
Imperial College London

Department of Computing

Object-level Dynamic SLAM

Binbin Xu

17th June 2022

Supervised by Dr Stefan Leutenegger

Co-supervised by Professor Andrew J. Davison

Submitted in part ful�lment of the requirements for the degree of PhD in

Computing and the Diploma of Imperial College London. This thesis is entirely my

own work, and, except where otherwise indicated, describes my own research.

Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise

indicated, its contents are licensed under a Creative Commons Attribution-

Non Commercial 4.0 International Licence (CC BY-NC).

Under this licence, you may copy and redistribute the material in any

medium or format. You may also create and distribute modi�ed versions of

the work. This is on the condition that: you credit the author and do not use

it, or any derivative works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms

clear to others by naming the licence and linking to the licence text. Where a

work has been adapted, you should indicate that the work has been changed

and describe those changes.

Please seek permission from the copyright holder for uses of this work

that are not included in this licence or permitted under UK Copyright Law.

Abstract

Visual Simultaneous Localisation and Mapping (SLAM) can estimate a

camera’s pose in an unknown environment and reconstruct an online map

of it. Despite the advances in many real-time dense SLAM systems, most

still assume a static environment, which is not a valid assumption in many

real-world scenarios. This thesis aims to enable dense visual SLAM to run

robustly in a dynamic environment, knowing where the sensor is in the envir-

onment, and, also importantly, what and where objects are in the surrounding

environment for better scene understanding.

The contributions in this thesis are threefold. The �rst one presents one

of the �rst object-level dynamic SLAM systems that robustly track camera

pose while detecting, tracking, and reconstructing all the objects in dynamic

scenes. It can continuously fuse geometric, semantic, and motion information

for each object into an octree-based volumetric representation.

One of the challenges in tracking moving objects is that the object mo-

tion can easily break the illumination constancy assumption. In our second

contribution, we address this issue by proposing a dense feature-metric align-

ment to robustly estimate camera and object poses. We will show how to

learn dense feature maps and feature-metric uncertainties in a self-supervised

way. They formulate a probabilistic feature-metric residual, which can be

e�ciently solved using Gauss-Newton optimisation and easily coupled with

other residuals.

So far, we only reconstruct objects’ geometry from the sensor data. Our

third contribution further incorporates category-level shape prior to the object

mapping. Conditioning on the depth measurement, the learned implicit

function completes the unseen part while reconstructing the observed part

accurately. It can yield better reconstruction completeness and more accurate

object pose estimation.

These three contributions in this thesis have advanced the state of the art

in visual SLAM. We hope such object-level dynamic SLAM systems will help

robots intelligently interact with the human-existing world.

Acknowledgements

A long journey has come to an end and I am very thankful for all those

who have helped, supported, and inspired me, not only for my PHD studies

but also over and beyond.

I am �rst very grateful to my supervisor Dr Stefan Leutenegger who has

always been extremely supportive of my research and my, sometimes, risky

ideas. His solid knowledge in state estimation has guided me every step of

the way through my studies and provided strong support in my work. I also

very much appreciate the time and e�orts he generously spent during our

“morning co�ee” calls, which has proved very supportive in a hard time during

the COVID lockdown.

I am also very appreciative of my co-supervisor Professor Andrew Davison.

His vision of long-term research and insightful wisdom have helped shape

my research trajectory. He has built an incredible research community that

has provided valuable opportunities to discuss research ideas. I feel very

honoured and blessed to be able to work with such a SLAM legend.

I would like to thank my examiners, Prof. Christos Bouganis and Prof.

Laurent Kneip, for taking the time to evaluate my thesis and to provide

valuable feedback on my work. I am also grateful to the many teachers,

professors, and mentors I met in China, Japan and UK throughout my life

who, o�cial or not, have helped me learn to be the person I am today.

I was also very fortunate to work with many talented people in both

Stefan’s and Andy’s groups. I would like to thank Shuaifeng for his compan-

ionship inside and outside the school as we worked through the challenges

of PhD and COVID together. Zoe for all the joys and concerns we shared

together in our PhD life. Dimos for numerous hours we spent in the Vicon

room. Chris for many inspiring discussions on Math. Nils, and Sotiris for

all the memorable times we shared during the virtual co�ee time and spent

together in the o�ce. Xingxing for all the hours we spent discussing various

research ideas. Michael for spending his precious time teaching me Jacobians

in front of the whiteboard. Wenbin, Sajad, Ronnie, John, and Patrick for their

patient guidance when I started my PhD. Yifei for the time we spent together

discussing the visual-inertial SLAM system and the supervision experience I

learned during this collaboration. Jan, Tristan, and Andrea for their patient

guidance on my formula derivation and valuable suggestions on the PhD

milestones. I have had fruitful discussions with many other lab members,

including Masha, Ed, Anna, Simon B., Simon S., Charlie, Dan, Stephen, Robert,

Hide, Xin, Shikun, Edgar, Kentaro, Dorian. I would also like to thank Iosi�na

and Amani for the various support I received related to my PhD studies.

I would like to also thank my Facebook mentor, Lingni, when I conduc-

ted my research internship at Facebook Reality Labs. Conducting a remote

internship is hard but her patient guidance makes the internship experience

pretty enjoyable. I would like also to thank the colleagues I met during the

internship, including Yuting, Tanner, Tianye, Zhaoyang, Julian, Christopher,

Steve.

Lastly but most importantly, I deeply thank my parents, Yinbao and

Yin, for their unconditional support. Due to COVID, I could not �y back to

China for the past two years and I owe my greatest thank to them for their

understanding. I also appreciate my uncle, Chi, who has fostered my interest

in robotics and encouraged me to pursue a PhD since my childhood. Without

their trust, it is hard to imagine that from a small town in China, I could

pursue my academic dreams in Tokyo and then in London. Lastly I greatly

appreciate my partner Ying who has accompanied me through both Tokyo

and London and we have enjoyed such amazing life together. Life is very

exciting and colourful even with many troubles on the roads in between. The

support from all the people I met on this journey make this work possible. I

will carry with what I learned in this study for my next journey.

Binbin Xu

London, UK, February, 2022

Contents

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Static SLAM: from Sparse, to Dense, to Semantic 6

1.3 Dynamic SLAM: from Background Reconstruction to Object-level 11

1.4 Contributions . 17

1.5 Publications . 21

1.6 Thesis Structure . 22

2 Preliminaries 25

2.1 Notation . 27

2.2 Camera Model . 29

2.3 Transformations . 30

2.4 Nonlinear Least-Squares Optimisation 35

2.5 Dense Tracking . 39

2.6 Map Representations . 43

2.7 Deep Neural Networks . 45

3 Octree-based Object-Level Multi-Instance Dynamic SLAM 49

3.1 Introduction . 51

3.2 Related Works . 54

3.3 Notations and Preliminaries . 56

3.4 Method . 57

viii

Contents

3.5 Experiments . 65

3.6 Conclusions and Discussions . 71

4 Deep Probabilistic Feature-metric Tracking 73

4.1 Introduction . 75

4.2 Related Work . 77

4.3 Method . 80

4.4 Experiments . 88

4.5 Conclusion and Discussions . 99

5 Object-level Dynamic SLAM with Map Completion 101

5.1 Introduction . 103

5.2 Related Works . 106

5.3 Method . 108

5.4 Experiments . 117

5.5 Conclusions and Discussions . 125

6 Conclusions 129

6.1 Summary of results . 129

6.2 Future works . 132

Bibliography 137

ix

x

List of Figures

List of Figures

1.1 Demonstrations of each contributed system in this thesis 4

2.1 A depiction of a point P expressed in the world coordinate −→W , cam-

era coordinate −→C and object coordinate −→O as wrP , CrP , and OrP ,

respectively. The relative transformation of the camera coordinate

w.r.t the world coordinate represents the camera pose. The relative

transformation of the object coordinate w.r.t the world coordinate

represents the object pose. 31

2.2 Multi-view constraint in static and dynamic scenes 31

3.1 An overview of our system. Given RGB-D images, our system builds

an object-level dense volumetric map that deals with dynamic objects

and ignores people. Next to the input image we show the labelled

object models as well as the coloured reconstruction. 52

3.2 The pipeline of the proposed method 57

3.3 Combination of semantic, geometric and motion segmentations. Mask

regions that re�ned by geometric segmentation is in blue and the one

further re�ned by motion residual is shown in green. 62

3.4 Robust camera tracking and background reconstruction in a dynamic

environment (in “f3w halfsphere” sequence). Moving persons are

rejected due to the semantic labelling of Mask R-CNN (in blue) or

during motion re�nement (in green). 68

xi

List of Figures

3.5 Comparison of reconstruction error for a moving sofa. 69

3.6 Qualitative demonstration: input RGB (top row), semantic class pre-

diction (middle row) and geometry reconstruction result (bottom row). 70

3.7 Qualitative comparison with Co-Fusion: input RGB (left column), our

reconstruction results (middle) and Co-Fusion results (right column). 71

4.1 We propose a probabilistic feature-metric tracking method that estim-

ates dense feature and uncertainty maps from a pair of RGB-D images

to optimise the relative pose between them. Our method can handle

strong lighting changes and large motion scenarios by leveraging

features that are robust to lighting changes, e.g. on the desk surface,

and predicting high uncertainties on areas that the network cannot

handle, e.g. for the strong lighting changes near the pens. 76

4.2 Overview of our proposed deep probabilistic feature-metric tracking

method. For two views, we input image A and image B, by concaten-

ating them as {A, B} and {B, A}, respectively, to our two-view encoder

pyramid network. At each pyramid level, we extract the output from

the two-view encoder and feed it into the feature encoder and un-

certainty encoder separately to extract dense feature and uncertainty

maps. Then we optimise the pose by minimising the proposed prob-

abilistic feature-metric residual, which is initialised by the pose from

the coarser level. On the coarsest level, we concatenate the outputs of

the two views from the two frames and run through the pose network

to obtain an initial pose prediction. 80

xii

List of Figures

4.3 The architecture of our two-view encoder. It is composed of basic

convolutional blocks (blue) and average pooling operations (yellow).

The basic convolutional block is grouped by a convolutional layer

and followed by a BatchNorm layer, and a ELU layer. [In, Out, K, D]

represents [Input channel, Output channel, Kernel size, Dilation] with

stride always being 1. 86

4.4 The architecture of our feature encoder. On each pyramid level, it is a

basic convolutional block that is group by a 1 by 1 convolutional layer,

a BatchNorm layer, and a ELU layer. [In, Out, K, D] represents [Input

channel, Output channel, Kernel size, Dilation] with stride always

being 1. 86

4.5 The architecture of our uncertainty encoder. On each pyramid level,

it is composed by a basic convolutional block, followed by a 1 by 1

convolutional layer and a truncated exponential operation. 87

4.6 The architecture of our pose network for initial pose prediction. . . . 87

4.7 Trajectories delivered by our system on test split of TUM RGB-D

dataset. We back-projected point clouds from all frames to visualise

the alignment. 92

4.8 Qualitative results on MovingObjects3D dataset. Object motion between

the frame A and frame B is estimated using our proposed method (c)

and a further combination with ICP (d). The object is warped from

frame A to B using the estimated motion for visualization. The ground

truth object boundaries in A and B are colored in red and color, re-

spectively. Black regions in the warped image are caused by occlusion. 95

4.9 Visualisation of cost landscape of x and y translation for the feature-

metric loss on the coarsest level. From left to right: input, cost land-

scape 3D, and 2D projection of cost landscape. 97

xiii

List of Figures

4.10 Qualitative evaluation in challenging lighting. Notice our uncertainty

estimation is more sensitive to the lighting changes than the learned

m-estimator in DeepIC (higher value is in red and lower value is in

blue). 98

5.1 Given RGB-D images, our system builds object-level dense dynamic

maps that can robustly track camera pose and object poses while com-

pleting the missing sensor information using object priors. Compared

to the classic TSDF maps, our object maps �ll in unobserved parts

and their latent codes can be optimised jointly with object poses. In-

terfered regions by humans can be detected and intentionally removed

in the system. The background pointclouds are projected for pure

visualisation purpose. 104

5.2 The overview of our object geometry representation. 109

5.3 The pipeline of the proposed method 109

5.4 Editing the conditioned latent code can change the geometry of the

unobserved part in the object model. 111

5.5 The architecture of our canonical correspondence network. The archi-

tecture is modi�ed from [Rempe et al., 2020]. It extracts global features

and spatiotemporal local features from the PointNet encoder [Qi et al.,

2017a] and spatial local features from the PointNet++ encoder [Qi

et al., 2017b]. These features are concatenated and passed to an MLP

to regress the canonical shape correspondence and the associated

con�dence. 115

5.6 The architecture of our shape prior network, adopted from DeepSDF [Park

et al., 2019]. The input vector is fed through a decoder, which con-

tains eight fully-connected (FC) layers with one skip connection. FC+

denotes a FC with a following softplus activation and the last FC layer

output a single SDF value. 115

xiv

List of Figures

5.7 The architecture of our shape completion network, modi�ed from

CONet [Peng et al., 2020]. The encoder extracts the TSDF feature

vector �t[v] ∈ ℝ32 and the TSDF con�dence vector �c[v] ∈ ℝ1 from

TSDF feature volume and TSDF con�dence volume, respectively, and

concatenates them with a latent code z1 as an input to the network.

It goes through 3 fully-connected (FC) ResNet-blocks to extract local

latent features, which are then fed into an occupancy decoder [Mes-

cheder et al., 2019] to predict occupancy probabilities on the position

vector v. 116

5.8 Quantitative comparison of reconstruction quality and completion

of our proposed methods v.s. classic TSDF-Fusion, learning-based

DeepSDF and CONet. Our proposed method consistently show better

reconstruction results from single view depth completion to multiple

views. 120

5.9 Qualitative Results on reconstructions. Our method is superior to all

other methods in completing missing information and reconstructing

�ne details. 121

5.10 Qualitative comparison of classic TSDF volume representation (gray),

DeepSDF shape prior representation (blue), and our conditioned com-

pletion representation (green): our representation can reconstruct

the observed part more correctly than shape prior and complete the

unseen part where TSDF representation fails. 126

5.11 Segment, track, reconstruct and complete a moving chair. Background

pointclouds are just for visualization. 127

xv

List of Tables

List of Tables

3.1 Quantitative comparison of camera tracking 67

3.2 Object reconstruction error (avg./std., in cm) 69

3.3 Run-time analysis of system components (ms) 71

4.1 Results on our test split in TUM RGB-D Dataset. KF denotes the frame

intervals. 91

4.2 Results on our test split of MovingObjects3D Dataset. 94

4.3 Ablation study of the channel dimension e�ect on our test split in

TUM RGB-D. F, U, C abbreviate the feature map, uncertainty, and the

channel dimension. Time is the average inference time for a pair of

input RGB-D images (size 160×120). 96

5.1 Quantitative evaluation of object tracking method on the synthetic

moving objects dataset. 123

5.2 Run-time analysis (s) . 124

xvi

Chapter1
Introduction

Contents of Chapter

1.1 Motivation . 2

1.2 Static SLAM: from Sparse, to Dense, to Semantic 6

1.3 Dynamic SLAM: from Background Reconstruction to Object-level 11

1.3.1 Removal of moving objects 11

1.3.2 Integration of moving rigid objects 12

1.3.3 Integration of deformable objects 14

1.3.4 Position of thesis and quality metrics 15

1.4 Contributions . 17

1.4.1 Paper I: Octree-based Object-Level Multi-Instance Dy-

namic SLAM. 18

1.4.2 Paper II: Deep Probabilistic Feature-metric Tracking . 19

1.4.3 Paper III: Object-level Dynamic SLAM with Map Com-

pletion . 20

1.5 Publications . 21

1.6 Thesis Structure . 22

1

1. Introduction

1.1 Motivation

Simultaneous Localization and Mapping (SLAM) techniques simultaneously es-

timate a map of an unknown environment and a robot pose within that map.

Research in the real-time visual SLAM �eld has experienced rapid progress. It

started from the beginning of sparse SLAM [Davison et al., 2007, Klein and Murray,

2007, Leutenegger et al., 2014], and was able to enter in to dense SLAM [Newcombe

et al., 2011a, Whelan et al., 2016, Dai et al., 2017, Laidlow et al., 2017, Loop et al.,

2016, Vespa et al., 2018] thanks to the increased computational power of the Graph-

ics processing unit (GPU) and cheap depth sensors. In the past few years, many

people worked on exploiting the power of a Deep Neural Network (DNN) from large

amounts of training data and inserting the learned prior information inside the

SLAM framework. This has enabled the SLAM system to create a global dense map

from a monocular camera [Bloesch et al., 2018, Zhou et al., 2018a, Czarnowski et al.,

2020] or have a better semantic and instance scene understanding [McCormac et al.,

2017, McCormac et al., 2018, Sucar et al., 2020, Zhi et al., 2019]. The fast-evolving

research in SLAM has, since, bene�ted various applications, such as robotics and

Virtual Reality(VR) / Augmented Reality(AR), more than ever.

Despite this progress, most of these works still are based on the fundamental

assumption of a static environment, within which points in the 3D world would

always have the same spatial position in the global world and the only moving

object being the camera. This assumption enabled the success of early phases

of development as it creates a robust epipolar geometry constraint, conveniently

eliminating the chicken-and-egg problem between reconstructing structure and

estimating motion. A camera pose can be estimated between a live frame and its

reference frame, which is based on the assumption that the relative transformation

between those two images is caused only by the camera motion. It is this basic yet

strong assumption that allows a joint probabilistic inference (sparse SLAM [Durrant-

2

1.1. Motivation

Whyte and Bailey, 2006]) or an alternative optimisation (dense SLAM [Newcombe

et al., 2011a]) of the map and the pose to solve the SLAM problem. Any moving

object in the environment should be treated as outlier to the static model and

intentionally removed from the tracking and mapping process.

This idealized setup, therefore, can only deal with a small portion of dynamic

parts and distances itself from real-world applications as environments do change,

especially places where humans exist. This assumption of a static environment for

SLAM system has served as an inspirational springboard for SLAM development,

but a continuation with the same methods would halt our advancements for robust

applications and better scene understandings. Robust SLAM working in the dy-

namic environment is still an open problem and this leads to the goal of this PhD

thesis.

The de�nition of a dynamic environment in this thesis is a scene where objects

are moving under the perception of a camera sensor. Our main interest in this

thesis targets moving rigid objects and intentionally excludes non-rigid objects,

such as human hands or bodies. We also consider changing illuminations as part of

a dynamic environment. Instead of solely reconstructing a single static and clean

background model for robust camera tracking and ignoring all possible moving

objects, our ultimate goal is to build a multi-instance dynamic system that can

consistently and reliably estimate geometric, semantic, and motion properties for each

object in the scene. This thesis has made a few contributions towards this ultimate

goal. I believe, similar to human perception, an awareness of instances in the map

would be a more proper solution to the dynamic SLAM issue and can lead to a

semantically meaningful scene representation. Augmenting semantic and object

information in a map is also a signi�cant step for robotic agents to advance beyond

obstacle avoidance and achieve environment interactions for human agents.

In this thesis, we begin with presenting a novel object-level dynamic SLAM

3

1. Introduction

Input ReconstructionLabel

(a) MID-Fusion [Xu et al., 2019]

ViewA View B

In
pu
t

Fe
at
ur
e

U
nc
er
ta
in
ty

3D alignment from two views

(b) Deep Probabilistic Feature-metric Tracking [Xu et al.,
2021a]

In
pu

t

C
on
di
tio
ne
d

co
m
pl
et
io
n

TS
D

F

Camera view Topdown view

D
ee

pS
D

F
pr

io
r

(c) Object-level Dynamic SLAM with Map Completion

Figure 1.1: Demonstrations of each contributed system in this thesis

system called ‘MID-Fusion’ [Xu et al., 2019] (shown on the Figure 1.1a), which

continuously estimates the pose, semantic class, and dense geometry of each object

in the scene. The 3D geometry of each object is reconstructed in an e�cient

4

1.1. Motivation

octree-based truncated signed distance �eld (TSDF) volume [Vespa et al., 2018] that

can be naturally applied for further robotic applications such as exploration and

manipulation. The poses of the camera and objects are estimated via a probabilistic

combination of photometric and geometric residuals that are also commonly used

in many direct SLAM systems. This separation of each object in the scene to

its individual representation can naturally handle the real-world dynamic scene.

The object instances are �rst detected and segmented using Mask R-CNN [He

et al., 2017] and further re�ned using motion residuals. The semantic information

is e�ciently fused using a Bayesian update scheme. The often imperfect object

boundary from 2D segmentation is re�ned via depth segmentation and further

re�ned with 3D foreground probabilistic fusion.

In MID-Fusion, our experiments showed that object-level representation can lead

to more robust camera tracking in a dynamic scene and better scene understanding.

However, we also found the limitations in the conventional photometric tracking

residual, which stringently requires brightness constancy and good initialization

(close to the global minimum). These requirements often cannot be met in reality,

especially for objects that have non-Lambertian surfaces (e.g. typical plastic objects).

To overcome these limitations, we explore a new tracking pipeline [Xu et al., 2021a]

that uses Convolutional Neural Networks (CNN) to predict a good initial pose,

and learns features and feature-metric uncertainties that can be robust to lighting

changes. We solve this novel residual using the Gauss-Newton algorithm and unroll

this optimisation step to learn deep features and its associated uncertainties in an

end-to-end manner. In the experiments, we have shown that this residual is robust

to lighting changes and have a larger convergence basin, as shown in Figure 1.1b.

It provides better tracking accuracy than classic residuals or pure learning-based

approaches and can be naturally combined with other residuals, such as Iterative

Closest Point (ICP) residual, to further improve performance.

In terms of object mapping, we found that the traditional TSDF fusion [Newcombe

5

1. Introduction

et al., 2011a, Vespa et al., 2018] adopted in MID-Fusion can only reconstruct the parts

observed from the sensor. The unobserved parts, due to occlusion or being behind

the surface, cannot be reconstructed, resulting in many incomplete meshes. To

tackle this problem, we propose to learn an implicit occupancy �eld that conditions

on both observed reconstruction and category-shape prior. We further propose to

jointly optimise this occupancy �eld and object pose, which enables more robust

object pose estimation and better object reconstruction qualities. We demonstrate

the e�ectiveness of our proposed system in both the synthetic and real-world

experiments, as one example shown in Figure 1.1c.

A brief historical review of SLAM, from static SLAM to dynamic SLAM, is given

below. More speci�c discussions on work closely related to the contributions in

this thesis will be presented in each individual chapter.

1.2 Static SLAM: from Sparse, to Dense, to

Semantic

Although this thesis focuses primarily on dynamic SLAM, most existing dynamic

SLAM systems borrow ideas heavily from the existing static SLAM systems. [Engel,

2017] introduces a taxonomy of visual SLAM, categorizing systems into direct vs.

indirect and sparse vs. dense. The �rst axis, direct vs. indirect, is determined whether

the input measurements for camera pose and geometry estimation is directly from

the actual sensor value or pre-computed from features extracted from the image(s).

The other axis, sparse vs. dense, is determined whether the input measurements are

only from a sparse selected set of independent points (usually corners) or all image

pixels.

A real-time visual SLAM is one that can complete all processing in real time,

at the rate of operation or framerate of the camera. It is composed of at least two

6

1.2. Static SLAM: from Sparse, to Dense, to Semantic

main components: tracking (online camera pose estimation) and mapping (fusing

past observations into a coherent environment model). The front-end tracking

component requires a high framerate and low latency, while the back-end mapping

can run slower than the camera framerate.

Most early successful visual SLAM systems were sparse and indirect, due to

limited computation capabilities. MonoSLAM is one of the �rst real-time single

camera visual SLAM systems [Davison et al., 2007]. It uses a joint state to represent

the camera pose and an extended Kalman �lter (EKF) method to build a point cloud

map. When new features are observed, they are �ltered into the current map with a

joint Gaussian uncertainty. However, when the map grows larger, the �lter update

has an O(N 2) complexity, restricting the increase of the map size. Thus, Klein and

Murray, later proposed Parallel Tracking and Mapping (PTAM) [Klein and Murray,

2007], which uses a keyframe-based bundle adjustment, rather than a �ltering

method. In their work, feature points are associated with keyframes, which are

then selected based on the structural sparsity of the problem. Real-time camera

tracking given a map and slow-speed bundle adjustment optimisation to update

maps run in parallel, enabling computationally expensive bundle adjustment into

a real-time SLAM work. With the increasing computation power and advanced

feature keypoint descriptors, such as SIFT [Lowe, 1999], SURF [Bay et al., 2006], ORB

[Rublee et al., 2011], and BRISK [Leutenegger et al., 2011], Sparse indirect SLAM

systems have become mature and can provide accurate and reliable camera tracking

in mostly static environments. One of the modern SLAM systems, ORB-SLAM

[Mur-Artal and Tardós, 2017] is such an example.

One of the drawbacks of these sparse systems is that they can only estimate

the sparse geometry of the surrounding environment due to its reliance on sparse

3D landmarks from sparse 2D keypoints. However, dense geometry of the map is

desirable for some robotic applications, such as collision avoidance and scene un-

derstanding. With the emergence of commodity graphics processing units (GPUs),

7

1. Introduction

dense SLAM has also started to rise. DTAM is one of the �rst real-time monocular

dense SLAM systems that estimate the dense geometry of keyframes by minimizing

the photometric error between the live frame and the reference keyframes with a

small baseline into a perspective cost volume.

The emergence of low-cost 3D sensing equipment that can directly measure

depth information has further boosted the research of dense SLAM. KinectFu-

sion [Newcombe et al., 2011a] is one of the earliest systems that can build a dense

3D volumetric reconstruction of arbitrary environments in real-time by only ac-

quiring depth information from a Kinect sensor. The map representation of Kinect-

Fusion is based on a volumetric data structure, Truncated Signed Distance Function

(TSDF) [Curless and Levoy, 1996], which provides an implicit and computationally

e�cient way to represent the scene and the surface. The parallel structure inside

the KinectFusion with the usage of GPU also improves its real-time performance.

The initial design of KinectFusion maps the 3D geometry as a regularly spaced 3D

grid, and thus the memory usage scales with the size of the represented volume

rather than the surface. This limits its ability to perform large-scale mappings.

Some following work proposed to use more e�cient data structures, such as N 3

trees [Chen et al., 2013], octrees [Vespa et al., 2018], and voxel hashing [Nießner

et al., 2013, Kahler et al., 2015]. Other following works focused on solving the drift

in camera tracking. BundleFusion [Dai et al., 2017] constructs a globally consistent

3D model by using a robust pose estimation method based on both sparse features

(SIFT [Lowe, 1999]) and dense (geometric and photometric) constraints. In the

map updating process, a de-integration operation was coupled with a conventional

integration process to remove integration errors and frames can be reintegrated

with new poses when loop closure is detected. ElasticFusion [Whelan et al., 2016]

achieves global consistency by applying elastic map deformation of surfel-based

map representation upon loop closure. [Laidlow et al., 2017] extended it to RGB-D-

Inertial sensors with the camera tracking replaced by a more robust approach using

8

1.2. Static SLAM: from Sparse, to Dense, to Semantic

tightly-coupled visual-inertial odometry. [Vespa et al., 2018] proposed an octree-

based volumetric mapping that can support both SDF and occupancy mapping,

and is e�cient enough to run in real-time on CPU. Our �rst work, MID-Fusion, is

developed using this map representation for objects, including background.

In addition to geometric information, other information can also be estimated

from the input measurements. Thanks to the advancement of neural network

research, one important direction is semantic SLAM, which aims to integrate local

semantic information from 2D input images to build a global 3D semantic map inside

the SLAM framework for better scene understanding. SemanticFusion [McCormac

et al., 2017] combines the ElasticFusion [Whelan et al., 2016] with a semantic

segmentation CNN [Noh et al., 2015] in a Bayesian update scheme to create a

semantically fused dense reconstruction. [Nakajima et al., 2018] speeded up the

segmentation with the help of geometric segmentation on depth images and only

run expensive semantic segmentation on keyframes.

Moving forward from dense semantic mapping, object-level representation

provides semantic map representation that can naturally di�erentiate di�erent

instances in the same semantic class and is very important for understanding the

relationship between objects in the scene. An early version is SLAM++ [Salas-

Moreno et al., 2013] that can recognize pre-de�ned and repeated objects in the

environment in real-time. However, it requires collecting all possibly appearing

object instances in the environment with very detailed geometric information.

Fusion++ [McCormac et al., 2018] reconstructs arbitrary object-centric maps from

2D CNN detections [He et al., 2017] in TSDF volumes. [Sünderhauf et al., 2017]

combines ORB-SLAM2 [Mur-Artal and Tardós, 2017] with a Single-shot Multi-box

Detector (SSD) approach [Liu et al., 2016] to detect instance labels in the 3D world

and generates a global object-oriented semantic map. Kimera [Rosinol et al., 2020]

creates a dense mesh reconstruction with a VIO-frontend and provides a pose-

graph optimisation backend used upon loop closure. It can additionally provide a

9

1. Introduction

semantically annotated scene graph map for better scene understanding. Rather

than reconstructing object geometry from scratch, some other works concentrate

on extracting a compact object representation. [Nicholson et al., 2018] generates

object-centric maps using 3D quadric surface representation. DirectShape models

object shapes using PCA models and optimises these shapes using geometric, pho-

tometric, and silhouette information [Wang et al., 2020]. Deep-SLAM++ [Hu et al.,

2019], NodeSLAM [Sucar et al., 2020], FroDo [Runz et al., 2020], and DSP-SLAM

[Wang et al., 2021] represent objects in a compact latent vector that can be learned

from category-level object CAD models in ShapeNet dataset [Chang et al., 2015].

The object representations explore the variance and similarities inside an object

category and this learnt object prior is used to represent object geometries. Other

works also explore understanding the inter-relationship between objects in the

scene by learning a scene graph representation [Wald et al., 2020]. However, most

of these works only target static environments, as multi-view consistency of static

world points is required to localise the shape prior models.

One thing to be noted is that the computational requirements of SLAM algorithms

scale with the quantity of data they need to process. It is determined not only by the

resolution of the camera, but also by the design choice of the input to the tracking,

the density of the mapping model, and the network architecture, where included.

Therefore, a real-time SLAM system design is in�uenced by a variety of factors,

from frame resolution to point selection threshold and reconstruction density,

resulting in di�erent hardware platform requirements. With the progress of state-

of-the-art SLAM algorithms to dense mapping and notably semantic prediction,

real-time SLAM systems demand at least desktop-grade CPUs and often one or

even a few high-end GPUs for acceleration, especially for deep neural network

inference. Many works have also been proposed in order to optimise real-time

performance on low-power platforms for mobile robot applications [Boikos and

Bouganis, 2017].

