the two

frames serve as the inputs to our pose prediction network:

& = $r({Wi, Wi}). (4.10)

To account for the multi-modal information on the coarse level, the deep initial pose
network outputs K pose hypotheses, which are parameterised as 3 Euler angles and
3D translation vectors, and a respective confidence probability for each hypothesis.

The final predicted pose is the weighted average of all hypotheses.
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4.3.4 'Training Setup

The predicted initial pose and the estimated poses per pyramid level are compared
to the ground truth pose and the resulting gradients in the optimisation are used
for back-propagation to update all the learning weights. To balance influence of
rotation vs. translation, we use the 3D End-Point-Error (EPE) as the training loss:
given the ground truth relative transformation 75 (£) and the estimated/predicted

pose Tz (), the loss is composed as:

1

L= 3D I Tus (&) 5v - Tas (&) sVI3, (4.11)

i€l pvey

where V is the set of backprojected 3D points zv in the frame B, T = {0, 1, 2, 3,4}
denotes the pyramid levels, & is the predicted pose from the pose network and the
other ¢, are the estimated poses at the final iteration of Gauss-Newton optimisations
on the respective pyramid level. This formulation enables the network to learn
both feature and uncertainty representations in an end-to-end fashion, without the
need for a ground truth feature map or ground truth correspondences, and without
requiring an explicit definition of the uncertainty model. We set the feature map
channels to be 8. Note that the uncertainty is defined as a scalar value. We unroll
the Gauss-Newton optimisation and train all the models together from scratch
using ADAM [Kingma and Ba, 2015] for 30 epochs, with a learning rate initialized
at 0.0005 and reduced at epochs [5, 10, 20]. When combining the ICP residual, we

do a further fine-tuning for 10 epochs.

4.3.5 Implementation Details

Figure 4.3 shows the architecture of our two-view encoder which takes the input
from a pair of RGB-D images and extracts spatio-temporal correlation information
from that. It is constructed into a 4-level pyramid architecture, where each level
outputs a higher-dimension information. The architecture is modified from [Lv

et al., 2019], however, we do not perform an average operation to extract feature
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W3 Pyramid level 3
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Figure 4.3: The architecture of our two-view encoder. It is composed of basic
convolutional blocks (blue) and average pooling operations (yellow). The basic con-
volutional block is grouped by a convolutional layer and followed by a BatchNorm
layer, and a ELU layer. [In, Out, K, D] represents [Input channel, Output channel,
Kernel size, Dilation] with stride always being 1.

w4 [B, 32, H, W] W3: [B, 64, H, W] W2: [B, 96, H/4, W/4] W1:[B, 128, H/8, W/8]

[In: 128, Out: 8, K: 1, D:1]

[B, 8, H, W]
Pyramid level 4

[B, 8, H/2, W/2]
Pyramid level 3

[B, 8, H/4, W/4]
Pyramid level 2

[B, 8, H/8, W/8]
Pyramid level 1

Figure 4.4: The architecture of our feature encoder. On each pyramid level, it is a
basic convolutional block that is group by a 1 by 1 convolutional layer, a BatchNorm
layer, and a ELU layer. [In, Out, K, D] represents [Input channel, Output channel,
Kernel size, Dilation] with stride always being 1.

maps. Instead, we send the outputs to the feature encoder and the uncertainty

encoder to estimate the feature and uncertainty maps.

Figure 4.4 shows the architecture of our feature encoder on each pyramid level.
It takes the input from the two-view encoder and predicts an 8-dimensional feature

map.

Figure 4.5 shows the architecture of our uncertainty encoder on each pyramid
level. It takes the input from the two-view encoder and predicts a 1-dimensional
uncertainty map. To ensure positive uncertainty values, we assume the output

from the 1 by 1 convolutional layer is a logarithmised uncertainty and use the
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W*4:[B, 32, H, W] W3: [B, 64, H, W] W2: [B, 96, H/4, W/4] W1 [B, 128, H/8, W/8]

[In: 32, Out: 16, K: 1, D:1] [In: 64, Out: 16, K: 1, D:1] [In: 96, Out: 16, K: 1, D:1] [In: 96, Out: 16, K: 1, D:1]
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Pyramid level 4 Pyramid level 3 Pyramid level 2 Pyramid level 1

Figure 4.5: The architecture of our uncertainty encoder. On each pyramid level,
it is composed by a basic convolutional block, followed by a 1 by 1 convolutional
layer and a truncated exponential operation.

Split
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Figure 4.6: The architecture of our pose network for initial pose prediction.

exponentiation operation to recover the true uncertainty. We experimentally found
that this leads to better performance than the Gaussian distribution assumption.

The output is then truncated to avoid gradient explosion.

Figure 4.6 shows the architecture of our pose network to predict an initial pose
on the coarsest level of the coarse-to-fine Gauss-Newton optimisation. It takes the
input from a concatenation of the outputs of the two frames from the two-view
encoder at the coarsest level. Similar to [Zhou et al., 2018a], the initial pose network
also predicts multiple pose hypotheses and then fuse them together using their
respective confidences. Here, we choose the hypotheses number to be 16. The pose

is parameterised with 3 Euler angles and a 3-dimensional translation vector.
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4.4 Experiments

4.4.1 Quantitative Evaluation and Discussion

We first evaluate our method on the TUM RGB-D SLAM dataset [Sturm et al.,
2012]. It contains various camera motions, lighting conditions, and scene structures.
A natural extension is to apply it to 3D rigid object motion estimation, which we test
on the MovingObjects3D dataset [Lv et al., 2019]. It is a synthetic dataset rendered
from Blender and contains 6 different categories of moving objects under varied
illumination changes . We trained different network weights on each benchmark

dataset separately.

DeepIC [Lv et al., 2019] is chosen as our main baseline method, which also learns
dense feature map for pose optimisation. It also learns an m-estimator network
and a damping network in its Levenberg—Marquardt optimisation, but without
feature-metric uncertainty or initial pose predictions. To have a fair comparison,
we use the same experimental setting as theirs. We randomly subsampled frames
B at intervals {1,2,4,8} relative to frame A from TUM RGB-D dataset [Sturm et al.,
2012] and {1,2,4} from MovingObjects3D dataset [Lv et al., 2019] to generate various
motion magnitudes and tracking difficulties as the training pairs. A comparison
to this approach would show the importance of the uncertainty prediction and
the initial pose prediction in our proposed method. We use the network weights
provided by the authors in our evaluations. We further implemented DeepIC+P,
an augmented variant of DeeplC [Lv et al., 2019], with our pose prediction network
to initialise their optimisation. The same number of iterations and pyramid levels
are used as in our method. A comparison to it would further verify the contribution

of our proposed probabilistic feature-metric loss.

To have a comparison to deep pose prediction methods that directly predict a re-

lative transformation from two views, we implemented a coarse-to-fine PoseNet,
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similar to the tracking part in DeepTAM [Zhou et al., 2018a]. It is implemented on
four pyramid levels for coarse-to-fine pose refinements, where the predicted pose
from a coarser pyramid level would be used to bootstrap the prediction on a finer
level. The network architecture is similar to our pose network but with different
network weights on different pyramid levels. A comparison to it would show a
benefit of our learning-based optimisation approach for pose estimation. We further
included the iterative refinement idea from [Li et al., 2018¢] to the coarse-to-fine
PoseNet approach. The iterative PoseNet has 3 iteration refinements on each pyr-
amid level. All the learning-based comparison approaches are trained end-to-end

using the loss in Equation (4.11).

For the non-learning approaches, we compare our method to the pure geometric
Point-to-Plane ICP method [Rusinkiewicz and Levoy, 2001], which is essentially ro-
bust to illumination changes. We also include an RGB-D VO method [Steinbriicker
et al., 2011] in the camera motion evaluation. The ICP and RGB-D VO approaches
are implemented in Open3D [Zhou et al., 2018b]. A comparison to these approaches
would show benefits of learning-based approaches, in terms of larger convergence

basin and better accuracy, even under challenging lighting conditions.

