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a b s t r a c t

In the feature matching tasks which form an integral part of visual tracking or SLAM (Simultaneous
Localisation And Mapping), there are invariably priors available on the absolute and/or relative image
locations of features of interest. Usually, these priors are used post-hoc in the process of resolving feature
matches and obtaining final scene estimates, via ‘first get candidate matches, then resolve’ consensus
algorithms such as RANSAC or JCBB. In this paper we show that the dramatically different approach
of using priors dynamically to guide a feature by feature matching search can achieve global matching
with far fewer image processing operations and lower overall computational cost. Essentially, we put
image processing into the loop of the search for global consensus. In particular, our approach is able to
cope with significant image ambiguity thanks to a dynamic mixture of Gaussians treatment. In our fully
Bayesian algorithm denoted Active Matching, the choice of the most efficient search action at each step is
guided intuitively and rigorously by expected Shannon information gain. We demonstrate the algorithm
in feature matching as part of a sequential SLAM system for 3D camera tracking with a range of settings,
and give a detailed analysis of performancewhich leads to performance-enhancing approximations to the
full algorithm.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the key to obtaining correct feature asso-
ciations in potentially ambiguous matching (data association)
tasks using computer vision or other sensors is to search for a set
of correspondences which are in consensus: they are all consistent
with a believable global hypothesis. The usual approach taken
to search for matching consensus is as follows: first candidate
matches are generated, for instance by detecting all of a certain
type of salient features in a pair of images and pairing up features
which have similar appearance descriptors. Then, incorrect
‘outlier’ matches are pruned by proposing and testing hypotheses
of global parameters which describe the world state of interest
— the 3D position of an object or the camera itself, for instance.
The random sampling and voting algorithm RANSAC [1] has been
widely used to achieve this in geometrical vision problems.
Outliers are match candidates which lie outside of bounds de-

termined by global consensus constraints. The idea that inevitable
outlier matches must be ‘rejected’ from a large number of candi-
dates achieved by some blanket initial image processing is deeply
entrenched in computer vision and robotics.
The approach of our Active Matching paradigm is very different

— to cut outliers out at source wherever possible by searching
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only the parts of the image where true positive matches are most
probable. Both individual featuremotion assumptions (such as that
the image displacement of a feature between consecutive video
frames will be bounded) and global consensus constraints can be
expressed as priors on the true absolute and relative locations of
features within a rigorous Bayesian framework.
In ActiveMatching, instead of searching for all features and then

resolving, feature searches occur one by one within tightly tar-
geted regions. The results of each search affect the regions within
which it is likely that each of the other features will lie. This
is thanks to the same inter-feature correlations of which stan-
dard consensus algorithms take advantage — but our algorithm’s
dynamic updating of these regions within the matching search
itself means that low probability parts of the image are never ex-
amined at all. The result is that the number of image processing op-
erations required to achieve global matching is reduced by a large
factor.
We show that information theory is able to intelligently guide

the step by step search process and answer the question ‘‘where to
look next?’’. The expected information content of each candidate
measurement is computed and compared, and can also be traded
off against the expected computational cost of the image process-
ing required. The absolute bit units of information scoresmean that
heterogeneous feature types can be rigorously and intuitively com-
bined within the same matching process. Information theory can
also indicate whenmatching should be terminated at a point of di-
minishing returns.
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While matching is often formulated as a search for correspon-
dence between one image and another (for example in the litera-
ture on 3Dmulti-view constraintswith concepts such as themulti-
view tensors), stronger constraints are available whenwe consider
matching an image to a state — an estimate of world properties
perhaps accumulated over many images. Uncertainty in a state is
represented with a probability distribution. Matching constraints
are obtained by projecting the uncertain world state into a new
image, the general result being a joint prior probability distribu-
tion over the image locations of features. These uncertain feature
predictionswill often be highly correlated. When probabilistic pri-
ors are available, the random sampling and preset thresholds of
RANSAC are unsatisfying. In more recent variants of the algorithm
it has been realised that an unnecessarily large number of associ-
ation hypotheses gets tested, therefore speedups have been pro-
posed either by a two-step randomised selection of hypotheses [2]
or taking somemotion priors into account [3,4]. However, the true
value of the probabilistic priors available has not yet fully been ap-
preciated and exploited in these methods which rely heavily on
randomness and arbitrary thresholds. This has been improved by
probabilistic methods such as the Joint Compatibility Branch and
Bound (JCBB) algorithm [5] which matches features via a deter-
ministic interpretation tree [6] and has been applied to geometric
image matching in [7]. JCBB takes account of a joint Gaussian prior
on feature positions and calculates the joint probability that any
particular hypothesised set of correspondences is correct.
Our algorithm aims to perform at least as well as JCBB in deter-

mining global consensus while searching much smaller regions of
an image. It goes much further than previously published ‘guided
matching’ algorithms such as [4] in guiding not just a search
for consensus but the image processing to determine candidate
matches themselves.
Davison [8] presented a theoretical analysis of information

gain in sequential image search. However, this work had the se-
rious limitation of representing the current estimate of the state
of the search at all times with a single multi-variate Gaussian
distribution. This meant that while theoretically and intuitively
satisfying active search procedures were demonstrated in simu-
lated problems, the technique was not applicable to real image
search because of the lack of ability to deal with discrete multiple
hypotheses which arise due to matching ambiguity — only simu-
lation results were given. Here we use a dynamic mixture of Gaus-
sians (MoG) representation which grows as necessary to represent
the discrete multiple hypotheses arising during active search. We
show that this representation can nowbe applied to achieve highly
efficient image search in real, ambiguous tracking problems.
In this paper we present the Active Matching algorithm (first

introduced in [9,10]) in full detail. We explain more clearly the
motivation for the mixture representation with a new histogram-
based analysis of the underlying probability distributions. We
also include a comprehensive new set of experiments which
examines the performance of the algorithm inmonocular structure
and motion tracking as parameters including frame-rate and
feature density are varied. These experiments indicate the route
to effective approximations which further increase the efficiency
of the algorithm.

2. Probabilistic prediction and feature by feature search

In our general matching formulation, we consider making
image measurements of an object or scene of which the current
state of knowledge is modelled by a probability distribution over a
finite vector of parameters x. These parameters may represent the
position of amoving object or camera, for instance. The probability
distribution p(x) which describes our uncertain knowledge of the
parameters at the moment an image arrives will be determined by

general prior knowledge and what has happened previously to the
system. For instance, in the common case of sequential tracking of
motion through an image sequence, p(x) at each time step will be
the result of projecting the distribution determined at the previous
frame forward through a motion model.
In an image, we are able to observe features: measurable pro-

jections of the state. A measurement of feature i yields the vector
of parameters zi. For example, zi might be the 2D image coordi-
nates of a keypoint of known appearance, the position of an edge
or a higher-dimensional parameterisation of a more complex im-
age entity. In each case, a likelihood function p(zi|x) models the
measurement process.
When a new image arrives, we can project the current probabil-

ity distribution over state parameters x into feature space to predict
the image locations of all the featureswhich aremeasurement can-
didates. Defining stacked vector zT =

(
z1 z2 . . .