10

1.3. Dynamic SLAM: from Background Reconstruction to Object-level

1.3 Dynamic SLAM: from Background

Reconstruction to Object-level

By far, all the research mentioned above and most existing approaches have a basic

assumption that the environment is mostly static, and that dynamic objects can

be treated as outliers, to a certain limit and usually in a very small portion, to

the static model, and are ignored intentionally in the tracking and reconstruction

step. However, real-world scenarios are often changing, especially in the places

where humans exist. Therefore, existing dynamic systems that were originally

designed for static environments cannot work robustly in real-world dynamic

scenes. To overcome this issue, some work are coming up recently to enable SLAM

to work again in dynamic environments. In the remaining part of this section, I

will introduce some related work on the dynamic SLAM and categorize them into

three parts based on the condition if they integrate moving objects into the map

and the condition if they tackle deformable objects.

1.3.1 Removal of moving objects

When dynamic objects occupy an important part of the scene, visual SLAM systems

that do not speci�cally address dynamic content tend to confuse the motion of

the dynamic objects with the camera’s ego-motion, leading to wrong camera pose

estimation and distorted geometry reconstruction. Many works have proposed to

address this issue. [Jaimez et al., 2017] proposed a method to jointly estimate visual

odometry and scene �ow under a dynamic environment. They estimate a dominant

rigid motion in the over-segmented clusters as the initially estimated camera motion.

Then the static parts are used to re�ne the camera motion estimation and the moving

parts are used to re�ne a piece-wise rigid scene �ow. StaticFusion [Scona et al., 2018]

leverages the reconstructed model to reduce the overall drift and jointly estimates

the frame-to-model tracking and static/dynamic segmentation. The frame-to-model

11

1. Introduction

motion estimation is formulated by geometric (ICP) and photometric (RGB) re-

projection residuals. It is also weighted together by the segmentation score, which

is used to separate static and dynamic parts. The segmentation term is composed

of three parts, camera motion (ICP+RGB) residuals, depth inconsistency prior, and

a smoothness regularization.

In addition to these geometric solutions, [Barnes et al., 2018] proposed a self-

supervised learning approach to segment dynamic objects in the scene. It built

a prior 3D static map using a camera and LIDAR in the data collection step. The

prior static map is built by collecting data in the target environment in multiple

traversals and only the points that appear in di�erent traversals are considered

static and remain in the prior map. The 3D points that are collected only in one

traversal are considered as belonging to moving objects and removed from the

3D map. In the training step, they predict both disparity and ephemerality masks

from a single RGB image using a convolutional encoder-multi-decoder network

architecture. [Bescós et al., 2018] proposed to use Mask R-CNN [He et al., 2017]

to detect prior dynamic objects, such as people, vehicles and animals. Then they

perform ORB-SLAM2 tracking module [Mur-Artal and Tardós, 2017] on the regions

outside the prior dynamic objects. Then based on this estimated camera pose, their

system checks the depth inconsistency to detect moving objects that are not a prior

dynamic. After re�ning the static regions, camera pose tracking is also re�ned.

Using the estimated camera, dynamic regions and the neighbouring regions are

inpainted using the corresponding information from keyframes.

1.3.2 Integration of moving rigid objects

Instead of only reconstructing a static background, some works explore how to track

and reconstruct rigid moving objects inside the environment. Co-Fusion [Rünz and

Agapito, 2017] is a system that is extended from ElasticFusion and can segment,

track, and reconstruct several moving objects. The segmentation is mainly based

12

1.3. Dynamic SLAM: from Background Reconstruction to Object-level

on motion between two consecutive frames using a fully connected Conditional

Random Field (CRF), where ICP cost is used as the unary potentials. Alternatively,

semantic segmentation can also be used to determine objects on each frame, yet

in an o�ine case. Co-Fusion assumes that several rigid bodies are moving in the

scene and uses geometric and photometric terms to track 6 Degrees of Freedom

(DoF) rigid pose for each object. The reconstruction and tracking use the same

method proposed in the ElasticFusion [Whelan et al., 2016]. The following work

MaskFusion[Rünz and Agapito, 2018] replaces the segmentation module of Co-

Fusion with Mask R-CNN [He et al., 2017] to segment instances in the scene

online. To compensate for the imperfect mask boundary and sometimes missed

detections from Mask R-CNN, they combine it with a geometric segmentation

method [Tateno et al., 2015] to provide a better boundary and use the rendered

masks from reconstructed models in case of failed recognition. Both Co-Fusion

and MaskFusion use surfels to represent map models, which is memory e�cient

but cannot directly provide free space information in the map, and neither surface

connectivity. MID-Fusion [Xu et al., 2019], presented in Chapter 3 of this thesis,

leverages a memory e�cient octree-based volumetric representation of a Signed

Distance Field (SDF) and further conducts semantic fusion for each detected object.

EM-Fusion [Strecke and Stuckler, 2019] proposes to estimate object pose by directly

align the object SDF with the input frame. A similar work is proposed by [Bârsan

et al., 2018], targeting outdoor environments. From stereo cameras, depth maps

are �rst calculated using E�cient Large Stereo Matching [Geiger et al., 2011] or

DispNet [Mayer et al., 2016]. Then the dynamic and potentially dynamic objects are

detected using a Multi-task Network Cascades (MNC) [Dai et al., 2016]. In parallel,

sparse scene �ow are calculated on the current frame and the previous frame. Based

on the estimated scene �ow, camera visual odometry and each instance’s motion

are further calculated. Based on the estimated motion and the instance masks,

corresponding information on each frame is fused to each instance’s volumes using

In�niTAM [Kahler et al., 2015].

13

1. Introduction

Similar to visual static SLAM, instead of alternating the optimisation of tracking

and mapping as most dense SLAM systems do, another direction is to formulate

a joint probabilistic inference on map and pose for higher object tracking accur-

acy [Durrant-Whyte and Bailey, 2006], with the caveat of sacri�cing the dense

map representation and depth fusion. This is particularly useful in the outdoor

environment, especially for autonomous driving applications. [Li et al., 2018a]

proposes a stereo vision-based system that can track robustly both the camera pose

and 3D semantic objects in dynamic environments. It creates a dynamic object

bundle adjustment (BA) approach to fuse temporal sparse feature correspondences

and the semantic 3D measurement model for object pose, velocity and point cloud

estimations. DynaSLAM-II [Bescós et al., 2021] extends ORB-SLAM II [Mur-Artal

and Tardós, 2017] to dynamic environments by representing objects as sparse

pointclouds. It jointly optimises the camera pose, object poses, and geometries in

an object-level pose graph optimisation. ClusterSLAM [Huang et al., 2019] formu-

lates object detection and tracking as a clustering problem of landmark movements

and solves it in a batch optimization scheme. Following that, they reformulated it

as an online VO SLAM that also considers semantic detection [Huang et al., 2020].

In addition to di�erent map representation choices for these object-level SLAM

systems, there are also di�erent motion models for object movements. While the

majority of these dense object-level SLAM systems, such as [Rünz and Agapito,

2018, Xu et al., 2019], use a zero-velocity motion model to track objects, some other

works, such as [Bescós et al., 2021], use a constant velocity motion model, or a

white-noise-on-acceleration prior [Barfoot, 2017], for example in the [Huang et al.,

2020].

1.3.3 Integration of deformable objects

We introduced some work above on integrating multiple possible moving objects in

the SLAM framework. However, in those works, the non-rigid deformable objects

14

1.3. Dynamic SLAM: from Background Reconstruction to Object-level

are either out of the scope or treated as a composition of several rigid bodies. There

is another category of work speci�cally targeting at reconstructing 3D deformable

objects, especially human hands and bodies.

Although there have been many work being proposed to reconstruct non-rigid

objects, they are often o�-line and require multiple sensor settings. DynamicFu-

sion [Newcombe et al., 2015] is the �rst real-time dense reconstruction in dynamic

environments using a single RGB-D camera. It extends the KinectFusion [New-

combe et al., 2011a] to model the dynamic scene by estimating a dense volumetric

6D motion �eld, which can warp the static surface into the dynamic scene input.

To e�ciently estimate the motion �eld in real-time, the �eld is based on a sparse

set of rigid node motions and then re�ned through interpolation.

Since that, many other dense SLAM algorithms were proposed to capture the

dynamic environment. VolumeDeform [Innmann et al., 2016] proposes using both

depth and colour correspondences in the data association part for motion �eld

estimation. They also de�ne the motion �eld points on the discretised volumetric

grids, on the same level of volume representation, instead of the interpolated �eld.

Later, Fusion4D extends the dynamic scene construction to a multiple RGB-D

camera set-up [Dou et al., 2016]. It estimates non-rigid tracking based on a 2D

dense correspondence �eld within images using a learning-based method. This

provides a more robust initialization to tackle fast motions. It also proposed to use

key-volumes, an idea similar to keyframe, instead of one �xed canonical model, to

solve the large topology change.

1.3.4 Position of thesis and quality metrics

The position of this thesis �ts into the direction described in Section 1.3.2 since we

believe that, similar to human perception, an awareness of instances in the map is

signi�cant for robots to perceive and interact with the changing environment.

15

1. Introduction

This direction is de�ned as object-level dynamic SLAM and aims to provide

accurate and robust pose estimation of the camera sensor in dynamic scenes while

incrementally building dense object-level maps of the surrounding environment.

The pose of the camera is typically estimated by minimising the error between the

sensor observation and the static background environment that has been generated.

The system then estimates the object poses of moving objects by minimising the

error between the newly observed object information and the reconstructed object

models. The camera pose estimation is then used to integrate the newly captured

background information to improve the accuracy of the current background map

and is combined with the estimated object poses to improve the accuracy of the

corresponding object models.

As such, the main quality metrics used for object-level dynamic SLAM can be

in three folders: the accuracy of the camera pose estimation, the accuracy of the

moving object pose estimation, and/or the accuracy of the generated object maps,

including the background map.

The accuracy of the pose is de�ned as the distance (error) between the real-world

position with respect to the origin point and the estimated position of the recovered

pose. To quantify the pose estimation performance on the entire captured trajectory,

one of the widely adopted metrics is the Root-Mean-Square-Error (RMSE) of the

Absolute Trajectory Error (ATE). When global consistency is not enforced, other

metrics can also be used to evaluate the pose estimation accuracy, such as relative

pose error (RPE) metrics [Sturm et al., 2012] that compares the estimated relative

transformations between nearby poses to the ground truth relative transformations,

or 3D End-Point-Error (EPE). In this thesis, we chose the widely used TUM RGB-D

dataset [Sturm et al., 2012] as our main benchmark to evaluate the camera pose

estimation accuracy.

When the origin of the estimated object map is aligned with the origin of the

16

1.4. Contributions

ground truth object model, the accuracy of the object pose estimation can also

be quanti�ed using the same metrics, such as ATE, RPE, or 3D EPE. Since there

are no available real-world benchmark datasets containing ground truth origin

and the trajectory of semantic objects, we chose to use synthetic datasets, such as

MovingObjects3D [Lv et al., 2019] that contains objects from ShapeNet [Chang

et al., 2015] with random motions,to evaluate the object pose estimation accuracy.

The quality of object-level map reconstruction is also important. Similar to the

surface reconstruction accuracy evaluation in dense SLAM systems, we quantify

the reconstruction quality by computing the mean distances from each point in

the reconstructed map to the nearest surface in the ground truth 3D model. The

most commonly used metric is chamfer distance, and there are also some metrics,

such as IoU or completeness. To obtain ground truth object models, we rendered

some sequences with moving objects using the ground truth 3D CAD models from

InteriorNet [Li et al., 2018b] and Shapenet [Chang et al., 2015].

In addition to quantitative evaluations, we also conducted extensive qualitative

evaluations on pose estimation accuracy and object reconstruction quality in this

thesis. The details will be discussed in the respective chapters.

1.4 Contributions

We described three contributions in this thesis to tackle tracking and reconstructing

rigid moving objects. The main results have been presented in three di�erent

research papers. The full list of publications done in conjunction with this work as

well as the video materials that provides visualisation of the algorithms are given

in Section 1.5. The motivation and contribution of each paper are brie�y discussed

below.

17

1. Introduction

1.4.1 Paper I: Octree-based Object-Level Multi-Instance

Dynamic SLAM.

Research Question:

Can we design an object-level dynamic SLAM algorithm that can robustly estimate

camera pose and also accurately estimate all the objects’ geometric, semantic and

motion information?

Context:

We propose a new multi-instance dynamic RGB-D SLAM system using an object-

level octree-based volumetric representation. It can provide robust camera tracking

in dynamic environments and at the same time, continuously estimate geometric,

semantic, and motion properties for arbitrary objects in the scene. For each incom-

ing frame, we perform instance segmentation to detect objects and re�ne mask

boundaries using geometric and motion information. Meanwhile, we estimate the

pose of each existing moving object using an object-oriented tracking method and

robustly track the camera pose against the static scene. Based on the estimated

camera pose and object poses, we associate segmented masks with existing models

and incrementally fuse corresponding colour, depth, semantic, and foreground

object probabilities into each object model. In contrast to existing approaches, our

system is the �rst system to generate an object-level dynamic volumetric map from

a single RGB-D camera. Our method can run at 2-3 Hz on a CPU, excluding the

instance segmentation part. We demonstrate its e�ectiveness by quantitatively and

qualitatively testing it on both synthetic and real-world sequences.

This object-level dynamic SLAM and the corresponding experiments are presen-

ted in Chapter 3.

18

1.4. Contributions

Reference:

Binbin Xu, Wenbin Li, Dimos Tzoumanikas, Michael Bloesch, Andrew Davison,

Stefan Leutenegger (2019). MID-Fusion: Octree-based Object-Level Multi-

Instance Dynamic SLAM. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). [Xu et al., 2019].

1.4.2 Paper II: Deep Probabilistic Feature-metric Tracking

Research Question:

Can we have a better tracking algorithm to estimate camera and object poses under

wide baseline and challenging lighting conditions?

Context:

Dense image alignment from RGB-D images remains a critical issue for real-world

applications, especially under challenging lighting conditions and in a wide baseline

setting. In this paper, we propose a new framework to learn a pixel-wise deep feature

map and a deep feature-metric uncertainty map predicted by a Convolutional Neural

Network (CNN), which together formulate a deep probabilistic feature-metric

residual of the two-view constraint that can be minimised using Gauss-Newton

in a coarse-to-�ne optimisation framework. Furthermore, our network predicts

a deep initial pose for faster and more reliable convergence. The optimisation

steps are di�erentiable and unrolled to train in an end-to-end fashion. Due to its

probabilistic essence, our approach can easily couple with other residuals, where

we show a combination with ICP. Experimental results demonstrate state-of-the-art

performances on the TUM RGB-D dataset and the 3D rigid object tracking dataset.

We further demonstrate our method’s robustness and convergence qualitatively.

The algorithm and the corresponding experimental results on object and camera

19

1. Introduction

trackings are presented in Chapter 4.

Reference:

Binbin Xu, Andrew J. Davison, Stefan Leutenegger (2021). Deep Probabilistic

Feature-metric Tracking. IEEE Robotics and Automation Letters (RA-L), Vol. 6,

No. 1,pp. 223-230, 2021. [Xu et al., 2021a].

This paper was elected in ICRA 2021 presentation and received a RA-L Best Paper

Honorable Mention Award.

1.4.3 Paper III: Object-level Dynamic SLAM with Map

Completion

Research Question:

Can we incorporate object shape prior into object mapping and can this shape prior

improve the object reconstruction quality and also pose estimation accuracy?

Context:

We propose a novel object-level dynamic SLAM system that can simultaneously

segment, track, and reconstruct objects in dynamic scenes. It can further predict

and complete the full geometry of the reconstructed objects by conditioning on the

measured depth and category-level canonical shape prior, leading to better tracking

accuracy. For each incoming RGB-D frame, we perform instance segmentation to

detect objects and build data associations between the detection and the existing

object maps. A new object model will be created for each unmatched detection.

For each matched object, we jointly optimise its pose and latent representations

using geometric and di�erential rendering residuals towards its shape prior and

completed geometry. Our approach shows better tracking and reconstruction

performance compared to methods using traditional volumetric or pure shape prior

20

1.5. Publications

approaches. We evaluate its e�ectiveness by quantitatively and qualitatively testing

it in both synthetic and real-world sequences.

The algorithm and the corresponding experimental results on object reconstruc-

tion and pose estimation are presented in Chapter 5.

Reference:

Binbin Xu, Andrew J. Davison, Stefan Leutenegger (2022). Object-level Dynamic

SLAM with Map Completion. (under submission).

1.5 Publications

The work described in this thesis resulted in the following publications:

∙ Binbin Xu, Wenbin Li, Dimos Tzoumanikas, Michael Bloesch, Andrew Dav-

ison, Stefan Leutenegger (2019). MID-Fusion: Octree-based Object-Level

Multi-Instance Dynamic SLAM. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). [Xu et al., 2019].

∙ Binbin Xu, Andrew J. Davison, Stefan Leutenegger (2021). Deep Probabil-

istic Feature-metric Tracking. IEEE Robotics and Automation Letters (RA-

L), Vol. 6, No. 1,pp. 223-230, 2021. (RA-L Best Paper Honorable Mention

Award and selected in ICRA 2021 presentation) [Xu et al., 2021a].

and the following work that is currently under preparation for submission:

∙ Binbin Xu, Andrew J. Davison, Stefan Leutenegger (2022). Object-level

Dynamic SLAM with Map Completion. (under submission).

21

1. Introduction

The following video material provides visualisation of some of the algorithms

developed in this thesis:

∙ MID-Fusion supplementary video at:

https://youtu.be/gturboNl9gg.

∙ Deep Probabilistic Feature-metric Tracking supplementary video at:

https://youtu.be/6pMosl6ZAPE.

While not described directly, the following work was conducted in conjunction

with this thesis:

∙ Binbin Xu*, Lingni Ma*, Yuting Ye, Tanner Schmidt, Christopher D. Twigg,

and Steven Lovegrove (2021). DiForm: Identity-Disentangled Neural De-

formation Model for Dynamic Meshes. Arxiv preprint arXiv:2109.15299.

[Xu et al., 2021b]

This work was conducted during a research internship at Facebook Reality

Labs Research.

*: equal contribution

1.6 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 introduces basic notation, the transformation groups and sensor models

used in dense SLAM, and provides a primer on non-linear least-squares optimisation

methods and tracking methods used in this work as well as a brief introduction on

the map representation and deep neural networks related to this work.

22

https://youtu.be/gturboNl9gg
https://youtu.be/6pMosl6ZAPE

1.6. Thesis Structure

Chapter 3 describes an octree-based object-level dynamic SLAM system. It can

provide robust camera tracking in dynamic environments and at the same time,

continuously estimate geometric, semantic, and motion properties for arbitrary

objects in the scene. It is one of the �rst systems to generate an object-level dynamic

volumetric map from a single RGB-D camera and can run at 2-3 Hz on a CPU, ex-

cluding the instance segmentation part. We demonstrate its e�ectiveness in robust

camera tracking in a dynamic scene and accurate object geometry reconstruction.

Chapter 4 describes a probabilistic deep feature-metric tracking method to over-

come the limitations of photometric residual used in Chapter 3. It is quantitatively

evaluated on camera tracking and object tracking benchmarks and shows state-

of-the-art performance. Qualitative demonstrations also show its robustness to

lighting changes and large convergence basin.

Chapter 5 further improves object mapping component by incorporating category-

level shape prior. Conditioning on both actual observations and latent codes, a

learnt implicit function can predict complete object shape geometry. Experiments

demonstrate this shape completion leads to better object reconstruction quality

and also better object pose estimations.

Chapter 6 concludes this thesis with a summary of the results presented and dis-

cussions for promising future work.

23

1. Introduction

24

Chapter2
Preliminaries

In this chapter, we present fundamental concepts and related works that form the

foundations for the algorithms presented in this thesis. In terms of layout, we start

with the mathematical notation. We continue with the three-dimensional sensor

models that are used inside our state estimation algorithms. We then introduce

three-dimensional geometry knowledge, including the three-dimensional pose

transformation groups that are used to represent the states of our sensor and

object representations, and proceed with the nonlinear least-squares optimisation

algorithms that are used to solve state estimation problems. Then we present some

related works that have been served as a fundamental part in our work, especially

the parts that are used to estimate the poses of the sensors and the object models in

the environment, as well as the parts that are used for background and object map

representations. We conclude with a general introduction to deep neural networks

that are very closely related to the works presented in this thesis.

25

2. Preliminaries

Contents of Chapter

2.1 Notation . 27

2.1.1 General notation . 27

2.1.2 Spaces and manifolds 27

2.1.3 Frames and transformations 28

2.2 Camera Model . 29

2.3 Transformations . 30

2.3.1 Lie Algebra . 32

2.4 Nonlinear Least-Squares Optimisation 35

2.4.1 Gauss-Newton Algorithm 36

2.4.2 Inverse Compositional Algorithm 37

2.4.3 Jacobians in Rigid Transformations 38

2.5 Dense Tracking . 39

2.5.1 Iterative Closest Point (ICP) tracking 39

2.5.2 Photometric (RGB) tracking 41

2.6 Map Representations . 43

2.7 Deep Neural Networks . 45

26

2.1. Notation

2.1 Notation

This section introduces the notations used throughout this thesis. We will recap in

each following chapter again the notations that are used in the respective work.

2.1.1 General notation

a A lower-case symbol denotes a scalar.

a A bold lower-case symbol denotes an m-dimensional column vector.

A A bold capital symbol denotes an m × n matrix.

I The identity matrix, optionally with dimensions as subscript.

0 The zero matrix, optionally with dimensions as subscript.

[⋅]× The cross-product matrix that produces a skew symmetric matrix from a 3D

vector such that a × b = [a]×b. Given the vector a = [ax , ay , az]⊤, [a]× can be

computed by:

[a]× =

⎡
⎢
⎢
⎢
⎢
⎣

0 −az ay

az 0 −ax

−ay ax 0

⎤
⎥
⎥
⎥
⎥
⎦

. (2.1)

The properties of the cross product operation can be applied, such as the

anticommutative property: [a]×b = − [b]× a, as well as the skew-symmetric

property: ([a]×)⊤ = − [a]×. The combined properties can lead some useful

equation, such as a⊤ [b]× = (− [b]× a)⊤.

 A calligraphic capital symbol denotes a set.

2.1.2 Spaces and manifolds

ℝ The set of real numbers.

27

2. Preliminaries

ℝm The vector space of real m-dimensional vectors.

ℝm×n The vector space of real m × n-dimensional matrices.

SO(3) Special Orthogonal group: the group of 3D rotations.

so(3) lie algebra associated with SO(3).

SE(3) Special Euclidean group: the group of 3D rigid transformations.

⊞ The “box-plus” operator that applies a small perturbation expressed in a

tangent space to a manifold state, e.g. SO(3) × ℝ3 → SO(3).

2.1.3 Frames and transformations

−→A A cartesian coordinate frame in ℝ3.

Av A vector v expressed in the frame −→A, for example a 3D world vertex position

in the frame −→A.

ArP The position vector from the origin of −→A to the point P represented in the

coordinate frame −→A.

ArBC The vector that represents the vector from −→B to −→C , represented in −→A.

CAB The rotation matrix that transforms the vector Bv expressed in −→B to one

expressed in −→A as: Av = CAB Bv. The inverse rotation CBA can be computed

as: CBA = C−1
AB = C⊤

AB .

ArAB The translation vector that represents the vector from −→A to −→B, represented

in −→A.

TAB The transformation matrix that transforms homogeneous vectors from −→B

to −→A as ArP = TAB BrP .

uA 2D pixel position represented on the frame −→A

28

2.2. Camera Model

2.2 Camera Model

One of the most important and widely used sensors on the robot platform is the

camera as it is cheap and can capture very rich texture environment information.

We use the pinhole camera model to model the RGB and RGB-D cameras used in

this thesis.

The pinhole camera model can be mathematically described using the perspective

projection function. Assuming lens undistortion has been applied to the images,

a 2D pixel coordinate uI = (u, v), on the 2D image plane I is projected from a 3D

point position Crp = (x, y, z) in the camera coordinate −→C .

uI = K[�(Crp)], (2.2)

where �(⋅) is a perspective projection function and removes bottom row from the

homogeneous point representation

�(Crp) = �

⎛
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

x

y

z

⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎠

=
1
z

⎡
⎢
⎢
⎣

x

y

⎤
⎥
⎥
⎦
. (2.3)

K is the camera intrinsic matrix to map the normalized image coordinates to the

actual pixel coordinates:

K =

⎡
⎢
⎢
⎢
⎢
⎣

fu 0 cu

0 fv cv

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

. (2.4)

The intrinsic matrix K is composed of the camera focal length expressed in hori-

zontal, fu, and vertical axis, fv , as well as the o�set of the image origin from the

optical axis intersection in horizontal cu , and in vertical pixels, cv . These values can

be estimated in the calibration stage to remove the lens e�ects.

If the depth of a certain pixel, d , is known, we can recover its corresponding 3D

29

2. Preliminaries

point position by inverting the perspective projection function:

Crp = �−1[K−1(uI), d], (2.5)

where K−1 is the inverse of the intrinsic matrix to normalize the pixel coordinates

to the normalized pixel coordinates:

K−1 =

⎡
⎢
⎢
⎢
⎢
⎣

1
fu

0 − cu
fu

0 1
fv

− cv
fv

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

, (2.6)

and �−1() is a back-projection function to recover the 3D point position when its

depth is known.

2.3 Transformations

In this thesis, we proposed several novel systems to tackle the object-level visual

SLAM problem. Each camera frame, object pose, and the global world scene are

represented in their own respective frames. Rigid transformations between these

coordinate frames are used to represent the corresponding camera pose and object

poses in these scenes.

A camera pose is de�ned as the relative transformation of the camera coordinate

w.r.t. the world coordinate and belongs to Special Euclidean group, SE(3). It

consists of a 3DoF rotation and a 3DoF translation. One common parametrization

choice for it is using a 4×4 homogeneous matrix TAB , and we express it as TAB =

(CAB , ArAB) ∈ (SO(3) × R3), from −→B to −→A. The 3×3 rotation matrix C belongs to

Special Orthogonal group, SO(3), such that CTC = I and det(C) = 1.

The relationship between TAB , the rotation matrix CAB and the position vector

ArAB is given by:

TAB =
⎡
⎢
⎢
⎣

CAB ArAB
01×3 1

⎤
⎥
⎥
⎦
, (2.7)

30

2.3. Transformations

Figure 2.1: A depiction of a point P expressed in the world coordinate −→W , camera
coordinate −→C and object coordinate −→O as wrP , CrP , and OrP , respectively. The
relative transformation of the camera coordinate w.r.t the world coordinate repres-
ents the camera pose. The relative transformation of the object coordinate w.r.t the
world coordinate represents the object pose.

(a) Static scene (b) Dynamic scene

Figure 2.2: Multi-view constraint in static and dynamic scenes

while its inverse transformation TBA can be computed as:

TBA = T −1
AB =

⎡
⎢
⎢
⎣

C⊤
AB −C⊤

AB ArAB
01×3 1

⎤
⎥
⎥
⎦

(2.8)

Similarly, an object pose is de�ned as an SE(3) transformation between the object

coordinate and the world coordinate.

A visualisation of a point P expressed in these three coordinate frames and with

the transformations among them is shown in Figure 2.1. Part of the works in this

thesis focuses on estimating the camera pose TWCi
and the object pose TWOi

at

31

2. Preliminaries

the timestamp i by utilizing the correspondence in the multiple view constraint.

The world coordinate −→W can be arbitrarily de�ned, though conventionally it is

chosen to coincide with the camera coordinate on the �rst frame. If the world

and the object are static, the 3D landmark P has a constant spatial position vector

W rP in the world coordinate −→W . So we have the following multi-view constraint

when the same static landmark is observed at di�erent timestamps in the camera

coordinate Ci
rP :

TWC0 C0rP = TWC1 C1rP = W rP . (2.9)

The di�erence of 3D location between C0rP and C1rP is only caused by camera

motion. However, when the object is moving, the constraint in Equation (2.9) does

not hold anymore since the W rP can also change. Instead, we use the rigid body

constraint that the same 3D point on a rigid body remains a constant position in

the object body frame, which is set as the object canonical space. Then we can take

advantage of the following constraint:

T −1
WO0 TWC0 C0rP = T −1

WO1 TWC1 C1rP = OrP . (2.10)

Figure 2.2 visualizes the constraint di�erence. Here we slightly abuse the notation

ArP to express the homogeneous coordinates of a vector, ArP = [Ar⊤P , 1]⊤.

2.3.1 Lie Algebra

The homogeneous matrix is convenient to express transformations via simple mul-

tiplications. However, its 9-parameter rotation matrix form is over-parameterized

for 3DoF rotations as its elements are not independent. There are also other para-

meterisations for rotations, such as Euler angles, angle-axis, quaternions, and lie

algebra. Each of these parameterisations can be useful for particular tasks. However,

the representations that have more than three parameters must have associated

constraints to limit their degrees of freedom. The representations that have exactly

three parameters have associated singularities, and thus there is no perfect repres-

32

2.3. Transformations

entation that is minimal and also free of singularities. In our work, we primarily

employ lie algebra to parametrise rotations for iterative pose optimisation.

Both SE(3) and SO(3) are matrix Lie groups. A group is mathematically de�ned as

a set of elements together with an operation that applies to any two of its elements

to form a third element that also belongs to the group. A group also must satisfy

four conditions called the group axioms. A Lie group is a speci�c group that is also

a di�erential manifold, and whose group operations are also smooth. A matrix Lie

group further speci�es that the elements of the group are matrices, the combination

operation is matrix multiplication, and the inversion operation is matrix inversion.

As a smooth manifold, a Lie group has an associated Lie algebra, which is the

local tangent space around the identity of the group. For rotations, the linear

algebra associated with SO(3) is de�ned as

so(3) = {� = �∧ ∈ ℝ3×3 | � ∈ ℝ3}. (2.11)

(⋅)∧ is the equivalent operation symbol as the [⋅]× and its inverse operation symbol

is (⋅)∨:

� = �∨ (2.12)

The exponential map is the key to map each element from so(3) to SO(3) using

Rodrigues’ rotation formula:

C = exp(�∧). (2.13)

Inversely, we can also map from SO(3) to so(3):

� = log(C)∨. (2.14)

The exponential mapping is subjective as its inverse log mapping is not unique.