To reveal the contribution of each component, we provide a detailed ablation
study. We denote our system component, dense feature map, dense uncertainty map,
deep initial pose prediction as F, U, P, respectively. We select the following settings.
Ours (F): We replace the uncertainty prediction with an identity uncertainty and
disable the pose prediction with an identity pose initialisation. Ours (F+P): We
replace the uncertainty prediction with an identity uncertainty. Ours (F+U): We
disable the pose prediction and only use the proposed probabilistic feature-metric
residual for alignment. Ours (F+U+P): A full version of our probabilistic feature-
metric tracking system. Ours+ICP: A combination of the probabilistic feature-
metric and ICP residuals. All these combinations are implemented in coarse-to-fine

optimisations, with the same number of iterations and pyramid levels as in the
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4. Deep Probabilistic Feature-metric Tracking

proposed method.

The evaluation metrics are the 3D EPE loss in Equation (4.11) and the relative

pose error (RPE) metrics defined in TUM RGB-D dataset [Sturm et al., 2012].

TUM RGB-D Dataset: We use the same setting as DeeplC [Lv et al., 2019], where
sequences ‘fr1/360’, ‘fr1/desk’, ‘fr2/360’, and ‘fr2/pioneer360’ are used for testing
and the remaining sequences are split into training (first 95% of each sequence) and
validation (last 5%). Images are transformed to a resolution of 160x120, with depth
values outside of 0.5m to 5.0m being ignored. We use a mixture of all subsampled
keyframe intervals to train our network, and evaluate the methods separately for

each keyframe interval.

Table 4.1 summarises the results on the TUM RGB-D dataset. Our method
outperforms all the other state-of-the-art learning-based approaches, as well as
the non-learning RGB-D VO, and ICP methods, from small baselines to large
baselines. Compared with all ablation variants, our full version (F+U+P) achieves
the best performance. The addition of uncertainty estimation complements the
high-dimensional feature-metric alignment to improve the tracking accuracy. The
predicted initial pose further improves the accuracy by bringing the estimation close
the correct minimum, especially in the large motion scenarios. After fine-tuning
the probabilistic combination with ICP loss, it can be seen that the performance is
further improved in most cases (except KF 4 where the performance drops a bit),

showing the validity of the probabilistic combination.

We have further developed a prototype visual odometry system, where the
camera pose is estimated by our proposed method. Figure 4.7 shows the resulting
trajectories and point clouds back-projected from all frames in the sequence from

our test split of the TUM RGB-D dataset [Sturm et al., 2012].

Despite being a pure frame-to-frame tracking system without components of
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4. Deep Probabilistic Feature-metric Tracking

(c) fr2_desk (d) fr2_360

Figure 4.7: Trajectories delivered by our system on test split of TUM RGB-D dataset.
We back-projected point clouds from all frames to visualise the alignment.

keyframing and loop closure optimisations, drift caused by incremental misalign-
ment qualitatively remains small. The qualitative results can be found in the

supplementary video.

MovingObjects3D Dataset: MovingObjects3D dataset contains 6 different cat-
egories of objects moving in front of the camera under various illumination changes.
We follow the dataset setting, where the categories of ‘boat’ and ‘motorbike’ are
used as the testing set and the other categories are split into training (first 95%

sequences of each category) and validation (last 5%), to test tracking performance
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for unseen objects. For the non-learning-based ICP [Rusinkiewicz and Levoy, 2001]
approach, we provide ground truth object masks for them to test their optimal
performances. For the learning-based approaches, we reply on those systems to
distinguish the object motion from the background, given the ground truth object
and camera motions. Table 4.2 reports the results, which again show the super-
ior performance of our method and confirm the contribution of each proposed

component.

Figure 4.8 visualises our tracking result on the test split of MovingObjects3D
dataset. As can be seen, our proposed method can provide a good alignment for
objects under large motion and lighting changes. A combination with ICP can

provide a further refinement in the pose estimation.

Ablation Study on the Choice of Channel Dimension: Asexamined in [Czarnowski
et al., 2017], multi-dimensional feature map from network can improve tracking
robustness. In Table 4.1 and Table 4.2, Ours (F), with higher-dimension features,
outperforms [Lv et al., 2019] in most cases, even without uncertainty or pose pre-
dictions. On the other hand, a higher dimension of feature maps usually bring a
higher computational cost. In this part, we experimentally evaluate the effect of
the channel dimension of the feature map and the uncertainty map. We fix the
uncertainty channel to be 1 when we vary the feature channels and fix the feature
channel to be 8 when we vary the uncertainty channels between 1 and the same
feature channel, i.e. 8. Table 4.3 summarises accuracy and inference time on the
TUM RGB-D dataset [Sturm et al., 2012]. Note that the accuracy increases when
we increase the channel dimension of feature map, albeit with diminishing gains
at dimensions higher than 8. When we increase the channel dimension of the un-
certainty map, the accuracy very slightly increases for small baselines and slightly
decreases for large baselines, validating the original choice of scalar uncertainty

prediction.
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~
—
-
—

a) Frame A (b) Frame B
(c) Ours (d) Ours+ICP

Figure 4.8: Qualitative results on MovingObjects3D dataset. Object motion between
the frame A and frame B is estimated using our proposed method (c) and a further
combination with ICP (d). The object is warped from frame A to B using the
estimated motion for visualization. The ground truth object boundaries in A and B
are colored in red and color, respectively. Black regions in the warped image are
caused by occlusion.

In addition to accuracy, the increase of channel dimension in either feature or
uncertainty map dimension would increase the GPU memory usage and reduce
the inference speed. As a compromise of all these factors, we choose the feature

dimension to be 8 and the uncertainty dimension to be 1 in all our other experiments.

Model Size and Computation Time: Our system implemented in PyTorch has
1.83M learnable parameters. The average forward inference time for a pair of
RGB-D image in the resolution of 160x120 on a GTX 1080 platform is 7.29ms. After
integrating ICP, it is 9.84ms (i.e. +35%) on the same platform. Our network has a
larger model size than DeepIC, which has 662K learnable parameters, but shows

a comparable inference speed to its 7.6ms inference time on the same platform.
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Figure 4.9: Visualisation of cost landscape of x and y translation for the feature-
metric loss on the coarsest level. From left to right: input, cost landscape 3D, and
2D projection of cost landscape.

Compared to the classic approaches implemented in Open3D [Zhou et al., 2018b],
our network is also faster than the point-to-plane ICP [Rusinkiewicz and Levoy,
2001] (310ms). However, we would also expect to see a significant boost to the
ICP inference time when it is efficiently implemented in CUDA [Newcombe et al.,

2011a] or CPU [Vespa et al., 2018].

We also studied the effect of the input image resolution. With increased resolution
(256x192), accuracy slightly improves on the small baselines, i.e. KF 1 and 2, however,
slightly deteriorates on KF 4 and 8 while the computation increases to 15.29ms (i.e.

+111%). Therefore, we set 160x120 as main setting for training and testing.

4.4.2 Qualitative Evaluation and Discussions

Convergence Basin: To analyse the effect of the initial pose prediction in our
system, we perform a cost landscape visualisation experiment. Since £ is a 6D vector,
it is computationally infeasible to sample cost on all possible pose components
and also difficult to visualise the 6D cost landscape. Therefore, we choose to fix
the rotation and z-translation components and only sample the pose combinations
at the x and y translations around the ground truth pose. Figure 4.9 shows one

example on our test split from the TUM RGB-D dataset using the an interval of
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Input A

Input B

DeepIC m-estimator ~ Ours uncertainty on B

DeeplIC Ours

Figure 4.10: Qualitative evaluation in challenging lighting. Notice our uncertainty
estimation is more sensitive to the lighting changes than the learned m-estimator
in DeeplIC (higher value is in red and lower value is in blue).

