
Imperial College London

Department of Computing

Dense Monocular Perception for

Mobile Robotics

Jacek Zienkiewicz

April 2017

Supervised by Prof. Andrew Davison

Co-supervised by Dr Stefan Leutenegger

Submitted in part fulfilment of the requirements for the degree of PhD in

Computing and the Diploma of Imperial College London. This thesis is entirely my

own work, and, except where otherwise indicated, describes my own research.

Dla Jowity

Copyright Declaration

The copyright of this thesis rests with the author and is made available

under a Creative Commons Attribution Non-Commercial No Derivatives licence.

Researchers are free to copy, distribute or transmit the thesis on the condition

that they attribute it, that they do not use it for commercial purposes and that

they do not alter, transform or build upon it. For any reuse or redistribution,

researchers must make clear to others the licence terms of this work.

Abstract

This thesis concerns the problem of providing a mobile robot with detailed

perception of its local environment using a passive, monocular camera. We

embrace the paradigm of dense visual SLAM and bring it to the domain of small,

low-cost robots. This enables us to directly use information collected from all

pixels in an image and create dense reconstructions of environments.

We present a complete and self-contained perception system that allows

a mobile robot to estimate its ego-motion, perform infrastructure-free auto-

calibration and build, in real-time, a detailed map of its environment in the

form of a height map from a single, monocular camera. Our system is capable of

providing a robot with accurate information in a form directly suitable for local

navigation and obstacle avoidance. By adopting more restrictive, task-oriented

models and using the domain knowledge about our applications we were able

to improve performance and robustness. Furthermore, when designing our

algorithms, we put a great emphasis on methods that can be e�ciently and in a

straightforward manner implemented on parallel architectures, and therefore

we can achieve excellent scalability in terms of resolution of input images and

environment representation. We believe that this work o↵ers a promising route

to a truly usable real-time monocular dense SLAM system for mobile robots.

Acknowledgements

This work would not have been possible without the help and encouragement

of many people to whom I am eternally grateful.

First, I would like to thank to my supervisor, Professor Andrew Davison,

who provided me with this amazing opportunity, together with his trust and

support throughout my studies, as well as the patience and freedom to explore

and learn. Pursuing a PhD was one of my biggest dreams and working under

Andy’s supervision has been a life-changing experience. I am also very grateful

to my second supervisor, Dr Stefan Leutenegger, for all his guidance during my

final two years of study. Stefan’s advice, new insights and perspectives have

been highly important for the successful completion of my PhD.

During my studies in London I was very fortunate to meet many brilliant

people and it was a great experience to work with them. Special thank you go to

Robert Lukierski for being a fantastic friend and lab mate, and for being honest,

trustworthy and always willing to help. Thanks are due to Ankur Handa for

his willingness to patiently explain and demystify even the most sophisticated

mathematical tools and concepts. Ankur’s help was fundamental and invaluable

to my progress and development as a researcher, especially during the first two

years. I would like to thank to other other colleagues and friends from my lab

and Imperial College London, especially Akis Tsiotsios, Jan Jachnik, Sanjay

Bilakhia, John McCormac and Renato Salas-Moreno, for the many fruitful

discussions, advice, collaboration and encouragement they provided. I really

appreciate the support I received from Hauke Strasdat and Steven Lovegrove at

the very beginning of my PhD. I am also grateful to the people who helped even

before I started my PhD, and supported me in my preparation for the research

I have undertaken at Imperial, in particular, Marcus Moe, Stuart Du↵, Emily

Jordening, Ana Plata, and Sira Gonzalez.

Finally, I would like to express my sincere gratitude to all my family. Thank

you to my mum, for all the love, faith, and support she gave me to follow my

passions and dreams — dziekuje mamo! I owe a huge amount to my wonderful

wife Jowita, to whom I dedicate this thesis; thank you for your patience, years

of sacrifice and unconditional support.

The research presented in this thesis has been funded by Dyson Technology

Ltd., for which I am very grateful.

Contents

Contents

1 Introduction 1

1.1 Objectives and Motivation . 1

1.2 Dense, Monocular Vision: Challenges and Opportunities 4

1.3 Computer Vision and Robot Perception 8

1.4 Publications . 13

1.5 Thesis Outline . 14

2 Preliminaries 17

2.1 Visual SLAM System for a Mobile Robot 17

2.2 Camera Model . 21

2.3 Depth Map Estimation . 23

3 Dense Planar Visual Odometry 33

3.1 Introduction . 33

3.2 Related Work . 36

3.3 Tracking using Full Image Alignment 37

3.4 Tracking with a Plane Induced Homography 41

3.5 Planar Visual Odometry . 42

3.6 Experiments . 49

3.7 Conclusion . 55

4 Auto-calibration for Visual Odometry 57

4.1 Introduction . 57

4.2 Related Work . 59

4.3 Preliminaries . 60

4.4 Vision-based Calibration . 61

4.5 Graph-based Calibration . 63

vii

Contents

4.6 Experiments . 70

4.7 Conclusions . 85

5 Height Map Fusion from Depth Maps 87

5.1 Introduction . 88

5.2 Background . 89

5.3 Height Map Estimation Preliminaries 94

5.4 Simple Height Map Fusion . 97

5.5 Fusion into a Triangular Mesh . 101

5.6 Iterative Solvers . 106

5.7 Recursive Estimation . 114

5.8 Discussion . 114

6 Surface Reconstruction using Di↵erentiable Rendering 117

6.1 Introduction . 118

6.2 Literature Review . 121

6.3 Incremental Surface Reconstruction based on a Generative Model . . 123

6.4 Nonlinear Solvers . 132

6.5 Implementation . 135

6.6 Experiments and Evaluation . 136

6.7 Conclusions and Discussion . 140

7 Multi-scale Surface Reconstruction using Dynamic Level of Detail 145

7.1 Introduction . 146

7.2 Related Work . 147

7.3 Dynamic Level of Detail and Multi-scale Surface Representation . . 149

7.4 Multi-scale Surface Reconstruction 156

7.5 Implementation Details . 158

7.6 Experiments . 161

7.7 Conclusions . 169

8 Conclusions 171

8.1 Contributions . 171

8.2 Discussion and Future Research . 173

Bibliography 177

viii

Chapter 1

Introduction

Contents

1.1 Objectives and Motivation . 1

1.2 Dense, Monocular Vision: Challenges and Opportunities 4

1.2.1 Monocular vs. depth and stereo cameras 4

1.2.2 Dense vs. feature-based methods 6

1.3 Computer Vision and Robot Perception 8

1.4 Publications . 13

1.5 Thesis Outline . 14

1.1 Objectives and Motivation

Cameras are widely considered as a very attractive and suitable sensing modality

for mobile robot perception and SLAM (Simultaneous Localisation and Mapping),

and after decades of active research we are now seeing increasingly more significant

deployments of robotic systems for real-world applications which actively utilise

computer vision. Motivating examples for our study are in particular systems

in the domain of low-cost robotics aiming at mass-market service tasks, like the

recently introduced robotic vacuum cleaners Dyson 360Eye™ (Fig. 1.1) and iRobot

Roomba® 980. These robots utilise monocular cameras and build sparse maps of

their environments in order to perform localisation and execute e�cient cleaning

patterns. However, for robust operation, the robots still have to employ a collection

of additional sensing modalities including bump sensors and PSD (Position Sensitive

Device) for short range obstacle detection and avoidance.

1

1. Introduction

Figure 1.1: The Dyson 360Eye™ robotic vacuum cleaner and similar domestic robots
are motivating examples for our study in which we address the question of whether
a single camera can provide a mobile robot with enough capabilities to perform
autonomous navigation and mapping. (Image reproduced courtesy of Dyson.)

Advancing commodity processing power, particularly from GPUs (Graphics Pro-

cessing Unit), together with algorithmic improvements, have enabled various recent

demonstrations of real-time dense 3D reconstruction from monocular video. A

typical approach to live, dense monocular reconstruction builds upon 3D camera

motion tracking, followed by high quality multi-view depth map estimation and

fusion into a generic 3D representation such as a TSDF (Truncated Signed Distance

Function) or surfel cloud. Clearly, robotics applications can draw inspiration from the

Dense Tracking and Mapping (DTAM) [Newcombe et al., 2011b; Newcombe, 2012]

approach and many systems presented in this vein have been impressive, however,

we note that there are relatively few examples of moving beyond showing real-time

dense reconstruction towards using it in specific real-world applications, for example

for vision-based only navigation. The reasons for that are manifold: monocular

reconstruction pipelines are commonly perceived as complex, requiring significant

parameter tuning, and they are heavyweight and lack robustness in challenging con-

ditions. Furthermore, the reconstructions are often in a form which needs substantial

further processing before they could be applied for any in-the-loop use by a robot,

such as path planning or obstacle avoidance. In addition, reconstructing and tracking

the world in full 3D might simply not be necessary or computationally justified, for

2

1.1. Objectives and Motivation

example for a mobile robot moving on the floor in a domestic environment.

In this thesis we adopt the core concepts of dense monocular tracking and mapping,

and bring it to the domain of small, low-cost robots. Specifically, we build a real-time

system that can provide a robot with a high-quality and detailed geometric perception

of its local environment using only a single moving camera. We will rely on carefully

chosen models and parameterisation as well as the domain knowledge in order to

achieve robustness and address some of the above-mentioned challenges. When

designing our system we put great emphasis on algorithms and implementations that

make e�cient use of highly parallel computing architectures, currently provided via

commodity GPUs. We consider this as a strength and a key to the e�ciency and

scalability of our approach, as it allows us to embrace the paradigm shift in processor

architectures and now ubiquitous parallel computing. Most of the recent advances

in computing come from parallel and heterogeneous architectures and we expect

this trend to continue. If one considers the embedded computing platforms we can

anticipate on low-cost mobile devices, it is strongly likely that massively parallel

GPU-like, FPGA-like or specialised DSP units will o↵er the dominant low-power

processing resource and parallelisable algorithms will increasingly come to the fore.

We will show that a dense and parallelisable vision approach to robot SLAM using

a single camera can potentially play the key role in many of the capabilities required

for autonomous navigation, ego-motion estimation, depth estimation as well as depth

and colour fusion. We intentionally try to use a single camera to solve as many

aspects of robot autonomy as possible. From a robot perspective, the system is

self-contained, and includes infrastructure-free auto-calibration. In principle it allows

us to take any camera, put it on the robot and start autonomous operation.

Although our focus is to use this system for a mobile robot moving in a typical

indoor environment, certain elements of our system are quite general and capable

of performing SLAM and 3D reconstruction in more general settings. We present

particular solutions for each subsystem, i.e. camera tracking, depth map estimation

and depth map fusion, but the overall architecture is quite flexible, and individual

components in the pipeline can be (and sometimes will be) exchanged for other

methods. For example, instead of using dense image alignment for camera tracking,

one can rely on a feature-based tracking system, or completely skip depth map

estimation and use a depth or stereo-camera instead.

3

1. Introduction

1.2 Dense, Monocular Vision: Challenges and

Opportunities

There are various di↵erent approaches to real-time visual SLAM and in this thesis

we build on the core concepts centred around dense and monocular methods. In

general, by dense and monocular methods we understand approaches that build

dense maps of an environment using a single, passive camera. This is in contrast to

sparse methods that usually reconstruct the world in the form of spare point clouds

of features, and methods that rely on stereo and depth cameras. In this section we

will discuss the key characteristics and challenges associated with a dense, monocular

approach and compare it with alternative techniques.

1.2.1 Monocular vs. depth and stereo cameras

The term monocular describe a system that uses only a single, passive (RGB or

greyscale) camera. Performing visual SLAM using a monocular camera only is a

very challenging problem, because in contrast to vision systems that use e.g. two

synchronised cameras in a stereo setup, or time-of-flight sensors to infer depth, in

monocular systems, structure of the scene has to be estimated from camera motion.

With the increasing availability of relatively cheap and advanced depth cameras

(e.g. Intel RealSense, Microsoft Kinect, PMD pico flexx Time-of-Flight camera), one

can challenge the motivation behind monocular systems. Even the cost of equipping

a robot with an additional image sensor can seem quite negligible, compared to the

potential benefits that a stereo system can o↵er: from a stereo pair of images, the

3D structure of a scene can be calculated immediately without the need for the

robot to move. Whilst active depth and stereo cameras have many advantages, in

certain circumstances passive systems can be preferred. We will discuss the strengths

and weaknesses of the monocular approach to visual SLAM and will argue that a

monocular system still has many interesting properties compared to depth and stereo

cameras that can justify its use.

One of the first appealing characteristics of a monocular SLAM system is its

simplicity and accessibility. It is very straightforward to create and experiment with

such a computer vision system, as all that is required is a single camera connected to

a processing unit, such as a laptop computer. By avoiding the hardware complexity

associated with depth and stereo cameras (e.g. there is no need for synchronisation

4

1.2. Dense, Monocular Vision: Challenges and Opportunities

between the imaging modules as in stereo vision), the full SLAM system can be

realised in a very compact form-factor and at a lower cost. In general, this makes

the deployment of monocular systems easier, as the algorithms can be implemented

using already existing, ad-hoc cameras, and do not require (sophisticated) hardware

upgrades.

There are other scenarios where passive systems are preferred over depth cameras,

for example due to power consumption or outdoor use. Depth cameras typically

require power intensive active illumination, which increases the thermal budget

needed for operation, and they tend to not work robustly in strong ambient light,

which occurs in typical outdoor settings.

While depth camera technology will surely continue to improve, the resolution and

frame-rate of current depth sensors is still quite limited. In that respect monocular

systems are more flexible and are mainly limited by computational power. A single

camera paired with direct and dense methods (that we will discuss in the next

section) can result in highly scalable algorithms that can o↵er interesting trade-o↵s

when camera frame-rate and resolution are varied [Handa et al., 2012].

Depth cameras are able to perform direct measurements of the 3D world structure

but have limited operation range. On the other hand, monocular systems are

inherently scale-agnostic, which means that it is impossible to measure the absolute

scale of the camera motion or of the reconstructed scene. This can be seen as a

limitation, but we consider it as one of the greatest properties of monocular systems,

because unlike time-of-flight systems and stereo cameras, there are no limits on

minimal and maximal range of estimated depth — it allows the same method to be

applied both to planetary surface reconstruction as to close-up reconstructions. A

monocular system is e↵ectively a variable baseline stereo, and we can use multiple

and various baselines by actively moving the camera. This is a property that we will

particularly exploit to obtain high quality detailed reconstructions. By combining

multiple frames for multi-view stereo we therefore obtain more robust and higher

quality results than by using standard two-view stereo.

Clearly, there are several limitations of monocular passive systems as well. Ob-

viously, passive system do not work in darkness, and a robot using a monocular

system will be required to move in order to perceive the world in 3D. Furthermore,

in monocular depth estimation we usually assume that the scene is static between

5

1. Introduction

individual frames. One of the main drawbacks of passive systems is that they rely on

natural texture for both tracking and depth estimation. This problem can be at least

partially tackled by improving the quality of input data, for example, by increasing

the resolution or using better sensors with higher signal-to-noise ratio. Alternatively,

one can increase the amount of data and use multiple frames as described above.

A very interesting research direction and possibility for future work is in creating

a system that combines the advantages of depth/stereo cameras together with the

best properties of a monocular system. Clearly the sensing modalities can be very

complementary, and possibly with other sensors like Inertial Measurement Units

(IMU) can allow for creating truly robust and power-e�cient SLAM systems. In fact,

many of the methods described in this thesis, although designed for a monocular

system, can be almost directly used with a stereo/depth camera. This shows

that developing a monocular system could help us understand and develop better

algorithms for depth cameras. For example we could use multi-view stereo techniques

to enhance the output of a depth or stereo camera in order to fill-in missing data or

enable its operation at very short distance range, or under strong ambient lighting.

1.2.2 Dense vs. feature-based methods

Apart from building a monocular camera SLAM system, we also aim at using so-

called “dense” methods. By dense methods we understand here approaches that

allows us to build dense models of environment, but also during the estimation try

to directly use image information collected from all pixels. For the above reason,

although not necessarily synonymous, the term “dense” is sometimes also used to

describe “direct” methods. This is in contrast to so-called “feature-based methods”

which, during estimation, rely only on a sparse set of distinct features extracted

from each image separately. The di↵erence between “direct” and “feature-based”

approaches is probably best defined by [Irani and Anandan, 1999] who use the term

“direct” to describe methods which recover the unknown parameters, by minimise

a cost function based on measurable image quantities collected from all pixels in

the image (e.g. image brightness, or brightness-based cross-correlation etc.). On the

other hand, the “indirect” or “feature-based” methods, determine the motion and

shape by minimising an error measure based on distances between corresponding

features identified in each image. An example of a direct and dense approach is the

Lucas-Kanade method [Lucas and Kanade, 1981] for image alignment, whereas a

6

1.2. Dense, Monocular Vision: Challenges and Opportunities

representative feature-based approach is Bundle Adjustment [Triggs et al., 1999].

The discussion regarding the advantages and disadvantages of direct and feature-

based methods has a long tradition in the computer vision community [Sawhney

et al., 1999], and both approaches have achieved many significant contributions to the

field. In particular, in the area of single camera tracking most of the early progress

was possible due to feature-based methods [Davison, 2003; Klein and Murray, 2007].

In recent years, due to novel cameras like Microsoft Kinect and parallel processors,

researchers concentrated increasingly on direct and dense methods. There is still

ongoing research on monocular camera tracking and mapping, and most of the state-

of-the-art SLAM systems utilise ideas from both indirect and direct methods, e.g.

Semi-direct Visual Odometry (SVO) [Forster et al., 2016] or the method presented by

[Engel et al., 2016] which is the first system that is both direct and sparse. On the

other hand, one of the best performing, easy to use and robust systems right now,

ORB-SLAM [Mur-Artal et al., 2015], is a feature-based method. Which methods and

approach one eventually uses depends on many circumstances, such as the camera

used, application area and even quality of engineering. Although we do not restrict

ourselves to any paradigm and in fact we will also use feature-based tracking in some

of our experiments (Chapter 7), for the reasons described below in this research we

are mostly interested in direct and dense methods.

One of the advantages of direct methods is that they naturally lead to dense

reconstructions that is of a great practical importance for mobile robot perception.

Maps created by feature-based methods are typically too sparse for any practical use

in robot navigation, such as obstacle detection and avoidance, and any reasoning

about semantic information, such as free space. On the other hand, by using all

pixels in the image, direct methods can achieve much higher measurement density,

and create models of the environment that are directly usable for a mobile robot.

We will refer to the term dense, instead of direct, to describe our approach as it is

more general and emphasises our interest in not only using all pixels but creating

dense models.

Another important characteristic of direct methods is that they tend to be more

robust compared to feature-based methods under many conditions that we will

encounter in our settings, e.g. image degradation due to motion blur, or highly

repetitive textures. Furthermore, by explicitly using contributions from all pixels in

the image, even in relatively textureless areas where indirect methods struggle to

7

1. Introduction

extract features, direct methods still can perform well and robustly.

As mentioned, in our approach we aim at exploiting the power of parallel computing,

and we believe that direct and dense methods are best suited for very e�cient

implementations on parallel processors like GPUs. In general, direct methods tend

to be simpler and easier to understand and execute as they consist of many relatively

straightforward computations on small independent data bits (pixels) which can be

easily run concurrently. Even when parallel processing is not available, direct and

semi-direct methods can be implemented e�ciently on conventional processors as

demonstrated, for example in [Engel et al., 2013; Kerl et al., 2013; Forster et al.,

2014].

There are also very interesting challenges and open research questions related to

dense and direct methods. For example, despite certain attempts [Whelan et al.,

2015], loop-closure is still an unsolved problem for fully dense methods. Furthermore,

whereas elegant solutions exist for multi-sensor fusion involving feature-based methods

and e.g. IMU [Leutenegger et al., 2014], given di↵erent sensor characteristics, fusing

an IMU with measurements from a visual front-end that is based on a direct method is

still an open research problem. Finally, we believe that the direct and dense paradigm

to visual SLAM is in the best position to embrace the deep learning revolution in

computer vision. Future SLAM systems will very likely enhance their robustness and

versatility thanks to elements of deep learning and end-to-end training combined

with the fundamental ingredients of direct methods.

1.3 Computer Vision and Robot Perception

In the following we will present a brief review of the history of robot perception and

visual SLAM which has inspired the work in this thesis. A more detailed review of

related work is included in the individual chapters.

Computer vision has been used for robot perception from the early days of mobile

robotics, starting with the seminal work by Moravec [Moravec, 1977, 1980], who first

presented an impressive system that allowed a robot to drive autonomously through a

cluttered environment guided only by an on-board camera. The robot was equipped

with a single camera that was actively moving to obtain stereo information and

estimate the 3D locations of obstacles. The system incorporated and implemented

all relevant functionalities required for vision based autonomous operation, including

8

1.3. Computer Vision and Robot Perception

automatic camera distortion calibration, vision based ego-motion estimation, stereo-

based depth estimation and obstacle detection as well as mapping. Based on the

information obtained from the vision system, the robot was able to plan and execute

its motion and perform obstacle avoidance. Similarly to our work, Moravec’s system

was concerned with geometric perception rather than semantic understanding of the

environment.

Moravec’s work lead to further research in the field of visual perception for autonom-

ous robot navigation, but progress was much slower than originally anticipated. The

robotics systems of the 1980s and 1990s, although conceptually impressive, had quite

limited capabilities and were able to operate successfully only in highly constrained

environments and under a significant amount of human supervision. One of the

major limiting factors of those systems was the lack of su�cient processing power (as

already observed by Moravec himself), but the systems were also inherently limited

due to deficits in the low-level vision components relied upon. This is one of the

reasons why much of the research in the following years was focused on reliable and

fast low level visual techniques, such as feature detection and matching.

Vision continued to be an integral part of robot perception, but because of the

above mentioned limitations, in order to act independently in more complicated

surroundings, robots had to rely on a variety of sensors, including sonars [Elfes, 1987;

Durrant-Whyte, 1994] and laser range finders, as well as odometry from wheels and

IMU. Passive vision was mainly used in stereo setups e.g. [Krotkov et al., 1995]. For

example, Amber, the robotic platform for Planetary Exploration developed in the

1980s [Bares et al., 1989], relied mostly on a laser scanner for obstacle detection and

mapping and used a camera only for the purpose of “semantic” understanding.

The 1990s and 2000s were decades of continuous progress in SLAM, artificial

intelligence and state estimation, and in autonomous driving in general. The signific-

ant advances made in mobile robotics were best demonstrated in very famous and

successful driver-less car competitions: the DARPA Grand Challenge [Thrun et al.,

2006b] and DARPA Urban Challenge [Urmson et al., 2008]. The first challenge was

to build an autonomous robot capable of traversing over 200 km through a desert

terrain in less than 10 hours. The DARPA Urban Challenge required a robot to travel

fully autonomously through an urban environment, and included situations such as

stop intersections, tra�c merges and parking. Although cameras were integral parts

of the perception systems, as for example described in [Leonard et al., 2008], most of

9

1. Introduction

the teams equipped their robots with at least a few laser range finders. Particularly

in terms of accuracy and robustness, laser scanners were superior compared to vision

and were critical for safe and reliable operation. In fact, to some degree we still

see this trend continue today because most autonomous cars being developed now

(with notable examples like Tesla which relies on vision and radar, or MobilEye),

in one way or other rely on laser scanners, e.g. Velodyne, for safety critical issues

and in order to obtain reliable, metric maps of the environment. The era of laser

scanners in robotics was nonetheless very important for computer vision, because,

as we will see later, many algorithms developed for laser scanners, e.g. height map

fusion, can be used in conjunction with the data coming from a passive camera. The

DARPA Grand and Urban Challenge were also great accelerators for progress and

innovation in passive vision. In fact, it is reported that the robot Stanley, winner

of the DARPA Grand Challenge, could maintain its high speed and therefore win

thanks to long-range vision [Dahlkamp et al., 2006].

Independent of the progress in robotics, the computer vision community continued

research in the field of visual SLAM and 3D reconstructions. There are many di↵erent

techniques for obtaining 3D structure from images, including Shape-from-Shading

[Zhang et al., 1999], Shape-from-silhouettes [Fitzgibbon et al., 1998; Hernández

and Schmitt, 2004], Depth-from-Defocus [Nayar et al., 1995], and Space Carving

[Kutulakos and Seitz, 2000]. There exist also methods that perform monocular scene

reconstruction using machine learning techniques, for example based on graphical

models that combine local features with global reasoning [Saxena et al., 2005; Hoiem

et al., 2005, 2008], or are even able to estimate depth maps from a single image using

Deep Networks e.g. [Eigen et al., 2014]. However, the most widely and successfully

used are approaches based on multi-view geometry and Structure-from-Motion. One

reason for this particular success might be that they require the least complex

hardware, and put few constraints on the environment, as well as simultaneously

tackling the problem of not only 3D structure recovery but also camera motion

estimation.

Indeed, existing state-of-the-art image-based geometry reconstruction systems can

deliver remarkable results at large scales e.g. [Agarwal et al., 2009; Frahm et al.,

2010]. These methods perform global optimisation using a multi-stage pipeline

that involves many separate and complex steps, including Bundle Adjustment and

Structure-from-Motion (e.g. Bundler [Snavely et al., 2006], VisualSFM [Wu, 2013],

10

1.3. Computer Vision and Robot Perception

OpenMVG [Moulon et al., 2013]), Multi-View Stereo (e.g. [Goesele et al., 2007],

CMVS [Furukawa and Ponce, 2007], and SURE [Wenzel et al., 2013]) as well as surface

reconstruction (e.g. [Kazhdan and Hoppe, 2013]). MVE [Fuhrmann et al., 2014] is an

example of a system that incorporates all of these parts in a single framework, but

still as distinct stages each of which performs global optimisation on image batches.

Incremental reconstruction, e.g. adding more images to the already reconstructed

scene, is not straightforward and explicitly handled. The overall framework needs

hours to operate even on a relatively small set of input images. Because all of these

approaches are fundamentally not sequential and highly prohibitive for real-time

operation, they are not suitable for a robotics application where (a) processing should

be fast and (b) the reconstruction should be updated incrementally as new frames

are processed.

For robotics, of much greater interest are the real-time visual SLAM systems

that perform incremental reconstruction suitable for in-the-loop control or guidance.

Many of the real-time systems described below share some similarities and use the

same underlying techniques as o↵-line methods, but they are designed to operate

under significantly di↵erent assumptions and circumstances, i.e. perform an incre-

mental reconstruction from an incoming stream of video frames, rather than global

optimisation on a large scale set of unordered photos.

The first monocular real-time visual SLAM algorithm that relied only on commodity

hardware was MonoSLAM [Davison, 2003]. This pioneering work relied on the

Extended Kalman Filter, and although the solution was very elegant, was best

suited to operate in small environments and could track only a limited number of

features. Another prominent example of a real-time monocular SLAM system is the

Parallel Tracking and Mapping (PTAM) [Klein and Murray, 2007] who demonstrated

extremely robust sparse tracking, by using bundle-adjustment technique and splitting

the tracking and mapping tasks into distinct threads. MonoSLAM and PTAM are

examples of feature-based methods that represent the world as a sparse feature set,

and are generally very well suited for task such as camera tracking; latest state-of-the-

art examples include ORB-SLAM [Mur-Artal and Tardós, 2014] and SVO [Forster

et al., 2014]. Although certain attempts were made to “densify” the sparse maps of

features [Lovegrove, 2011], the maps produced by those methods are certainly not

suitable and dense enough to be used as the basis for obstacle detection and robot

navigation.

11

1. Introduction

Progress in monocular camera tracking together with increased computational

capabilities pushed passive systems towards real-time dense reconstruction. GPU-

acceleration enabled implementation of systems that were able to perform depth maps

estimation in real-time, e.g. [Merrell et al., 2007] developed an algorithm that first

computed noisy depth maps from an image sequence and subsequently fused several

neighbouring depth maps into a high quality depth map. [Newcombe and Davison,

2010] also utilised the GPU-accelerated techniques and together with PTAM-based

camera tracking created a system that was capable of incrementally building a dense

3D mesh model from a single moving camera. The DTAM method [Newcombe

et al., 2011b] went even further and was the first to perform not only mapping but

also tracking densely. Other prominent examples in the field of real-time, dense

monocular reconstruction include work by [Stuehmer et al., 2010] and by [Graber

et al., 2011], MonoFusion [Pradeep et al., 2013], and REMODE [Pizzoli et al., 2014].

In the middle ground between feature-based and dense methods are the semi-dense

methods with the most notable examples of Semi-dense Visual Odometry [Engel

et al., 2013] and LSD-SLAM [Engel et al., 2014].

The arrival of Microsoft’s Kinect sensor ushered in an era of a↵ordable, commodity

depth cameras in computer vision and robotics. Researchers in robotics immediately

realised the potential of depth cameras and [Henry et al., 2010] presented a first

impressive system that was able to achieve large scale mapping capabilities thanks to

dense surface representation using patches, near real-time 3D camera tracking based

on ICP alignment, and loop closure capabilities. The availability of high quality

depth maps greatly facilitates camera tracking and 3D reconstruction, and it should

not be surprising that most successful systems in real-time dense 3D reconstruction

rely on depth cameras, including KinectFusion [Newcombe et al., 2011a], Bylow

et al. [Bylow et al., 2013], Point-based Fusion [Keller et al., 2013], ElasticFusion

[Whelan et al., 2015], Real-time 3D Reconstruction at Scale using Voxel Hashing

[Nießner et al., 2013], and Elastic Fragments [Zhou et al., 2013]. With platforms like

Google Tango, depth cameras are becoming increasingly accessible, and it is already

possible to perform volumetric integration on mobile devices [Kahler et al., 2015].

In this thesis we follow a geometric approach, i.e. we aim at performing a geo-

metrical reconstruction of the robot’s environment in order to perform certain tasks.

There is a significant body of work based on learning and appearance. This is clearly

a viable approach, and in fact, the approaches can be complementary and benefit

12

1.4. Publications

from each other. It is easier to reconstruct if we know what we are reconstructing,

but also 3D understanding and modelling greatly improves semantic segmentation

and several researchers have tried to exploit this approach e.g. , [Bao et al., 2013] and

ObjectStereo [Bleyer et al., 2011b]. Prominent examples of learning and appearance

based mapping methods were developed, i.e. during the DARPA’s Learning Applied

to Ground Robots (LAGR) project, for example the work of [Hadsell et al., 2009] and

[Konolige et al., 2009]. The underlying principle for these methods is as follows: they

extract discriminative features from image patches and using their appearance they

classify them into di↵erent semantic categories suitable for navigation, e.g. free space,

obstacle, etc. These appearance based methods will be discussed in more details

in Chapter 5. With the recent resurgence of deep and reinforcement learning, one

can anticipate that learning-based approaches will play an increasingly important

role in mobile robot perception and autonomous driving. Clearly, this is a very

promising route. However, even though certain approaches try to go as far as to

learn actions directly from raw input images only, for example learning to navigate

in a maze [Mirowski et al., 2016], it is to expected that well-known and established

techniques from SLAM will continue to play an important role in systems that require

autonomous behaviour, and can by used, for example, to augment deep reinforcement

learning as shown in [Bhatti et al., 2016], in order to achieve more consistent and

e↵ective behaviours.

1.4 Publications

The work described in this thesis resulted in the following publications:

• Zienkiewicz, J., Lukierski, R., and Davison, A. J. (2013), Dense, Autocal-

ibrating Visual Odometry from a Downward-looking Camera. In

Proceedings of the British Machine Vision Conference (BMVC). [Zienkiewicz

et al., 2013];

• Zienkiewicz, J. and Davison, A. J. (2014). Extrinsics Autocalibration

for Dense Planar Visual Odometry. Journal of Field Robotics (JFR).

[Zienkiewicz and Davison, 2015];

• Zienkiewicz, J., Leutenegger, S., and Davison, A. J. (2016). Real-Time

Height-Map Fusion using Di↵erentiable Rendering. In Proceedings of

13

1. Introduction

the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS). [Zien-

kiewicz et al., 2016a];

• Zienkiewicz, J., Tsiotsios, A., Davison, A. J. and Leutenegger, S. (2016). Real-

Time, Monocular Surface Reconstruction Using Dynamic Level-of-

Detail. In Proceedings of the International Conference on 3D Vision (3DV).

[Zienkiewicz et al., 2016b].

Furthermore, a live demonstration of the multi-scale reconstruction framework

from Chapter 7 was presented at:

• Zienkiewicz, J., Leutenegger, S. (2016). Real-time, Monocular Surface

Reconstruction Using Dynamic Level-of-Detail. Live demonstration at

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

The following video material demonstrates the algorithms developed in this thesis:

• Real-Time Height Map Fusion using Di↵erentiable Rendering, https://youtu.

be/3NQqeRcSsCw;

• Monocular, Real-Time Surface Reconstruction using Dynamic Level of Detail,

https://youtu.be/UB_HDJU6LL4.

1.5 Thesis Outline

The specific chapter-by-chapter breakdown of this thesis is as follows:

• Chapter 2 introduces the basic notation and concepts required for building

a monocular SLAM system, including our method for fast and robust depth

map estimation.

• Chapter 3 describes our approach to visual odometry from a downward

looking camera based on whole image alignment.

• Chapter 4 builds on top of the method presented in the previous chapter and

provides a full extrinsics auto-calibration for a mobile robot.

14

1.5. Thesis Outline

• Chapter 5 introduces approaches to height map fusion from a stream of depth

maps and focuses on e�cient GPU implementations.

• Chapter 6 describes a generative approach to height map fusion and surface

reconstruction that relies on the principles of di↵erentiable rendering.

• Chapter 7 extends the fusion algorithms from the previous chapters to allow

multi-scale/multi-resolution surface reconstruction.

• Chapter 8 concludes the thesis with discussions and suggestions for future

work.

15

1. Introduction

16

Chapter 2

Preliminaries

Contents

2.1 Visual SLAM System for a Mobile Robot 17

2.1.1 Hardware and Software Platform 17

2.1.2 Monocular SLAM Pipeline 20

2.2 Camera Model . 21

2.3 Depth Map Estimation . 23

2.3.1 Introduction . 23

2.3.2 Multi-view Stereo Pipeline 25

2.3.3 Results . 30

2.1 Visual SLAM System for a Mobile Robot

When designing a SLAM system for a mobile robot one has to make several design

choices that are determined by several factors, e.g. the environment in which the

robot is operating, the robot’s size and weight, the computational budget, and the

desired cost and complexity of the overall platform. In our case, we are considering

a relatively small robot moving mostly on a flat surface in indoor environments, and

our main goal is to provide the robot with local perception and mapping capabilities.

2.1.1 Hardware and Software Platform

A typical hardware set-up we consider in this thesis is shown in Fig. 2.1. In most of

our robotics experiments we used the Pioneer Robot P3-DX platform, a di↵erential

drive wheeled mobile robot, carrying an NVIDIA GPU-equipped laptop for real-time

17

2. Preliminaries

Figure 2.1: A typical hardware set-up considered in this thesis. We use a simple
wheeled mobile robot, mount a single camera on it and point it downwards. Here we
show how camera view frustum intersects the ground plane. This camera configuration
can provide the robot with detailed information about the environment just in front
of it, but also some look-ahead required for local motion planning.

vision processing. We mount a single camera on a robot and point it down at

the floor at an oblique angle, so that it is looking forward up to approximately

1-3 meters. Fig. 2.2 shows some example images captured by the camera. The

camera field of view is dominated by the planar structure of the floor, with small

objects like cables lying on it (which are particularly “dangerous” for a small robotic

vacuum cleaner and cannot be detected by PSD sensors or a laser scanner), with

other typical structures visible such as furniture and walls. We do not put any

particular constraints on the camera orientation, and our extrinsics auto-calibration

method (which will be presented in Chapter 4) helps with easy experimentation

and finding the best position and orientation. However, the chosen configuration

allows the robot to obtain detailed information about its very close vicinity, but

also su�cient look-ahead to execute motions with velocities that are required for a

practical operation (in the range of 0.5—1.5 ms�1).

We have used a standard Point Grey camera capturing images at 640⇥480 resolu-

tion and 30 Hz frame-rate. To compensate for motion blur we reduce the shutter

time and use automatic in-built camera settings for gain. The camera has a lens

with approximately 80� field of view and is calibrated o↵-line for intrinsic parameters

18

2.1. Visual SLAM System for a Mobile Robot

Figure 2.2: Examples of images captured by the camera. Typically, the robot observes
a floor surface with small objects lying on it, some vertical structures like walls and
furniture.

including significant radial distortion. Note that we undistort our images on the

GPU at frame-rate before applying methods which assume perspective projection.

Although we currently use relatively high-end GPUs to enable real-time operation,

we intentionally focus on algorithms that are easy to implement on parallel processors,

and design them in such a way that it is possible to further optimised and port

them to more computational constrained embedded platforms. We achieve this by

considering the data flows within modern processors and using techniques that allow

for coherent and predictable memory access patterns. Our implementations typically

consist of many, relatively simple computations, but ones that are straightforward

to execute concurrently. One of the particular strengths of a monocular, parallel

approach to visual SLAM is the great scope of scalability of this paradigm. In order

to meet particular computational constraints and achieve real-time operation, one

can, for example, vary the frame-rate and resolution of the input data.

Most computing units, even embedded platforms for mobile robotics, are already

equipped with GPUs, which so far often remain underutilised. For a long time,

parallel processors like the GPU were perceived as di�cult to program and not

power-e�cient, but this has changed considerably. In our work we use CUDA which

requires NVIDIA’s GPUs, in conjunction with modern features of OpenGL, but

obviously one can use di↵erent programming models and languages, e.g. OpenCL,

19

2. Preliminaries

Figure 2.3: We adapted the fairly standard monocular 3D reconstruction pipeline
that roughly consists of three relatively separate stages: camera motion tracking,
multi-view depth map estimation as well as the depth and colour fusion.

Vulkan or Apple’s Metal. In fact, we believe that many of the parts of our algorithms,

e.g. the depth estimation method presented later in this chapter, are suitable for

implementation on dedicated Visual Processing Units like Movidius Myriad2.

2.1.2 Monocular SLAM Pipeline

In visual SLAM the goal is to incrementally construct and update a map of an

unknown environment while simultaneously estimating the position of the camera

within this map. To simplify the problem, in our approach we apply the common

separation of camera tracking and mapping: in the first step, only the camera

motion is estimated, which is subsequently treated as a fixed quantity. Next, we

perform depth estimation using a multi-view stereo technique that harnesses the

accurate motion estimates. The depth maps and images are subsequently fed into

an incremental mapping module in a loosely-coupled approach.

This is a relatively standard monocular dense 3D reconstruction pipeline [New-

combe et al., 2011b; Pradeep et al., 2013; Fuhrmann et al., 2014], within which we

can identify three relatively separate stages: camera motion tracking, multi-view

depth map estimation and finally depth and colour fusion, as shown in Fig. 2.3. This

separation not only makes estimation easier, but it also gives additional flexibility.

Even though in this thesis we propose methods that take direct advantage of domain

knowledge in order to provide solutions that are robust and e�cient, and this in

particular applies to motion estimation (Chapter 3) auto-calibration (Chapter 4), and

depth map fusion (Chapters 5–7), the individual elements of the proposed framework

can also be used in di↵erent configuration. For example, instead of using only our

visual odometry, we will pair the multi-scale surface reconstruction with general 6

DoF motion tracking to perform reconstruction of arbitrary surfaces. The presented

monocular pipeline can be also modified and used in conjunction with a depth camera.

20

2.2. Camera Model

This will allow us to simplify the pipeline by entirely omitting depth estimation, but

we could still successfully apply the same principles for motion estimation and depth

map fusion.

A possible extension and improvement within our framework would consist of

a closer integration of its individual elements: for example, instead of performing

frame-to-frame tracking only, we could also track the motion with respect to the

reconstructed dense model for example in order to reduce tracking drift. Note that

in our approach we will not explicitly consider loop-closure, as we are only interested

in relatively local perception. However, this is also an interesting direction for future

work.

2.2 Camera Model

In this thesis we will work with a standard pinhole camera model, Fig. 2.4, para-

meterised by horizontal and vertical scaling factors fu, fv (which are related to the

focal length and pixel size), and the location of the principal point, (u0, v0), in image

space. To describe the pinhole e↵ect we will generally use the matrix form:

K =

2

664

fu 0 u0

0 fv v0

0 0 1

3

775 , (2.1)

where K is referred to as the intrinsic matrix.

For the remainder of this thesis we assume that the intrinsics parameters are

known, and that the lens distortions not modelled by the pinhole camera have been

corrected. Determining camera intrinsics is a straightforward, one-o↵ procedure for

a certain sensor and lens, and is out of the scope of this work. In practice, we use

the method proposed by [Zhang, 1999].