We can �nd multiple elements in so(3) mapping to the same element in SO(3). Lie

algebra can be converted to the axis-angle form of a rotation matrix by setting

33

2. Preliminaries

� = �� , where � = |�| is the rotation angle and � = �/� is the unit-length axis

of rotation. In practice, we limit |�| to be smaller than � to limit the log mapping

candidates.

The associated Lie algebra is an especially natural place to perform iterative

updates on the lie group element. It creates a vector space with the same dimen-

sionality as the group’s number of DoF, allowing each step to freely move within

the entire vector space. In each iterative optimisation, a small update presented

in a minimal parameterisation belonging to ℝ3 can be used to update the group

element on the manifold by:

C = C ⊞ �� (2.15)

= exp(��∧)C, (2.16)

where the update �� is computed around the currently estimated C ∈ SO(3).

Similarly, rigid transformations can also be expressed in a minimal representation

� ∈ ℝ6:

se(3) = {� ∧ =
⎡
⎢
⎢
⎣

�

�

⎤
⎥
⎥
⎦

∧

=
⎡
⎢
⎢
⎣

�∧ �

0T 0

⎤
⎥
⎥
⎦
∈ ℝ4×4 | �, � ∈ ℝ3}. (2.17)

In terms of exponential mapping, there are two choices to express it, leading to

di�erent expressions for Jacobian computations and pose updating. The orientation

exponential mapping is the same as the one in SO(3). For translation part, one is

to map � via left Jacobian: r = J� ∈ ℝ3. This is referred to as the SE(3) way as

it is consistent in SE(3) space. The other is to directly map � to the translation

component: r = � ∈ ℝ3. We refer to it as SO(3) way as it separates the translation

part from the orientation part. In this thesis, we adopt the second choice. When a

small pose update � ∈ ℝ6 is computed around the currently estimated rotation C

and translation �

�� = [��, ��] ∈ ℝ6, (2.18)

34

2.4. Nonlinear Least-Squares Optimisation

it can be applied back on the SE(3) manifold as:

� = � ⊞ ��,C = C ⊞ ��. (2.19)

More details of the lie groups and lie algebra in computer vision and robotics

can be found in [Eade, 2014, Bloesch et al., 2016, Barfoot, 2017].

2.4 Nonlinear Least-Squares Optimisation

Modern SLAM systems typically formulate the tracking and mapping problem

as nonlinear least-squares optimisation problems. For a set of state parameters,

x ∈ ℝm, we aim to �nd the parameters x̃ that can minimize the di�erences between

the predicted observations, ℎ(x), with the actual measurements, z. This di�erence

is measured by an error function:

e(x) = ℎ(x) − z. (2.20)

The error function is also called a residual function in some other papers. It can be

further formulated in a cost function:

E(x) = �(||e(x)||W). (2.21)

W is symmetric positive-de�nite (and often diagonal if we assume the measurement

in each di�erent is independent) weighting matrix and can be formulated in the

Mahalanobis norm || ⋅ ||W. In robotics, this weighted matrix is often de�ned by the

inverse covariance matrix associated with the measurement. �(⋅) is a robust loss

function that is used to down-weigh outliers in the optimisation problem, and is

often chosen empirically or based on the distribution of the residuals [Concha and

Civera, 2015, MacTavish and Barfoot, 2015] .

35

2. Preliminaries

2.4.1 Gauss-Newton Algorithm

Equation (2.21) is typically solved using a non-linear least-squares optimisation

algorithm, such as Gauss-Newton or Levenberg-Marquardt algorithm. The conver-

gence of these approaches, however, is not guaranteed and it may lead to a local

minimum [Eade, 2009].

Each iteration k of the Gauss-Newton system solves the state update �x for

xk+1 = xk ⊞ �x (2.22)

by linearizing the residual function e(x) using �rst-order Taylor expansion

E(x) = �(||e(xk+1)||W) (2.23)

= �(||e(xk ⊞ �x)||W) (2.24)

≈ �(||e(xk) + J�x||W), (2.25)

where the Jacobian matrix J is a function of xk ,

J =
)e(x)
)x

||||x=xk
, (2.26)

and needs to be re-evaluated at each iteration. Equation (2.26) can be analytically

computed using the chain rule.

To minimize Equation (2.25), we can set the derivative w.r.t. the parameter update

to be zero, and obtain the normal equation:

�x = −(JTWJ)−1JTWxk . (2.27)

For brevity the robust loss function �() and its derivative are dropped from Equa-

tion (2.27). In practice, they are typically included in the weight matrix W.

Here JTWJ is an approximation to the true Hessian of Equation (2.21) with

respect to the parameters x to speed up computation. As the approximate Hessian

can become ill-conditioned to compute its inverse, a damping term is added in

36

2.4. Nonlinear Least-Squares Optimisation

practice. If the damping parameter � is adaptable in each iteration, this results in

the Levenberg–Marquardt (trust-region) update equation. Di�erent � values can

adjust the parameter update �x between the Gauss-Newton update (smaller �) and

gradient descent (larger �). The choice of the damping parameter determines the

speed of which the algorithm converges to a local optima.

The iterative optimisation begins with an initial guess of the parameters, x0 and

then iteratively updates until the updates become su�ciently small, or a certain

number of iterations is reached or stops early when the residual starts to go up.

Besides, when working with image inputs, instead of repeating this process on

the same resolution, a coarse-to-�ne approach is typically applied. This speeds

up the optimisation and makes it less likely to get stuck in the local minimum by

providing a wider basin of convergence.

2.4.2 Inverse Compositional Algorithm

In a non-linear least squares framework, the Jacobian in Equation (2.26) needs to be

re-computed at each iteration, as it is a function of xk . To avoid recomputing it at

every iteration, the inverse compositional algorithm [Baker and Matthews, 2004]

pre-computes the Jacobian to save computational resource. This is achieved by

computing the parameter update on the measurement part, instead of the predicted

observation part:

E(x) = �(||e(xk+1)||W) (2.28)

= �(||ℎ(xk) − z(�x)||W). (2.29)

Accordingly, the state parameter is updated in the inverse way in each iteration:

xk+1 = xk ⊞ (�x)−1 . (2.30)

In this way, the Jacobian

J =
)z(0)
)x

(2.31)

37

2. Preliminaries

in the linearization function

E(x) = �(||ℎ(xk) − z(�x)||W) (2.32)

≈ �(||ℎ(xk) − z(0) − J�x||W), (2.33)

does not depend on xk and thus can be pre-computed to speed up the optimisation.

2.4.3 Jacobians in Rigid Transformations

The non-linearity in the optimisation problem largely comes from the orientation

component and thus the derivative of a transformed point with respect to the Lie

algebra parameters that transforms it is of particular importance. Here we give a

short summary of the lie algebra Jacobians that will be applied in the following

chapters.

To optimise the TAB in the forward rigid transformation:

Arp = TAB Brp , (2.34)

The 3 × 6 Jacobian of Arp with respect to the state update �� for �AB is:

)Arp
)��

= [− [Arp]
× | I] . (2.35)

To optimise the inverse rigid transformation T −1
AB :

Brp = T −1
AB Arp , (2.36)

The 3 × 6 Jacobian of Brp with respect to the state update �� for �AB is:

)Brp
)��

= [CT
AB [Arp]

× | − CT
AB] . (2.37)

The notation of Arp is slightly abused here. It is expressed in the homogeneous

coordinates when expressing transformation in Equations (2.34) and (2.36) and

in the inhomogeneous coordinates when expressing Jacobians in Equations (2.35)

and (2.37).

38

2.5. Dense Tracking

2.5 Dense Tracking

In this thesis, our camera and object tracking components are in the category

of dense direct SLAM that alternates between the tracking and mapping steps

without explicit feature extraction and matching steps. Unlike sparse tracking,

which estimates a camera/object pose by minimising the reprojection error over a

set of sparse keypoints, dense tracking optimises over all the pixel intensities and

geometric information.

2.5.1 Iterative Closest Point (ICP) tracking

When using a depth camera, fast Iterative Closest Point (ICP) [Rusinkiewicz and

Levoy, 2001] is often used to register an incoming live depth frame to a reference

pointcloud or a reference 3D reconstruction model [Newcombe et al., 2011a] by

minimizing the distances between the corresponding points. In each iteration,

projective data association [Blais and Levine, 1995] is used to build dense corres-

pondences between the two pointclouds rather than searching for the closest two

points in terms of Euclidean distance. After each optimisation iteration, the estim-

ated transform is applied to the source point cloud, a new set of associations are

built again based on the projectively closest points and the procedure is repeated.

In ICP tracking, we �rst back-project each pixel uL in the incoming live depth

image to a 3D vertex point CL
v in the live camera frame, −→CL

using Equation (2.5).

This creates a live 3D vertex map, which can be transformed into the reference

frame −→Rusing the current estimate of the camera pose with the reference camera

pose, T −1
WCR

TWCL
. The correspondence uR in the reference image for uL can be

found by re-projecting the live pixel uL into the reference image plane:

uR = K�(T −1
WCR

TWCL
(�−1K−1(uL, DL[uL]))). (2.38)

39

2. Preliminaries

The ICP residual is de�ned as the point-to-plane ICP residual [Chen and Medioni,

1992, Newcombe et al., 2011a] using the reference surface normal Wnr in the world

coordinate −→W as well as the correspondence vertex distance error:

eICP(TWCL
) = Wnr [uR] ⋅ (TWCL CL

v[uL] − Wvr [uR]) . (2.39)

The reference vertex vr [uR] and reference normal nr [uR] are found via raycast-

ing [Parker et al., 1998] to the reference 3D model. Here we choose the reference

normal in the residual, as the reference normal vector is estimated from the fused

reference TSDF model that contains much less noise than the live depth image.

To handle the outlier noise on the live depth image, we �rst run bilateral �ltering

on the depth image and also �lter out the live vertices whose vertice distance

TWCL CL
v[uL] − Wvr [uR] or normal divergence Wnr [uR] ⋅ CWCL CL

n[uL] with the

reference point are too large. This residual has been found to work quite well

for projective data association, as it allows the correspondences to “slide” on the

surfaces.

The ICP residual in Equation (2.39) can be iteratively solved using the Gauss-

Newton algorithm, as described in Section 2.4.1. The state parameter to be optim-

ised is �WCL
and its Jacobian can be computed following the chain rule and using

Equation (2.35):

JICP(�WCL
) =

)eICP(TWCL
)

)��
= − [(TWCL CL

v[uL]) × Wnr [uR] | Wnr [uR]] . (2.40)

Here we describe the Jacobian in the forward compositional way. The inverse

compositional Jacobian will be described in the later chapters when it is used in the

corresponding system. �WCL
can be iteratively updated using Equation (2.27). The

inverse of the approximate Hessian matrix can be e�ciently solved using Cholesky

Decomposition, QR decomposition, or Singular Value Decomposition.

40

2.5. Dense Tracking

2.5.2 Photometric (RGB) tracking

Photometric (RGB) tracking minimizes the photometric, i.e. pixel intensity, di�er-

ence between a live RGB image and a reference one. It has been widely adopted in

many SLAM systems to optimise a relative transformation that aligns the live frame

to a reference frame since it was proposed in [Steinbrücker et al., 2011]. It works

by rendering the live frame, −→L into the reference frame, −→R , by back-projection

and re-projection operations and then minimizing the photometric residual:

eRGB(0) = IR[uR] − RIL (2.41)

= IR[uR] − IL[K�(T −1
WL (TWR �−1K−1(uR , DR[uR])))] (2.42)

In the following chapter, we seek to optimise the transformation TWL using the

depth rendered from the 3D reconstruction model, which has higher depth quality

than raw depth measurements.

Some intermediate terms in Equation (2.42) have their physical meaning in this

image rendering process and can be denoted as:

eRGB(0) = IR[uR] − IL (K�

Lv⏞⏞⏞
(T −1

WL (TWR �−1K−1(uR , DR[uR]))⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Wv

))

⏟⏞⏞⏞⏟⏞⏞⏞⏟
uL

(2.43)

With small perturbation, i.e. parameter update, �� performed on the TWL we

can obtain the following equation:

eRGB(��) = IR[uR] − IL(K�(T −1
WL exp((−��)∧)Wv)) (2.44)

Thus, we can get the photometric Jacobian formula as:

J =
)(eRGB(��) − eRGB(0))

)(��)
(2.45)

= −
) (IL(K�(T −1

WL exp((−��)∧)Wv) − IL(K�(T −1
WL (Wv))

)(��)
(2.46)

41

2. Preliminaries

Using the chain rule, we can decompose Equation (2.46) as three parts:

J = −
)(IL(uL))
)(uL)

)(uL)
)(Lv)

)(Lv)
)(��)

. (2.47)

1. The �rst term is the image gradient of the rendered image ▽RIL on the pixel

coordinate uL and it requires (bilinear-)interpolation if the projection pixel

coordinate uL is sub-pixel.

2. The second item is the derivative towards perspective projection from the

3D world vertex Lv, (x, y, z) onto the 2D pixel position uL, expanded as (u, v)

in the coordinate −→L.

Using Equations (2.3) and (2.4), we can get

u = fx
x
z
+ cx , (2.48)

v = fy
y
z
+ cy , (2.49)

and then the second term in the Jacobian equation would be:

)(uL)
)(Lv)

=
⎡
⎢
⎢
⎣

)u
)x

)u
)y

)u
)z

)v
)x

)v
)y

)v
)z

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

fx
z 0 − fxx

z2

0 fy
z − fyy

z2

⎤
⎥
⎥
⎦
. (2.50)

3. The third term is the derivative towards the vertex Lv in the live coordin-

ate −→L transformed form the Wv under the small perturbation �� on the

transformation TWL . Using Equation (2.37), we can get

)(Lv)
)(��)

=
)(T −1

WL Wv)
)(��)

(2.51)

=
⎡
⎢
⎢
⎣

CT
WL [Wv]× −CT

WL

0T 0T

⎤
⎥
⎥
⎦

(2.52)

The notation of Wv is slightly abused here. It is expressed in the homogen-

eous coordinate from Equation (2.51) and inhomogeneous coordinate from

Equation (2.52).

42

2.6. Map Representations

Inserting Equation (2.50), Equation (2.52) into Equation (2.47), we can get the

Jacobian used in the photometric tracking:

J = ▽RIL(uL)
⎡
⎢
⎢
⎣

fx
z 0 − fxx

z2

0 fy
z − fyy

z2

⎤
⎥
⎥
⎦
[−CT

WL CT
WL [Wv]×] (2.53)

2.6 Map Representations

As discussed above, the quality of depth map estimation has a large impact on

tracking performance. While we can measure depth directly from a depth sensor, the

measurement depth also has its own reliable range and measurement uncertainty.

Fusing depth maps from multiple measurements can remove outliers and reduce

noise as well as the measurement uncertainties. It can also reduce the odometry drift

and further improve the tracking accuracy when combined with other optimisation

methods, such as pose graph optimisation, or factor graph optimisation. The exact

depth fusion method largely depends on the map representation choice, which has

been explored in various ways and is still one of the hottest topics in the SLAM

community nowadays.

Scene representation in visual SLAM initially focuses on building sparse pointcloud

maps, coupled well with sparse indirect feature-based SLAM systems [Davison,

2003, Klein and Murray, 2007, Mur-Artal and Tardós, 2017]. With the advancement

of commodity Graphic Processing Units (GPU) and especially the cheap depth

sensors, dense mapping has also become a popular choice SLAM since it is useful

for other robotics tasks, such as path planning and collision avoidance. Dense map-

ping typically fuses multiple view depth measurements into a global volumetric

representation such as a signed distance function [Newcombe et al., 2011a] or oc-

cupancy map [Hornung et al., 2013]. The initial design of dense mapping typically

use a regularly spaced 3D voxel grid and thus the memory consumption scales with

the size of the represented volume rather than the surface, limiting its ability to

perform large-scale mapping. Some following work proposed to use more e�cient

43

2. Preliminaries

data structures, such as N 3 trees [Chen et al., 2013], Octrees [Vespa et al., 2018], and

voxel hashing [Nießner et al., 2013]. Dense mapping can also be generated in the

mesh representation directly [Rosinol et al., 2019] or via augmenting pointclouds

with knowledge of the surface orientation [Whelan et al., 2016].

Recently, learning-based representations start to gain popularity in the research

community. Recent works, such as GQN [Eslami et al., 2018] and CodeSLAM [Bloesch

et al., 2018] use keyframe-based view-based latent code representations from a

variational auto-encoder (VAE) for scene representations. In addition to the view-

dependent approaches, several methods directly learn 3D-aware neural repres-

entations by augmenting the classic volumetric representations with 3D learning

features [Sitzmann et al., 2019, Park et al., 2020]. They have tried to learn a 3D-

structured latent model , but memory cost of 3D convolutions on the explicit 3D grid

resolution often limit its representation capability. Instead of augmenting classical

representation with deep features, direct parametrizing 3D scenes implicitly using

network weights has also gained much attention very recently. Neural implicit

representations can implicitly represent 3D scenes using the weights of neural

networks (often MLPs) which can predict the 3D geometry in occupancy or SDF

values at any given 3D query position, yielding unlimited resolutions. It has been

applied in both view-conditioned ones, including Neural Radiance Fields (NeRF)

[Mildenhall et al., 2020], and 3D-aware representations, including DeepSDF [Park

et al., 2019] and Occupancy Networks [Mescheder et al., 2019].

In Chapter 3 we will show how an e�cient octree-based TSDF volume repres-

entation is used to reconstruct moving rigid objects. In Chapter 5, we will show

how to use learning-based representations to utilize category-level shape prior and

to predict a complete shape geometry of a moving object.

44

2.7. Deep Neural Networks

2.7 Deep Neural Networks

Deep neural networks (DNN) have led to signi�cant performance improvements

in almost every computer vision task, including semantic segmentation, depth

prediction, 3D reconstruction, and scene understanding [He et al., 2016, He et al.,

2017, Eigen et al., 2014, Ummenhofer et al., 2016]. It has also been applied in many

robotic applications and combined well with traditional model-based methods.

A deep neural network is typically a parameteric computational graph that is

composed of biologically-inspired “neurons”. Each neuron works as a weighted

summation of inputs that is followed by a nonlinear activation function to produce

an output for the next neuron layer. The purpose of a DNN training is to learn

an approximation of an unknown mapping f� ∶  →  by updating neuron

weights � through back-propagation to minimise a designed loss function, which

is often supervised over (x ∈  , y ∈ ) pairs in the training set. It is often not

computationally feasible to do the minimisation overall training pairs in one pass,

and the backpropagation training is conducted instead over mini-batches of training

data. As the mini-batches are randomly drawn from the full training set and

reshu�ed in each epoch, the optimisation procedure resembles stochastic gradient

descent that may help avoid local minima [Goodfellow et al., 2016]. This is repeated

until convergence on the training data and periodically monitored on the designed

loss on a reserved validation to avoid over�tting. After the training �nishes, it

is expected to work well on unseen testing data sampled from a similar data

distribution as the training data.

Multi Layer Perceptron

One of the simplest neural networks, called multilayer perceptrons (MLP) or fully-

connected networks, consists of solely fully connected (FC) layers and non-linear

activation functions. In each layer, a neuron is densely connected to all neurons in

the previous and next adjacent layer. There are no connections between neurons

45

2. Preliminaries

within the same layer.

The representation power of an MLP is that theoretically, it is a universal function

approximators [Hornik, 1989] and thus can approximate solutions for extremely

complex high-dimensional nonlinear problems in machine learning. Unlike convo-

lutional neural networks (CNN) or recurrent neural networks (RNN), it also has

little inductive bias due to its fully connected design. Therefore, the unconstrained

MLP tends to over�t training data and does not have translation invariance and

thus making it less e�cient at some 2D and 3D vision tasks. Despite this, MLP has

been used in a variety of popular network architectures [Simonyan and Zisserman,

2015, Qi et al., 2017a]. In recent years, MLPs have also been back to the research com-

munities’ attention and have been applied in implicit representation for 3D shape

[Park et al., 2019], 3D scene representation [Sitzmann et al., 2020], and 3D scene

view synthesis [Mildenhall et al., 2020] as well as vision transformers [Vaswani

et al., 2017] due to its strong representation power.

In Chapter 5, we will show how to use a coordinate-based MLP to learn im-

plicit map representations for category-level shape prior and conditioned shape

completion.

Convolutional Neural Networks

Compared with MLPs, Convolutional Neural Networks (CNN) incorporate stronger

inductive biases and can learn translation-invariant features that are suitable for

many 2D and 3D vision tasks. CNN typically assumes a regular grid pattern in

the input data and is composed of a sequence of layers that usually consist of

convolutional layers, pooling layers and optional fully connected layers. The

weights to be optimised in the training time are in convolutional kernels and fully

connected layers.

Each convolutional layer learns small �lter kernels that are convolved against

46

2.7. Deep Neural Networks

the entire input. This enables parameter sharing as the salient features detected at a

certain position can also be detectable at other spatial positions, enabling translation

invariance in CNN. It also helps control the number of trainable parameters in CNN,

allowing more e�cient computation and deeper network design. Another property

brought by the convolutional layer is the designed assumption of local connectivity.

The convolution operation means the spatial extent of the connectivity of each

neuron, i.e. receptive �eld, is limited to a local region. It helps solve the scaling

issue of network size with the input dimension that exists in MLP. By carefully

designing the receptive �eld of the convolutional layer, it is possible to replace

large �lter kernels with several small �lters, enabling a more compact network

size. Modern deep neural networks often have many convolutional layers, with

deeper layers learning more abstract and higher-level features from the previous

layers. Pooling layers are periodically inserted between convolutional layers to

downsample the output feature maps. This helps reduce the dimensions of the

input to the following convolutional layers and thus reduce the trainable parameter

and the computation amount. This can also mitigate the over�tting issue. Average

pooling and maximum pooling are the two most commonly used pooling types.

Fully connected layers are typically placed at the end of CNN for feature fusion

and classi�cation.

In Chapter 4, we will show how to use Convolutional Neural Networks to learn

dense features for robust camera and object tracking in a self-supervised way.

47

2. Preliminaries

48

Chapter3
Octree-based Object-Level

Multi-Instance Dynamic SLAM

In this chapter, we propose a new multi-instance dynamic RGB-D SLAM system

using an object-level octree-based volumetric representation. It can provide robust

camera tracking in dynamic environments and at the same time, continuously

estimate geometric, semantic, and motion properties for arbitrary objects in the

scene. For each incoming frame, we perform instance segmentation to detect objects

and re�ne mask boundaries using geometric and motion information. Meanwhile,

we estimate the pose of each existing moving object using an object-centric tracking

method and robustly track the camera pose against the static scene. Based on the

estimated camera pose and object poses, we associate segmented masks with

existing models and incrementally fuse corresponding colour, depth, semantic,

and foreground object probabilities into each object model. In contrast to existing

approaches, our system is the �rst system to generate an object-level dynamic

volumetric map from a single RGB-D camera. Our method can run at 2-3 Hz on a

CPU, excluding the instance segmentation part. We demonstrate its e�ectiveness

by quantitatively and qualitatively testing it on both synthetic and real-world

sequences.

49

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

Contents of Chapter

3.1 Introduction . 51

3.2 Related Works . 54

3.3 Notations and Preliminaries 56

3.4 Method . 57

3.4.1 System Overview . 57

3.4.2 RGB-D Camera Tracking 58

3.4.3 Object Pose Estimation 60

3.4.4 Combined Semantic-Geometric-Motion Segmentation 61

3.4.5 Object-level Fusion 63

3.4.6 Raycasting . 64

3.5 Experiments . 65

3.5.1 Robust Camera Pose Estimation 65

3.5.2 Object Reconstruction Evaluation for Other Components 67

3.5.3 Real-world Applications 68

3.5.4 Runtime Analysis . 70

3.6 Conclusions and Discussions 71

Parts of this Chapter appear in:

Binbin Xu, Wenbin Li, Dimos Tzoumanikas, Michael Bloesch, Andrew Davison, Stefan

Leutenegger (2019). MID-Fusion: Octree-based Object-Level Multi-Instance Dynamic

SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), 2019. [Xu et al., 2019]

50

3.1. Introduction

3.1 Introduction

In Simultaneous Localisation and Mapping (SLAM) both, the map of the unknown

environment as well as the robot pose within it, are concurrently estimated from

the data of its on-board sensors only. In recent years, the �eld of SLAM has

experienced rapid progress. It started from sparse SLAM [Davison et al., 2007, Klein

and Murray, 2007], and evolved into dense SLAM [Newcombe et al., 2011a] thanks

to the increased computational power of GPU and a�ordability of depth sensors.

More recently, many people have begun to leverage Deep Neural Networks and

their ability to learn from large amounts of training data to improve SLAM. This

fast-evolving research in SLAM has, since then, lead to strong progress in various

�elds of applications, such as robotics, Virtual Reality (VR), and Augmented Reality

(AR).

Despite this progress, much work is still based on the fundamental assumption

of a static environment, within which points in the 3D world always maintain the

same spatial position in the global world, with the only moving object being the

camera. This assumption enabled the success of early phases of development as it

alleviated the chicken-and-egg problem between map estimation and sensor pose

estimation. A camera pose can be estimated between a live frame and a reference

frame, which is based on the assumption that the relative transformation between

those two images is caused only by the camera motion. It is this basic, yet strong,

assumption that allowed a joint probabilistic inference (sparse SLAM [Durrant-

Whyte and Bailey, 2006]) or an alternating optimisation (dense SLAM [Engel et al.,

2017]) of map and pose relationship to solve SLAM. Any moving objects in the

environment would be treated as outliers to the static model and are intentionally

ignored by tracking and mapping.

This idealised setup, therefore, can only handle a small amount of dynamic

elements and disquali�es itself from many real-world applications as environments,

51

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

Input ReconstructionLabel

Figure 3.1: An overview of our system. Given RGB-D images, our system builds
an object-level dense volumetric map that deals with dynamic objects and ignores
people. Next to the input image we show the labelled object models as well as the
coloured reconstruction.

especially where humans are present, change constantly. A robust SLAM system,

which works in highly dynamic environments, is still an open problem, which we

seek to address in this work.

Although dynamic SLAM has been studied for a couple of decades [Wang et al.,

2003], approaches based on visual dense SLAM have only recently been explored.

They can be categorised into three main directions. One deforms the whole world

in a non-rigid manner in order to include a deformable/moving object [Newcombe

et al., 2015]. The second speci�cally aims at building a single static background

model, while ignoring all possibly moving objects and thus improving the accuracy

of camera tracking [Jaimez et al., 2017, Scona et al., 2018, Barnes et al., 2018, Bescós

et al., 2018]. The third models dynamic components by creating sub-maps for every

possibly rigidly moving object in the scene while fusing corresponding information

into these sub-maps [Rünz and Agapito, 2017, Bârsan et al., 2018, Rünz and Agapito,

2018]. We are more interested in the third direction since we believe that, similar to

52

3.1. Introduction

human perception, an awareness of instances in the map would be a more proper

solution for robots to perceive the changing environment and has higher potential

to achieve a meaningful map representation. However, most existing approaches

build maps using a collection of surfels, which is di�cult to be used directly for

robotic tasks. The only two systems that support sub-map volumetric map, we

know of so far, are [Bârsan et al., 2018] and [McCormac et al., 2018]. However, the

former has been speci�cally designed for an outdoor stereo camera setting and the

latter only deals with static environments. Here, we propose the �rst object-level

dynamic volumetric map for indoor environment applications, where free space and

surface connectivity can be represented for each object model. We further improve

its memory e�ciency by utilising an octree-based structure. Despite showing

some promising results based on deep learning, most methods [Rünz and Agapito,

2017, Rünz and Agapito, 2018, Bârsan et al., 2018] simply leverage predictions from

neural network without much re�nement in the map fusion. In this chapter, we

integrate and re�ne semantic predictions by fusing them into object models.

The main contributions in this chapter are divided into four main parts. We

propose

1. the �rst RGB-D multi-instance dynamic SLAM system using a volumetric

representation,

2. a more robust tracking method utilising weighting via measurement uncer-

tainty and being re-parametrised for object tracking,

3. an integrated segmentation using geometric, photometric, and semantic

information,

4. a probabilistic fusion of semantic distribution and a foreground object prob-

ability into octree-based object models.

53

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

3.2 Related Works

In the majority of SLAM systems the environment is assumed to be static. To

tackle dynamic environment in real-world applications, several solutions have

recently been proposed and they can be mainly categorised into three directions

as introduced in last section. We will introduce and compare the last two types of

approaches in further details in this section. One straightforward way for dynamic

SLAM is to segment dynamic objects out as outliers and intentionally ignore

them from tracking and reconstruction to avoid corruption in the pose estimation.

StaticFusion [Scona et al., 2018] performs segmentation by coupling camera motion

residuals, depth inconsistency and a regularisation term. Barnes et al. [Barnes

et al., 2018] learn to segment possibly moving objects in a self-supervised way,

which is limited by the availability of training data and may often misclassify static

objects. Bescos et al. [Bescós et al., 2018] combine Mask-RCNN [He et al., 2017] with

depth inconsistency checking to segment moving objects and further inpaint those

areas with static background. Those methods provide a more robust approach in

dynamic scene than conventional SLAM methods, however, information regarding

the moving objects is lost. Instead, our approach aims to simultaneously track and

reconstruct static background and dynamic and static objects in the scene, while at

the same time, provide state-of-the-art tracking accuracy.

There are three approaches, to our knowledge, which provide similar functional-

ity as ours and can reconstruct multiple moving objects in the scene – the third way

to tackle dynamic SLAM. Co-Fusion [Rünz and Agapito, 2017] segments objects by

either ICP motion segmentation or semantic segmentation and then tracks objects

separately based on ElasticFusion [Whelan et al., 2016]. MaskFusion [Rünz and

Agapito, 2018] segments objects using a combination of instance segmentation

from Mask-RCNN and geometric edges, and tracks objects using the same approach

as Co-Fusion. Both Co-Fusion and MaskFusion use surfels to represent map models,

54

3.2. Related Works

which is also memory e�cient but cannot directly provide free space information in

the map, and neither surface connectivity. DynSLAM [Bârsan et al., 2018] focuses

on outdoor environments using stereo cameras. In contrast, our system focuses

on indoor environments consisting of many (potentially) moving objects using a

single RGB-D camera.