8 frames. It can be seen that our pose prediction network brings the estimation
into the convergence basin near the global minimum otherwise the conventional

identity pose initialisation would lead the optimisation to a wrong local minimum.

Challenging Illuminations: Uncertainty prediction is significant for deploying
neural network on robotic applications. DeepIC [Lv et al., 2019] proposed a learned
robust cost function m-estimator to downweigh the residual outliers. To evaluate
our learned uncertainty and also to compare to DeepIC’s learned m-estimator, we
captured sequences using an RGB-D camera while we were waving a flashlight to
create illumination changes. The collected sequences contain both local and global
lighting, reflection, and shading variances across the images. Since we don’t have
ground truth poses on these frames, we warp the point cloud from one frame to

another using the estimated transformation between them and visualise the 3D
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pointcloud alignment of the two views. We test it using the weights trained from
the TUM RGB-D dataset without fine-tuning. Figure 4.10 shows one example. It
can be seen that our method provides more robust pose estimation under those
lighting changes. This is partially because our estimated uncertainty can more
reliablely capture illumination variance, e.g. on the book and desk surface, than
DeeplIC’s m-estimator. Please refer to the supplementary video for more results

and details.

4.5 Conclusion and Discussions

We presented a deep probabilistic feature-metric two-frame RGB-D tracking method
by combining the power of deep learning for feature learning, uncertainty estim-
ation and pose prediction in a learning-based optimisation framework. It makes
our method compact and outperform the state of the art methods on camera mo-
tion and rigid object motion estimation benchmarks. Challenging experiments
have shown an accurate and robust performance under large motion and strong
lighting change scenarios, which is significant and currently lacking, in real-world
robotic applications. We further showcased how our proposed residual can easily

be combined with commonly used ICP residual in practice.

A strong assumption in this work is that the geometric information from the
depth sensor is mostly stable and accurate. The geometric information has been
exploited in the feature descriptor generation, warping function, and also the
combined geometric residual. An important future direction will be to explore how
to predict the uncertainties in the geometric component and then formulate them
in the proposed feature-metric residual. Continuing from here, we would also like
to explore how to better combine the probabilistic feature-metric residuals with

other residuals.

In the training step, the unrolled optimisation architecture implemented a fixed
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number of update steps at each optimisation level. We assumed that the optimisation
should also converge after 3 update steps at each level in the test time. Although
this is a widely adopted practice, for example as in [Lv et al., 2019, Bloesch et al.,
2019], and we verified that using an adaptive number of update steps in the test
time does not necessarily improve the estimation results, an extra evaluation and

proof on the convergence guarantee could be possible in future work.

We would also like to highlight that our system is trained end-to-end in a self-
supervised way without explicitly defining the ground-truth uncertainties or feature
maps. This allows flexibility to further improve our performance in solving diffi-
cult conditions, for example, lighting changes or occlusions, when more targeted

training data is given.

Also, we aim to apply our tracking method to full dense SLAM systems, including
object-level and dynamic SLAM systems. The frame-to-frame tracking designed
in our prototype visual odometry system in Figure 4.7 inevitably accumulates
drift. Possible solutions would be to extend our proposed feature-metric residual
Section 4.3.1 to keyframe-based SLAM systems or to fuse the depth into a global

frame and conduct frame-to-model tracking to reduce drift.

In the next chapter, we will explore how to utilise the shape prior information in
object-level SLAM systems, in addition to the multi-view constraint. We will focus
on the improvement of object mapping by taking advantage of the category-level
shape priors and show that object shape completion can also improve the tracking

accuracy of moving objects.
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CHAPTER 5

Object-level Dynamic SLAM with

Map Completion

In this chapter, we propose a novel object-level dynamic SLAM system that can
simultaneously segment, track, and reconstruct objects in dynamic scenes. It can
further predict and complete their full geometries by conditioning on reconstruc-
tions from measured depth and a category-level shape prior with the aim that
completed object geometry leads to better object reconstruction and tracking accur-
acy. For each incoming RGB-D frame, we perform instance segmentation to detect
objects and build data associations between the detection and the existing object
maps. A new object map will be created for each unmatched detection. For each
matched object, we jointly optimise its pose and latent geometry representations
using geometric residual and differential rendering residual towards its shape prior
and completed geometry. Our approach shows better tracking and reconstruc-
tion performance compared to methods using traditional volumetric mapping or
learned shape prior approaches. We evaluate its effectiveness by quantitatively and

qualitatively testing it in both synthetic and real-world sequences.
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5.1. Introduction

5.1 Introduction

Simultaneous Localisation and Mapping (SLAM) research aims to concurrently
estimate both the scene geometry of the unknown environment as well as the
robot pose within it from the data of its on-board sensors only. It has rapidly
progressed from sparse SLAM [Davison et al., 2007, Klein and Murray, 2007] into
dense SLAM [Newcombe et al., 2011a, Vespa et al., 2018], and recently into semantic
object-level SLAM [McCormac et al., 2017, McCormac et al., 2018]. This fast-
evolving research has enabled many robotic applications. Despite this, most SLAM
research still assumes a static scene, where points in the 3D world maintain constant
spatial positions in a global coordinate. Any information violating this assumption,
such as moving objects in the environment, would be treated as outliers and are

intentionally ignored in tracking and mapping steps.

This setup, however, can only handle a small amount of dynamic elements,
excluding itself from many real-world applications as environments, particularly
where humans are involved, are continually changing. A robust SLAM system
capable of handling highly dynamic environments, therefore, is desirable. Most
current dynamic SLAM research can be categorised into three main directions. One
maps the whole changing world in a non-rigid deformable representation to deal
with the changing topology of deformable/moving objects [Newcombe et al., 2015].
The second aims at improving the robustness and accuracy of camera tracking
by ignoring all possibly moving objects and building a single static background
model [Jaimez et al., 2017, Scona et al., 2018, Bescos et al., 2018]. The third models
dynamic environments by creating object-centric maps for each possibly moving
object in the scene while fusing corresponding information into these object-level
maps [Riinz and Agapito, 2018, Xu et al., 2019]. Object-level tracking and mapping
can be conducted for each object and camera motion against the static part of

the map. This paper aligns with the last direction as we believe that, similar to
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Figure 5.1: Given RGB-D images, our system builds object-level dense dynamic
maps that can robustly track camera pose and object poses while completing the
missing sensor information using object priors. Compared to the classic TSDF
maps, our object maps fill in unobserved parts and their latent codes can be optim-
ised jointly with object poses. Interfered regions by humans can be detected and
intentionally removed in the system. The background pointclouds are projected
for pure visualisation purpose.

human perception, an instance-awareness of the surrounding environment can help
intelligent robots perceive the scene changes and enables meaningful interactions

with the surrounding environment.

By far most existing object-level dynamic SLAM systems mentioned above adopt
the classic map representation that have been exploited in the static SLAM systems,
such as pointclouds [Bescos et al., 2021], surfels [Riinz and Agapito, 2018] or
volumetric maps [Xu et al., 2019]. This leads to partial or incomplete object maps as
only the observable information can be fused into the object models. Information
in unseen parts can not be filled unless an object or the sensor is moved actively.
Contrary to reconstructing objects from scratch, some works recently explored
learning-based category-level object shape priors and build object-level maps based
on learned shape priors [Sucar et al., 2020, Wang et al., 2021]. The object geometry

and pose are usually optimised via differentiable rendering. However, most of
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these systems are only applicable in static scenes. Besides, despite being able to
generate complete object geometry, object shape priors cannot capture complex
geometry details as the bottleneck of its latent representation can only interpolate
shapes inside the training datasets [Park et al., 2019]. When combined with dense
image alignment, such as photometric or ICP residuals, this inconsistency between
the measurement and the object prior model inevitably leads to inaccurate object

motion trajectory estimates.