There are two operations related to the camera model that will recur throughout

this thesis: projection and un-projection. Projection describes how a 3D point

P = (X,Y, Z) 2 R3, expressed in the camera local frame of reference, is mapped

onto the image plane, and we will denote it by:

p = ⇡(KP) , (2.2)

21

2. Preliminaries

xc

yc

zc

Fc

P = (X,Y, Z)

u

v

x

yz =
f

ū

v̄

(u, v)

principal
point

optical
axis

Figure 2.4: The essential geometry describing the e↵ect of a pinhole camera model.
The image was adapted from https://tex.stackexchange.com/questions/96074/

more-elegant-way-to-achieve-this-same-camera-perspective-projection-model,
where it was released under a Creative Commons License.

where p 2 R2 is the point on the image plane and ⇡ performs the perspective

projection operation defined as:

⇡

0

BB@

2

664

x

y

z

3

775

1

CCA =

"
x
z
y
z

#
. (2.3)

Therefore the full projection step is defined as:

KP =

2

664

fu 0 u0

0 fv v0

0 0 1

3

775

2

664

X

Y

Z

3

775 =

2

664

fuX + u0Z

fvY + v0Z

Z

3

775 , (2.4)

p =

"
fu

X
Z + u0

fv
Y
Z + v0

#
. (2.5)

During un-projection we are interested in inverting the projection operation, i.e. we

want to map a point from an image plane p = (x, y) 2 R2 into the three-dimensional

space. Since in projection we “collapse” a 3D point onto a 2D plane, we are essentially

“losing” one dimension, so in general, projection is non-invertible unless we have

access to the “lost” dimension. However, if we know or have an estimate of the depth

22

2.3. Depth Map Estimation

d of a point p = (x, y), un-projection is defined by:

P = dK�1ṗ . (2.6)

Here, we use the dot notation to describe the homogeneous extension of the point

ṗ =
�
p

1

�
, therefore:

ṗ =

2

664

x

y

1

3

775 , (2.7)

and K
�1 is the inverse of the intrinsic matrix K, which is straightforward to compute:

K
�1 =

2

664

1
fu

0 �u0
fu

0 1
fv

� v0
fv

0 0 1

3

775 . (2.8)

Therefore, in order to un-project a point, we first homogenise it and multiply by the

inverse of the intrinsic matrix to recover the missing dimension:

K
�1ṗ =

2

664

1
fu

0 �u0
fu

0 1
fv

� v0
fv

0 0 1

3

775

2

664

x

y

1

3

775 =

2

664

x�u0
fu

y�v0
fv

1

3

775 , (2.9)

and then use the known d to calculate its final 3D position in the camera local frame

of reference:

P = d

2

664

x�u0
fu

y�v0
fv

1

3

775 =

2

664

dx�u0
fu

dy�v0
fv

d

3

775 . (2.10)

The un-projection operation is extensively utilised, e.g. during depth map es-

timation, where we test di↵erent depth hypotheses, as well as during height map

fusion, where we use the estimated depth values and transform them into height

measurements.

2.3 Depth Map Estimation

2.3.1 Introduction

Stereo and depth map estimation is probably one of the most studied subjects in

computer vision, and although many interesting and successful methods have been

proposed, there seems to be no universal and recommended algorithm that is most

23

2. Preliminaries

widely used. Many methods, despite achieving high scores in stereo benchmarks,

do not perform well in practice or are too complex and run extremely slowly (e.g.

minutes on a single image pair on powerful hardware and GPUs), making them

impractical for real-time applications.

A study of the stereo algorithm literature gives good insight into the trends, fashions

and progress in computer vision. For a long time, methods utilising probabilistic

graphical models were particularly popular, [Kolmogorov and Zabih, 2001; Tran and

Davis, 2006; Scharstein and Pal, 2007; Woodford et al., 2008]. The focus was then

moved to variational approaches with successful demonstrations like [Newcombe et al.,

2011b] and [Ranftl et al., 2012]. Variational methods, although o↵ering very elegant

solutions and impressive results, often require manual selection of hyperparameters

of the step size involved in the solving of the associated optimisation problems, which

makes it di�cult to obtain consistent results. Furthermore, although the methods

are highly parallelisable, the mathematical apparatus involved can be very complex

and di�cult to implement correctly. Some of the most compelling results can now be

obtained using approaches based on the PatchMatch method [Barnes et al., 2009],

e.g. PatchMatch Stereo, [Bleyer et al., 2011a], in particular when combined with

edge-aware filtering [Lu et al., 2013], or variational methods as in PatchMatch Huber

[Heise et al., 2013]. However, the stochastic nature of those methods and the fact that

they use very image large patches during computation make them not straightforward

to implement on a GPU. Additionally, PatchMatch-based methods do not extend

naturally to multi-view stereo. An increasing number of approaches try to leverage

recent advances in semantic understanding to improve stereo estimation e.g. [Kundu

et al., 2014; Yamaguchi et al., 2014], and replace some [Žbontar and LeCun, 2014] or

all elements [Eigen et al., 2014] of the standard stereo pipeline with deep learning.

However, the solutions that work best and are most widely used in practice often

utilise many heuristics and are well-engineered solutions, for example Semi-global

Matching (SGM) [Hirschmüller, 2005; Hirschmüller, 2008].

After investigating several stereo algorithms we decided to design our own depth

estimation algorithm that is robust and works well in practice and is relatively easy

to implement on a GPU and we will describe it in the following section. We use some

of the recently proposed, state-of-the-art techniques and also exploit the advantage

of a multi-view approach by using multiple frames with di↵erent baselines to improve

performance. However, we have decided against fully quantifying and evaluating in

24

2.3. Depth Map Estimation

Figure 2.5: The epipolar geometry between two views gives rise to strong
constraints that can be exploited during the search for corresponding points
in stereo matching. Point xL in the left image defines a ray in space, that
corresponds to an epipolar line in the right image on which the projection
of the 3D point X lies. (Image obtained from https://upload.wikimedia.

org/wikipedia/commons/1/14/Epipolar_geometry.svg, created by Arne Nord-
mann, GFDL http://www.gnu.org/copyleft/fdl.html, CC-BY-SA-3.0 http:

//creativecommons.org/licenses/by-sa/3.0/.)

benchmarks or comparing our method with alternative approaches. This is because

our later introduced depth map fusion techniques are essentially agnostic to the

depth estimation methods and one can replace the depth estimation with one of

his/her choice, or even use depth cameras.

2.3.2 Multi-view Stereo Pipeline

The principles of stereo estimation are rather straightforward and well understood:

in the most traditional case it is concerned with the estimation of a structure of

a scene observed by two cameras from distinct viewpoints. It is assumed that the

relative position between the cameras as well as and their internal parameters are

known, and the structure is estimated by finding corresponding points in the two

views. When performing the search for corresponding points in stereo matching, one

can exploit strong constraints that arise from the epipolar geometry — the projective

geometry between two views [Hartley and Zisserman, 2004]. Here we assume that a

pixel in an image can be associated with a ray in space, and therefore, as shown in

25

2. Preliminaries

Figure 2.6: Visualisation of the cost volume principle used for dense depth map estim-
ation in a multiple-view stereo. (Image adapted from [Lovegrove, 2011; Newcombe
et al., 2011b].)

Fig. 2.5, a point in one view defines to an epipolar line in the other view on which

the corresponding point lies.

When designing a stereo algorithm one faces several choices as summarised in

[Scharstein and Szeliski, 2001]. With a su�ciently textured scene, even relatively

simple methods perform well. However, a lack of texture, non-Lambertian surface

properties, changing lighting conditions, bad image quality are some of the factors

that can greatly a↵ect the usefulness and quality of results. In monocular depth

estimation, we have to deal with additional challenges including tracking failure,

incoherent image acquisition settings between consecutive frames (e.g. due to auto-

gain settings), motion in the scene (the algorithms assume that the scene remains

static between frames) and self-shadowing. On the other hand, a monocular set-up

also has certain unique characteristics that we can take advantage of. For example,

we can easily use a technique referred to as multiple-view stereo (MVS), i.e. we

can calculate a depth map from more than two images. To implement multiple-

view stereo one often uses the concept of cost volume as illustrated in Fig. 2.6. A

monocular system is naturally a multi-view, variable baseline stereo system and we

can combine multiple frames to improve robustness, or vary the baseline to perform

26

2.3. Depth Map Estimation

estimation at di↵erent scales.

Our depth estimation pipeline exploits the advantages of the monocular multi-view

stereo approach, while being relatively simple and easy to implement. We focused

on speed and robustness, and our method is fast enough to be run in real-time for

every frame at approximately 30 Hz. Rather than spending all e↵ort on depth map

estimation, we decided to allocate more resources to depth map fusion (which we

will describe in the second half of this thesis). In a nutshell, our approach works as

follows. As the camera starts moving we track its motion using, depending on the

scenario, either our Dense Visual Odometry (Chapter 3), or ORB-SLAM [Mur-Artal

et al., 2015]. While tracking camera motion we maintain a bu↵er of recent keyframes

with various baselines. In order to estimate a depth map, we construct a cost volume,

where for each pixel in the current frame we accumulate matching scores between

the current frame and a selected set of frames from the bu↵er of recent keyframes.

We utilise the concept of cost volume filtering proposed by [Rhemann et al., 2011] to

perform cost aggregation, where in order to achieve smoothness with edge-preserving

properties on the estimated depth map we employ the guided image filtering method

of [Lu et al., 2012] on the slices of the cost volume. Finally, for each pixel we select

the depth with the lowest cost. As a final post-processing step we reject depth

measurements with high uncertainty due to lack of texture, and those which fail a

standard stereo consistency test due to occlusions. In the following we will describe

the individual steps in more detail. Our approach has certain similarities with the

work described in [Zhang et al., 2011] (Census transform, use CUDA, use of integral

images), but we extended the framework to multi-view stereo and adopted more

recent guided-image filtering techniques. We also employ outlier rejection and try to

estimate the uncertainty of every depth measurement.

Stereo Matching

Stereo is a correspondence problem, which we typically try to solve by testing how

well a point in one image matches with di↵erent points along the corresponding

epipolar line in a second image, which are found by re-projection using di↵erent depth

hypotheses. There are numerous methods for assessing how well two image regions

match [Hirschmüller, 2007] and they vary in complexity, computational demands,

robustness and invariance to certain e↵ects; e.g. Sum of Squared Di↵erences (SSD),

Sum of Absolute Di↵erences (SAD), Normalized Cross-Correlation (NCC), Truncated

27

2. Preliminaries

absolute di↵erence of colour and the gradient at the matching point [Bleyer et al.,

2011a], or Mutual Information [Hirschmüller, 2005]. Recently, methods for computing

stereo matching cost with convolutional neural networks were proposed [Žbontar

and LeCun, 2014]. The method performs well, but at the moment it is very slow

(requiring approximately 90 seconds per image) and the proposed network seems

unnecessarily large and complex for a simple matching task (seven fully connected

layers and a total of 600000 parameters). However it is to be expected that we

will see much faster and more compact architectures not only for matching but

for other elements of the stereo pipeline. In our approach we rely on the Census

transform [Zabih and Woodfill, 1994] of a 9⇥ 7 image patch centred around a pixel

together with the Hamming distance for calculating matching cost. One reason for

using the Census transform is its robustness to appearance changes due to camera

self-shadowing which occur quite often. Furthermore, Census is fast and easy to

implement even for relatively large matching window sizes.

Frame Selection and Cost Volume

We utilise the concept of plane sweeping and cost volume aggregation as it is a

flexible way of performing multi-view stereo. However, unlike e.g. DTAM [Newcombe

et al., 2011b], which used multiple small baseline frames, we are more restrictive in

the way we select images for stereo matching. We maintain a fixed-size bu↵er of

recent frames that are candidates for matching and a new frame is added to this

bu↵er when the camera has moved su�ciently far from the most recent keyframe. In

the multi-scale setting, in order to handle scale variations the threshold for adding

new frame is scale dependent. Note that this is entirely independent of the keyframes

selected and maintained for example by ORB-SLAM.

In the cost volume we combine the cost from several keyframes. Typically we

use a small number of frames (4-7), but with di↵erent baselines. This relies on

the observation (used in stereo matching, e.g. in [Matthies et al., 1989] and [Engel

et al., 2013]) that short baselines help to avoid local minima when performing

correspondence search, whereas larger baselines improve accuracy, by allowing precise

localisation, as illustrated in Fig. 2.7. During depth map estimation, we need to have

reasonable estimates of the minimal and maximal depth that we perform the search

over. When a camera is fixed on a robot and looking downwards, we can easily

calculate the depth range by knowing the distance and orientation of the camera with

28

2.3. Depth Map Estimation

respect to the floor. In more general 6 DoF tracking, we use the depth of features

extracted and tracked by ORB-SLAM to constrain the depth search range.

Figure 2.7: Variable baseline stereo (image from [Engel et al., 2013]): in our depth
estimation we combine stereo images with di↵erent baselines. Small baselines help to
avoid local minima when performing correspondence search, whereas larger baselines
improve accuracy, by allowing precise localisation.

Cost Aggregation using Guided Filtering

Cost aggregation is performed using a very e�cient, parallel implementation of the

Cost Volume Filter [Rhemann et al., 2011] which allows the support for aggregation

to be selected adaptively. A key observation for the cost volume filtering is that the

aggregation step of adaptive support weight algorithms is equivalent to smoothing

the stereo cost volume with an edge-preserving filter. The first examples such as

[Yoon and Kweon, 2005, 2006] relied on bilateral filters and therefore were limited in

their scalability (use of large support) for real-time applications. Instead of using

a bilateral filter, [Rhemann et al., 2011] proposed to use the guided image filtering

technique introduced by [He et al., 2010]. The guided filter generates output by

considering the content of a guidance image, which can be the input image itself or

another image. In cost volume filtering we process individual slices of the cost volume

by using the current image/frame as a guide. This allows for an edge-preserving

smoothing operator similar to a bilateral filter, but gives better results near the

edges. One of the main advantages of many guided filters is that their run time is

29

2. Preliminaries

independent of the size of the filter kernel.

In our implementation we use the Cross-based Local Multipoint Filter, CLMF-0

[Lu et al., 2012], a variant of one of the recent guided image filtering techniques.

This approach runs in constant time even on a GPU thanks to the use of orthogonal

integral images [Zhang et al., 2009]. Our method is not meant to compete in terms of

quality of the depth maps with techniques that relies on global optimisation, such as

Total Generalized Variation (TGV) [Ranftl et al., 2012] or DTAM [Newcombe et al.,

2011b], but it avoids the computational complexity of those methods, and therefore

is easier to implement and can run faster, while still o↵ering good regularisation

properties in low-texture areas and preserving sharp edges.

Post-processing

The final stage of stereo estimation consists of selecting the depth value with minimal

cost, followed by sub-pixel refinement and calculation of depth uncertainty in the

way proposed by [Lukierski et al., 2015]. In order to remove unreliable measurements,

we reject depth values that do not pass consistency checks or have high uncertainty.

2.3.3 Results

Figs. 2.8 and 2.9 show examples of depth maps calculated with our method, both

when the camera is placed on a robot as well as in more general settings. Note

that we use greyscale images as the input to our depth estimation method. We can

perform depth map estimation in real-time, at about 30 frame per second, using VGA

image resolution on a NVIDIA GTX 680. The black areas in the depth maps indicate

invalid or unavailable data. Overall, the quality of depth maps is satisfactory, with

some missing area due to lack of texture or image overlap. We will use the depth

map estimation method presented here for the surface reconstruction in Chapters 5

to 7.

30

2.3. Depth Map Estimation

Figure 2.8: Examples of depth maps estimated using our method from the camera
placed on a mobile robot.

Figure 2.9: Our method can estimate depth maps in real-time also in more general
settings, when paired with 6 DoF tracking such as ORB-SLAM.

31

2. Preliminaries

32

Chapter 3

Dense Planar Visual Odometry

Contents

3.1 Introduction . 33

3.2 Related Work . 36

3.3 Tracking using Full Image Alignment 37

3.4 Tracking with a Plane Induced Homography 41

3.5 Planar Visual Odometry . 42

3.5.1 Image Alignment Parameterised by Planar Motion . . . 42

3.5.2 E�cient Second-order Minimisation (ESM) 45

3.5.3 Practical Considerations and Implementation Details . . 47

3.6 Experiments . 49

3.6.1 Comparison against Wheel Odometry 50

3.6.2 High Precision Motion Estimation 54

3.6.3 Qualitative Results . 54

3.7 Conclusion . 55

3.1 Introduction

Estimating its incremental ego-motion is one of the fundamental capabilities a

mobile robot has to be equipped with, and classically this was performed using

dead reckoning on the basis of wheel odometry. However, particularly in the case of

light-weight, low-cost robots moving on unpredictable surfaces such as carpet or dirt,

wheel odometry can su↵er from lack of robustness (e.g. due to wheel slippage) or

accuracy (tracking provided by wheel odometry is not accurate enough to perform

33

3. Dense Planar Visual Odometry

multi-view depth estimation we described in the previous chapter). Visual odometry

(VO), i.e. ego-motion estimation based on camera tracking, can jump over many of

these well-known problems, and it is the first element of the dense perception system

we have developed.

Most VO approaches rely on a feature extraction and mapping pipeline and recon-

struct and track the world in full 3D, which makes them heavyweight, complicated

and often fragile. In fact, in our experiments we found that in our settings when the

camera is looking downwards at floor, standard feature-based methods struggle in a

lot of situations (Fig. 3.1) due to the highly repetitive texture observed on many floor

and carpet surfaces, or due to motion blur that can easily occur as the camera is very

close to the surface. In our approach we take direct advantage of domain knowledge

that wheeled mobile robots move on globally or locally planar surfaces, and estimate

motion by tracking the natural floor texture which moves past the camera using

whole image alignment. Almost every surface, even those which are apparently quite

blank and do not lead to the extraction of standard point features, has trackable

texture when used in whole image alignment. Furthermore, dense image alignment

allows all of the surface texture available to contribute to the motion estimate, and

results in a simple and e�cient tracking system that is well suited for implementation

on parallel processors like GPUs. Our method assumes knowledge of the extrinsic

pose of the camera relative to the robot frame and performs image alignment directly

with respect to the three degrees of freedom of planar robot motion. In Chapter 4

we present an algorithm that solves the necessary extrinsics auto-calibration problem

with a one-shot, infrastructure-free method.

The visual odometry method presented here is inspired by [Lovegrove et al., 2011]

who showed the power of motion estimation via iterative dense alignment in the

specific application of on-road vehicle motion estimation from a rear parking camera

by observing the planar road surface. We adopt the core approach of that work, but

bring it to the domain of a small indoor robot which drives and rotates rapidly over

a variety of real-world surfaces with di↵erent texture characteristics. Importantly,

unlike the manual extrinsic calibration used by [Lovegrove et al., 2011], in the next

chapter we show that our planar VO system can be rapidly auto-calibrated from

a short sequence without the need for any special markers or targets or manual

measurements.

We start by presenting relevant work in the field of visual odometry. Next, we

34

3.1. Introduction

(a) It is common to perform feature tracking and mapping between consecutive frames in
order to estimate incremental camera motion.

(b) However, feature tracking and mapping tend to fail due to image degradation (e.g. motion
blur).

(c) Methods based on feature tracking and mapping also perform poorly in situations where
there is highly repetitive texture or there is a lack of texture.

Figure 3.1: Feature tracking and mapping is not suitable for motion estimation in
our settings.

35

3. Dense Planar Visual Odometry

introduce general concepts related to dense image alignment which are then used

to derive an e�cient method for our planar visual odometry. In Section 3.6 we

demonstrate experimentally that unbiased and robust VO is obtained from our

system over the full range of dynamics of our experimental robot’s motion. Please

note that additional experiments on VO are also presented in Chapter 4 in the context

of auto-calibration, where we also investigate how violation of our basic assumptions

(planar motion and scene) a↵ects the performance of our visual odometry. We

conclude this chapter with a discussion and suggestions for improvements.

3.2 Related Work

The term visual odometry [Nistér et al., 2004] identifies the important class of

problems where accurate but purely incremental motion estimation can usefully be

provided by a camera system. This is in contrast to more general visual SLAM

systems (e.g. [Davison, 2003]) of the time, aiming at drift-free localisation but with

more restrictions on local accuracy and scale of operation.

There have been a number of notable Visual SLAM and VO systems which track

general 6 DoF motion, some of them based on stereo vision (e.g. the incremental

components of [Konolige et al., 2007; Mei et al., 2009]), whereas others only on a

single camera e.g. PTAM [Klein and Murray, 2007]. The methods for monocular 6

DoF motion tracking are now well understood and established, and state-of-the-art

systems include Semi-dense VO [Engel et al., 2013], SVO [Forster et al., 2014] and

ORB-SLAM [Mur-Artal et al., 2015]. Instead of using a standard feature detection

and matching pipeline, common to most of the above-mentioned SLAM and VO

systems, dense and direct approaches track camera motion by registering consecutive

images and minimising the photometric cost. Since direct tracking in general requires

access to a depth map for every frame, methods based on image alignment were

mainly developed for RGB-D cameras [Steinbrücker et al., 2011], stereo [Comport

et al., 2007], or where depth is implicit [Lovegrove and Davison, 2010]. A system

that first demonstrated dense and direct tracking (and mapping) using a monocular

camera was presented in [Newcombe et al., 2011b].

The methods described above are general SLAM and VO systems that are designed

to perform tracking an mapping in arbitrary scenes and conditions. VO becomes

easier if domain assumptions can be brought strongly into play, and many authors

36

3.3. Tracking using Full Image Alignment

have considered the special case of planar robot motion over a ground surface. As

in our work, [Campbell et al., 2005] demonstrated how a single camera can track

floor texture in di↵erent situations, but using optical flow computation and with

a partial forward-looking view to estimate orientation. [Kitt et al., 2011] argued

convincingly for taking advantage of prior knowledge that a camera is viewing a

planar floor in their system using feature correspondences. [Nourani-Vatani et al.,

2009] used a downward, fronto-parallel looking camera and correlation of patches.

There are also a wide range of homography-based methods that estimate camera

ego-motion using the assumption of a planar scene, e.g. [Pirchheim and Reitmayr,

2011; Saurer et al., 2012; Adams et al., 2002]. These methods typically determine the

homography by detecting corresponding visual features in two images to the same

plane, and compute the camera motion by decomposing the homography matrix

[Faugeras and Lustman, 1988]. However, none of these authors went all the way in

making the best possible use of the planar scene assumption. Used properly it allows

all the pixels in a video sequence to contribute to motion estimation via iterative

dense alignment. [Lovegrove et al., 2011] showed the power of this approach in the

specific application of on-road vehicle motion estimation from a rear parking camera

by observing the planar road surface.

3.3 Tracking using Full Image Alignment

We start by explaining the basic principles of tracking using whole image alignment,

a method which evolved from the iterative technique introduced by [Lucas and

Kanade, 1981]. The key to the Lucas-Kanade approach is to consider tracking as

image alignment over some continuous space of possible transformations. In order

to achieve this, we define a cost function that measures how well two images are

aligned. We then iteratively compute the derivative of the cost function with respect

to the parameters at a current estimate and take a linear step towards a minimum

via gradient descent.

More specifically, given two images, live I l and reference Ir, we are looking for

a transformation T
lr 2 SE(3) that describes the camera motion between them and

allows us to register (align) them. We parameterise Tlr(x) by a vector x belonging to

the Lie Algebra se(3). Since dense image alignment is an optimisation problem, we

define an energy function F which measures the discrepancy across the whole image

37

3. Dense Planar Visual Odometry

in the form of the sum of squared di↵erences between all pairs of superposed pixels:

F (x) =
1

2
kf(x)k22 , (3.1)

where f(x) is the per-pixel error term:

f(x) = I l(⇡(KTlr(x)drK
�1ṗr))� Ir(pr) . (3.2)

Here pr denotes a pixel coordinate in the reference image, and (as explained in

Chapter 2) the operation ⇡(KTlr(x)drK�1pr) transforms a pixel in the reference image

via the current transformation estimate into the live image. In order to perform this

back-projection, the depth value dr of the pixel is required, so in principle, dense

image alignment requires access to a depth measurement for at least one of the

images. When using a depth camera, the depth map is explicitly given, and for now,

will assume this is the case. Later, when deriving our planar visual odometry, we

will show that depth can be induced from the plane the camera is observing. As

described in Chapter 2, we also assume that the camera intrinsics K are known, which

leaves us with only one unknown element in Eqs. (3.1) and (3.2), the camera motion

T
lr, parameterised by x.

Note, that instead of using the l2-norm as indicated in Eq. (3.1), in practice we

employ a robust cost function (e.g. Huber norm) in an iteratively reweighted least

squares framework to reduce the sensitivity of our algorithms to outliers in the data

and other, unmodelled e↵ects. However, for the sake of brevity and clarity, we will

omit it in our derivation.

In dense image alignment we do not have to explicitly solve the data association

problem as in feature-based methods. Instead, pixel correspondence is given by the

current estimate of the camera motion, and we improve this estimate by iteratively

minimising the cost function:

arg min
x2se(3)

F (x) = arg min
x2se(3)

1

2
kf(x)k22 . (3.3)

The objective function can be easily visualised. Fig. 3.2 shows an example of a live

and reference image, with a plot of the cost function as we align the images along

the x-axis. A plot of the cost function with respect to both translational degrees

of freedom of the robot can be seen in Fig. 3.3. Obviously, this generalises to all

degrees of freedom of the considered motion. We see a smooth function with clearly

38

3.3. Tracking using Full Image Alignment

0 10 20 30 40 50 60
x [mm]

Figure 3.2: When performing dense image alignment, we do not have to explicitly
solve the data association problem, but start with some initial estimate of the camera
motion and refine it iteratively by minimising a cost function that measures how well
two images align. Here we show the e↵ect of aligning two images by sliding one of
them along the x-axis. There is a clear and distinctive x value that best registers
the images.

Figure 3.3: Another example of a typical dense tracking cost function. The function
depends on all degrees of freedom of camera motion, but here only a 2D translational
slice of motion in the x and y directions is shown.

distinctive minima, although the basis of convergence is relatively narrow. However,

starting from a good initial estimate (and using other techniques like coarse-to-fine),

we can e�ciently perform the minimisation of the objective function, as we will

describe below.

We now describe our strategy for solving the optimisation problem Eq. (3.3). We

39

3. Dense Planar Visual Odometry

start by performing a small re-parameterisation of the original problem. Given a

current estimate of the solution T̂
lr, we do not parametrise the cost function by

T
lr(x), but instead by T(x), an update matrix that represents small changes to the

current estimate of the solution T̂
lr in the following way:

f(x) = I l(⇡(KT̂lrT(x)drK
�1ṗr))� Ir(pr) . (3.4)

This allows us to simplify the calculations of the derivative of the cost function, and

later on, use an e�cient variant of dense image alignment (E�cient Second-Order

Minimisation, ESM).

Solving the optimisation problem in Eq. (3.3) iteratively means that at each

iteration we find a small update x̂ to our current estimate via the expression (with

slight abuse of notation):

x̂ = �(J>J)�1
J
>f(0) , (3.5)

where:

J = rf(0) , (3.6)

and update T̂lr using the following rule:

T̂
lr T̂

lr
T(x̂) . (3.7)

The Jacobian of the cost function, Eq. (3.6), required in the optimisation, can be

easily assembled from the derivatives of the individual per-pixel error terms. Using

the chain rule we can find the general expression, which is given by:

@f(x)

@xi
=

@I l(a)

@a

����
a=⇡(p̂l)

@⇡(b)

@b

����
b=p̂l

KT̂
lr @T(x)

@xi
drK

�1ṗr , (3.8)

where we wrote p̂l = KT̂
lr
T(x)drK�1ṗr for brevity. As evident, the derivative depends

on the gradient in the live image, @Il(a)
@a , as well as the derivative of the homogeneous

projection operator ⇡, which is straightforward to compute, namely:

@⇡(b)

@b
=

@

a/c

b/c

!

@

0

BB@

a

b

c

1

CCA

(3.9)

40

3.4. Tracking with a Plane Induced Homography

=

"
@a/c
@a

@a/c
@b

@a/c
@c

@b/c
@a

@b/c
@b

@b/c
@c

#
=

"
1/c 0 �a/c2

0 1/c �b/c2

#
. (3.10)

The last element of the formula is the derivative of the transformation @T(x)
@xi

with

respect to its individual parameters xi. Thanks to our parameterisation and update

rule, Eq. (3.7), we only need to evaluate the gradient at x = 0 (Eq. (3.6)), and this

is given by:
@T(x)

@xi

����
x=0

= G
SE(3)
i , (3.11)

where GSE(3)
i is the ith generator of the SE(3) group.

The procedure described above corresponds to the most classical, forward compos-

itional approach to the Lucas-Kanade dense image alignment method. Other, more

e�cient approaches have also been presented, e.g. the inverse-compositional method

[Baker and Matthews, 2004]. For a more detailed description we refer to [Lovegrove,

2011]. The main observation here is that the gradient of the per-pixel cost function

can easily be computed using the image gradient, and that the computation of the

Jacobian is highly parallelisable, as the calculations in Eq. (3.8) are performed for

each pixel independently.

3.4 Tracking with a Plane Induced Homography

The fact that we need a depth value dr for each pixel in order to perform dense

image alignment, would seem to prevent us from using this method in conjunction

with a monocular camera. However, we will show now that using the assumption

that a camera observes a plane, with known orientation of the camera with respect

to that plane, means we can still perform dense image alignment. Note that this is

exactly the robot configuration we defined in Chapter 2, where we assumed that the

camera is fixed on a robot and it is pointed towards the floor, and that the robot

moves on a flat surface.

Let us consider a plane (n>, dc) defined in the camera frame of reference, where n

is the unit vector normal to the plane and dc is the perpendicular distance from the

plane to the origin. Given n and dc we can calculate a depth value d for each pixel

(u, v) as follows:

d(u, v) =
�dc

[u v 1]K�Tn
. (3.12)

41

3. Dense Planar Visual Odometry

In the simplest case, when the camera is observing the plane from a fronto-parallel

view, we have n = (0, 0, 1)>. When the camera orientation with respect to the

ground plane is denoted by R
vc, the normal vector is n = R

cv(0, 0, 1)>.

This concept can be used to derive a homography, which says that two images (live

I l and reference Ir) of the same plane are related by a plane-induced homography

H
lr. This homography transforms pixel coordinates in the reference image pr into

the live image pl:

pl = ⇡
⇣
H
lrṗr

⌘
, (3.13)

and depends on the camera motion T
lr and the parameters (n>, dc) of the plane

defined in the camera reference frame:

H
lr = KT

lr(I | � ndc)
>
K
�1 , (3.14)

where ndc =
n

dc
.

In dense tracking based on a plane induced homography our goal is essentially the

same as described in the previous section: we are looking for a motion x that best

registers I l and Ir, but no longer need the per-pixel depth values dr, as they are

now induced by the plane. The per-pixel error term therefore becomes:

f(x) = I l(⇡(Hlr(x)ṗr))� Ir(pr) , (3.15)

with:

H
lr(x) = KT̂

lr
T(x)(I|� ndc)

>
K
�1 . (3.16)

The computations of the derivatives change only slightly to:

@f(x)

@xi

����
x=0

=
@I l(a)

@a

����
a=⇡(Ĥlrṗr)

@⇡(b)

@b

����
b=Ĥlrṗr

@Hlr(x)

@xi

����
x=0

ṗr , (3.17)

where:

Ĥ
lr = KT̂

lr(I|� ndc)
>
K
�1 , (3.18)

and:
@Hlr(x)

@xi
= KT̂

lr @T(x)

@xi
(I|� ndc)

>
K
�1 . (3.19)

Again, we can use the gradient of the image and derivative of the projection operator

as well as GSE(3)
i , the generators of the SE(3) group, to calculate the derivatives of

the per-pixel error terms and the whole cost function.

42

3.5. Planar Visual Odometry

Figure 3.4: We can parameterise the 3D camera motion, Tlr using 2D robot motion,
T
vlr , and a known transformation from the camera frame of reference to the robot
frame of reference Tvc.

3.5 Planar Visual Odometry

3.5.1 Image Alignment Parameterised by Planar Motion

We will now use the concepts presented in the previous sections to derive our dense

planar visual odometry method for a mobile robot. Recall the typical robot-camera

configuration we consider in this thesis: a camera is bolted to the robot in an arbitrary

but fixed location, such that its field of view is filled with the planar floor surface. We

can distinguish two main frames of references in this set-up: one associated with the

camera and another with the robot. We will denote Tvc as the transformation from

the camera frame of reference to the robot frame of reference, whereas Tcv = (Tvc)�1

is its inverse. We define T
vc = (Rvc | tvc), where R

vc 2 SO(3). We will refer to the

position of the camera in the robot frame of reference by tvc = (xvc, yvc, zvc)>, and

its orientation R
vc using roll, pitch and yaw angles (denoted by ↵vc, �vc, and �vc

respectively). We will refer to T
vc as camera extrinsics and at this stage we assume

that they are known. Our method for auto-calibrating camera extrinsics will be

presented in Chapter 4.

Using the notation from the previous sections, Tlr will denote the transformation

matrix describing the relative motion of the camera between time-steps when the

camera captures two images, a live image I l and an overlapping earlier reference

image Ir. Even though T
lr is a 3D motion in the camera frame of reference, the

43

3. Dense Planar Visual Odometry

observation that the camera is fixed on the robot and therefore is moving parallel

to the ground plane allows us to parameterise 3D camera motion using relative 2D

robot motion T
vlr in the following way:

T
lr = T

cv
T
vlrT

vc . (3.20)

The essential geometry of this problem is shown in Fig. 3.4.

Since the camera pose Tvc as well as ndc remain constant (in fact ndc is uniquely

determined by T
vc), and the robot moves on a plane, we only need to determine 3

degrees of freedom of the robot planar motion x = (x, y, ✓)T . Although T
vlr is in

SE(2) we can refer to it in 3D by raising it into SE(3) and enforcing that the robot

moves on the xy plane:

T
vlr(x) =

2

666664

cos ✓ � sin ✓ 0 x

sin ✓ cos ✓ 0 y

0 0 1 0

0 0 0 1

3

777775
. (3.21)

Now our goal is to find a homography H
lr parameterised by vehicle planar motion

T
vlr(x):

H
lr(x) = KT

cv
T
vlr(x)Tvc(I|� ndc)

>
K
�1 . (3.22)

that best registers I l and Ir. To achieve this, we will perform all of the already

familiar steps: we define an energy function F which measures the discrepancy across

the whole image in the form of the sum of squared di↵erences between all pairs of

superposed pixels:

F (x) =
1

2
kf(x)k22 , (3.23)

with:

f(x) = I l(⇡(Hlr(x)ṗr))� Ir(pr) . (3.24)

The homography H
lr will be parameterised with T(x), an update matrix that repres-

ents small changes to the current estimate of the solution T̂
vlr , in the following form:

H
lr(x) = KT

cv
T̂
vlrT(x)Tvc(I|� ndc)

>
K
�1 . (3.25)

The vector x now belongs to Lie Algebra se(2), and we iteratively apply the following

rule:

T̂
vlr T̂

vlrT(x̂) , (3.26)

44

3.5. Planar Visual Odometry

in order to update our estimate of the robot motion.

The general expression of the gradient of the per-pixel error terms is given by:

@f(x)

@xi
=

@I l(a)

@a

����
a=⇡(Hlr(x)ṗr)

@⇡(b)

@b

����
b=Hlr(x)ṗr

@Hlr(x)

@xi
ṗr (3.27)

@Hlr(x)

@xi
= KT

cv
T̂
vlr

@T(x)

@xi
T
vc(I|� ndc)

>
K
�1 . (3.28)

3.5.2 E�cient Second-order Minimisation (ESM)

We could use the standard forward compositional minimisation scheme as presented in

Section 3.3, but instead, in order to minimise the objective function in Eq. (3.23), we

perform an iterative optimisation based on the E�cient Second-order Minimisation

(ESM) method [Malis, 2004; Mei et al., 2008]. ESM improves on Lucas and Kanade’s

original technique [Lucas and Kanade, 1981] by allowing us to minimise a second-

order approximation of the objective function using only first-order derivatives, and

therefore, as observed by many authors e.g. [Lovegrove et al., 2011; Klose et al., 2013;

Engel et al., 2014], in general achieves better convergence rates. Most of the steps

involved in the optimisation are similar to a standard iterative optimisation, i.e. at

each iteration we find an updated estimate x̂ of the state via the expression:

x̂ = �(J>J)�1
J
>f(0) . (3.29)

However, ESM computes a second-order approximation of the objective function

from only first-order derivatives. Therefore now we use:

J =
1

2
(rf(0) +rf(x̂)) , (3.30)

which means that this approach requires us to evaluate the partial derivatives of the

cost function f(x) at 0 and at the solution x̂. Using the general expression of the

derivative of the per-pixel error terms from Eq. (3.27), we can easily calculate the

derivative at 0:

@f(x)

@xi

����
x=0

=
@I l(a)

@a

����
a=⇡(Ĥlrṗr)

@⇡(b)

@b

����
b=Ĥlrṗr

@Hlr(x)

@xi

����
x=0

ṗr , (3.31)

where:

Ĥ
lr = KT

cv
T̂
vlrT

vc(I|� ndc)
>
K
�1 , (3.32)

@Hlr(x)

@xi

����
x=0

= KT
cv
T̂
vlr

@T(x)

@xi

����
x=0

T
vc(I|� ndc)

>
K
�1 , (3.33)

45

3. Dense Planar Visual Odometry

and @T(x)
@xi

���
x=0

= G
SE(2)
i , the ith generator of the SE(2) group.

Calculating the derivatives at x = x̂ may appear to be more di�cult, as it

essentially requires knowledge of the solution, we are searching for in the first place.

Specifically, for x = x̂, we need to compute:

@f(x)

@xi

����
x=x̂

=
@I l(a)

@a

����
a=⇡(Hlr(x̂)ṗr)

@⇡(b)

@b

����
b=Hlr(x̂)ṗr

@Hlr(x̂)

@xi
ṗr . (3.34)

In other words, we need to evaluate the gradient of the objective function at the

solution x̂. Obviously, it is not possible to do that explicitly without knowledge

of the solution, but we can approximate it using the following assumptions. First,

we assume that we are close to the solution, hence x̂ is small. Since Lie Algebra

se(2) defines a locally invariant vector field tangential to the manifold of SE(2), this

assumption allows us to treat @Hlr(0)
@xi

and @Hlr(x̂)
@xi

as equivalent, i.e. :

@Hlr(0)

@xi
⌘ @Hlr(x̂)

@xi
, (3.35)

and the same holds for @⇡(b)
@b , namely that:

@⇡(b)

@b

����
b=Hlr(x̂)ṗr

⌘ @⇡(b)

@b

����
b=Hlr(0)ṗr

. (3.36)

However, we still need to calculate @Il(a)
@a

���
a=⇡(Hlr(x̂)ṗr)

. In ESM we use the obser-

vation that at the solution the warped live image should, in principle, equal the

reference image. Assuming H
lr(x̂) = Ĥ

lr
H(x̂) we can write:

ṗl = Ĥ
lr
H(x̂)ṗr , (3.37)

ṗr = H(�x̂)Ĥrlṗl , (3.38)

and therefore at the solution x̂, where the live image should in principle exactly

equal the reference image, the following condition should also be satisfied:

I l(pl) = Ir(pr) = Ir(⇡(H(�x̂)Ĥrlṗl)) . (3.39)

Using this assumption, we can express the image derivative part of the Eq. (3.34) as

follows:

@I l(pl)

@pl

����
pl=⇡(ĤlrH(x̂)ṗr)

=
@Ir(a)

@a

����
a=pr

@⇡(b)

@b

����
b=ṗr

H(�x̂)Ĥrl @ṗl

@pl
, (3.40)

46

3.5. Planar Visual Odometry

with ṗr = H(�x̂)Ĥrlṗl as stated above. Eq. (3.40) still depends on x̂ but now less

significantly. Once again we will assume that x̂ is small and will evaluate it to 0.

Substituting pr = (ur, vr)>, ṗr = (ur, vr, 1)>, and by using

@ṗl

@pl
=

2

664

1 0

0 1

0 0

3

775 , (3.41)

Eq. (3.40) simplifies to:

@I l(pl)

@pl

����
pl=⇡(ĤlrH(x̂)ṗr)

=
@Ir(a)

@a

����
a=pr

"
1 0 �ur
0 1 �vr

#
Ĥ
rl

2

664

1 0

0 1

0 0

3

775 . (3.42)

As evident, in the E�cient Second-order Method we use several assumptions and

the gradient of both the live and reference image during the minimisation process

to build a second-order approximation of the objective function. Although ESM

involves more computation than the first order methods, e.g. the inverse compositional

approach [Baker and Matthews, 2004], thanks to the second-order approximation, in

general, it achieves better convergence properties as documented in [Benhimane and

Malis, 2004].