In terms of di�erences in system components, our system further di�erentiates

itself from above approaches. In camera tracking, we weighted photometric and

geometric terms by their measurement uncertainty, instead of a single weight such

as in [Whelan et al., 2016]. Also, to be robust to depth loss, we derive two terms

from di�erent frames to complement one another. To track objects, all previous

methods use a virtual camera pose, which is not robust to object rotation due to a

large lever arm e�ect in its optimisation derivative. We found best robustness by re-

parametrising it into object coordinate. To generate object masks, we combine both

information to provide better boundary conditions, instead of using just motion or

just semantic information. When fusing information to object models, we fuse not

only depth and colour information, but also semantic and foreground predictions

while previous methods just take predictions from neural network without any

re�nement. In terms of speed, all three of the above require one or even two

powerful GPUs, while our method, despite running only on CPU, is capable of

performing at a similar speed to DynSLAM [Bârsan et al., 2018], thanks to our

e�cient octree-based data structure for object models.

Another very recent work related to ours is Fusion++[McCormac et al., 2018],

which generates an object-level volumetric map yet in static environments. In

addition to handling dynamic scenes, our system utilises a joint photometric and

geometric tracking to robustly track both camera and object poses while Fusion++

only use geometric tracking to estimate camera pose. Furthermore, to have a better

object mask boundary for fusion and tracking, we combine geometric, motion

and existing model information to re�ne mask boundary instead of directly using

55

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

predicted mask as was done in Fusion++. In terms of map representation, Fusion++

is based on discrete voxel grids, which su�ers from scalability issues, while we

represent all our object models in memory-e�cient octree structures.

3.3 Notations and Preliminaries

In this chapter, we will use the following notation: a reference coordinate frame is

denoted −→A. The homogeneous transformation from −→B to −→A is denoted as TAB ,

which is composed of a rotation matrix CAB and a translation vector ArAB . For each

pair of images, we distinguish them as live (L) and reference (R) image. For example,

a live RGB-D image contains the intensity image IL and depth image DL, with 2D

pixel positions denoted as uL and pixel lookup (including bilinear interpolation)

denoted as [⋅]. Perspective projection and back-projection are denoted � and �−1,

respectively.

In our system, we store every detected object into a separate object coordinate

frame −→On
, with n ∈ {0… , N} where N is the total number of objects (excluding

background) and 0 denotes background. We assume a canonical static volumetric

model is stored in each object coordinate frame, forming the basis of our multi-

instance SLAM system. In addition, each object is also associated with a COCO

dataset [Lin et al., 2014] semantic class label cn ∈ {0, … , 80}, a probability dis-

tribution over its potential semantic class labels, a current pose w.r.t. the world

coordinate TWOn
, and a binary label s ∈ {0, 1} denoting whether the object is

believed to be in motion or not. Each object is represented in an separate octree

structure, where every voxel stores Signed Distance Function (SDF) value, intensity,

foreground probability and the corresponding weights.

56

3.4. Method

Fusion

Segmentation

RGB-D
Initial

camera
tracking

Find
visible
objects

Fuse: depth/
foreground/

colour/semantics

Initialize
new objects

Refine camera
pose + Track

moving objects
Raycasting

Instance
segmentation

IoU
calculation

Find
moving
objects

Edge
refinement

Motion
segmentation

Tracking

Figure 3.2: The pipeline of the proposed method

3.4 Method

3.4.1 System Overview

Figure 3.2 shows the pipeline of our proposed system. It is composed of four

parts: segmentation, tracking, fusion and raycasting. Each input RGB-D image is

processed by Mask R-CNN to perform instance segmentation, which is followed by

geometric edge segmentation and motion residuals from tracking to re�ne mask

boundaries (Section 3.4.4). For the tracking, we �rst track the camera against all

vertices excluding the human mask area (Section 3.4.2) and then raycast from this

pose to �nd which objects are currently visible in this frame. This can also help

create a preliminary association between local object masks with existing object

models. We evaluate motion residuals for each object to determine if it is in motion

or not, then track moving objects (Section 3.4.3) and re�ne the camera pose against

the static world – which includes currently static objects (Section 3.4.2). Using

estimated poses of the camera and objects, we re�ne the data association between

object detections and object models and then fuse the corresponding depth and

colour information, as well as predicted semantic and foreground probabilities into

the object models (Section 3.4.5). Detection of visible objects as well as raycasting

is explained in Section 3.4.6.

57

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

3.4.2 RGB-D Camera Tracking

This part estimates the live camera pose TWCL
and is composed of two steps. First,

it tracks against all model vertices while masking out detected people; second, it

tracks against all static scene parts. Both steps are conducted by minimising the

dense point-to-plane ICP residual eg and photometric (RGB) residual ep, which are

weighted by individual measurement uncertainty, wg and wp.

Etrack(TWCL
) =

1
2 (

∑
uL∈ML

wg �(eg) + ∑
uR∈MR

wp �(ep))
, (3.1)

where � represents the Cauchy loss function and M is a mask excluding invalid

correspondences (for ICP), occlusions (for RGB), and humans.

For the ICP residual, we use the method proposed in [Newcombe et al., 2011a]

to minimise point-plane depth error between the live depth map and the rendered

depth map of the model on the reference frame:

eg(TWCL
) = Wnr [uR] ⋅ (TWCL CL

v[uL] − Wvr [uR]), (3.2)

where CL
v is live vertex map in the camera coordinate by back-projection and

Wvr and Wnr are the rendered vertex map and normal map expressed in world

coordinates. For each pixel uL on the live depth map, its correspondence uR on the

rendered depth map can be found using projective data association:

uR = �(T −1
WCR

TWCL
(�−1(uL, DL[uL]))), (3.3)

where TWCR
is the camera pose of the reference frame.

For maximum robustness, we combine the ICP residual with a photometric one

by rendering a depth map from model in the reference frame and using that depth

map to align photometric consistency:

ep(TWCL
) = IR[uR] − IL[�(T −1

WCL
(TWCR

�−1(uR , Dr
R[uR])))]. (3.4)

58

3.4. Method

Di�erent from previous approaches [Rünz and Agapito, 2017], we evaluate the

photometric residuals using rendered reference depth map other than the raw depth

map on live frame or reference frame for the de-noised depth quality from models.

This choice furthermore improves the robustness of tracking when raw input depth

is not available, e.g. when the camera is too close to a surface.

We further introduce a measurement uncertainty weight to combine ICP and

RGB residuals. For RGB residuals, the measurement uncertainty is assumed to be

constant for all pixels. For ICP residuals, the quality of input depth map is related

to the structure of the depth sensor and the depth range. We adopted the inverse

covariance de�nition for depth measurement uncertainty in [Laidlow et al., 2017].

Given the sensor parameters, i.e. baseline b, disparity d , focal length f , and the

uncertainties in the x-y plane �xy and disparity direction �z , the standard deviation

�D for depth sensor measurement in the x, y, z coordinates can be modelled as:

�D = (
DL[uL]

f
�xy ,

DL[uL]
f

�xy ,
D2

L[uL]
f b

�z). (3.5)

The weight for ICP residuals using the inverse covariance of measurement uncer-

tainty is then de�ned as:

wg =
1

(Wnr)TWnr�T
D�D

. (3.6)

The cost function is minimised using the Gauss-Newton approach in a three-level

coarse-to-�ne scheme. The necessary Jacobians can be referred in Chapter 2.

After performing an initial camera tracking, we raycast to �nd visible objects

in the view. To �nd which objects are in motion, we evaluate Etrack(TWCL
) once

again on the �nest level on the live frame. To this end, the RGB residual needs to

be re-formulated in the live frame as:

ep(TWCL
) = IL[uL] − IR[�(T −1

WCR
(TWCL

�−1(uL, Dr
L[uL])))]. (3.7)

59

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

To detect textureless objects in motion, we also include the geometric loss (Equa-

tion (3.2)), similar to the joint residual de�ned in Equation (3.1). We apply a

threshold to the combined residual Etrack(TWCL
) to �nd the motion inliers. If the

inlier ratio is lower than 0.9 in the object’s rendered mask, then we consider that

object is moving and re�ne its pose as described in Section 3.4.3. The camera pose

is then re�ned by tracking against only static objects using the same objective

function and optimisation strategy explained above. Note that this hard threshold

for inlier ratio is a hyperparameter that can be tuned for di�erent objects, but we

consistently use this number in all our experiments. Since it is a threshold applied

to the joint photometric and geometric residuals, it may miss objects that do not

contain enough information in both texture and geometric structures.

3.4.3 Object Pose Estimation

In this part, we describe how to estimate the pose of moving objects. As opposed

to virtual camera based tracking [Rünz and Agapito, 2017, Barnes et al., 2018], we

propose to employ an object-centric approach, which is less prone to bad initial

pose guesses. We still use a joint dense ICP and RGB tracking, weighted in the

same way as Equation (3.1), just with di�erent ICP and RGB residual de�nitions. In

the present formulation, we estimate the current relative pose between object and

camera, TCLOL
, by aligning the live vertex map expressed in the live object frame

with the rendered vertex map expressed in the reference object frame:

eg(TCLOL
) = C−1

WOR Wnr [uR] ⋅ (T −1
CLOL CL

v[uL] − T −1
WOR Wvr [uR]). (3.8)

The formulation is based on the assumption that each object coordinate frame yields

a static canonical object model and thus the point clouds must align. The proposed

parameterisation leads to more stable tracking due to a smaller lever arm e�ect of

the rotation. When computing the partial derivative of the above cost w.r.t. the

rotation [Bloesch et al., 2016] we get a term proportional to C−1
CLOL

(CL
v[uL]−CL

rCLOL
)

which is small since we choose the object frame to be centred. In analogy, we also

60

3.4. Method

re-formulate the RGB residual as:

ep(TCLOL
) = IR[uR] − IL[�(TCLOL

T −1
CROR

(�−1(uR , Dr
R[uR])))]. (3.9)

The above cost function is also optimised using Gauss-Newton approach in a

three-level coarse-to-�ne scheme with TCLOL
initialised as TCLOR

.

3.4.4 Combined Semantic-Geometric-Motion Segmentation

For each RGB-D frame, we use Mask R-CNN [He et al., 2017] to �nd semantic

instances, followed by geometric edge re�nement to solve leaked mask bound-

aries [Rünz and Agapito, 2018]. Then we render instance masks for each map

object to the live frame by means of raycasting (explained in Section 3.4.6). We

associate local segmentation masks, which are generated from Mask R-CNN and

geometric re�nement, with existing object models by calculating the intersection

of union (IoU) with the rendered masks. We assign the local segmentation mask to

the rendered mask which has the largest intersection and where the intersection

is larger than 0.5. In comparison to [Rünz and Agapito, 2018], we do not require

predicted semantic label of the local segmentation mask to be the same as object

semantic class since the prediction may be subject to high uncertainty. Instead, we

trust probabilistic fusion of semantic predictions to re�ne the objects’ semantic

labels (described in Section 3.4.5).

For segmentation masks that do not belong to any existing objects, a new object

model will be initialised (described in Section 3.4.5). For objects without associated

local segmentation masks, i.e. Mask R-CNN has no corresponding detection, we

choose its rendered mask from the model for the subsequent fusion process. Since

the rendered masks are associated with the object models, we do not integrate the

foreground probability and semantic predictions for these undetected objects in

this frame.

61

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

(a) Instance segmentation with geometric re-
�nement (hand is missed out)

(b) Instance segmentation with geometric and
motion re�nements

Figure 3.3: Combination of semantic, geometric and motion segmentations. Mask
regions that re�ned by geometric segmentation is in blue and the one further
re�ned by motion residual is shown in green.

After associating segmentation masks with object models, we further re�ne the

segmentation masks based on motion residuals of object tracking. We evaluate

Equation (3.1) again on the �nest level, however, this time we evaluate photometric

residual on the live frame:

ep(TWCL
) = IL[uL] − IR[�(TCROR

T −1
CLOL

(�−1(uL, Dr
L[uL])))]. (3.10)

Pixels whose joint ICP and RGB residuals are too high are treated as outliers and

�ltered out in the segmentation mask. This can help detect the moving objects

when the object segmentation component misses the detection of some moving

parts, as one example shows in Figure 3.3.

Before integration, we also generate a foreground mask based on the local

segmentation mask. The use of foreground probabilities is inspired by the fore-

ground/background probabilities introduced in [McCormac et al., 2018] and allows

to avoid spurious integration due to wrong segmentation masks. Information in

both foreground and background regions are integrated into the models. In order to

avoid impairing the e�ciency of the octree structure, we use dilated segmentation

masks as background mask. Pixels in the foreground are assigned an foreground

62

3.4. Method

probability of 1.0 while pixels in the dilated background are assigned 0. For undetec-

ted existing objects that Mask R-CNN fails on, we assign an foreground probability

of 0.5 to their foreground due to their lower possibility of existence.

3.4.5 Object-level Fusion

From each frame, we integrate depth, colour, semantics and foreground probability

information into object models using foreground and background masks. Using

the relative pose TOnCL
and depth, the Truncated SDF (TSDF) is updated following

the approach of Vespa et al. [Vespa et al., 2018]. Concurrently within the same

voxels, colour and foreground probability are updated using a weighted average. For

semantic fusion, we re�ne the semantic class probability distribution for each model

using averaging, instead of Bayesian updating which often leads to overcon�dence

when used with Mask R-CNN predictions[McCormac et al., 2018].

For every segmentation mask that cannot be associated with any existing objects,

we initialise a new object model whose coordinate frame is centred around the

object itself. We back-project all points in the mask into world coordinates and then

�nd the centre and size of these point clouds. To account for possible occlusions,

we initialise the TSDF volume size to be 3 times the point cloud size to avoid

additional padding. We choose the volume resolution such that each voxel size is

slightly bigger than 1mm in order to support detailed object reconstruction. With

the octree-based structure, the unused voxels will not be initialised and the whole

system remains memory-e�cient. The initial object translation in TWOn
is chosen

as the left side corner of the object volume and the orientation is aligned with world

coordinates.

63

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

3.4.6 Raycasting

We perform raycasting from camera pose to object models to render depth, normal,

intensity, and instance label maps. We use a similar method as proposed in [Mc-

Cormac et al., 2018]. However, as shown in the pipeline Figure 3.2, our system

involves at least four raycasting operations: depth rendering in tracking, �nding

visible objects, IoU calculation, and visualisation. The �rst two operations create a

preliminary data association based on the estimated object pose in the last frame.

After camera and object motion re�nement, the last two operations can re�ne

the data associations for dense mapping. Besides, it would be computationally

expensive if we continuously raycast all objects on each stage. To speed up, we

raycast all objects only once to �nd visible objects from the existing object models,

and avoid raycasting to invisible objects in the remaining steps of this frame. This

is based on the assumption that objects’ poses between consecutive frames do not

change dramatically.

For each ray originating from camera center W cL in the direction of Cr, we

warp both the origin and the direction into the object model coordinate. For

each object Om, there will be a ray originating from T −1
WOm W cL in the direction

of C−1
COm Cr. Within each object octree volume, we apply the �eld interpolation

method [Vespa et al., 2018] to look for voxel blocks. We store the ray length of

the nearest intersection by far to avoid searching past that point in another object

volume. Since the ray is originated from the same point, even in a di�erent object

coordinate, the ray length magnitude can be directly used to compare raycasting

intersection length. We use the closest intersected voxel for raycasting result and

only raycast voxels whose foreground probability is higher than 0.5. For one voxel

that is generated in both background and object volumes, we give a priority to

voxel in the object volumes. If two object voxels have same intersection length,

we prefer the one with higher existence probability. Objects whose voxels are not

raycasted at all are considered to be invisible from this view.

64

3.5. Experiments

3.5 Experiments

We evaluate our system on a Linux system with an Intel Core i7-7700 CPU at

3.50GHz with 32GB memory. Mask R-CNN segmentation is pre-computed on the

GPU using the publicly available weights and implementation [Wu et al., 2016]

without �ne-tuning. Each object is stored in a separate octree-based volumetric

model, modi�ed based on source code of Supereight [Vespa et al., 2018].

3.5.1 Robust Camera Pose Estimation

We �rst evaluate the camera tracking accuracy in dynamic environments using the

widely used TUM RGB-D dataset [Sturm et al., 2012]. The dataset provides RGB-D

sequences with ground truth camera trajectory, recorded by a motion capture

system. We report the commonly used Root-Mean-Square-Error (RMSE) of the

Absolute Trajectory Error (ATE). To evaluate the e�ect of di�erent cameras motion

and environment change conditions, 6 di�erent sequences are investigated. In

the f3s sequences, two people were sitting in the desk while engaging in slightly

dynamic movements. In the f3w sequences, two people were engaging in highly dy-

namic movements. For both types of sequences, three di�erent camera movements

were involved: static with the camera kept static manually, xyz with the camera

moving along the x-y-z axes, and halfsphere with the camera moving following

the trajectory of a 1m diameter half sphere.

We compare our method with �ve state-of-the-art dynamic SLAM approaches:

joint visual odometry and scene �ow (VO-SF) [Jaimez et al., 2017], StaticFusion

(SF) [Scona et al., 2018], DynaSLAM (DS) [Bescós et al., 2018], Co-Fusion (CF) [Rünz

and Agapito, 2017], and MaskFusion (MF) [Rünz and Agapito, 2018]. VO-SF [Jaimez

et al., 2017], SF [Scona et al., 2018], and DS [Bescós et al., 2018] were designed for

reconstructing the static background with dynamic parts ignored (or even inpainted

as in DS [Bescós et al., 2018]). CF [Rünz and Agapito, 2017] and MF [Rünz and

65

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

Agapito, 2018] were designed for multi-object reconstruction. In all these methods,

DS [Bescós et al., 2018] is the only method using feature-based sparse tracking

(not reconstructing moving objects at all), while the remaining ones use dense

tracking methods as ours. For fair comparison, we compare �rst with dense tracking

methods and take DS [Bescós et al., 2018] as an additional reference. Table 3.1

reports our experimental results.

From the Table 3.1, we can see that our system achieves best results in almost all

sequences among dense tracking method. Our method even outperforms VO-SF

and SF, which were designed especially for robust camera tracking in a dynamic

environment. Figure 3.4 shows two inputs and the reconstruction results in the

challenging “f3w halfsphere” sequence. We highlight rejected segmentation masks

in the input images, with the geometrically re�ned mask labelled as human in

blue and the high residual regions during motion re�nement in green. It can be

noted in Figure 3.4 that even when Mask R-CNN fails to recognise a person, our

combined segmentation using geometric and motion re�nement can still reject

it. This, combined with the high quality depth rendered from our octree-based

TSDF model, leads to our robust and accurate camera tracking estimation in these

highly dynamic scenes. DynaSLAM achieves best tracking accuracy in almost

all sequences while it is the only sparse feature-based SLAM system among the

tested approaches. It shows the potential advantage of feature trackers in dynamic

environments. As part of future work, it would be very interesting to combine a

feature-based approach with direct dense tracking/mapping methods to further

improve camera tracking accuracy and robustness. This could also help to overcome

current failure-cases in challenging conditions such as very re�ective scenes or fast

motions.

66

3.5. Experiments

Table 3.1: Quantitative comparison of camera tracking

Sequence ATE RMSE (cm)
VO-SF SF CF MF Ours DS*

f3s static 2.9 1.3 1.1 2.1 1.0 -
f3s xyz 11.1 4.0 2.7 3.1 6.2 1.5
f3s halfsphere 18.0 4.0 3.6 5.2 3.1 1.7
f3w static 32.7 1.4 55.1 3.5 2.3 0.6
f3w xyz 87.4 12.7 69.6 10.4 6.8 1.5
f3w halfsphere 73.9 39.1 80.3 10.6 3.8 2.5

*: feature-based sparse approach. The others are dense-tracking approaches.

3.5.2 Object Reconstruction Evaluation for Other

Components

We also tested our method within a fully controlled synthetic environment using

photo-realistic rendering and trajectory simulation [Li et al., 2018b]. We selected a

typical indoor scene with a sofa and a chair being translated and rotated in front

of the camera. We implicitly evaluate object pose estimation accuracy via object

reconstruction error.

To evaluate the e�ect of segmentation, we replaced the segmentation pipeline

with ground truth masks (G.T. Seg.). We also compared our object-oriented tracker

with virtual camera (V.C.) tracking to see if our parametrisation improves tracking

accuracy. We further compare with Co-Fusion(CF) [Rünz and Agapito, 2017]

using their public code. Table 3.2 reports the mean and standard deviation of

reconstruction error in these experiments. The results show that our system can

achieve more accurate object reconstructions. The di�erence between using ground

truth masks and our own segmentation component is negligible in the speci�c

example. The higher error obtained using virtual camera tracking demonstrates

the reliability of our object-centric tracking, especially for large object rotations.

Figure 3.5 shows the visualisation comparison results on the sofa reconstruction.

67

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

Input with estimated masks Reconstruction

(a) Robust detection of dynamic objects and reconstruction of
static background

(b) Ground truth (blue) with estimated (red) trajectories

Figure 3.4: Robust camera tracking and background reconstruction in a dynamic
environment (in “f3w halfsphere” sequence). Moving persons are rejected due to
the semantic labelling of Mask R-CNN (in blue) or during motion re�nement (in
green).

3.5.3 Real-world Applications

We demonstrated our proposed method in various scenarios to show its capabilities.

Figure 3.6 shows the results in two scenes, “rotated book” and “cup and bottle”. For

68

3.5. Experiments

Table 3.2: Object reconstruction error (avg./std., in cm)

Method CF Ours with
v.c. tracking Ours Ours with

GT-Seg
Sofa 1.72/1.62 1.68/1.90 0.74/0.79 0.46/0.59

Chair 1.19/1.33 1.13/1.58 1.00/1.66 0.92/1.74

5cm

0cm

Co-Fusion

Ours with ground truth
segmentation

Ours with standard
virtual camera tracking

OursGround truth mesh

Input image

Figure 3.5: Comparison of reconstruction error for a moving sofa.

each input image, we provide label image and reconstruction to show the detailed

reconstruction, reliable tracking, and segmentation. With separate volumetric maps

for each object, our object models do not collide with each other, which is more

suitable for multiple instance SLAM than a surfel-based system.

Figure 3.7 also shows a scene where our system can simultaneously support the

robust tracking of more than 6 moving objects while maintaining a highly detailed

reconstruction. As a qualitative comparison, we also show the reconstruction

from Co-Fusion, which did not segment and reconstruct these moving objects

successfully because the motion was not of su�cient magnitude. In addition, surfel-

based systems, such as Co-Fusion and MaskFusion, do not provide the same level

of details per object. On the contrary, our system can maintain highly detailed

reconstructions and nevertheless keep e�cient memory usage thanks to the octree

data structure. More results can be seen in the video attachment.

69

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

In
pu
t

R
ec
on
st
ru
ct
io
n

La
be
l

(a) "rotated book" scene

In
pu
t

R
ec
on
st
ru
ct
io
n

La
be
l

(b) "cup and bottle" scene

Figure 3.6: Qualitative demonstration: input RGB (top row), semantic class predic-
tion (middle row) and geometry reconstruction result (bottom row).

3.5.4 Runtime Analysis

We evaluated the average computational time for the components of our dynamic

SLAM system in di�erent sequences with approximately 3 to 6 objects being moved.

70

3.6. Conclusions and Discussions

Input Ours Co-Fusion

Figure 3.7: Qualitative comparison with Co-Fusion: input RGB (left column), our
reconstruction results (middle) and Co-Fusion results (right column).

Table 3.3: Run-time analysis of system components (ms)

Components Tracking Segmentation Integration Raycasting
Time (ms) 43/MO 10/VO 12/VO. 8/VO

Processing time (all on CPU) for each frame averages 400 ms with more than 25

objects being generated in the scene. When a new object is detected, the initial-

isation takes around 10 ms per object. Tracking time scales mainly with moving

objects (MO) while segmentation, integration and raycasting scales with visible

objects (VO). A more-detailed breakdown of computation time for each component

is shown in Table 3.3.

We would like to highlight that our current system only runs on CPU without

being highly optimised for performance yet. We believe a high frame-rate version

of our system is achievable by exploiting GPU parallelisation.

3.6 Conclusions and Discussions

We present a novel approach for multi-instance dynamic SLAM using an octree-

based volumetric representation. It robustly tracks camera pose in dynamic en-

71

3. Octree-based Object-Level Multi-Instance Dynamic SLAM

vironments and continuously estimates dense geometry, semantics, and object

foreground probabilities. Experimental results in various scenarios demonstrate

the e�ectiveness of our method in dynamic indoor environments. We hope our

method paves the way for new applications in indoor robotic applications, where

an awareness of environment change, free space, and object-level information will

uplift the next generation of mobile robots.

Despite working generally well in most cases, our proposed method still has

several issues, which may limit its wide applications in real-world scenarios. One

issue we experimentally found is that the photometric loss employed in our object

tracking Equation (3.10) component can only work for objects showing less glossy

re�ections. The camera view change or the object surface normal change caused by

object motion will violate the brightness constancy assumption used in photometric

tracking, even for objects with lambertian surfaces. In the next chapter, we will

present how we can learn some robust deep features and associated feature-metric

uncertainties to provide robust tracking under strong lighting changes and wide

baseline conditions. Besides, the projective data association method in raycasting

implies that the camera and objects do not exhibit large motion in consecutive

frames. This is a strong assumption used in many dense SLAM systems, but is

not always valid in practice. Some other works used di�erent motion models,

such as constant velocity [Bescós et al., 2021] or a white-noise-on-acceleration

prior [Huang et al., 2020]. These SLAM systems, however, lack the capability to

reconstruct dense geometries for object models.

72

Chapter4
Deep Probabilistic Feature-metric

Tracking

Dense image alignment from RGB-D images remains a critical issue for real-world

applications, especially under challenging lighting conditions and in a wide baseline

setting. In this chapter, we propose a new framework to learn a pixel-wise deep

feature map and a deep feature-metric uncertainty map predicted by a Convo-

lutional Neural Network (CNN), which together formulate a deep probabilistic

feature-metric residual of the two-view constraint that can be minimised using

Gauss-Newton in a coarse-to-�ne optimisation framework. Furthermore, our net-

work predicts a deep initial pose for faster and more reliable convergence. The

optimisation steps are di�erentiable and unrolled to train in an end-to-end fashion.

Due to its probabilistic essence, our approach can easily couple with other resid-

uals, where we show a combination with ICP. Experimental results demonstrate

state-of-the-art performances on the TUM RGB-D dataset and the 3D rigid object

tracking dataset. We further demonstrate our method’s robustness and convergence

qualitatively.

73

4. Deep Probabilistic Feature-metric Tracking

Contents of Chapter

4.1 Introduction . 75

4.2 Related Work . 77

4.3 Method . 80

4.3.1 Probabilistic Feature-metric Residual for Pose Estimation 81

4.3.2 A Probabilistic Combination with ICP Residual . . . 83

4.3.3 Coarse-to-�ne Optimisation and Initialisation 84

4.3.4 Training Setup . 85

4.3.5 Implementation Details 85

4.4 Experiments . 88

4.4.1 Quantitative Evaluation and Discussion 88

4.4.2 Qualitative Evaluation and Discussions 97

4.5 Conclusion and Discussions 99

Parts of this Chapter appear in:

Binbin Xu, Andrew J. Davison, Stefan Leutenegger (2021). Deep Probabilistic Feature-

metric Tracking. IEEE Robotics and Automation Letters (RA-L), Vol. 6, No. 1, pp. 223-230,

2021. [Xu et al., 2021a]

It has also been selected in ICRA 2021 presentation and received a RA-L Best

Paper Honorable Mention Award.

74

4.1. Introduction

4.1 Introduction

Dense image alignment [Lucas and Kanade, 1981] using the photometric residual has

been widely applied in 2D tracking [Shi and Tomasi, 1994], 3D object tracking [Xu

et al., 2019], optical �ow [Horn and Schunck, 1981], and SLAM [Newcombe et al.,

2011b]. In visual SLAM, it leads to two types of estimator designs: direct sparse

[Engel et al., 2017] and direct dense type [Newcombe et al., 2011b]. There has been

an argument that dense methods that utilise information from all image pixels

should exhibit better performance in terms of robustness and accuracy. However,

this is not necessarily the case in reality, as investigated in [Platinsky et al., 2017],

especially compared to the performance achieved by systems using the indirect

sparse residual formulation (reprojection error) [Mur-Artal and Tardós, 2017].

One reason is that lighting change and re�ection in real scenes break the bright-

ness constancy assumption [Horn and Schunck, 1981] commonly used in dense

image alignment. Thus the resulting dense photometric residual cannot be well ex-

plained by the Gaussian distribution assumed in the Gauss-Newton scheme, which

is in contrast to reprojection error minimisation that may still work robustly as long

as sparse feature matches can be established. Secondly, the photometric residual

considers only very local color consistency, which requires a good initialisation

close to the global minimum. This leads to a poorer estimation accuracy when the

baseline gets larger. On the contrary, the keypoint reprojection residual models a

global constraint using a sparse feature descriptor, leading to better convergence

properties.

In this chapter, we are trying to address these issues by replacing raw intens-

ity image alignment with deep feature map alignment. Di�erent from the exist-

ing learning-based feature-metric alignment [Czarnowski et al., 2017, Lv et al.,

2019, Tang and Tan, 2019, Schmidt et al., 2017, von Stumberg et al., 2020], we argue

that the feature-metric residual should incorporate not simply the feature di�erence

75

4. Deep Probabilistic Feature-metric Tracking

ViewA View B

In
pu
t

Fe
at
ur
e

U
nc
er
ta
in
ty

3D alignment from two views

Figure 4.1: We propose a probabilistic feature-metric tracking method that estimates
dense feature and uncertainty maps from a pair of RGB-D images to optimise the
relative pose between them. Our method can handle strong lighting changes and
large motion scenarios by leveraging features that are robust to lighting changes,
e.g. on the desk surface, and predicting high uncertainties on areas that the network
cannot handle, e.g. for the strong lighting changes near the pens.

but also the corresponding uncertainty. Predictions from neural networks inher-

ently are uncertain, which can be estimated [Kendall and Gal, 2017]. Secondly, and

also importantly, SLAM has most successfully been posed as a probabilistic problem,

where uncertainty of the residuals has to be known [Thrun et al., 2005], in particular

when fusing di�erent sensors and residuals. We will show how our feature-metric

residuals can be combined with geometric ICP residuals using uncertainties to

further improve results. The proposed probabilistic feature-metric residuals are

minimised using coarse-to-�ne Gauss-Newton optimisation. To ensure that the

learned feature-metric cost landscape is suitable for the Gauss-Newton optimisation,

we unroll the iterative optimisation steps and train the whole pipeline end-to-end.