)>containing
all candidate feature measurements and stacked likelihood func-
tion p(zT |x), the density:

p(zT ) =
∫
p(zT |x)p(x)dx (1)

is a probabilistic prediction not just of the most likely image posi-
tion of each feature, but a joint distribution over the expected loca-
tions of all of them. This joint distribution, if formulated correctly,
takes full account of both individual feature motion assumptions
and global inter-feature constraints.
Our goal is to use p(zT ) to guide intelligent active search and

matching. The first possibility onemight consider is to marginalise
elements p(zi) to give individual predictions of the image location
of each feature under consideration. Image search for each feature
can then sensibly be limited to high-probability regions. This
procedure is relatively common in visual tracking, where strong
motion models mean that these search regions are often small
and efficiently searched. In Isard and Blake’s Condensation [11], for
example, feature searches take place in fixed-sizewindows around
pre-determined measurement sites centred at a projection into
measurement space of each of the particles representing the state
probability distribution. Several Kalman Filter-based trackers such
as [12] implement the same scheme by using gates at a certain
number of standard deviations to restrict the search.
However, the extra information available that has usually been

overlooked in feature search but which we exploit in this paper
is that the predictions of the values of all the candidate measure-
ments which make up joint vector zT are often highly correlated,
since they all depend on common parts of the scene state x. In a
nutshell, the correlation between candidate measurements means
that making a measurement of one feature tells us a lot about
where to look for another feature, suggesting a step by step guided
search rather than blanket examination of all feature regions.

2.1. Guiding search using information theory

At each step in the search, the next feature and search region
must be selected. Such candidate measurements vary in two sig-
nificant ways: the amount of information which they are expected
to offer, and the amount of imageprocessing likely to be required to
extract a match; both of these quantities can be computed directly
from the current search prior. There are ad-hoc ways to score the
value of a measurement such as search ellipse size, used for simple
active search for instance in [13]. However, Davison [8], building
on early work by others such as Manyika [14], explained clearly
that the Mutual Information (MI) between a candidate and the
scene state is the essential probabilistic measure of measurement
value.
Following the notation of Mackay [15], the (MI) of continuous

multivariate PDFs p(x) and p(zi) is:
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I(x; zi) = E
[
log2

p(x|zi)
p(x)

]
(2)

=

∫
x,zi
p(x, zi) log2

p(x|zi)
p(x)

dxdzi. (3)

Mutual information is expected information gain: I(x; zi) is how
many bits of information we expect to learn about the uncertain
vector x by determining the exact value of zi. In Active Matching,
the MI scores of the various candidate measurements zi can be
fairly compared to determine which has most utility in reducing
uncertainty in the state x, even if themeasurements are of different
types (e.g. point feature vs. edge feature). Further, dividing MI by
the computational cost required to extract a measurement leads
to an ‘information efficiency’ score [8] representing the bits to be
gained per unit of computation.
We also see here that when evaluating candidate measure-

ments, a useful alternative to calculating the mutual information
I(x; zi) between a candidate measurement and the state is to use
the MI I(zT 6=i; zi) between the candidate and all the other candi-
date measurements. This is ameasure of howmuch information the
candidatewould provide about the other candidates, capturing the
core aim of an active search strategy to decide onmeasurement or-
der. This formulation has the very satisfying property that active
search can proceed purely in measurement space, and is appealing
in problems where it is not desirable to makemanipulations of the
full state distribution during active search.

2.2. Active search using a single gaussian model

To attack the coupled search problem, Davison [8] made the
simplifying assumption that the PDFs describing the knowledge
of x and zT can be approximated always by single multi-variate
Gaussian distributions. The measurement process is modelled by
zi = hi(x) + nm, where hi(x) describes the functional relation-
ship between the expected measurement and the object state as
far as understood via the models used of the object and sensor,
and nm is a Gaussian-distributed vector representing unmodelled
effects (noise) with covariance Ri which is independent for each
measurement. The vector xmwhich stacks the object state and can-
didate measurements (in measurement space) can be calculated
along with its full covariance:

x̂m =


x̂
ẑ1
ẑ2
...

 =


x̂
h1(x̂)
h2(x̂)
...

 ,

Pxm =



Px Px
∂h1
∂x

>

Px
∂h2
∂x

>

. . .

∂h1
∂x

Px
∂h1
∂x

Px
∂h1
∂x

>

+ R1
∂h1
∂x

Px
∂h2
∂x

>

. . .

∂h2
∂x

Px
∂h2
∂x

Px
∂h1
∂x

> ∂h2
∂x

Px
∂h2
∂x

>

+ R2 . . .

...
...

...



(4)

The lower-right portion of Pxm representing the covariance of
zT =

(
z1 z2 . . .

)>is known as the innovation covariance ma-
trix S in Kalman filter tracking. The correlations between different
candidate measurements mean that generally Swill not be block-
diagonal but contain off-diagonal correlations between the pre-
dicted measurements of different features.
With this single Gaussian formulation, the mutual information

in bits between any two partitions α and β of xm can be calculated
according to this formula:

I(α;β) =
1
2
log2

|Pαα|

|Pαα − PαβP−1ββPβα|
, (5)

where Pαα , Pαβ , Pββ and Pβα are sub-blocks of Pxm . This represen-
tation however can be computationally expensive as it involves
matrix inversion andmultiplication so exploiting the properties of
mutual information we can reformulate into:

I(α;β) = H(α)− H(α|β) = H(α)+ H(β)− H(α, β) (6)

=
1
2
log2
|Pαα||Pββ |
|Pxm |

. (7)

2.3. Multiple hypothesis active search using full histograms

The weakness of the single Gaussian approach of the previous
section is that, as ever, a Gaussian is uni-modal and can only repre-
sent a PDF with one peak. In real image search problems no match
(or failed match) can be fully trusted: true matches are sometimes
missed (false negatives), and clutter similar in appearance to the
feature of interest can lead to false positives.
To investigate the theoretical performance of active search

in such ambiguous cases, we developed a simulation of 1D
Bayesian active search for a single feature which uses a simple
but exhaustive histogram representation of probability (see Fig. 1).
The goal is to locate a feature in a one-dimensional search region
by making pixel-by-pixel attempts at template matching. Each
pixel is represented by a discrete histogram bin storing the current
probability that the true feature is in that location. The true feature
must lie in exactly one true position, so at all times the discrete
histogram is normalised to total probability one. At the start of
search, we initialise a Gaussian prior across the region.
Active search proceeds by selecting pixel location i as a

candidate, attempting a template match to achieve either a match
Mi or failure Fi, and updating the whole histogram via Bayes rule.
The update uses the following likelihood expression:

P(Mi|Bk) = CFP + CTPe
−
1
2
(i−k)2

σ2 (8)
P(Fi|Bk) = 1− P(Mi|Bk) (9)

for the probabilities ofmaking a templatematchMi or failedmatch
Fi at position i given Bk, that the feature is truly at position k.
Here CFP is a constant representing the per-pixel false-positive
probability of finding a template match to clutter, and CTP is a
constant proportional to the true-positive probability of matching
the feature in its true position. This likelihood function says that if
the feature is at k there is a raised, Gaussian-profile probability of
making a match at nearby locations, the parameter σ (with a low
value of one pixel or less) specifying the standard deviation of the
feature’s ‘measurement uncertainty’.
The last figure here is the motivation for the mixture of Gaus-

sians formulation used in the rest of the paper. The single Gaus-
sian method of Section 2.2 cannot represent the clear multiple
hypotheses present here. This histogram representation really gets
to the truth of active search, but is impractical in reality because
of the computational cost of maintaining a histogram — rising
exponentially with the number of dimensions of the total mea-
surement vector. Practical real-time searches happen not by
one-by-one pixel checks followed by probabilistic updates, but by
examining a whole region at once and obtaining zero, one or more
candidatematches. Fig. 1(d) shows that amixture of Gaussians rep-
resents the posterior in this case well.

3. Active matching

Ideally, any features selected for measurement would be abso-
lutely unique and always recognisable, meaning that they produce
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a match only when present and at the true feature location. Since
this is not the case in real image search problems, we can never
fully trust thematching outcome of a feature search. Modelling the
probabilistic ‘search state’ as a mixture of Gaussians, we wish to
retain the feature-by-feature quality of active search [8]. Our new
MoG representation allows dynamic, online updating of the multi-
peaked PDF over feature locations which represents the multiple
hypotheses arising as features are matched ambiguously.
Our Active Matching algorithm searches for global correspon-

dence in a series of steps which gradually refine the probabilistic
search state initially set as the prior on feature positions. Each step
consists of a search for a template match to one feature within a
certain bounded image region, followed by an update of the search
state which depends on the search outcome. After many well-
chosen steps the search state collapses to a highly peaked posterior
estimate of image feature locations — and matching is finished.

3.1. Search state mixture of Gaussians model

A single multi-variate Gaussian probability distribution over
the vector xmwhich stacks the object state and candidatemeasure-
ments, is parameterised by a ‘mean vector’ x̂m and its full covari-
ancematrix Pxm . We use the shorthandG(x̂m, Pxm) to represent the
explicit normalised PDF:

p(xm) = G(x̂m, Pxm) (10)

= (2π)−
D
2 |Pxm |

−
1
2 e−

1
2 (xm−x̂m)

>P−1xm (xm−x̂m). (11)

During Active Matching, we now represent the PDF over xm with a
multi-variate MoG distribution formed by the sum of K individual
Gaussians each with weight λi:

p(x) =
K∑
i=1

p(xi) =
K∑
i=1

λiGi, (12)

where we have now used the further notational shorthand Gi =
G(x̂mi , Pxmi ). Each Gaussian distribution must have the same di-
mensionality and the weights must normalise

∑K
i=1 λi = 1 for this

to be a valid PDF.
The currentMoG search statemodel forms the prior for the next

step of ActiveMatching. This prior togetherwith the likelihood and
posterior distributions which are shown in symboling 1D form in
Section 3.4, are explained in the following sections.

3.2. The Algorithm

The MoG Active Matching process is initialised with a joint
Gaussian prior over the features’ locations in measurement space
(e.g. prediction after application of motion model). Hence, at start-
up the mixture consists of a single multivariate Gaussian. The
process of selecting the {Feature, Gaussian} measurement pair to
measure in the next matching step involves assessing the amount
of information gain that each candidate pair is expected to provide.
This is explained in detail in Section 4.

ActiveMatching(G0)
1 Mixture = [[1,G0]] // consists of [weight, Gaussian] tuples
2 [fc,Gc] = get_max_gain_candidate(Mixture)
3while (pair_not_yet_measured(fc,Gc))
4 Matches=measure(fc,Gc)
5 UpdateMixture(Mixture, c , fc , Matches)
6 prune_insignificant_gaussians(Mixture)
7 [fc,Gc] = get_max_gain_candidate(Mixture)

end while
8 Gbest = find_most_probable_gaussian(Mixture)
9 returnGbest

For every template match yielded by the search of the selected
{Feature, Gaussian} measurement pair a new Gaussian is spawned
with mean and covariance conditioned on the hypothesis of that
match being a true positive — this will be more peaked than its
parent. In both cases of either a successful or null template search
the weights of the existing Gaussians are redistributed to reflect
the current MoG search state. The full description of the update
step after a measurement is detailed in the rest of this section.
Finally, very weak Gaussians (with weight<0.001) are pruned

from the mixture after each search step. This avoids the otherwise
rapid growth in the number of Gaussians such that in practical
cases fewer than 10 Gaussians are ‘live’ at any point, and most
of the time much fewer than this. This pruning is the better, fully
probabilistic equivalent in the dynamicMoG scheme of lopping off
branches in an explicit interpretation tree search such as JCBB [5].

UpdateMixture(Mixture, i, f, Matches)

Propagate the result of measuring feature f in Giin the Mixture,
following the update rule of Eq. (18)

1 [λi,Gi] = Mixture[i]
2 for k = 1 : K
// loop through all Gaussians to update them accordingly
3 if k = i then // this is the measured Gaussian
4 form = 1 : M // for every match, spawn a new

Gaussian
5 Gm = spawn_gaussian_and_fuse_match(Gi,

Matches[m])
6 λm = λi × µmatch×prior(Matches[m], Gi)
7 Mixture= [Mixture, [λm,Gm]]

end for
8 λi = λi × µin × (1− prior_sum(Matches,Gi))
9 Mixture[i] = [λi,Gi]

else
// Total probability of Gkin the region covered by Gi:

10 prob= prior_sum_underGi(Gk)
11 sum= prior_sum(Matches, Gk)
12 λk = λk × [µmatch × sum + µin

× (prob− sum)+ µout × (1− prob)]
13 Mixture[k] = [λk,Gk]

end if
14 end for
15 normalize_weights(Mixture)
16 return
Note: prior(Matches[m], Gi) returns the prior probability of
that match in Gi (highest value at the centre of this gaussian).
Similarly, prior_sum(Matches, G) returns the sum of all such
prior probabilities at the positions inMatches.