This work stands in the middle between reconstructing object geometry from
scratch and mapping using object shape priors. We reconstruct the observable
part by continuously fusing depth measurements into a volumetric canonical space
and predict the complete geometry by conditioning it on the fused volume. The
resulting object geometry can preserve the details that have been observed in the
past and simultaneously complete the missing geometry information. We also
verified that this completed object geometry can further improve the accuracy
of object tracking. The main contributions in this chapter can be summarised as

follows:

1. we present, to the best of our knowledge, the first RGB-D object-level dynamic
SLAM system that can complete unseen parts of objects using a shape prior
encoded in neural networks while still reconstructing observed object parts

accurately;

2. a joint optimisation of object pose and shape geometry based on geometric

residuals and differentiable rendering;

3. extensive experiments of object tracking and reconstruction components on
synthetic and real-world data to evaluate the benefits of object geometry

completion for object-level SLAM.

The remainder of this chapter is organised as follows. Section II discusses the
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related work in greater detail, highlighting our originality. Section III explains the
details in our system. Section IV describes the experiments and the comparisons

with the existing methods, followed by the conclusion in the last section.

5.2 Related Works

Object-level dynamic SLAM Although object-level dynamic SLAM research
can be dated back to [Wang et al., 2003], visual dense object-level dynamic SLAM
has only been explored recently. From RGB-D sensor inputs, Co-Fusion [Riinz and
Agapito, 2017] segments objects by either ICP motion segmentation or semantic seg-
mentation and then tracks objects separately based on ElasticFusion [Whelan et al.,
2016]. MaskFusion [Riinz and Agapito, 2018] segments objects using a combination
of instance segmentation from Mask-RCNN and geometric edges, and tracks objects
using the same approach as Co-Fusion. Both Co-Fusion and MaskFusion use surfels
to represent map models, which is memory efficient but cannot directly provide
free space information in the map, and neither surface connectivity. DynSLAM-
IT [Bescos et al., 2021] extends from ORB-SLAM II [Mur-Artal and Tardos, 2017]
and formulates tracking using sparse feature descriptor matching. Object maps are
represented using clusters of pointclouds, which can bring object poses and geo-
metries into the pose graph optimisation but also lack space connection awareness.
Instead, MID-Fusion [Xu et al., 2019] uses memory-efficient octree-based volu-
metric signed distance field (SDF) representation for objects and re-parametrises
tracking residuals in object coordinates and weights. EM-Fusion [Strecke and
Stuckler, 2019] similarly uses volumetric SDF object maps but formulates object
tracking as direct alignment of input frames with the SDF representations. Their
following work [Strecke and Stuckler, 2020] infers the missing object geometry
by penalising the hull and intersection constraints. However, it did not explore
shape prior information and requires heavy computation to optimise SDF field

explicitly. Instead, we fuse the depth measurement into object-level SDF maps and
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predict completed object geometries by incorporating a shape prior in continuous

occupancy fields.

SLAM with shape prior maps Instead of estimating both object geometry and
poses from scratch, some approaches use a shape prior to represent objects. Since
the coordinates of object shape priors and the run-time measurement are not
necessarily aligned, a relative rigid transformation needs to be estimated. This is
analogous to the localisation-only problem in SLAM. SLAM++ [Salas-Moreno et al.,
2013] is one of the pioneering object-level RGB-D SLAM systems. It scanned objects
in advance and then maps the detected instances at run-time by jointly optimising
a pose graph of camera and object poses. Relying on pre-scanned objects, however,
limits its ability to scale to unknown object models. Rather than using instance-
level shape priors, several following works exploited category-level shape priors
as there is limited variance in certain object categories. The category-level shape
prior can be represented in PCA models as in DirectShape [Wang et al., 2020], in
occupancy grids as in Deep-SLAM++ [Hu et al., 2019], in variational autoencoders
as in NodeSLAM [Sucar et al., 2020], in autodecoders as in DSP-SLAM [Wang et al.,
2021], or in mesh generation networks as in [Lin et al., 2019]. However, most of
these works only target static environments, as multi-view consistency of static
world points is required to localise the shape prior models. [Li et al., 2021] relax this
restriction using a Bayesian filter to associate object detections on different frames
and fuse the prior model by simply averaging the latent codes from each frame.
However, object shape deviations cannot always be captured by the shape prior
interpolation. The object tracking accuracy would be affected by the discrepancy
between the prior shape model and the online measurement. We address this
challenge by conditioning the completion network on the fused reconstruction

model.
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Object-level tracking To track moving objects in RGB-D sequences, several
pioneering object-level works adopt the frame-to-model tracking methods from
RGB-D SLAM systems [Riinz and Agapito, 2017] and parametrise them for object
tracking [Xu et al., 2019, Bescos et al., 2021]. The classic photometric residual,
however, is difficult to deal with as object lighting changes; several approaches
explore using learning-based robust features to formulate object tracking in direct
[Xu et al., 2021a] and in-direct ways [Wen and Bekris, 2021]. Parallel to learning
category-level shape priors, Wang et al. [Wang et al., 2019] proposed to learn
category-level pixel-wise correspondence from RGB-D images to the canonical
space. The shape is implicitly defined from this correspondence and the frame-to-
canonical transformation can be estimated from this noisy correspondence. Rempe
et al. [Rempe et al., 2020] further proposed to generate more stable correspondences
by accumulating temporal information from RGB-D sequences. Recently, Muller
et al. [Muller et al., 2021] proposed to track moving objects and predict their com-
plete geometry using such canonical correspondence representation. In this work,
the object pose is initially predicted using canonical correspondence regression.
However, we found it does not necessarily yield alignment to the canonical space
and we further optimise the pose tracking using geometric residual and differential

rendering.

5.3 Method

5.3.1 Notations and Preliminaries

In this work, we will use the following notation: a coordinate frame is denoted as
F 4. The homogeneous transformation from F gz to F 4 is denoted as Tz, which is
— — —

composed of a rotation matrix C,z and a translation vector ,r 5.

Every detected object is represented in its individual object coordinate frame ¥ o, ,

with n € {0..., N}, where N is the total number of objects (excluding background)
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Figure 5.2: The overview of our object geometry representation.
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Figure 5.3: The pipeline of the proposed method

and 0 denotes background. We assume a canonical static volumetric model is stored

in each object coordinate frame, forming the basis of our multi-instance SLAM

system. To leverage the category-level shape prior, we need to align the canonical

space with the one defined in training, otherwise the completion performance will

be deteriorated since it cannot fully take advantage of the shape variances of the

objects in the same category. The relative transformation between the current

world coordinate and the corresponding object canonical space is defined as a joint

state composed of a rigid transformation T, and the object scale s, . We define

the object pose using this joint state. T}, needs to be continuously updated for a

moving object but the object scale should be consistent across different frames.
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5.3.2 System Overview

Figure 5.3 shows the pipeline of our proposed system. Each input RGB-D image is
processed by Mask R-CNN to perform instance segmentation. The camera pose is
tracked against background regions, excluding the human mask area and moving

objects, similar to what has been proposed in MID-Fusion [Xu et al., 2019].

The object geometry is composed of two nodes with a shared object pose: prior
node and posterior node, as shown in Figure 5.2. The prior node represents its
category-level shape prior using a latent code z, € R*. It can be used to express
the continuous SDF field s on any query 3D location in object canonical coordinate

v € R® using a DeepSDF shape prior network F, [Park et al., 2019] as
S = Fo(v, Zo). (5.1)

The prior node is used to initialise the object pose and re-localise the object model
when object tracking is lost as the prior geometry does not degrade even if the
object pose deviates from the canonical space. The posterior node encodes a fused
partial TSDF volume and its associated TSDF weight volume into TSDF feature
volume 6, and TSDF confidence volume 6, separately using 3D-UNet [Cicek et al.,
2016]. Then a complete occupancy field o can be predicted using a shape completion

network F;:

o = F(v, 6,[v], 60.[v], z,). (5.2)

where 6,[v] € R* and 6,[v] € R' denote the feature vectors tri-linearly interpolated
at the point v inside the volumes 6, and 6,, respectively. We additionally condition
it on a latent code z; € R* so that the hidden space can be optimised to generate
novel shapes, as shown in Figure 5.4. The shape completion network F, has a
similar architecture to the CONet [Peng et al., 2020] with an extra input of TSDF
confidence weight to balance the depth measurement and network prediction and

a instance-level latent code in the input to optimise the hidden space.
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Figure 5.4: Editing the conditioned latent code can change the geometry of the
unobserved part in the object model.