To handle the initialisation issue in the wide baseline case, we include training pairs

with varied baselines and propose to replace the identity initialisation with a pre-

dicted initial pose from a pose network. This can improve the system convergence

by bringing the initialisation into the convergence basin of the correct minimum.

76

4.2. Related Work

As shown in Figure 4.1, the proposed method can handle large motion and strong

illumination variance. The learned features are robust to lighting changes in most

regions, e.g. re�ection on desk surface, and the uncertainty map (red means high

uncertainty) can downweigh the region, e.g. pens, where the feature predictions

are uncertain. In summary, we make the following contributions:

1. We propose a dense probabilistic feature-metric residual, where a CNN pre-

dicts both feature and uncertainty maps used for non-linear least-squares

minimisation to estimate the relative camera or object pose.

2. In our CNN architecture, we propose a coupled feature encoder and pose

predictor network, which combines the learning-based initial pose prediction

and the learned features/uncertainties for pose optimisation, and train them

together end-to-end.

3. We further demonstrate how our proposed probabilistic feature-metric resid-

ual can easily lend itself to integration with other residuals, where a classic

ICP residual is showcased.

We evaluate our proposed method on the TUM RGB-D SLAM dataset [Sturm et al.,

2012] and MovingObjects3D rigid motion dataset [Lv et al., 2019]. We provide

ablation studies to validate each contribution component. We further provide a

qualitative evaluation on the convergence basin and demonstrate the robustness

under strong lighting changes.

4.2 Related Work

Feature-metric Alignment: To relax the brightness constancy constraint in

direct image alignment, several recent works have exploited the feature-metric align-

ment by utilising features from neural networks. [Jaramillo et al., 2017, Czarnowski

77

4. Deep Probabilistic Feature-metric Tracking

et al., 2017] replace image intensity with high-dimensional features extracted from

a pre-trained neural network for tracking and show a better robustness than using

image intensity. However, the pre-trained features are not naturally consistent

across di�erent views and the redundancy in the pre-trained very high-dimensional

features means a high cost of memory and computation time.

[Schmidt et al., 2017] proposes to learn a robust feature descriptor suitable for

estimating dense correspondence in di�erent lighting conditions and viewpoints

using the contrastive loss [Hadsell et al., 2006]. [von Stumberg et al., 2020] combines

the contrastive loss with a Gauss-Newton loss, which includes a 2-dimensional

pixel position uncertainty, to train dense features. However, both of these works

generate a feature map good for correspondence matching rather than alignment.

The composed residuals do not necessarily �t well with the least square optimisation

used for pose estimation. This is why [Schmidt et al., 2017] requires a RANSAC

step for re�nement and [von Stumberg et al., 2020] is only used for re-localisation.

Recently, some methods start to explore how to combine the feature map learning

more tightly with the least-square optimisation of camera tracking, based on the

di�erentiable property of iterative optimisation. [Wang et al., 2018] learn feature

maps for 2D image tracking in the Lucas-Kanade framework. [Tang and Tan,

2019] propose feature-metric bundle adjustment for 3D reconstruction. [Bloesch

et al., 2019] propose to use feature maps for depth prediction and pose estimation.

However, these works only consider a spatial correlation in feature generation,

ignoring the temporal correlation in input image pairs. Quite related to our work,

[Lv et al., 2019] propose a spatio-temporal feature encoder by concatenating two

views for the network input and further propose an m-estimator network and

damping network for pose optimisation. However, di�erent from ours, none of

these works exploit feature-metric uncertainty in their settings, nor combine a pose

predictor to boost convergence.

78

4.2. Related Work

Deep Pose Prediction: A di�erent way to estimate pose from a pair of images

is to leverage CNN predictions directly [Zhou et al., 2017, Ummenhofer et al.,

2016]. Learning a direct mapping from input images to 6D relative pose skips

potential convergence issues of least-squares optimisation. However, it requires a

large number of model parameters and a vast amount of training data, while not

necessarily generalising to new scenes.

To improve accuracy and generalisation, some recent works include coarse-to-

�ne estimation [Zhou et al., 2018a] and iterative re�nement [Li et al., 2018c] to

estimate a relative transformation. Despite some shared network parameters in

iterations, these works still come with a much larger model capacity (i.e. parameter

number) than the ones using optimisation – even those with learned features –

and do not necessarily show an advantage in terms of pose accuracy. To better

leverage both types of approaches, we propose a coarse-to-�ne optimisation using

learned features and uncertainties, plus a direct pose prediction on the coarsest

layer serving as an initial guess, which takes the output from the coarsest level

two-view encoder as an input to make it compact.

Uncertainty Learning: Safety considerations have prompted recent works on

uncertainty estimation of deep learning, as discussed in [Kendall and Gal, 2017] and

applied to several tasks [Kendall et al., 2018]. [Tateno et al., 2017] fuse the predicted

depth into a monocular SLAM system and estimate the depth uncertainties via its

di�erence with the nearest key-frame. [Zhou et al., 2018a] propose to estimate

both depth and pose uncertainty in their depth and pose prediction networks. [Liu

et al., 2019] formulate the depth uncertainty di�erently using a probability volume.

Recently, D3VO [Yang et al., 2020] propose to estimate the photometric uncertainties

and predict a relative pose to initialise the pose optimisation. Most of these works,

if not all, model the uncertainty based on the di�erence between the prediction and

the ground truth values. In contrast to these works, we propose a novel feature-

79

4. Deep Probabilistic Feature-metric Tracking

metric uncertainty and learn it without ground truth feature maps available in the

training. Instead, we formulate the uncertainty in a novel probabilistic feature-

metric residual and learn it implicitly as part of the least-squares optimisation.

The learned features and uncertainties should lead to a better optimised pose via

training back-propagation.

4.3 Method

Two-view
encoder

𝐅!" σ!"

Two-view
encoder

Two-view
encoder

Two-view
encoder

Pose
network

Share weights Direct input/output Feature encoder Uncertainty encoder

𝝃𝟎𝝃𝟏Gauss-Newton
Optimisation

𝐅!# σ!#

Gauss-Newton
Optimisation

𝐅!$ σ!$

Gauss-Newton
Optimisation

𝐅!% σ!%

Gauss-Newton
Optimisation

𝝃𝟐𝝃𝟑𝝃𝟒
Final pose

𝐅&% σ&%𝐅&$ σ&$𝐅&# σ&#𝐅&" σ&"

Two-view
encoder

Two-view
encoder

Two-view
encoder

Two-view
encoder

Pyramid level 4 Pyramid level 3 Pyramid level 2 Pyramid level 1
Image A

Image B

Image B

Image A

Figure 4.2: Overview of our proposed deep probabilistic feature-metric tracking
method. For two views, we input image A and image B, by concatenating them
as {A, B} and {B, A}, respectively, to our two-view encoder pyramid network. At
each pyramid level, we extract the output from the two-view encoder and feed
it into the feature encoder and uncertainty encoder separately to extract dense
feature and uncertainty maps. Then we optimise the pose by minimising the
proposed probabilistic feature-metric residual, which is initialised by the pose from
the coarser level. On the coarsest level, we concatenate the outputs of the two
views from the two frames and run through the pose network to obtain an initial
pose prediction.

Figure 4.2 shows an overview of our system. For a pair of RGB-D frames, frame

A −→A and frame B −→B, our aim is to estimate its relative transformation TAB =

(CAB , ArAB) ∈ (SO(3) × R3), from −→B to −→A. We represent TAB in twist coordinates

� by TAB (�) = exp(�AB). Each frame has a depth map D and a color image I. The

network components in our whole system are denoted as �, with the two-view

spatio-temporal encoder �� , the feature encoder �F , the uncertainty encoder �� ,

80

4.3. Method

and the pose network �T . The weights are shared across the two views for �� , �F ,

and �� . The architecture details of all our network components can be found in the

Section 4.3.5.

To extract the spatial and temporal correlation between two frames, we �rst

concatenate the input colour and depth image along the feature channel and feed

them through the two-view spatio-temporal encoder pyramid network:

Wi
A = �� ({IA,DA, IB,DB}), Wi

B = �� ({IB,DB, IA,DA}), (4.1)

where Wi
A and Wi

B are the outputs of the two-view encoder at level i, i ∈ 1, 2, 3, 4,

for frame A and B respectively and {, } is the concatenation operation. On each

pyramid level, we extract the dense feature and uncertainty maps by feeding the

two-view encoder outputs into the feature encoder branch and the uncertainty

encoder branch:

Fi
X = �F (Wi

X), � i
X = �� (Wi

X), (4.2)

where X ∈ A, B. i will be omitted later when we explain operation on the same

pyramid level. Di�erent from [Lv et al., 2019] which averages the output features

map into one single channel, we maintain a same high-dimensional feature map at

di�erent pyramid levels. This choice is motivated by the hypothesis that higher

dimensionality should lead to higher discriminative power of the features – which

we support in the experimental section.

4.3.1 Probabilistic Feature-metric Residual for Pose

Estimation

In probabilistic estimation that assumes an underlying Gaussian distribution of the

residuals, we equivalently minimise the weighted least squares, with the inverse

covariance matrix acting as the weight. Given the dense feature and uncertainty

maps on two views and an estimated pose �AB, we propose a probabilistic feature-

81

4. Deep Probabilistic Feature-metric Tracking

metric residual as an uncertainty-normalised feature di�erence:

rf (�AB) =
rf (�AB)
�f (�AB)

=
FA[uA(�AB)] − FB[uB(�0)]√
� 2A[uA(�AB)] + � 2B[uB(�0)]

, (4.3)

whereuA anduB are a pair of pixel correspondences on the two frames. u represents

image pixel coordinates. uB(�0) means uB is perturbed under zero transformation

�0. rf is the feature di�erence between the correspondences on the feature map

and �f is the joint uncertainty estimate for the correspondence that we obtain as a

combination from the individual uncertainties. Note that this assumes isotropic

uncertainty w.r.t. each feature dimension – a simpli�cation we chose (for speed)

that may be revisited. Section 4.3.1 encourages the feature map from two di�erent

views to be as similar as possible while downweighs the features that the network is

uncertain about from the either view with the predicted uncertainties. As shown in

example Figure 4.1, the trained features are robust to moderate lighting, re�ection

and view perspective variances and the trained uncertainties handle the uncertain

features caused by the extreme lighting changes (lower right corner). The dense

correspondence lookup is implemented via warping from frame B to frame A

through �AB, which can be de�ned as:

uA(�AB) = �(TAB (�)�−1(uB, DB[uB])), (4.4)

where [.] represents the pixel lookup (including bilinear interpolation). � and

�−1 denote the projection function to the image plane and the back-projection

function to 3D (homogeneous) coordinates, respectively. By inserting Section 4.3.1

into a Lucas-Kanade framework [Lucas and Kanade, 1981], we formulate the pose

estimation problem of an optimal pose � ∗ as:

� ∗ = argmin
�

1
2

∑
uB∈

rTf (�)rf (�), (4.5)

i.e. summing all residuals over non-occluded pixels in B,  , which can be iteratively

solved by e.g. the Gauss-Newton method. To speed up the computation, we choose

the inverse compositional formulation [Baker and Matthews, 2004] that updates

82

4.3. Method

poses by applying the incremental pose on frame B. It allows for a more e�cient

computation of the feature-metric Jacobians. In each iteration, the pose is updated

by Δ� as:

�k+1 = �k◦Δ� −1, (4.6)

Δ� = −(JT
f Jf)−1(JT

f rf). (4.7)

Jf is the Jacobian of the probabilistic feature-metric residual rf w.r.t. the relative

pose �AB:

Jf =
)rf
)�AB

= −(
∇FB

�f (�AB)
+

rf (�AB)�B∇�B
� 3f (�AB))

)uB

)�0
, (4.8)

where ∇FB and ∇�B are the gradients of the feature maps and uncertainty maps

along the two pixel dimensions in frame B, respectively. Under this formulation,

only the components of �f (�) and rf (�) need to be re-evaluated in each iteration,

which can be shared when computing the residuals in Section 4.3.1. All the other

components in Section 4.3.1 can be pre-computed to speed up the computation.

4.3.2 A Probabilistic Combination with ICP Residual

As an uncertainty-driven residual, our proposed residual can be naturally combined

with other residuals. For example, if we assume that depth measurement from

an RGB-D sensor is reliable, we can further combine the feature-metric residual

with an ICP residual to directly add a geometric constraint. The combined residual

equation is:

� ∗ = argmin
�

rTf (�)rf (�) + wgrTg (�)�−1g rg(�), (4.9)

where rg and �g are the ICP residual and uncertainty, respectively, and wg is the

weight for ICP residual. The above equation can still be iteratively solved via the

Gauss-Newton method. The detailed de�nitions of the ICP residual and Jacobian

can be found in [Rusinkiewicz and Levoy, 2001]. As there are no regularisation

83

4. Deep Probabilistic Feature-metric Tracking

terms in Section 4.3.1, our learned uncertainty is a scale-free parameter. When

combining with other residuals of di�erent magnitudes, we need to scale them

properly before �ne-tuning to bootstrap the training. The scale of ICP weight wg

is chosen (as wg = 0.01) such that the individual Chi-square errors are of similar

magnitude, after which the joint ICP/feature-metric training will scale the features

and feature-metric uncertainties to be best balanced with the ICP.

4.3.3 Coarse-to-�ne Optimisation and Initialisation

The cost functions in Section 4.3.1 and Section 4.3.2 can be optimised in a coarse-to-

�ne way using damped Gauss-Newton optimisations, which is applied on 4 pyramid

levels, with a �xed number of rolled-out iterations, i.e. 3, on each level. We added

a small damping constant in Section 4.3.1 to prevent the matrix inversion to be

ill-conditioned. Coarse-to-�ne optimisation methods are sensitive to coarse-level

estimation, where the incorrect estimations will be propagated to �ner levels and

the iterative optimisation may get stuck in a wrong local minimum, especially in a

wide-baseline setting. To tackle this issue, we train a pose network to bootstrap

the optimisation by predicting an initial relative pose on the coarsest level, instead

of using a conventional identity pose initialisation. To make the network compact,

the concatenated outputs from the coarsest-level two-view encoder on the two

frames serve as the inputs to our pose prediction network:

�0 = �T ({W1
A,W1

B}). (4.10)

To account for the multi-modal information on the coarse level, the deep initial pose

network outputs K pose hypotheses, which are parameterised as 3 Euler angles and

3D translation vectors, and a respective con�dence probability for each hypothesis.

The �nal predicted pose is the weighted average of all hypotheses.

84

4.3. Method

4.3.4 Training Setup

The predicted initial pose and the estimated poses per pyramid level are compared

to the ground truth pose and the resulting gradients in the optimisation are used

for back-propagation to update all the learning weights. To balance in�uence of

rotation vs. translation, we use the 3D End-Point-Error (EPE) as the training loss:

given the ground truth relative transformation TAB (�) and the estimated/predicted

pose TAB (�i), the loss is composed as:

L =
1
| |

∑
i∈

∑
Bv∈

‖TAB (�) Bv − TAB (�i) Bv‖22 , (4.11)

where  is the set of backprojected 3D points Bv in the frame B,  = {0, 1, 2, 3, 4}

denotes the pyramid levels, �0 is the predicted pose from the pose network and the

other �i are the estimated poses at the �nal iteration of Gauss-Newton optimisations

on the respective pyramid level. This formulation enables the network to learn

both feature and uncertainty representations in an end-to-end fashion, without the

need for a ground truth feature map or ground truth correspondences, and without

requiring an explicit de�nition of the uncertainty model. We set the feature map

channels to be 8. Note that the uncertainty is de�ned as a scalar value. We unroll

the Gauss-Newton optimisation and train all the models together from scratch

using ADAM [Kingma and Ba, 2015] for 30 epochs, with a learning rate initialized

at 0.0005 and reduced at epochs [5, 10, 20]. When combining the ICP residual, we

do a further �ne-tuning for 10 epochs.

4.3.5 Implementation Details

Figure 4.3 shows the architecture of our two-view encoder which takes the input

from a pair of RGB-D images and extracts spatio-temporal correlation information

from that. It is constructed into a 4-level pyramid architecture, where each level

outputs a higher-dimension information. The architecture is modi�ed from [Lv

et al., 2019], however, we do not perform an average operation to extract feature

85

4. Deep Probabilistic Feature-metric Tracking

[In: 8, Out: 16, K: 3, D:1]

[In: 16, Out: 32, K: 3, D:2]

[In: 32, Out: 32, K: 3, D:2]

[In: 32, Out: 32, K: 3, D:1]

[In: 32, Out: 64, K: 3, D:2]

[In: 64, Out: 64, K: 3, D:2]

Avg Pooling: K=2

[In: 64, Out: 64, K: 3, D:1]

[In: 64, Out: 96, K: 3, D:2]

[In: 96, Out: 96, K: 3, D:2]

Avg Pooling: K=2

[In: 96, Out: 96, K: 3, D:1]

[In: 96, Out: 128, K: 3, D:2]

[In: 128, Out: 128, K: 3, D:2]

Avg Pooling: K=2

Concatenate two views
[B, 8, H, W]

𝐖𝟒 Pyramid level 4

[B, 32, H, W]

𝐖𝟑 Pyramid level 3
[B, 64, H/2, W/2]

𝐖𝟐 Pyramid level 2
[B, 96, H/4, W/4]

𝐖𝟏 Pyramid level 1

[B, 128, H/8, W/8]

Figure 4.3: The architecture of our two-view encoder. It is composed of basic
convolutional blocks (blue) and average pooling operations (yellow). The basic con-
volutional block is grouped by a convolutional layer and followed by a BatchNorm
layer, and a ELU layer. [In, Out, K, D] represents [Input channel, Output channel,
Kernel size, Dilation] with stride always being 1.

𝐖𝟒: [B, 32, H, W] 𝐖𝟐: [B, 96, H/4, W/4] 𝐖𝟏: [B, 128, H/8, W/8]

[In: 32, Out: 8, K: 1, D:1] [In: 64, Out: 8, K: 1, D:1] [In: 96, Out: 8, K: 1, D:1] [In: 128, Out: 8, K: 1, D:1]

[B, 8, H, W]
Pyramid level 4

[B, 8, H/2, W/2]
Pyramid level 3

[B, 8, H/8, W/8]
Pyramid level 1

𝐖𝟑: [B, 64, H, W]

[B, 8, H/4, W/4]
Pyramid level 2

Figure 4.4: The architecture of our feature encoder. On each pyramid level, it is a
basic convolutional block that is group by a 1 by 1 convolutional layer, a BatchNorm
layer, and a ELU layer. [In, Out, K, D] represents [Input channel, Output channel,
Kernel size, Dilation] with stride always being 1.

maps. Instead, we send the outputs to the feature encoder and the uncertainty

encoder to estimate the feature and uncertainty maps.

Figure 4.4 shows the architecture of our feature encoder on each pyramid level.

It takes the input from the two-view encoder and predicts an 8-dimensional feature

map.

Figure 4.5 shows the architecture of our uncertainty encoder on each pyramid

level. It takes the input from the two-view encoder and predicts a 1-dimensional

uncertainty map. To ensure positive uncertainty values, we assume the output

from the 1 by 1 convolutional layer is a logarithmised uncertainty and use the

86

4.3. Method

[In: 32, Out: 16, K: 1, D:1]

1X1 Conv: [In: 16, Out: 1]

Truncated Exp

[In: 64, Out: 16, K: 1, D:1]

1X1 Conv: [In: 16, Out: 1]

Truncated Exp

[In: 96, Out: 16, K: 1, D:1]

1X1 Conv: [In: 16, Out: 1]

Truncated Exp

[In: 96, Out: 16, K: 1, D:1]

1X1 Conv: [In: 16, Out: 1]

Truncated Exp

𝐖𝟒: [B, 32, H, W] 𝐖𝟐: [B, 96, H/4, W/4] 𝐖𝟏: [B, 128, H/8, W/8]𝐖𝟑: [B, 64, H, W]

[B, 1, H, W]
Pyramid level 4

[B, 1, H/2, W/2]
Pyramid level 3

[B, 1, H/8, W/8]
Pyramid level 1

[B, 1, H/4, W/4]
Pyramid level 2

Figure 4.5: The architecture of our uncertainty encoder. On each pyramid level,
it is composed by a basic convolutional block, followed by a 1 by 1 convolutional
layer and a truncated exponential operation.

[In: 256, Out: 256, K: 3, D:2]

[In: 256, Out: 256, K: 3, D:2]

1D Conv block:
[In: 256, Out: 128, K: 1, D:1]

Concatenate view features
from the coarsest level

{𝐖𝑨
𝟏,𝐖𝑩

𝟏}

[B, 256, H, W] 1D Conv:
[In: 128, Out: 112, k: 1, D:1]

[B, 256, HXW]

Avg on all pixels

Pose hypothesis
[B, 16, 6]

Pose Confidence
[B, 16, 1]

Softmax

Predicted pose
[B, 6][B, 256, H, W]

Reshape

[B, 112]

Split

Weighted average

Figure 4.6: The architecture of our pose network for initial pose prediction.

exponentiation operation to recover the true uncertainty. We experimentally found

that this leads to better performance than the Gaussian distribution assumption.

The output is then truncated to avoid gradient explosion.

Figure 4.6 shows the architecture of our pose network to predict an initial pose

on the coarsest level of the coarse-to-�ne Gauss-Newton optimisation. It takes the

input from a concatenation of the outputs of the two frames from the two-view

encoder at the coarsest level. Similar to [Zhou et al., 2018a], the initial pose network

also predicts multiple pose hypotheses and then fuse them together using their

respective con�dences. Here, we choose the hypotheses number to be 16. The pose

is parameterised with 3 Euler angles and a 3-dimensional translation vector.

87

4. Deep Probabilistic Feature-metric Tracking

4.4 Experiments

4.4.1 Quantitative Evaluation and Discussion

We �rst evaluate our method on the TUM RGB-D SLAM dataset [Sturm et al.,

2012]. It contains various camera motions, lighting conditions, and scene structures.

A natural extension is to apply it to 3D rigid object motion estimation, which we test

on the MovingObjects3D dataset [Lv et al., 2019]. It is a synthetic dataset rendered

from Blender and contains 6 di�erent categories of moving objects under varied

illumination changes . We trained di�erent network weights on each benchmark

dataset separately.

DeepIC [Lv et al., 2019] is chosen as our main baseline method, which also learns

dense feature map for pose optimisation. It also learns an m-estimator network

and a damping network in its Levenberg–Marquardt optimisation, but without

feature-metric uncertainty or initial pose predictions. To have a fair comparison,

we use the same experimental setting as theirs. We randomly subsampled frames

B at intervals {1,2,4,8} relative to frame A from TUM RGB-D dataset [Sturm et al.,

2012] and {1,2,4} from MovingObjects3D dataset [Lv et al., 2019] to generate various

motion magnitudes and tracking di�culties as the training pairs. A comparison

to this approach would show the importance of the uncertainty prediction and

the initial pose prediction in our proposed method. We use the network weights

provided by the authors in our evaluations. We further implemented DeepIC+P,

an augmented variant of DeepIC [Lv et al., 2019], with our pose prediction network

to initialise their optimisation. The same number of iterations and pyramid levels

are used as in our method. A comparison to it would further verify the contribution

of our proposed probabilistic feature-metric loss.

To have a comparison to deep pose prediction methods that directly predict a re-

lative transformation from two views, we implemented a coarse-to-�ne PoseNet,

88

4.4. Experiments

similar to the tracking part in DeepTAM [Zhou et al., 2018a]. It is implemented on

four pyramid levels for coarse-to-�ne pose re�nements, where the predicted pose

from a coarser pyramid level would be used to bootstrap the prediction on a �ner

level. The network architecture is similar to our pose network but with di�erent

network weights on di�erent pyramid levels. A comparison to it would show a

bene�t of our learning-based optimisation approach for pose estimation. We further

included the iterative re�nement idea from [Li et al., 2018c] to the coarse-to-�ne

PoseNet approach. The iterative PoseNet has 3 iteration re�nements on each pyr-

amid level. All the learning-based comparison approaches are trained end-to-end

using the loss in Equation (4.11).

For the non-learning approaches, we compare our method to the pure geometric

Point-to-Plane ICP method [Rusinkiewicz and Levoy, 2001], which is essentially ro-

bust to illumination changes. We also include an RGB-D VO method [Steinbrücker

et al., 2011] in the camera motion evaluation. The ICP and RGB-D VO approaches

are implemented in Open3D [Zhou et al., 2018b]. A comparison to these approaches

would show bene�ts of learning-based approaches, in terms of larger convergence

basin and better accuracy, even under challenging lighting conditions.

To reveal the contribution of each component, we provide a detailed ablation

study. We denote our system component, dense feature map, dense uncertainty map,

deep initial pose prediction as F, U, P, respectively. We select the following settings.

Ours (F): We replace the uncertainty prediction with an identity uncertainty and

disable the pose prediction with an identity pose initialisation. Ours (F+P): We

replace the uncertainty prediction with an identity uncertainty. Ours (F+U): We

disable the pose prediction and only use the proposed probabilistic feature-metric

residual for alignment. Ours (F+U+P): A full version of our probabilistic feature-

metric tracking system. Ours+ICP: A combination of the probabilistic feature-

metric and ICP residuals. All these combinations are implemented in coarse-to-�ne

optimisations, with the same number of iterations and pyramid levels as in the

89

4. Deep Probabilistic Feature-metric Tracking

proposed method.

The evaluation metrics are the 3D EPE loss in Equation (4.11) and the relative

pose error (RPE) metrics de�ned in TUM RGB-D dataset [Sturm et al., 2012].

TUMRGB-DDataset: We use the same setting as DeepIC [Lv et al., 2019], where

sequences ‘fr1/360’, ‘fr1/desk’, ‘fr2/360’, and ‘fr2/pioneer360’ are used for testing

and the remaining sequences are split into training (�rst 95% of each sequence) and

validation (last 5%). Images are transformed to a resolution of 160×120, with depth

values outside of 0.5m to 5.0m being ignored. We use a mixture of all subsampled

keyframe intervals to train our network, and evaluate the methods separately for

each keyframe interval.

Table 4.1 summarises the results on the TUM RGB-D dataset. Our method

outperforms all the other state-of-the-art learning-based approaches, as well as

the non-learning RGB-D VO, and ICP methods, from small baselines to large

baselines. Compared with all ablation variants, our full version (F+U+P) achieves

the best performance. The addition of uncertainty estimation complements the

high-dimensional feature-metric alignment to improve the tracking accuracy. The

predicted initial pose further improves the accuracy by bringing the estimation close

the correct minimum, especially in the large motion scenarios. After �ne-tuning

the probabilistic combination with ICP loss, it can be seen that the performance is

further improved in most cases (except KF 4 where the performance drops a bit),

showing the validity of the probabilistic combination.

We have further developed a prototype visual odometry system, where the

camera pose is estimated by our proposed method. Figure 4.7 shows the resulting

trajectories and point clouds back-projected from all frames in the sequence from

our test split of the TUM RGB-D dataset [Sturm et al., 2012].

Despite being a pure frame-to-frame tracking system without components of

90

4.4. Experiments

M
et

ho
d

3D
EP

E
(c

m
)/

RP
E

tra
ns

la
tio

n
(c

m
)/

RP
E

ro
ta

tio
n

(D
eg

)
KF

1
KF

2
KF

4
KF

8
IC

P
[R

us
in

ki
ew

ic
za

nd
Le

vo
y,

20
01

]
2.5

3/
1.2

5/
0.7

5
5.1

2/
2.5

7/
1.4

7
13

.21
/5

.73
/3

.70
28

.80
/1

0.5
4/

7.8
9

RG
B-

D
VO

[S
te

in
br

üc
ke

re
ta

l.,
20

11
]

2.3
1/

1.0
3/

0.5
5

4.3
8/

2.8
1/

1.3
9

12
.67

/5
.95

/3
.99

31
.13

/1
3.8

3/
9.2

0
Co

ar
se

-to
-�

ne
Po

se
N

et
[Z

ho
u

et
al

.,2
01

8a
]

1.8
8/

1.9
1/

0.8
0

3.0
8/

3.7
6/

1.4
2

5.8
2/

7.3
0/

2.7
6

15
.43

/1
3.1

6/
5.7

3
Ite

ra
tiv

e
Po

se
N

et
[Z

ho
u

et
al

.,2
01

8a
,L

ie
ta

l.,
20

18
c]

1.7
6/

1.8
6/

0.8
4

2.7
0/

3.6
1/

1.5
3

4.7
5/

7.2
8/

2.7
3

12
.74

/1
3.1

2/
5.2

3
D

ee
pI

C
[L

v
et

al
.,2

01
9]

1.3
1/

0.6
9/

0.4
5

1.5
7/

1.1
4/

0.6
3

2.5
3/

2.0
9/

1.1
0

11
.03

/5
.88

/3
.76

D
ee

pI
C+

P,
ad

ap
te

d
fro

m
[L

v
et

al
.,2

01
9]

1.2
6/

0.6
9/

0.4
4

1.4
6/

1.1
3/

0.6
0

2.3
2/

2.6
8/

1.1
0

8.2
0/

5.0
6/

3.7
3

O
ur

s(
F)

1.2
5/

0.6
7/

0.4
4

1.4
9/

1.1
4/

0.6
0

2.5
0/

2.7
8/

1.1
4

11
.70

/1
2.2

0/
4.3

7
O

ur
s(

F+
P)

1.2
4/

0.6
5/

0.4
4

1.4
2/

1.0
4/

0.5
7

2.0
4/

2.0
6/

0.8
1

7.3
5/

6.7
1/

2.8
9

O
ur

s(
F+

U)
1.2

3/
0.5

8/
0.4

1
1.4

0/
0.8

6/
0.5

0
2.3

3/
1.9

9/
0.8

7
13

.24
/1

2.9
2/

4.5
9

O
ur

s(
F+

U+
P)

1.2
3/

0.5
7/
0.
40

1.3
8/

0.8
0/

0.4
8

1.
71

/1
.2
2/
0.
64

5.4
8/

4.8
9/

2.1
2

O
ur

s+
IC

P
1.
22

/0
.5
4/
0.
40

1.
33

/0
.7
6/
0.
47

1.7
8/

1.2
6/

0.6
6

4.
82

/4
.5
7/
2.
00

Ta
bl

e
4.1

:R
es

ul
ts

on
ou

rt
es

ts
pl

it
in

TU
M

RG
B-

D
D

at
as

et
.K

F
de

no
te

st
he

fra
m

e
in

te
rv

al
s.