3.3. Likelihood function

One step of Active Matching takes place by searching the
region defined by the high-probability 3σ extent of one of the
Gaussians in the measurement space of the selected feature f .
Suppose that zf =

(
zf1 . . . zfM

)>is the outcome of this search
for matches, meaning that template matching has been successful
at M candidate pixel locations but failed everywhere else in the
region. The likelihood p(zf |x) of this result ismodelled as amixture
consisting of:

p(zf |x) = µinTin + µoutTout +
M∑
m=1

µmatchHm. (13)

• M Gaussians Hm, each representing the hypothesis of one
candidate being the truematch (considering all others as false

Please cite this article in press as: M. Chli, A.J. Davison, Active matching for visual tracking, Robotics and Autonomous Systems (2009), doi:10.1016/j.robot.2009.07.010
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Fig. 1. One-dimensional pixel-by-pixel feature search. A full normalised histogram representing the probability that a feature is truly at each image location is refined
sequentially from an initial Gaussian prior as each pixel location is tested for a template match. (a) and (b) show the outcome of either a successful or failed match at the
pixel in the centre of the prior which is checked first: a success causes a spike in the distribution and a failure a trough. In (c), measurements at a number of central sites have
led to an intermediate distribution, and (d) shows the final posterior distribution in a situation where all positions have been checked to reveal two significant candidate
locations for the true feature, motivating our search state formulation as a mixture of Gaussians.

positives) — these Gaussians are functions of x having thewidth
of the measurement uncertainty Ri, and
• Two constant terms: Tin representing the hypothesis that the
true match lies in the searched region but has not been recog-
nised, and Tout supporting that the true feature is actually out
of the region searched. Thus, both of these hypotheses consider
all of the obtained matches as spurious false positives.

If N is the total number of pixels in the search region, then the
constants in the above expression have the form:

µin = PMfpPfnP
N−(M+1)
tn (14)

µout = PMfpP
N−M
tn (15)

µmatch = PtpPM−1fp PN−Mtn , (16)

where Ptp, PfpPtn, Pfn are true-positive, false-positive, true-negative
and false-negative probabilities respectively for this feature. Tin

and Tout are top-hat functions with value one inside and outside of
the searched Gaussian respectively and zero elsewhere, since the
probability of a null search depends on whether the feature is re-
ally within the search region or not. Given that there can only be
one true match in the searched region,µin is the probability of ob-
taining M false positives, a false negative and N − (M + 1) true
negatives. µout is the probability of M false positives and N − M
true negatives. Finally, µmatch is the probability of a true positive
occurring alongwithM−1 false positives andN−M true negatives.

3.4. Posterior: Updating after a measurement

The standard application of Bayes’ Rule to obtain the posterior
distribution for x given the new measurement is:

p(x|zf ) =
p(zf |x)p(x)
p(zf )

. (17)

Substituting MoG models from Eqs. (12) and (13):

Please cite this article in press as: M. Chli, A.J. Davison, Active matching for visual tracking, Robotics and Autonomous Systems (2009), doi:10.1016/j.robot.2009.07.010
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p(x|zf ) =

(
µinTin + µoutTout +

M∑
m=1

µmatchHm
)(

K∑
i=1
λiGi

)
p(zf )

. (18)

The denominator p(zf ) is a constant determined by normalising all
new weights λi to add up to one). Below, is an illustration of the
formation of a posterior when the search outcome consists of a
singe match (M = 1). This posterior will then become the prior
for the next Active Matching step.
In the top line of Eq. (18), the product of the two MoG sums

will lead to K scaled versions of all the original Gaussians and
MK terms which are the products of two Gaussians. However, we
make the approximation that onlyM of theseMK Gaussian product
terms are significant: those involving the prior Gaussian currently
being measured. We assume that since the other Gaussians in the
prior distribution are eitherwidely separated or have very different
weights, the resulting products will be negligible. Therefore there
are onlyM new Gaussians added to the mixture: generally highly-
weighted, spiked Gaussians corresponding to new matches in
the searched region. These are considered to be ‘children’ of the
searched parent Gaussian. An important point to note is that if
multiple matches in a search region lead to several new child
Gaussians being added, one corresponding to a match close to the
centre of the search region will correctly have a higher weight
than others, having been formed by the product of a prior and a
measurement Gaussian with nearby means.

All other existing Gaussians get updated posterior weights by
multiplication with the constant terms. Note that the information
of making a null search where no template match is found is fully
accounted for in our framework — in this case we will haveM = 0
and no new Gaussians will be generated, but the weight of the
searched Gaussian will diminish.

4. Measurement selection

Weassume that the input prior at the start of the search process
is well-represented by a single Gaussian and therefore λ1 = 1.
As active search progresses and there is a need to propagate
multiple hypotheses, this and subsequent Gaussians will divide as
necessary, so that at a general instant there will be K Gaussians
with normalised weights.

4.1. Search candidates

At each step of the MoG Active Matching process, we use the
mixture to predict individual feature measurements, and there are
KF possible actions,where F is the number of measurable features.
We rule out any {Feature, Gaussian} combinations where we have
already made a search. Also ruled out are ‘child’ Gaussians for a
certain feature which lie completely within an already searched
ellipse. For example, if we have measured root Gaussian G1 at
feature 1, leading to the spawning of G2 whichwe search at feature

3 to spawn G3, then the candidates marked with ‘∗’ would be ruled
out from the selection:

F1 F2 F3 F1 F2 F3 F1 F2 F3
G1 ∗ ⇒ G1 ∗ G1 ∗

G2 ∗ ∗ ⇒ G2 ∗ ∗

G3 ∗ ∗

(19)

All of the remaining candidates are evaluated in terms of the mu-
tual information predicted to provide to other candidate mea-
surements, and then selected based on an information efficiency
score [8] which is this mutual information divided by the area of
the search region, assumed proportional to search cost.

4.2. Mutual information for a mixture of Gaussians distribution

In order to assess the amount of information that each can-
didate {Feature, Gaussian} measurement pair can provide, we
predict the post-search mixture of Gaussians depending on the
possible outcome of the measurement:

1. A null search, where no template match is found above a
threshold. The effect is only to change theweights of the current
Gaussians in the mixture into λ′i .

2. A templatematch, causing a newGaussian to be spawnedwith
reduced width as well as re-distributing the weights of the all
Gaussians of the new mixture to λ′′i .