3.5.3 Practical Considerations and Implementation Details

Our dense planar visual odometry assumes that the camera observes a planar floor,

however in most cases this condition cannot be satisfied. In order to make our

approach more practical, we only perform tracking on the pixels that are identified

as ‘floor’. To achieve this, when the camera starts moving, we first assume that only

a region directly in front of the robot is planar and use this for tracking. This allows

us to perform initial motion estimation accurate enough for calculation of the depth

maps (Chapter 2). With the depth maps we can start building a model of the scene

and label parts of it as ‘floor’ and ‘non-floor’, as for example shown in Chapter 6, or

build an appearance model of the floor and perform tracking only on the pixels that

are classified to satisfy the planar assumptions.

There are several well-established techniques (e.g. robusitfication of the cost

function, coarse-to-fine) that help to make tracking using dense image alignment

more robust and practical. For a comprehensive review of these refer to some of

these excellent references: [Lovegrove, 2011; Newcombe, 2012; Handa, 2013]. As

47

3. Dense Planar Visual Odometry

(a) (b)

Figure 3.5: Our method does not require that all pixels in the camera field of
view belong to the planar floor, and in practice we perform dense image alignment
on the image parts that are confidently identified as a planar floor. We start by
assuming that only the area directly in front of the robot is planar (a). This is
su�cient to perform accurate motion estimation, and allows us to estimate depth
maps (Chapter 2) that next can be used to classify pixels into ‘floor’ and ‘non-floor’
(b), by for example building appropriate appearance models [Dahlkamp et al., 2006;
Hadsell et al., 2009] or performing a surface reconstruction as shown in Chapter 6.

already mentioned, in our implementation, instead of using the l2-norm as indicated

in e.g. Eqs. (3.1) and (3.23), we use a Huber norm to robustify the cost function in

an iteratively reweighted least squares framework. This helps us to reject partially

nonplanar structures still visible in the field of view as well as other e↵ects that are

not directly modelled in our approach, e.g. specularities and shadows. Furthermore,

we make use of a coarse-to-fine multi-resolution approach to speed up computations

and extend the basin of convergence.

Since tracking using image alignment is a nonlinear optimisation problem, it

requires good starting conditions in order to avoid local minima and to improve

convergence. In our VO system we take advantage of the general smoothness of

robot motion relative to our camera capture rate and we initialise the solution T̂
vlr

to the value found on the previous VO timestep.

As mentioned, dense methods are suitable for parallel implementation. Most of

the computations involved in our method are spent on evaluation of the per-pixel

error terms, Eq. (3.24), and their gradients Eq. (3.27). which are fully parallelisable,

and in our CUDA implementation we typically launch one thread per pixel. We use

an e�cient parallel reduction on GPU (based on techniques described by [Harris,

48

3.6. Experiments

2008] and [Luitjens, 2014]) to assemble J
>
J and J

>f(0) from the individual error

terms, whereas only the final computations, Eq. (3.29), that are required to solve the

normal equation are performed on a CPU. Our method operates very comfortably in

real-time on a modern PC with GPU. The mean frame-rate of VGA image resolution

processing required for visual odometry is about 270–300 FPS (10 times real-time)

on a desktop GTX 480 GPU and about 60–65 FPS on a mid-range laptop GT650M.

3.6 Experiments

We ran a series of experiments to demonstrate that dense planar visual odometry can

o↵er accurate and precise motion estimation and indeed could replace wheel odometry.

Since the quality of visual odometry depends also on the quality of the extrinsics

calibration we will refrain from the full evaluation until the next chapter, where we

perform additional tests and will address various aspects of visual odometry and

auto-calibration including an investigation of how the violation of certain assumptions

such as planar motion or planarity of the observed scene a↵ects the performance of

our method.

Fig. 3.6 shows our test platform, a Pioneer P3-DX robot with an adjustable rigid

camera mount, and camera relatively close to the ground. We assume the camera

position on the robot is known and that the camera observes entirely the planar floor

surface. In the next chapter, which addresses the problem of auto-calibration, we

perform an additional evaluation using data obtained from a rear parking camera.

3.6.1 Comparison against Wheel Odometry

As we wanted to evaluate our visual odometry method in di↵erent field conditions,

with di↵erent camera poses, and various surfaces and lighting conditions, obtaining

ground truth for all experiments was in general di�cult. Even though we tried

several possibilities to obtain ground truth for robot motion in order to evaluate the

quality of visual odometry once calibrated, we decided to used the wheel odometry

of the Pioneer robot as a reference for most experiments. While wheel odometry

of course is not usually considered suitable as a ground truth reference, this robot

is heavy and precise and turns out to have locally very accurate wheel odometry

on surfaces with good grip such as short carpet. To verify this and justify its use

as the reference for the rest of our evaluation, we conducted an experiment where

wheel odometry was compared against a ground truth reference consisting of an

49

3. Dense Planar Visual Odometry

Figure 3.6: Robot Pioneer P3-DX used for in our experiments.

external overhead calibrated camera system observing a target marker placed on top

of the robot. The results are shown in Fig. 3.7. What we see is that the Pioneer’s

wheel odometry is indeed accurate, with no observable bias in incremental motion

estimation; in addition the robot has better local motion estimation accuracy as seen

in the smoothness of the wheel odometry plot. We decided therefore to base our VO

experiments on a comparison with wheel odometry rather than the external camera

system, with the large advantage that this easily enables extended experimentation

and long trajectories where providing an external ground truth reference might be

more challenging and prone to error than the visual odometry itself.

Fig. 3.8 shows examples of di↵erent surfaces that we used to test our method.

Probably the simplest and most intuitive demonstration of the performance of our

visual odometry is a plot that shows superimposed trajectories generated both by

wheel and visual odometry, as depicted in Fig. 3.9. We see good overall performance

over significant distances apart from bigger errors caused by low-lighting conditions

and self-shadowing, issues we will examine later. Here we also show a trajectory

50

3.6. Experiments

Figure 3.7: Comparison of wheel odometry against external camera-based ground
truth for short motions of our indoor robot. We carry out a motion of several
minutes, and we obtain the incremental velocity and angular velocity measurements
from both wheel odometry and the ground truth reference and plot points on two
histograms. Colours in these 2D ‘heat map’ histograms indicate the frequency of
measurements. We see that the data are tightly clustered around the x = y axis in
both cases, indicating that the robot’s wheel odometry is accurate and unbiased. In
fact the robot’s wheels give better local motion estimation accuracy, as shown by
the increased smoothness of the wheel odometry line in the short time series plot on
the right.

Figure 3.8: We tested our visual odometry using various camera settings and on
di↵erent types of surface.

51

3. Dense Planar Visual Odometry

generated by uncalibrated visual odometry, where the camera extrinsics were o↵

just by a few millimetres and degrees. This highlights the importance of proper

auto-calibration, a subject we will investigate in the next chapter.

Figure 3.9: Example of di↵erent trajectories estimated by WO and calibrated and
uncalibrated VO. The uncalibrated trajectories were generated using only a manual
calibration, and the camera extrinsics were o↵ by only ±10 mm and ±2.5�. The
increased error in the middle figure is due to significant self-shadowing and low
lighting conditions.

However, as both VO and WO systems will eventually drift over time, observing

trajectory plots is not a strong basis for quantitative evaluation of VO quality.

Instead, for quantitative evaluation we analyse the statistics of incremental motion

estimation accuracy. Fig. 3.10 summarises the behaviour of VO against WO in the

form of 2D histograms. These histograms were created from more than 350 metres

of motion (about 45000 frames, 25 minutes) that featured a wide range of motions

and turns up to the maximum dynamics of the robot (peak linear velocity 0.8 ms�1,

average 0.2 ms�1; peak angular velocity 1.5 rads�1, average 0.24 rads�1 respectively)

on various surfaces and using 10 di↵erent calibrated camera configurations with

camera heights from 7 cm to 25 cm. In the histograms, each point represents the

estimated velocity (linear and angular on the left and right respectively) plotted

against ground truth, with a heat map showing the frequency of each pair of values.

The tight packing of these distributions around the x = y axis indicates the unbiased

and low uncertainty estimation of robot motion and the good performance of the

algorithm most of the time. In the velocity range of up to around 0.6 ms�1 we see

extremely robust performance. Beyond this speed we see a very small fraction of

gross errors that result mostly from a combination of disadvantageous e↵ects like

52

3.6. Experiments

reduced inter-frame overlap, motion blur, shadows cast by the robot or low-light

conditions.

Figure 3.10: 2D heat-map histograms showing the statistical performance of auto-
calibrated visual odometry against validated WO ground truth. Histograms were
created using about 45000 data points; note the logscale used for the heat map.
Gross errors are in fact extremely rare and the distribution is tightly packed about
the x = y line indicating unbiased and precise performance: the red dashed line is a
fit to our data which is almost perfectly aligned with the desired black line. Without
a systematic error we expect the slope of the fitted line to be equal to 1, and indeed
we obtain a slope of 1.00 for the linear velocity and 1.02 for the angular velocity.

Fig. 3.11 shows tracking results for quite challenging surface types. The first

has little matte texture but is shiny with raised circular studs. The nonplanar

bumpy motion of the robot is the cause for more noisy estimation in this case. The

second floor is smooth but also shiny with strong specularities. Despite this, with no

modification our algorithm gives good results a large fraction of the time.

3.6.2 High Precision Motion Estimation

This experiment investigates and highlights the capability of downward-looking VO

to recover extremely high precision local motion. We mounted the camera at around

4 cm from the ground, and drove the robot straight forward at its lowest smooth

velocity setting of 2 cms�1. The camera observed and tracked a wooden board floor

surface on top of which was placed a ruler with clear millimetre markings (we track

only the wooden part observed by the camera). By inspecting the image sequence

obtained (Fig. 3.12 top) we were able to confidently confirm the ground truth motion

(at 30 Hz) of around 0.7 mm per frame, corresponding to image motion of around 8

pixels per frame.

53

3. Dense Planar Visual Odometry

0 200 400 600 800 1000 1200 1400
Frame no.

0

5

10

15

20

25

D
is

t.
 t

ra
ve

lle
d

[m
m

]

Wheel odometry
Visual odometry

0 200 400 600 800 1000 1200 1400
Frame no.

0

5

10

15

20

25

D
is

t.
 t

ra
ve

lle
d

[m
m

]

Wheel odometry
Visual odometry

Figure 3.11: Our visual odometry also works on challenging surface types. The time
series compare the estimated per-frame distance travelled measured by visual and
wheel odometry. The nonplanar motion of the robot over the raised circular studs
and strong specularities cause more noisy estimation but our algorithm gives good
results most of the time.

The results of planar VO applied to this sequence against idealised ground truth can

be seen in Fig. 3.12. We see a remarkable precision in incremental motion estimation,

where the per-frame motion is estimated with a standard deviation consistently

within 0.1 mm. We suspect that the oscillation observed at the beginning is to real

vibration of our robot when it first starts moving, and can be seen to damp when a

constant velocity is reached. This oscillation, of only around 0.5 mm peak to peak

amplitude, is something not measurable by wheel odometry.

Figure 3.12: Experiment to investigate ultra-high precision local motion estimation.
Top: Images from 10 frame intervals. Bottom: VO against idealised ground truth.

54

3.6. Experiments

3.6.3 Qualitative Results

With high quality camera tracking from dense planar VO we can start creating simple

maps of the environment in the form of a planar mosaic as shown in Fig. 3.13. A high

quality mosaic indicates both correct estimation of the planar camera motion and

of the out-of-plane angles. Note that these mosaics were created using incremental

motion only; there is no loop-closure or global optimisation.

Figure 3.13: Consistent planar mosaics created by simple stitching of frames using
the homographies estimated by our visual odometry system. The field of view of a
single camera frame is superimposed for comparison.

The accuracy of our visual odometry manifests itself also in the ability to perform

multi-view stereo as presented in the previous chapter. The depth maps shown in

Fig. 2.8 were calculated using motion estimation based on dense visual odometry

(where we identify and track only on the planar part of the scene).

55

3. Dense Planar Visual Odometry

3.7 Conclusion

In this chapter we have demonstrated that a dense planar image alignment approach

o↵ers a robust and accurate solution for visual odometry, in particular for a small

robot moving in an indoor environment. Although our main assumption that the

ground is flat and parallel to the camera motion limits the applicability of our method

to certain applications, we have shown how this greatly simplifies VO and enables

us to use the image information available in a video sequence in a straightforward

manner. With small modifications that allow us to identify and track using only the

pixels that directly observe a planar floor, our visual odometry can be applied in more

general scenarios, and we will use it throughout the rest of this thesis to estimate

robot ego-motion. In the next chapter we also show that the camera extrinsics

required for visual odometry can be precisely auto-calibrated in highly practical

settings.

The methods based on dense image alignment are well suited to e�cient parallel

implementation on a GPU, and they are highly scalable, which makes them very

attractive for low-cost robots. It will be interesting to see the trade-o↵s in VO as

camera frame-rate and resolution are varied. In fact, an optical mouse can be thought

of as an example of our VO approach where we decrease the sensor resolution and

increase frame-rate to extremes.

There is great scope for future extension of the method. Instead of tracking frame-

to-frame camera motion, in order to reduce drift the method can easily be used to

perform motion estimation with respect to a global model, e.g. a reconstructed planar

mosaic. Although we achieve certain robustness by using a robust cost function, the

performance can be further improved by directly modelling and taking into account

many e↵ects that can negatively a↵ect the behaviour of dense image alignment. For

example the method proposed by [Park et al., 2009] addresses the problem of motion

blur, whereas by performing Lucas-Kanade in the Fourier domain [Ashraf et al.,

2010; Lucey et al., 2013] one could handle substantial illumination variations.

56

Chapter 4

Auto-calibration for Visual

Odometry

Contents

4.1 Introduction . 57

4.2 Related Work . 59

4.3 Preliminaries . 60

4.4 Vision-based Calibration . 61

4.5 Graph-based Calibration . 63

4.5.1 Calibration against Wheel Odometry 64

4.5.2 Calibration using Practical Assumptions 65

4.6 Experiments . 70

4.6.1 Experimental Configuration and Ground Truth Reference 70

4.6.2 Calibration on Di↵erent Surfaces 71

4.6.3 Odometry from a Road Vehicle’s Rear Parking Camera 75

4.6.4 Calibration using Nonholonomic Constraints and Direc-

tion of Motion . 82

4.7 Conclusions . 85

4.1 Introduction

In the previous chapter we presented our approach to Visual Odometry for a mobile

robot moving on a planar surface. The VO system requires all six degrees of freedom

of the Tvc 2 SE(3) transformation between the robot’s drive frame and the camera

57

4. Auto-calibration for Visual Odometry

frame to be estimated, and in this chapter we present a simple procedure that allows

us to calibrate this transformation fully automatically.

Because we assume that the downward-looking camera directly observes the

plane on which the robot is locally driving, we have strong information to help the

calibration procedure. This means that of the six unknown extrinsic parameters, two

can be estimated reliably by capturing a very short sequence of video as the robot

moves, and without needing any external reference. These are the roll and pitch

angles of the camera, since only a correct estimate of these will lead to inter-frame

homography warps of the planar texture which are consistent with movement over

the same plane. We experimentally demonstrate the ease and accuracy of this first

part of the auto-calibration procedure.

Calibrating the remaining four parameters — the camera’s yaw angle, and its

translational position relative to the robot frame — cannot be achieved without some

kind of external reference, but we clearly show that there are several highly simple

and practical forms this can take which leads to rapid and precise full calibration,

by formulating the problem as a pose-graph optimisation with the help of wheel

odometry or a nonholonomic constraint on the vehicle motion. First, if we have a

sequence of camera trajectory where the robot makes a small number of movements

and turns with accompanying synchronised wheel odometry on a good surface, we

present a graph optimisation algorithm which produces an unbiased estimate of the

full calibration. Note that the purely relative information from wheel odometry

is su�cient here, and we do not need to perform full SLAM or have an absolute

external motion reference. We perform auto-calibration using only wheel odometry

as an additional reference, and take the uncertainty in that wheel odometry into

account, only requiring that the wheel odometry can be assumed to have zero-mean

errors incrementally on a region with good surface grip to achieve unbiased camera

extrinsics estimation.

We then examine even weaker cases for a robot which does not have wheel odometry,

and show that very generally applicable assumptions about the nonholonomic motion

of most wheeled robots are su�cient for accurate auto-calibration of all but two

of the remaining degrees of freedom of the robot-camera transformation. If we

then further augment this with simple labels about which parts of the calibration

trajectory involve forward or backward robot motion, which should be available from

the robot’s control signal even if it has no odometry, we can calibrate everything

58

4.2. Related Work

apart from the height of the camera above the plane, which requires just one manual

measurement or known object to resolve.

A wide range of real-world surfaces permit successful and precise auto-calibration

and planar visual odometry, and we demonstrate results on surfaces such as carpet,

vinyl floor tiles, concrete, grass and wooden boards. We analyse the performance

of our auto-calibration techniques against ground truth where possible, and check

them for consistency by repeatedly achieving the same auto-calibration results over

di↵erent motions and surface types. Furthermore we analyse how violation of planar

assumptions a↵ects the performance of our methods.

The chapter is organised as follows. We start by presenting related work on ex-

trinsics auto-calibration in Section 4.2, and then proceed to describing the core of our

approach that includes vision-based (Section 4.4) and graph-based auto-calibration

(Section 4.5). An extensive experimental evaluation is conducted in Section 4.6,

followed by a discussion and conclusions in Section 4.7.

4.2 Related Work

Auto-calibration of the robot-sensor configuration and, more generally, methods for

auto-calibrating the extrinsic transformations between multiple sensors e.g. [Under-

wood et al., 2010] are integral elements of the deployment process of any robotic

platform or multi-sensor system.

Calibration of the camera extrinsics in most cases requires special reference targets

[Martinelli et al., 2006; Antonelli et al., 2010], or is achieved by calibrating with

reference to some carefully engineered ground truth positioning system. [Knorr

et al., 2013] presented a system that exploits a planar assumption for multi-camera

extrinsics calibration. Their system is based on a Kalman Filter and does not

require any external reference as the ground plane serves as a natural reference

object. Similarly to our method, the calibration procedure relies on plane-induced

homographies between successive frames. Additionally [Miksch et al., 2010] used

the assumption that the road surface visible in the images is approximately flat to

calculate the orientation of the camera with respect to the vehicle frame of reference.

However, their method relies on feature extraction and mapping, puts constraints

on the vehicle motion by forcing it to move in straight line, and does not extend

naturally to multiple frames (a final parameter is determined by a recursive filter

59

4. Auto-calibration for Visual Odometry

which averages various estimates over time).

Our graph-based auto-calibration is quite general and merits comparison with other

work on auto-calibrating the extrinsics of outward-looking sensors on mobile robots,

e.g. [Censi et al., 2008] and especially with [Kümmerle et al., 2011a] who performed

a calibration against a full SLAM system. In their work, [Brookshire and Teller,

2011] demonstrated that external incremental pose measurements are su�cient to

recover sensor calibration provided that degenerate trajectories are avoided. However,

to the best of our knowledge, our work is the first that demonstrates how to use

nonholonomic constraints for sensor extrinsics calibration. In the robot vision and

tracking literature there are only a few examples of applying nonholonomic motion

constraints to sensing directly. In their feature-based VO system, [Scaramuzza et al.,

2009b] used a one-point RANSAC outlier rejection scheme based on nonholonomic

constraints to reduce the computational burden of data association and therefore

speed up egomotion estimation. [Scaramuzza et al., 2009a] used nonholonomic

constraints together with the known o↵set between camera and vehicle frame of

reference to estimate the absolute scale in SfM. [Fossati and Fua, 2008] did not

directly apply nonholonomic constraints, but instead showed that incorporating the

local direction of travel while estimating motion can greatly improve visual tracking,

since the pose of an object has a direct influence on its direction of travel.

4.3 Preliminaries

The goal of auto-calibration is to estimate the pose of the camera relative to the

robot which carries it. Its translational position is determined by the position vector

(xvc, yvc, zvc) and its orientation can be represented in the form of roll, pitch and

yaw angles. Our auto-calibration method builds on top of dense image alignment

technique from the previous chapter and it has two distinct steps. First, the roll

and pitch angles of the camera are estimated purely from a short image sequence

without the need for targets or markers, or constraints on robot trajectory. Correct

estimates of roll and pitch angles make it possible to track planar camera motion and

we then acquire a camera trajectory featuring a short sequence of manoeuvres which

is required for the second step of calibration. There, the remaining 4 DoF, the yaw

angle and translations of the camera, are estimated by considering the estimated

planar camera motion in the context of the robot’s whole trajectory. There are two

methods available here. In the most general case these 4 DoF can be calibrated by

60

4.4. Vision-based Calibration

bringing in relative motion estimates from wheel odometry as an external motion.

Since synchronised and unbiased odometry may not be available on many platforms,

we also present an alternative for the weaker but common case where a wheeled

robot’s motion can be assumed to be nonholonomic, showing that a further 2 DoF

(the xvc coordinate of the camera position and the yaw angle) can be determined

without the need for any source of reference. A final extension of our calibration

framework allows us to obtain a reasonable estimate of the yvc camera coordinate

without any precise measurements from wheel odometry, using only motion direction

priors, i.e. simple information on whether the robot was moving forward or backward

at each point on its trajectory. The last degree of freedom, the height of the camera

above the plane which determines the overall scale of motion estimation, in this case

needs to be estimated with one manual measurement (directly of the camera height,

or perhaps by recognising a single known object or marking in the visual scene).

4.4 Vision-based Calibration

In a previous chapter, in Section 3.5, we demonstrated how to track camera motion

expressed in terms of a planar robot motion, provided that the full 6 DoF trans-

formation between the robot and camera frames Tcv is given. Here we will present a

method for calibrating the first 2 DoF of the full transformation, su�cient to allow

planar camera motion tracking.

We first assume that the camera is aligned with the robot frame of reference, i.e.

that xvc = 0, yvc = 0, zvc = 1, �vc = 0, and therefore we have:

T
vc = (Rvc | (0, 0, 1)>) . (4.1)

Let us recall Eq. (3.20):

T
lr = T

cv
T
vlrT

vc .

Now, since the frames of references are aligned, we can think of Tvlr as a camera

planar motion, and there are only two unknowns in T
vc, roll and pitch angles,

y = (↵vc,�vc)>, that define the camera orientation matrix R
vc.

By estimating camera orientation R
vc with respect to the ground plane we can

simultaneously estimate the normal of the plane. Unlike [Silveira et al., 2008] we

are not using inverse depth to estimate the normal, but instead we exploit the fact

61

4. Auto-calibration for Visual Odometry

that the unit plane normal vector n is uniquely defined by the camera orientation

R
cv and depends only on the roll and pitch angles:

n = R
cv (0, 0, 1)> . (4.2)

We can now readily parameterise the homography in Eq. (3.22) by two sets of

parameters: the planar motion of the camera from frame to frame x = (x, y, ✓)>,

and the orientation of the camera with respect to the plane using roll and pitch

angles y = (↵vc,�vc)>:

H
lr(x,y) = KT

cv(y)Tvlr(x)Tvc(y)(I|� n(y))>K�1 . (4.3)

Using Eq. (4.1) and Eq. (4.2) we can simplify and rewrite the homography in

Eq. (4.3) into the following form:

H
lr(x,y) = KR

cv(y)MTvlr(x)NRvc(y)K�1 , (4.4)

with two constant matrices:

M =

2

664

1 0 0 0

0 1 0 0

0 0 1 �1

3

775 and N =

2

666664

1 0 0

0 1 0

0 0 0

0 0 �1

3

777775
. (4.5)

Similarly to Eq. (3.25) we choose to parameterise the homography by a transformation

matrix T(x) that represents a small change to the estimate of planar motion T̂
vlr , as

well as by an update matrix R(y) representing a small update to the current estimate

of camera orientation R̂
cv:

H
lr(x,y) = KR̂

cv
R(y)MT̂vlrT(x)NR(�y)R̂vcK�1 . (4.6)

For T̂vlr we use the same update rule as in Eq. (3.26), whereas for the rotation

matrix R̂
cv the following update rule is applied:

R̂
cv R̂

cv
R(ŷ) , (4.7)

where ŷ belongs to the Lie Algebra so(3) and represents a small update to the

estimate.

By calculating the partial derivatives of homography H
lr with respect to its para-

meters we obtain the essential building blocks necessary to apply the dense image

62

4.5. Graph-based Calibration

alignment machinery introduced in Chapter 3. The partial derivative of Hlr around

x = 0,y = 0 with respect to x is equal to:

@Hlr(x,y)

@xi

����
x,y=0

= KR̂
cv
MT̂

vlr
@T(x)

@xi
NR̂

vc
K
�1 , (4.8)

while the derivative with respect to y is expressed in the following form:

@Hlr(x,y)

@yi

����
x,y=0

= KR̂
cv @(R(y)MT̂

vlrNR(�y))
@yi

R̂
vc
K
�1 . (4.9)

Finally, we can use the fact that:

@R(y)

@yi

����
y=0

= G
SO(3)
i and

@R(�y)
@yi

����
y=0

= �GSO(3)
i , (4.10)

where G
SO(3)
i is the ith group generator for SO(3), and apply the product rule to

show that:

@(R(y)MT̂vlrNR(�y))
@yi

����
y=0

= G
SO(3)
i MT̂

vlrN� MT̂
vlrNG

SO(3)
i . (4.11)

Having arrived at these expressions we can now e�ciently use dense image alignment

to find not only the planar frame to frame camera motion but also the normal of the

plane parallel to which the camera is moving.

Although it is possible to estimate the plane normal from just two images, to better

constrain and improve the robustness of the estimation process we combine multiple

frames into a local dense map and jointly estimate the motion between consecutive

keyframes as well as the parameters of the plane normal. When the overlap between

the last keyframe and the current frame falls below a defined threshold we add this

frame to the map. In practice for estimating roll and pitch angles we usually used

maps containing between 5 and 50 frames.

4.5 Graph-based Calibration

At this step of calibration, we assume that the roll and pitch angles were calibrated

using the method described in the previous section, and therefore that we can

accurately track camera motion with respect to the ground plane. The remaining 4

DoF, the camera position, (xvc, yvc, zvc) as well as the yaw angle, need now to be

estimated in order to relate the camera motion to the robot motion. In the following

we will refer to VO as the (up-to-scale) planar motion obtained from camera tracking

63

4. Auto-calibration for Visual Odometry

using already calibrated roll and pitch angles only, and use wheel odometry (WO)

to mean measurements coming from wheel odometry. Therefore all the motions

considered in this section are assumed to be planar.

There are two distinct graph-based calibration methods presented: one relies

on external motion estimation source, whereas the second method exploits general

motion assumptions.

4.5.1 Calibration against Wheel Odometry

In this type of auto-calibration we are interested in finding a set of parameters

(xvc, yvc, zvc, �vc) that best explain the incremental measurements from VO and the

corresponding WO measurements. Our formulation is similar to that proposed in

[Brookshire and Teller, 2011] and is based only on incremental measurements, but

we model the problem directly as a factor-graph (as proposed in [Kümmerle et al.,

2011a]). This formulation allows us to benefit from all the techniques available for

graph optimisation and solve the problem very e�ciently.

r1 r2 r3 r4

z

ew1,2 ew2,3 ew3,4

ev1,2 ev2,3 ev3,4

Figure 4.1: Factor graph formulation of our calibration against wheel odometry.
Variable nodes ri represent robot poses along the trajectory, and one additional
node z = (xvc, yvc, zvc, �vc) represents the camera calibration. Factor nodes wi,i+1

(rectangles) with error functions ewi represent the measurement obtained from wheel
odometry, whereas vi,i+1 with error function evi are obtained from camera tracking.

An example factor graph is shown in Fig. 4.1. In the graph the nodes ri =

(xri , yri , ✓ri) represent robot poses along the trajectory, and one additional node

z = (xvc, yvc, zvc, �vc) represents the camera configuration. Every time an odometry

measurement is available we add a new node to the graph. We assume that camera

and wheel odometry are well synchronised, and that jitter and synchronisation

errors are negligible. Two consecutive nodes ri and ri+1 are connected by two

factors, one representing the measurement obtained by wheel odometry wi,i+1 =

(xwi,i+1 , ywi,i+1 , ✓wi,i+1) and the second the visual odometry measurement vi,i+1 =

64

4.5. Graph-based Calibration

(xvi,i+1 , yvi,i+1 , ✓vi,i+1). Visual odometry factors vi,i+1 are also connected to the

camera configuration z. There are no loops in this graph and the graph is fixed by

the first node. In the graph we are primarily interested in determining the camera

calibration z, though as the robot poses ri are also variable, as a byproduct of the

camera calibration we obtain an estimate of the robot trajectory.

The error function in the wheel odometry factors ewi measures how well the para-

meters ri, ri+1 satisfy the constraint arising from the wheel odometry measurement

wi,i+1:

ewi (ri, ri+1,wi,i+1) = (ri+1 ri) wi,i+1 , (4.12)

where is the inverse of the usual motion composition operator �.

The error function in the visual odometry factors evi measures how well the

parameters ri, ri+1 and z satisfy the constraints arising from the visual odometry

measurement vi,i+1:

evi (ri, ri+1, z,vi,i+1) = (ri+1 ri)� f(z,vi,i+1) , (4.13)

where f is the function that transforms the motion from the camera frame of reference

to the robot frame of reference using (xvc, yvc, zvc, �vc).

The goal of graph optimisation is to find a set of parameters (r?, z?) that maximise

the likelihood of the observed data, i.e. that minimise the total error in the graph:

X

i

evi
>⌦̂v

i e
v

i +
X

i

ewi
>⌦w

i e
w

i , (4.14)

where ⌦w

i is the information matrix of the measurement wi,i+1 and ⌦̂v

i is the

projection of the information matrix ⌦v

i using the current estimate of z. Least

squares estimation on this hyper graph is performed using g2o [Kümmerle et al.,

2011b].

4.5.2 Calibration using Practical Assumptions

Nonholonomic Calibration

Calibration against wheel odometry works well in practice and is the most universal

method. However, many mobile robots belong to a class of nonholonomic systems

and therefore are subject to motion constraints, which can also be used for auto-

calibration even when odometry is not available. We show that for a sensor that is

65

4. Auto-calibration for Visual Odometry

placed on a nonholonomic mobile platform and that can measure its incremental

motion in its own frame of reference, we are able to estimate the xvc component of the

sensor’s position on the robot, as well as the yaw angle �vc, just using nonholonomic

constraints without the need of wheel odometry or any other reference system.

In robotics, a nonholonomic system refers to a platform for which the dimension

of the admissible velocity space (number of control variables) is smaller than the

dimension of the configuration space (number of degrees of freedom). Such systems

are therefore also called underactuated. The most common family of nonholonomic

systems in robotics are wheeled robots (e.g. unicycle, di↵erential drive or car-like

robots), whose kinematic models are derived from the rolling without slipping as-

sumption. Rolling without slipping assumption means that the translational and

rotational velocities of a rolling wheel are not independent and is related to the

fact that most wheels are not designed to slide sideways, but are required to roll in

the direction they are pointing. Consequently, this imposes velocity constraints on

rolling vehicles [LaValle, 2006]. One of the most intuitive examples of a nonholonomic

system is a simple car with rear-wheel drive, as shown in Fig. 4.2. The configuration

space of a car has three degrees of freedom (its (x, y)-position and orientation ✓), but

only two control variables (steering angle � and its driving velocity). A car-like robot

can only move forward or backward in a direction perpendicular to the orientation

of its rear wheels axis, and it cannot drive sideways because its wheels would have

to slide instead of roll. Exactly these constraints make certain aspects of car driving,

like parallel parking, challenging [Laumond, 1998].

More specifically, the rolling without slipping constraint can be expressed by the

following formula:

ẋ sin ✓ � ẏ cos ✓ = 0 , (4.15)

where (x, y, ✓) is used to denote the configuration of a robot at a time step t and

its velocities are represented by ẋ and ẏ. Therefore, the nonholonomic constraints

limit robot’s velocity in its current configuration and forces the vehicle to move

tangentially to its main axis. Consequently, nonholonomic constraints do not restrict

the (x, y, ✓)-configurations a car or robot can take, but how it can reach them.

Our calibration method is not limited to a car-like robot but it is applicable to

various types of nonholonomic robots, whose kinematic models can be derived from

the rolling without slipping assumption formulated above, including a di↵erential

66

4.5. Graph-based Calibration

(a) Kinematic model of a car. (b) Due to nonholonomic constraints, in or-
der to park a car in parallel, a special tra-
jectory has to be executed [Laumond, 1998].

Figure 4.2: Car is a simple and intuitive example of a nonholonomic system. It has
three degrees of freedom, i.e. (x, y)-position of the rear wheels axis and orientation
✓, but only two control variables, i.e. a steering angle � and its driving velocity. The
assumption that car’s wheels cannot roll without slipping limits the manoeuvres
(velocities) the car can instantaneously execute in its current configuration and forces
the vehicle to move tangentially to its main axis. The nonholoconomic constraints
make certain car manoeuvres, e.g. parallel parking, challenging.

drive robot like the Pioneer P3-DX used in most of our experiments. The key

observation when using nonholonomic constraints for extrinsic calibration, is that

even though a planar trajectory T
c(t) measured by a camera (or another sensor) in

its frame of reference does not need to satisfy nonholonomic constraints, the resulting

estimated robot trajectory:

T
v(t) = T

vc
T
c(t)Tcv , (4.16)

should satisfy these motion constraints. Therefore, we are looking for calibration

parameters that produce a nonholonomic vehicle trajectory from a given camera

trajectory. Note that here we consider the whole trajectories. A camera trajectory is

created from a sequence of consecutive incremental planar motions, and therefore

we use t to denote time in Eq. (4.16). The variables in the transformation T
vc from

camera frame of reference to the robot frame of reference are now (xvc, yvc, �vc). In

fact, it turns out that for correct values of xvc and �vc we can satisfy nonholonomic

constraints independent of yvc (see Section 4.5.2 below for more details), and therefore

we cannot determine yvc by means of this method. Additionally, using this algorithm

we cannot estimate the absolute scale, unless the sensor can measure its motion

metrically. Therefore, we can only use this algorithm for estimating two degrees of

67

4. Auto-calibration for Visual Odometry

c1 c2 c3 c4

z

eh1,2 eh2,3 eh3,4

Figure 4.3: Factor graph formulation for nonholonomic calibration. Nodes ci corres-
pond to the camera poses and are fixed, whereas a single variable node z = (xvc, �vc)
represents camera extrinsic parameters. Factor nodes hi,i+1 (rectangles) with corres-
ponding error functions, ehi,i+1, represent violations of nonholonomic constraints.

freedom.

A graph-based formulation of this calibration strategy is depicted in Fig. 4.3.

Fixed nodes ci represent camera poses along the trajectory, and there is only a single

variable node in the graph, z(xvc, �vc), for camera extrinsics calibration parameters.

The nodes are connected by factors hi,i+1 that do not store any measurements but

penalise deviation from nonholonomic motion ehi,i+1 using Eq. (4.15):

ehi,i+1 = ẋri,i+1 sin ✓ri � ẏri,i+1 cos ✓ri . (4.17)

As mentioned, the nonholonomic error does not depend on yvc. The robot poses

(xri , yri , ✓ri) required for calculating the nonholonomic error are obtained from the

camera poses ci and current calibration parameters z using Eq. (4.16). To evaluate

the error, it is also necessary to calculate the velocities from the poses. We estimate

a velocity at every node by calculating the constant velocity that bring the robot

from the current to the next pose. Although this is only an approximation, it works

well in practice. Again, least squares estimation on this graph is performed using

g2o.

Limitations of the Nonholonomic Calibration

A limitation of nonholonomic calibration is that it does not provide enough constraints

to recover yvc. When calculating the nonholonomic error as defined in Eq. (4.17) one

has to use the values measured in the camera frame of reference (ẋc, ẏc, ✓̇c) and ✓c,

together with the current estimates of the calibration parameters (xvc, yvc, �vc) to

obtain the velocities in the robot frame of reference ẋr and ẏr as well as the robot

orientation ✓r. One can show that these values depends on each other in the following

68

4.5. Graph-based Calibration

way:

ẋr = ẋc cos �vc � ẏc sin �vc + ✓̇c (yvc cos ✓c + xvc sin ✓c)

ẏr = ẋc sin �vc + ẏc cos �vc � ✓̇c (xvc cos ✓c � yvc sin ✓c)

✓r = ✓c

(4.18)

Recall the nonholonomic error formulation (Eq. (4.17)) that assumes rolling without

slipping (we drop certain subscripts for brevity):

eh = ẋr sin ✓r � ẏr cos ✓r (4.19)

Substituting Eq. (4.18) into Eq. (4.19) leads to:

eh = ẋc sin ✓c cos �vc � ẏc sin ✓c sin �vc + ✓̇c sin ✓c (yvc cos ✓c + xvc sin ✓c)

�ẋc cos ✓c sin �vc � ẏc cos ✓c cos �vc + ✓̇c cos ✓c (xvc cos ✓c � yvc sin ✓c)
(4.20)

Simplifying the equation and using the trigonometric identity (sin2 ✓c + cos2 ✓c = 1),

we can reduce the error to the following formula:

eh = ẋc sin ✓c cos �vc � ẏc sin ✓c sin �vc � ẋc cos ✓c sin �vc � ẏc cos ✓c cos �vc + ✓̇cxvc

= ẏc cos(�vc � ✓c) + ẋc sin(�vc � ✓c) + ✓̇cxvc

(4.21)

The error eh depends on the velocities measured in the camera frame of reference

(ẋc, ẏc, ✓̇c), the corresponding camera orientation ✓c, as well as xvc and �vc. However it

does not depend on the yvc-coordinate of the camera pose on the robot, and therefore

we cannot estimate this quantity using nonholonomic the calibration method.

Calibration using Known Direction of Motion

The fact that we cannot recover yvc using nonholonomic calibration does not ne-

cessarily mean that we need to use well-synchronised wheel odometry. Instead we

show that using weaker constraints, namely information about whether the robot

was moving forward or backward (i.e. whether its linear velocity v was positive or

negative), is su�cient to constrain yvc. This data can come, for example, from the

commands the robot was supposed to execute, or from a very rudimentary odometry

system. Obviously, a trajectory used for calibration with the help of this method

should include a balanced number of sections of backward and forward motion. Also,

correct values of xvc and �vc are necessary at this stage.

69

4. Auto-calibration for Visual Odometry

c1 c2 c3 c4

z

ep1,2 ep2,3 ep3,4

Figure 4.4: Factor graph calibration using motion direction priors. Factor nodes
pi,i+1 (rectangles) store information (sign) about whether the robot was moving
forward (+) or backward (�).

The graph shown in Fig. 4.4 is not significantly di↵erent from the nonholonomic

graph and it mainly consists of fixed camera poses, ci, calculated from the incremental

measurements. There is one additional node for camera extrinsic configuration z. The

factors in the graph, pi,i+1 (denoted as rectangles), now store prior information (sign)

about whether the robot was moving forward (+) or backward (�). To calculate the

error in a factor we first need to calculate the robot linear velocity vi,i+1 between

two consecutive robot poses using the current estimate of the calibration parameters.

The error depends on yvc only (the parameter we want to estimate), though proper

values of xvc and �vc are required for the calculation. We use the following (heuristic)

formula for error calculation in the graph:

epi,i+1 =

(
0 if sgn(vi,i+1) = priori,i+1

|vi,i+1| otherwise

)
. (4.22)

The graph optimisation framework is quite flexible and allows the possible inclusion

of additional factors, e.g. representing smoothness of motion or constraints on the

robot’s dynamics that represents the limits of its acceleration and velocity.

Even though we formulated the calibration as a graph optimisation problem with a

heuristic error function, it can be useful to think about it as classification task, where

we are looking for a value yvc that minimises the number of mismatches between the

priors (forward/backward motion) and the motion direction calculated from visual

odometry.

4.6 Experiments

4.6.1 Experimental Configuration and Ground Truth Reference

We designed a series of experiments to validate our auto-calibration method using

the robotic platform described in Chapters 2 and 3. We also performed an additional

70

4.6. Experiments

evaluation of both visual-odometry and auto-calibration using data obtained from

a rear parking camera, located at a height of about one metre, on a passenger

vehicle travelling through an urban setting at speeds of up to 45 km/h; this data set

was collected by Renault and previously used in published work [Lovegrove et al.,

2011]. The road vehicle data were also captured at 640⇥480 resolution and 30 Hz

frame-rate, but the camera field of view was approximately 45�. By testing our

method on the car dataset from Renault we could make use of the high quality

ground truth trajectory data available from a PHINS system capable of estimating

with high-accuracy the vehicle’s position and orientation. This system consists of a

precise Inertial Measurement Unit made of 3 fibre optic gyroscopes and 3 pendulum

type accelerometers, a bi-frequency GPS receiver and the vehicle wheel odometry.