We perform an efficient Axis Aligned Bounding Box (AABB) ray intersection
test [Majercik et al., 2018] to find all the visible existing object models in the current
viewpoint and render object masks for each visible models. An Intersection of
Union (IoU) between the detections on the current frame and the rendered model
masks is computed to build data associations between the current frame detections
and existing object models. Then we track each object model and complete its
geometry by performing a joint optimisation of pose and geometry (Section 5.3.3).
Using estimated poses of the camera and objects, new depth measurements are
fused into an object model and a complete shape geometry can be predicted by
conditioning on the fused model. New objects are created for unmatched detections

by initialising their initial object pose using object prior models.

5.3.3 Joint Optimisation of Object Pose and Geometry

Instead of defining an arbitrary canonical space for object coordinates [Xu et al.,

2019], we need to estimate the 7DoF relative transformation, which is composed of
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Ty, and sp , to align the initialised object coordinate to the training canonical
space for each object detection in order to take advantage of the learned prior

information.

Initialisation Given an RGB-D frame (I;, D;) and detected object mask M,, we
predict their positions in the canonical space v and associated confidences w from
back-projected pointcloud using a modified normalised object correspondence

network F, from [Rempe et al., 2020]:

C]_V(uL) = ]T_l(uL’DL[Iu’L]):VuL € Mn) (53)

F, (CLV) — V,w (5.4)

Then we solve the 7-DoF relative transformation, scale s, , rotation C,, , and
translation ¢, rc, o from the predicted correspondence using the Umeyama al-
gorithm [Umeyama, 1991] with SVD decomposition:

. 1,
argmin Z w|v-—T¢o, c,V(uy) |- (5.5)
Son’TCLOn ureM, SO"

For the latent codes z, and z,, we use both zero code initialisations. We only
run this pose initialisation step for new unmatched object detections. The initial
pose solved from SVD decomposition, however, is necessary to be close to the

ground-truth canonical pose, due to the unseen shapes or viewpoints, affecting the

performance of shape completion.

Coarse Estimation To refine object canonical poses from the initial pose pre-
diction, we jointly optimise it with the prior latent code z, to minimise the 3D SDF

loss Espr and 2D rendering loss E, o ger:

Ecoarse = )LSESDF + ArOErender + AZOHZO”' (56)
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The 3D SDF loss is defined to encourage the back-project depth points to align with

the object surface, where the zero SDF value is defined

1 -1
Egpp = Z Fy | —T¢,0, CLV(uL)’ Z ). (5.7)
urEM, sOn

We cannot compute SDF residuals for empty space since ground-truth SDF values
are not available at test time. Instead, for the non-surface areas, we use differentiable
rendering to encourage the rendered depth D; to be close to the measured depth

D,. We compute the rendering loss for the visible 3D space inside the object 3D

bounding box:

Erender = Z DL[“’L] - DLI:'u’L]’ (58)
w;€B,
where
N
Dyfu;] = Z wid;, (5.9)
i=1

and w; is the ray-termination probability [Sucar et al., 2020] of sample i at depth d;

along the ray from the pixel u;,
i-1
Wi = 0; H(l - 0), (5.10)
j=1

and B, is the 2D bounding box rendering from the estimated object 3D bounding box
on this frame. A continuous occupancy field can be extracted from the continuous

prior SDF field as proposed in [Wang et al., 2021]:

1

1 _
0; = _Z_FO (_TCLIOn (71' Huy, di)) ’Zo> ) (5.11)
o So,

where o is the truncation distance to control the transition.

By freezing the network weight in F,, the cost function in Equation (5.6) can
be iteratively solved using Gauss-Newton optimisation with analytical Jacobians.
Since the prior shape is not necessarily aligned with the actual observation, it is
unnecessary to sample every pixel ray. Instead, we run this optimisation on sparse

ray samples, which can speed up the optimisation without losing much accuracy.
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Dense Refinement To further align the object pose with the measurement and
to complete the hidden part, we jointly optimise the posterior latent code z, with
the object pose by minimizing the 3D occupancy loss E,.. on both occupied and
empty space (excluding the unknown 3D space) and a similar 2D rendering loss

Erender:
Erefine = AoEocc + ArlErender + AZIHZIH' (512)

The occupied space is defined on the back-projected points and the empty space
is uniformly sampled in the background space as well as the foreground space
before the depth measurement. The occupancy loss is defined using the binary
cross-entropy loss between the predicted occupancy value o, using Equation (5.2)
and the ground-truth occupancy values o, (0.5 for the occupied space and 0 for the
empty space) for sampled points v inside the occupied and empty space:

Eoee = = ) [oy1og(0}) + (1 - 0,) log(1 - 0})]. (5.13)
v

Similar to the coarse estimation, we can also evaluate the 2D rendering loss using
Equation (5.8). The difference is here we use the decoded continuous occupancy
value for the sampled d; using Equation (5.2), instead of converting it from the SDF
field in Equation (5.11).

5.3.4 Training Setup

The learnable network parameters in this work includes three part, canonical

correspondence network F,, shape prior network F,, shape posterior network F,.

Figure 5.5 shows the architecture of our canonical correspondence network F,. It
takes the partial pointcloud ¢, v from the depth measurements as input and predicts
its correspondence Vv in canonical space and the associated confidence w. We train
the canonical correspondence network using the partial pointcloud generated from

the synthetic shapenet dataset [Chang et al., 2015]. During training, we augmented
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Figure 5.5: The architecture of our canonical correspondence network. The ar-
chitecture is modified from [Rempe et al., 2020]. It extracts global features and
spatiotemporal local features from the PointNet encoder [Qi et al., 2017a] and spa-
tial local features from the PointNet++ encoder [Qi et al., 2017b]. These features are
concatenated and passed to an MLP to regress the canonical shape correspondence
and the associated confidence.
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Figure 5.6: The architecture of our shape prior network, adopted from
DeepSDF [Park et al., 2019]. The input vector is fed through a decoder, which
contains eight fully-connected (FC) layers with one skip connection. FC+ denotes
a FC with a following softplus activation and the last FC layer output a single SDF
value.

the input pointcloud with random object pose and solve the 7DoF object poses using
Equation (5.5). To help network prediction robust to outliers, we also added random
depth outliers in the pointcloud generation to learn the correspondence confidence
w in a self-supervised way. The solved pose is compared to the augmented ground-
truth pose and the whole network is trained end-to-end since the estimation is

differentiable.

We use the pre-trained off-shelf network weights for the category-level shape
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Figure 5.7: The architecture of our shape completion network, modified from
CONet [Peng et al., 2020]. The encoder extracts the TSDF feature vector ,[v] € R*
and the TSDF confidence vector 6,[v] € R' from TSDF feature volume and TSDF
confidence volume, respectively, and concatenates them with a latent code z, as
an input to the network. It goes through 3 fully-connected (FC) ResNet-blocks to
extract local latent features, which are then fed into an occupancy decoder [Mes-
cheder et al., 2019] to predict occupancy probabilities on the position vector v.

prior network F, [Park et al., 2019], which was also trained in the shapenet data-

set [Chang et al., 2015]. Its architecture is visualized in Figure 5.6.

Figure 5.7 shows the architecture of our posterior shape completion network
F,. It takes the input of a TSDF feature volume and a TSDF confidence volume,
which are extracted separately from a partial TSDF volume and its weight volume,
and predicts a complete object geometry represented in a continuous occupancy

function.