In awell-justified assumption of ‘weakly-interacting Gaussians’
which are either well-separated or have dramatically different
weights, we separate the information impact of each candidate
measurement into two components: (a) Idiscrete captures the effect
of the redistribution of weights depending on the search outcome
and (b) Icontinuous gives ameasure of the reduction in theuncertainty
in the system on a match-search. Due to the intuitive absolute
nature of mutual information, these terms are additive:

I = Idiscrete + Icontinuous. (20)

One of either of these terms will dominate at different stages of
the matching process, depending on whether the key uncertainty
is due to discrete ambiguity or continuous accuracy. It is highly
appealing that this behaviour arises automatically thanks to theMI
formulation.

4.2.1. Mutual information: Discrete component
Considering the effect of a candidate measurement purely in

terms of the change in the weights of the Gaussians in themixture,
we calculate the mutual information it is predicted to provide by

I(x; z) = H(x)− H(x|z). (21)

Given that the search outcome can have two possible states (null
or match-search), then:

Idiscrete = H(x)− P(z = null)× H(x|z = null) (22)
− P(z = match)× H(x|z = match). (23)

where

H(x) =
K∑
i=1

λi log2
1
λi

(24)

H(x|z = null) =
K∑
i=1

λ′i log2
1
λ′i

(25)

H(x|z = match) =
K+1∑
i=1

λ′′i log2
1
λ′′i
. (26)
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(a) Beginning: Measure F9 . (b) Measure F5 in G2 .

(c) Initial Gaussian pruned. (d) Ambiguity is resolved.

(e) End of the matching process. (f) Search area & matches encountered.

Fig. 2. Resolving ambiguity using AM. Based on the input prior on feature locations F9 is predicted to give the most MI/(pixel searched). Propagating the outcome of (a) G1
and G2 are spawned in (b). The match found for F5 in G2 boosts the newly spawned G3 , weakening G0 and G2 enough to get pruned off the mixture in (c). The match for F10
comes to resolve the ambiguity in (d) with G4 having dramatically reduced width. Measuring the rest of the features, AM comes to an end in (e) and in (f) is a superposition
of the area searched to achieve data association: AM searches 7× less image area than standard ‘get matches first, resolve later’ approaches like JCBB.

The predicted weights after a null or a match search are calcu-
lated as in Eq. (18) with the only difference that the likelihood of
a match-search is summed over all positions in the search-region
that can possibly yield a match.

4.2.2. Mutual information: Continuous component
Davison [8], building on early work by others such as Ma-

nyika [14], explained clearly that the Mutual Information (MI)
between a candidate and the scene state is the essential prob-
abilistic measure of measurement value. With his single Gaus-
sian formulation, he has shown that the mutual information be-
tween any two partitions of the state vector can be computed
in absolute number of bits as in Eq. (5). Following our efficient

formulation of this expression described in Eq. (7), we com-
pute the continuous component of the mutual information for
feature f by

Icontinuous =
1
2
P(zf = match)λ′′m log2

|PzT 6=f ||Pzf |

|Pxm |
. (27)

This captures the information gain associated with the shrink-
age of the measured Gaussian (λ′′m is the predicted weight of the
new Gaussian evolving) thanks to the positive match: if the new
Gaussian has half the determinant of the old one, that is one bit of
information gain. This was the only MI term considered in [8] but
is now scaled and combined with the discrete component arising
due to the expected change in the λi distribution.
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5. Results

We present results on the application of the algorithm to fea-
ture matching for several different situations within the publicly
available MonoSLAM system [12] for real-time probabilistic struc-
ture and motion estimation. After discussing initial results in this
section,we give a detailed analysis of howperformance varieswith
different factors in Section 6 and then show how this can lead to a
more efficient variant in Section 7.
MonoSLAM uses an Extended Kalman Filter to estimate the

joint distribution over the 3D location of a calibrated camera and a
sparse set of point features— herewe use it to track themotion of a
hand-held camera in an office scene with image capture normally
at 30 Hz. At each image of the real-time sequence, MonoSLAM
applies a probabilistic motion model to the accurate posterior
estimate of the previous frame, adding uncertainty to the camera
part of the state distribution. In standard configuration it then
makes independent probabilistic predictions of the image location
of eachof the features of interest, and each feature is independently
searched for by an exhaustive templatematching searchwithin the
ellipse defined by a three standard deviation gate. The top-scoring
template match is taken as correct if its normalised SSD score
passes a threshold. At low levels of motion model uncertainty,
mismatches via this method are relatively rare, but in advanced
applications of the algorithm [7,16] it has been observed that Joint
Compatibility testing finds a significant number ofmatching errors
and greatly improves performance.
Uncertainty in the probabilistic prediction of feature image

locations in MonoSLAM is dominated by uncertainty in camera
pose introduced by the frame-to-framemotionmodel. MonoSLAM
uses a constant velocity motion model which asserts that between
one frame and the next the camera will experience linear and
angular changes in velocity which are unknown in detail but
can be probabilistically characterised by a zero-mean Gaussian
distribution. The variance of the Gaussian distribution used
depends on both the level of dynamic motion expected of the
camera and the inter-frame time interval. Large frame-to-frame
motion uncertainty occurs when vigorous, jerky movements are
expected, or when the frame-rate is low. Smooth motions or high
frame-rates allowmore precisemotion predictions andwith lower
uncertainty. In most cases where MonoSLAM has been applied
(for example in tracking the motion of a hand-held camera in an
indoor scene for use in augmented reality), in fact the angular
term is dominant in the motion uncertainty’s effect on image
search regions since clearly it is much easier to induce fast feature
motion through rotation than translation. Note that this fact has
been harnessed directly in recent state of the art visual SLAM
results [17] where an explicit multi-stage tracking pipeline first
performs simple but effective camera rotation estimation before
tracking features to estimate pose. We would hope that Active
Matchingwould be able to exhibit similar behaviour automatically.

5.1. Algorithm characterisation

Our Active Matching algorithm simply takes as input from
MonoSLAM the predicted stacked measurement vector zT and in-
novation covariance matrix S for each image and returns a list
of globally matched feature locations which are then digested by
MonoSLAM’s filter. Fig. 2 demonstrates Active Matching’s step-by-
step procedure on a typicalMonoSLAM frame as it selectsmeasure-
ments selectively to remove ambiguity and maximise precision.