Obtaining ground truth for extrinsics calibration is generally quite di�cult; it is

cumbersome to measure precisely a full 6 DoF camera pose as the camera frame

of reference is hidden inside a camera housing. To verify that our auto-calibration

procedure can produce correct results, we tested it against a standard camera

calibration procedure that makes use of a chessboard pattern (similar to [Zhang,

1999]). We placed the chessboard pattern on the floor and first acquired a few images

of it from di↵erent perspectives. Next, we mounted and fixed the camera on the robot

and captured an image of the chessboard pattern again. The standard procedure

estimates camera intrinsics as well as the 6 DoF of the camera with respect to the

chessboard pattern. However, since the position of the chessboard pattern with

respect to the robot frame of reference cannot be reliably measured, only 3 DoF can

be used as our ground truth, namely the roll and pitch angles as well as the height

above the chessboard pattern. These are equivalent to the roll and pitch angles and

height of the camera in the robot frame of reference.

The run time for calibration depends on the number of frames used for calculating

the camera orientation, and the length of trajectory used for estimating the remaining

4 degrees of freedom. In our test cases we were able to run continuous auto-calibration

using 10 frames and hundreds to thousands poses at a rate of a few frames per

second.

4.6.2 Calibration on Di↵erent Surfaces

In order to evaluate the performance and stability of our auto-calibration algorithm

we tested the procedure using three di↵erent camera configurations (Fig. 4.5) on a

71

4. Auto-calibration for Visual Odometry

Figure 4.5: We performed verification of the auto-calibration for 3 di↵erent camera
poses.

Figure 4.6: We tested our system on various di↵erent surfaces, both indoors and
outdoors.

wide range of surface types (Fig. 4.6). In some cases, the assumptions about a planar

scene and the planarity of the robot motion were violated. Each individual run was

on average 15–20 metres long, but we subdivided every trajectory into multiple,

overlapping, approximately 4 metre long trajectories starting with every new frame.

This allowed us to perform a statistical analysis and provide distributions of the

parameters, as from every individual run we had thousands of data points. For every

sub-trajectory we estimated the roll and pitch angle of camera using the first 10

frames, whereas the remaining degrees of freedom were calculated using the rest of

the available robot trajectory (every time we started with the same initial conditions,

x0 = 200 mm, y0 = 0 mm, z0 = 200 mm, ↵0 = 0�, �0 = 0�, �0 = 0�).

Table 4.1 shows the results from our auto-calibration method together with the

ground truth measurements for three di↵erent camera configurations. For each

individual configuration the estimates converge to the same results independent of

the surface and in multiple trials and we can conclude that the algorithm is stable.

Only on a very uneven surface (sequence ‘outdoor 4’) do the estimates diverge from

the rest of the measurements. The estimates of the camera height, as well as the

orientation, seem to be most stable, as indicated by a relative low variance, whereas

the estimates of the xvc and yvc coordinates are more noisy.

72

4.6. Experiments

a) Camera configuration 1

x [mm] y [mm] z [mm] roll [�] pitch [�] yaw [�]

ground truth 178.7 12.4 17.6
carpet 1 244.1 ±4.3 -18.5 ±5.2 179.1 ±0.8 12.3 ±0.3 17.7 ±0.4 -9.2 ±0.5
carpet 2 241.8 ±2.1 -16.9 ±2.5 178.9 ±0.6 12.3 ±0.3 17.5 ±0.3 -9.2 ±0.3
outdoor 1 245.7 ±5.9 -18.9 ±4.5 178.5 ±0.9 12.1 ±0.9 17.5 ±1.3 -9.5 ±0.2
outdoor 2 250.2 ±3.4 -12.9 ±3.4 180.1 ±0.4 12.2 ±1.2 17.1 ±1.7 -9.7 ±0.2
outdoor 3 244.3 ±2.1 -19.2 ±2.2 178.1 ±0.5 12.0 ±1.4 17.4 ±1.9 -9.3 ±0.2
outdoor 4 254.2 ±9.5 -3.6 ±17.8 174.1 ±6.9 11.9 ±2.0 17.3 ±2.8 -10.0 ±0.7

b) Camera configuration 2

x [mm] y [mm] z [mm] roll [�] pitch [�] yaw [�]

ground truth 216.4 29.8 -4.6
carpet 1 191.7 ±2.1 -107.8 ±3.6 218.1 ±0.7 30.1 ±1.0 -4.4 ±0.6 75.8 ±0.3
outdoor 1 195.5 ±1.2 -104.6 ±1.8 218.3 ±0.2 29.7 ±0.8 -4.7 ±0.7 75.9 ±0.1
outdoor 2 198.7 ±2.7 -106.0 ±1.6 218.5 ±0.9 29.5 ±1.3 -4.7 ±1.5 75.6 ±0.4

b) Camera configuration 3

x [mm] y [mm] z [mm] roll [�] pitch [�] yaw [�]

ground truth 146.9 -26.6 4.7
carpet 1 222.6 ±4.6 80.6 ±4.5 148.0 ±0.7 -26.8 ±0.4 4.5 ±0.3 -18.6 ±0.3
outdoor 1 231.0 ±2.6 78.5 ±4.2 148.6 ±1.4 -26.4 ±1.1 4.3 ±1.1 -18.5 ±0.2
outdoor 2 226.6 ±1.4 79.7 ±1.6 149.3 ±0.4 -26.4 ±1.8 4.5 ±1.3 -18.2 ±0.3

Table 4.1: Calibration on di↵erent surfaces. About 1000-2000 subtrajectories were
used on each surface separately for calculation of mean and standard deviation.
Ground truth values were obtained using chessboard pattern method described in
Section 4.6.1.

The most stable results in terms of camera orientation are obtained on a carpet

surface, when the surface on which the robot is driving is mostly flat. On the other

hand, outdoors, where the robot was driving over rough and slightly uneven surfaces,

the variance of the estimates increases; this is caused by a locally nonplanar motion

and nonplanar structures in the field of view. As demonstrated in the previous chapter

(Fig. 3.9), even relatively small miscalibration can eventually lead to significant errors

in visual odometry. Therefore, it is recommended to perform the auto-calibration on

mostly flat surfaces and with moderate robot velocities, and to increase the number

of frames used for calculating camera orientation to improve the stability.

Whereas the process of estimating camera orientation with respect to the plane of

motion is independent of the robot’s trajectory, estimation of the remaining degrees

73

4. Auto-calibration for Visual Odometry

Figure 4.7: The development over time of our estimates of extrinsics parameters
of camera configuration 1 on the ‘carpet 1’ (top) and ‘outdoor 1’ (bottom) surface
when auto-calibration is run online. Every time point represents another trajectory
segment. The values of the roll and pitch angles are stable and independent of the
robot trajectory. On the other hand, the remaining degrees of freedom change as
di↵erent trajectory segments are used.

of freedom (camera metric position and the yaw angle) is governed by other rules.

Firstly, it depends on proper frame-to-frame tracking and therefore proper values

of camera orientation. If the first step of our auto-calibration is unsuccessful, it

cannot be compensated for by graph optimisation and it is impossible to recover

unbiased values of the 4 DoF. Secondly, certain trajectories are degenerate and

prevent unambiguous calibration. As in [Brookshire and Teller, 2011], calibration

cannot be recovered when the robot is driven in a straight line only, or when the

camera experiences only concentric, circular motion. In practice these cases are easily

avoided by varying the robot’s velocities and the trajectory geometry.

Fig. 4.7 illustrates the behaviour of estimates as time evolves for the same configur-

74

4.6. Experiments

Figure 4.8: Examples of frames obtained from a parking camera. Most of the time
the camera observes a flat road surface, with small fraction of images containing
nonplanar structure, e.g. pavement or passing cars.

ation on two di↵erent surfaces. Here every time point represents another trajectory

segment. We observe in general stable behaviour, and see that the roll and pitch

angles are independent of the trajectory. Sudden jumps in the values of xvc, yvc, zvc

and yaw angle correspond to di↵erent robot motions occurring during trajectory

segments, which impose slightly di↵erent constraints on the calibration graph. Even

though the 4 metre long trajectory-segments used in this evaluation were enough to

avoid degenerate cases, we generally observed that longer trajectories are desirable

for more stable estimates of xvc, yvc, zvc and the yaw angle �vc.

4.6.3 Odometry from a Road Vehicle’s Rear Parking Camera

Next we evaluated our auto-calibration system in a completely di↵erent settings,

using a video stream that was captured from a standard rear parking camera as

a vehicle was moving in an urban environment. The data comes from Renault

[Lovegrove et al., 2011]. The camera was placed at about one metre above the

ground, a position significantly higher than in the experiment with the Pioneer robot,

and was viewing the road surface directly behind the vehicle. Some of the frames

captured are depicted in Fig. 4.8. Most of the time the camera observed a flat road

surface, but in some parts of the images nonplanar structures are visible. These

were mostly pavement (sidewalk) or other passing vehicles. Our test vehicle also

experienced some nonplanar motion, when it was turning at high speed and driving

over speed bumps. Consequently, this data set allows us to examine the e↵ects

of violating planar assumptions both with respect to the planarity of the motion

as well as the planar-environment assumption. For the experiment we have full,

high-accuracy, ground truth for visual odometry obtained from a PHINS system.

At the beginning of the evaluation we ran our standard calibration procedure:

75

4. Auto-calibration for Visual Odometry

Figure 4.9: 2D histograms of the velocities measured by auto-calibrated visual odo-
metry and the ground truth system. The frequency of a measurement is represented
by colour in the heat map. We observe unbiased estimation of the linear velocity
(left). The dashed red line represents a straight line fit to the data, and in this case it
is perfectly aligned with the x = y line. There is a systematic error measured in the
angular velocity (right) as the fitted line diverges from the x = y line. This is also
confirmed by the slope of 0.84 for the line fitted to the measurements. Histograms
were created using about 10000 data points.

Figure 4.10: Comparison of the velocities measured by visual odometry and the
PHINS ground truth system for the first 3 minutes of the sequence. On one hand we
see accurate estimation of the linear velocity with only a small error around 30–35
seconds of the sequence, when the vehicle is driving over a speed bump. On the
other hand, when the vehicle is performing turning manoeuvres, visual odometry
systematically overestimates the angular velocity of the vehicle.

76

4.6. Experiments

Figure 4.11: Estimating a local plane and tracking motion with respect to it seems
to improve the performance of the visual odometry, accounting for the roll of the
road vehicle during high speed turns. We still see unbiased and even more accurate
estimation of the linear velocity. The systematic error in the angular velocity is
reduced but not eliminated, as the slope of the line fitted is now 0.93 compared to
0.84 when global settings were used (note that a slope of 1 would indicate unbiased
behaviour). Histograms were created using approximately 10000 data points.

Figure 4.12: Improvement in the tracking obtained by continuous calculation of
a local plane of motion is also visible in the time series. The estimation of the
linear velocity is smoother and less noisy, whereas the angular velocity is no longer
permanently overestimated.

77

4. Auto-calibration for Visual Odometry

first camera orientation was estimated using a short sequence of frames and next

the remaining 4 DoF were calculated using a short sequence of the trajectory (about

200 metres long). After the camera extrinsics were available, we executed our planar

visual odometry on the whole 2.5 km long trajectory. The results are summarised in

the form of a 2D histogram in Fig. 4.9. Additionally, in Fig. 4.10, we present a short

sequence of velocities measured by visual odometry and the PHINS ground truth

system in the form of a time series.

The estimation of the linear velocity is accurate and unbiased, as indicated by the

tight packing of the points along the x = y axis in the histogram. However, there

is a clearly observably systematic error in the measured angular velocity. This is

confirmed in the time series included in Fig. 4.10 where we can recognise that the

visual odometry over-estimates the angular velocity. This can indicate that when

the vehicle is turning, the camera is locally experiencing a nonplanar motion and the

estimated orientation is not valid. To confirm this observation we ran an additional

evaluation, where the orientation of the camera with respect to the plane of motion

was continuously estimated using the five most recent frames, and we calculate the

planar motion with respect to the locally estimated plane. As depicted in Figs. 4.11

and 4.12 this procedure helps to reduce the systematic error in angular velocity, but

it does not eliminate it completely. As a bonus, we obtain less noisy estimation of

the linear velocity, although this comes at the extra cost required for performing

continuous calibration.

Fig. 4.13 provides insight into what is happening when the vehicle is performing

a turn, and helps to explain why we observe a systematic error in angular velocity.

There we have plotted angular velocity measured by the ground truth system against

the camera roll angle obtained during the continuous auto-calibration. The roll angle

varies in a range of about ±2.5� and is proportional to the current vehicle angular

velocity. We suspect that as the vehicle is turning at a relatively high speed, vehicle

suspension causes the car to lean to the side and consequently changes the camera

roll angle to violate the planar motion assumption. We also analysed the behaviour

of the pitch angle during the test drive and were expecting to see a similar pattern

during acceleration and braking of the vehicle. However, this was not confirmed by

the data. Apparently, the vehicle was not accelerating at high enough rates to cause

a significant front/back tilt of the camera.

A change in the camera pitch angle is observable in another situation, namely when

78

4.6. Experiments

Figure 4.13: Angular velocity against measured camera orientation with respect to
the local plane of motion. The roll angle varies in the range of about ±2.5� and is
correlated with the angular velocity. The red dashed line represents the fit and the
slope of the line �0.07 can be understood as a measure of the dependence between
these two parameters.

the vehicle was driving over speed bumps. This occurs, for example, at around 30–35

seconds of the time sequence (see Fig. 4.10) and is manifested by an increased error

in both linear and angular velocity. Continuously estimating the camera orientation

improves the performance of the tracking, which is best visible in Fig. 4.14. There we

present a close-up of the two situations when the vehicle is driving over speed bumps.

The pitch angle varies significantly in the range of about ±10�, and especially in the

first sequence a clear pattern is visible: the first oscillation is due to the front of the

vehicle passing the bump, and the second oscillation is due to the rear wheels driving

over the bump. Obviously, the orientation of the camera is changing from frame to

frame, so it is important to remember that estimated roll and pitch angles are only

an approximation for the five most recent frames.

When the car is driving over speed bumps we can observe yet another e↵ect, a

violation of the planar environment assumption, which we will analyse now. As

mentioned and shown in Fig. 4.8 in many frames nonplanar structures were visible

from the camera. In most situations these elements were a pavement or other car

passing by, and occupied only a small fraction of the image, usually close to the

image borders. Since we are using a robust norm, our system can handle these

situations to some degree and we did not observe any particular systematic error

79

4. Auto-calibration for Visual Odometry

Figure 4.14: Driving over speed bumps causes a violation of the planar motion
assumption. However we can detect a change in the pitch angle and by estimating a
local plane of motion, at least partially compensate for errors.

due to small fractions of nonplanar objects in the scene. Fig. 4.15 shows a frame

where a large fraction of the image is occupied by a passing car and also illustrates

which pixels were automatically marked as outliers during the iterative reweighted

least-squares estimation of planar frame-to-frame motion (Section 3.5). Obviously, in

this situation we also benefit from a large image overlap between consecutive frames

and the mostly uniform texture of the nonplanar object.

Structures visible in the camera field of view which do not belong to the main

plane of motion, do not significantly a↵ect the auto-calibration. To illustrate that,

we ran auto-calibration twice on a short sequence where some part of a pavement was

continuously visible. An example frame of this sequence is depicted in the top left

corner in Fig. 4.8, and the pavement occupies about 10% of the image. In the first

run we were using the whole image, and the second time we manually masked and

ignored the nonplanar part of the images. Fig. 4.16 shows that there are no obvious

di↵erences in the roll and pitch angle estimated during these two runs. A pavement

80

4.6. Experiments

Figure 4.15: Left: An example of a frame where a significant fraction of the image
is occupied by a nonplanar structure. Right: During the iterative reweighted
least-squares estimation of frame to frame motion (Section 3.5), some pixels are
automatically marked as outliers (yellow) by the robust norm used in the cost
function.

(sidewalk) has quite a similar appearance to the road surface and the camera moves

parallel to it as well. We could probably expect more significant degradation of

the performance auto-calibration with more non-road structures, e.g. walls, trees,

in the camera field of view. As already pointed out, it is recommended to perform

calibration under conditions that satisfy the assumptions. The only situation when

our auto-calibrating visual odometry failed during this test case happened when the

e↵ects of significant nonplanar motion and nonplanar structures were combined with

self-shadowing.

For the completeness of our evaluation in Table 4.2 we include results of the

same test as in Section 4.6.2. Here we divided the whole 2.5 km long trajectory

into a sequence of shorter, approximately 200 metre long sections and ran the auto-

calibration on each individual sequence. As already pointed out, the estimated values

of the roll and pitch angles vary along the trajectory, but generally the values match

the ground truth parameters.

GT estimate

roll [�] 0.0 -0.87 ±0.68
pitch [�] 66.0 65.02 ±1.35

height [mm] 1015 1031.99 ±8.51

Table 4.2: Mean and standard deviation of estimated roll and pitch angles, as well
as the height of the camera.

81

4. Auto-calibration for Visual Odometry

Figure 4.16: Calibration with nonplanar structures in the field of view. We do not
observe a significant di↵erence between the values obtained on a sequence where a
nonplanar structure was visible all the time, and the same sequence but with the
nonplanar structures manually masked out.

4.6.4 Calibration using Nonholonomic Constraints and Direction

of Motion

In the final experiment we tested the ability of the method that exploits the nonholo-

nomic constraints of a robot and motion priors to accurately estimate the calibration

of the camera. This calibration procedure has two stages: first, a nonholonomic

graph is built and estimates of xvc and yaw angle, �vc are produced. Here, no source

of reference is used. Next, a second graph is constructed, where we use the already

estimated xvc and �vc together with information about the direction of motion to

determine the remaining degree of freedom, the yvc coordinate of the camera pose in

the robot frame of reference. For both graphs the same sequence of camera motion

can be used. We assumed that the height of the camera is known (we used the values

obtained using the standard procedure as it makes comparisons easier), and that the

roll and pitch angles were known and the frame-to-frame tracking was correct.

For three di↵erent camera configurations (the same as in Section 4.6.2, on the

surface ‘carpet 1’) we compare the estimates obtained from the standard calibration

procedure that uses wheel odometry with the nonholonomic calibration. As with the

experiments on di↵erent surfaces (Section 4.6.2), we divided the longer trajectory

into a set of shorter, overlapping trajectories. This way we obtained hundreds of test

trajectories that allow us to perform a statistical analysis of the performance of the

proposed method. For all trajectories the initial conditions were the same, x0 = 200,

82

4.6. Experiments

x [mm] yaw [�]

config. 1: standard 241.7 ±5.5 -9.2 ±0.6
config. 1: nonholonomic 241.6 ±5.4 -9.2 ±0.5

config. 2: standard 197.9 ±1.2 75.4 ±0.1
config. 2: nonholonomic 198.6 ±2.7 75.4 ±0.1

config. 3: standard 223.0 ±5.8 -18.4 ±0.4
config. 3: nonholonomic 224.9 ±5.4 -18.4 ±0.4

Table 4.3: Results of the calibration using the standard procedure that relies on
wheel odometry and nonholonomic calibration. Note a very good agreement between
the parameters obtained using the two independent strategies for three di↵erent
camera configurations.

Figure 4.17: Comparison of the calibration using nonholonomic constraints and the
standard procedure for the second tested configuration in Table 4.3.

and �0 = 0. The results are presented in Table 4.31.

We obtained a remarkable agreement between the values calculated using the two

di↵erent calibration strategies. Fig. 4.17 shows how the estimates evolve over time

for one of the tested camera configurations. We see that the time series behave

quite similarly and the di↵erence in the estimated xvc values can be ascribed to the

fact that in the standard calibration procedure the height is estimated continuously,

whereas for the nonholonomic calibration a constant value of camera height was

used.

Having shown that xvc and �vc can be reliably estimated using nonholonomic

calibration, we are ready to demonstrate that the remaining degree of freedom, the yvc

1The values obtained for standard calibration di↵er slightly from the values presented in
Section 4.6.2 (Table 4.1) as here it was performing only a continuous graph calibration, whereas
previously we ran a completed 6 DoF calibration for each trajectory segment.

83

4. Auto-calibration for Visual Odometry

coordinate of the camera pose in the robot frame of reference, can be obtained using

our motion priors formulation, i.e. when for every VO measurement we only know

whether the robot was moving forward or backward. Obviously, this formulation

puts more requirements on a trajectory that are suitable for calibration. In fact

we found that most of the trajectories the robot executed during our test were not

suitable for this kind of calibration, as the robot was mainly moving forward. A

suitable trajectory features a rich combination of forward and backward motions

with a range of angular and linear velocities.

Figure 4.18: Robot trajectories obtained from WO ground truth compared with
VO calibrated using our standard method and nonholonomic/direction of motion
calibration. We see very good results independent of the calibration method.

To perform this evaluation we executed the following steps. Assuming that the

roll and pitch angles are already estimated, and the scale is also known, we first

performed nonholonomic calibration to determine xvc and the yaw angle. Next,

we used the wheel odometry to calculate the directions of robot motion between

consecutive camera frames and constructed a graph as explained in Section 4.5.2.

Fig. 4.18 compares trajectories obtained using standard graph based auto-calibration

as well as the proposed nonholonomic/motion direction calibration; a comparison of

values obtained is also shown in Table 4.4. We can see that for the two independent

calibration strategies, both the calibration values and the trajectories match very

closely.

84

4.7. Conclusions

x [mm] y [mm] yaw [�]

config. 1: standard 241.6 -9.1 27.1
config. 1: nonholonomic + prior 241.8 -3.7 27.0

config. 2: standard 243.3 -24.6 -9.2
config. 2: nonholonomic + prior 243.2 -25.1 -9.1

Table 4.4: Calibration results obtained using nonholonomic constraints and direction
of motion compared with the values calculated for the same trajectories using
the standard calibration procedure that relies on synchronised wheel odometry.
Trajectories are depicted in Fig. 4.18. We see a very good agreement between these
two methods.

4.7 Conclusions

In this chapter we demonstrated that our dense planar visual odometry can be

precisely auto-calibrated in highly practical settings. We separated the calibration

into two steps: vision and graph-based calibration. First we showed that the camera

roll and pitch angles can be simultaneously estimated while performing visual tracking.

This was possible by exploiting one of our main assumptions that the ground is

flat and that the camera moves parallel to it, and by parameterising the dense

image alignment with respect to both planar motion and camera orientation. The

graph-based calibration allows us to estimate the remaining degrees of freedom of the

camera pose on the robot. The graph-based approach is a more general method and

is not restricted to cameras, but can also be used in conjunction with other types

of sensors. The only requirement is that a sensor is able to measure incremental

planar motion. In case of laser scanners this can be achieved, e.g. using ICP. We

demonstrated the practicality of our approach through an extensive evaluation.

In particular, the method based on nonholonomic constraints permits usable and

infrastructure-free auto-calibration, which opens the door to fault detection and

lightweight re-calibration in the field.

A possible extension of our work can use continuous-time trajectory representations,

e.g. [Lovegrove et al., 2013; Furgale et al., 2012] to take advantage of information and

enable calibration from unsynchronised sensors. In addition, the ease that continuous-

time representations o↵er in formulating and evaluation constraints on a robot’s

motion and velocity can be beneficial in particular for nonholonomic calibration.

85

4. Auto-calibration for Visual Odometry

86

Chapter 5

Height Map Fusion from Depth

Maps

Contents

5.1 Introduction . 88

5.2 Background . 89

5.2.1 Environment Representations and Depth Map Fusion . . 89

5.2.2 Height Mapping . 92

5.3 Height Map Estimation Preliminaries 94

5.3.1 Surface Model . 94

5.3.2 Measurements . 95

5.3.3 Surface Estimation as a Least Squares Problem 96

5.4 Simple Height Map Fusion . 97

5.4.1 Parallel Implementation 98

5.5 Fusion into a Triangular Mesh 101

5.5.1 Mesh Representation . 102

5.5.2 Storing and Updating J
>
J Matrix 104

5.5.3 Smoothness Prior and Regularisation 105

5.6 Iterative Solvers . 106

5.6.1 Conjugate Gradient . 106

5.6.2 Gauss-Seidel Algorithm 110

5.6.3 Comparison of the Solvers 112

5.7 Recursive Estimation . 114

5.8 Discussion . 114

87

5. Height Map Fusion from Depth Maps

5.1 Introduction

With the visual odometry system from Chapter 3 and the multi-view stereo approach

from Chapter 2 we can perform e�cient depth map estimation and therefore equip

a robot with the capability to perceive its environment in 3D. However, since the

depth maps tend to be noisy and ambiguous, their direct usefulness, in particular

for robot navigation, is quite limited and therefore it is required to fuse them into a

consistent model of the robot’s environment. Usually the monocular reconstruction

approach has concentrated on high quality multi-view depth map estimation, and

then fusion into a generic 3D representation such as a truncated signed distance

function (TSDF), a surfel cloud or a mesh. Some of the systems presented in this

vein have been impressive, but we note that there are few examples of moving beyond

showing real-time dense reconstruction towards using it in applications. The live

reconstructions are often in a form which needs substantial further processing before

they could be useful for any in-the-loop use such as path planning or scene labelling.

We show that a way of achieving e�cient, practical and robust use of dense

monocular reconstruction is to take a more application-directed approach to depth

map fusion and environment representation. What is important in applications

including mobile robotics is to calculate measurements from a 3D model such as

the drivable paths of maximum pre-defined height or distances to contact along

particular directions; or segmentation into semantically meaningful regions or objects.

Starting with this chapter we will present di↵erent methods and approaches to height

map estimation, and show that height maps can o↵er a viable alternative to more

generic environment representations, as they achieve an interesting balance between

expressiveness and complexity. The key underlying idea behind height mapping is

to represent a robot’s environment as a surface and only store the 2.5D elevation

information on a two dimensional grid. In contrast to generic 3D representations, e.g.

volumetric approaches, height maps are very compact (they consume significantly

less memory), and their limited expressiveness can sometimes result in improved

robustness. Furthermore, a height map is directly applicable for a wheeled mobile

robot, and can easily be used for free-space detection. We will also see that height

maps fusion can be expressed and extended in various interesting ways. Although we

focus here on a height maps as a data structure for representing a robot’s environment,

the methods presented here can be understood in a broader context as dense surface

reconstruction from a set of depth maps.

88

5.2. Background

We define height map fusion as fast and incremental reconstruction from a stream

of depth maps where each depth measurement has an estimate of its uncertainty.

This is in contrast to the existing large body of work that defines reconstruction

as a single, batch process. In incremental fusion, the map has to represent all

measurements and observations up to the current time point, and with each new

measurement we do not want to recompute everything from scratch.

In this chapter we will lay down the foundations of height map fusion, and present

two simple and e�cient ways of creating surface models from noisy depth estimates.

The two following chapters, Chapters 6 and 7, will build on top of the results

presented here.

5.2 Background

We will start by reviewing di↵erent representations for a robot’s environment as well

as techniques for depth map fusion. An overview of the most relevant work with

respect to height mapping will be presented in Section 5.2.2.

5.2.1 Environment Representations and Depth Map Fusion

There are many approaches for depth map fusion and possible representations of a

robot’s environment, and they di↵er considerably in their complexity, expressiveness

and how easily can they be applied to particular tasks. Factors like the memory and

computational requirements, as well as scalability, can also play an important role

when designing and selecting a method for representation and reconstruction. We

will review here the most commonly used approaches such as occupancy mapping,

point clouds and volumetric methods.

Occupancy mapping [Elfes, 1987] is one of the oldest and simplest techniques for

mobile robot map representation. It was first developed for use with sonars that

horizontally scan a robot’s surrounding and later also successfully adapted for laser

scanners used in a similar fashion. An occupancy map models the environment as

2D grid where each cell stores a probability of being free or occupied. The occupancy

measurement function is modelled directly and the map can be updated e�ciently

thanks to the log-odds approach. Using depth maps for 2D occupancy mapping

is however not straightforward as it is not obvious how to model probability of

occupancy from depth measurements when the surface is observed from an oblique

89

5. Height Map Fusion from Depth Maps

(a) Occupancy grid map (Image
from [Thrun, 2002]).

(b) Height map (Image from [Pfa↵ et al.,
2007]).

(c) Semin-dense point cloud (Image
from [Mur-Artal and Tardós, 2015]).

(d) Volumetric reconstruction using TSDF
(Image from [Newcombe et al., 2011a]).

Figure 5.1: Examples of di↵erent possible representations of a robot’s environment.

angle. [Wurm et al., 2010] presented an extension of occupancy mapping to volumetric,

3D environments, but at the cost of increased complexity and memory requirements.

Occupancy maps are still used in di↵erent robotics applications, e.g. [Lukierski et al.,

2015] created occupancy maps from omnidirectional depth maps to enable rapid

understanding of the free space around a robot and an e�cient strategy for further

exploration. The main advantage of occupancy mapping is that it can be directly

applied to robot navigation, but it is very limited in any further tasks.

Occupancy mapping can be seen as an example of simple semantic mapping, and

therefore somewhat related are approaches that perform a semantic segmentation of

the scene directly from images based on appearance. Quite often these methods were

used as a sensing modality complementary to conventional laser scanners or stereo

90

5.2. Background

systems. [Dahlkamp et al., 2006] presented a semi-supervised road detection method

based on a monocular camera. They trained on-line a Gaussian Mixture Model

(GMM) of the drivable surface based on the measurements from a laser scanner

and the output from a probabilistic terrain analysis method [Thrun et al., 2006a],

and used it to detect drivable area far ahead the vehicle, beyond the range of laser

scanners. It was reported that this approach allowed the vehicle to maintain higher

speed compared to the system based on the laser scanners only, and therefore win

the DARPA Grand Challenge.

Another example of learning long-range vision for autonomous o↵-road driving

that uses quite similar principles is the method proposed by [Hadsell et al., 2009].

This approach relies on the input from a stereo camera and a real-time classifier

is trained on discriminative features extracted from (large) image patches using a

pre-trained neural network. The network itself is not trained in real-time. The

algorithm is capable of distinguishing five classes: super-ground, ground, footline,

obstacle and super-obstacle. Appearance-based methods were also developed within

DARPA’s Learning Applied to Ground Robots (LARG) project [Konolige et al.,

2009; Procopio et al., 2009], which focused on autonomous, often o↵-road, outdoor

driving. The settings the systems were designed for tend to be relatively texture-rich,

and unlike indoor environments, quite consistent in appearance. Furthermore, one of

the main limitations of purely appearance-based approaches is that colour might not

be discriminative enough and does not provide the contextual information required

for recognition. As pointed out by [Dahlkamp et al., 2006]: “A brown object on a

brown dirt road without significant shadows is undetectable”.

Much richer geometric representation of an environment can be obtained using

approaches that explicitly map the world in 3D. Here we can distinguish point and

surfel clouds as well as volumetric methods. Point clouds of features are commonly

used in various successful vision-based SLAM systems, e.g. PTAM [Klein and Murray,

2007], OKVIS [Leutenegger et al., 2014], ORB-SLAM [Mur-Artal et al., 2015], and

LSD-SLAM [Engel et al., 2014]. Points on a map are usually stored in a set of

distinct keyframes, but the points themselves are un-organised and unconnected

so they cannot represent a surface. Although very e�cient for monocular camera

tracking and mapping, this representation is rather abstract and too sparse to be

useful for robot navigation since it is not equipped with a notion of free-space or any

other semantic meaning.

91

5. Height Map Fusion from Depth Maps

The concept of keyframes has been extended to dense surfaces, e.g. in [Newcombe

and Davison, 2010; Newcombe et al., 2011b], were a map is represented as a collection

of detailed textured depth maps that can produce a surface patchwork with millions

of vertices. This approach produces visually pleasing reconstructions, but, when

applied to a practical system one has to solve may non-trivial issues including a

strategy for keyframe selection and data association, or a lack of sensible uncertainty

representation.

Recently, surfel-based methods have received significant attention. These methods

use a technique from computer graphics that represents objects using a set of small

surface elements (surfels), [Pfister et al., 2000], and can create dense models. Surfel-

based methods work well with dense depth maps obtained using monocular systems

[Weise et al., 2009], as well as with quality inputs from active hand-held depth cameras

[Keller et al., 2013]. Surfels can support loop closure [Weise et al., 2009; Whelan et al.,

2015] and are capable of generating visually impressive large scale reconstructions.

The main advantage of surfel-based methods is their scalability. However, similarly

to feature-based methods, it is still rather an abstract representation that cannot

model closed-surfaces and requires significant post-processing in order to be applied

to particular tasks.

Volumetric approaches, in particular based on the signed distance function (SDF)

[Curless and Levoy, 1996], are probably the most expressive representations for 3D

reconstruction (as shown e.g. in [Newcombe et al., 2011a]) and in particular for

a robot and motion planning they are quite suitable as at any point in the space

they have readily available information about the closest distance to an obstacle.

Furthermore, the fusion of dense depth maps into 3D using a signed distance function

is very straightforward. However, the cubic memory requirement limits the scalability

of volumetric approaches and requires use of octree-data structures or other memory

management [Nießner et al., 2013; Prisacariu et al., 2014; Kahler et al., 2015].

5.2.2 Height Mapping

Height maps o↵er an interesting compromise between purely planar segmentation

into free space and obstacles and more generic full 3D representations, and they have

been used in mobile robotics for decades. Di↵erent techniques have been proposed

for height mapping and we will review here the most relevant. Depending on the

field and the application many alternative names are used to describe height maps:

92

5.2. Background

e.g. elevation maps, height fields or digital elevation maps (DEM) and digital terrain

maps (DTM).

One of the first examples of height mapping was employed in the Ambler project

for a legged robot designed for planetary exploration [Bares et al., 1989; Herbert

et al., 1989; Kweon and Kanade, 1992]. There, the map was represented using

a grid as a set of independent height cells and the measurements, obtained from

a stereo system, were fused using the Kalman filter update rule in a similar way

as we will describe in Section 5.4. Simplification of the environment as a surface

was particularly beneficial for a legged robot operating outdoors and on uneven

surfaces. The same simple concept of independent height cells and a per-cell Kalman

filter to estimate the elevation was an important building block of navigation and

perception systems for many other autonomous mobile platforms, e.g. in [Lacroix

et al., 2002]. [Triebel et al., 2006] and [Pfa↵ et al., 2007] applied height maps for

outdoor localisation and mapping using laser scanners. Their approach extended

traditional height maps in order to perform loop closure as well as o↵ering the ability

to model overhangs through the concept of multi-level height maps. The paper by

[Fankhauser et al., 2014] presents a method for robot-centric height mapping, where

a local height map moves along with the robot’s motion. As the robot is moving,

the uncertainty of its position and orientation are explicitly handled in the fusion

algorithm.

[Gallup et al., 2010a] used a height map as an e�cient and powerful model for street-

level reconstruction of vertical house facades in a Google Street View fashion. In this

context the main advantage of a height map over more general 3D reconstruction

techniques was the ability to produce purely vertical structures and continuous

surfaces without holes. Also the method was e�cient, and able to produce more

compact models at the expense of losing small details. The method was used to

perform a batch rather than an incremental reconstruction in a following way. Dense

depth maps obtained from a stereo camera are first fused into a volumetric occupancy

map, from which a height representation is extracted. Subsequently, a triangular

mesh is created from the height map, and it is textured using the captured images.

[Gallup et al., 2010b] further extended the algorithm to support n-layer height maps

and therefore model overhangs, whereas [Häne et al., 2011] used two level height

maps for representing indoor environments in a form suitable for robot navigation.

They also used a variational formulation of the problem that enabled regularised

93

5. Height Map Fusion from Depth Maps

results. It is noteworthy that the described algorithms rely on GPU parallelisation

to achieve high performance.

5.3 Height Map Estimation Preliminaries

5.3.1 Surface Model

A height map is a two-dimensional grid representation of a surface, where each cell on

the grid stores a height value of the surface. The connectivity and the interpolation

scheme between the height values define di↵erent types of surfaces. We obtain a

piecewise constant model when we assume that each height is independent, or a

piecewise linear model is essentially a triangular mesh, whereas a bilinear surface is

obtained when we perform a bilinear interpolation between the heights.

More precisely, for the purpose of this work we will consider as a height map a

parameterised surface S that, given a position on the surface (x, y), can predict a

height value:

z = f(x, y) . (5.1)

In particular, for the purpose of this thesis we will only deal with linear models, i.e.

models for which any point on the surface can be expressed as a linear combination

of some basis functions:

f(x, y) =
nX

i=1

hiBi(x, y) , (5.2)

where Bi(x, y) denotes a basis function, and hi is an element of a vector parameterising

the surface. The type of basis function and its domain, as well as the nature of

the coe�cients parameterising the surface, determines a family of surfaces, and

generally with this formulation we can obtain surfaces of di↵erent parameterisations

and complexities. In the following we will only concentrate on the piecewise constant

and piecewise linear (triangular mesh) surface models parameterised by a vector of

height h, mainly because of the computational advantages of working with these

representations. However, our formulation can easily be extended to other types of

surface models, e.g. piecewise bilinear surfaces, cubic B-splines, or those parameterised

by wavelet coe�cients. Furthermore, we will assume that the resolution and the

topology of the surface representation are fixed.

The somehow abstract notion of the basis functions is, in practice, simple to

implement and the evaluation of the surface at any point is straightforward. In a

94

5.3. Height Map Estimation Preliminaries

Figure 5.2: In most cases we will represent the surface using a fixed topology,
triangular mesh where each vertex has only one degree of freedom, its height.

piecewise constant surface representation model, each basis function Bi is given by

an indicator function:

Bi(x, y) =

8
<

:
1, if xi < x  xi+1 and yi < y  yi+1 ,

0, otherwise ,
(5.3)

where the xi’s and yi’s define an non-overlapping domain for the basis function. This

means that in order to predict a height value for a particular point in a piecewise

constant model, we simply need to round the coordinates and perform a look-up into

memory.

When points associated with heights are treated as vertices of a triangular mesh,

the surface can be thought of as of piecewise linear 2D spline. Using a triangular

mesh allows us to obtain a continuous but not smooth surface. To evaluate a point

(x, y) on a surface modelled by a triangular mesh, we calculate the barycentric

coordinates (u, v, w) of that point within the triangle the point is associated with,

and then calculate the height by taking the weighted average of the heights spanning

the triangle:

z = uhu + vhv + whw . (5.4)

Therefore, the basis function in this case has the form of barycentric interpolation.

5.3.2 Measurements

The input to our fusion technique is a stream of depth maps. We denote a depth

map by D and summarise it by a vector d 2 Rm, where Twc is an associated camera

pose. We do not put any assumptions or constraints on the nature of the depth

maps: we will work with the depth maps obtained using our approach described

95

5. Height Map Fusion from Depth Maps

in Chapter 2; however, our fusion method can be also applied to the data received

from a RGB-D camera.

In Chapter 2 we showed how we can transform each depth measurement d into a

3D point and therefore a height measurement z. To recall: consider a pixel location

(u, v) with the associated depth measurement d. Given the camera intrinsic matrix K,

the current camera pose Twc, and the depth measurement we can project the image

point pc = (u, v) into the world frame of reference as follows:

pw = TwcdK
�1ṗc . (5.5)

Here, pw = (xw, yw, zw), represents a point in the world frame of reference. The

point pw can be seen as a height measurement, zw, at a grid location (xw, yw).

Using our notation for K and Twc we can explicitly express the height as:

hw =

✓
r33 + r31

u� u0
fu

+ r32
v � v0
fv

◆
d+ t3 , (5.6)

or generally:

pw = ad+ t , (5.7)

where the vector a is given by:

a =

2

664

r13 + r11
u�u0
fu

+ r12
v�v0
fv

r23 + r21
u�u0
fu

+ r22
v�v0
fv

r33 + r31
u�u0
fu

+ r32
v�v0
fv

3

775 . (5.8)

We also assume that each depth measurement has an associated uncertainty estimate,

and we transform this into height uncertainty using the rules of propagation of

uncertainty.

5.3.3 Surface Estimation as a Least Squares Problem

We formulate surface estimation as a least squares problem, where we fit our height

observation into a surface model. Specifically, given a set of m measurements

Pi = (xi, yi, zi) 2 R3 and a surface parameterised by a vector h 2 Rn, our goal is to

find a surface that minimises the sum of squared errors between observations zi and

predictions f(xi, yi) from the model:

mX

i=1

1

�zi
(zi � f(xi, yi))

2 . (5.9)

96

5.4. Simple Height Map Fusion

As previously stated, we only consider models where each point on a surface can

be expressed by a linear combination of the surface parameters h. Thus, by denoting

z 2 Rm as vector of height measurements, we can express the minimisation problem

as follows:

argmin
h

F (h) = argmin
h

||z� Jh||2
⌃h

, (5.10)

where each row of the matrix J 2 Rm⇥n corresponds to a single height measurement,

and ⌃h is the diagonal covariance matrix representing the uncertainties of the height

measurements.