Since the partial observation in reality mostly happens due to self-occlusions and
sometimes also due to occlusions from other objects, we rendered depth maps using
objects in the shapenet dataset [Chang et al., 2015]. We trained the shape completion
network on the rendered depth images to simulate partial depth observations. We
use the occupancy loss defined in Equation (5.13) to encourage the completed

shape to be similar to the ground-truth one. Similar to the latent code training in
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DeepSDF [Park et al., 2019], different object shapes have their own latent codes,
which are trained together with the network. We make different partial observations

of the same object shape share the same latent code.

5.4 Experiments

5.4.1 Quantitative Reconstruction Evaluations
Experimental Setup

We validate the reconstruction quality of our method on object-level surface
reconstruction tasks. We conduct a comparison on the chair category of the
ShapeNet [Chang et al., 2015] dataset. The split of train/val/test sets follows the
same setting in [Peng et al., 2020]. We randomly select 50 models from the test set
to conduct quantitative evaluations. We generate input depth images by rendering
images using uniformly sampled virtual camera viewpoints surrounding the CAD
model. The hyperparameters used in inference optimization are chosen as ¢ = 0.05,

A =100, Ay = 2.5, 4,y = 5, 4, = 100, 4, = 1, and A, = 1.

Baseline Methods

To evaluate the object mapping, we compare with the following baseline methods:

« TSDF-fusion: We fuse the depth measurements into a TSDF volume grid as

in [Newcombe et al., 2011a].

+ DeepSDF mapping: We use the pre-trained decoder weight in [Park et al.,
2019]. As the shape completion code is not provided, we optimise the SDF
loss on the input pointcloud as well as the empty space constraint proposed

in IGR [Gropp et al., 2020].
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« CONet: We use the pre-trained network [Peng et al., 2020] and pass the
accumulated pointcloud in the canonical space to generate the continuous

occupancy field where the meshes are extracted.

Metrics

To quantitatively evaluate the quality and completeness of the shape reconstruction,

we use the following metrics:

+ IoU: We sample 100k points uniformly in the bounding box and evaluate on
both the reconstructed and the ground-truth meshes whether each point is
inside or outside. The final value is the fraction of intersection over union.

Higher is better.

+ Chamfer Distance: we sample 100k points on the surface of both the ground-
truth and the reconstructed mesh. We compute the closest points from the
reconstructed to the ground-truth mesh using kD-tree and vice-versa. We
then compute the average of the L1 distances to the closest points in each

direction. Lower is better.

+ (In-)completeness: As the completeness of the object map is essential in this
work, we also report completeness, which is the one-way chamfer distance
from the ground-truth meshes to the reconstructed ones. This is to measure
the closest distance from each ground-truth mesh points to the reconstruction.

Lower is better.

Results and Discussions

We quantitatively evaluate how the view number of depth measurement would
impact the reconstruction results of different methods. Figure 5.8 reports the result.
It can be seen that our proposed method consistently show better reconstruction

results from single view depth completion to multiple views. When the view number
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is limited, classic TSDF-Fusion shows worse result as it can only reconstruct the
visible parts. CONet completes some missing information, but still struggles as it
heavily depends on the input pointcloud. DeepSDF does not condition on the input
and the latent code optimisation can fit the few depth measurement and shows
better completion and reconstruction results. Our proposed method uses both the
input information and shape prior information, yielding best performance. When
more depth measurements are received, TSDF-Fusion and CONet start to fill in
the missing information while DeepSDF struggles to leverage more measurement
information. Our result also improves since we can also take advantage of the
measurement information. Figure 5.9 shows an examples of reconstruction results

by each method in the view number case of 1, 5, and 10.

5.4.2 Quantitative Tracking Evaluations
Experimental Setup

To quantitatively evaluate the object-level tracking and mapping performance, we
randomly select 10 object models from the test split of the chair category in the
ShapeNet [Chang et al., 2015] and render 200 frames using Blender. To ensure
diversity of object motion, texture, and illuminations, we randomise four point
light sources, camera viewpoint, and object trajectories. We then subsample the
sequences using sampling intervals 1, 2, 4 in order to create small, medium and

large motion subsets.

Baseline Methods

To evaluate the object tracking, we compare with the following baseline methods:

« RGB-D VO: a non-learning-based visual odometry method proposed in [Stein-
briicker et al., 2011], which minimises the photometric loss between two

frames. We re-parametrised it for object tracking.
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Figure 5.8: Quantitative comparison of reconstruction quality and completion of our
proposed methods v.s. classic TSDF-Fusion, learning-based DeepSDF and CONet.
Our proposed method consistently show better reconstruction results from single
view depth completion to multiple views.
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Point-to-Plane ICP: a non-learning geometric registration method [Rusinkiewicz

and Levoy, 2001]

Color ICP: a non-learning registration method using both color and geometric

information [Park et al., 2017]

Prior: a state-of-the-art object pose estimation using DeepSDF shape prior
model. It is originally proposed in [Wang et al., 2021] for static object pose

estimation and we re-parametrised it for estimating moving objects.

NOCS: a state-of-the-art learning-based canonical correspondence regression
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Figure 5.9: Qualitative Results on reconstructions. Our method is superior to all
other methods in completing missing information and reconstructing fine details.

method. We adapted the network architecture proposed in [Rempe et al.,

2020].

Metrics

To quantitatively evaluate the accuracy of the object tracking, we use the following

metrics:
« ATE: Absolute. Trajectory Error defined in [Sturm et al., 2012], in the unit of
of meters

« RPE_t: relative pose error (RPE) metrics in translation defined in [Sturm et al.,

2012], in the unit of of metres

« RPE_R: relative pose error (RPE) metrics in rotation defined in [Sturm et al.,

2012], in the unit of of degrees
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« R_err: mean orientation error on each frame individually, in the unit of

degrees

« t_err: mean translation error on each frame individually, in the unit of metres

The above metrics all indicate better tracking performance when the values are
lower. To analyse the trajectory, we align the first frame of the estimated object

pose to the ground-truth canonical space.

Results and Discussions

Table 5.1 reports the experimental results. It shows that our approach consistently
outperforms both the non-learning-based and learning-based methods in small and
large motion situations. For non-learning approaches, RGB-D VO [Steinbriicker
etal., 2011], Point-to-Plane ICP [Rusinkiewicz and Levoy, 2001], and Color ICP [Park
et al., 2017] only leverages the depth and intensity information from two-view
measurements, without taking into account any object shape prior information.
The single view canonical correspondence prediction from NOCS [Rempe et al.,
2020] only considers shape prior information and does not take advantage of the
multiview constraint. Our proposed method instead combines both multi-view
constraint and shape prior information into object pose estimation. Similar to
ours, the shape prior method [Wang et al., 2021] adopts category-level shape prior
from DeepSDF [Park et al., 2019] and uses differential rendering to estimate object
poses. However, latent code optimisation cannot necessarily capture the geometry
deviation between training space and test shapes and thus affects the accuracy
of pose estimation. It confirms that the object geometry completion and joint

optimisation can improve the tracking accuracy.

122



5.4. Experiments

method [unit] ATE [m] RPE_t [m] RPE_R ["] R_err ["] t_err [m]

Ours 0.030
Prior 0.044
RGBD 0.254
Point2Plane 0.047
Color ICP 0.254
NOCS 0.074

0.027
0.047
0.106
0.035
0.114
0.059

3.845
8.200
18.47
4.672
29.12
23.46

3.931
6.269
32.25
5.970
56.18
37.87

0.040
0.068
0.314
0.064
0.320
0.085

(a) Keyframe gap-1

method [unit] ATE [m] RPE _t [m] RPE_R ["] R_err [’] t_err [m]

Ours 0.033
Prior 0.046
RGBD 1.068
Point2Plane 0.070
Color ICP 0.536
NOCS 0.074

0.032
0.052
0.403
0.056
0.351
0.074

5.243
11.91
30.89
8.570
36.69
21.65

4.224
8.063
50.95
9.384
60.56
37.78

0.043
0.063
1.309
0.087
0.568
0.084

(b) Keyframe gap-2

method [unit] ATE [m] RPE_t [m] RPE_R ["] R_err ['] t_err [m]

Ours 0.034
Prior 0.043
RGBD 1.942
Point2Plane 0.807
Color ICP 2.786
NOCS 0.073

0.038
0.050
0.866
0.442
1.885
0.085

6.767
17.20
43.34
18.22
42.73
26.95

4.834
9.885
68.86
20.16
77.89
35.41

0.044
0.061
2.177
0.892
2.802
0.083

(c) Keyframe gap-4

Table 5.1: Quantitative evaluation of object tracking method on the synthetic

moving objects dataset.