5.2. Initial sequence results
Two different hand-held camera motions were used to capture

image sequences at 30 Hz: one with a standard level of dynam-
ics slightly faster than of in the results of [12], and one with much

faster, jerky motion. MonoSLAM’s motion model parameters were
tuned such that prediction search regions were wide enough that
features did not ‘jump out’ at any point — necessitating a large pro-
cess noise covariance and very large search regions for the fast
sequence. Two more sequences were generated by subsampling
each of the 30 Hz sequences by a factor of two. These four se-
quences were all processed for 11 features per frame using Active
Matching and also the combination of full searches of all ellipses
standard in MonoSLAMwith JCBB to prune outliers. In terms of ac-
curacy, Active Matching was found to determine the same set of
feature associations as JCBB on all frames of the sequences studied.
This observation confirms that the Gaussians spawned throughout
the process ofmatching in each framewere placed around the ‘cor-
rect’ matches, and also that the weight-scaling of the different hy-
potheses has been consistent with reality; if a Gaussian had got a
low weight without enough evidence of it being an unlikely sce-
nario then it could be mistakenly pruned off the mixture resulting
inmissing some of the correctmatches in the final, accepted result.
This highlights the importance of our fully probabilistic weighting
scheme but also the guidance of matching using the mutual infor-
mation cues tomeasure themost reliable and informative features
first — it would not be a sensible strategy to search for a very com-
mon feature (with a high false-positive rate) when there are more
distinctive features present, or implode the weight of the searched
hypothesis after a null-search of a hardly recognisable feature (low
true-positive rate).

The key difference of the two algorithms was in the computa-
tional requirements as shown below:

One
tracking

step

Matching
only

No. pixels
searched

[relative ratio]

Max no.
live

Gaussians
Fast Sequence at 30 Hz (752 frames)

JCBB 56.8 ms 51.2 ms 40341 [8.01:1] –
AM 21.6 ms 16.1 ms 5039 7

Fast Sequence at 15 Hz (376 frames)
JCBB 102.6ms 97.1 ms 78675 [8.27:1] –
AM 38.1 ms 30.4 ms 9508 10

Slow Sequence at 30 Hz (592 frames)
JCBB 34.9 ms 28.7 ms 21517 [6.89:1] –
AM 19.5 ms 16.1 ms 3124 5

Slow Sequence at 15 Hz (296 frames)
JCBB 59.4 ms 52.4 ms 40548 [7.78:1] –
AM 22.0 ms 15.6 ms 5212 6

The key result here is the ability of ActiveMatching to cope effi-
ciently with global consensus matching at real-time speeds (look-
ing at the ‘One tracking step’ total processing time column in the
table) even for the very jerky camera motion which is beyond the
real-time capability of the standard ‘search all ellipses and resolve
with JCBB’ approachwhose processing times exceed real-time con-
straints. This computational gain is due to the large reductions in
the average number of template matching operations per frame
carried out during feature search, as highlighted in the ‘No. pixels
searched’ column—Global consensus matching has been achieved
by analysing around one eighth of the image locations needed
by standard techniques. (JCBB itself, given match candidates, runs
typically in 1 ms per frame.) Testing fewer pixels for a template
match, has the immediate effect of fewer matches being encoun-
tered. Guiding the matcher to ‘look’ at carefully selected (reduced)
regions, we avoid introducing additional confusion to the sys-
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(a) Fast camera motion at 15 Hz. (b) Slow camera motion at 15 Hz.

Fig. 3. Active matching dramatically reduces image processing operations while still achieving global matching consensus. Here is a superposition of the individual gating
ellipses searched in order to generate candidates for outlier rejection by JCBB(large, green ellipses) and the yellow ellipses searched for our Active Matching [9] method.
In these frames, joint compatibility needed to search 8.4× more image area than active matching in (a) and 4.8× in (b). Moreover, the ‘intelligent’ guidance of where to
search in AM, pays off in terms of the matches encountered (yellow blobs) avoiding introducing unnecessary confusion in the system with the extra matches (green blobs)
encountered in JCBB. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

tem by extra false-positives improving the odds of converging to
the true association scenario. The dramatic reduction in the area
searched together with the matches encountered by the two tech-
niques are overlaid on frames from two of the sequences in Fig. 3.
In all the experiments presented in this work, we have used the

Shi–Tomasi criterion [18] to extract the features tracked. However,
our Active Matching algorithm is not specifically tied to any par-
ticular feature detector/descriptor. While SIFT [19] or SURF [20]
features would be particularly useful for matching due to their
highly descriptive and distinctive nature (especially in the pres-
ence of only weak priors) the cost associated with their extraction
renders them unsuitable for frame-rate matching (depending on
the number of features tracked per frame). Despite the somewhat
lower quality alternatives like Shi–Tomasi, FAST [21,22] features or
the randomised ferns classifier [23] as used in [16], these could be
used equally effectively in matching — allowing denser frame-to-
frame correspondence scenarios studied in the next section.

6. Detailed performance analysis

In order to assess the performance of Active Matching in detail,
we have generated a set of experimental sequences by taking a
high frame-rate image sequence and down-sampling temporally
to generate reduced versions. Varying both the frame-rate and the
number of features being tracked per frame, we generate a matrix
of experiments to form the testbed of performance assessment of
Active Matching.

6.1. Performance with varying frame-rate and number of features

In this analysis of the computational performance of Active
Matching, we consider the average time consumed per frame in
terms of the main stages of the algorithm. Namely, within each
matching step it is necessary to (i) evaluate themutual information
that each candidate measurement is predicted to provide followed
by (ii)measurement of the selected candidate (by correlation) and
finally (iii) the update of themixture of Gaussians according to the
measurement result.
For the sake of comparisonwith the ‘get candidates first, resolve

later’ methods, wemonitor the computational time needed to per-
form JCBB. Again, the timings are considered in terms of the time
consumed to perform the two main steps of the method, namely
to (i) get the candidate matches for each feature (by correlation)
and (ii) resolve their consensus.

6.1.1. Fixed frame-rate; varying number of features
Increasing the number of features tracked per framemeans that

the matcher is equipped with more evidence to aid the resolution
of ambiguities, and in general it has been shown that trackingmany
features is key in obtaining more precision in pose estimation [17]
and therefore is clearly desirable. On the other hand, more time
needs to be consumed to process the extra information available. In
order to study howmuchmore time is neededwe recorded timings
while varying the number of features matched per frame when
tracking a particular sequence. Time breakdowns for both Active
Matching and Joint Compatibility are shown in Fig. 5.
Our results show that Active Matching scales badly with in-

creasing number of features and the step dominating the time
consumed is the mutual information calculation of the candidate
measurements in order to select which one to measure next. This
is explained by the fact that every new feature added in the sys-
tem, introduces a new candidate measurement for each Gaussian
present in themixture. Therefore, ActiveMatching hasmore candi-
dates to choose from, especially in a highly ambiguous scenewhere
there are many Gaussians present (i.e. in the low frame-rate case
in Fig. 5(a)). Evaluating theMI of each candidate, involves a predic-
tion of how the MoG will evolve in both cases of a successful and
a failed measurement of the current candidate. The estimation of
the continuous MI part in particular, translates into the potentially
costly handling of big Innovation Covariance matrices —which ex-
pand linearly with the number of features.
Joint Compatibility performs better with increasing number

of features, but is still far from real-time performance. Measur-
ing more features translates into more image regions we need
to search for template matches but also potentially more false-
positives — hence the constantly increasing time needed to per-
form correlation and resolve consensus. Active Matching on the
other hand, since it is being very selective in the areas it looks for
matches, both of the number ofmismatches encountered aswell as
the number of pixels searched remain very low even for big num-
bers of features matched as demonstrated in Fig. 4.