The error function F (h) in Eq. (5.10) is a quadratic function of the vector h:

F (h) = ||z� Jh||2
⌃h

(5.11)

= hJ>⌃hJh� 2h>
⌃hJ

>z+ z>⌃hz , (5.12)

thus finding the least squares estimate of the surface corresponds to solving the

following normal equation:

J
>
⌃hJh = J

>
⌃hz. (5.13)

The structure of the matrix J
>
J depends on the surface model we use in the

estimation. As we already mentioned, the surface may consist of bivariate polynomials,

tensor product B-splines or NURBS, piecewise Bezier patches or triangular splines,

but in the following we will consider only two types of surface: piecewise constant and

piecewise linear (triangular mesh). We will describe e�cient ways for implementing

surface estimation using those representations.

5.4 Simple Height Map Fusion

The most commonly used and straightforward method for height map estimation

treats each cell on a map as independent and performs per cell a simple averaging.

Fusion in this form is still least squares estimation, but one of a special structure:

the fact that each cell is independent makes the J>J matrix in Eq. (5.13) diagonal,

which renders solving the normal equation trivial. This is the reason why one rarely

forms and solves the normal equation explicitly, but instead represents each height

on a map as Gaussian distribution N (hp,�2
p) parameterised by a mean height, hp,

and a variance �2
p.

In order to fuse a height measurement zi with associated position on the map

(xi, yi) and height uncertainty �2
i , we first identify the cell closest to the height

97

5. Height Map Fusion from Depth Maps

measurement (xp, yp) = (round(xi), round(yi)), and next we update the distribution

of the height N (hp,�2
p) based on a noisy height observation N (zi,�2

i) using the

standard formula for adding two Gaussian distributions [Herbert et al., 1989]:

hp
hp�2

i + zi�2
p

�2
p + �2

i

,

�2
p

�2
p�

2
i

�2
p + �2

i

.

(5.14)

This formula performs incremental weighted averaging, with weights proportional to

the inverse variance of the measurements.

5.4.1 Parallel Implementation

The fact that we treat each height independently results in a very simple and fast

algorithm. The method also has minimal memory requirements. To represent the

map, for each cell we only need to store its mean height and uncertainty; on a GPU

this can be quite conveniently implemented using float2.

However, because multiple measurements can be mapped to the same cell, the

update computations described in Eq. (5.14) make the algorithm serial, i.e. before

we can process with a new measurement we have to make sure that both steps

in Eq. (5.14) from a previous measurement have been completed. This is not a

problem when the algorithm is implemented using a single thread on a CPU that

proceeds through all depth measurements one after another. However, implementing

the algorithm on a parallel processor is more problematic. On a GPU, in the extreme

case we can execute as many threads as the number of measurements in a depth

map and thus it is very likely that multiple threads will try to access (read) and

update (write) the same cell (memory) location. This can lead to inconsistency and

so called race conditions, where the result of an operation completed by one thread

can be overwritten by another thread.

In order to prevent race conditions, access to the critical memory locations has to

be serialised. In concurrent programming, there are various techniques that allow

coordinated access to resources, and they can be divided into three categories:

• locking, based on locks and mutexes,

• wait-free, using atomic operations natively supported by the hardware, where

each thread updates memory atomically,

98

5.4. Simple Height Map Fusion

• lock-free.

In the locking strategy all threads try to obtain a lock. The one that succeeds,

first completes its work and then releases the lock. Locking guarantees exclusive

access to data, but there are several issues with it, particularly when implemented on

a GPU. Due to warp divergence, using locks on a GPU is far from straightforward

and can easily lead to deadlocks. Furthermore, locks/mutexes can be e↵ective when

the number of resources that need to be protected is moderate. In our case we would

need a lock for each height cell, i.e. the total number of the locks would be equal

to the size of the map, therefore greatly increasing the memory requirements, and

negatively impacting the e�ciency of the method.

Wait-free methods rely on atomic operations that are intrinsically supported

by most processors. An atomic operation is an uninterruptible read-modify-write

memory operation at a specific address that serializes contentious updates from

multiple threads. The advantage of atomic operations is that they are relatively

quick compared to locks, and do not su↵er from deadlock and convoying. However,

their main disadvantage is that standard atomic operations are limited to very

specific functions and data types, and often these are not enough to synthesise more

complicated operations e�ciently. With CUDA 7.5, NVIDIA GPUs support only

the following operations: addition (atomicAdd), subtraction (atomicSub), exchange

(atomicExch), min (atomicMin), max (atomicMax), increment (atomicInc), decre-

ment (atomicDec), and compare-and-swap (atomicCAS); and only using certain data

types, i.e. int, unsigned int, and unsigned long long int. In other program-

ming models (e.g. OpenCL) and processors the availability of atomic operations

might vary.

In our problem it seems di�cult to synthesise the height update, Eq. (5.14)

e�ciently using atomics and without race conditions, as there are two separate

memory reads, two updates and two writes:

• read current height, hp,

• read current sigma, �2
p,

• calculate new height,

• calculate new sigma,

99

5. Height Map Fusion from Depth Maps

• write new height,

• write new sigma.

Fortunately, the atomic operation compare-and-swap (atomicCAS) allows for im-

plementation of arbitrary atomic operations and therefore the creation of more

sophisticated algorithms. Compare-and-swap writes a new value into a location only

if the latter’s contents match a supplied old value. The fact that atomicCAS can

be used to mimic any coordination primitive enables implementation of so called

lock-free methods. Specifically, in the lock-free style, all threads try to do the work,

write their result, and at least one always succeeds. The threads that fail, repeat.

However, a read-modify-CAS still only applies if the read/write transaction is a

single operation. In our case we have to simultaneously read and write both the hp

and �2
p. To circumvent this problem we use the fact that NVIDIA GPUs support

atomicCAS operations also on a 64-bit memory types (unsigned long long int)

and we use the float2 data type to encapsulate the mean and sigma. The full

read-modify-CAS sequence for the height update is as follows: a thread first reads

the value, next computes a new value to write, and subsequently tries to write

it using atomicCAS (compare-and-swap). If the value changes concurrently, the

atomicCAS will fail and the thread tries again. Under contention, exactly one thread

is guaranteed to succeed. The Listing 1 demonstrates lock-free implementation of

Eq. (5.14) in CUDA:

Here we proceed as follows: first we read from a memory location the current

estimate of a height and its uncertainty. Next we update their values using observed

data, and attempt to write it back to memory using atomicCAS. If the value changes

concurrently, the atomicCAS will fail and we will have to perform the sequence again,

i.e. read, compute, and try to write.

The described method works well in practice as long as the number of threads

trying to update the same memory location is moderate, otherwise a lot of resources

are wasted on computations that are discarded. To prevent this we can restrict the

number of threads we launch in parallel, e.g. one thread per depth map row, that

process the data within a row serially. A more e�cient parallel implementation can

be achieved by explicitly forming the normal equation, Eq. (5.13), i.e. assembling

the matrix J
>
J as well as the vector J>z, and solving it when needed. As we already

100

5.5. Fusion into a Triangular Mesh

Listing 1 Lock-free implementation of Eq. (5.14) using CUDA.

__device__
float2 atomicKFUpdate(float2* addr , float mean_o , float var_o)
{

unsigned long long int* ptr = (unsigned long long int*)addr;
unsigned long long int current = *ptr;
unsigned long long int new_val;
unsigned long long int old_val;
do
{

// Atomically , read -modify -write
old_val = current;

// Kalman Filter update
float2 normal = __longlong_as_float2(old_val);
float mean_p = normal.x;
float var_p = normal.y;
float inv_var = 1.0f/(var_o + var_p);

mean_p = (var_p*mean_o + var_o*mean_p)*inv_var;
var_p = (var_p*var_o)*inv_var;
// Kalman filter update ends here;

new_val = __float2_as_longlong(make_float2(mean_p ,var_p));
current = atomicCAS(ptr , old_val , new_val);

} while (old_val != current);
return __longlong_as_float2(current);

}

stated, the J>J matrix is diagonal, with one entry per height cell, and for a height

map of size k ⇥ k, we can store it conveniently on a grid with the identical size.

A similar strategy can be applied to the vector J>z. Solving the normal equation

associated with this problem is trivial. The entries on the diagonal of J>J are simply

the sum of the �i of all measurement uncertainties associated with each cell so far,

whereas J>z is the weighted sum of measured heights. In order to update the normal

equation, we still have to perform atomic operations, (two atomicAdd, one for the

LHS and one on the RHS of Eq. (5.13)), but it is generally faster than the lock-free

implementation based on atomicCAS. We will use a similar concept of representing

the J>J matrix using a fixed size grid in the following sections.

5.5 Fusion into a Triangular Mesh

Now we will extend our fusion to surface types that explicitly model the connectivity

between individual height cells on the grid as is the case in a triangular mesh. The

advantages of this approach are that we do not have to rely on heuristics to perform

101

5. Height Map Fusion from Depth Maps

data association (e.g. to the nearest cell), and that by modelling the dependencies

between height cells we can incorporate smoothness priors into the surface model.

Furthermore, when using a mesh, we can quite naturally incorporate colour estimation

into our framework. Later on, in Chapters 6 and 7, we will see many interesting

extensions of this fusion method that explicitly rely on triangular meshes as a surface

representation.

5.5.1 Mesh Representation

In the following we will use a mesh of fixed topology as illustrated in Fig. 5.3. Unlike

the simple height fusion, where we typically think of a height map as a collection

of independent height points, in this representation each vertex on the mesh is

connected with up to 6 neighbouring vertices.

Figure 5.3: Basic structure of the mesh used for fusion.

A simple triangular mesh is essentially a piecewise linear model, where the values

between vertices are calculated using barycentric interpolation. A 3D point p =

(xi, yi, zi), can be associated with a triangle of the surface, and we can predict

the height at (xi, yi) by using barycentric coordinates within this triangle vi =

(↵i,�i, �i)>, in the following way:

ẑi = ↵ih
4i
1 + �ih

4i
2 + �ih

4i
3 , (5.15)

where h4i
1 , h4i

2 , h4i
3 represent the heights of the triangle associated with the point

(xi, yi, zi).

The conversion from the grid coordinates of a point into barycentric coordinates

within a triangle on that grid, (xi, yi)! (↵i,�i, �i), is straightforward. Assume that

102

5.5. Fusion into a Triangular Mesh

(x41 , y41), (x42 , y42), and (x43 , y43) are the grid coordinates of the 3 vertices defining

a triangle. The barycentric coordinates (↵i,�i, �i) of a point (xi, yi) within that

triangle are given by:

↵i =
(y42 � y43)(x� x43) + (x43 � x42)(y � y43)

(y42 � y43)(x41 � x43) + (x43 � x42)(y41 � y43)

�i =
(y43 � y41)(x� x43) + (x41 � x43)(y � y43)

(y42 � y43)(x41 � x43) + (x43 � x42)(y41 � y43)

�i = 1� ↵i � �i

(5.16)

In general, the computations can be further simplified, because the distances between

the vertices on the grid are fixed and known.

To recall, we assume that we have m height measurements, and therefore give rise

to the following set of equations:

↵1h
41
1 + �1h

41
2 + �1h

41
3 = z1

↵2h
42
1 + �2h

42
2 + �2h

42
3 = z2

. . .

↵kh
4m
1 + �kh

4m
2 + �kh

4m
3 = zm ,

(5.17)

where 4i indicates the triangle a particular height measurement is projected onto.

Multiple measurements can be associated with the same triangle, and the set of

linear equations in Eq. (5.17) can be written as:

Jh = z , (5.18)

a form we already know from Eq. (5.10). Here, J 2 Rm⇥n, h 2 Rn and z 2 Rm, but

note that matrix J has only 3 non-zero entries per row. In Section 5.3.3 we showed

that estimating the surface from the set of measurements thus amounts to solving

the following normal equation:

J
>
Jh = J

>z . (5.19)

Here we omitted the covariance matrix of the measurements ⌃h for brevity. However,

because of the connectivity between variables in the mesh, J>J is not diagonal

any more, and solving Eq. (5.19) becomes more di�cult compared to the simple

height fusion method discussed previously. In the following we will describe how to

e�ciently construct, store and solve the normal equation associated with the mesh.

103

5. Height Map Fusion from Depth Maps

5.5.2 Storing and Updating J>J Matrix

A first important observation about the matrix J
>
J on the left-hand side of Eq. (5.19)

is that it is symmetric and sparse and has a regular structure that reflects the topology

of the mesh used. In our case, a single vertex can be connected to only up to 6

neighbouring vertices, so J
>
J contains per row a diagonal entry and only up to

6 non-zero o↵-diagonal entries, as shown in Fig. 5.4. There are several standard

ways for storing a sparse matrix, e.g. Coordinate List (COO), Compressed Sparse

Row (CSR), Compressed Sparse Column (CSC), but they were designed for general

sparse matrices, where the sparsity pattern might not be known in advance, and with

emphasis on e�cient implementation of di↵erent operations (e.g. matrix construction,

matrix-vector product). Since in our case the sparsity pattern is well-known, and we

are solving a problem on a regular grid, we can design a custom storage method that

will greatly improve and facilitate a parallel implementation.

In our implementation we store the vector of heights h on a 2D grid, similarly

to the method proposed for the simple height fusion. However, we can also exploit

the symmetry of the J>J matrix and its sparsity pattern and rather than storing it

using a generic sparse matrix data structure we can represent J>J conveniently on a

regular grid: for a mesh of size k ⇥ k we need a grid of the size (2k � 1)⇥ (2k � 1).

This is best visualised by the example in Fig. 5.4. Consequently, we also store the

right-hand side of the equation, the vector J>z using a k ⇥ k grid.

Another very important observation about the J
>
J matrix is that we do not

have to form and calculate J explicitly, and perform matrix-matrix and matrix-

vector multiplication to obtain J
>
J and J

>z, but instead each individual height

measurement can directly update the entries of J>J and J
>z. We have already

seen that the coe�cients within the matrix J are simply barycentric coordinates.

Consequently, each height measurement zi updates J>J at 6 locations (3 diagonal

and 3 o↵-diagonal entries) associated with its triangle, using the coe�cient obtained

by taking the outer product (weighted when we take uncertainty into account) of

the barycentric coordinates vi (Eq. (5.15)):

viv
>
i =

2

664

↵2
i ↵i�i ↵i�i

↵i�i �2
i �i�i

↵i�i �i�i �2i

3

775 . (5.20)

The above formula also gives an insight into the nature of the entries in the J>J

104

5.5. Fusion into a Triangular Mesh

J
>
J h = J

>z

Figure 5.4: We can represent the normal equation J
>
Jh = J

>z conveniently on a
regular grid. To store the J>J matrix we exploit its symmetry, and we only require
(2k� 1)⇥ (2k� 1) grid to represent a J

>
J for a k⇥ k mesh. The blue triangle on the

left-hand side of the equation indicates how a single height measurements updates
coe�cients of the J

>
J matrix. There, dots indicate the diagonal entries, whereas

squares represent the o↵-diagonal entries of the J>J matrix.

matrix. We can see that the entries along the diagonal of J>J equal the sum of

squares of the barycentric coordinates associated with each vertex. When performing

the matrix updates on a GPU we have to use atomic operations (atomicAdd) when

updating individual entries of J>J and J
>z in order to avoid race conditions, as

multiple depth measurements can contribute to the same triangle.

5.5.3 Smoothness Prior and Regularisation

In our fusion approach we can easily incorporate certain priors on the surface

properties, e.g. that the gradient of the height fields is smooth. This and many other

reasonable measures of smoothness can be expressed by a quadratic and positive

semidefinite functional. That means that instead of solving the original problem in

Eq. (5.13), we will be solving the augmented normal equation:

(�⇤+ J
>
J)h = J

>z , (5.21)

105

5. Height Map Fusion from Depth Maps

where � is a hyper-parameter controlling the regularisation, and ⇤ is a sparse,

positive semidefinite matrix. In practice we only regularise the solution very weakly

by assuming that neighbouring vertices have similar values.

5.6 Iterative Solvers

Once the normal equation, Eq. (5.13), is created, we need to solve it in order to

estimate the parameters of the height field. Since the matrix J
>
J is symmetric,

positive definite we could find the solution using Cholesky factorisation and back

substitution. However, as the size of the problem increases, this approach becomes

impractical, and for large scale least squares problems iterative solvers are more

widely used. Iterative solvers preserve the sparsity pattern of the matrix J
>
J, and

are easier to implement on parallel processors. An iterative solver will also have

advantages in recursive estimation as we will see in the following section. For an

iterative solver we need an initial guess which is subsequently refined. In our case, a

reasonable initial estimate can be obtained by running our simple height averaging

method. In the following we will present two solvers, the conjugate gradient method

and the Gauss-Seidel algorithm.

For the clarity of the derivation, from now on, we will consider solving an equation

of the form:

Ax = b , (5.22)

e↵ectively substituting A = J
>
J, x = h, and b = J

>z.

5.6.1 Conjugate Gradient

The conjugate gradient method is a very popular choice for solving linear systems of

equations involving symmetric positive definite matrices as in our case. It operates

based on the observation that solving Eq. (5.22) is equivalent to the problem of

minimising the convex quadratic function defined by:

�(x) =
1

2
x>

Ax� b>x , (5.23)

because Ax� b is the gradient of �(x), and at the minimiser, the gradient of �(x)

should be zero. Indeed, the gradient @�
@x of the �(x) is:

@�

@x
=

1

2
A>x+

1

2
Ax� b , (5.24)

106

5.6. Iterative Solvers

and since the matrix A is symmetric, the expression reduces to:

@�

@x
= Ax� b . (5.25)

Conjugate gradient, similarly to the steepest descent method [Nocedal and Wright,

2006], solves Eq. (5.22) iteratively by taking successive steps pk in the directions

that minimise the objective function (Eq. (5.23)). However, unlike steepest descent,

which often takes steps in the same direction multiple times [Shewchuk, 1994, p. 21],

descent direction vectors pk are A-orthogonal, which guarantees that in each search

direction, one takes exactly one step. Vectors pi and pj are A-orthogonal if they

satisfy p>
i Apj = 0. In general, this results in much faster convergence and prevents

the zigzag pattern characteristic of simple steepest descent. The overall structure of

the conjugate gradient method is outlined in Algorithm 1.

Algorithm 1 Conjugate gradient method.
1: Given x0

2: Evaluate �0 = �(x0) and g0 := r�(x0) = Ax0 � b
3: Set p0 := �g0, and k := 0
4: while gk 6= 0 do

5: ↵k :=
g
>
k gk

p>
k Apk

6: xk+1 := xk + ↵kpk

7: gk+1 := gk + ↵kApk

8: �k+1 :=
g
>
k+1gk+1

g>
k gk

9: pk+1 := �gk+1 + �k+1pk

10: k := k + 1
11: end while

The implementation of conjugate gradient is rather straightforward and also its

memory requirements are modest. We only need to store the gradient vector of the

objective function gk and the vector pk, each of them being the size of the original

problem, i.e. vector x. For practical reasons, we also store the Apk vector.

When using conjugate gradient for surface reconstruction, we start with an initial

estimate of the height, and first calculate the gradient of our objective function,

Eq. (5.23). In practice this requires a matrix-vector multiplication, where we multiply

the current estimate of the heights h by the J>J matrix. On GPU we launch multiple

threads in parallel, one thread per entry in the output vector, and each thread

calculates its value by accessing up to 7 values in the matrix and 7 neighbouring

height values (in the height vector). We use the same procedure in the main loop of

107

5. Height Map Fusion from Depth Maps

the algorithm, whenever matrix-vector multiplication is required, i.e. lines 5 and 7

in Algorithm 1. The main computational resources on a GPU are spent on performing

dot products, lines 5 and 8, in order to calculate the step sizes ↵k and �k. On GPUs

dot product requires performing a reduction, which is not always trivial to implement

e�ciently. Other steps within the main loop consist of 3 simple vector additions.

Conjugate gradient iterates until a convergence criteria is met, i.e. gk = 0. In

practice we stop when the norm of the gradient falls below a certain threshold. One

of the limitations of the conjugate gradient algorithm is that its convergence rate

depends on the condition number of the A matrix. In order to speed up convergence

one often uses a modified version of the algorithm based on preconditioning that we

will discuss in the following section.

Preconditioned Conjugate Gradient

Preconditioning involves transforming the linear system to improve the distribution

of the eigenvalue (and condition number) of the A matrix. To achieve that, instead

of solving the original equation:

Ax = b , (5.26)

we solve a transformed problem:

M
�1
Ax = M

�1b , (5.27)

where M is a symmetric, positive definite matrix that approximates A, but it is easier to

invert. The convergence rate now depends on the eigenvalues (and condition number)

of M�1
A, which when M is selected properly can result in solving the transformed

system much quicker than the original one.

To circumvent the problem that the matrix M
�1
A might not be symmetric, positive

definite, we can use the fact that there is always a factorisation such that M = C
>
C.

Now, we use matrix C to transform x into x̂:

x̂ = Cx , (5.28)

and express the quadratic function �(x) in term of the vector x̂ as follows:

�(x̂) = x̂>
C
�>

AC
�1x̂� b>

C
�1x̂

= x̂>
⇣
C
�>

AC
�1
⌘
x̂�

⇣
C
�>b

⌘>
x̂ .

(5.29)

108

5.6. Iterative Solvers

The original system of equations:

Ax = b , (5.30)

has been thus transformed to the following problem:

⇣
C
�>

AC
�1
⌘
x̂ = C

�>b , x̂ = Cx , (5.31)

which is first solved for x̂ and subsequently for x [Shewchuk, 1994, p. 40]. The

matrices C�>
AC

�1 and M
�1
A have the same eigenvalues and condition number. In

practice, we do not have to compute the matrix C, but we can work directly with

the matrix M as outlined in Algorithm 2.

Algorithm 2 Preconditioned conjugate gradient method.
1: Given x0 and preconditioner M
2: Evaluate �0 = �(x0) and g0 := r�(x0) = Ax0 � b
3: Solve My0 = g0 for y0 . i.e. y0 = M

�1g0
4: Set p0 := �y0, and k := 0
5: while gk 6= 0 do

6: ↵k :=
g
>
k yk

p>
k Apk

. determine step-size

7: xk+1 := xk + ↵kpk

8: gk+1 := gk + ↵kApk . calculate new gradient at xk+1

9: Solve Myk+1 = gk+1 for yk+1 . i.e. calculate yk+1 = M
�1gk+1

10: �k+1 :=
g
>
k+1yk+1

g>
k yk

11: pk+1 := �yk+1 + �k+1pk

12: k := k + 1
13: end while

The remaining question is how to choose M. Often it is recommended to select M

in such a way that system My = g amounts to a simplified version of the original

system Ax = b. One popular option is to construct M based on the incomplete

Cholesky factorisation of the matrix A, i.e. we set M = L̃
>
L̃, where L̃ represents an

incomplete factorisation of A, and makes C
�>

AC
�1 = L̃

�1
AL̃

�> ⇡ I. Incomplete

Cholesky factorisation can be a very powerful preconditioner, however, we found

it highly impractical for an e�cient and simple parallel implementation. A very

simplest (although not always the most e↵ective) alternative is to use a Jacobi

preconditioner, which creates M based only the diagonal entries of the matrix A. This

appears to be a sensible strategy in our case, as the entries on the diagonal are

formed from the sum of squares of the barycentric coordinates, and indeed one can

think of it as a simplified version of the original problem.

109

5. Height Map Fusion from Depth Maps

5.6.2 Gauss-Seidel Algorithm

Gauss-Seidel and similar relaxation-based approaches (e.g. SOR) are quite popular

ingredients of multigrid methods for solving partial di↵erential equations, and they

have already been used successfully in many computer vision applications, e.g. in

[Szeliski, 1990]. With the Gauss-Seidel algorithm we can directly exploit the regular

grid structure of our surface reconstruction problem and we will show that this

results in a simple yet very powerful iterative solver that presents an interesting

alternative to the conjugate gradient method.

Recall our system of equations:

Ax = b ,

and let us write the individual components of A, x and b:

A =

2

666664

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

3

777775
, x =

2

666664

x1

x2
...

xn

3

777775
, b =

2

666664

b1

b2
...

bn

3

777775
. (5.32)

Let us also denote by xki the value of xi at iteration k and by x(k+1)
i the value at

iteration k + 1.

Rather than using a global loop that updates all components of the solution vector

x at once, a single iteration of the Gauss-Seidel method progresses through the

individual elements of the vector x one after another, and updates them using the

following element-wise formula (referred to also as the relaxation formula):

x(k+1)
i =

1

aii

0

@bi �
i�1X

j=1

aijx
(k+1)
j �

nX

j=i+1

aijx
k
j

1

A . (5.33)

Thus, computation of update value x(k+1)
i within iteration k + 1 uses only a small

subset of the entries in matrix A and vector b, as well as values from the solution

vector that have already been updated x(k+1)
i , and values from the previous iteration

xkj . Intuitively, we solve for x(k+1)
i by fixing and assuming that the remaining

elements xj of the solution vector are correct, and progress through the system of

linear equations in Ax = b, equation after equation.

Since the matrix A associated with our reconstruction problem has only one non-

zero value on the diagonal and up to six non-zero o↵-diagonal elements (Fig. 5.4), in

110

5.6. Iterative Solvers

(a) Visualisation of the J>Jmatrix stored on
a grid and the memory access pattern (red
area) for an element-wise update, Eq. (5.33).
Dots on the grid indicate the diagonal
entries of J>J, whereas squares represent
the o↵-diagonal element of the matrix for a
single, element-wise Gauss-Seidel iteration.

(b) Four-colour based reordering of the vari-
ables (vector h) on a grid. Variables within
a single grid (e.g. squares) are fully inde-
pendent of each other, and therefore can be
updated in parallel.

Figure 5.5: Our parallel implementation of the Gauss-Seidel algorithm exploits and
benefits from the regular grid structure of the surface reconstruction problem.

order to update variable xi using the element-wise update from Eq. (5.33), we only

need to access its six surrounding neighbours within the vector x and the associated

o↵-diagonal entries of the matrix A. In our grid-like storage of J>J, h, and J
>z, this

corresponds to very local computations and a predictable memory access pattern.

In Fig. 5.5a we depicted the variables involved in a single element-wise computation.

The computations for a single iteration of the Gauss-Seidel algorithm are therefore

much simpler compared to conjugate gradient, as we do not have to perform any

matrix-matrix and matrix-vector multiplication, or dot products. Furthermore, as all

computations can be performed in-place, implementation of the Gauss-Seidel solver

consumes less memory.

The element-wise update rule is straightforward to execute, but the dependencies

between unknown, i.e. the fact that computations for of particular unknown depend

on the updated values of unknowns that have been computed before makes the

Gauss-Seidel algorithm essentially sequential. This means that in a standard form

the algorithm cannot be implemented e�ciently in parallel, and that theoretically

111

5. Height Map Fusion from Depth Maps

we have to sweep through the vertices in our mesh one after another. Fortunately,

by using a special ordering of variables in certain cases we can design a parallelisable

version of the Gauss-Seidel method.

Since each vertex (variable) on the grid is connected only to a small number of

neighbouring vertices, we can identify several subsets of variables, where, within

each subset, variables are decoupled from each other. This is referred to as variable

ordering, and one typical strategy is to perform so-called variable colouring, where

a single colour defines a maximal subset of variables that are decoupled from each

other [Shapira, 2008, p. 93]. Thus, the computations within a single colour can be

carried out fully in parallel since there are no data dependencies [Trottenberg et al.,

2001, p.176]. In our case we can divide the vertices on the mesh into 4 subgrids (four

colours), as shown in Fig. 5.5b. Within a single Gauss-Seidel iteration, the variables

are relaxed in the following order: the squares are relaxed in the first stage, the

triangles are relaxed in the second stage, the circles are relaxed in the third stage,

and the diamonds are relaxed in the final stage.

5.6.3 Comparison of the Solvers

Using a small synthetic dataset (a height map of a size 51⇥ 51 with approximately

30000 measurements) and our own reference implementations we evaluated the

four iterative solvers: Gauss-Seidel method, standard conjugate gradient, and two

versions of preconditioned conjugate gradient, using Jacobi and incomplete Cholesky

preconditioners. Fig. 5.6 illustrates the convergence rates of the algorithms on the

considered dataset, whereas Table 5.1 includes the total processing times and number

of iterations required for each of the methods to solve the problem to a required

accuracy (✏  0.01).

Looking at Fig. 5.6, as one could expect, the method based on incomplete Cholesky

factorisation achieves superior performance in terms of convergence rate. However,

upon closer inspection of the total processing times in Table 5.1 we can see that the

Jacobi-preconditioned conjugate gradient as well as Gauss-Seidel method perform

slightly faster despite requiring greater number of iterations to solve to problem

to the same accuracy. This can be attributed to the fact that the method based

on Cholesky preconditioning involves matrix factorisation at the beginning of the

optimisation process as well as calling a triangular solver at each iteration and

this creates additional overhead. Therefore, the computational complexity of a

112

5.6. Iterative Solvers

1 2 3 4 5 6 7 8 9 10 11
Number of iterations

10 -2

10 -1

10 0

10 1

10 2

10 3

jjJ
>
J
h
!
J

>
zj

j 2

Gauss-Seidel
Conjugate Gradient (CG)
PCG (Jacobi)
PCG (Incomplete Cholesky)

Figure 5.6: Comparison of convergence rates for di↵erent iterative solvers.

CG PCG (Jacobi) PCG (Cholesky) GG

processing time [sec] 0.717 0.334 0.457 0.426
number of iterations 28 11 4 10

Table 5.1: Average processing times and number of iterations required to solve a
synthetic least squares problem using reference implementations of four algorithms:
CG — conjugate gradient, PCG (Jacobi) — Jacobi-preconditioned conjugate gradient,
PCG (Cholesky) — incomplete Cholesky-preconditioned conjugate gradient and GS
— Gauss-Seidel method.

single iteration of preconditioned conjugate gradient based on incomplete Cholesky

factorisation is higher compared to methods that use simpler preconditioner such as

Jacobi. This indicates that in many situations rather than performing small number

of complex iterations, it might be advantageous to run more iterations of a simpler

method.

When comparing Gauss-Seidel method with the algorithms based on conjugate

gradient, at first, the convergence rate seems to be slower. However, that changes

as the computations progress and within just 10 iterations we are able to solve the

reconstruction problem two orders of magnitude better than the standard conjug-

ate gradient algorithm, and also more accurately than the method based on the

Jacobi preconditioning. The total processing times for Gauss-Seidel and Jacobi-

113

5. Height Map Fusion from Depth Maps

preconditioned conjugate gradient are comparable, but by exploiting the structure

of the problem the computations within a single Gauss-Seidel iteration are simpler

and incur significantly less memory transfer, which makes the Gauss-Seidel method

a very attractive solver for the surface reconstruction problems we defined in this

chapter.

5.7 Recursive Estimation

In this work we are interested in an incremental reconstruction method where we

can process each depth map as it arrives, without the need for recomputing the

surface from scratch. Fortunately, this is easily achievable within our framework

and we process data as follows: with every new frame, we first update J
>
J and

J
>z and subsequently run a few iterations of the iterative solver. However, it is not

necessary that the solver converges; since we are solving a linear least squares problem

iteratively, we can always stop the solver and add new data (i.e. update the J
>
J

and J
>z according to Eq. (5.20)), and then resume the optimisation. Note that all

previous measurements are summarised in J
>
J and J

>z, and that the computations

and memory requirements are bounded. From the estimation perspective, this

approach corresponds to an Information Filter, with matrix J
>
J being the inverse

covariance matrix and vector J>z the information vector.

5.8 Discussion

In this chapter we presented the foundations for an incremental surface reconstruction

from a stream of depth maps. Many concepts introduced here will be used as the

building blocks for the height map fusion using di↵erentiable rendering method

in Chapter 6, and for the multi-scale surface reconstruction method in Chapter 7.

A height map is a very interesting dense representation of an environment, in

particular for the small indoor robots we consider in this thesis. Depending on

the surface model used and data association strategy we can realise many di↵erent

variants of height map fusion that can be suitable even for very resource limited

platforms and implemented both on CPU or GPU. Since we explicitly formulated

surface reconstruction as an optimisation problem, there are many well-understood

avenues for improvement such as the use of a robust cost function and adding

regularising smoothness priors, as well as the use of a coarse-to-fine approach to

114

5.8. Discussion

speed up convergence. We have shown that by using a fixed topology, regular

structure mesh to represent the surface we can solve the optimisation e�ciently; in

particular the Gauss-Seidel method is very simple and easy to implement.

The ease of using height maps comes however with certain compromises. Obviously,

one of the limitations of height maps is that they are unable to represent vertical

or overhanging structures appropriately. This limitation could be at least partially

mitigated by extending the model to so-called multi-level surface maps [Triebel et al.,

2006]. Another great opportunity for an extension is adding support for loop closure.

At the moment, when performing reconstruction we assume a single, global height

map. One possibility would be to allow the robot to create multiple local height

maps as it moves and explores the scene, and align the maps once a loop closure is

detected.

115

5. Height Map Fusion from Depth Maps

116

Chapter 6

Surface Reconstruction using

Di↵erentiable Rendering

Contents

6.1 Introduction . 118

6.2 Literature Review . 121

6.3 Incremental Surface Reconstruction based on a Generative Model 123

6.3.1 Overview . 123

6.3.2 Generative Model . 124

6.3.3 Reconstruction as a Nonlinear Optimisation Problem . . 125

6.3.4 Di↵erentiable Rendering 128

6.3.5 Height Map Fusion through Linearisation 129

6.4 Nonlinear Solvers . 132

6.4.1 Gauss-Newton Method 132

6.4.2 Nonlinear Conjugate Gradient 133

6.5 Implementation . 135

6.6 Experiments and Evaluation . 136

6.6.1 Performance . 137

6.6.2 Synthetic Data . 138

6.6.3 Comparison against a Generic 3D Reconstruction with a

Depth Camera . 139

6.6.4 Free Space Detection . 139

6.7 Conclusions and Discussion . 140

117

6. Surface Reconstruction using Di↵erentiable Rendering

6.1 Introduction

In this chapter we present a novel method for incremental height map estimation.

Our core representation for reconstruction remains the same, we use a height (and

colour) map defined as a triangular mesh on a regular 2D grid and take as input a

stream of depth maps (and images). The main di↵erence compared to the methods

presented before is that now we use a generative model and Bayes theorem to derive

a more formal solution to surface reconstruction. In a generative approach, we start

by formulating a forward observation model and the measurement likelihood function

that defines the probability of the observed data given a model. The forward model

is parameterised with respect to variables that directly a↵ect the observations, in

our case per-vertex height and colour, and we seek for a reconstruction that best

explains the observations. In order to evaluate the forward model (and thus the

likelihood function) we use a standard computer graphics pipeline and predictive

rendering, whereas in order to calculate the derivatives required to obtain the

maximum likelihood estimate, we explicitly di↵erentiate the rendering pipeline, and

hence, we refer to our approach as di↵erentiable rendering. The term di↵erentiable

rendering was coined by [Loper and Black, 2014] who defined it as a process that:

(1) supplies pixels as a function of model parameters and (2) supplies derivatives

of the pixel values with respect to those parameters. One of the advantages of this

approach is that it can be implemented very e�ciently: thanks to the hardware

acceleration of modern GPUs rendering can be performed very fast, and when done

properly, calculating the derivatives comes at almost negligible additional cost.

Traditionally, in computer vision, generative approaches have been mainly used

with standard RGB or grayscale images only. However, in our approach we use

the generative model with the depth maps as well, as it improves performance and

robustness. We perform estimation in a loosely-coupled fashion, that means that we

assume that camera poses are given, and we rely on the image measurements to infer

surface colour, and separately use depth measurements to infer surface geometry.

Specifically, at each new input frame, given a current estimate of the surface and

camera pose, we perform a predictive depth and colour rendering and compare it with

the observed depth map and colour frame as shown in Fig. 6.1. The error between

the rendered and measured frames together with the gradients calculated using

di↵erentiable rendering are used for iterative optimisation of the height and colour

of each observed surface cell. Similarly to the approach presented in Section 5.7, in

118

6.1. Introduction

Figure 6.1: Left: an example of a monocular RGB image and motion stereo depth
map, which are inputs to our fusion algorithm. By using a generative model that
explicitly relates changes in surface parameters with measurements, we are looking
for a height map reconstruction that best explains our observations. Right: output
RGB and depth image predicted from our di↵erentiable renderer.

order to allow for an incremental reconstruction we also maintain and update the

full posterior distribution over the surface parameters in the information form.

Overall, the proposed approach allows us to formulate and derive a solution to the

height mapping problem in a more general, elegant and probabilistically sound fashion.

For example, now we work directly with our observations, i.e. depth measurements

and their uncertainty, and do not have to rely on techniques for propagation of

uncertainty, or use heuristics to perform data association. In fact, one can see the

approaches presented in Chapter 5 as simplified versions of the method described

here.

However, using the generative model also brings certain challenges. Whereas pre-

viously we were solving a linear least squares problem, now, since our forward model

(the rendering) is nonlinear, the resulting optimisation problem is also nonlinear.

119

6. Surface Reconstruction using Di↵erentiable Rendering

As a consequence, we have to use a nonlinear iterative solver that requires a good

initialisation. Furthermore, the overall optimisation process is more complex and

it needs to be carefully monitored in order to ensure stable behaviour and avoid

getting trapped in a local minimum (in fact we cannot guarantee reaching the global

optimum as the problem is not only nonlinear, but also nonconvex). During the

iterative optimisation we have to evaluate the forward model multiple times, which

results in increased computational load. A further consequence of using a generative

model and the nonlinearity of the problem is that the incremental reconstruction

is now implemented using an extended information filter, i.e. we still store the full

posterior distribution in information form, but we update it using linearised error

terms. In contrast to the method from the previous chapter, where we could always

stop the iterative solver to add new data to the problem, before we can update the

posterior distribution we now have to ensure that optimisation has converged.

In this chapter we also introduce an alternative method for representing the

information matrix, compared to the grid-based approach proposed before. Instead

of storing one global information matrix for the whole triangular mesh, we maintain

and update multiple information filters, each on a per-triangle basis. This can be

thought of as representing the matrix in an unassembled form, where one can still

construct the global matrix from the individual filters. One of the advantages of such

an approach is increased flexibility as now we can work with meshes of arbitrary

topology, and do not have to rely on regular grid structure.

The remainder of this chapter is organised as follows. We will first review some

prior work that showed how generative approaches could be used to solve problems

in computer vision, with a particular emphasis on 3D and surface reconstruction.

Next we will move to the core algorithm presented in this chapter, showing that we

can explicitly use a dense height map model to permit e�cient incremental inference

using a generative model and di↵erentiable rendering. This will be followed by

experiments that demonstrate the viability and practicality of our approach. We will

conclude the chapter with a discussion and briefly describe possible extensions of

our approach.

120

6.2. Literature Review

6.2 Literature Review

Generative methods have a long history in computer vision and they are at the heart

of many successful methods, for example, appearance-based object tracking [Bibby

and Reid, 2008; de La Gorce et al., 2008], as well as human face and pose estimation

[Parke and Waters, 2008; Poppe, 2007]. Approaches based on generative models

are often referred to as analysis-by-synthesis, or vision as inverse graphics because

they typically involve some sort of inverting the imaging process in order to infer the

characteristics of the observed scene. Our method is partially inspired by OpenDR

[Loper and Black, 2014], a di↵erentiable renderer framework that demonstrates how

the standard computer graphics rendering pipeline can be used to obtain generative

models suitable for solving various computer vision problems. Thanks to automatic

di↵erentiation, certain approximations, and the usage of the o↵-the-shelf solvers

and the Python scripting language, one can easily experiment with di↵erent models

and algorithms. This is a very powerful framework and highlights the potential of

generative approaches but the implementation is generally too slow and unoptimised

for any real-time application.

The idea of using a generative model to perform Bayesian 3D surface reconstruction

was probably first presented in [Cernuschi-Frias et al., 1986] and further developed

in [Hung et al., 1988; Cernuschi-Frias et al., 1989; Hung and Cooper, 1990]. In

this work only three primitive surface types (planes, cylinders and spheres) were

considered, but the method is applicable to other parameterised surfaces as well.

Unlike for example standard stereo algorithms, which perform estimation in the

image domain by performing search along epipolar lines, estimation takes place

directly in the parameter space of the 3D models. [Hung et al., 1991] extended the

framework and derived a sequential Bayesian estimator for 3D surface parameters,

where similarly to our algorithm, information extracted from previous images was

summarised in a quadratic form.