91

4. Deep Probabilistic Feature-metric Tracking

(a) fr1_desk (b) fr1_360

(c) fr2_desk (d) fr2_360

Figure 4.7: Trajectories delivered by our system on test split of TUM RGB-D dataset.
We back-projected point clouds from all frames to visualise the alignment.

keyframing and loop closure optimisations, drift caused by incremental misalign-

ment qualitatively remains small. The qualitative results can be found in the

supplementary video.

MovingObjects3D Dataset: MovingObjects3D dataset contains 6 di�erent cat-

egories of objects moving in front of the camera under various illumination changes.

We follow the dataset setting, where the categories of ‘boat’ and ‘motorbike’ are

used as the testing set and the other categories are split into training (�rst 95%

sequences of each category) and validation (last 5%), to test tracking performance

92

4.4. Experiments

for unseen objects. For the non-learning-based ICP [Rusinkiewicz and Levoy, 2001]

approach, we provide ground truth object masks for them to test their optimal

performances. For the learning-based approaches, we reply on those systems to

distinguish the object motion from the background, given the ground truth object

and camera motions. Table 4.2 reports the results, which again show the super-

ior performance of our method and con�rm the contribution of each proposed

component.

Figure 4.8 visualises our tracking result on the test split of MovingObjects3D

dataset. As can be seen, our proposed method can provide a good alignment for

objects under large motion and lighting changes. A combination with ICP can

provide a further re�nement in the pose estimation.

Ablation Study on theChoice ofChannelDimension: As examined in [Czarnowski

et al., 2017], multi-dimensional feature map from network can improve tracking

robustness. In Table 4.1 and Table 4.2, Ours (F), with higher-dimension features,

outperforms [Lv et al., 2019] in most cases, even without uncertainty or pose pre-

dictions. On the other hand, a higher dimension of feature maps usually bring a

higher computational cost. In this part, we experimentally evaluate the e�ect of

the channel dimension of the feature map and the uncertainty map. We �x the

uncertainty channel to be 1 when we vary the feature channels and �x the feature

channel to be 8 when we vary the uncertainty channels between 1 and the same

feature channel, i.e. 8. Table 4.3 summarises accuracy and inference time on the

TUM RGB-D dataset [Sturm et al., 2012]. Note that the accuracy increases when

we increase the channel dimension of feature map, albeit with diminishing gains

at dimensions higher than 8. When we increase the channel dimension of the un-

certainty map, the accuracy very slightly increases for small baselines and slightly

decreases for large baselines, validating the original choice of scalar uncertainty

prediction.

93

4. Deep Probabilistic Feature-metric Tracking

M
et

ho
d

3D
EP

E
(c

m
)/

RP
E

tra
ns

la
tio

n
(c

m
)/

RP
E

ro
ta

tio
n

(D
eg

)
KF

1
KF

2
KF

4
IC

P
[R

us
in

ki
ew

ic
za

nd
Le

vo
y,

20
01

]
3.3

1/
9.7

5/
2.
74

9.6
3/

19
.72

/8
.31

19
.98

/4
1.4

0/
16

.64
Co

ar
se

-to
-�

ne
Po

se
N

et
[Z

ho
u

et
al

.,2
01

8a
]

2.6
2/

10
.10

/4
.14

5.0
1/

20
.19

/8
.29

9.6
3/

38
.96

/1
6.0

2
Ite

ra
tiv

e
Po

se
N

et
[Z

ho
u

et
al

.,2
01

8a
,L

ie
ta

l.,
20

18
c]

2.5
5/

10
.08

/4
.14

4.9
6/

20
.16

/8
.28

9.6
0/

38
.91

/1
6.0

0
D

ee
pI

C
[L

v
et

al
.,2

01
9]

2.9
1/

9.7
3/

3.7
4

5.9
4/

19
.60

/7
.41

12
.96

/3
8.3

9/
14

.71
D

ee
pI

C+
P,

ad
ap

te
d

fro
m

[L
v

et
al

.,2
01

9]
2.6

6/
9.7

8/
3.7

6
5.1

4/
19

.72
/7

.67
9.9

0/
38

.50
/1

5.1
7

O
ur

s(
F)

2.5
2/

9.3
4/

3.5
7

5.0
4/

18
.90

/7
.26

10
.49

/3
7.1

9/
14

.39
O

ur
s(

F+
P)

2.6
4/

9.5
9/

3.6
4

5.1
4/

19
.42

/7
.43

9.9
7/

37
.01

/1
4.3

2
O

ur
s(

F+
U)

2.2
0/

8.6
2/

3.4
3

4.5
3/

17
.90

/7
.19

9.8
6/

36
.18

/1
4.5

0
O

ur
s(

F+
U+

P)
2.1

7/
8.4

4/
3.2

2
4.4

7/
17

.86
/6

.91
9.2

6/
36

.44
3/

14
.22

O
ur

s+
IC

P
1.
93

/7
.8
4/

2.9
3

4.
12

/1
6.
94

/6
.2
9

8.
93

/3
5.
39

/1
3.
14

Ta
bl

e
4.2

:R
es

ul
ts

on
ou

rt
es

ts
pl

it
of

M
ov

in
gO

bj
ec

ts
3D

D
at

as
et

.

94

4.4. Experiments

(a) Frame A (b) Frame B

(c) Ours (d) Ours+ICP

Figure 4.8: Qualitative results on MovingObjects3D dataset. Object motion between
the frame A and frame B is estimated using our proposed method (c) and a further
combination with ICP (d). The object is warped from frame A to B using the
estimated motion for visualization. The ground truth object boundaries in A and B
are colored in red and color, respectively. Black regions in the warped image are
caused by occlusion.

In addition to accuracy, the increase of channel dimension in either feature or

uncertainty map dimension would increase the GPU memory usage and reduce

the inference speed. As a compromise of all these factors, we choose the feature

dimension to be 8 and the uncertainty dimension to be 1 in all our other experiments.

Model Size and Computation Time: Our system implemented in PyTorch has

1.83M learnable parameters. The average forward inference time for a pair of

RGB-D image in the resolution of 160×120 on a GTX 1080 platform is 7.29ms. After

integrating ICP, it is 9.84ms (i.e. +35%) on the same platform. Our network has a

larger model size than DeepIC, which has 662K learnable parameters, but shows

a comparable inference speed to its 7.6ms inference time on the same platform.

95

4. Deep Probabilistic Feature-metric Tracking

M
ap

C
3D

EP
E

(c
m

)/
RP

E
tra

ns
la

tio
n

(c
m

)/
RP

E
ro

ta
tio

n
(D

eg
)

Ti
m

e
(m

s)
KF

1
KF

2
KF

4
KF

8

F U=
1

1
1.2

3/
0.5

8/
0.4

1
1.3

7/
0.8

3/
0.5

0
1.8

6/
1.4

8/
0.7

4
8.1

5/
6.0

9/
2.9

3
5.4

1
3

1.2
3/
0.
57

/0
.4
0

1.3
6/
0.
78

/0
.4
8

1.7
2/

1.2
4/

0.6
4

5.9
2/

5.0
5/

2.2
0

6.2
5

8
1.2

3/
0.
57

/0
.4
0

1.3
8/

0.8
0/
0.
48

1.7
1/

1.2
2/

0.6
4

5.
48

/4
.8
9/
2.
12

7.2
9

16
1.
22

/0
.5
7/
0.
40

1.
35

/0
.7
8/
0.
48

1.
66

/1
.2
1/
0.
62

5.7
2/

4.9
4/

2.2
2

11
.67

U F=
8

1
1.2

3/
0.5

7/
0.
40

1.3
8/

0.8
0/
0.
48

1.
71

/1
.2
2/
0.
64

5.
48

/4
.8
9/
2.
12

7.2
9

8
1.
22

/0
.5
5/
0.
40

1.
37

/0
.7
9/

0.4
9

1.7
4/

1.3
5/

0.6
7

6.1
5/

5.5
8/

2.3
8

9.1
3

Ta
bl

e
4.

3:
A

bl
at

io
n

st
ud

y
of

th
e

ch
an

ne
ld

im
en

sio
n

e�
ec

to
n

ou
rt

es
ts

pl
it

in
TU

M
RG

B-
D.

F,
U,

C
ab

br
ev

ia
te

th
e

fe
at

ur
e

m
ap

,
un

ce
rta

in
ty

,a
nd

th
e

ch
an

ne
ld

im
en

sio
n.

Ti
m

e
is

th
e

av
er

ag
e

in
fe

re
nc

e
tim

e
fo

ra
pa

ir
of

in
pu

tR
GB

-D
im

ag
es

(si
ze

16
0×

12
0)

.

96

4.4. Experiments

Figure 4.9: Visualisation of cost landscape of x and y translation for the feature-
metric loss on the coarsest level. From left to right: input, cost landscape 3D, and
2D projection of cost landscape.

Compared to the classic approaches implemented in Open3D [Zhou et al., 2018b],

our network is also faster than the point-to-plane ICP [Rusinkiewicz and Levoy,

2001] (310ms). However, we would also expect to see a signi�cant boost to the

ICP inference time when it is e�ciently implemented in CUDA [Newcombe et al.,

2011a] or CPU [Vespa et al., 2018].

We also studied the e�ect of the input image resolution. With increased resolution

(256×192), accuracy slightly improves on the small baselines, i.e. KF 1 and 2, however,

slightly deteriorates on KF 4 and 8 while the computation increases to 15.29ms (i.e.

+111%). Therefore, we set 160×120 as main setting for training and testing.

4.4.2 Qualitative Evaluation and Discussions

Convergence Basin: To analyse the e�ect of the initial pose prediction in our

system, we perform a cost landscape visualisation experiment. Since � is a 6D vector,

it is computationally infeasible to sample cost on all possible pose components

and also di�cult to visualise the 6D cost landscape. Therefore, we choose to �x

the rotation and z-translation components and only sample the pose combinations

at the x and y translations around the ground truth pose. Figure 4.9 shows one

example on our test split from the TUM RGB-D dataset using the an interval of

97

4. Deep Probabilistic Feature-metric Tracking

In
pu

tA
In

pu
tB

Ours uncertainty on BDeepIC m-estimator

DeepIC Ours

Figure 4.10: Qualitative evaluation in challenging lighting. Notice our uncertainty
estimation is more sensitive to the lighting changes than the learned m-estimator
in DeepIC (higher value is in red and lower value is in blue).

8 frames. It can be seen that our pose prediction network brings the estimation

into the convergence basin near the global minimum otherwise the conventional

identity pose initialisation would lead the optimisation to a wrong local minimum.

Challenging Illuminations: Uncertainty prediction is signi�cant for deploying

neural network on robotic applications. DeepIC [Lv et al., 2019] proposed a learned

robust cost function m-estimator to downweigh the residual outliers. To evaluate

our learned uncertainty and also to compare to DeepIC’s learned m-estimator, we

captured sequences using an RGB-D camera while we were waving a �ashlight to

create illumination changes. The collected sequences contain both local and global

lighting, re�ection, and shading variances across the images. Since we don’t have

ground truth poses on these frames, we warp the point cloud from one frame to

another using the estimated transformation between them and visualise the 3D

98

4.5. Conclusion and Discussions

pointcloud alignment of the two views. We test it using the weights trained from

the TUM RGB-D dataset without �ne-tuning. Figure 4.10 shows one example. It

can be seen that our method provides more robust pose estimation under those

lighting changes. This is partially because our estimated uncertainty can more

reliablely capture illumination variance, e.g. on the book and desk surface, than

DeepIC’s m-estimator. Please refer to the supplementary video for more results

and details.

4.5 Conclusion and Discussions

We presented a deep probabilistic feature-metric two-frame RGB-D tracking method

by combining the power of deep learning for feature learning, uncertainty estim-

ation and pose prediction in a learning-based optimisation framework. It makes

our method compact and outperform the state of the art methods on camera mo-

tion and rigid object motion estimation benchmarks. Challenging experiments

have shown an accurate and robust performance under large motion and strong

lighting change scenarios, which is signi�cant and currently lacking, in real-world

robotic applications. We further showcased how our proposed residual can easily

be combined with commonly used ICP residual in practice.

A strong assumption in this work is that the geometric information from the

depth sensor is mostly stable and accurate. The geometric information has been

exploited in the feature descriptor generation, warping function, and also the

combined geometric residual. An important future direction will be to explore how

to predict the uncertainties in the geometric component and then formulate them

in the proposed feature-metric residual. Continuing from here, we would also like

to explore how to better combine the probabilistic feature-metric residuals with

other residuals.

In the training step, the unrolled optimisation architecture implemented a �xed

99

4. Deep Probabilistic Feature-metric Tracking

number of update steps at each optimisation level. We assumed that the optimisation

should also converge after 3 update steps at each level in the test time. Although

this is a widely adopted practice, for example as in [Lv et al., 2019, Bloesch et al.,

2019], and we veri�ed that using an adaptive number of update steps in the test

time does not necessarily improve the estimation results, an extra evaluation and

proof on the convergence guarantee could be possible in future work.

We would also like to highlight that our system is trained end-to-end in a self-

supervised way without explicitly de�ning the ground-truth uncertainties or feature

maps. This allows �exibility to further improve our performance in solving di�-

cult conditions, for example, lighting changes or occlusions, when more targeted

training data is given.

Also, we aim to apply our tracking method to full dense SLAM systems, including

object-level and dynamic SLAM systems. The frame-to-frame tracking designed

in our prototype visual odometry system in Figure 4.7 inevitably accumulates

drift. Possible solutions would be to extend our proposed feature-metric residual

Section 4.3.1 to keyframe-based SLAM systems or to fuse the depth into a global

frame and conduct frame-to-model tracking to reduce drift.

In the next chapter, we will explore how to utilise the shape prior information in

object-level SLAM systems, in addition to the multi-view constraint. We will focus

on the improvement of object mapping by taking advantage of the category-level

shape priors and show that object shape completion can also improve the tracking

accuracy of moving objects.

100

Chapter5
Object-level Dynamic SLAM with

Map Completion

In this chapter, we propose a novel object-level dynamic SLAM system that can

simultaneously segment, track, and reconstruct objects in dynamic scenes. It can

further predict and complete their full geometries by conditioning on reconstruc-

tions from measured depth and a category-level shape prior with the aim that

completed object geometry leads to better object reconstruction and tracking accur-

acy. For each incoming RGB-D frame, we perform instance segmentation to detect

objects and build data associations between the detection and the existing object

maps. A new object map will be created for each unmatched detection. For each

matched object, we jointly optimise its pose and latent geometry representations

using geometric residual and di�erential rendering residual towards its shape prior

and completed geometry. Our approach shows better tracking and reconstruc-

tion performance compared to methods using traditional volumetric mapping or

learned shape prior approaches. We evaluate its e�ectiveness by quantitatively and

qualitatively testing it in both synthetic and real-world sequences.

101

5. Object-level Dynamic SLAM with Map Completion

Contents of Chapter

5.1 Introduction . 103

5.2 Related Works . 106

5.3 Method . 108

5.3.1 Notations and Preliminaries 108

5.3.2 System Overview . 110

5.3.3 Joint Optimisation of Object Pose and Geometry . . . 111

5.3.4 Training Setup . 114

5.4 Experiments . 117

5.4.1 Quantitative Reconstruction Evaluations 117

5.4.2 Quantitative Tracking Evaluations 119

5.4.3 Timing analysis . 123

5.4.4 Qualitative Evaluations 124

5.5 Conclusions and Discussions 125

This chapter is currently under submission.

102

5.1. Introduction

5.1 Introduction

Simultaneous Localisation and Mapping (SLAM) research aims to concurrently

estimate both the scene geometry of the unknown environment as well as the

robot pose within it from the data of its on-board sensors only. It has rapidly

progressed from sparse SLAM [Davison et al., 2007, Klein and Murray, 2007] into

dense SLAM [Newcombe et al., 2011a, Vespa et al., 2018], and recently into semantic

object-level SLAM [McCormac et al., 2017, McCormac et al., 2018]. This fast-

evolving research has enabled many robotic applications. Despite this, most SLAM

research still assumes a static scene, where points in the 3D world maintain constant

spatial positions in a global coordinate. Any information violating this assumption,

such as moving objects in the environment, would be treated as outliers and are

intentionally ignored in tracking and mapping steps.

This setup, however, can only handle a small amount of dynamic elements,

excluding itself from many real-world applications as environments, particularly

where humans are involved, are continually changing. A robust SLAM system

capable of handling highly dynamic environments, therefore, is desirable. Most

current dynamic SLAM research can be categorised into three main directions. One

maps the whole changing world in a non-rigid deformable representation to deal

with the changing topology of deformable/moving objects [Newcombe et al., 2015].

The second aims at improving the robustness and accuracy of camera tracking

by ignoring all possibly moving objects and building a single static background

model [Jaimez et al., 2017, Scona et al., 2018, Bescós et al., 2018]. The third models

dynamic environments by creating object-centric maps for each possibly moving

object in the scene while fusing corresponding information into these object-level

maps [Rünz and Agapito, 2018, Xu et al., 2019]. Object-level tracking and mapping

can be conducted for each object and camera motion against the static part of

the map. This paper aligns with the last direction as we believe that, similar to

103

5. Object-level Dynamic SLAM with Map Completion
In

pu
t

C
on
di
tio
ne
d

co
m
pl
et
io
n

TS
D

F

Camera view Topdown view

Figure 5.1: Given RGB-D images, our system builds object-level dense dynamic
maps that can robustly track camera pose and object poses while completing the
missing sensor information using object priors. Compared to the classic TSDF
maps, our object maps �ll in unobserved parts and their latent codes can be optim-
ised jointly with object poses. Interfered regions by humans can be detected and
intentionally removed in the system. The background pointclouds are projected
for pure visualisation purpose.

human perception, an instance-awareness of the surrounding environment can help

intelligent robots perceive the scene changes and enables meaningful interactions

with the surrounding environment.

By far most existing object-level dynamic SLAM systems mentioned above adopt

the classic map representation that have been exploited in the static SLAM systems,

such as pointclouds [Bescós et al., 2021], surfels [Rünz and Agapito, 2018] or

volumetric maps [Xu et al., 2019]. This leads to partial or incomplete object maps as

only the observable information can be fused into the object models. Information

in unseen parts can not be �lled unless an object or the sensor is moved actively.

Contrary to reconstructing objects from scratch, some works recently explored

learning-based category-level object shape priors and build object-level maps based

on learned shape priors [Sucar et al., 2020, Wang et al., 2021]. The object geometry

and pose are usually optimised via di�erentiable rendering. However, most of

104

5.1. Introduction

these systems are only applicable in static scenes. Besides, despite being able to

generate complete object geometry, object shape priors cannot capture complex

geometry details as the bottleneck of its latent representation can only interpolate

shapes inside the training datasets [Park et al., 2019]. When combined with dense

image alignment, such as photometric or ICP residuals, this inconsistency between

the measurement and the object prior model inevitably leads to inaccurate object

motion trajectory estimates.

This work stands in the middle between reconstructing object geometry from

scratch and mapping using object shape priors. We reconstruct the observable

part by continuously fusing depth measurements into a volumetric canonical space

and predict the complete geometry by conditioning it on the fused volume. The

resulting object geometry can preserve the details that have been observed in the

past and simultaneously complete the missing geometry information. We also

veri�ed that this completed object geometry can further improve the accuracy

of object tracking. The main contributions in this chapter can be summarised as

follows:

1. we present, to the best of our knowledge, the �rst RGB-D object-level dynamic

SLAM system that can complete unseen parts of objects using a shape prior

encoded in neural networks while still reconstructing observed object parts

accurately;

2. a joint optimisation of object pose and shape geometry based on geometric

residuals and di�erentiable rendering;

3. extensive experiments of object tracking and reconstruction components on

synthetic and real-world data to evaluate the bene�ts of object geometry

completion for object-level SLAM.

The remainder of this chapter is organised as follows. Section II discusses the

105

5. Object-level Dynamic SLAM with Map Completion

related work in greater detail, highlighting our originality. Section III explains the

details in our system. Section IV describes the experiments and the comparisons

with the existing methods, followed by the conclusion in the last section.

5.2 Related Works

Object-level dynamic SLAM Although object-level dynamic SLAM research

can be dated back to [Wang et al., 2003], visual dense object-level dynamic SLAM

has only been explored recently. From RGB-D sensor inputs, Co-Fusion [Rünz and

Agapito, 2017] segments objects by either ICP motion segmentation or semantic seg-

mentation and then tracks objects separately based on ElasticFusion [Whelan et al.,

2016]. MaskFusion [Rünz and Agapito, 2018] segments objects using a combination

of instance segmentation from Mask-RCNN and geometric edges, and tracks objects

using the same approach as Co-Fusion. Both Co-Fusion and MaskFusion use surfels

to represent map models, which is memory e�cient but cannot directly provide

free space information in the map, and neither surface connectivity. DynSLAM-

II [Bescós et al., 2021] extends from ORB-SLAM II [Mur-Artal and Tardós, 2017]

and formulates tracking using sparse feature descriptor matching. Object maps are

represented using clusters of pointclouds, which can bring object poses and geo-

metries into the pose graph optimisation but also lack space connection awareness.

Instead, MID-Fusion [Xu et al., 2019] uses memory-e�cient octree-based volu-

metric signed distance �eld (SDF) representation for objects and re-parametrises

tracking residuals in object coordinates and weights. EM-Fusion [Strecke and

Stuckler, 2019] similarly uses volumetric SDF object maps but formulates object

tracking as direct alignment of input frames with the SDF representations. Their

following work [Strecke and Stuckler, 2020] infers the missing object geometry

by penalising the hull and intersection constraints. However, it did not explore

shape prior information and requires heavy computation to optimise SDF �eld

explicitly. Instead, we fuse the depth measurement into object-level SDF maps and

106

5.2. Related Works

predict completed object geometries by incorporating a shape prior in continuous

occupancy �elds.

SLAM with shape prior maps Instead of estimating both object geometry and

poses from scratch, some approaches use a shape prior to represent objects. Since

the coordinates of object shape priors and the run-time measurement are not

necessarily aligned, a relative rigid transformation needs to be estimated. This is

analogous to the localisation-only problem in SLAM. SLAM++ [Salas-Moreno et al.,

2013] is one of the pioneering object-level RGB-D SLAM systems. It scanned objects

in advance and then maps the detected instances at run-time by jointly optimising

a pose graph of camera and object poses. Relying on pre-scanned objects, however,

limits its ability to scale to unknown object models. Rather than using instance-

level shape priors, several following works exploited category-level shape priors

as there is limited variance in certain object categories. The category-level shape

prior can be represented in PCA models as in DirectShape [Wang et al., 2020], in

occupancy grids as in Deep-SLAM++ [Hu et al., 2019], in variational autoencoders

as in NodeSLAM [Sucar et al., 2020], in autodecoders as in DSP-SLAM [Wang et al.,

2021], or in mesh generation networks as in [Lin et al., 2019]. However, most of

these works only target static environments, as multi-view consistency of static

world points is required to localise the shape prior models. [Li et al., 2021] relax this

restriction using a Bayesian �lter to associate object detections on di�erent frames

and fuse the prior model by simply averaging the latent codes from each frame.

However, object shape deviations cannot always be captured by the shape prior

interpolation. The object tracking accuracy would be a�ected by the discrepancy

between the prior shape model and the online measurement. We address this

challenge by conditioning the completion network on the fused reconstruction

model.

107

5. Object-level Dynamic SLAM with Map Completion

Object-level tracking To track moving objects in RGB-D sequences, several

pioneering object-level works adopt the frame-to-model tracking methods from

RGB-D SLAM systems [Rünz and Agapito, 2017] and parametrise them for object

tracking [Xu et al., 2019, Bescós et al., 2021]. The classic photometric residual,

however, is di�cult to deal with as object lighting changes; several approaches

explore using learning-based robust features to formulate object tracking in direct

[Xu et al., 2021a] and in-direct ways [Wen and Bekris, 2021]. Parallel to learning

category-level shape priors, Wang et al. [Wang et al., 2019] proposed to learn

category-level pixel-wise correspondence from RGB-D images to the canonical

space. The shape is implicitly de�ned from this correspondence and the frame-to-

canonical transformation can be estimated from this noisy correspondence. Rempe

et al. [Rempe et al., 2020] further proposed to generate more stable correspondences

by accumulating temporal information from RGB-D sequences. Recently, Muller

et al. [Muller et al., 2021] proposed to track moving objects and predict their com-

plete geometry using such canonical correspondence representation. In this work,

the object pose is initially predicted using canonical correspondence regression.

However, we found it does not necessarily yield alignment to the canonical space

and we further optimise the pose tracking using geometric residual and di�erential

rendering.

5.3 Method

5.3.1 Notations and Preliminaries

In this work, we will use the following notation: a coordinate frame is denoted as

−→A. The homogeneous transformation from −→B to −→A is denoted as TAB , which is

composed of a rotation matrix CAB and a translation vector ArAB .

Every detected object is represented in its individual object coordinate frame −→On
,

with n ∈ {0… , N}, where N is the total number of objects (excluding background)

108

5.3. Method

Input: RGB-D

TSDF volume 3D U-Net

3D U-NetWeight volume

Shape prior
network

Shape completion
network

SDF values

Occupancy
probability

TSDF feature
volume

TSDF confidence
volume

Object
pose

Prior node

Posterior node

Figure 5.2: The overview of our object geometry representation.

RGB-D
Camera
tracking

Find
visible
objects

Depth fusion &
geometry

completion

Initialize
new objects

Joint pose &
geometry

optimisation

Instance
segmentation

IoU data
association

Figure 5.3: The pipeline of the proposed method

and 0 denotes background. We assume a canonical static volumetric model is stored

in each object coordinate frame, forming the basis of our multi-instance SLAM

system. To leverage the category-level shape prior, we need to align the canonical

space with the one de�ned in training, otherwise the completion performance will

be deteriorated since it cannot fully take advantage of the shape variances of the

objects in the same category. The relative transformation between the current

world coordinate and the corresponding object canonical space is de�ned as a joint

state composed of a rigid transformation TWOn
and the object scale sOn

. We de�ne

the object pose using this joint state. TWOn
needs to be continuously updated for a

moving object but the object scale should be consistent across di�erent frames.

109

5. Object-level Dynamic SLAM with Map Completion

5.3.2 System Overview

Figure 5.3 shows the pipeline of our proposed system. Each input RGB-D image is

processed by Mask R-CNN to perform instance segmentation. The camera pose is

tracked against background regions, excluding the human mask area and moving

objects, similar to what has been proposed in MID-Fusion [Xu et al., 2019].

The object geometry is composed of two nodes with a shared object pose: prior

node and posterior node, as shown in Figure 5.2. The prior node represents its

category-level shape prior using a latent code z0 ∈ ℝ64. It can be used to express

the continuous SDF �eld s on any query 3D location in object canonical coordinate

v ∈ ℝ3 using a DeepSDF shape prior network F0 [Park et al., 2019] as

s = F0(v, z0). (5.1)

The prior node is used to initialise the object pose and re-localise the object model

when object tracking is lost as the prior geometry does not degrade even if the

object pose deviates from the canonical space. The posterior node encodes a fused

partial TSDF volume and its associated TSDF weight volume into TSDF feature

volume �t and TSDF con�dence volume �c separately using 3D-UNet [Çiçek et al.,

2016]. Then a complete occupancy �eld o can be predicted using a shape completion

network F1:

o = F1(v, �t[v], �c[v], z1). (5.2)

where �t[v] ∈ ℝ32 and �c[v] ∈ ℝ1 denote the feature vectors tri-linearly interpolated

at the point v inside the volumes �t and �c , respectively. We additionally condition

it on a latent code z1 ∈ ℝ32 so that the hidden space can be optimised to generate

novel shapes, as shown in Figure 5.4. The shape completion network F1 has a

similar architecture to the CONet [Peng et al., 2020] with an extra input of TSDF

con�dence weight to balance the depth measurement and network prediction and

a instance-level latent code in the input to optimise the hidden space.

110

5.3. Method

Partial TSDF
reconstruction

Ground-truth
shape model

Shape completion Chamfer Distance of
completed shape

Shape generated from
novel latent code

Chamfer Distance of
novel shape

Z
er

o
co

de
N

ov
el

 c
od

e

Figure 5.4: Editing the conditioned latent code can change the geometry of the
unobserved part in the object model.

We perform an e�cient Axis Aligned Bounding Box (AABB) ray intersection

test [Majercik et al., 2018] to �nd all the visible existing object models in the current

viewpoint and render object masks for each visible models. An Intersection of

Union (IoU) between the detections on the current frame and the rendered model

masks is computed to build data associations between the current frame detections

and existing object models. Then we track each object model and complete its

geometry by performing a joint optimisation of pose and geometry (Section 5.3.3).

Using estimated poses of the camera and objects, new depth measurements are

fused into an object model and a complete shape geometry can be predicted by

conditioning on the fused model. New objects are created for unmatched detections

by initialising their initial object pose using object prior models.

5.3.3 Joint Optimisation of Object Pose and Geometry

Instead of de�ning an arbitrary canonical space for object coordinates [Xu et al.,

2019], we need to estimate the 7DoF relative transformation, which is composed of

111

5. Object-level Dynamic SLAM with Map Completion

TWOn
and sOn

, to align the initialised object coordinate to the training canonical

space for each object detection in order to take advantage of the learned prior

information.

Initialisation Given an RGB-D frame (IL, DL) and detected object mask Mn, we

predict their positions in the canonical space v and associated con�dences w from

back-projected pointcloud using a modi�ed normalised object correspondence

network Fn from [Rempe et al., 2020]:

CL
v(uL) = �−1(uL, DL[uL]), ∀uL ∈ Mn, (5.3)

Fn (CL
v) → v, w (5.4)

Then we solve the 7-DoF relative transformation, scale sOn
, rotation CCLOn

, and

translation CL
rCLOn

from the predicted correspondence using the Umeyama al-

gorithm [Umeyama, 1991] with SVD decomposition:

argmin
sOn ,TCLOn

∑
uL∈Mn

w (v −
1
sOn

T −1
CLOn CL

v(uL)) . (5.5)

For the latent codes z0 and z1, we use both zero code initialisations. We only

run this pose initialisation step for new unmatched object detections. The initial

pose solved from SVD decomposition, however, is necessary to be close to the

ground-truth canonical pose, due to the unseen shapes or viewpoints, a�ecting the

performance of shape completion.