6.1.2. Coping with ambiguity: Varying frame-rate; fixed number of
features
As the frame rate decreases and the search-regions of features

cover bigger image area, it becomes more likely to encounter
more mismatches per feature, therefore complicating the process
of discovering the consensus in the prediction error. This is evident
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(a) Pixels searched per frame. (b) Mismatches encountered per frame.

Fig. 4. Carefully selecting where to look for matches pays off for Active Matching which needs to search dramatically fewer pixels per frame than JCBB as demonstrated in
(a). Also, constantly refining the search region for each feature avoids encountering unnecessary false positives, which is the case with Joint Compatibility as shown in (b).

(a) Active Matching at 3.75 Hz. (b) Matching with JCBB at 3.75 Hz.

(c) Active Matching at 30 Hz. (d) Matching with JCBB at 30 Hz.

Fig. 5. Computational time breakdown for AM and JCBB while varying the number of features matched in the 3.75 Hz (top row) and at 30 Hz (bottom row) sequences.
Active Matching scales badly with increasing number of features mainly due to the constantly expanding cost of the evaluation step of the mutual informations of all the
measurement candidates. Joint compatibility on the other hand, maintains better performance whenmore candidate measurements are available but its performance is also
far from real-time due to the increasing number of pixels needed to test for a template match.

in Fig. 6 where again, the number pixels searched is dramatically
reduced using Active Matching and as a result so is the number of
mismatches encountered. As matching becomes more ambiguous
withdecreasing frame rate,weneedmoreGaussians in themixture
to accurately represent the different hypotheses arising, hence
the negative slope in the maximum and average number of live
Gaussians in Fig. 6(c).

Tracking a scene with a low frame-rate camera is the real
challenge for data association algorithms since the amount of time
elapsing between consecutive frames is increasing, introducing
larger uncertainty into the system. The uncertainty in the camera
position translates into inflated search regions for each feature in
the image plane. In this set of experiments we aimed to assess the
performance of ActiveMatching in the presence of high ambiguity,
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(a) Pixels searched. (b) Mismatches encountered. (c) Live Gaussians in mixture.

Fig. 6. Decreasing the frame rate more pixels need to be tested for a match as shown in (a). This also means that more ambiguity is present during matching as more
mismatches are likely to occur as demonstrated in (b).When tracking highly ambiguous sequences, morematching scenarios arise per frame, hence themixture of Gaussians
needs to be populated with more members as confirmed in (c), in order to accurately reflect the search-state at every instant.

(a) Active Matching with 20 features. (b) Matching 20 features with JCBB.

(c) Active Matching with 40 features. (d) Matching 40 features with JCBB.

Fig. 7. Timings breakdown for variable frame rate matching a constant number of features using Active Matching and JCBB (tracking 20 features per frame in the top row
and 40 in the bottom row). For around 20 features per frame, Active Matching is entirely within real-time limits for all frame-rates whereas JCBB’s performance degrades
at low frame-rates since more time is needed to find the correlation matches. When tracking 40 features per frame though, the costly evaluation of MIs pushes the time
performance of Active Matching lower.

by tracking four consecutively subsampled sequences, with the
initial one grabbed at 30 Hz (keeping the number of tracked
features per frame constant). The breakdown of timings is shown
in Fig. 7.

6.2. Evolution of mutual information

Mutual information is what guides ourmatcher to select poten-
tially more informative measurements, avoiding areas of high am-
biguity. Since the process of evaluating the discrete and continuous
parts for every candidate has been proven to be the main compu-
tational bottleneck of our algorithm, here we study the evolution

of the mutual information throughout the matching steps of each
frame to uncover the true value it has at different stages during
matching.
As demonstrated in Fig. 8 at the beginning of matching there is

no ambiguity in the mixture since we start off with one Gaussian
with high uncertainty (which is directly related to the frame-rate
of tracking). This is represented by the dominant MI-continuous
presence during the initial steps of matching, since this part of MI
takes account of the desire to improve the accuracy of the most
probable Gaussian. As we obtain matches for more features, the
MI-continuous decreases dramatically and if any of the matches
encountered is inconsistent with existing Gaussians, new ones
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(a) MI components at 3.75 Hz. (b) MI components at 30 Hz.

Fig. 8. Evolution of the continuous and discrete components of MI for different frame rates, throughout the matching steps followed during AM in an average frame. In
both subfigures the two MI parts are shown stacked on top of each other to demonstrate the contribution that each has to the total MI in the mixture at any given step. The
Continuous-MI is the dominant factor during the initial steps of matching, especially when tracking at 3.75 Hz in (a) where there is more uncertainty present. As features
get localised one-by-one, the uncertainty in the MoG decreases, but as soon as we start encountering inconsistent measurements, more Gaussians are spawned resulting
to an increase in the Discrete-MI part which aims at resolving ambiguity. In both (a) and (b), the total MI tails off smoothly (notice the difference in scale) as the matcher
encounters more measurements.

Fig. 9. Matching many features is informative. But how much more information is a new measurement expected to give? This figure shows that the more the features we
match per frame, the more information we expect to get during the initial steps of matching. After matching has progressed for a number of steps though, the MI present in
the mixture does not decrease significantly.

are spawned to accurately reflect the ambiguous search-state.
In such cases, the MI-discrete part comes in and sometimes
takes over until both resolution of ambiguity and high accuracy
are achieved.
The more features we match, the more information we expect

to gain, always at the expense of computational time. So is it
really worth the effort measuring one more feature? How much
more information lies in this candidate measurement? A good
answer to this question relies on a plethora of factors; feature
characteristics, camera dynamics, speed of processor, etc. The
evolution of the total mutual information in the mixture can be
a representative measure of the value that an extra measurement
can have in the current search-state. Fig. 9 demonstrates that
despite that initially there is higher mutual information to be
gained for a bigger numbers of features, as we proceed with
matching features one-by-one the total-MI decays exponentially.
During the initial steps of the process, the evaluation of predicted
MIs is key to the algorithm since most of the uncertainty and

ambiguity in the scene get resolved. Measuring an extra feature
after a certain stage though does not really tell much more
to the current search state. Thus, predicting which feature will
provide the most information to measure next does not have
any significant effect to the subsequent result of the algorithm.
These observations and conclusions are exploited below to refine
our Active Matching method so that it can dynamically adapt its
performance according to the number of features and ambiguity in
tracking, achieving improved computational performance without
compromising accuracy.