Closely related to our approach is also the work on Bayesian surface reconstruction

from NASA, initiated by [Cheeseman et al., 1996], and further developed in a series of

papers that highlight the flexibility and advantages of a Bayesian approach, such as

the ability to perform super-resolution, [Morris et al., 1999; Smelyanskiy et al., 2000],

ability to incorporate camera calibration in the whole generative model [Morris et al.,

2001] and creating a whole unified framework [Smelyanskiy et al., 2001]. Various

di↵erent aspects like parameterisations and approaches to solve the problem were

121

6. Surface Reconstruction using Di↵erentiable Rendering

presented in [Smelyanskiy et al., 2002; Jalobeanu, 2004; Jalobeanu et al., 2004; Stutz,

2005]. Surface reconstruction was explicitly defined as an inverse problem: given a

set of images infer the most probable surface that could have generated them, and

Bayes theorem was used to derive a formal solution to this problem. One started by

constructing a likelihood function that gives the probability of each pixel value given

the imaged surface and observation conditions. The likelihood of the whole image

was assumed to be just the product of likelihoods of each pixel, i.e. the measurement

error of a pixel was conditionally independent of the value of its neighbours. The

surface was modelled using a discrete uniform grid, with surface properties given at

each grid cell, i.e. surface emitance (combination of surface albedo and illumination

conditions) and elevation. The approach allowed for the inclusion of priors in their

reconstruction in the form of neighbour correlations.

The two described approaches present very elegant solutions to surface reconstruc-

tion, however they are distinct to our method in several ways. First, although an

extension for recursive reconstruction was discussed, these were primarily o↵-line,

batch methods that considered all images at once. Furthermore, the methods es-

timated the surface directly from the observed images, which although the most

general approach, typically results in a lack of robustness and requires starting with

an already very good initial estimate of the surface because of the rather small basin

of convergence of the associated optimisation problem. In our approach we take

an incremental real-time approach and integrate camera tracking. Furthermore,

we estimate the surface by directly rendering and fusing depth maps, rather than

estimating the surface properties only from RGB images.

[Liu and Cooper, 2010, 2011, 2014] presented an interesting approach to more

general 3D reconstruction based on Bayesian modelling and inverse ray tracing. Their

method is based on a fixed resolution volumetric representation, modelled using

Random Markov Fields (MFR), and one seeks the parameters of the model (in this

case for each voxel, two properties are assigned: binary occupancy (0, or 1) and RGB

colour) that best explain the observed RGB images. Although the method presents

and focuses on e�cient inference, it can only handle relatively small resolution

volumes (1003 � 10003), and a very small number of images (reported datasets are

of size 16-49). Processing times are not reported and the method is formulated as

a batch process where we need to maintain all observations and therefore is not

suitable for incremental reconstruction. Furthermore, the method is not scalable, as

122

6.3. Incremental Surface Reconstruction based on a Generative Model

Differentiable rendering

Figure 6.2: An overview of our system. Given a sequence of images from a single
moving camera we continuously estimate the camera motion and use it for depth
estimation. Using di↵erentiable rendering, the calculated depth maps are fused into
a height map represented by a triangular mesh. Note that rendering in our approach
is used quite di↵erently compared to more traditional depth map fusion methods,
e.g. KinectFusion [Newcombe et al., 2011a]. Firstly, whereas KinectFusion performs
raycasting of a signed distance function (SDF) and uses predicted surface for the
frame-to-model tracking, in our method we perform frame-to-frame tracking, and
use the predictive rendering to fuse a depth map into a triangular mesh. Secondly, a
fusion of depth measurements into a SDF can be performed in one step, whereas our
approach is implemented as an iterative optimisation, which means that in order to
fuse a single, observed depth map into a model, we need to perform several predictive
renderings and comparisons of the observed and predicted depth maps.

the complexity grows with the number of images.

6.3 Incremental Surface Reconstruction based on a

Generative Model

6.3.1 Overview

Our goal is to recursively estimate a surface model from a sequence of images

from a camera moving over a scene. Fig. 6.2 shows an overview of our method:

certain elements of the pipeline, e.g. camera tracking and depth estimation, are

123

6. Surface Reconstruction using Di↵erentiable Rendering

already known from previous chapters. The main novelty in this approach is in

formulating incremental reconstruction as a recursive nonlinear optimisation problem,

where as each new frame arrives we compare it with a generative rendering of our

current surface estimate and make an appropriate Bayesian update. In this respect,

we formulate nonlinear residuals as the di↵erence between the (inverse) depths as

measured in the current frame and the (inverse) depth predictions generated by the

rendered model; at the same time, we compare predicted and observed colours (not

shown in Fig. 6.2). In order to obtain a recursive formulation that allows us to keep

all past measurements, we linearise these error terms and keep them as priors that

are jointly minimised with the residuals of the current frame.

A crucial element of our method, which enables highly e�cient operation, is a

di↵erentiable renderer implemented using the standard OpenGL computer graphics

pipeline. Given a current surface model and a camera pose it can render a predicted

image and depth for each pixel together with the derivatives of these quantities with

respect to the model parameters at almost no extra computational cost.

6.3.2 Generative Model

Our approach is inspired by the probabilistic model of the image formation and

rendering process illustrated in Fig. 6.3. We parameterise a surface by its geometry

G and its appearance A. Given a camera with an associated pose T in the scene, we

can render a predicted image I and an inverse depth map D. In our method we do

not model lighting and surface properties (such as normals) explicitly, but assume

ambient light and Lambertian surfaces.

I D

G A T

Figure 6.3: A graphical model of the image formation and rendering process used to
derive our fusion approach.

The joint distribution that models the image formation process in Fig. 6.3 is given

by:

P (I,D, G, A, T) = P (I|G, A, T)P (D|G, T)P (G)P (A)P (T) . (6.1)

124

6.3. Incremental Surface Reconstruction based on a Generative Model

The relation between image observations and surface estimation can be expressed

using Bayes rule:

P (G, A, T|I,D) / P (I,D|G, A, T)P (G)P (A)P (T) , (6.2)

which allows us to derive a maximum a posteriori (MAP) estimate of the camera

pose and surface:

argmax
G,A,T

P (I,D|G, A, T)P (G)P (A)P (T) . (6.3)

The term P (I,D|G, A, T) is a likelihood function which we will be able to evaluate

and di↵erentiate using our renderer. The terms P (G), P (A), P (T) represent prior

knowledge that we might have about the geometry, appearance and trajectory, e.g.

obtained from previous measurements or general properties of the surface, such as

its smoothness.

To simplify the problem, we treat the camera poses as given by a tracking module.

Furthermore, since in our loosely-coupled fusion we use the colour images to generate

a depth map that determines the height field, we ignore the dependency of the colour

image on the height values. Note that this is a conservative assumption letting us

treat the colours and height fields independently:

argmax
G

P (D|G)P (G) , (6.4a)

argmax
A

P (I|A)P (A) . (6.4b)

In essence, we alternate between height (Eq. (6.4a)) and colour fusion (Eq. (6.4b)),

first estimating the geometry using an observed inverse depth map and subsequently

we fuse the colour image into the height field while keeping the geometry fixed. In

the following we focus on the depth map fusion, but the derivation can be extended

to colour estimation in a straightforward manner. Currently, colour information

is mainly used for meaningful display, however one can use it to perform camera

tracking with respect to the estimated model in order to reduce tracking drift.

6.3.3 Reconstruction as a Nonlinear Optimisation Problem

Eq. (6.4a) can be used to formulate the optimisation problem that needs to be solved

in our height map estimation. The geometry of a height field is fully parameterised by

the vector of heights h 2 Rn, which is the quantity we want to estimate. We represent

the priors P (G) using a multivariate Gaussian probability distribution N�1 (⌘, ⇤) in

125

6. Surface Reconstruction using Di↵erentiable Rendering

a canonical form parameterised by the information vector ⌘ and matrix ⇤. By taking

the negative logarithm of Eq. (6.4a) we obtain the following minimisation problem:

argmin
h

F (h) , (6.5)

where:

F (h) = Fd(h) + Fp(h) . (6.6)

The cost function thus consists of two terms, the data term Fd(h) and the prior term

Fp(h):

Fd(h) = kd̄�D(h)k2
⌃d̄

, (6.7a)

Fp(h) =
1

2
h>

⇤h� ⌘>h+ c , (6.7b)

where d̄ 2 Rm is a column vector that represents the observed inverse depth map

with associated measurement uncertainties modelled by (diagonal) covariance matrix

⌃
d̄
, and D(h) is a nonlinear (rendering) operator, D : Rn ! Rm that predicts a vector

of depths using the current estimate of h. The prior term (Eq. (6.7b)) is a standard

quadratic form associated with a Gaussian probability distribution N�1 (⌘, ⇤).

Instead of back-projecting the depth measurements and expressing them in terms

of height measurements, as described in Chapter 5, we now directly compare the

measured depths with the depths rendered from the model, and seek parameters

of the model that minimise the discrepancy between observed and predicted values.

The cost function term Fd(h) related to the measurements can thus be expressed as

a sum of individual per-pixel inverse depth error terms:

ei(h) = d̄i � di(h), (6.8)

between a measured d̄i and a predicted inverse depth di:

Fd(h) =
mX

i=1

1

�2
di

(d̄i � di(h))
2 =

mX

i=1

1

�2
di

ei(h)
2 =

1

2
e(h)>e(h). (6.9)

The minimisation problem in Eq. (6.5) is a nonlinear least squares problem, which

is typically solved using iterative approaches, and will later describe two algorithms:

Gauss-Newton and the nonlinear conjugate gradient method. Iterative algorithms

start with some initial estimate and use various strategies to gradually improve the

solution. A shared characteristic of these methods is that they require access to the

126

6.3. Incremental Surface Reconstruction based on a Generative Model

gradient of the objective function in order to calculate a direction that minimises

the objective function.

The gradient of the objective function F (h) as defined in Eq. (6.5) is given by:

rF (h) = rFd(h) +rFp(h) . (6.10)

The gradient of the term associated with the surface priors is straightforward to

compute:

rFp(h) = ⇤h� ⌘ , (6.11)

whereas the gradient of the data term is given by [Sun and Yuan, 2006, p. 25]:

rFd(h) = 2D0(h)>⌃�1
d̄

(d̄�D(h)) , (6.12)

where D0(h) is the derivative of the rendering operator D and is called the Jacobian

matrix Jd(h):

Jd =

2

666664

@d1
@h0

@d1
@h1

· · · @d1
@hn

@d2
@h0

@d2
@h1

· · · @d2
@hn

...
...

. . .
...

@dm
@h0

@dm
@h1

· · · @dm
@hn

3

777775
. (6.13)

Although the number of measurements (m) and size of the state space (n) are high,

the Jacobian Jd(h) 2 Rm⇥n linking them is sparse. Since we assume that each depth

value depends only on 3 vertices, Jd has only 3 non-zero entries per row. Note how

this is related to the linear system of equations, Eq. (5.17), we discussed in a previous

chapter. The structure of the Jacobian Jd here and the matrix J defined there is

essentially the same. However, a consequence of using a generative model is that

our data association strategy has changed (we use predictive rendering instead of

back-projection). As a result, we are dealing with a nonlinear problem, where the

Jacobian Jd can only be used to linearise the objective function around a current

estimate.

As in Chapter 5, we do not explicitly form the Jacobian matrix and perform matrix-

vector multiplication, but instead, we calculate the gradient vector by summing the

contributions from the individual, per-pixel error terms. The gradient of Fd(h) is

therefore given by:

rFd(h) = 2
mX

i=1

1

�2
di

Ei(h)ei(h) , (6.14)

127

6. Surface Reconstruction using Di↵erentiable Rendering

where Ei(h) = rei(h) is the derivative (Jacobian) of a per-pixel error term. Since

each error term depends on three values in h (we denote them by hj), we only

need to calculate the derivative of the rendered depth with respect to vertices of

the associated triangle, and can assemble the gradient of the function Fd from this

individual per-depth Jacobians Ei = rei(h) 2 R3 and associated error terms ei(h).

In the following subsection we will describe our strategy to obtain Ei.

6.3.4 Di↵erentiable Rendering

In our rendering we explicitly model the ray-triangle intersection and perform

analytical di↵erentiation of this operation. Furthermore we assume that each pixel

“observes” only a single triangle. There are alternative and more sophisticated

approaches. For example, [Smelyanskiy et al., 2000] carefully model the rendering

process and take into consideration surface normals and contributions from multiple

triangles into pixel colour, whereas [Loper and Black, 2014] proposed an approximate

way to calculate the derivative.

Let r(t) be a ray, parameterised by its starting point p 2 R3 and direction vector

o 2 R3, r(t) = p+ to, with t � 0. For each pixel in the image we can calculate a ray

using camera intrinsics and the centre of the camera frame of reference as the origin.

Let 4 be a triangle in R3 parameterised by 3 vertices, v0, v1, v2.

Ray-triangle intersection can be easily found using, for example, the classical

algorithm of [Möller and Trumbore, 1997], which, when the ray intersects the

triangle, yields a vector (t,↵,�)>, where t is the distance to the plane in which the

triangle lies and ↵, � are the barycentric coordinates of the ray intersection point

with respect to the triangle 4. Values of t, ↵, and � are the essential elements

required to render the depth and colour for a particular pixel: t is directly related to

the depth, whereas the barycentric coordinates are used to interpolate the colour c

based on the RGB colour triangle vertices (c0, c1, c2) in the following way:

c = (1� ↵� �)c0 + ↵c1 + �c2 . (6.15)

Fig. 6.4 depicts this ray-triangle intersection problem.

The rendered inverse depth di of pixel i depends only on the geometry of the

triangle that a ray is intersecting (and the camera pose that is assumed fixed). As

we model the surface using a height map, each vertex has only one degree of freedom,

128

6.3. Incremental Surface Reconstruction based on a Generative Model

1/dic2,v2

r

p

c0,v0

c1,v1

h0

h1
h2

ci

Figure 6.4: The essential geometry of ray-triangle intersection. By directly modelling
the rendering process we can easily find the derivatives of a rendered depth (di) and
colour (ci) with respect to the parameters of the surface model.

its height h. Assuming that the ray intersects the triangle j specified by heights

h0, h1, h2, at distance 1/di, we can express the derivative as follows:

Ei =
@di
@hj

=


@di
@h0

@di
@h1

@di
@h2

�
. (6.16)

The individual partial derivatives can be derived easily using the chain and product

rules, and eventually used to calculate the gradient of the objective function as

described in Eq. (6.14).

6.3.5 Height Map Fusion through Linearisation

Thus far we have defined the general objective function required to perform surface

reconstruction and described how to calculate its gradient. Details on how exactly

to minimise the objective function will be provided in Section 6.4. Since we want

to incrementally reconstruct the surface and process the data as it arrives, we will

now present our approach to recursive estimation. Our fusion method is both simple

129

6. Surface Reconstruction using Di↵erentiable Rendering

and principled, and can be seen as a generalisation of the approach presented in

Section 5.7: all previous observations are maintained and accumulated in the form

of the prior term Fp(h) (the quadratic cost function) that serves as constraints on

the vertices during the optimisation.

Specifically, with every new depth map d̄, given current prior term Fp(h), i.e. ⇤,

⌘ and c, we minimise the function in Eq. (6.5) to find the current estimate of height

values, ĥ. After optimisation converges we linearise the objective function Fd(h)

associated with the data term at the estimated solution ĥ:

Fd(h) ⇡ F l
d(h) = kd̄�

⇣
d̂+ Ĵd · (ĥ� h)

⌘
k2 , (6.17)

where d̂ = d(ĥ)
���
h=ĥ

and Ĵd = Jd(h)|h=ĥ
. Note that we omit here the measurement

covariance matrix ⌃
d̄
for the brevity of the derivation. We can now use the quadratic

approximation of the objective function given by:

F l
d(h) = k

rz }| {⇣
d̄� d̂� Ĵdĥ

⌘
+Ĵdh)k2 = kr+ Ĵdhk2 (6.18a)

= r>r+ 2r>Ĵdh+ h>
Ĵ
>
d Ĵdh , (6.18b)

to update our prior term. Thus, to fuse the depth measurement vector d̄ into the

height field, we simply augment the prior term in Eq. (6.7b) using the quadratic

model F l
d(h) derived above:

⇤
+ = ⇤+ Ĵ

>
d Ĵd , (6.19a)

⌘+ = ⌘ + 2r>Ĵd , (6.19b)

c+ = c+ r>r . (6.19c)

Note that we do not have to keep the value of the linearisation point, nor the previous

depth measurements, as all information is captured in the linearised error term. This

operation can be seen as equivalent to the measurement update step in the Extended

Information Filter [Thrun et al., 2004].

When using a regular grid structure for height mapping, we can store the prior

terms from Eq. (6.19) (i.e. ⇤ and ⌘) on a grid as presented in the previous chapter.

Here, however, we propose an alternative approach that does not require us to form

the information matrix and vector explicitly but instead we accumulate the per-pixel

inverse depth quadratic costs on a per-triangle basis. This means that for each

130

6.3. Incremental Surface Reconstruction based on a Generative Model

triangle j we keep a quadratic function of the form:

fj(h) = h>
j ⇤jhj + ⌘>

j hj + cj . (6.20)

where ⇤j 2 R3⇥3, ⌘j 2 R3, and hj 2 R3 is a vector of heights that defines the

triangle j.

Updating the per-triangle information filter is straightforward. Recall the individual

per-pixel error term as in Eq. (6.8). As explained, after the optimisation has converged,

we approximate this error term linearly around the current estimate ĥj as:

ei ⇡ eli = ēi +Ei�hj = ēi �Eiĥj +Eihj . (6.21)

Fusion of a single depth measurement d̄i into the height map thus consists of a

simple addition of the linearised error (Eq. (6.21)) to the corresponding triangle’s

cost function (Eq. (6.20)):

f+
j = fj +

(eli)
2

�2
di

. (6.22)

Multiplying this out and rearranging provides us with the updated coe�cients (⇤+j ,

⌘+
j and c+j) of the per-triangle quadratic cost:

⇤
+
j = ⇤j +

E>
i Ei

�2
di

,

⌘+
j = ⌘j +

2

�2
di

(ēi �Eiĥj)Ei ,

c+j = cj +
(ēi �Eiĥj)2

�2
di

.

(6.23)

The overall prior term Fp(h) and matrix ⇤ and vector ⇠ can be assembled from the

individual per-triangle error functions, so the overall cost function (Eq. (6.5)) we

have to minimise amounts to:

F (h) =
X

j

fj(h) +
X

i

1

�2
di

(ei(h))
2 . (6.24)

Note that this per-triangle formulation gives us more flexibility compared to the

approach discussed in Section 5.5.2, as now we are not restricted to any particular

grid topology and can work with meshes of irregular vertex connectivity. Still, the

memory and computational requirements are bounded: the number of linear cost

terms is bounded by the number of triangles in the mesh, whereas the number of

nonlinear (inverse) depth error terms is bounded by the number of pixels in the

camera. This is of course an important property for real-time operation.

131

6. Surface Reconstruction using Di↵erentiable Rendering

6.4 Nonlinear Solvers

We will now describe Gauss-Newton and nonlinear conjugate gradient method, two

algorithms that can be used to solve the nonlinear least squares problem involved in

our fusion approach. Both methods utilise the gradient of the objective function, but

di↵er in the way the direction for the minimisation is calculated at each iteration.

6.4.1 Gauss-Newton Method

Gauss-Newton algorithm is a commonly used method for solving nonlinear least

squares problem: starting with some initial estimate it solves a series of approxim-

ations of the original nonlinear problem, gradually improving the estimate of the

solution. Specifically, at each iteration of Gauss-Newton method we try to find a

small incremental update �h to the current estimate h0 by linearising the nonlin-

ear objective function and form its quadratic approximation around h0. We have

already encountered this approached when we presented fusion through linearisation

(Eq. (6.17)), but now we parameterise the quadratic function with respect to �h:

F (�h) = kd̄� (d0 + J
>
d �h)k2 , (6.25)

where d0 = D(h0), and Jd is the gradient of the objective function at h0. The

(linearised) objective function can be rewritten in the following way:

F (�h) = k(d̄� d0)| {z }
r

�Jd�hk2 = kr� Jd�hk2 , (6.26)

where r is the per-pixel depth error (residual). Expanding Eq. (6.26) leads to:

F (�h) = kr� Jd�hk2 = (r� Jd�h)
>(r� Jd�h)

= r>r� 2�h>
J
>
d r+ �h>

J
>
d Jd�h .

(6.27)

The vector �h can be found by setting the first derivative of the objective function

(Eq. (6.27)) to zero:
@F

@�h
= �2J>d r+ 2J>d Jd�h = 0 (6.28)

and solving the associated normal equation:

J
>
d Jd�h = J

>
d r . (6.29)

Although forming the normal equation is not problematic in our case (due to

sparsity pattern induced by mesh structure), and in fact we perform necessary steps

132

6.4. Nonlinear Solvers

when updating the quadratic form that represents our prior, the large scale nature of

the problem makes solving the Eq. (6.29) more challenging. For the reasons discussed

in Section 5.6 factorisation approaches are impractical in these circumstances, but

instead we could apply iterative methods (e.g. conjugate gradient or Gauss-Seidel).

The overall structure of the Gauss-Newton algorithm for height map fusion using

di↵erentiable rendering is outlined in Algorithm 3.

By closely investigating the listings in Algorithm 3 we can identify the challenge

of solving our optimisation problem using the Gauss-Newton method. In principle,

the algorithm consists of two loops: the main, outer loop is the standard nonlinear

optimisation and involves the calculation of the incremental Gauss-Newton step.

However, there is another iterative method executed in line 6, that solves the normal

equation required to calculate the direction vector pk. Although in the previous

chapter we presented very e�cient methods for solving normal equations related

to our reconstruction problems, there the normal equation had to be solved only

once per frame, whereas now we have to solve it within each Gauss-Newton iteration.

Furthermore, note that the vector pk gives us only a direction in which we should

try to minimise the cost function and we still have to calculate the proper step size

↵k, in order to avoid divergence.

Algorithm 3 Gauss-Newton method

1: Given h0

2: Set k := 0
3: do
4: Linearise the problem at hk (Eq. (6.25)) . Render
5: Form normal equation (Eq. (6.29))
6: Solve J>d Jd�h = J

>
d r, set pk = �h . e.g. using Gauss-Seidel

7: Do line search to determine step size ↵k . Render
8: hk+1 = hk + ↵kpk

9: k := k + 1
10: while pk 6= 0

6.4.2 Nonlinear Conjugate Gradient

The Gauss-Newton method can be very e�cient for solving various nonlinear least

squares problems, and by taking second order steps it can achieve a high convergence

rate, in particular when the cost function is well approximated by the quadratic

function. However, this comes at the cost of the high complexity of the algorithm,

as presented in the previous section.

133

6. Surface Reconstruction using Di↵erentiable Rendering

The conjugate gradient algorithm for solving linear least squares problems that we

outlined in Chapter 5 can be modified and also used for solving nonlinear problems,

and generally is far simpler to implement and execute. Unlike the Gauss-Newton

method, nonlinear conjugate gradient is an indirect, matrix-free approach, that does

not require forming and explicitly solving the full normal equation, but instead

calculates the descent direction only by evaluating the gradient of the objective

function. This makes the method especially suitable for solving large scale nonlinear

optimisation problems, and in fact it has been successfully applied before to various

computer vision tasks, e.g. in large scale bundle adjustment [Agarwal et al., 2010].

There are many variants of nonlinear conjugate gradient that di↵er in the way they

update the vector describing the direction of descent; in Algorithm 4 we outline

the overall structure of the Fletcher and Reeves variant of the conjugate gradient

method [Nocedal and Wright, 2006].

Algorithm 4 Nonlinear conjugate gradient, Fletcher and Reeves version.

1: Given h0

2: Evaluate F0 = F (h0) and g0 = rF (h0)> . Render
3: Set p0 := �g0 and k := 0
4: while gk 6= 0 do
5: Do line search to determine step size ↵k . Render
6: hk+1 = hk + ↵kpk

7: Calculate gradient gk+1 = rF (hk+1)> . Render

8: �k+1 :=
g
>
k+1gk+1

g>
k gk

9: pk+1 := �gk+1 + �k+1pk

10: k := k + 1
11: end while

As evident, the optimisation algorithm is rather straightforward: it only requires

the ability to evaluate the objective function and its gradient, as well as simple

vector operations like addition and dot product. The . Render in lines 2, 5 and 7

in Algorithm 4 highlights the execution of the di↵erentiable rendering. Similarly

to the Gauss-Newton method, at each iteration of the nonlinear conjugate gradient

method it is required to perform a line search that determines the step size ↵k in

the descent direction, which can lead to several evaluations of the cost function.

Therefore, the key to the e�ciency of this method is very fast di↵erentiable rendering.

134

6.5. Implementation

6.5 Implementation

E�cient implementation of the di↵erentiable rendering approach requires some

careful consideration. Our method can be divided into roughly two parts: one

performs (di↵erentiable) rendering, whereas the second part is dedicated to solving

the optimisation problem as well as updating and maintaining the prior term. The

solver can be implemented at ease using standard high performance computation

frameworks, for example CUDA or OpenCL (as we did in Chapter 5). However,

when implementing di↵erentiable rendering the choice is not obvious.

The main computationally expensive step in di↵erentiable rendering consists of

establishing the ray and triangle correspondence. Once the ray-triangle association

problem is solved, calculating the intersection and its derivatives comes at an almost

negligible cost. Graphics pipelines like OpenGL are best suitable and highly optimised

for standard rendering, but not necessarily for di↵erentiable rendering. Thus, when

implementing our approach we have identified the following options:

• implement rendering and di↵erentiation fully within the OpenGL rendering

pipeline,

• implement our own, custom di↵erentiable rendering pipeline, e.g. using OpenCL

or CUDA,

• use OpenGL/CUDA interoperability to implement di↵erent parts of the al-

gorithm in di↵erent frameworks.

The first option assumes that the rendering and calculation of the derivatives

(of the ray-triangle intersection problem) can be performed within the fragment

shaders of the OpenGL rendering pipeline. Although feasible, there are several issues

associated with this approach. OpenGL uses a technique called rasterisation to

implement rendering, whereas our approach to di↵erentiation operates more on the

principles of ray tracing (we explicitly model the ray triangle intersection). Thus, an

e�cient and correct implementation of di↵erentiable rendering requires expertise and

a good understanding of the OpenGL rendering pipeline (e.g. how a rasteriser works

and the nature of computations within fragment shaders), and its many subtleties

and limitations. Furthermore, support for fairly modern OpenGL features like Image

Load Store available from the OpenGL 4.2 standard, or even some non-standard

135

6. Surface Reconstruction using Di↵erentiable Rendering

extensions, e.g. support for atomic float operations (NV shader atomic float), is

beneficial during the implementation and might not be available on all GPUs.

The second option, i.e. implementation of a custom, di↵erentiable renderer entirely

using CUDA (or OpenCL), although theoretically o↵ering the greatest flexibility and

control over the rendering process, can rarely be the best solution. Even though,

thanks to the regular, grid structure of the height map one can use, for example, ray

marching (and the Digital Di↵erential Analyser (DDA) algorithm) to e�ciently find

the ray-triangle intersection for every pixel, we found it di�cult to obtain rendering

rates on par with the optimised OpenGL implementation.

We have tested all discussed approaches, and found that the third one, which

combines OpenGL and CUDA o↵ers best flexibility and performance. In this approach

we first use a standard OpenGL pipeline to solve the ray-triangle association problem

for each pixel, and then in CUDA we calculate ray-triangle intersections and their

derivatives. We can achieve that by a very simple combination of vertex and fragment

shaders that for each pixel render the (x, y)-coordinates of a point on a grid the pixel

is observing (alternatively, one can also render an associate triangle ID). The output

from OpenGL is then passed to CUDA, where within a compute kernel determining

a ray-triangle association simplifies to a single memory look-up. All subsequent

computations, including solving the optimisation problem, are also performed in

CUDA. With this technique, thanks to the regular, grid structure of the height map,

rendering can be performed very e�ciently and robustly: depending on height field

and image resolution, we can achieve rendering rates of thousands frames per seconds

on a high-end GPU (NVIDIA GTX 980). The main computational load comes from

the implementation of the nonlinear solver.

6.6 Experiments and Evaluation

To demonstrate the practicality of our approach for height mapping and robot

perception we performed a series of experiments using both synthetic and real data

experiments. In the robot experiment we use our standard platform based on the

Pioneer P3-DX robot and a single VGA resolution camera mounted at a height of

about 30 cm above the ground, pointing downwards and looking ahead approximately

1-2 metres. In most of the experiments we used cells of size 10 mm. We applied

camera tracking based on visual odometry (Chapter 3), and used the estimated

136

6.6. Experiments and Evaluation

height map to detect and track the motion only of the planar parts in images. For

depth map estimation we use the multi-view stereo algorithm presented in Chapter 2.

The visualisation in Fig. 6.5 demonstrates that we were able to reconstruct the

essential geometry of the environment as well as the very small objects on the floor,

like cables or pliers.

Figure 6.5: A visualisation of a height map reconstructed using the di↵erentiable
rendering approach. With the proposed method we are able to map whole rooms in
real-time and are still able to recover small details lying on the floor. Our method
not only produces geometry but also estimates the texture of the environment.

6.6.1 Performance

Despite certain complexities of the generative approach (especially compared to

the simple height map fusion from Section 5.4) we are able to achieve real-time

performance even on relatively moderate computational platforms that could be

deployed on a small mobile robots. Table 6.1 shows run time measurements for the

whole algorithm and its individual components on two di↵erent GPUs, the NVIDIA

GTX 980 and NVIDIA GT 650M. The latter is a mid-level mobile GPU, comparable

in performance with NVIDIA’s embedded board Jetson TX1. Jetson TX1 has a

credit-card footprint and power consumption of about 15W. Note that the e↵ective

frame rate can be even higher, as in our system the Depth Estimation and Fusion

do not have to be executed for each video frame — these are performed only when

there is a su�cient baseline due to camera motion.

137

6. Surface Reconstruction using Di↵erentiable Rendering

Run time GTX 980 GT 650M

Tracking [ms] 2.18 14.5
Depth Estimation [ms] 5.40 24.7
Fusion [ms] 3.41 26.9
Total run time [ms] 10.99 66.9

Total frame rate [fps] 91.0 15.1

Table 6.1: Timings for the reconstruction algorithm on two di↵erent GPUs.

Figure 6.6: Evaluation of the fusion algorithms on synthetic data: (left) ground
truth, (middle) reconstruction using the di↵erentiable rendering method, (right)
reconstruction using simple height map fusion from Section 5.4. In general, both
methods are able to accurately reconstruct the surface from just a few depth maps.
However, by incorporating smoothness priors, a method based on optimisation better
deals with situations where the resolution of the height map is high compared to the
density of measurements (e.g. due to oblique viewing angle).

6.6.2 Synthetic Data

To demonstrate the correctness of the di↵erentiable rendering approach, we evaluated

it using synthetic “moon” data (Fig. 6.6) and compared with the simple height map

fusion algorithm from the previous chapter that treats all height cells as independent.

Both methods are capable of accurately reconstructing the surface. However, in

the methods based on optimisation (the di↵erentiable rendering presented here and

138

6.6. Experiments and Evaluation

the method from Section 5.5) by modelling the connectivity between vertices of the

height map and incorporating smoothness priors, we can better handle situations

that arise when the camera is looking at the scene from a very oblique angle. There,

for the points that are far from the camera, the resolution of the height map is often

high compared to the density of the depth measurements; this leads to reconstruction

artefacts when the height vertices are assumed to be independent.

6.6.3 Comparison against a Generic 3D Reconstruction with a

Depth Camera

We qualitatively compared our monocular height map estimation to a more generic

3D reconstruction method, which uses a depth camera. In the comparison we used

ElasticFusion [Whelan et al., 2015], a system that takes high quality depth maps

obtained by a Kinect camera and is capable of creating globally consistent 3D models.

Our method, like any incremental, open-loop system, is subject to drift and is not

designed to directly compete with ElasticFusion in terms of global accuracy. However,

as shown in Fig. 6.7 our approach is capable of creating maps of the ground with

similar local accuracy.

6.6.4 Free Space Detection

A desirable property of a height map is that it can be directly used for robot

navigation and obstacle avoidance. For example, one can determine the drivable area

by simply thresholding the height values. Fig. 6.8 illustrates the results of applying

this approach to our reconstructions. There, for each pixel in an image, we check

the height of the associated grid cell and label it as free space or not based on a

fixed, 1 cm threshold. The created free space mask is subsequently overlaid onto the

observed image. Despite the fact that a height map cannot correctly model overhangs,

our approach exhibits desirable behaviour even in these scenarios. The method in

its current implementation is robust, especially for the task of free space detection.

We attribute this to the smoothing behaviour of the height map representation that

we use in our method. The performance of our method is best illustrated in the

following video: https://youtu.be/3NQqeRcSsCw. The simple thresholding method

is also used to detect the planar areas of the environment, which we can use for

tracking using planar visual odometry (Chapter 3).

139

6. Surface Reconstruction using Di↵erentiable Rendering

Figure 6.7: A comparison of a reconstruction from our height fusion (left) with high
quality reconstruction obtained using ElasticFusion (right). ElasticFusion [Whelan
et al., 2015] uses depth maps from a Kinect-like depth sensor and is capable of
creating globally consistent models, whereas our method is open-loop and based
on monocular depth estimation. This comparison demonstrates that our system
is capable of estimating the essential geometry of the room, and still reconstructs
details on the floor.

6.7 Conclusions and Discussion

We have demonstrated that a generative approach based on a carefully chosen height

map model and e�cient di↵erentiable rendering can allow usable real-time monocular

dense reconstruction and rigorous incremental probabilistic fusion. The presented

approach is optimal up to linearisation errors and discards no information, while

the computational complexity is bounded. Using current GPUs, rendering can be

done extremely e�ciently and the proposed generative approach directly utilises the

standard rendering pipeline (e.g. OpenGL). This is in line with the main motivation of

our work, where we focus on algorithms that can be well expressed and implemented

using commodity parallel processors and frameworks. We can also see this as an

example of using computer graphics methods and techniques to benefit computer

vision. In the following chapter, when presenting a multi-resolution method for

surface reconstruction, we will take those ideas a step further.

However, using a generative approach comes at a cost: the complexity and computa-

140

6.7. Conclusions and Discussion

Figure 6.8: Free space detected (green overlay) by simple thresholding of the recon-
structed elevation map.

tional demands of height fusion have greatly increased compared with the approaches

from the previous chapter. A subtle change in the strategy for data association

that is a consequence of using a generative approach (through rendering instead

of back-projection), makes the associated optimisation problem nonlinear and thus

more di�cult to solve. Whereas previously, when iteratively solving a linear least

141

6. Surface Reconstruction using Di↵erentiable Rendering

squares problem, we could always pause the solver and add new data to the problem,

now we have to optimise until convergence before we can process additional data, as

otherwise we could introduce linearisation errors. The comparison between these

two approaches highlights the importance of choosing the right parameterisation and

approximation when designing algorithms.

In general, one can consider the method derived from generative model as a more

formal (and elegant) approach to surface reconstruction, and see the approaches

presented in the previous chapter as application-driven approximations and simplific-

ations. This demonstrates the versatility and flexibility of height map approaches

for modelling and mapping of the environment of small mobile robots moving in

an indoor environment. A particularly interesting aspect of height map fusion is it

promising scalability, both in terms of input image resolution and scene represent-

ation. We can envision a very e�cient implementation, which should be possible

at lower resolution, perhaps for extreme resource-limited platforms (a very simple

height map fusion approach from Section 5.4 can be easily implemented on both

CPU and GPU). On the other hand, depending on the computational resources

available and requirements we can push the limits of the system towards very high

resolution fusion and use more sophisticated approaches that model full posterior

probability, capture both geometry and colour and, for example, can allow tracking

using full image alignment with respect to the estimated model.

A particular advantage of the generative approach is the great scope for the

expansion of this methodology. Within a probabilistic framework we can easily model

and express many aspects of the image formation process, such as camera intrinsics,

radial distortions, rolling shutter, blur, camera gain — and improve accuracy by

jointly estimating these quantities. The method presented in this chapter is a

loosely-coupled approach, but theoretically it should be possible to create a unified

framework for calibration, tracking, reconstruction, that goes straight from the

observed intensities into surface geometry and appearance without the intermediate

step of depth map estimation and depth map fusion. However, it still remains an

open question and a subject to future research if using a fully generative approach

based on rendering is a sensible and practical solution for robot perception. As many

authors have found [Smelyanskiy et al., 2000; de La Gorce et al., 2008; Gargallo

et al., 2007; Delaunoy et al., 2008], for this approach to work, it requires a good

initialisation of the geometry (which means we might still need to calculate depth

142

6.7. Conclusions and Discussion

maps) and proper handling of occlusion boundaries which makes it less robust and

practical; for example, in the gradient flow method [Delaunoy and Prados, 2011], the

initialisation is obtained from a visual hull. A possible extension of our work could

use fully a generative model and image-based reconstruction as a post-processing and

refinement step, where we use a batch of images to improve the model and recover

details that were not possible to obtain using depth maps only.

143

6. Surface Reconstruction using Di↵erentiable Rendering

144

Chapter 7

Multi-scale Surface Reconstruction

using Dynamic Level of Detail

Contents

7.1 Introduction . 146

7.2 Related Work . 147

7.2.1 Level of Detail in Computer Graphics 147

7.2.2 Multi-scale 3D Reconstruction 148

7.3 Dynamic Level of Detail and Multi-scale Surface Representation 149

7.3.1 Level of Detail . 149

7.3.2 Multi-scale Surface Representation based on Laplacian

Pyramid Decomposition 150

7.3.3 Tessellation and Vertex Assembly 152

7.3.4 Rendering using Dynamic Level of Detail 154

7.4 Multi-scale Surface Reconstruction 156

7.5 Implementation Details . 158

7.6 Experiments . 161

7.6.1 Synthetic Data . 161

7.6.2 Real-time Reconstruction 162

7.6.3 Comparison against Point-based Fusion 166

7.6.4 Multi-scale Height Map for a Mobile Robot 167

7.6.5 Additional Experiments 169

7.7 Conclusions . 169

145

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

7.1 Introduction

One of the limitations of the previously discussed approaches for the surface recon-

struction is that they rely on a fixed sized grid. Fusing the depth measurements

with di↵erent scales into a single resolution representation of the environment is

problematic, and often leads to system design decisions which incur performance

or quality penalties. For example, using a fine resolution throughout will result in

high memory consumption and can lead to aliasing artefacts when the density of

the measurements is low relative to the resolution of the model. On the other hand,

when the resolution is too coarse, the ability to capture small details in the scene is

severely limited.

The problem of using a fixed resolution representation is particularly apparent

in a monocular system: a 3D reconstruction system based on a moving monocular

camera is e↵ectively a variable-baseline multi-view-stereo system, and unlike a depth

camera or stereo rig, does not have a fixed minimum or maximum range. As a

camera browses a scene we can estimate depth maps at di↵erent scales; we can use

small baselines when the camera is close to objects to capture fine details, and when

the camera is far away, we can observe the global, coarser structure. Furthermore,

even within a single image we can observe the environment at di↵erent scales: for

a mobile robot with the camera looking forwards that we consider in this thesis,

due to the oblique angle the camera is looking at the scene, the required resolution

directly in front of the robot is much higher compared to the objects and parts of

the environment further away from the robot.

In this chapter we present an e�cient and scalable algorithm for multi-resolution

fusion that naturally supports and harnesses the superior characteristics of a monocu-

lar system and can deal with a wide range of scales in real-time. The key requirement

for our method is to represent the surface using a triangular mesh. We will use

height map fusion method based on the Gauss-Seidel solver from Chapter 5 as an

underlying surface reconstruction method, but the multi-scale approach presented

here can theoretically be used in conjunction with all three surface reconstruction

approaches presented so far, including the di↵erentiable rendering approach.

There are two main concepts that we will utilise in the multi-scale framework:

Dynamic Level of Detail (LOD) and an implicit multi-scale surface representation

based on Laplacian pyramid decomposition. Dynamic (or sometimes also called con-

146

7.2. Related Work

tinuous) level of detail is an important computer graphics technique for maintaining

interactive rendering rates and avoiding aliasing artefacts. We use it to dynamically

and adaptively determine the best required resolution for each part of the model

when fusing a measurement. To represent the environment at multiple scales, we

utilise a Laplacian mesh decomposition technique that maintains a hierarchy of ap-

proximations of the surface at various resolutions. Thanks to the Laplacian pyramid

representation, we can fuse measurements in a coarse-to-fine and probabilistically

sound fashion and maintain a single, consistent representation of the environment.

The method presented in this chapter follows the familiar incremental reconstruc-

tion pipeline that builds a detailed model of a scene observed by a single moving

camera, i.e. we track camera motion and calculate depth maps using multi-view

stereo, and we update the model every time a new depth map is available. The

proposed method is not restricted to robotics applications and we will consider here

also a more general set-up that allows the camera to move freely in 3D space in

order to observe the environment and capture depth maps at various scales. We

demonstrate the ability of the system to reconstruct scenes with adaptable resolution

down to fractions of a millimetre from standard real-time monocular video input,

and we will show that our work o↵ers a scalable system that can perform both very

fast reconstruction and achieve high quality results.