5.4.3 Timing analysis

We implemented our system in PyTorch. The average inference time for a pair of

RGB-D image in the resolution of 320 x 240 is 1.337s on a RTX 3090 platform. A

more-detailed breakdown of computation time for each component is shown in

Table 5.2a. A further breakdown of computation time on tracking components is

shown in Table 5.2b.
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Components | Tracking | Integration | Completion (visualization)
Time (s) 1.284 0.003 0.474

(a) System components

Components | Initialization | Coarse est. | Dense refinement
Time (ms) 0.643 0.150 1.129

(b) Object tracking components

Table 5.2: Run-time analysis (s)

We would like to highlight that our current implementation is prototyped in
Python. We believe a real-time system can be achieved by exploiting C++ and

further GPU parallelisation.

5.4.4 Qualitative Evaluations

We further demonstrate our proposed method in various real-world scenarios.
Figure 5.10 shows the results in two different scenes. For each input image, we
provide object reconstructions from the currently estimated camera viewpoint to
visualise the observed part and from the top-down viewpoint to visualise the hidden
part. As a qualitative comparison, we also show the reconstructions using classic
TSDF fusion [Newcombe et al.,, 2011a] and the learned category-level DeepSDF
object prior [Park et al., 2019], it can be seen that TSDF-Fusion can only reconstruct
the visible parts, leaving many empty holes in the object models. DeepSDF, on the
other hand, has watertight reconstructions, but does not match the measurement
necessarily, especially for the objects that deviate from the training space. On the
contrary, our system can maintain highly detailed reconstructions and generate
watertight meshes by filling in the missing parts using category-level shape priors
thanks to the conditioned completion. Figure 5.11 also shows a scene where our
system can reconstruct the visible parts and complete the hidden information of
a moving object. The object pose and object geometry for the moving object are

optimised jointly.
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5.5 Conclusions and Discussions

We present a novel approach for object-level dynamic SLAM by incorporating
learned category-level shape priors. It enables to reasonably complete the object
geometry of unseen parts based on the prior knowledge, and provide more robust
and accurate tracking accuracy, even under large frame-by-frame motion and
in dynamic environments with moving human involved. Experimental results
in various scenarios demonstrate the effectiveness of our method. We hope our
method paves the way for a deeper understanding of exploring inter-instance
relationships in object-level SLAM and can potentially benefit the robot applications

of autonomous navigation and path planning.

Extending from what we learned in this work, there can be a few important
directions. First, despite training entirely in synthetic data, our approach general-
ises well to the unseen objects in real-world experiments since our completion is
conditioned on the fused TSDF reconstruction. However, we also observed that the
completion performance would degrade as the target object severely deviates from
the dataset models used in training. Besides, leveraging the category-level shape
prior information requires alignment to the canonical space defined in the training
data. However, when only part of an object is observed due to severe occlusions,
the canonical correspondence network proposed in this work may not work well.
Under such circumstances, the initialization of shape and pose becomes a highly
challenging chicken-and-egg problem. Despite not being the focus of this work,

this problem deserves more attention in future work.
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TSDF

DeepSDF
prior

Conditioned
completion

Camera view Topdown view

(a) Completion of a red chair

TSDF

Input
DeepSDF
prior

Conditioned
completion

a
Camera view Topdown view

(b) Completion of a blue chair

Figure 5.10: Qualitative comparison of classic TSDF volume representation (gray),
DeepSDF shape prior representation (blue), and our conditioned completion rep-
resentation (green): our representation can reconstruct the observed part more

correctly than shape prior and complete the unseen part where TSDF representation
fails.
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DeepSDF TSDF Input
prior

Conditioned
completion

Figure 5.11: Segment, track, reconstruct and complete a moving chair. Background
pointclouds are just for visualization.
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Conclusions
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6.1 Summary of results

In this thesis, we have presented several contributions towards advancing visual
object-level SLAM in a dynamic environment by demonstrating their effective-
ness qualitatively and quantitatively in synthetic and real-world scenes. We also
discussed their respective limitations and proposed several possible solutions to
address these shortcomings. In this section, we present a summary of the key
contributions and results that have been discussed in greater detail in the previous

chapters.

We first present MID-Fusion, a multi-instance dynamic SLAM using an octree-
based volumetric representation, in Chapter 3. We have shown it can robustly

estimate camera poses in dynamic environments and, at the same time, continuously
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estimate geometric, semantic, and motion properties for arbitrary static or moving
objects in the scene. Each object, including the background, is reconstructed
within its own object-oriented octree-based TSDF volume. Semantic classifications
predicted independently from each frame are fused into semantic probabilistic
distributions for each object using a simple and efficient Bayesian update scheme.
Meanwhile, the pose of each existing moving object is estimated using the proposed
object-oriented tracking method, and the camera pose can be robustly tracked
against the static objects and background. Based on the estimated camera pose
and object poses, we run projective data association to associate segmented masks
with existing models and incrementally fuse corresponding colour, depth, semantic,
and foreground object probabilities into each object model. Our system was one of
the first to attempt to extend the traditional dense SLAM system to the domain of
object-level dynamic SLAM, paving the way for many subsequent works in this

area.

While the proposed system has been evaluated in experiments and shown to
be effective in real-world experiments, it has a few limitations. First, it assumes a
constant lighting condition to perform joint photometric and geometric tracking.
The assumption could be violated by illumination changes in reality. Several other
works, including ours presented in Chapter 4, have attempted to address this issue.
Second, the projective data association method, which has also been widely used
in dense SLAM systems, implies that the camera and objects move slowly. This is
not necessarily valid in practice. There are a few other works adopting different
motion models, such as constant velocity in [Bescos et al., 2021] or a white-noise-
on-acceleration prior in [Huang et al., 2020]. These SLAM systems, however, do not
estimate dense object geometries. More interesting and promising future directions

that can be extended from this thesis will be discussed in Section 6.2.

To strengthen the robustness and accuracy of camera and object pose estimation

under illumination changes and wide baseline situations, we present a novel dense
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image alignment method from RGB-D image inputs in Chapter 4. Dense feature
maps and feature-metric uncertainty maps generated from a CNN can formulate a
deep probabilistic feature-metric residual of the two-view constraint. This proposed
probabilistic feature-metric residual can be efficiently minimised using Gauss-
Newton in a coarse-to-fine manner. Furthermore, our network predicts an initial
pose for faster and more reliable convergence by re-using the feature maps from
the coarsest pyramid level. The whole pipeline can be trained end-to-end since the
optimisation steps are differentiable. We have experimentally demonstrated that our
method outperforms state-of-the-art methods in both learning and non-learning
domains. We also show our approach can easily couple the proposed feature-
metric residual with other residuals without manually scaling weight thanks to its

probabilistic essence.