Coarse Estimation To re�ne object canonical poses from the initial pose pre-

diction, we jointly optimise it with the prior latent code z0 to minimise the 3D SDF

loss ESDF and 2D rendering loss Erender:

Ecoarse = �sESDF + �r0Erender + �z0||z0||. (5.6)

112

5.3. Method

The 3D SDF loss is de�ned to encourage the back-project depth points to align with

the object surface, where the zero SDF value is de�ned

ESDF = ∑
uL∈Mn

F0(
1
sOn

T −1
CLOn CL

v(uL), z0) . (5.7)

We cannot compute SDF residuals for empty space since ground-truth SDF values

are not available at test time. Instead, for the non-surface areas, we use di�erentiable

rendering to encourage the rendered depth DL to be close to the measured depth

D̃L. We compute the rendering loss for the visible 3D space inside the object 3D

bounding box:

Erender = ∑
uL∈Bn

DL[uL] − D̃L[uL], (5.8)

where

DL[uL] =
N

∑
i=1

widi , (5.9)

and wi is the ray-termination probability [Sucar et al., 2020] of sample i at depth di

along the ray from the pixel uL,

wi = oi
i−1

∏
j=1
(1 − oj), (5.10)

and Bn is the 2D bounding box rendering from the estimated object 3D bounding box

on this frame. A continuous occupancy �eld can be extracted from the continuous

prior SDF �eld as proposed in [Wang et al., 2021]:

oi = −
1
2�

F0(
1
sOn

T −1
CLOn (�−1(uL, di)) , z0) , (5.11)

where � is the truncation distance to control the transition.

By freezing the network weight in Fn, the cost function in Equation (5.6) can

be iteratively solved using Gauss-Newton optimisation with analytical Jacobians.

Since the prior shape is not necessarily aligned with the actual observation, it is

unnecessary to sample every pixel ray. Instead, we run this optimisation on sparse

ray samples, which can speed up the optimisation without losing much accuracy.

113

5. Object-level Dynamic SLAM with Map Completion

Dense Re�nement To further align the object pose with the measurement and

to complete the hidden part, we jointly optimise the posterior latent code z1 with

the object pose by minimizing the 3D occupancy loss Eocc on both occupied and

empty space (excluding the unknown 3D space) and a similar 2D rendering loss

Erender:

Erefine = �oEocc + �r1Erender + �z1||z1||. (5.12)

The occupied space is de�ned on the back-projected points and the empty space

is uniformly sampled in the background space as well as the foreground space

before the depth measurement. The occupancy loss is de�ned using the binary

cross-entropy loss between the predicted occupancy value ov using Equation (5.2)

and the ground-truth occupancy values o∗v (0.5 for the occupied space and 0 for the

empty space) for sampled points v inside the occupied and empty space:

Eocc = −∑
v
[ov log(o∗v) + (1 − ov) log(1 − o∗v)]. (5.13)

Similar to the coarse estimation, we can also evaluate the 2D rendering loss using

Equation (5.8). The di�erence is here we use the decoded continuous occupancy

value for the sampled di using Equation (5.2), instead of converting it from the SDF

�eld in Equation (5.11).

5.3.4 Training Setup

The learnable network parameters in this work includes three part, canonical

correspondence network Fn, shape prior network F0, shape posterior network F1.

Figure 5.5 shows the architecture of our canonical correspondence network Fn. It

takes the partial pointcloud CL
v from the depth measurements as input and predicts

its correspondence v in canonical space and the associated con�dence w . We train

the canonical correspondence network using the partial pointcloud generated from

the synthetic shapenet dataset [Chang et al., 2015]. During training, we augmented

114

5.3. Method

PointNet
encoder

PointNet++
encoder Repeated Global

features

Nx1024

spatial local
features

64

Nx3

Input shape

Nx512Nx64

spatiotemporal
local features

Shared MLP (1600
x 1600)

canonical
shape confidence

Nx3 Nx1

𝒗 𝑤

Figure 5.5: The architecture of our canonical correspondence network. The ar-
chitecture is modi�ed from [Rempe et al., 2020]. It extracts global features and
spatiotemporal local features from the PointNet encoder [Qi et al., 2017a] and spa-
tial local features from the PointNet++ encoder [Qi et al., 2017b]. These features are
concatenated and passed to an MLP to regress the canonical shape correspondence
and the associated con�dence.

𝒛!

v

FC+ FC+ FC+ FC+FC+FC+
FC+

512

FC

512 512512512512512

67

1

SDF

FC+

512

Figure 5.6: The architecture of our shape prior network, adopted from
DeepSDF [Park et al., 2019]. The input vector is fed through a decoder, which
contains eight fully-connected (FC) layers with one skip connection. FC+ denotes
a FC with a following softplus activation and the last FC layer output a single SDF
value.

the input pointcloud with random object pose and solve the 7DoF object poses using

Equation (5.5). To help network prediction robust to outliers, we also added random

depth outliers in the pointcloud generation to learn the correspondence con�dence

w in a self-supervised way. The solved pose is compared to the augmented ground-

truth pose and the whole network is trained end-to-end since the estimation is

di�erentiable.

We use the pre-trained o�-shelf network weights for the category-level shape

115

5. Object-level Dynamic SLAM with Map Completion

Occupancy
probability

1

TSDF feature
volume

TSDF confidence
volume

FC

65

3

256

65 65

FC
Resnet

65

32

FC
Resnet

256

32

FC
Resnet

FC
Resnet

FC FC

FC
Resnet

256

32

FC
Resnet

256

32

FC
Resnet

256

32

FC
Resnet

Encoder

Decoder

FC FC FC

Figure 5.7: The architecture of our shape completion network, modi�ed from
CONet [Peng et al., 2020]. The encoder extracts the TSDF feature vector �t[v] ∈ ℝ32

and the TSDF con�dence vector �c[v] ∈ ℝ1 from TSDF feature volume and TSDF
con�dence volume, respectively, and concatenates them with a latent code z1 as
an input to the network. It goes through 3 fully-connected (FC) ResNet-blocks to
extract local latent features, which are then fed into an occupancy decoder [Mes-
cheder et al., 2019] to predict occupancy probabilities on the position vector v.

prior network F0 [Park et al., 2019], which was also trained in the shapenet data-

set [Chang et al., 2015]. Its architecture is visualized in Figure 5.6.

Figure 5.7 shows the architecture of our posterior shape completion network

F1. It takes the input of a TSDF feature volume and a TSDF con�dence volume,

which are extracted separately from a partial TSDF volume and its weight volume,

and predicts a complete object geometry represented in a continuous occupancy

function.

Since the partial observation in reality mostly happens due to self-occlusions and

sometimes also due to occlusions from other objects, we rendered depth maps using

objects in the shapenet dataset [Chang et al., 2015]. We trained the shape completion

network on the rendered depth images to simulate partial depth observations. We

use the occupancy loss de�ned in Equation (5.13) to encourage the completed

shape to be similar to the ground-truth one. Similar to the latent code training in

116

5.4. Experiments

DeepSDF [Park et al., 2019], di�erent object shapes have their own latent codes,

which are trained together with the network. We make di�erent partial observations

of the same object shape share the same latent code.

5.4 Experiments

5.4.1 Quantitative Reconstruction Evaluations

Experimental Setup

We validate the reconstruction quality of our method on object-level surface

reconstruction tasks. We conduct a comparison on the chair category of the

ShapeNet [Chang et al., 2015] dataset. The split of train/val/test sets follows the

same setting in [Peng et al., 2020]. We randomly select 50 models from the test set

to conduct quantitative evaluations. We generate input depth images by rendering

images using uniformly sampled virtual camera viewpoints surrounding the CAD

model. The hyperparameters used in inference optimization are chosen as � = 0.05,

�s = 100, �r0 = 2.5, �z0 = 5, �o = 100, �r1 = 1, and �z1 = 1.

Baseline Methods

To evaluate the object mapping, we compare with the following baseline methods:

• TSDF-fusion: We fuse the depth measurements into a TSDF volume grid as

in [Newcombe et al., 2011a].

• DeepSDF mapping: We use the pre-trained decoder weight in [Park et al.,

2019]. As the shape completion code is not provided, we optimise the SDF

loss on the input pointcloud as well as the empty space constraint proposed

in IGR [Gropp et al., 2020].

117

5. Object-level Dynamic SLAM with Map Completion

• CONet: We use the pre-trained network [Peng et al., 2020] and pass the

accumulated pointcloud in the canonical space to generate the continuous

occupancy �eld where the meshes are extracted.

Metrics

To quantitatively evaluate the quality and completeness of the shape reconstruction,

we use the following metrics:

• IoU: We sample 100k points uniformly in the bounding box and evaluate on

both the reconstructed and the ground-truth meshes whether each point is

inside or outside. The �nal value is the fraction of intersection over union.

Higher is better.

• Chamfer Distance: we sample 100k points on the surface of both the ground-

truth and the reconstructed mesh. We compute the closest points from the

reconstructed to the ground-truth mesh using kD-tree and vice-versa. We

then compute the average of the L1 distances to the closest points in each

direction. Lower is better.

• (In-)completeness: As the completeness of the object map is essential in this

work, we also report completeness, which is the one-way chamfer distance

from the ground-truth meshes to the reconstructed ones. This is to measure

the closest distance from each ground-truth mesh points to the reconstruction.

Lower is better.

Results and Discussions

We quantitatively evaluate how the view number of depth measurement would

impact the reconstruction results of di�erent methods. Figure 5.8 reports the result.

It can be seen that our proposed method consistently show better reconstruction

results from single view depth completion to multiple views. When the view number

118

5.4. Experiments

is limited, classic TSDF-Fusion shows worse result as it can only reconstruct the

visible parts. CONet completes some missing information, but still struggles as it

heavily depends on the input pointcloud. DeepSDF does not condition on the input

and the latent code optimisation can �t the few depth measurement and shows

better completion and reconstruction results. Our proposed method uses both the

input information and shape prior information, yielding best performance. When

more depth measurements are received, TSDF-Fusion and CONet start to �ll in

the missing information while DeepSDF struggles to leverage more measurement

information. Our result also improves since we can also take advantage of the

measurement information. Figure 5.9 shows an examples of reconstruction results

by each method in the view number case of 1, 5, and 10.

5.4.2 Quantitative Tracking Evaluations

Experimental Setup

To quantitatively evaluate the object-level tracking and mapping performance, we

randomly select 10 object models from the test split of the chair category in the

ShapeNet [Chang et al., 2015] and render 200 frames using Blender. To ensure

diversity of object motion, texture, and illuminations, we randomise four point

light sources, camera viewpoint, and object trajectories. We then subsample the

sequences using sampling intervals 1, 2, 4 in order to create small, medium and

large motion subsets.

Baseline Methods

To evaluate the object tracking, we compare with the following baseline methods:

• RGB-D VO: a non-learning-based visual odometry method proposed in [Stein-

brücker et al., 2011], which minimises the photometric loss between two

frames. We re-parametrised it for object tracking.

119

5. Object-level Dynamic SLAM with Map Completion

(a) IoU (b) Chamfer distance (L1)

(c) Completeness

Figure 5.8: Quantitative comparison of reconstruction quality and completion of our
proposed methods v.s. classic TSDF-Fusion, learning-based DeepSDF and CONet.
Our proposed method consistently show better reconstruction results from single
view depth completion to multiple views.

• Point-to-Plane ICP: a non-learning geometric registration method [Rusinkiewicz

and Levoy, 2001]

• Color ICP: a non-learning registration method using both color and geometric

information [Park et al., 2017]

• Prior: a state-of-the-art object pose estimation using DeepSDF shape prior

model. It is originally proposed in [Wang et al., 2021] for static object pose

estimation and we re-parametrised it for estimating moving objects.

• NOCS: a state-of-the-art learning-based canonical correspondence regression

120

5.4. Experiments

Input Pointcloud TSDF-Fusion DeepSDF CONet Ours

1
fr

am
e

5
fr

am
es

10
 fr

am
es

Figure 5.9: Qualitative Results on reconstructions. Our method is superior to all
other methods in completing missing information and reconstructing �ne details.

method. We adapted the network architecture proposed in [Rempe et al.,

2020].

Metrics

To quantitatively evaluate the accuracy of the object tracking, we use the following

metrics:

• ATE: Absolute. Trajectory Error de�ned in [Sturm et al., 2012], in the unit of

of meters

• RPE_t: relative pose error (RPE) metrics in translation de�ned in [Sturm et al.,

2012], in the unit of of metres

• RPE_R: relative pose error (RPE) metrics in rotation de�ned in [Sturm et al.,

2012], in the unit of of degrees

121

5. Object-level Dynamic SLAM with Map Completion

• R_err: mean orientation error on each frame individually, in the unit of

degrees

• t_err: mean translation error on each frame individually, in the unit of metres

The above metrics all indicate better tracking performance when the values are

lower. To analyse the trajectory, we align the �rst frame of the estimated object

pose to the ground-truth canonical space.

Results and Discussions

Table 5.1 reports the experimental results. It shows that our approach consistently

outperforms both the non-learning-based and learning-based methods in small and

large motion situations. For non-learning approaches, RGB-D VO [Steinbrücker

et al., 2011], Point-to-Plane ICP [Rusinkiewicz and Levoy, 2001], and Color ICP [Park

et al., 2017] only leverages the depth and intensity information from two-view

measurements, without taking into account any object shape prior information.

The single view canonical correspondence prediction from NOCS [Rempe et al.,

2020] only considers shape prior information and does not take advantage of the

multiview constraint. Our proposed method instead combines both multi-view

constraint and shape prior information into object pose estimation. Similar to

ours, the shape prior method [Wang et al., 2021] adopts category-level shape prior

from DeepSDF [Park et al., 2019] and uses di�erential rendering to estimate object

poses. However, latent code optimisation cannot necessarily capture the geometry

deviation between training space and test shapes and thus a�ects the accuracy

of pose estimation. It con�rms that the object geometry completion and joint

optimisation can improve the tracking accuracy.

122

5.4. Experiments

method [unit] ATE [m] RPE_t [m] RPE_R [◦] R_err [◦] t_err [m]
Ours 0.030 0.027 3.845 3.931 0.040
Prior 0.044 0.047 8.200 6.269 0.068
RGBD 0.254 0.106 18.47 32.25 0.314
Point2Plane 0.047 0.035 4.672 5.970 0.064
Color ICP 0.254 0.114 29.12 56.18 0.320
NOCS 0.074 0.059 23.46 37.87 0.085

(a) Keyframe gap-1

method [unit] ATE [m] RPE_t [m] RPE_R [◦] R_err [◦] t_err [m]
Ours 0.033 0.032 5.243 4.224 0.043
Prior 0.046 0.052 11.91 8.063 0.063
RGBD 1.068 0.403 30.89 50.95 1.309
Point2Plane 0.070 0.056 8.570 9.384 0.087
Color ICP 0.536 0.351 36.69 60.56 0.568
NOCS 0.074 0.074 21.65 37.78 0.084

(b) Keyframe gap-2

method [unit] ATE [m] RPE_t [m] RPE_R [◦] R_err [◦] t_err [m]
Ours 0.034 0.038 6.767 4.834 0.044
Prior 0.043 0.050 17.20 9.885 0.061
RGBD 1.942 0.866 43.34 68.86 2.177
Point2Plane 0.807 0.442 18.22 20.16 0.892
Color ICP 2.786 1.885 42.73 77.89 2.802
NOCS 0.073 0.085 26.95 35.41 0.083

(c) Keyframe gap-4

Table 5.1: Quantitative evaluation of object tracking method on the synthetic
moving objects dataset.

5.4.3 Timing analysis

We implemented our system in PyTorch. The average inference time for a pair of

RGB-D image in the resolution of 320 × 240 is 1.337s on a RTX 3090 platform. A

more-detailed breakdown of computation time for each component is shown in

Table 5.2a. A further breakdown of computation time on tracking components is

shown in Table 5.2b.

123

5. Object-level Dynamic SLAM with Map Completion

Components Tracking Integration Completion (visualization)
Time (s) 1.284 0.003 0.474

(a) System components
Components Initialization Coarse est. Dense re�nement

Time (ms) 0.643 0.150 1.129
(b) Object tracking components

Table 5.2: Run-time analysis (s)

We would like to highlight that our current implementation is prototyped in

Python. We believe a real-time system can be achieved by exploiting C++ and

further GPU parallelisation.

5.4.4 Qualitative Evaluations

We further demonstrate our proposed method in various real-world scenarios.

Figure 5.10 shows the results in two di�erent scenes. For each input image, we

provide object reconstructions from the currently estimated camera viewpoint to

visualise the observed part and from the top-down viewpoint to visualise the hidden

part. As a qualitative comparison, we also show the reconstructions using classic

TSDF fusion [Newcombe et al., 2011a] and the learned category-level DeepSDF

object prior [Park et al., 2019], it can be seen that TSDF-Fusion can only reconstruct

the visible parts, leaving many empty holes in the object models. DeepSDF, on the

other hand, has watertight reconstructions, but does not match the measurement

necessarily, especially for the objects that deviate from the training space. On the

contrary, our system can maintain highly detailed reconstructions and generate

watertight meshes by �lling in the missing parts using category-level shape priors

thanks to the conditioned completion. Figure 5.11 also shows a scene where our

system can reconstruct the visible parts and complete the hidden information of

a moving object. The object pose and object geometry for the moving object are

optimised jointly.

124

5.5. Conclusions and Discussions

5.5 Conclusions and Discussions

We present a novel approach for object-level dynamic SLAM by incorporating

learned category-level shape priors. It enables to reasonably complete the object

geometry of unseen parts based on the prior knowledge, and provide more robust

and accurate tracking accuracy, even under large frame-by-frame motion and

in dynamic environments with moving human involved. Experimental results

in various scenarios demonstrate the e�ectiveness of our method. We hope our

method paves the way for a deeper understanding of exploring inter-instance

relationships in object-level SLAM and can potentially bene�t the robot applications

of autonomous navigation and path planning.

Extending from what we learned in this work, there can be a few important

directions. First, despite training entirely in synthetic data, our approach general-

ises well to the unseen objects in real-world experiments since our completion is

conditioned on the fused TSDF reconstruction. However, we also observed that the

completion performance would degrade as the target object severely deviates from

the dataset models used in training. Besides, leveraging the category-level shape

prior information requires alignment to the canonical space de�ned in the training

data. However, when only part of an object is observed due to severe occlusions,

the canonical correspondence network proposed in this work may not work well.

Under such circumstances, the initialization of shape and pose becomes a highly

challenging chicken-and-egg problem. Despite not being the focus of this work,

this problem deserves more attention in future work.

125

5. Object-level Dynamic SLAM with Map Completion

In
pu

t

C
on
di
tio
ne
d

co
m
pl
et
io
n

TS
D

F

Camera view Topdown view

D
ee

pS
D

F
pr

io
r

(a) Completion of a red chair

In
pu

t

C
on
di
tio
ne
d

co
m
pl
et
io
n

TS
D

F

Camera view Topdown view

D
ee

pS
D

F
pr

io
r

(b) Completion of a blue chair

Figure 5.10: Qualitative comparison of classic TSDF volume representation (gray),
DeepSDF shape prior representation (blue), and our conditioned completion rep-
resentation (green): our representation can reconstruct the observed part more
correctly than shape prior and complete the unseen part where TSDF representation
fails.

126

5.5. Conclusions and Discussions

In
pu
t

C
on
di
tio
ne
d

co
m
pl
et
io
n

TS
D
F

D
ee
pS
D
F

pr
io
r

Figure 5.11: Segment, track, reconstruct and complete a moving chair. Background
pointclouds are just for visualization.

127

5. Object-level Dynamic SLAM with Map Completion

128

Chapter6
Conclusions

Contents of Chapter

6.1 Summary of results . 129

6.2 Future works . 132

6.1 Summary of results

In this thesis, we have presented several contributions towards advancing visual

object-level SLAM in a dynamic environment by demonstrating their e�ective-

ness qualitatively and quantitatively in synthetic and real-world scenes. We also

discussed their respective limitations and proposed several possible solutions to

address these shortcomings. In this section, we present a summary of the key

contributions and results that have been discussed in greater detail in the previous

chapters.

We �rst present MID-Fusion, a multi-instance dynamic SLAM using an octree-

based volumetric representation, in Chapter 3. We have shown it can robustly

estimate camera poses in dynamic environments and, at the same time, continuously

129

6. Conclusions

estimate geometric, semantic, and motion properties for arbitrary static or moving

objects in the scene. Each object, including the background, is reconstructed

within its own object-oriented octree-based TSDF volume. Semantic classi�cations

predicted independently from each frame are fused into semantic probabilistic

distributions for each object using a simple and e�cient Bayesian update scheme.

Meanwhile, the pose of each existing moving object is estimated using the proposed

object-oriented tracking method, and the camera pose can be robustly tracked

against the static objects and background. Based on the estimated camera pose

and object poses, we run projective data association to associate segmented masks

with existing models and incrementally fuse corresponding colour, depth, semantic,

and foreground object probabilities into each object model. Our system was one of

the �rst to attempt to extend the traditional dense SLAM system to the domain of

object-level dynamic SLAM, paving the way for many subsequent works in this

area.

While the proposed system has been evaluated in experiments and shown to

be e�ective in real-world experiments, it has a few limitations. First, it assumes a

constant lighting condition to perform joint photometric and geometric tracking.

The assumption could be violated by illumination changes in reality. Several other

works, including ours presented in Chapter 4, have attempted to address this issue.

Second, the projective data association method, which has also been widely used

in dense SLAM systems, implies that the camera and objects move slowly. This is

not necessarily valid in practice. There are a few other works adopting di�erent

motion models, such as constant velocity in [Bescós et al., 2021] or a white-noise-

on-acceleration prior in [Huang et al., 2020]. These SLAM systems, however, do not

estimate dense object geometries. More interesting and promising future directions

that can be extended from this thesis will be discussed in Section 6.2.

To strengthen the robustness and accuracy of camera and object pose estimation

under illumination changes and wide baseline situations, we present a novel dense

130

6.1. Summary of results

image alignment method from RGB-D image inputs in Chapter 4. Dense feature

maps and feature-metric uncertainty maps generated from a CNN can formulate a

deep probabilistic feature-metric residual of the two-view constraint. This proposed

probabilistic feature-metric residual can be e�ciently minimised using Gauss-

Newton in a coarse-to-�ne manner. Furthermore, our network predicts an initial

pose for faster and more reliable convergence by re-using the feature maps from

the coarsest pyramid level. The whole pipeline can be trained end-to-end since the

optimisation steps are di�erentiable. We have experimentally demonstrated that our

method outperforms state-of-the-art methods in both learning and non-learning

domains. We also show our approach can easily couple the proposed feature-

metric residual with other residuals without manually scaling weight thanks to its

probabilistic essence.

We learned from Chapter 4, have learnt that the deep features and feature-metric

uncertainties can yield superior performance than raw pixel intensities in dense

image alignment. Although we developed a prototype visual odometry system

in our experiments, this can only be seen as part of a front-end component in a

direct SLAM system. We expect that adding a back-end component, for example,

factor graph optimisation of deep features with multi-view constraints, can further

boost the performance. Several recent papers have also looked into this direction.

Droid-SLAM presents a novel sparse SLAM system that is composed of a learning-

based optical �ow front-end and a back-end bundle adjustment (BA) layer [Teed

and Deng, 2021]. Both the front-end and the back-end components are learned

together in an end-to-end way with supervision from ground-truth poses, similar

to what we did in Chapter 4. [Yoon et al., 2021] demonstrates that deep features and

uncertainties may also be learned without supervision from ground-truth poses.

Although they only demonstrate it in 3D lidar odometry, it should also be feasible

to learn deep features for visual odometry in a similar way.

The �nal contribution, presented in Chapter 5, extends MID-Fusion (presented

131

6. Conclusions

in Chapter 3) by incorporating shape prior into object map representations. We

proposed a novel object-level SLAM system that can segment, track, reconstruct,

and complete objects in dynamic scenes. The full object shape is predicted by

conditioning on the measured depth and category-level shape prior. We proposed a

joint optimisation for object pose and shape latent representation using geometric

and di�erential rendering residuals towards its shape prior and completed geometry.

Synthetic and real-world experiments have demonstrated that completed object

geometry using shape prior can indeed improve the object reconstruction quality

and lead to better object tracking accuracy.

6.2 Future works

This thesis has presented several contributions towards bringing deep learning to

object-level dynamic SLAM. However, this thesis is not an exhaustive evaluation

for all possible directions in this area. We believe object-level SLAM in a dynamic

environment is critical for spatial AI and to enable intelligent robots to interact

with real-world, especially in the scenes with humans. We hope the work presented

in this thesis can open up new paths for future research. This section highlights

some of possible directions.

Benchmark dataset for object-level dynamic SLAM

Despite the fast progress in the object-level (dynamic) SLAM research, there are very

few public benchmark datasets available for researchers to test and benchmark their

SLAM algorithms. Existing datasets for visual SLAM, such as ICL-NUIM [Handa

et al., 2014] and TUM RGB-D datasets [Sturm et al., 2012], do not contain ground-

truth object motion trajectories or ground-truth object reconstructions. [Judd and

Gammell, 2019] introduced the oxford multimotion dataset, which collected several

ground-truth object trajectories using motion capture markers. It includes di�erent

motion patterns and occlusions. However, object motion there only contains swing

132

6.2. Future works

movements caused by gravity and 2D vehicle motion, lacking the important object

motion pattern caused by human interactions. As well, there has not been a widely

used object reconstruction benchmark. Existing dense visual object-level dynamic

SLAM [Rünz and Agapito, 2017, Xu et al., 2019] mainly use their own synthetic

dataset, which however only contains a few sequences. A dataset that contains

various ground-truth object trajectories and ground-truth object models will be

ideal. Generating synthetic datasets is easier as large-scale object models, such as

ShapeNet [Chang et al., 2015], are easier to get access. On the other hand, real-world

sequences containing sensor noise, motion blur, real-world object interaction with

humans [Batra et al., 2020] are also important for SLAM benchmarks. It will be an

important direction to release a dataset that includes both synthetic and real-world

dynamic scenes.

Alternative object tracking methods

We have explored three object tracking algorithms in this thesis. They are all in

the category of direct tracking approaches, with two (Chapter 3, Chapter 5) using

frame-to-model tracking and one (Chapter 4) using frame-to-frame dense image

alignment to estimate the relative transformation of object poses. However, we also

noticed several alternative options to perform object tracking. One way is to do

sparse indirect tracking, such as [Bescós et al., 2021, Wen and Bekris, 2021], which

also contain a pose graph (in [Wen and Bekris, 2021]) or pose graph optimisation

(in [Bescós et al., 2021]) to utilise multi-view constraint. Concurrently, [Teed and

Deng, 2021] proposed a dense in-direct visual SLAM algorithm by learning feature

correspondences using optical �ow and constructing a bundle adjustment layer

to perform global optimisation. We believe a similar dense-indirect method can

also be developed for object tracking, bene�ted by the fast advancement in modern

learning-based optical �ow algorithms. Object prior information can also be brought

into the optimisation constraints. Besides, most object tracking methods discussed

133

6. Conclusions

before operate on discrete-time, returning estimations at �xed time stamps. It

is also possible to estimate the continuous trajectories of the moving objects by

also taking velocities and accelerations into account. This can impose additional

physical constraints, e.g. non-holonomic motion constraints, and potentially also

help tackle objects with fast motion and temporal occlusions.

Sensor fusion for object-level SLAM

This thesis develops object-level SLAM using an RGB-D sensor. It is also worth

considering developing object-level SLAM systems with di�erent sensor inputs.

For example, IMU data can be fused with the camera input to further increase the

robustness and accuracy of the sensor pose estimation, even under a dramatically

changing environment. To track fast-moving objects, such as a ball thrown by

people, we can also take advantage of an event camera, which o�ers lower latency,

higher dynamic range, and lower power consumption than a normal camera. With

the fast advancement of depth prediction accuracy from monocular camera images,

we may also be able to get rid of the depth sensor and build a monocular version of

the systems presented in this thesis.

Alternative map representations

As always being the core of SLAM, the choice of map representation a�ects the

design of the SLAM system. This thesis has explored the choice of octree-based

TSDF volume, continuous SDF �eld, continuous occupancy �eld, and also the

combination of them. As one of the hottest directions at the time of writing, neural

radiance �eld [Mildenhall et al., 2020] has been adopted in many �elds, including

object-level SLAM [Yuan et al., 2021]. However, [Yuan et al., 2021] can only one

foreground object and requires multiple camera rigs as input sensors. It is expected

that the neural radiance �eld will also be extended to the multi-instance dynamic

object SLAM �eld. We can also learn the inter-instance relationship for objects

134

6.2. Future works

in the scene. One example is shown in [Wald et al., 2020], where scene graph

representation can be learnt for semantic representations.

Physical constraints in real world environments

This thesis presents several contributions to detecting, tracking, reconstructing,

and completing objects in the scene. Although we can process multiple objects

simultaneously and create an object-level map, each object is handled independently.

The constraints and the relationships among objects are not explored yet in this

thesis. With the advancement of 3D modelling of object geometries in dynamic

scenes, we can also further infer the underlying physics of the 3D world and,

importantly, bring these constraints into the optimisation. For example, we would

expect the geometry of objects to not collide with each other. We should also expect

that the motion of objects should respect certain physical rules, such as momenta,

friction, and gravity. These physical properties can be, in turn, introduced into the

geometry optimisation.

Integration with other robotics components

An object-awareness of the surrounding environment is important for intelligent

robots to interact with the world. There are several potential robotic applications

using our object-level SLAM systems. As our system demonstrates strong robust-

ness and accuracy in dynamic indoor scenarios, a direct application will be to

combine the SLAM systems with indoor navigation to enable an autonomous robot

to reconstruct the room-scale environment or category-speci�c objects without

requiring humans to leave the scene. Since our SLAM can handle moving objects

and persons, the robot can co-exist with humans without disturbing their activities

and thus the environment map can be updated spatially and temporally.

The prediction of object complete geometry in Chapter 5 suggests that it is

sometimes unnecessary to have complete observations to reconstruct objects. Such

135

6. Conclusions

object mapping and predictions may help robots better plan and navigate in a

clustered indoor environment. Also, di�erent object categories often correlate to

the �oorplan. For example, a sofa is usually located in the living room and a bed is

usually located in the bedroom. Such high-level abstract of object-level location

prior can also help robots better navigate in the indoor environment. We have

already witnessed some progress [Chaplot et al., 2020] in this area. However, their

mapping is static and based on 2D occupancy. We believe our mapping and tracking

systems can further advance this area of research.