7.2 Related Work

7.2.1 Level of Detail in Computer Graphics

Our approach relies on the level of detail concept developed in computer graphics.

Multi-scale and level of detail object representations play an important role in

rendering of complex geometric models, and enable obtaining visually appealing

and accurate rendering results while reducing computational load and memory

bandwidth. The importance of level of detail methods has led to a plethora of

di↵erent approaches, that tackle various aspects of LOD representations such as

avoiding cracks, or optimality, i.e. what is the best lower-resolution representation of

a highly detailed mesh. Historically, most LOD computations and pre-processing were

first performed on a CPU, and a GPU was only utilised for final rendering. Advances

in GPU and programming models led to interest in development of algorithms

that best suit the parallel architecture of a modern GPU and now dynamic LOD

147

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

algorithms can be relatively easily implemented within a standard OpenGL pipeline

using tessellation shaders.

Clearly, a comprehensive review of LOD techniques is beyond the scope of this

thesis, and we will just highlight the work most relevant to us. One of the most

influential pieces of work on multi-scale representations is the paper by [Hoppe, 1996]

who introduced the progressive mesh scheme, a continuous-resolution representation

of arbitrary triangle meshes. Progressive Meshes allow for a smooth choice of detail

level depending on the current view, and were used for high-quality, continuous

level of detail rendering in various scenarios [Hoppe, 1997, 1998]. The method

produces compelling results, and is designed for arbitrary meshes, but it requires

rather complex pre-processing that is not suitable for an incrementally reconstructed

mesh.

More relevant and similar to our level of detail approach are methods based on

regularly sampled, hierarchical structures such as grid quad-trees [Lindstrom et al.,

1996] or Real-time Optimally Adapting Meshes (ROAM) [Duchaineau et al., 1997].

A basic building block of these methods is a patch that represents a small area of

the terrain. Each triangle within a patch can be recursively tessellated by binary

subdividing its edges until the desired level of detail is reached. Methods based

on partitioning of the mesh into patches are very simple and e�cient. Another

notable example of a LOD method that was specifically designed for large-scale

terrain rendering is the geometry clip maps approach [Losasso and Hoppe, 2004],

which caches the terrain in a set of nested regular grids centred about the viewer, in

a similar way to how texture clipmapping works.

7.2.2 Multi-scale 3D Reconstruction

Explicitly handling scenes with multiple scales within a 3D reconstruction framework

is a challenging problem, but it is necessary for obtaining state-of-the-art results, as

shown, for example, in [Fuhrmann and Goesele, 2014]. One of the natural choices for

multi-resolution representation is to rely on octrees to e�ciently partition the space;

for example, [Fuhrmann and Goesele, 2011] proposed a method for 3D reconstruction

that regularises samples from depth maps at a higher resolution with depth map at

coarser scales and fuses them into an octree representation. [Ummenhofer and Brox,

2015] proposed a variational approach for surface reconstruction which includes the

scale information directly in the objective function and also solves the optimisation

148

7.3. Dynamic Level of Detail and Multi-scale Surface Representation

problem on an octree grid. These approaches are o↵-line methods that globally

optimise a batch of images, which makes selection of appropriate scales much easier.

Although they have shown remarkable results, they are highly prohibitive for real-

time applications where processing should be fast and the reconstruction should be

updated incrementally.

In the field of real-time SLAM approaches that operate in an incremental fashion,

the main emphasis is usually put on scaling-up the reconstruction, rather than

obtaining very accurate and detailed models. When designing a large scale, real-time

dense reconstruction system, much e↵ort is typically focused on reducing the amount

of memory and resources spent on processing “empty” space and therefore these

methods are rarely particularly good at dealing with scale changes. As in batch

methods, real-time SLAM approaches also often rely on hierarchical data structures

[Chen et al., 2013], e.g. multi-scale octree representation for TSDF [Steinbrücker

et al., 2013]. Kintinuous [Whelan et al., 2012] extracts a dense point cloud from

a TSDF volume and incrementally adds the resulting points to a triangular mesh

representation of the environment. [Stückler and Behnke, 2014] tackled the problem

of multiple scales by representing the environment using a set of surfel maps at

di↵erent resolutions.

[Nießner et al., 2013] presented a very interesting technique that uses a spatial

voxel hashing scheme to compress space, and does not require a hierarchical grid data

structure. However, this method was designed to be used mainly with high quality

depth data, tends to be quite complex, and involves processing on both CPU and

GPU. [Kähler et al., 2016] extended the spatial voxel hashing technique and equipped

it with the ability to represent parts of the scene at di↵erent resolution levels. Thanks

to the adaptive scale selection, the method achieves up to 50% reduction in memory

footprint compared to a fixed discretisation grid.

7.3 Dynamic Level of Detail and Multi-scale Surface

Representation

7.3.1 Level of Detail

In the most standard approach to level of detail one explicitly maintains di↵erent

representations of an object at di↵erent resolutions. Typically, we start with a

very detailed mesh that is gradually simplified and remeshed in order to create a

149

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

Figure 7.1: A demonstration of the level of detail concept. In the simplest form,
one maintains explicit representations of an object with di↵erent model complexities
(image from [Peyre and Cohen, 2006]).

very coarse model. Remeshing and mesh simplification is typically done o↵-line

as a pre-processing step, and is a very challenging problem widely studied in the

literature, for example, in [Peyre and Cohen, 2006]. Fig. 7.1 shows an example of an

object represented at four di↵erent resolutions. During rendering, based on various

criteria, e.g. expected on-screen size and other metrics such as object importance,

viewpoint-relative speed or position, an algorithm selects on the fly the suitable

representations of the object.

7.3.2 Multi-scale Surface Representation based on Laplacian

Pyramid Decomposition

The approach that explicitly stores a representation of an object at various resolutions

works well for simple rendering, but it is undesirable for incremental reconstruction

as it would be very di�cult to maintain consistency between the representations of

the same object at multiple scales. Alternatively, we can use implicit representations,

and there are a few possible underlying data structures and techniques to model a

surface at multiple scales. A common choice for multi-resolution mesh representation

is wavelets-based [Eck et al., 1995; Lounsbery et al., 1997]. Wavelets o↵er a very

elegant, compact and powerful framework, but when used for fusion, this comes at the

cost of significantly increased processing complexity. The dependencies between the

wavelet coe�cients in a reconstructed signal make it very challenging to maintain and

a update full posterior distribution over surface parameterised by wavelet coe�cients.

Our surface representation method relies on a Laplacian pyramid decomposition

of the mesh on a regular grid [Guskov et al., 1999], also referred to as the Burt-

Adelson pyramid scheme [Burt and Adelson, 1983]. In the standard Laplacian

150

7.3. Dynamic Level of Detail and Multi-scale Surface Representation

pyramid decomposition, one separates a signal (typically an image) into high-pass

and low-pass bands by successive blurring, calculating the di↵erence between a

blurred and original signal, and downsampling. A Laplacian pyramid is similar to a

wavelet transform, and it allows us to represent properties of the mesh at di↵erent

scales. However, unlike the wavelet transform, a Laplacian pyramid is a redundant

representation of the mesh making it slightly less compact than wavelets. This will

turn out to be advantageous, because we will be able to assume that individual levels

within the pyramid are independent (e.g. the coe�cients at scale n are independent

of the coe�cients at level n+ 1), which greatly simplifies fusion and enables e�cient

recursive estimation.

Let us denote by B the base mesh that captures the coarsest geometry and let us

store it using a fixed grid of size nB⇥nB . We will use D to represent a “detail” mesh

that stores only the high-frequency details, not captured by the coarser mesh. As we

use an oversampling factor of 2, the size of D is (2nB � 1)⇥ (2nB � 1); in practice we

only need to store the details in subgrids, where they are required, which can help

reduce memory consumption. In our system, we allow up to 6 detail levels, Di for

i = 1 . . . 6, each with increased resolution compared to the previous level, that store

only the di↵erences between the higher resolution and the lower resolution meshes.

+ + +

Figure 7.2: Multi-scale mesh representation based on Laplacian pyramid.

151

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

As demonstrated in Fig. 7.2, starting with the coarsest mesh B = M0 we can

generate a sequence of meshes Mi at increasingly higher resolution, by adding detail

coe�cients:

Mi = B +
X

i

Di . (7.1)

Thus, during the rendering process, we perform an operation which is the inverse

of Laplacian decomposition, i.e. we assemble the mesh using the coarsest level, and

add the required details levels.

7.3.3 Tessellation and Vertex Assembly

Generation of a high resolution mesh from the base mesh B and detail coe�cients

Di requires two steps: tessellation and vertex assembly. During tessellation we

subdivide triangles in the base mesh to introduce new vertices, and during vertex

assembly we update the positions of newly introduced vertices. This is highly related

to the concept of Displacement Mapping, where an existing mesh is subdivided and

a displacement map (in our case detail coe�cients) is used to displace the vertices of

the subdivided mesh. Obviously this process can be repeated recursively, where a

newly generated mesh becomes the base mesh for the next level.

Fig. 7.3 shows the tessellation pattern that we can use to increase the resolution

of the mesh. We store the base and coe�cient meshes on regular grids, thus when

going from one level to another, we simply divide each edge of a triangle in half

by introducing new vertices and therefore split a triangle into 4 smaller ones. This

procedure can be repeated recursively, in total 6 times, and therefore with the base

geometry we can create, in total, 7 levels of detail (and achieve a 4096-fold resolution

increase).

During vertex assembly, Fig. 7.4, we first predict the position of a newly introduced

vertex by interpolating the coarser mesh (we use interpolation based on barycentric

coordinates, but many choices are available here, e.g. bilinear interpolation). Next,

we displace the vertex by adding a “detail” coe�cient from the finer resolution. The

vertex assembly is more resource consuming compared to using a precomputed mesh

at di↵erent resolutions, as it requires multiple memory accesses per vertex instead of

a single, direct look-up of a vertex value, but it greatly simplify the fusion algorithm

as we will see in Section 7.4.

152

7.3. Dynamic Level of Detail and Multi-scale Surface Representation

Figure 7.3: When subdiving a triangle, we use a regular tessellation pattern: left is
the base triangle, middle and right are two consecutive levels of detail, level 1 and 2,
where the triangle is respectively subdivided into 4 and 16 smaller triangles.

7.3.4 Rendering using Dynamic Level of Detail

Thus far we have described a technique that enables us to generate, on the fly,

surface representations at di↵erent resolutions. However, working with one global

resolution all the time might not be practical, for example, when the camera is

looking at the surface from far or at an oblique angle, and it typically results in

aliasing artifacts when the selected resolution is too high compared to the image

resolution. Dynamic LOD algorithms specifically address those issues by adapting the

complexity of a 3D object representation based on various criteria and requirements.

In our surface representation based on Laplacian pyramid decomposition, we can

assemble di↵erent parts of the mesh at di↵erent resolutions, and this is a requirement

for an implementation of a dynamic level of detail algorithm.

There are many di↵erent heuristics and techniques in computer graphics for

dynamically selecting level of detail; for example, one can use the distance between

the rendered object/triangle and camera. For the rendering of surface models and

height fields, one often selects the tessellation level based on the length of the edges

or area of the triangle.

Our dynamic level of detail algorithm selects the tessellation level for each triangle

individually and in such a way that all rendered triangles have approximately the

same size. In our implementation we utilise the tessellation unit of a modern rendering

pipeline and therefore process as follows: at the first stage we supply the current

estimate of the coarse mesh to the tessellation shader. Given the camera pose with

respect to the mesh, and camera intrinsics, each triangle in the coarsest mesh B
is projected onto the virtual camera plane and its area is calculated. A parameter

153

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

Tesselation level 0 Tesselation level 1 Tesselation level 2

Details 1 Details 2

Assembled mesh

+ +

Figure 7.4: An example of tessellation and vertex assembly. In the first step, we
introduce new vertices by subdiving triangles in the base mesh and subsequently,
update the positions of the vertices on the tessellated mesh using details coe�cients.
Note that the tessellation pattern shown here is slightly di↵erent from Fig. 7.3, but this
is an implementation detail: the tessellation shaders we utilise in our implementation
exhibit certain limitations in order to achieve the best performance and benefit from
hardware acceleration. Nonetheless, the resulting tessellation pattern is fixed and
regular and therefore we can still use all the mesh processing and reconstruction
machinery introduced so far.

controlling the LOD is the desired triangle area, which tells us how many times the

triangle should be divided, and the LOD is calculated using:

l = round

✓
log2

✓
[4B]

a

◆◆
, (7.2)

where [4B] indicates the on-screen area of the base triangle, and a is the desired

154

7.3. Dynamic Level of Detail and Multi-scale Surface Representation

(a) Coarse resolution: 2400 fps. (b) High resolution: 120 fps.

(c) Dynamic resolution: 1300 fps (here colour
indicates di↵erent LOD). There is no visual
di↵erence between high and dynamic resolu-
tion.

(d) Mesh generated by dynamic tessellation.

Figure 7.5: Rendering using di↵erent mesh resolutions: (a) coarse mesh, (frame-
rate approx. 2400 fps); (b) high resolution mesh, (120 fps); (c) rendering using
dynamic level of detail (di↵erent colour indicates di↵erent LOD). In figure (d) we
can clearly recognise how di↵erent parts of the mesh are generated using di↵erent
tessellation levels. In general, the closer a base triangle is to the camera, the higher
the tessellation level, and more details are added to the mesh.

area (we usually set it to 4 pixels). Once the tessellation level for a triangle has

been determined, it is subdivided by introducing new vertices, and subsequently the

assembly of vertex values of the newly generated geometry is performed based on the

Laplacian pyramid formulation described above. At this stage we can also discard

geometry that is clearly not visible in the current frame (e.g. is behind the camera)

to further improve performance and rendering rate.

155

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

Obviously, the proposed strategy is a simple heuristic and it does not guarantee

that the tessellated triangles will have the desired size, especially as during this phase

we do not take into account the vertex displacements coming from the “details”. Also,

we select a global tessellation for the whole triangle, which might not be optimal for

all areas of the triangle, especially when we are looking at the triangle from an oblique

angle. Furthermore, because we are selecting one global LOD per triangle, and not

per edge, sometimes neighbouring triangles can have di↵erent tessellation levels.

When two triangles sharing an edge have di↵erent tessellation levels, it can easily

result in visible cracks in the mesh. Cracks are quite undesirable for visualisation,

but they do not significantly a↵ect the fusion algorithm and are typically small. One

further limitation of our approach is the fact that the multi-scale representation

on a regular grid is usually suboptimal, i.e. the edges in the mesh are unlikely to

correspond to natural features of the surface. However, thanks to its simplicity, the

proposed method achieves extremely high rendering (and therefore prediction) rates

even for complex models. Fig. 7.5 shows the di↵erence between rendering rates for

the dynamic and static LOD models.

7.4 Multi-scale Surface Reconstruction

We will now describe our multi-scale fusion approach that combines Laplacian-based

surface decomposition, dynamic tessellation and level of detail as described in the

previous sections, together with the optimisation-based surface reconstruction of

Chapter 5 within a single framework.

The key assumption for our fusion method is that individual levels within the

Laplacian pyramid are independent of each other, and that they capture di↵erent

aspects of an observed “signal” (separate frequency bands). Rather than explicitly

estimating representations of the surface at di↵erent scales, we directly estimate

the coe�cients of the Laplacian pyramid. This means that we only maintain the

per-level normal equation, J>k Jk, J
>
k zk, and estimate the parameters within the level

by updating and solving it.

More specifically, given a current estimate of the surface model and camera pose,

we first perform dynamic level of detail rendering to tessellate each part of the mesh

up to the required resolution. We then proceed with fusion in a coarse-to-fine fashion.

Starting from the coarsest level a depth measurement is fused into all the levels

156

7.4. Multi-scale Surface Reconstruction

Figure 7.6: Rendering a scene that is dynamically tessellated using our level of detail
algorithm. Note how we add more triangles to the model, as we are getting closer to
the objects. Di↵erent colours indicate di↵erent levels of detail.

up to the selected finest one. Our Laplacian surface parameterisation assumes that

the levels are independent, and only contain the details/frequencies that were not

captured by the previous level. Thus, after a height measurement hi has been fused

into a level k, we first make a prediction of the height at this level, ĥki , and in the

157

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

subsequent level k + 1 we only fuse the residual between the predicted height and

the measured height:

rk+1
i = hi � ĥki . (7.3)

This is repeated recursively for each measurement, until the required level of detail

has been reached. Fig. 7.7 demonstrates our approach on an intuitive 2D example.

When calculating a residual that is fused into a subsequent level, we also have to

calculate its uncertainty. This is relatively straightforward: as we can see in Eq. (7.3)

the only transformation a measurement hi undergoes is a subtraction of a constant,

therefore following the rules of propagation of uncertainty it can be shown that the

uncertainty of rk+1
i is the same as the uncertainty of the height measurement hi

itself. Put simply, when propagating a measurement across levels, we can reuse the

measurement’s uncertainty.

Note that before we can calculate the residuals and fuse them into the next level,

we have to make sure that the optimisation has converged, i.e. that we have solved:

J
>
k Jkhk = J

>
k zk . (7.4)

In practice, we only proceed into the next resolution level after the vertices in the

preceding level have reached a certain stability. Here we simply look at the magnitude

of the diagonal entries of J>k Jk associated with a triangle, which are good proxies for

the stability, as they represent per-vertex sums of squared barycentric coordinates

from all the measurements thus far. This procedure locks the gauge freedom that

would be present if we solved for all heights at di↵erent resolutions simultaneously.

Although we used hk in Eq. (7.4) to denote a quantity we are estimating at each

pyramid level, only at the coarsest level of the mesh we actually estimate the height

values, and use directly height measurements, zk. In all subsequent “detail” levels, we

estimate the details coe�cients using the “residuals” calculated based on Eq. (7.3).

The assumption that pyramid levels are independent of each other allows us to

use all the machinery presented already in a straightforward manner, including the

principles of recursive estimation from Section 5.7 and the Gauss-Seidel algorithm

presented in Section 5.6.2. It is worth noting that the Gauss-Seidel algorithm is

well suited and very e�cient in solving the systems of linear equations associated

with the detail levels. Each detail level captures only a narrow spectrum of high

spatial frequencies compared to the grid dimension, and this is the typical setting

158

7.4. Multi-scale Surface Reconstruction

(a) We first fuse the measurements into a mesh at the coarsest resolution.

(b) Next, we activate the finer resolution (yellow dots), and calculate the “residuals”, i.e. the
di↵erence between the measurements and predictions from the coarse mesh.

(c) Subsequently, “details” coe�cients are estimated based only on the residuals, rk+1
i .

Figure 7.7: A simple 2D example that demonstrates our multi-scale surface recon-
struction method.

159

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

where “smoothers” and related relaxation methods like Gauss-Seidel are very e↵ective

[Trottenberg et al., 2001].

7.5 Implementation Details

To best demonstrate the capability of our method, in particular for obtaining high

quality, close-up reconstructions, we did not want to restrict experiments to the

typical robot set-up, but decided to test the algorithm in more general settings.

Since our fusion method assumes that the camera poses are given, this required a

full 6 degrees of freedom camera motion tracking. In our implementation we use

ORB-SLAM [Mur-Artal et al., 2015] with its standard settings, but other monocular

tracking systems are suitable as well, e.g. SVO [Forster et al., 2014] or LSD-SLAM

[Engel et al., 2014]. The robust performance of ORB-SLAM and drift-free poses

thanks to bundle-adjustment helped us in obtaining consistent reconstructions. We

also use the estimated depths of the features detected by ORB-SLAM in the current

frame to limit the disparity range searched during stereo matching.

The fusion method is implemented entirely on a GPU and benefits from the

hardware accelerated tessellation. The dynamic LOD rendering (Section 7.3.4) utilises

the tessellation units of a modern rendering pipeline. Programmable tessellation

unit were introduced in OpenGL 4.0, and consist of three stages: tessellation control

shader, the fixed-function stage of primitive generation, and a final stage of tessellation

evaluation. In our implementation, we supply the coarse mesh to the tessellation

control shader, which determines the level of detail for each triangle individually

using Eq. (7.2). Based on the output from the control shader, new vertices are

generated and the tessellation evaluation shader updates the final positions of the

vertices in the mesh. GPU-based tessellation greatly improves the performance and

simplicity of our implementation, because all the stages of rendering, including the

determination the LOD and vertex assembly, can now be performed fully on a GPU

in a single rendering pass/call without any CPU computations. Prior to that, a

significant amount of tessellation and computation of LOD were performed on a

CPU, resulting in complex interplays between GPU and CPU, and were limited

by the CPU/GPU memory bottleneck, whereas now a simple tessellation can be

implemented in about 120 lines of code1. All remaining computations involving

fusion and the solver were implemented in CUDA, and whenever data has to be

1http://codeflow.org/entries/2010/nov/07/opengl-4-tessellation/

160

7.6. Experiments

shared between CUDA and OpenGL we use the OpenGL / CUDA interoperability

feature of the NVIDIA graphics card. Our implementation (including tracking and

depth estimation) achieves real-time performance of 20–25 frames per second on a

GTX 680 (most of the time is spent on tracking and depth estimation).

7.6 Experiments

We run a series of experiments on both synthetic and real datasets to demonstrate the

practicality and evaluate the performance of our method. We present comparisons

with MVE [Fuhrmann et al., 2014], a state-of-the-art o↵-line, batch-optimisation type

method for multi-scale reconstruction, as well as a real-time, point-based method

[Whelan et al., 2015] based on the algorithm proposed by [Keller et al., 2013]. We

show that our framework can achieve high quality detailed reconstructions but at a

run time comparable with Point-based Fusion.

7.6.1 Synthetic Data

The first experiment demonstrates the correctness of our incremental reconstruction

method using synthetic data. Fig. 7.8 shows the results of reconstructing a moon-like

surface together with surface error obtained using CloudCompare. As a benchmark,

we compare the results with an o↵-line method, MVE [Fuhrmann et al., 2014], which

performs global optimisation and considers all images at once. As we can see in

Fig. 7.8, our method is capable of obtaining a good quality and correct surface

reconstruction while being significantly faster. We should however state here, that

the measured timings of the discussed algorithms are not fully compatible as we used

di↵erent implementations and computational platforms. Whereas our approach was

mainly implemented on a GPU (NVIDIA GTX980), MVE is purely CPU-based and

in our experiment we used high-end Intel CPU (i7-5930K). This is still in-line with

the motivation of our work and highlights the benefits of designing and implementing

SLAM algorithms on highly parallel processors.

7.6.2 Real-time Reconstruction

Fig. 7.9 visualises the process of real-time reconstruction of a desk-like environ-

ment performed with our method (full video is available at https://youtu.be/UB_

HDJU6LL4). As the camera is browsing the scene, we can first capture the overall

geometry of the scene at a reasonable accuracy. The advantage of our monocular

161

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

Ground truth

ProposedMVE
Error

Figure 7.8: Reconstruction of a synthetic moon surface. Left: Ground truth; Middle:
Multi-View-Environment (MVE) [Fuhrmann et al., 2014]; Right: Our method. The
heat maps below show reconstruction error. Our method achieves reconstruction
quality comparable with the batch optimisation method, while running significantly
faster (Table 7.1).

Run time Avg. error Std. deviation

Proposed 39 sec. 0.0057 0.034%
MVE 47 min. 0.0037 0.015%

Table 7.1: Run time and reconstruction accuracy of our method compared to the
o↵-line, batch optimisation method (MVE [Fuhrmann et al., 2014]). As expected, the
batch optimisation performs better, however, we achieve comparable performance
while running our algorithm significantly faster. Note the di↵erent computational
platforms used in this experiment: our approach was implemented on a GPU
(NVIDIA GTX980), whereas MVE is purely CPU-based and we used high-end Intel
CPU (i7-5930K).

approach becomes apparent as we start moving the camera closer to objects. Even

during significant close-ups we are able to obtain good quality depth maps, and our

surface model can automatically adapt its resolution in order to capture small details.

Figs. 7.10 and 7.11 present a few highlights of the approach, where within the same

framework we can obtain a reconstruction of the whole surface as well as of tiny

objects, including coins and paper clips, or even elements on a circuit board.

162

7.6. Experiments

Figure 7.9: An example of real-time reconstruction. Starting from the top left
corner: as the camera browses a scene, we first build a model at a relatively
course resolution. Next we focus on a small part of the scene to recover details
on a circuit board. Subsequently we move the camera to another part of the
model where we capture details like coins and a safety pin. Full video available at:
https://youtu.be/UB_HDJU6LL4. 163

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

Figure 7.10: Our method e�ciently reconstructs a surface model and is capable of
creating reconstructions with high quality details. Note that we can even partially
recover the very fine texture of a fabric or some details on the coins.

164

7.6. Experiments

Figure 7.11: Another example of very close-up reconstructions that we are able to
obtain using our monocular multi-view stereo pipeline and depth map fusion into
the multi-resolution surface model.

165

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

Figure 7.12: In our method we can provide a user with a direct feedback about the
quality of reconstruction during the scanning process. Here, di↵erent colours represent
the resolution that the surface element has been reconstructed to (yellow = high,
blue = low). A user can then focus on the areas that need more detail.

An additional advantage of our approach is that it can provide a user with direct

feedback about reconstruction quality. In Fig. 7.12 di↵erent colours indicate the

reconstructed level of detail for every element of the scene. Yellow means that

this part of the scene has been captured with a high level of detail, whereas blue

represents only the coarsest geometry. In this case, in order to store the model using

our adaptive resolution representation, we only need 5.3% of the memory compared

to using the full, high resolution mesh.

7.6.3 Comparison against Point-based Fusion

Fig. 7.13 presents additional results and compares our method with the model

obtained using Point-based Fusion [Keller et al., 2013], a general real-time recon-

struction framework that represents a scene using a set of unordered surfels. For

this comparison in both cases we used ORB-SLAM for tracking and our depth

estimation method. At the overall scale we obtain qualitatively good results using

both approaches, but Point-based Fusion tends to over-smooth the model and cannot

166

7.6. Experiments

Figure 7.13: Comparison of our proposed method (bottom row) against Point-based
Fusion (top row).

correctly handle the significant changes in scale. On the other hand, our method is

capable of capturing the overall structure of the scene (although it struggles with

sharp vertical edges and cannot handle overhangs properly) while being able to

reconstruct tiny details including elements on a circuit board. As shown in Table 7.2

the processing times of the two algorithms are comparable.

7.6.4 Multi-scale Height Map for a Mobile Robot

The multi-scale surface representation and fusion can immediately be used for an

environment mapping and representation for a mobile robot, and Fig. 7.14 shows

167

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

Multi-scale Fusion (proposed) Point-based Fusion

Processing time 8.9 ms (111 fps) 11.1 ms (90 fps)

Table 7.2: Comparison of run times for our Multi-scale Fusion approach and the
method based on the Point-based Fusion [Keller et al., 2013]. For both of the
algorithms, we used exactly the same camera tracking and depth estimation methods,
and only utilised di↵erent fusion backends. Both algorithms were run on an NVIDIA
GPU GTX980.

Figure 7.14: Multi-scale fusion is well suited to height mapping from an obliquely
angled camera. Top row: a typical input image and depth map. Bottom row:
reconstructed scene and the tessellation used for the current frame.

an example of results obtained in a typical set-up we considered in this thesis. As

the camera is fixed on the robot, we cannot obtain close-up reconstructions, but the

multi-resolution is particularly advantageous for oblique camera angles. It allows us

to use high resolution directly in front of the robot and low resolution towards the

horizon, and therefore achieve higher performance and better scalability compared

to a fixed resolution mesh.

168

7.7. Conclusions

Figure 7.15: Face reconstruction.

7.6.5 Additional Experiments

By using a predefined mesh for depth map fusion our method can be extended

to enable easy and robust reconstruction of some common and more general 3D

structures (e.g. face scanning). In particular, in 3D printing applications using a

predefined mesh can be beneficial, as it helps to handle missing data and guarantees

that the final model does not contain holes. In fact, a mesh created with our method

is directly printable without any additional processing. Fig. 7.15 shows an example

of a real face reconstructed using our algorithm.

7.7 Conclusions

In this chapter we have shown how the concept of dynamic level of detail can be used

to extend our incremental surface reconstruction framework to handle scenes with

multiple scales. Using predictive rendering and on the fly geometry tessellation we

adaptively select the best resolution of the model and fuse measurements in an e�cient

multi-scale mesh representation. We explicitly harness the unique characteristics of

a monocular, multi-view stereo pipeline to estimate depth maps at di↵erent scales

169

7. Multi-scale Surface Reconstruction using Dynamic Level of Detail

and demonstrate the ability of our system to reconstruct details down to fractions of

a millimetre. Our system runs in real-time and achieves high quality reconstructions

comparable with much slower o↵-line methods. In particular, the real-time feedback

that our approach can provide to a user can ease the reconstruction process and

improve results in many cases.

An obvious limitation of our approach lies in the use of a height map to model a

surface. However, we demonstrated that this representation is not only restricted to

use in mobile robotics, but can also be applied to other applications, for example

face scanning. In the future it might be possible to extend the framework to more

general 3D settings and developing a flexible multi-scale fusion method.

Our level of detail technique is relatively simple to implement and very e�cient

thanks to hardware acceleration in modern GPUs, as well as regular grid structure.

However, a fixed topology mesh and the generated tessellation patterns are rarely

optimal and do not correspond well to the physical features and geometries of a

reconstructed scene. In fact, in our methods we often keep adding vertices into the

model, even though they are not required. An interesting improvement could allow

an adaptive mesh refinement based on data and quality of reconstruction that also

takes into account the complexity of the geometry. Ideally, we would like to represent

flat but textured regions with a small number of large coarse triangles but a high

resolution texture.

The presented method can be used as is for height mapping using the mobile

robot considered in this thesis, but we can also imagine several modifications and

improvements for this particular scenario. Among other things one could design

di↵erent metrics for selecting a level of detail, for example, simply based on the

distance from the robot, i.e. use high resolution in the direct vicinity of the robot

(e.g. first 20 cm), medium resolution at an intermediate distance (e.g. 20 to 50 cm),

and for everything beyond that, use a default, coarse resolution. Such a robot-centric,

and distance-dependent map could move together with the robot, and would allow

us to maintain a coarse map at a large scale, and at the same time provide very

detailed local perception.

170

Chapter 8

Conclusions

8.1 Contributions

We have demonstrated a parallelisable vision approach to mobile robot perception

that o↵ers a promising route to truly usable real-time monocular dense SLAM system.

Starting from a standard 3D reconstruction pipeline that separates camera tracking,

depth estimation and environment mapping we presented a complete system that

allows a mobile robot to estimate its ego-motion and build in real-time a detailed,

dense map of its environment from a single, monocular camera. By taking a more

constrained, application-driven approach and using domain knowledge, our algorithms

achieve simplicity, e�ciency and robustness, and produce output that is directly

suitable for local navigation and obstacle detection.

When designing our system, we put great emphasis on algorithms that can be

e�ciently implemented on parallel architectures. This quite naturally led to dense

computer vision methods that aim at directly using information collected from

all pixels in an image, and can also produce dense reconstructions immediately

usable for a mobile robot. In our implementations we did not restrict ourselves to

general purpose parallel computing frameworks such as CUDA, but also utilised

the elements of a modern rendering pipeline, including the tessellation shaders of

OpenGL, to aid the 3D reconstruction process and benefit from hardware acceleration.

Our work demonstrated that many well-established concepts and techniques from

computer graphics (e.g. the concept of dynamic level of detail) can be used to improve

performance and address many limitations of existing computer vision algorithms.

The presented parallel algorithms also o↵er excellent scalability in terms of the

171

8. Conclusions

resolution of input images and environment representation. Our methods operate

very comfortably in real-time on a modern PC with GPU, but can also be ported to

CPU and give very good prospects for e�cient use on embedded parallel processing

units in the near future.

As we have already stated, we have proposed an architecture for a dense perception

system for a mobile robot based only on a standard, monocular camera. The system

is designed to be self-contained, and we explicitly aimed at equipping the robot with

all the necessary capabilities for local perception and motion estimation using only a

single camera. In particular, in Chapter 3 we showed how a direct image alignment

technique derived from the Lucas-Kanade method, together with certain assumptions

about the robot motion and its environment, can be used for accurate ego-motion

estimation and to augment or even replace standard wheel odometry. The approach

from Chapter 4 can greatly facilitate deployment of our computer vision system

by providing robust and infrastructure-free extrinsics auto-calibration. In order to

calculate the camera orientation on the robot, we extended the parameterisation of a

dense image alignment framework to include the roll and pitch angles of the camera

and estimated them jointly with inter-frame planar robot motion. The second part of

the calibration procedure is more general and can be used to estimate the extrinsics

parameters of any sensor capable of estimation of its incremental motion, e.g. a laser

range finder. The proposed methods, in particular the auto-calibration method based

on nonholonomic motion assumptions, can be used as light-weight recalibration and

fault detection mechanisms for a wide range of wheeled mobile robots.

Visual odometry is an integral part of a monocular SLAM system for a mobile

robot, but precise camera tracking is also a prerequisite for a monocular depth

map estimation. In the preliminary chapter, Chapter 2, we presented a multi-view

stereo approach that allows us to estimate dense depth maps in real-time, in various

settings and at di↵erent scales. By utilising the concept of cost volume filtering, we

could avoid the computational complexity imposed by variational and optimisation

approaches, while still producing useful and robust results.

Camera poses, input frames and depth maps are the inputs to our mapping

module. Our core representation for the robot’s environment is a simple height map,

typically modelled using a triangular mesh, and throughout Chapters 5 to 7 we

present di↵erent extensions and algorithms for height map estimation. In general,

height mapping is formulated as a recursive, least squares 2.5D surface reconstruction

172

8.2. Discussion and Future Research

problem from stream of depth maps, and every time a new frame is fused we are

solving an optimisation problem. Thanks to a carefully chosen fixed topology of

the mesh, and a very e�cient, parallel iterative solver based on the Gauss-Seidel

algorithm (presented in Chapter 5), we can perform real-time estimation even on

large scale problems.

Using a generative model of the image and depth map formation process and

e�cient di↵erentiable rendering, in Chapter 6 we derived a novel, rigorous incremental

probabilistic approach to depth map and image fusion. In this method reconstruction

is formulated as a recursive nonlinear optimisation problem, where as each new frame

arrives we compare it with a generative rendering of our current surface estimate

and make an appropriate Bayesian update. We demonstrated that this approach can

be used in real-time to create a dense surface model immediately usable for online

robot path planning.

A particular highlight of this thesis is the multi-scale surface reconstruction method

from Chapter 7, where we use predictive rendering and the concept of level of detail

to dynamically select the best resolution of the model, and subsequently fuse the

depth and colour measurements into an adaptively tessellated triangular mesh.

Consistent, probabilistically-sound and principled fusion is enabled by using an

implicit, highly scalable, multi-resolution surface representation based on a Laplacian

pyramid. We demonstrate that this method is capable of obtaining high quality,

close-up reconstruction at the level of sub-millimetres, and directly harnesses the

unique capability of a monocular multi-view stereo pipeline to estimate the geometry

of an observed scene at significantly di↵erent scales. By directly utilising tessellation

shaders, the method is memory and computationally e�cient, and can be easily and

entirely implemented on a GPU.

8.2 Discussion and Future Research

The approaches presented in this thesis o↵er great promise for simple monocular

sensing which can e�ciently and robustly capture comprehensive information about

free space and obstacles. In particular, the ability to accurately map even small

objects and obstacles, which are invisible to many other sensors, could be beneficial

to small robots like robotic vacuum cleaners. There is great room for potential further

development and with additional engineering e↵ort, system robustness and run time

173

8. Conclusions

can be significantly improved. An obvious extension of the method that could help to

reduce motion drift is to integrate camera tracking far more closely into the overall

reconstruction framework and perform motion estimation directly with respect to

the reconstructed model using dense image alignment. It should be also relatively

straightforward to extend the auto-calibration approach and by incorporating it

into a generative approach, jointly estimate camera intrinsics and other e↵ects such

as lens distortions and vignetting. As recently shown in [Engel et al., 2016], by

appropriate modelling of the image formation process and by including parameters

that a↵ect it (e.g. camera gain) into estimation, one can greatly increase the accuracy

of direct approaches.

Our method can at the moment provide a robot with only accurate local perception.

In the future we would be interested to extending the method and building a full

SLAM system that can provide consistent large scale reconstructions by incorporating

place recognition and support for loop closures. There are many possibilities in which

this can be achieved; for example, one could represent the environment as a collection

of small, local height maps that can be aligned or deformed into a globally consistent

model. Our probabilistic formulation should enable relatively straightforward fusion

of multiple sub-maps into a consistent representation.

We demonstrated that a simple height map model can be a very useful dense

representation of a robot’s environment. In particular, when modelled as a triangular

mesh, height maps are very flexible and allow for many extensions. Our study of

surface reconstruction also emphasises the importance of choosing the right paramet-

erisation of the problem. The three di↵erent data association strategies we considered

when fusing a depth map into a height field resulted in dramatically di↵erent com-

plexity of the associated optimisation problem: from a simple averaging when one

models a height map as a collection of independent vertices, to an iterative nonlinear

optimisation in the case of a generative and di↵erentiable rendering approach.

Our multi-resolution approach to surface reconstruction is a good example of how

existing techniques from computer graphics can be very beneficial and adopted to

e�ciently solve many computer vision problems. In particular, we are interested in

extending the dynamic level of detail concept and multi-resolution fusion into more

general 3D representations. We believe that reconstruction directly into a triangular

mesh can be a viable option in many circumstances, and is not restricted to height

map models. Obviously, working directly with unconstrained and general triangular

174

8.2. Discussion and Future Research

meshes brings with it many non-trivial challenges and complications but also o↵ers

interesting avenues for future research.

However, even in its current form, there is great scope for extension of multi-

resolution fusion. The level of detail is at the moment only determined based on the

expected size of a projected triangle, and the fixed topology and tessellation patterns

are rarely optimal, and do not correspond to natural features in the reconstructed

scene. Furthermore, our approach often adds geometry where it is not really required.

To address this limitation, one could implement certain principles of adaptive mesh

refinement techniques. In adaptive mesh refinement one typically starts by solving

a problem on a base coarse mesh, and recursively adding more resolution locally,

only where it is really needed. The regions that require refinement are identified by

monitoring some parameters that characterise the solution. In our case we could

develop measures of “goodness-of-fit” and, based on these, adaptively refine and split

triangles in the mesh.

In this thesis we followed a passive, monocular approach to robot perception, and

demonstrated that indeed we can develop a scalable system that can achieve both

accuracy and e�ciency. Of course the question remains of whether this is the right

and the best approach. In the particular application area of low-cost robotics this is

clearly a promising and viable option, but the exact answer to this question depends

on many factors such as performance and computational requirements, as well as

cost and overall power consumption. Obviously, passive SLAM approaches have

many advantages as demonstrated in this work and they o↵er interesting scalability

and optimisation potential, especially with respect to camera frame-rate and image

resolution; however there are also other factors that need to be considered. As

small, dual camera modules are becoming increasingly popular in smartphones,

adding an additional camera to a robotic platform can potentially increase a system’s

capabilities and robustness without significantly a↵ecting the cost and computational

requirements. Equipping a robot with an active depth sensor, although it will increase

the cost and power consumption on the imaging side, could still be beneficial when

considering the overall energy budget of sensing and computing, as with an active

depth sensor one does not have to allocate computational resources to multi-view

stereo estimation, and with depth maps camera tracking becomes much easier. A

great strength of the approaches presented in this thesis is that, with minimal or

no modification, they can be used in conjunction with input from stereo and depth

175

8. Conclusions

cameras. A particularly promising opportunity for future work is to explore the

possibility of combining passive, monocular approaches with other sensing modalities.

For example, by running temporal multi-view stereo one can enhance and augment

the output from a standard active or passive stereo system. This would allow us

to eliminate many drawbacks of passive and active stereo sensors as well as depth

cameras, for example restrictions on sensing range or resolution, but at the same time

would address certain limitations of monocular, passive vision such as the inability

to estimate depth maps in dynamic scenes or to work in darkness. These sensing

approaches are complementary and when fused properly can enable very robust and

accurate vision systems. Furthermore, multi-sensor fusion can also result in very

power e�cient solutions, where one adaptively selects the best sensing modality to

manage the computational and energy budget for current environmental settings and

requirements.

This thesis would not be complete without at least a short reference to deep learning.

In our work we have followed a geometric approach to robot perception, where the

main objective was to accurately reconstruct a robot’s environment, and subsequently

use it in robot navigation and as a basis for performing some high-level tasks. With

an ever increasing number of methods that try to use deep and reinforcement learning

to design an end-to-end system, which goes straight from raw image observations into

actions, one can challenge the importance of traditional SLAM methods. Clearly, we

anticipate that a wide range of machine learning approaches will play a key role in

providing full autonomy to robotic systems, but at the same time we expect that

many well-known and established techniques from SLAM will continue to be relevant

and, in fact, will be essential for providing consistent and e�cient behaviours. We

hope that deep learning will be useful in addressing the limitations of current visual

SLAM systems and will truly increase their robustness.