7. Fast Active Matching

We have seen that Active Matching is being very selective in
the areas it looks for matches of features and this really pays off in
terms of the number of mismatches encountered and hence aids
the resolution of ambiguity. On the other hand, the process of eval-
uating all the {Feature, Gaussian} candidate measurement com-
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(a) Pixels searched per frame. (b) Mismatches encountered per frame.

Fig. 10. Comparing Fast ActiveMatching (FAM)with JCBB. Correlation is now the dominant factor in bothmethods, but in FAM the pixels searched are an order ofmagnitude
less in some cases as demonstrated in (a), explaining the superior performance of the algorithm. Subfigure (b) shows the difference in mismatches encountered by the two
methods which is the cause of inflated timings to resolve consensus in JCBB.

binations is the main bottleneck in computational performance.
Since we have discovered that only the first steps of matching are
the crucial parts in decreasing variance and resolving ambiguity,
we propose to stop evaluating mutual informations once the total
MI has dropped below a threshold. As demonstrated in Fig. 9where
the total MI is shown to tail off relatively early during matching,
this ‘approximation’ has a negligible effect on the course of the al-
gorithm, as expected.
Despite that aborting evaluation of MIs after a certain stage will

have a big impact in the computation time, if we want to track
many features we will still have to deal with big matrices, primar-
ily during the evaluation of MIs (for the first steps) but also dur-
ing the update of the mixture alone. Therefore, we propose to cut
down the computational cost by pre-selecting a certain number of
candidates to evaluate their MIs rather than evaluating all of them.
It is most likely that we no longer will be able to discover the best
candidate tomeasure next, but provided that the pre-selected can-
didates are evenly spread across all Gaussians (one can easily select
a certain number of candidates from each Gaussian), the candidate
that gets selected formeasurement should be a fairly good approx-
imation. Within each Gaussian, the pre-selection is random.
Once enough measurements have been made and the total MI

of the mixture has dropped enough to stop evaluating MIs, we
can check if there is a dominating Gaussian with high enough
probability. In case there is such a dominating Gaussian, under
these MI conditions it will have very low uncertainty left (since
there is no ambiguity to push MI-discrete scores up) so fusing
the nearest neighbour matches for the yet-unmeasured features is
guaranteed to produce the most consistent scenario.
In Figs. 11 and 10 we demonstrate how these refinements can

dramatically improve the computation time of Active Matching
to the extend that it beats JCBB. All the results shown in this
section have been taken by pre-selecting 15 random candidates
evenly spread across all Gaussians. Evaluation of MIs stops when
the total-MI per feature drops below 0.5 bits and if also there
is a dominating Gaussian with more than 70% probability of
being correct we accept it as the true scenario, fusing the nearest
neighbour matches to the remaining unmeasured features. Note
that since we prune weak Gaussians throughout matching and
renormalise the weights, a Gaussian with probability 70% by the
end of the matching is actually a lot more certain.
In the future, we can go a step even further to stop measuring

features when the MI in the mixture becomes very low. This is
expected make use of the fully adaptive nature of Active Matching
and can prove particularly beneficial in high-frame rate tracking
with a lot of features. In such cases, the uncertainty in the camera
pose can be very small leaving little room for ambiguities during
matching. Also, the expected improvement in accuracy with more
measurements can soon be ruled insignificant therefore, aborting

matching at that stage translates into reducing redundancy with
potentially big savings in computation time.

8. Conclusions

This work demonstrates how a mixture of Gaussians formula-
tions allow global consensus feature matching to proceed in a fully
sequential, Bayesian algorithm which we call Active Matching. In-
formation theory plays a key role in guiding highly efficient image
search and we can achieve large factors in the reduction of image
processing operations.
While our initial instinct was that the algorithm would be

most powerful in matching problems with strong priors such as
high frame-rate tracking due to the advantage it can take of good
predictions, our experiments with lower frame-rates indicate its
potential also in other problems such as recognition. The priors
on absolute feature locations will be weak but priors on relative
locations may still be strong.
In this article, we presented an evaluation of the performance

of Active Matching via extensive testing for variable number
of features tracked per frame and different frame-rates, in an
attempt to unveil the bottlenecks of the algorithm in comparison
to standard ‘get candidates first, resolve later’ approches like JCBB.
Briefly, our results indicate that the full Active Matching algorithm
despite maintaining real-time performance for different frame-
rates for a relatively low number of features per frame (around
20), it scales badly when this number increases mainly due to the
manipulation of large matrices during the calculation of mutual
information.
Following a detailed discussion of the value of mutual informa-

tion in the course of the algorithm, we observed that carefully se-
lecting which feature to measure at each step (guided by mutual
information) plays a key role during the initial steps of matching
where most of the uncertainty and ambiguity in the systems gets
resolved.Making use of the fact that in later stages of the algorithm
the search state usually converges to a single, dominant hypothe-
sis, we present our Fast Active Matching algorithmwhich achieves
real-time performance for large numbers of features even when
JCBB does not, through some minor approximations.
In future work, we aim to look into techniques to track even

more features, faster. We believe that mutual information has
yet a lot to provide in high frame-rate tracking — the motion
priors are indeed stronger then but the limited processing time
available makes the task of resource allocation in matching even
more challenging.
Our long-termaim is to develop fully scalable algorithms via the

active matching approach which will be able to perform the best
matching job possible given a certain computational budget. For
instance, state of the art optical flow algorithms [24] are now able
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(a) Fast Active Matching at 30 Hz. (b) Matching with JCBB at 30 Hz.

(c) Fast Active Matching 70 features. (d) Matching 70 features with JCBB.

Fig. 11. Superior performance of Fast Active Matching over JCBB. Subfigures (a) and (b) show the computational time breakdown for fast AM and JCBB respectively when
tracking at 30 Hz; the time spent in evaluation of MIs here is significantly reduced maintaining almost constant overall time adapting to the number of features whereas the
resolution of consensus in JCBB deteriorates performance with increasing number of features. In (c) and (d) are the timings for tracking 70 features at different frame rates.

to produce real-time matching for every pixel in an image when
running on the latest GPUhardware. A hierarchical active approach
may permit such dense matching performance to be approached
with much reduced computational requirements.
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