By analogy, our object-level dynamic SLAM can also be applied for manipulation

and grasping tasks. As demonstrated in Chapter 3 and Chapter 5, our system can

continuously track and fuse the geometric, semantic, and motion properties for

every observed object. Having an awareness of the complete object geometry can

help a robotic arm to navigate towards a goal. It also means that robot arms no

longer need to wait for the objects to be static and then execute the tasks. It is also

possible to conduct some collaboration tasks between human and robot arm(s).

136

Bibliography

Bibliography

[Baker and Matthews, 2004] Baker, S. and Matthews, I. (2004). Lucas-Kanade 20

years on: A unifying framework: Part 1. International Journal of Computer Vision

(IJCV), 56(3):221–255.

[Barfoot, 2017] Barfoot, T. D. (2017). State Estimation for Robotics. Cambridge

University Press.

[Barnes et al., 2018] Barnes, D., Maddern, W., Pascoe, G., and Posner, I. (2018).

Driven to distraction: Self-supervised distractor learning for robust monocular

visual odometry in urban environments. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA).

[Bârsan et al., 2018] Bârsan, I. A., Liu, P., Pollefeys, M., and Geiger, A. (2018). Ro-

bust dense mapping for large-scale dynamic environments. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA).

[Batra et al., 2020] Batra, D., Chang, A. X., Chernova, S., Davison, A. J., Deng,

J., Koltun, V., Levine, S., Malik, J., Mordatch, I., Mottaghi, R., Savva, M., and

Su, H. (2020). Rearrangement: A challenge for embodied AI. arXiv preprint

arXiv:2011.01975.

137

Bibliography

[Bay et al., 2006] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). SURF: Speeded

up robust features. In Proceedings of the European Conference on Computer Vision

(ECCV).

[Bescós et al., 2021] Bescós, B., Campos, C., Tardós, J. D., and Neira, J. (2021).

Dynaslam II: tightly-coupled multi-object tracking and SLAM. IEEE Robotics

and Automation Letters, 6(3):5191–5198.

[Bescós et al., 2018] Bescós, B., Fácil, J. M., Civera, J., and Neira, J. (2018). Dynaslam:

Tracking, mapping and inpainting in dynamic scenes. IEEE Robotics and Auto-

mation Letters.

[Blais and Levine, 1995] Blais, G. and Levine, M. D. (1995). Registering Multiview

Range Data to Create 3D Computer Objects. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 17(8):820–824.

[Bloesch et al., 2018] Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S., and

Davison, A. J. (2018). CodeSLAM — learning a compact, optimisable representa-

tion for dense visual SLAM. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

[Bloesch et al., 2019] Bloesch, M., Laidlow, T., Clark, R., Leutenegger, S., and Dav-

ison, A. J. (2019). Learning meshes for dense visual SLAM. In Proceedings of the

International Conference on Computer Vision (ICCV).

[Bloesch et al., 2016] Bloesch, M., Sommer, H., Laidlow, T., Burri, M., Nützi, G.,

Fankhauser, P., Bellicoso, D., Gehring, C., Leutenegger, S., Hutter, M., and

Siegwart, R. (2016). A Primer on the Di�erential Calculus of 3D Orientations.

CoRR, abs/1606.0.

[Boikos and Bouganis, 2017] Boikos, K. and Bouganis, C.-S. (2017). A high-

performance system-on-chip architecture for direct tracking for slam. In 2017

138

Bibliography

27th International Conference on Field Programmable Logic and Applications (FPL),

pages 1–7.

[Chang et al., 2015] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang,

Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., and Yu, F.

(2015). ShapeNet: An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012.

[Chaplot et al., 2020] Chaplot, D. S., Gandhi, D. P., Gupta, A., and Salakhutdinov,

R. R. (2020). Object goal navigation using goal-oriented semantic exploration.

In Neural Information Processing Systems (NIPS).

[Chen et al., 2013] Chen, J., Bautembach, D., and Izadi, S. (2013). Scalable real-time

volumetric surface reconstruction. In Proceedings of SIGGRAPH.

[Chen and Medioni, 1992] Chen, Y. and Medioni, G. (1992). Object modeling by re-

gistration of multiple range images. Image and Vision Computing (IVC), 10(3):145–

155.

[Çiçek et al., 2016] Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ron-

neberger, O. (2016). 3d u-net: learning dense volumetric segmentation from

sparse annotation. In Proceedings of the International Conference on Medical

Image Computing and Computer Assisted Intervention (MICCAI), pages 424–432.

[Concha and Civera, 2015] Concha, A. and Civera, J. (2015). An evaluation of

robust cost functions for rgb direct mapping. In Proceedings of the European

Conference on Mobile Robotics (ECMR).

[Curless and Levoy, 1996] Curless, B. and Levoy, M. (1996). A volumetric method

for building complex models from range images. In Proceedings of SIGGRAPH.

[Czarnowski et al., 2020] Czarnowski, J., Laidlow, T., Clark, R., and Davison, A. J.

(2020). Deepfactors: Real-time probabilistic dense monocular SLAM. IEEE

Robotics and Automation Letters, 5(2):721–728.

139

Bibliography

[Czarnowski et al., 2017] Czarnowski, J., Leutenegger, S., and Davison, A. J. (2017).

Semantic texture for robust dense tracking. In Proceedings of the International

Conference on Computer Vision Workshops (ICCVW).

[Dai et al., 2017] Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., and Theobalt, C.

(2017). BundleFusion: Real-time Globally Consistent 3D Reconstruction us-

ing On-the-�y Surface Re-integration. ACM Transactions on Graphics (TOG),

36(3):24:1–24:18.

[Dai et al., 2016] Dai, J., He, K., and Sun, J. (2016). Instance-aware semantic seg-

mentation via multi-task network cascades. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

[Davison, 2003] Davison, A. J. (2003). Real-Time Simultaneous Localisation and

Mapping with a Single Camera. In Proceedings of the International Conference on

Computer Vision (ICCV).

[Davison et al., 2007] Davison, A. J., Molton, N. D., Reid, I., and Stasse, O. (2007).

MonoSLAM: Real-Time Single Camera SLAM. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 29(6):1052–1067.

[Dou et al., 2016] Dou, M., Khamis, S., Degtyarev, Y., Davidson, P., Fanello, S.,

Kowdle, A., Escolano, S. O., Rhemann, C., Kim, D., Taylor, J., Kohli, P., Tankovich,

V., and Izadi, S. (2016). Fusion4D: Real-time performance capture of challenging

scenes. In Proceedings of SIGGRAPH.

[Durrant-Whyte and Bailey, 2006] Durrant-Whyte, H. and Bailey, T. (2006). Sim-

ultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms.

IEEE Robotics and Automation Magazine, 13(2):99–110.

[Eade, 2009] Eade, E. (2009). Gauss-Newton / Levenberg-Marquardt Optimization.

http://www.ethaneade.com/optimization.pdf.

140

http://www.ethaneade.com/optimization.pdf

Bibliography

[Eade, 2014] Eade, E. (2014). Lie groups for computer vision. http://www.

ethaneade.com/lie_groups.pdf.

[Eigen et al., 2014] Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth Map Pre-

diction from a Single Image using a Multi-Scale Deep Network. In Neural

Information Processing Systems (NIPS).

[Engel et al., 2017] Engel, J., Koltun, V., and Cremers, D. (2017). Direct sparse

odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI).

[Engel, 2017] Engel, J.-J. (2017). Large-Scale Direct SLAM and 3D Reconstruction in

Real-Time. PhD thesis, Technische Universität München.

[Eslami et al., 2018] Eslami, S. A., Rezende, D. J., Besse, F., Viola, F., Morcos, A. S.,

Garnelo, M., Ruderman, A., Rusu, A. A., Danihelka, I., Gregor, K., et al. (2018).

Neural scene representation and rendering. Science, 360(6394):1204–1210.

[Geiger et al., 2011] Geiger, A., Ziegler, J., and Stiller, C. (2011). Stereoscan: Dense

3d reconstruction in real-time. In Proceedings of the IEEE Intelligent Vehicles

Symposium (IV).

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep

Learning. MIT Press. http://www.deeplearningbook.org.

[Gropp et al., 2020] Gropp, A., Yariv, L., Haim, N., Atzmon, M., and Lipman, Y.

(2020). Implicit geometric regularization for learning shapes. Proceedings of the

International Conference on Machine Learning (ICML).

[Hadsell et al., 2006] Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality

reduction by learning an invariant mapping. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

[Handa et al., 2014] Handa, A., Whelan, T., McDonald, J. B., and Davison, A. J.

(2014). A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM.

141

http://www.ethaneade.com/lie_groups.pdf
http://www.ethaneade.com/lie_groups.pdf
http://www.deeplearningbook.org

Bibliography

In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA).

[He et al., 2017] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask R-

CNN. In Proceedings of the International Conference on Computer Vision (ICCV).

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning

for image recognition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

[Horn and Schunck, 1981] Horn, B. and Schunck, B. (1981). Determining optical

�ow. Arti�cial Intelligence, 17:185–203.

[Hornik, 1989] Hornik, K. (1989). Multilayer Feedforward Networks are Universal

Approximators. Journal of Neural Networks, 2:359–366.

[Hornung et al., 2013] Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and

Burgard, W. (2013). OctoMap: An e�cient probabilistic 3D mapping framework

based on octrees. Autonomous Robots.

[Hu et al., 2019] Hu, L., Xu, W., Huang, K., and Kneip, L. (2019). Deep-slam++:

Object-level rgbd slam based on class-speci�c deep shape priors. arXiv preprint

arXiv:1907.09691.

[Huang et al., 2020] Huang, J., Yang, S., Mu, T.-J., and Hu, S.-M. (2020). Clustervo:

Clustering moving instances and estimating visual odometry for self and sur-

roundings. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

[Huang et al., 2019] Huang, J., Yang, S., Zhao, Z., Lai, Y.-K., and Hu, S.-M. (2019).

Clusterslam: A slam backend for simultaneous rigid body clustering and motion

estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5875–5884.

142

Bibliography

[Innmann et al., 2016] Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., and

Stamminger, M. (2016). VolumeDeform: Real-time Volumetric Non-rigid Re-

construction. In Proceedings of the European Conference on Computer Vision

(ECCV).

[Jaimez et al., 2017] Jaimez, M., Kerl, C., Gonzalez-Jimenez, J., and Cremers, D.

(2017). Fast odometry and scene �ow from rgb-d cameras based on geometric

clustering. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA).

[Jaramillo et al., 2017] Jaramillo, C., Taguchi, Y., and Feng, C. (2017). Direct mul-

tichannel tracking. In Proceedings of the International Conference on 3D Vision

(3DV).

[Judd and Gammell, 2019] Judd, K. M. and Gammell, J. D. (2019). The oxford

multimotion dataset: Multiple se (3) motions with ground truth. IEEE Robotics

and Automation Letters, 4(2):800–807.

[Kahler et al., 2015] Kahler, O., Prisacariu, V. A., Ren, C. Y., Sun, X., Torr, P. H. S.,

and Murray, D. W. (2015). Very High Frame Rate Volumetric Integration of

Depth Images on Mobile Device. In Proceedings of the International Symposium

on Mixed and Augmented Reality (ISMAR).

[Kendall and Gal, 2017] Kendall, A. and Gal, Y. (2017). What uncertainties do we

need in bayesian deep learning for computer vision? In Neural Information

Processing Systems (NIPS).

[Kendall et al., 2018] Kendall, A., Gal, Y., and Cipolla, R. (2018). Multi-Task Learn-

ing Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

143

Bibliography

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A method for

stochastic optimization. In Proceedings of the International Conference on Learning

Representations (ICLR).

[Klein and Murray, 2007] Klein, G. and Murray, D. W. (2007). Parallel Tracking

and Mapping for Small AR Workspaces. In Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR).

[Laidlow et al., 2017] Laidlow, T., Bloesch, M., Li, W., and Leutenegger, S. (2017).

Dense RGB-D-Inertial SLAM with map deformations. In Proceedings of the

IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).

[Leutenegger et al., 2011] Leutenegger, S., Chli, M., and Siegwart, R. (2011). BRISK:

Binary robust invariance scalable keypoints. In Proceedings of the International

Conference on Computer Vision (ICCV).

[Leutenegger et al., 2014] Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and

Furgale, P. (2014). Keyframe-based visual-inertial odometry using nonlinear

optimization. The International Journal of Robotics Research, 34(3):314–334.

[Li et al., 2021] Li, K., Rezato�ghi, H., and Reid, I. (2021). Moltr: Multiple object

localization, tracking and reconstruction from monocular rgb videos. IEEE

Robotics and Automation Letters, 6(2):3341–3348.

[Li et al., 2018a] Li, P., Qin, T., et al. (2018a). Stereo vision-based semantic 3d object

and ego-motion tracking for autonomous driving. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 646–661.

[Li et al., 2018b] Li, W., Saeedi, S., McCormac, J., Clark, R., Tzoumanikas, D., Ye,

Q., Huang, Y., Tang, R., and Leutenegger, S. (2018b). Interiornet: Mega-scale

multi-sensor photo-realistic indoor scenes dataset. In Proceedings of the British

Machine Vision Conference (BMVC).

144

Bibliography

[Li et al., 2018c] Li, Y., Wang, G., Ji, X., Xiang, Y., and Fox, D. (2018c). DeepIM:

Deep iterative matching for 6d pose estimation. In Proceedings of the European

Conference on Computer Vision (ECCV).

[Lin et al., 2019] Lin, C.-H., Wang, O., Russell, B. C., Shechtman, E., Kim, V. G.,

Fisher, M., and Lucey, S. (2019). Photometric mesh optimization for video-aligned

3d object reconstruction. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,

D., Dollár, P., and Zitnick, C. L. (2014). Microsoft COCO: Common objects in

context. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 740–755.

[Liu et al., 2019] Liu, C., Gu, J., Kim, K., Narasimhan, S. G., and Kautz, J. (2019).

Neural rgb(r)d sensing: Depth and uncertainty from a video camera. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

[Liu et al., 2016] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y.,

and Berg, A. C. (2016). SSD: Single shot multibox detector. In Proceedings of the

European Conference on Computer Vision (ECCV).

[Loop et al., 2016] Loop, C., Cai, Q., Chou, P., and Orts-Escolano, S. (2016). A closed-

form bayesian fusion equation using occupancy probabilities. In Proceedings of

the International Conference on 3D Vision (3DV).

[Lowe, 1999] Lowe, D. G. (1999). Object recognition from local scale-invariant

features. In Proceedings of the International Conference on Computer Vision

(ICCV).

145

Bibliography

[Lucas and Kanade, 1981] Lucas, B. D. and Kanade, T. (1981). An Iterative Image

Registration Technique with an Application to Stereo Vision. In Proceedings of

the International Joint Conference on Arti�cial Intelligence (IJCAI).

[Lv et al., 2019] Lv, Z., Dellaert, F., Rehg, J., and Geiger, A. (2019). Taking a deeper

look at the inverse compositional algorithm. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

[MacTavish and Barfoot, 2015] MacTavish, K. and Barfoot, T. D. (2015). At all costs:

A comparison of robust cost functions for camera correspondence outliers. In

Proceedings of the Canadian Conference on Computer and Robot Vision (CRV).

[Majercik et al., 2018] Majercik, A., Crassin, C., Shirley, P., and McGuire, M. (2018).

A ray-box intersection algorithm and e�cient dynamic voxel rendering. Journal

of Computer Graphics Techniques Vol, 7(3):66–81.

[Mayer et al., 2016] Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Doso-

vitskiy, A., and Brox, T. (2016). A large dataset to train convolutional networks

for disparity, optical �ow, and scene �ow estimation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

[McCormac et al., 2018] McCormac, J., Clark, R., Bloesch, M., Davison, A. J., and

Leutenegger, S. (2018). Fusion++:volumetric object-level slam. In Proceedings of

the International Conference on 3D Vision (3DV).

[McCormac et al., 2017] McCormac, J., Handa, A., Davison, A. J., and Leutenegger,

S. (2017). SemanticFusion: Dense 3D semantic mapping with convolutional

neural networks. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA).

[Mescheder et al., 2019] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S.,

and Geiger, A. (2019). Occupancy networks: Learning 3d reconstruction in

146

Bibliography

function space. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

[Mildenhall et al., 2020] Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,

Ramamoorthi, R., and Ng, R. (2020). Nerf: Representing scenes as neural radiance

�elds for view synthesis. In Proceedings of the European Conference on Computer

Vision (ECCV).

[Muller et al., 2021] Muller, N., Wong, Y.-S., Mitra, N. J., Dai, A., and Nießner, M.

(2021). Seeing behind objects for 3d multi-object tracking in rgb-d sequences. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

[Mur-Artal and Tardós, 2017] Mur-Artal, R. and Tardós, J. D. (2017). ORB-SLAM2:

An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras.

IEEE Transactions on Robotics (T-RO), 33(5):1255–1262.

[Nakajima et al., 2018] Nakajima, Y., Tateno, K., Tombari, F., and Saito, H. (2018).

Fast and accurate semantic mapping through geometric-based incremental seg-

mentation. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and

Systems (IROS), pages 385–392.

[Newcombe et al., 2015] Newcombe, R. A., Fox, D., and Seitz, S. M. (2015). Dy-

namicfusion: Reconstruction and tracking of non-rigid scenes in real-time. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

[Newcombe et al., 2011a] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D.,

Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A.

(2011a). KinectFusion: Real-Time Dense Surface Mapping and Tracking. In

Proceedings of the International Symposium on Mixed and Augmented Reality

(ISMAR).

147

Bibliography

[Newcombe et al., 2011b] Newcombe, R. A., Lovegrove, S., and Davison, A. J.

(2011b). DTAM: Dense Tracking and Mapping in Real-Time. In Proceedings of

the International Conference on Computer Vision (ICCV).

[Nicholson et al., 2018] Nicholson, L., Milford, M., and Sünderhauf, N. (2018).

QuadricSLAM: Constrained Dual Quadrics from Object Detections as Land-

marks in Object-oriented SLAM. IEEE Robotics and Automation Letters.

[Nießner et al., 2013] Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M.

(2013). Real-time 3D Reconstruction at Scale using Voxel Hashing. In Proceedings

of SIGGRAPH.

[Noh et al., 2015] Noh, H., Hong, S., and Han, B. (2015). Learning deconvolution

network for semantic segmentation. arXiv preprint arXiv:1505.04366.

[Park et al., 2017] Park, J., Zhou, Q.-Y., and Koltun, V. (2017). Colored point cloud

registration revisited. In Proceedings of the International Conference on Computer

Vision (ICCV).

[Park et al., 2019] Park, J. J., Florence, P., Straub, J., Newcombe, R., and Lovegrove,

S. (2019). DeepSDF: Learning continuous signed distance functions for shape

representation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

[Park et al., 2020] Park, K., Mousavian, A., Xiang, Y., and Fox, D. (2020). Latentfu-

sion: End-to-end di�erentiable reconstruction and rendering for unseen object

pose estimation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

[Parker et al., 1998] Parker, S., Shirley, P., Livnat, Y., Hansen, C., and Sloan, P.

(1998). Interactive Ray Tracing for Isosurface Rendering. In Proceedings of

Visualization.

148

Bibliography

[Peng et al., 2020] Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., and Geiger,

A. (2020). Convolutional occupancy networks. In Proceedings of the European

Conference on Computer Vision (ECCV).

[Platinsky et al., 2017] Platinsky, L., Davison, A. J., and Leutenegger, S. (2017).

Monocular visual odometry: Sparse joint optimisation or dense alternation?

In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA).

[Qi et al., 2017a] Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Pointnet: Deep

Learning on Point Sets for 3D Classi�cation and Segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

652–660.

[Qi et al., 2017b] Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Pointnet++:

Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Neural

Information Processing Systems (NIPS), pages 5099–5108.

[Rempe et al., 2020] Rempe, D., Birdal, T., Zhao, Y., Gojcic, Z., Sridhar, S., and

Guibas, L. J. (2020). Caspr: Learning canonical spatiotemporal point cloud

representations. Neural Information Processing Systems (NIPS).

[Rosinol et al., 2020] Rosinol, A., Abate, M., Chang, Y., and Carlone, L. (2020).

Kimera: an open-source library for real-time metric-semantic localization and

mapping. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA).

[Rosinol et al., 2019] Rosinol, A., Sattler, T., Pollefeys, M., and Carlone, L. (2019).

Incremental visual-inertial 3d mesh generation with structural regularities. In

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA).

149

Bibliography

[Rublee et al., 2011] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011).

ORB: an e�cient alternative to SIFT or SURF. In Proceedings of the International

Conference on Computer Vision (ICCV), pages 2564–2571. IEEE.

[Rünz and Agapito, 2017] Rünz, M. and Agapito, L. (2017). Co-fusion: Real-time

segmentation, tracking and fusion of multiple objects. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA).

[Rünz and Agapito, 2018] Rünz, M. and Agapito, L. (2018). Maskfusion: Real-time

recognition, tracking and reconstruction of multiple moving objects. arXiv

preprint arXiv:1804.09194.

[Runz et al., 2020] Runz, M., Li, K., Tang, M., Ma, L., Kong, C., Schmidt, T., Reid, I.,

Agapito, L., Straub, J., Lovegrove, S., et al. (2020). Frodo: From detections to 3d

objects. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

[Rusinkiewicz and Levoy, 2001] Rusinkiewicz, S. and Levoy, M. (2001). E�cient

Variants of the ICP Algorithm. In Proceedings of the IEEE International Workshop

on 3D Digital Imaging and Modeling (3DIM).

[Salas-Moreno et al., 2013] Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H.,

Kelly, P. H. J., and Davison, A. J. (2013). SLAM++: Simultaneous Localisation

and Mapping at the Level of Objects. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

[Schmidt et al., 2017] Schmidt, T., Newcombe, R., and Fox, D. (2017). Self-

supervised visual descriptor learning for dense correspondence. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA).

[Scona et al., 2018] Scona, R., Jaimez, M., Petillot, Y. R., Fallon, M., and Cremers,

D. (2018). StaticFusion: Background reconstruction for dense rgb-d slam in

150

Bibliography

dynamic environments. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA).

[Shi and Tomasi, 1994] Shi, J. and Tomasi, C. (1994). Good Features to Track. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very

Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings

of the International Conference on Learning Representations (ICLR).

[Sitzmann et al., 2020] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wetz-

stein, G. (2020). Implicit neural representations with periodic activation functions.

In Neural Information Processing Systems (NIPS).

[Sitzmann et al., 2019] Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G.,

and Zollhofer, M. (2019). Deepvoxels: Learning persistent 3d feature embeddings.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

[Steinbrücker et al., 2011] Steinbrücker, F., Sturm, J., and Cremers, D. (2011). Real-

Time Visual Odometry from Dense RGB-D Images. In Workshop on Live Dense

Reconstruction from Moving Cameras at ICCV.

[Strecke and Stuckler, 2019] Strecke, M. and Stuckler, J. (2019). Em-fusion: Dy-

namic object-level slam with probabilistic data association. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[Strecke and Stuckler, 2020] Strecke, M. and Stuckler, J. (2020). Where does it

end?-reasoning about hidden surfaces by object intersection constraints. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

151

Bibliography

[Sturm et al., 2012] Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers,

D. (2012). A Benchmark for the Evaluation of RGB-D SLAM Systems. In

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).

[Sucar et al., 2020] Sucar, E., Wada, K., and Davison, A. J. (2020). NodeSLAM:

Neural object descriptors for multi-view shape reconstruction. In Proceedings of

the International Conference on 3D Vision (3DV).

[Sünderhauf et al., 2017] Sünderhauf, N., Pham, T. T., Latif, Y., Milford, M., and

Reid, I. (2017). Meaningful maps with object-oriented semantic mapping. In

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).

[Tang and Tan, 2019] Tang, C. and Tan, P. (2019). BA-net: Dense bundle adjust-

ment networks. In Proceedings of the International Conference on Learning

Representations (ICLR).

[Tateno et al., 2017] Tateno, K., Tombari, F., Laina, I., and Navab, N. (2017). CNN-

SLAM: Real-time dense monocular slam with learned depth prediction. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

[Tateno et al., 2015] Tateno, K., Tombari, F., and Navab, N. (2015). Real-time and

scalable incremental segmentation on dense slam. In Proceedings of the IEEE/RSJ

Conference on Intelligent Robots and Systems (IROS).

[Teed and Deng, 2021] Teed, Z. and Deng, J. (2021). DROID-SLAM: Deep Visual

SLAM for Monocular, Stereo, and RGB-D Cameras. In Neural Information

Processing Systems (NIPS).

[Thrun et al., 2005] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics.

Cambridge: MIT Press.

152

Bibliography

[Umeyama, 1991] Umeyama, S. (1991). Least-squares estimation of transformation

parameters between two point patterns. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 13(04):376–380.

[Ummenhofer et al., 2016] Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E.,

Dosovitskiy, A., and Brox, T. (2016). DeMoN: Depth and motion network for

learning monocular stereo. arXiv preprint arXiv:1612:02401.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In

Neural Information Processing Systems (NIPS).

[Vespa et al., 2018] Vespa, E., Nikolov, N., Grimm, M., Nardi, L., Kelly, P. H., and

Leutenegger, S. (2018). E�cient octree-based volumetric SLAM supporting

signed-distance and occupancy mapping. IEEE Robotics and Automation Letters.

[von Stumberg et al., 2020] von Stumberg, L., Wenzel, P., Khan, Q., and Cremers,

D. (2020). GN-Net: The gauss-newton loss for multi-weather relocalization. IEEE

Robotics and Automation Letters, 5(2):890–897.

[Wald et al., 2020] Wald, J., Dhamo, H., Navab, N., and Tombari, F. (2020). Learning

3d semantic scene graphs from 3d indoor reconstructions. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

3961–3970.

[Wang et al., 2018] Wang, C., Galoogahi, H. K., Lin, C.-H., and Lucey, S. (2018).

Deep-LK for e�cient adaptive object tracking. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation (ICRA).

[Wang et al., 2003] Wang, C.-C., Thorpe, C., and Thrun, S. (2003). Online simultan-

eous localization and mapping with detection and tracking of moving objects:

theory and results from a ground vehicle in crowded urban areas. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA).

153

Bibliography

[Wang et al., 2019] Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., and

Guibas, L. J. (2019). Normalized object coordinate space for category-level

6d object pose and size estimation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

[Wang et al., 2021] Wang, J., Rünz, M., and Agapito, L. (2021). Dsp-slam: Object ori-

ented slam with deep shape priors. In Proceedings of the International Conference

on 3D Vision (3DV).

[Wang et al., 2020] Wang, R., Yang, N., Stückler, J., and Cremers, D. (2020). Direct-

shape: Photometric alignment of shape priors for visual vehicle pose and shape

estimation. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA).

[Wen and Bekris, 2021] Wen, B. and Bekris, K. E. (2021). Bundletrack: 6d pose

tracking for novel objects without instance or category-level 3d models. In

Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).

[Whelan et al., 2016] Whelan, T., Salas-Moreno, R. F., Glocker, B., Davison, A. J.,

and Leutenegger, S. (2016). ElasticFusion: Real-time dense SLAM and light source

estimation. International Journal of Robotics Research (IJRR), 35(14):1697–1716.

[Wu et al., 2016] Wu, Y. et al. (2016). Tensorpack. https://github.com/

tensorpack/.

[Xu et al., 2021a] Xu, B., Davison, A., and Leutenegger, S. (2021a). Deep probabil-

istic feature-metric tracking. IEEE Robotics and Automation Letters, 6(1):223 –

230.

[Xu et al., 2019] Xu, B., Li, W., Tzoumanikas, D., Bloesch, M., Davison, A., and

Leutenegger, S. (2019). MID-Fusion: Octree-based object-level multi-instance

dynamic slam. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA).

154

https://github.com/tensorpack/
https://github.com/tensorpack/

Bibliography

[Xu et al., 2021b] Xu, B., Ma, L., Ye, Y., Schmidt, T., Twigg, C. D., and Lovegrove, S.

(2021b). Identity-disentangled neural deformation model for dynamic meshes.

arXiv preprint arXiv:2109.15299.

[Yang et al., 2020] Yang, N., von Stumberg, L., Wang, R., and Cremers, D. (2020).

D3VO: Deep depth, deep pose and deep uncertainty for monocular visual odo-

metry. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

[Yoon et al., 2021] Yoon, D. J., Zhang, H., Gridseth, M., Thomas, H., and Barfoot,

T. D. (2021). Unsupervised learning of lidar features for use ina probabilistic

trajectory estimator. IEEE Robotics and Automation Letters, 6(2):2130–2138.

[Yuan et al., 2021] Yuan, W., Lv, Z., Schmidt, T., and Lovegrove, S. (2021). Star: Self-

supervised tracking and reconstruction of rigid objects in motion with neural

rendering. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

[Zhi et al., 2019] Zhi, S., Bloesch, M., Leutenegger, S., and Davison, A. J. (2019).

SceneCode: Monocular dense semantic reconstruction using learned encoded

scene representations. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

[Zhou et al., 2018a] Zhou, H., Ummenhofer, B., and Brox, T. (2018a). Deeptam:

Deep tracking and mapping. In Proceedings of the European Conference on

Computer Vision (ECCV).

[Zhou et al., 2018b] Zhou, Q.-Y., Park, J., and Koltun, V. (2018b). Open3D: A modern

library for 3D data processing. arXiv preprint arXiv:1801.09847.

[Zhou et al., 2017] Zhou, T., Brown, M., Snavely, N., and Lowe, D. G. (2017). Un-

supervised learning of depth and ego-motion from video. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

155

Bibliography

156

	Introduction
	Motivation
	Static SLAM: from Sparse, to Dense, to Semantic
	Dynamic SLAM: from Background Reconstruction to Object-level
	Contributions
	Publications
	Thesis Structure

	Preliminaries
	Notation
	Camera Model
	Transformations
	Nonlinear Least-Squares Optimisation
	Dense Tracking
	Map Representations
	Deep Neural Networks

	Octree-based Object-Level Multi-Instance Dynamic SLAM
	Introduction
	Related Works
	Notations and Preliminaries
	Method
	Experiments
	Conclusions and Discussions

	Deep Probabilistic Feature-metric Tracking
	Introduction
	Related Work
	Method
	Experiments
	Conclusion and Discussions

	Object-level Dynamic SLAM with Map Completion
	Introduction
	Related Works
	Method
	Experiments
	Conclusions and Discussions

	Conclusions
	Summary of results
	Future works

	Bibliography