176

Bibliography

Bibliography

Adams, H., Singh, S., and Strelow, D. (2002). An empirical comparison of methods

for image-based motion estimation. In Proceedings of the IEEE/RSJ Conference

on Intelligent Robots and Systems (IROS).

Agarwal, S., Snavely, N., Seitz, S. M., and Szeliski, R. (2010). Bundle Adjustment

in the Large. In Proceedings of the European Conference on Computer Vision

(ECCV).

Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., and Szeliski, R. (2009). Building

Rome in a Day. In Proceedings of the International Conference on Computer

Vision (ICCV). 10

Antonelli, G., Caccavale, F., Grossi, F., and Marino, A. (2010). Simultaneous

calibration of odometry and camera for a di↵erential drive mobile robot. In

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA).

Ashraf, A. B., Lucey, S., and Chen, T. (2010). Fast image alignment in the Fourier

domain. In CVPR.

Baker, S. and Matthews, I. (2004). Lucas-Kanade 20 years on: A unifying framework:

Part 1. International Journal of Computer Vision (IJCV), 56(3):221–255.

Bao, S. Y., Lin, Y., and Savarese, S. (2013). Dense Object Reconstruction with

Semantic Priors. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 13

177

Bibliography

Bares, J., Hebert, M., Kanade, T., Krotkov, E., Mitchell, T., Simmons, R., and

Whittaker, W. R. L. (1989). Ambler: An Autonomous Rover for Planetary

Exploration. IEEE Computer, 22(6):18–26. 9, 93

Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. (2009). PatchMatch: a

randomized correspondence algorithm for structural image editing. In Proceedings

of SIGGRAPH.

Benhimane, S. and Malis, E. (2004). Real-Time Image-Based Tracking of planes using

E�cient Second-order Minimization. In Proceedings of the IEEE/RSJ Conference

on Intelligent Robots and Systems (IROS).

Bhatti, S., Desmaison, A., Miksik, O., Nardelli, N., Siddharth, N., and Torr, P. H. S.

(2016). Playing doom with slam-augmented deep reinforcement learning. arXiv

preprint 1612.00380, abs/1612.00380. 13

Bibby, C. and Reid, I. (2008). Robust Real-Time Visual Tracking using Pixel-

Wise Posteriors. In Proceedings of the European Conference on Computer Vision

(ECCV).

Bleyer, M., Rhemann, C., and Rother, C. (2011a). PatchMatch Stereo — Stereo

Matching with Slanted Support Windows. In Proceedings of the British Machine

Vision Conference (BMVC).

Bleyer, M., Rother, C., Kohli, P., Scharstein, D., and Sinha, S. (2011b). Object

Stereo - Joint Stereo Matching and Object Segmentation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

3081–3088. 13

Brookshire, J. and Teller, S. (2011). Automatic Calibration of Multiple Coplanar

Sensors. In Proceedings of Robotics: Science and Systems (RSS).

Burt, P. and Adelson, E. (1983). The Laplacian Pyramid as a Compact Image Code.

IEEE Transactions on Communications, 31(4):532–540.

Bylow, E., Sturm, J., Kerl, C., Kahl, F., and Cremers, D. (2013). Real-time camera

tracking and 3d reconstruction using signed distance functions. In Proceedings of

Robotics: Science and Systems (RSS). 12

Campbell, J., Sukthankar, R., Nourbakhsh, I., and Pahwa, A. (2005). A Robust

Visual Odometry and Precipice Detection System Using Consumergrade Monocular

178

Bibliography

Vision. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA).

Censi, A., Marchionni, L., and Oriolo, G. (2008). Simultaneous Maximum-Likelihood

Calibration of Odometry and Sensor Parameters. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA).

Cernuschi-Frias, B., Belhumeur, P. N., and Cooper, D. B. (1986). 3-D object position

estimation and recognition based on parameterized surfaces and multiple views.

In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA).

Cernuschi-Frias, B., Cooper, D. B., Hung, Y.-P., and Belhumeur, P. N. (1989). Toward

a model-based Bayesian theory for estimating and recognizing parameterized 3-D

objects using two or more images taken from di↵erent positions. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 11(10):1028–1052.

Cheeseman, P., Kanefsky, B., Kraft, R., Stutz, J., and Hanson, R. (1996). Super-

Resolved Surface Reconstruction from Multiple Images. In Maximum Entropy and

Bayesian Methods, volume 62, pages 293–308. Springer Netherlands.

Chen, J., Bautembach, D., and Izadi, S. (2013). Scalable real-time volumetric surface

reconstruction. In Proceedings of SIGGRAPH.

Comport, A. I., Malis, E., and Rives, P. (2007). Accurate Quadri-focal Tracking for

Robust 3D Visual Odometry. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA).

Curless, B. and Levoy, M. (1996). A volumetric method for building complex models

from range images. In Proceedings of SIGGRAPH.

Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S., and Bradski, G. (2006). Self-

supervised monocular road detection in desert terrain. In Proceedings of Robotics:

Science and Systems (RSS). 10, 47, 90, 91

Davison, A. J. (2003). Real-Time Simultaneous Localisation and Mapping with

a Single Camera. In Proceedings of the International Conference on Computer

Vision (ICCV). 7, 11, 36

179

Bibliography

de La Gorce, M., Paragios, N., and Fleet, D. J. (2008). Model-based hand tracking

with texture, shading and self-occlusions. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

Delaunoy, A. and Prados, E. (2011). Gradient flows for optimizing triangular mesh-

based surfaces: Applications to 3D reconstruction problems dealing with visibility.

International Journal of Computer Vision (IJCV), 95(2):100–123.

Delaunoy, A., Prados, E., Gargallo, P., Pons, J.-P., and Sturm, P. (2008). Minimizing

the Multi-view Stereo Reprojection Error for Triangular Surface Meshes. In

Proceedings of the British Machine Vision Conference (BMVC).

Duchaineau, M., Wolinsky, M., Sigeti, D., Miller, M., Aldrich, C., and Mineev-

Weinstein, M. (1997). ROAMing Terrain: Real-time Optimally Adapting Meshes.

In IEEE Conference on Visualization.

Durrant-Whyte, H. F. (1994). Where am I? A Tutorial on Mobile Vehicle Localization.

Industrial Robot, 21(2):11–16. 9

Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle,

W. (1995). Multiresolution Analysis of Arbitrary Meshes. In Proceedings of

SIGGRAPH.

Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth Map Prediction from a

Single Image using a Multi-Scale Deep Network. In Neural Information Processing

Systems (NIPS). 10, 24

Elfes, A. (1987). Sonar-based real-world mapping and navigation. IEEE Journal of

Robotics and Automation, 3(3):249–265. 9, 89

Engel, J., Koltun, V., and Cremers, D. (2016). Direct Sparse Odometry. arXiv

preprint 1607.02565. 7, 174

Engel, J., Schoeps, T., and Cremers, D. (2014). LSD-SLAM: Large-scale direct

monocular SLAM. In Proceedings of the European Conference on Computer Vision

(ECCV). 12, 45, 91, 160

Engel, J., Sturm, J., and Cremers, D. (2013). Semi-dense visual odometry for a

monocular camera. In Proceedings of the International Conference on Computer

Vision (ICCV). 8, 12, 28, 29, 36

180

Bibliography

Fankhauser, P., Bloesch, M., Gehring, C., Hutter, M., and Siegwart, R. (2014).

Robot-Centric Elevation Mapping with Uncertainty Estimates. In Proceedings of

the International Conference on Climbing and Walking Robots (CLAWAR).

Faugeras, O. D. and Lustman, F. (1988). Motion and Structure From Motion in a

Piecewise Planar Environment. International Journal of Pattern Recognition in

Artificial Intelligence, 2(3):485–508.

Fitzgibbon, A. W., Cross, G., and Zisserman, A. (1998). Automatic 3D Model Con-

struction for Turn-Table Sequences. In Proceedings of the Workshop on Structure

from Multiple Images of Large Scale Environments (SMILE), in conjunction with

ECCV. 10

Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). SVO: Fast Semi-Direct Monocular

Visual Odometry. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). 8, 11, 36, 160

Forster, C., Zhang, Z., Gassner, M., Werlberger, M., and Scaramuzza, D. (2016).

SVO : Semi-Direct Visual Odometry for Monocular and Multi-Camera Systems.

IEEE Transactions on Robotics (T-RO). 7

Fossati, A. and Fua, P. (2008). Linking pose and motion. In Proceedings of the

European Conference on Computer Vision (ECCV).

Frahm, J.-M., Georgel, P. F., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen,

Y., Dunn, E., Clipp, B., and Lazebnik, S. (2010). Building Rome on a Cloudless

Day. In Proceedings of the European Conference on Computer Vision (ECCV). 10

Fuhrmann, S. and Goesele, M. (2011). Fusion of depth maps with multiple scales. In

SIGGRAPH Asia.

Fuhrmann, S. and Goesele, M. (2014). Floating Scale Surface Reconstruction. In

Proceedings of SIGGRAPH.

Fuhrmann, S., Langguth, F., and Goesele, M. (2014). MVE — A Multi-View

Reconstruction Environment. In EUROGRAPHICS Workshops on Graphics and

Cultural Heritage. 11, 20, 161, 162

Furgale, P., Barfoot, T. D., and Sibley, G. (2012). Continuous-time batch estimation

using temporal basis functions. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA).

181

Bibliography

Furukawa, Y. and Ponce, J. (2007). Accurate, Dense, and Robust Multi-View

Stereopsis. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 11

Gallup, D., Frahm, J.-M., Pollefeys, M., and Zuerich, E. (2010a). A Heightmap Model

for E�cient 3D Reconstruction from Street-Level Video. In Proceedings of the

International Symposium on 3D Data Processing, Visualization and Transmission

(3DPVT).

Gallup, D., Pollefeys, M., and Frahm, J. M. (2010b). 3D reconstruction using an n-

layer heightmap. In Proceedings of the DAGM Symposium on Pattern Recognition.

Gargallo, P., Prados, E., and Sturm, P. (2007). Minimizing the reprojection error in

surface reconstruction from images. In Proceedings of the International Conference

on Computer Vision (ICCV).

Goesele, M., Snavely, N., Curless, B., Hoppe, H., and Seitz, S. M. (2007). Multi-View

Stereo for Community Photo Collections. In Proceedings of the International

Conference on Computer Vision (ICCV). 11

Graber, G., Pock, T., and Bischof, H. (2011). Online 3D reconstruction using convex

optimization. In Workshop on Live Dense Reconstruction from Moving Cameras

at ICCV. 12

Guskov, I., Sweldens, W., and Schröder, P. (1999). Multiresolution Signal Processing

for Meshes. In Proceedings of SIGGRAPH.

Hadsell, R., Sermanet, P., Ben, J., Erkan, A., Sco�er, M., Kavukcuoglu, K., Muller,

U., and LeCun, Y. (2009). Learning long-range vision for autonomous o↵-road

driving. Journal of Field Robotics (JFR), 26(2):120–144. 13, 47, 91

Handa, A. (2013). Analysing High Frame-Rate Camera Tracking. PhD thesis,

Imperial College London.

Handa, A., Newcombe, R. A., Angeli, A., and Davison, A. J. (2012). Real-Time

Camera Tracking: When is High Frame-Rate Best? In Proceedings of the European

Conference on Computer Vision (ECCV). 5

Häne, C., Zach, C., Lim, J., Ranganathan, A., and Pollefeys, M. (2011). Stereo depth

map fusion for robot navigation. In Proceedings of the IEEE/RSJ Conference on

Intelligent Robots and Systems (IROS).

182

Bibliography

Harris, M. (2008). Optimizing Parallel Reduction in CUDA. http:

//developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/

projects/reduction/doc/reduction.pdf.

Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision.

Cambridge University Press, second edition.

He, K., Sun, J., and Tang, X. (2010). Guided Image Filtering. In Proceedings of the

European Conference on Computer Vision (ECCV).

Heise, P., Klose, S., Jensen, B., and Knoll, A. (2013). PM-Huber: PatchMatch with

Huber Regularization for Stereo Matching. In Proceedings of the International

Conference on Computer Vision (ICCV).

Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2010). RGB-D Map-

ping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments. In

Proceedings of the International Symposium on Experimental Robotics (ISER). 12

Herbert, M., Caillas, C., Krotkov, E., Kweon, I., and Kanade, T. (1989). Terrain

mapping for a roving planetary explorer. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA).

Hernández, C. and Schmitt, F. (2004). Silhouette and stereo fusion for 3D object

modeling. Computer Vision and Image Understanding (CVIU), 96(3):367–392. 10

Hirschmüller, H. (2005). Accurate and E�cient Stereo Processing by Semi-Global

Matching and Mutual Information. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

Hirschmüller, H. (2007). Evaluation of Cost Functions for Stereo Matching. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual

information. PAMI, 30(2):328–341.

Hoiem, D., Efros, A. A., and Hebert, M. (2005). Geometric context from a single

image. In Proceedings of the International Conference on Computer Vision (ICCV).

10

183

Bibliography

Hoiem, D., Efros, A. A., and Hebert, M. (2008). Putting Objects in Perspective.

International Journal of Computer Vision (IJCV), 80(1):3–15. 10

Hoppe, H. (1996). Progressive Meshes. In Proceedings of SIGGRAPH.

Hoppe, H. (1997). View-Dependent Refinement of Progressive Meshes. In Proceedings

of SIGGRAPH.

Hoppe, H. (1998). Smooth view-dependent level-of-detail control and its application

to terrain rendering. In IEEE Conference on Visualization.

Hung, Y.-P. and Cooper, D. B. (1990). Maximum a-posteriori probability 3-D surface

reconstruction using multiple intensity images directly. In Proceedings of SPIE,

volume 1260.

Hung, Y.-P., Cooper, D. B., and Cernuschi-Frias, B. (1988). Bayesian estimation of

3D surfaces from a sequence of images. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA).

Hung, Y.-P., Cooper, D. B., and Cernuschi-Frias, B. (1991). Asymptotic Bayesian

surface estimation using an image sequence. IJCV, 6(2):105–132.

Irani, M. and Anandan, P. (1999). All About Direct Methods. In Proceedings of the

International Workshop on Vision Algorithms, in association with ICCV. 6

Jalobeanu, A. (2004). Bayesian Vision for Shape Recovery. In International Workshop

on Bayesian Inference and Maximum Entropy Methods in Science and Engineering.

Jalobeanu, A., Kuehnel, F. O., and Stutz, J. C. (2004). Modeling Images of Natural

3D Surfaces: Overview and Potential Applications. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Workshop (CVPRW).

Kähler, O., Prisacariu, V., Valentin, J., and Murray, D. (2016). Hierarchical Voxel

Block Hashing for E�cient Integration of Depth Images. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA).

Kahler, O., Prisacariu, V. A., Ren, C. Y., Sun, X., Torr, P. H. S., and Murray, D. W.

(2015). Very High Frame Rate Volumetric Integration of Depth Images on Mobile

Device. In Proceedings of the International Symposium on Mixed and Augmented

Reality (ISMAR). 12, 92

184

Bibliography

Kazhdan, M. and Hoppe, H. (2013). Screened poisson surface reconstruction. ACM

Transactions on Graphics. 11

Keller, M., Lefloch, D., Lambers, M., Izadi, S., Weyrich, T., and Kolb, A. (2013).

Real-time 3D Reconstruction in Dynamic Scenes using Point-based Fusion. In

Proc. of Joint 3DIM/3DPVT Conference (3DV). 12, 92, 161, 166, 168

Kerl, C., Sturm, J., and Cremers, D. (2013). Dense visual SLAM for RGB-D cameras.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems

(IROS). 8

Kitt, B., Rehder, J., Chambers, A., Schonbein, M., Lategahn, H., and Singh, S. (2011).

Monocular Visual Odometry using a Planar Road Model to Solve Scale Ambiguity.

In Proceedings of the European Conference on Mobile Robotics (ECMR).

Klein, G. and Murray, D. W. (2007). Parallel Tracking and Mapping for Small

AR Workspaces. In Proceedings of the International Symposium on Mixed and

Augmented Reality (ISMAR). 7, 11, 36, 91

Klose, S., Heise, P., and Knoll, A. (2013). E�cient compositional approaches for

real-time robust direct visual odometry from rgb-d data. In Proceedings of the

IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).

Knorr, M., Niehsen, W., Member, S., and Stiller, C. (2013). Online extrinsic multi-

camera calibration using ground plane induced homographies. In Proceedings of

the IEEE Intelligent Vehicles Symposium (IV).

Kolmogorov, V. and Zabih, R. (2001). Computing Visual Correspondence with

Occlusions using Graph Cuts. In Proceedings of the International Conference on

Computer Vision (ICCV).

Konolige, K., Agrawal, M., Blas, M. R., Bolles, R. C., Gerkey, B., Solà, J., and

Sundaresan, A. (2009). Mapping, navigation, and learning for o↵-road traversal.

Journal of Field Robotics (JFR), 26(1):88–113. 13, 91

Konolige, K., Agrawal, M., and Solà, J. (2007). Large Scale Visual Odometry

for Rough Terrain. In Proceedings of the International Symposium on Robotics

Research (ISRR).

Krotkov, E., Hebert, M., and Simmons, R. (1995). Stereo Perception and Dead-

Reckoning for a Prototype Lunar Rover. Autonomous Robots, 2(4):313–331. 9

185

Bibliography

Kümmerle, R., Grisetti, G., and Burgard, W. (2011a). Simultaneous Calibration,

Localization, and Mapping. In Proceedings of the IEEE/RSJ Conference on

Intelligent Robots and Systems (IROS).

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011b).

g2o: A General Framework for Graph Optimization. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA).

Kundu, A., Li, Y., Daellert, F., Li, F., and Rehg, J. M. (2014). Joint Semantic

Segmentation and 3D Reconstruction from Monocular Video. In Proceedings of

the European Conference on Computer Vision (ECCV).

Kutulakos, K. N. and Seitz, S. M. (2000). A Theory of Shape by Space Carving.

International Journal of Computer Vision (IJCV), 38(3):199–218. 10

Kweon, I.-S. and Kanade, T. (1992). High-resolution terrain map from multiple

sensor data. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 14(2):278–292.

Lacroix, S., Mallet, A., Bonnafous, D., Bauzil, G., Fleury, S., Herrb, M., and Chatila,

R. (2002). Autonomous Rover Navigation on Unknown Terrains: Functions and

Integration. International Journal of Robotics Research (IJRR), 21(10-11):917–

942.

Laumond, J.-P., editor (1998). Robot Motion Planning and Control, volume 229 of

Lecture Notes in Control and Information Sciences. Springer-Verlag.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press.

Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L.,

Frazzoli, E., Huang, A., Karaman, S., Koch, O., Kuwata, Y., Moore, D., Olson, E.,

Peters, S., Teo, J., Truax, R., Walter, M., Barrett, D., Epstein, A., Maheloni, K.,

Moyer, K., Jones, T., Buckley, R., Antone, M., Galejs, R., Krishnamurthy, S., and

Williams, J. (2008). A Perception-Driven Autonomous Urban Vehicle. Journal of

Field Robotics (JFR), 25(February):727–774. 9

Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., and Furgale, P. (2014). Keyframe-

based visual–inertial odometry using nonlinear optimization. The International

Journal of Robotics Research, page 0278364914554813. 8, 91

186

Bibliography

Lindstrom, P., Koller, D., Ribarsky, W., Hodges, L. F., Faust, N., and Turner, G.

(1996). Real-Time, Continuous Level of Detail Rendering of Height Fields. In

Proceedings of SIGGRAPH.

Liu, S. and Cooper, D. B. (2010). Ray Markov Random Fields for image-based 3D

modeling: Model and e�cient inference. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

Liu, S. and Cooper, D. B. (2011). A complete statistical inverse ray tracing approach

to multi-view stereo. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

Liu, S. and Cooper, D. B. (2014). Statistical Inverse Ray Tracing for Image-Based

3D Modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 36(10).

Loper, M. and Black, M. J. (2014). OpenDR: An Approximate Di↵erentiable Renderer.

In Proceedings of the European Conference on Computer Vision (ECCV).

Losasso, F. and Hoppe, H. (2004). Geometry Clipmaps: Terrain Rendering using

Nested Regular Grids. In Proceedings of SIGGRAPH.

Lounsbery, M., DeRose, T. D., and Warren, J. (1997). Multiresolution Analysis

for Surfaces of Arbitrary Topological Type. ACM Transactions on Graphics,

16(1):34–73.

Lovegrove, S., Patron-Perez, A., and Sibley, G. (2013). Spline Fusion: A continuous-

time representation for visual-inertial fusion with application to rolling shutter

cameras. In Proceedings of the British Machine Vision Conference (BMVC).

Lovegrove, S. J. (2011). Parametric Dense Visual SLAM. PhD thesis, Imperial

College London. 11, 26, 41, 48

Lovegrove, S. J. and Davison, A. J. (2010). Real-Time Spherical Mosaicing using

Whole Image Alignment. In Proceedings of the European Conference on Computer

Vision (ECCV).

Lovegrove, S. J., Davison, A. J., and Ibanez-Guzmán, J. (2011). Accurate Visual

Odometry from a Rear Parking Camera. In Proceedings of the IEEE Intelligent

Vehicles Symposium (IV).

187

Bibliography

Lu, J., Shi, K., Min, D., Lin, L., and Do, M. N. (2012). Cross-based local multipoint

filtering. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

Lu, J., Yang, H., Min, D., and Do, M. N. (2013). PatchMatch Filter: E�cient

Edge-Aware Filtering Meets Randomized Search for Fast Correspondence Field

Estimation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

Lucas, B. D. and Kanade, T. (1981). An Iterative Image Registration Technique

with an Application to Stereo Vision. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI). 6, 37, 45

Lucey, S., Navarathna, R., Ashraf, A. B., and Sridharan, S. (2013). Fourier Lucas-

Kanade algorithm. PAMI, 35(6):1383–1396.

Luitjens, J. (2014). Faster Parallel Reductions on Kepler. https://devblogs.

nvidia.com/parallelforall/faster-parallel-reductions-kepler.

Lukierski, R., Leutenegger, S., and Davison, A. J. (2015). Rapid Free-Space Mapping

From a Single Omnidirectional Camera. In Proceedings of the European Conference

on Mobile Robotics (ECMR).

Malis, E. (2004). Improving vision-based control using e�cient second-order min-

imization techniques. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA).

Martinelli, A., Scaramuzza, D., and Siegwart, R. (2006). Automatic self-calibration

of a vision system during robot motion. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA).

Matthies, L., Kanade, T., and Szeliski, R. (1989). Kalman filter-based algorithms

for estimating depth from image sequences. International Journal of Computer

Vision (IJCV), 3(3):209–238.

Mei, C., Benhimane, S., Malis, E., and Rives, P. (2008). E�cient Homography-Based

Tracking and 3-D Reconstruction for Single-Viewpoint Sensors. IEEE Transactions

on Robotics (T-RO), 24(6):1352–1364.

188

Bibliography

Mei, C., Sibley, G., Cummins, M., Newman, P., and Reid, I. (2009). A Constant

Time E�cient Stereo SLAM System. In Proceedings of the British Machine Vision

Conference (BMVC).

Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P., Frahm, J.-M., Yang, R., Nistér,

D., and Pollefeys, M. (2007). Real-Time Visibility-Based Fusion of Depth Maps.

In Proceedings of the International Conference on Computer Vision (ICCV). 12

Miksch, M., Yang, B., and Zimmerman, K. (2010). Automatic Extrinsic Camera

Self-Calibration Based on Homography and Epipolar Geometry. In Proceedings of

the IEEE Intelligent Vehicles Symposium (IV).

Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A. J., Banino, A., Denil, M.,

Goroshin, R., Sifre, L., Kavukcuoglu, K., Kumaran, D., and Hadsell, R. (2016).

Learning to navigate in complex environments. arXiv preprint 1611.03673. 13

Möller, T. and Trumbore, B. (1997). Fast , Minimum Storage Ray / Triangle

Intersection. Journal of Graphics Tools, 2(1):21–28.

Moravec, H. P. (1977). Towards Automatic Visual Obstacle Avoidance. In Proceedings

of the International Joint Conference on Artificial Intelligence (IJCAI), volume 2,

page 584. 8

Moravec, H. P. (1980). Obstacle Avoidance and Navigation in the Real World by a

Seeing Robot Rover. PhD thesis, Stanford University. 8

Morris, R., Smelyanskiy, V., and Cheeseman, P. (2001). Matching Images to Models

Camera Calibration for 3-D Surface Reconstruction. In Proceedings of the Inter-

national Conference on Energy Minimization Methods in Computer Vision and

Pattern Recognition.

Morris, R. D., Cheeseman, P., Smelyanskiy, V. N., and Maluf, D. A. (1999). A

Bayesian approach to high resolution 3D surface reconstruction from multiple

images. In Proceedings of the IEEE Signal Processing Workshop on Higher-Order

Statistics.

Moulon, P., Monasse, P., and Marlet, R. (2013). Global fusion of relative motions

for robust, accurate and scalable structure from motion. In Proceedings of the

International Conference on Computer Vision (ICCV). 11

189

Bibliography

Mur-Artal, R., Montiel, J. M. M., and Tardós, J. D. (2015). ORB-SLAM: a Versatile

and Accurate Monocular SLAM System. IEEE Transactions on Robotics (T-RO),

31(5):1147–1163. 7, 27, 36, 91, 160

Mur-Artal, R. and Tardós, J. D. (2014). ORB-SLAM: Tracking and Mapping Recog-

nizable Features. In Workshop on Multi View Geometry in Robotics (MVIGRO) -

RSS 2014. 11

Mur-Artal, R. and Tardós, J. D. (2015). Probabilistic Semi-Dense Mapping from

Highly Accurate Feature-Based Monocular SLAM. In Proceedings of Robotics:

Science and Systems (RSS).

Nayar, S., Watanabe, M., and Noguchi, M. (1995). Real-Time Focus Range Sensor.

In Proceedings of the International Conference on Computer Vision (ICCV). 10

Newcombe, R. A. (2012). Dense Visual SLAM. PhD thesis, Imperial College London.

2, 48

Newcombe, R. A. and Davison, A. J. (2010). Live Dense Reconstruction with a Single

Moving Camera. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 12, 91

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J.,

Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011a). KinectFusion: Real-

Time Dense Surface Mapping and Tracking. In Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR). 12, 90, 92, 123

Newcombe, R. A., Lovegrove, S., and Davison, A. J. (2011b). DTAM: Dense Tracking

and Mapping in Real-Time. In Proceedings of the International Conference on

Computer Vision (ICCV). 2, 12, 20, 24, 26, 28, 30, 36, 92

Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. (2013). Real-time 3D

Reconstruction at Scale using Voxel Hashing. In Proceedings of SIGGRAPH. 12,

92, 149

Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual Odometry. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer, second edition.

190

Bibliography

Nourani-Vatani, N., Roberts, J., and Srinivasan, M. V. (2009). Practical visual

odometry for car-like vehicles. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA).

Park, Y., Lepetit, V., and Woo, W. (2009). ESM-Blur: Handling & rendering blur

in 3D tracking and augmentation. In Proceedings of the International Symposium

on Mixed and Augmented Reality (ISMAR).

Parke, F. I. and Waters, K. (2008). Computer facial animation. CRC Press.

Peyre, G. and Cohen, L. D. (2006). Geodesic remeshing using front propagation.

International Journal of Computer Vision (IJCV), 69(1):145–156.

Pfa↵, P., Triebel, R., and Burgard, W. (2007). An Efcient Extension to Elevation

Maps for Outdoor Terrain Mapping and Loop Closing. International Journal of

Robotics Research (IJRR), 26(2):217–230.

Pfister, H., Zwicker, M., van Baar, J., and Gross, M. H. (2000). Surfels: surface

elements as rendering primitives. In Proceedings of SIGGRAPH.

Pirchheim, C. and Reitmayr, G. (2011). Homography-based planar mapping and

tracking for mobile phones. In Proceedings of the International Symposium on

Mixed and Augmented Reality (ISMAR).

Pizzoli, M., Forster, C., and Scaramuzza, D. (2014). REMODE: Probabilistic, mon-

ocular dense reconstruction in real time. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). 12

Poppe, R. (2007). Vision-based human motion analysis: An overview. Computer

Vision and Image Understanding (CVIU).

Pradeep, V., Rhemann, C., Izadi, S., Zach, C., Bleyer, M., and Bathiche, S. (2013).

MonoFusion: Real-time 3D reconstruction of small scenes with a single web camera.

In Proceedings of the International Symposium on Mixed and Augmented Reality

(ISMAR), pages 83–88. 12, 20

Prisacariu, V. A., Kähler, O., Cheng, M. M., Ren, C. Y., Valentin, J., Torr, P., Reid,

I., and Murray, D. (2014). A Framework for the Volumetric Integration of Depth

Images. arXiv.

191

Bibliography

Procopio, M. J., Mulligan, J., and Grudic, G. (2009). Learning terrain segmenta-

tion with classifier ensembles for autonomous robot navigation in unstructured

environments. Journal of Field Robotics (JFR), 26(2):145–175.

Ranftl, R., Gehrig, S., Pock, T., and Bischof, H. (2012). Pushing the limits of stereo

using variational stereo estimation. In Proceedings of the IEEE Intelligent Vehicles

Symposium (IV).

Rhemann, C., Hosni, A., Bleyer, M., Rother, C., and Gelautz, M. (2011). Fast

cost-volume filtering for visual correspondence and beyond. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Saurer, O., Fraundorfer, F., and Pollefeys, M. (2012). Homography based visual

odometry with known vertical direction and weak Manhattan world assumption.

In IEEE/IROS Workshop on Visual Control of Mobile Robots.

Sawhney, H. S., Zisserman, A., Peleg, S., Szeliski, R., Irani, M., Torr, P., Knight, J.,

Malik, J., and Anandan, P. (1999). Discussion for Direct versus Features Session.

In Proceedings of the International Workshop on Vision Algorithms. 7

Saxena, A., Chung, S., and Ng, A. (2005). Learning Depth from Single Monocular

Images. In Neural Information Processing Systems (NIPS). 10

Scaramuzza, D., Fraundorfer, F., Pollefeys, M., and Siegwart, R. (2009a). Absolute

Scale in Structure from Motion from a Single Vehicle Mounted Camera by Exploit-

ing Nonholonomic Constraints. In Proceedings of the International Conference on

Computer Vision (ICCV).

Scaramuzza, D., Fraundorfer, F., and Siegwart, R. (2009b). Real-time monocular

visual odometry for on-road vehicles with 1-point RANSAC. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA).

Scharstein, D. and Pal, C. (2007). Learning Conditional Random Fields for Stereo. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

Scharstein, D. and Szeliski, R. (2001). A Taxonomy and Evaluation of Dense Two-

Frame Stereo Correspondence Algorithms. International Journal of Computer

Vision (IJCV), 47:7–42.

192

Bibliography

Shapira, Y. (2008). Matrix-based Multigrid: Theory and Applications. Springer,

second edition.

Shewchuk, J. (1994). An Introduction to the Conjugate Gradient Method Without

the Agonizing Pain. Technical report, School of Computer Science, Carnegie

Mellon University.

Silveira, G., Malis, E., and Rives, P. (2008). An E�cient Direct Approach to Visual

SLAM. IEEE Transactions on Robotics (T-RO), 24(5):969–979.

Smelyanskiy, V., Cheeseman, P., Maluf, D. A., and Morris, R. D. (2000). Bayesian

super-resolved surface reconstruction from images. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

Smelyanskiy, V., Morris, R., Kuehnel, F., Maluf, D. A., and Cheeseman, P. (2002).

Dramatic Improvements to Feature Based Stereo. In Proceedings of the European

Conference on Computer Vision (ECCV).

Smelyanskiy, V. N., Morris, R. D., Maluf, D. A., and Cheeseman, P. (2001). (Almost)

Featureless Stereo Calibration and Dense 3D Reconstruction Using Whole Image

Operations. Technical report, NASA.

Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo tourism: Exploring photo

collections in 3D. In Proceedings of SIGGRAPH. 10

Steinbrücker, F., Kerl, C., Sturm, J., and Cremers, D. (2013). Large-scale multi-

resolution surface reconstruction from RGB-D sequences. In Proceedings of the

International Conference on Computer Vision (ICCV).

Steinbrücker, F., Sturm, J., and Cremers, D. (2011). Real-Time Visual Odometry

from Dense RGB-D Images. In Workshop on Live Dense Reconstruction from

Moving Cameras at ICCV.

Stückler, J. and Behnke, S. (2014). Multi-resolution surfel maps for e�cient dense

3d modeling and tracking. Journal of Visual Communication and Image Repres-

entation, 25(1):137–147.

Stuehmer, J., Gumhold, S., and Cremers, D. (2010). Real-Time Dense Geometry

from a Handheld Camera. In Proceedings of the DAGM Symposium on Pattern

Recognition. 12

193

Bibliography

Stutz, J. (2005). Experience With Bayesian Image Based Surface Modeling. Technical

report, NASA.

Sun, W. and Yuan, Y.-X. (2006). Optimization Theory and Methods: Nonlinear

Programming. Springer.

Szeliski, R. (1990). Bayesian modeling of uncertainty in low-level vision. International

Journal of Computer Vision (IJCV), 5(3):271–301.

Thrun, S. (2002). Robotic Mapping: A Survey. In Lakemeyer, G. and Nebel, B.,

editors, Exploring Artificial Intelligence in the New Millenium, pages 1–35. Morgan

Kau↵man.

Thrun, S., Liu, Y., Koller, D., Ng, A. Y., Ghahramani, Z., and Durrant-Whyte, H.

(2004). Simultaneous Localization and Mapping with Sparse Extended Information

Filters. International Journal of Robotics Research (IJRR), 23(7-8):693–716.

Thrun, S., Montemerlo, M., and Aron, A. (2006a). Probabilistic Terrain Analysis

For High-Speed Desert Driving. In Proceedings of Robotics: Science and Systems

(RSS).

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong,

P., Gale, J., Halpenny, M., Ho↵mann, G., Lau, K., Oakley, C., Palatucci, M.,

Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C.,

Markey, C., Rummel, C., van Niekerk, J., Jensen, E., Alessandrini, P., Bradski,

G., Davies, B., Ettinger, S., Kaehler, A., Nefian, A., and Mahoney, P. (2006b).

Stanley : The Robot that Won the DARPA Grand Challenge. Journal of Field

Robotics (JFR), 23(April):661–692. 9

Tran, S. and Davis, L. (2006). 3D Surface Reconstruction Using Graph Cuts with

Surface Constraints. In Proceedings of the European Conference on Computer

Vision (ECCV).

Triebel, R., Pfa↵, P., and Burgard, W. (2006). Multi-Level Surface Maps for Outdoor

Terrain Mapping and Loop Closing. In Proceedings of the IEEE/RSJ Conference

on Intelligent Robots and Systems (IROS).

Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (1999). Bundle Adjust-

ment — A Modern Synthesis. In Proceedings of the International Workshop on

Vision Algorithms, in association with ICCV. 7

194

Bibliography

Trottenberg, U., Oosterlee, C., and Schuller, A. (2001). Multigrid. Academic Press.

Ummenhofer, B. and Brox, T. (2015). Global, Dense Multiscale Reconstruction for a

Billion Points. In Proceedings of the International Conference on Computer Vision

(ICCV).

Underwood, J. P., Hill, A., Peynot, T., and Scheding, S. J. (2010). Error modeling

and calibration of exteroceptive sensors for accurate mapping applications. Journal

of Field Robotics (JFR), 27(1):2–20.

Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark, M. N., Dolan,

J., Duggins, D., Galatali, T., Geyer, C., Gittleman, M., Harbaugh, S., Hebert,

M., Howard, T. M., Kolski, S., Kelly, A., Likhachev, M., McNaughton, M., Miller,

N., Peterson, K., Pilnick, B., Rajkumar, R., Rybski, P., Salesky, B., Seo, Y.-W.,

Singh, S., Snider, J., Stentz, A., Whittaker, W. ., Wolkowicki, Z., Ziglar, J., Bae,

H., Brown, T., Demitrish, D., Litkouhi, B., Nickolaou, J., Sadekar, V., Zhang,

W., Struble, J., Taylor, M., Darms, M., and Ferguson, D. (2008). Autonomous

Driving in Urban Environments : Boss and the Urban Challenge. Journal of Field

Robotics (JFR), 25(February):425–466. 9

Žbontar, J. and LeCun, Y. (2014). Computing the Stereo Matching Cost with a

Convolutional Neural Network. arXiv preprint arXiv:1409.4326.

Weise, T., Wismer, T., Leibe, B., and Van Gool, L. (2009). In-hand scanning with

online loop closure. In Proceedings of the International Conference on Computer

Vision Workshops (ICCV Workshops).

Wenzel, K., Rothermel, M., Fritsch, D., and Haala, N. (2013). Image acquisition

and model selection for multi-view stereo. Int. Arch. Photogramm. Remote Sens.

Spatial Inf. Sci. 11

Whelan, T., Leutenegger, S., Salas-Moreno, R. F., Glocker, B., and Davison, A. J.

(2015). ElasticFusion: Dense SLAM without a pose graph. In Proceedings of

Robotics: Science and Systems (RSS). 8, 12, 92, 139, 140, 161

Whelan, T., McDonald, J. B., Kaess, M., Fallon, M., Johannsson, H., and Leonard,

J. J. (2012). Kintinuous: Spatially Extended KinectFusion. In Workshop on

RGB-D: Advanced Reasoning with Depth Cameras, in conjunction with Robotics:

Science and Systems.

195

Bibliography

Woodford, O. J., Torr, P. H. S., Reid, I. D., and Fitzgibbon, a. W. (2008). Global

stereo reconstruction under second order smoothness priors. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Wu, C. (2013). Towards linear-time incremental structure from motion. In Proceedings

of the International Conference on 3D Vision (3DV). 10

Wurm, K. M., Hornung, A., Bennewitz, M., Stachniss, C., and Burgard, W. (2010).

OctoMap: A Probabilistic, Flexible, and Compact 3D Map Representation for

Robotic Systems. In Proceedings of the ICRA 2010 Workshop on Best Practice in

3D Perception and Modeling for Mobile Manipulation.

Yamaguchi, K., Mcallester, D., and Urtasun, R. (2014). E�cient Joint Segmentation,

Occlusion Labeling, Stereo and Flow Estimation. In Proceedings of the European

Conference on Computer Vision (ECCV).

Yoon, K.-J. and Kweon, I.-S. (2005). Locally Adaptive Support-Weight Approach

for Visual Correspondence Search. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

Yoon, K.-J. and Kweon, I.-S. (2006). Adaptive support-weight approach for corres-

pondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI).

Zabih, R. and Woodfill, J. (1994). Non-parametric Local Transforms for Computing

Visual Correspondence. In Proceedings of the European Conference on Computer

Vision (ECCV).

Zhang, K., Lu, J., and Lafruit, G. (2009). Cross-Based Local Stereo Matching Using

Orthogonal Integral Images. IEEE Transactions on Circuits and Systems for Video

Technology, 19(7):1073–1079.

Zhang, K., Lu, J., Yang, Q., Lafruit, G., Lauwereins, R., and Van Gool, L. (2011).

Real-time and accurate stereo: A scalable approach with bitwise fast voting

on CUDA. IEEE Transactions on Circuits and Systems for Video Technology,

21(7):867–878.

Zhang, R., Tsai, P.-S., Cryer, J., and Shah, M. (1999). Shape-from-shading: a

survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

21(8):690–706. 10

196

Bibliography

Zhang, Z. (1999). Flexible camera calibration by viewing a plane from unknown

orientations. In Proceedings of the International Conference on Computer Vision

(ICCV).

Zhou, Q., Miller, S., and Koltun, V. (2013). Elastic Fragments for Dense Scene

Reconstruction. In Proceedings of the International Conference on Computer

Vision (ICCV). 12

Zienkiewicz, J. and Davison, A. J. (2015). Extrinsics Autocalibration for Dense

Planar Visual Odometry. Journal of Field Robotics (JFR), 32(5):803–825. 13

Zienkiewicz, J., Davison, A. J., and Leutenegger, S. (2016a). Real-Time Height-Map

Fusion using Di↵erentiable Rendering. In Proceedings of the IEEE/RSJ Conference

on Intelligent Robots and Systems (IROS). 14

Zienkiewicz, J., Lukierski, R., and Davison, A. J. (2013). Dense, Auto-Calibrating

Visual Odometry from a Downward-Looking Camera. In Proceedings of the British

Machine Vision Conference (BMVC). 13

Zienkiewicz, J., Tsiotsios, A., Davison, A. J., and Leutenegger, S. (2016b). Monocular,

Real-Time Surface Reconstruction using Dynamic Level of Detail. In Proceedings

of the International Conference on 3D Vision (3DV). 14

197