We learned from Chapter 4, have learnt that the deep features and feature-metric
uncertainties can yield superior performance than raw pixel intensities in dense
image alignment. Although we developed a prototype visual odometry system
in our experiments, this can only be seen as part of a front-end component in a
direct SLAM system. We expect that adding a back-end component, for example,
factor graph optimisation of deep features with multi-view constraints, can further
boost the performance. Several recent papers have also looked into this direction.
Droid-SLAM presents a novel sparse SLAM system that is composed of a learning-
based optical flow front-end and a back-end bundle adjustment (BA) layer [Teed
and Deng, 2021]. Both the front-end and the back-end components are learned
together in an end-to-end way with supervision from ground-truth poses, similar
to what we did in Chapter 4. [Yoon et al., 2021] demonstrates that deep features and
uncertainties may also be learned without supervision from ground-truth poses.
Although they only demonstrate it in 3D lidar odometry, it should also be feasible

to learn deep features for visual odometry in a similar way.

The final contribution, presented in Chapter 5, extends MID-Fusion (presented
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in Chapter 3) by incorporating shape prior into object map representations. We
proposed a novel object-level SLAM system that can segment, track, reconstruct,
and complete objects in dynamic scenes. The full object shape is predicted by
conditioning on the measured depth and category-level shape prior. We proposed a
joint optimisation for object pose and shape latent representation using geometric
and differential rendering residuals towards its shape prior and completed geometry.
Synthetic and real-world experiments have demonstrated that completed object
geometry using shape prior can indeed improve the object reconstruction quality

and lead to better object tracking accuracy.

6.2 Future works

This thesis has presented several contributions towards bringing deep learning to
object-level dynamic SLAM. However, this thesis is not an exhaustive evaluation
for all possible directions in this area. We believe object-level SLAM in a dynamic
environment is critical for spatial Al and to enable intelligent robots to interact
with real-world, especially in the scenes with humans. We hope the work presented
in this thesis can open up new paths for future research. This section highlights

some of possible directions.

Benchmark dataset for object-level dynamic SLAM

Despite the fast progress in the object-level (dynamic) SLAM research, there are very
few public benchmark datasets available for researchers to test and benchmark their
SLAM algorithms. Existing datasets for visual SLAM, such as ICL-NUIM [Handa
et al., 2014] and TUM RGB-D datasets [Sturm et al., 2012], do not contain ground-
truth object motion trajectories or ground-truth object reconstructions. [Judd and
Gammell, 2019] introduced the oxford multimotion dataset, which collected several
ground-truth object trajectories using motion capture markers. It includes different

motion patterns and occlusions. However, object motion there only contains swing
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movements caused by gravity and 2D vehicle motion, lacking the important object
motion pattern caused by human interactions. As well, there has not been a widely
used object reconstruction benchmark. Existing dense visual object-level dynamic
SLAM [Riinz and Agapito, 2017, Xu et al., 2019] mainly use their own synthetic
dataset, which however only contains a few sequences. A dataset that contains
various ground-truth object trajectories and ground-truth object models will be
ideal. Generating synthetic datasets is easier as large-scale object models, such as
ShapeNet [Chang et al., 2015], are easier to get access. On the other hand, real-world
sequences containing sensor noise, motion blur, real-world object interaction with
humans [Batra et al., 2020] are also important for SLAM benchmarks. It will be an
important direction to release a dataset that includes both synthetic and real-world

dynamic scenes.

Alternative object tracking methods

We have explored three object tracking algorithms in this thesis. They are all in
the category of direct tracking approaches, with two (Chapter 3, Chapter 5) using
frame-to-model tracking and one (Chapter 4) using frame-to-frame dense image
alignment to estimate the relative transformation of object poses. However, we also
noticed several alternative options to perform object tracking. One way is to do
sparse indirect tracking, such as [Bescos et al., 2021, Wen and Bekris, 2021], which
also contain a pose graph (in [Wen and Bekris, 2021]) or pose graph optimisation
(in [Bescos et al., 2021]) to utilise multi-view constraint. Concurrently, [Teed and
Deng, 2021] proposed a dense in-direct visual SLAM algorithm by learning feature
correspondences using optical flow and constructing a bundle adjustment layer
to perform global optimisation. We believe a similar dense-indirect method can
also be developed for object tracking, benefited by the fast advancement in modern
learning-based optical flow algorithms. Object prior information can also be brought

into the optimisation constraints. Besides, most object tracking methods discussed
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before operate on discrete-time, returning estimations at fixed time stamps. It
is also possible to estimate the continuous trajectories of the moving objects by
also taking velocities and accelerations into account. This can impose additional
physical constraints, e.g. non-holonomic motion constraints, and potentially also

help tackle objects with fast motion and temporal occlusions.

Sensor fusion for object-level SLAM

This thesis develops object-level SLAM using an RGB-D sensor. It is also worth
considering developing object-level SLAM systems with different sensor inputs.
For example, IMU data can be fused with the camera input to further increase the
robustness and accuracy of the sensor pose estimation, even under a dramatically
changing environment. To track fast-moving objects, such as a ball thrown by
people, we can also take advantage of an event camera, which offers lower latency,
higher dynamic range, and lower power consumption than a normal camera. With
the fast advancement of depth prediction accuracy from monocular camera images,
we may also be able to get rid of the depth sensor and build a monocular version of

the systems presented in this thesis.

Alternative map representations

As always being the core of SLAM, the choice of map representation affects the
design of the SLAM system. This thesis has explored the choice of octree-based
TSDF volume, continuous SDF field, continuous occupancy field, and also the
combination of them. As one of the hottest directions at the time of writing, neural
radiance field [Mildenhall et al., 2020] has been adopted in many fields, including
object-level SLAM [Yuan et al., 2021]. However, [Yuan et al., 2021] can only one
foreground object and requires multiple camera rigs as input sensors. It is expected
that the neural radiance field will also be extended to the multi-instance dynamic

object SLAM field. We can also learn the inter-instance relationship for objects
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in the scene. One example is shown in [Wald et al., 2020], where scene graph

representation can be learnt for semantic representations.

Physical constraints in real world environments

This thesis presents several contributions to detecting, tracking, reconstructing,
and completing objects in the scene. Although we can process multiple objects
simultaneously and create an object-level map, each object is handled independently.
The constraints and the relationships among objects are not explored yet in this
thesis. With the advancement of 3D modelling of object geometries in dynamic
scenes, we can also further infer the underlying physics of the 3D world and,
importantly, bring these constraints into the optimisation. For example, we would
expect the geometry of objects to not collide with each other. We should also expect
that the motion of objects should respect certain physical rules, such as momenta,
friction, and gravity. These physical properties can be, in turn, introduced into the

geometry optimisation.

Integration with other robotics components

An object-awareness of the surrounding environment is important for intelligent
robots to interact with the world. There are several potential robotic applications
using our object-level SLAM systems. As our system demonstrates strong robust-
ness and accuracy in dynamic indoor scenarios, a direct application will be to
combine the SLAM systems with indoor navigation to enable an autonomous robot
to reconstruct the room-scale environment or category-specific objects without
requiring humans to leave the scene. Since our SLAM can handle moving objects
and persons, the robot can co-exist with humans without disturbing their activities

and thus the environment map can be updated spatially and temporally.

The prediction of object complete geometry in Chapter 5 suggests that it is

sometimes unnecessary to have complete observations to reconstruct objects. Such
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object mapping and predictions may help robots better plan and navigate in a
clustered indoor environment. Also, different object categories often correlate to
the floorplan. For example, a sofa is usually located in the living room and a bed is
usually located in the bedroom. Such high-level abstract of object-level location
prior can also help robots better navigate in the indoor environment. We have
already witnessed some progress [Chaplot et al., 2020] in this area. However, their
mapping is static and based on 2D occupancy. We believe our mapping and tracking

systems can further advance this area of research.

By analogy, our object-level dynamic SLAM can also be applied for manipulation
and grasping tasks. As demonstrated in Chapter 3 and Chapter 5, our system can
continuously track and fuse the geometric, semantic, and motion properties for
every observed object. Having an awareness of the complete object geometry can
help a robotic arm to navigate towards a goal. It also means that robot arms no
longer need to wait for the objects to be static and then execute the tasks. It is also

possible to conduct some collaboration tasks between human and robot arm(s).
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