
Scalable Active Matching

Ankur Handa, Margarita Chli, Hauke Strasdat and Andrew J. Davison

Department of Computing, Imperial College London, UK

{ahanda, mchli, strasdat, ajd}@doc.ic.ac.uk

Abstract

In matching tasks in computer vision, and particularly

in real-time tracking from video, there are generally strong

priors available on absolute and relative correspondence

locations thanks to motion and scene models. While these

priors are often partially used post-hoc to resolve match-

ing consensus in algorithms like RANSAC, it was recently

shown that fully integrating them in an ‘Active Matching’

(AM) approach permits efficient guided image processing

with rigorous decisions guided by Information Theory.

AM’s weakness was that the overhead induced by inter-

mediate Bayesian updates required meant poor scaling to

cases where many correspondences were sought. In this pa-

per we show that relaxation of the rigid probabilistic model

of AM, where every feature measurement directly affects the

prediction of every other, permits dramatically more scal-

able operation without affecting accuracy. We take a gen-

eral graph-theoretic view of the structure of prior informa-

tion in matching to sparsify and approximate the intercon-

nections. We demonstrate the performance of two varia-

tions, CLAM and SubAM, in the context of sequential cam-

era tracking. These algorithms are highly competitive with

other techniques at matching hundreds of features per frame

while retaining great intuitive appeal and the full proba-

bilistic capability to digest prior information.

1. Introduction

Matching is the problem of obtaining correspondence

between images, or between a single image and a model

constructed from previously processed data. It is a task

at the core of almost all computer vision systems which

process image sequences, including those which tackle the

camera tracking problem we focus on in this paper.

Ultimate performance in matching is represented by the

determination of a fully dense correspondence field between

images, or at least between the parts of them which observe

common parts of the scene. It is feasible to aim to obtain

such dense correspondence information in cases where it

Figure 1. Approximating the joint prior distribution over feature predic-

tions in matching using graphs. In our algorithms we simplify a fully con-

nected graph to a unit-width tree (CLAM), or a tree of subsets (SubAM) to

achieve real-time matching of many features.

can be assumed that the changes between two images to be

matched are relatively small. This is the subject of the well

known field of optical flow estimation, and there have re-

cently been significant advances in this area. For instance,

highly impressive results have been achieved in fully dense

optical flow using variational optimisation, achieving real-

time operation on the latest GPU processors [19]. In such

methods, the assumption of small motion permits highly ef-

fective regularisation terms to ‘fill in’ the correspondence

field, even in areas of low texture.

The regularisation term in optical flow algorithms is one

example of a prior used in matching, encoding usually the

assumption that the inter-frame displacement of nearby pix-

els will tend to vary gradually in regions of gently varying

image intensity, since most scenes consist of real contin-

uous objects relative to the size of which any motion (of

scene or camera) is fairly small. Matching over wider base-

lines, or without such lavish processing resources, cannot

usually aim to be completely dense. Instead, correspon-

dence is generally sought only between salient ‘features’,

parts of the image which can be characterised by descrip-

tors with some degree of invariance to transformations. In

1

sequential camera tracking, although frame-to-frame cam-

era motion may be small, it is desirable to track features

through as many frames as possible to best constrain cam-

era motion estimates.

Once the aim of fully dense correspondence is reduced

to that of matching a set of distinct features spread across

the image, strong priors are still available on the image lo-

cations of these features. The level of this prior information

depends strongly on the domain knowledge present in the

problem. Suppose that it is desired to match features be-

tween two images and all that is known is they are consec-

utive video frames taken by a moving camera — then the

priors we can assume will be a distributed version of those

used in optical flow estimation. On the other hand, when

matching as part of sequential camera tracking system with

rolling 3D camera and position estimates, strong correlated

predictions of the image positions will be available.

This was precisely the situation where Chli and Davi-

son’s Active Matching (AM) algorithm [2, 3] was demon-

strated, as the matcher in a filtering-based monocular Si-

multaneous Localisation and Mapping (SLAM) system [8].

Matching priors are built into the heart of this algorithm.

The joint distribution on feature locations they predict is

explicitly projected into the image, used to make decisions

guided by information theory about which features to mea-

sure when, and incrementally refined towards a matching

posterior as measurement results come in. It uses a mixture

of Gaussians representation to represent and refine multiple

hypotheses, and can also take account of per-feature appear-

ance statistics if required. AM demonstrated similar accu-

racy but much improved computational performance com-

pared to the older probabilistic technique for data associa-

tion Joint Compatibility Branch and Bound (JCBB) [12].

AM is a very different paradigm from the matching

methods which dominate computer vision currently, where

any use of priors is generally non-probabilistic, relying on

fixed thresholds to check on matching consensus, and post-

hoc as matching candidates gathered using blanket image

processing are later refined. RANSAC [9] and more effi-

cient variants [6, 14] are the most widely used algorithms

of this type, relying on random sampling and voting to hy-

pothesise and test matching combinations.

Attempts have been made to retro-fit RANSAC algo-

rithms with probabilistic tests and updates in the loop, lead-

ing to semi-probabilistic variants like KALMANSAC [18],

Guided-MLESAC [17] and Civera et al.’s recent 1-point

RANSAC method [7]. Raguram et al.[15] also recently

showed that modelling the uncertainty in the processes in-

volved can greatly improve the quality of the RANSAC

outcome. However, parts of these algorithms remain ad-

hoc and unsatisfactory and we do not see any reason not to

aim for deterministic, probabilistic algorithms which do not

need any random sampling or fixed thresholds.

(a) (b) (c) (d)
Figure 2. A mini example of AM [2]. The initial search-state G1 in

(a) describes the expected configuration of matches. In (b) a search is

made for the top-left of the four predicted features, and the two candidate

matches found cause the spawning of new Gaussian hypotheses G2 and

G3, pushing the weight λ1 of G1 down (illustrated in the histogram). A

failed search in G3 in (c) reduces λ3, while the match in (d) spawns G4

which becomes the dominant hypothesis.

While AM is therefore technically appealing, detailed

performance analysis presented in [3] has revealed its poor

scalability with the number of features per frame. AM or

other fully probabilistic matching algorithms have previ-

ously not proven their ability to handle hundreds of matches

in real-time due to the costly overhead of intermediate

Bayesian calculations. RANSAC and variants gain ground

on speed of processing while sacrificing probabilistic detail.

The aim of this paper is to take a deeper look at the

structure of the probabilistic priors fed to matching algo-

rithms, and using graph-theoretic principles to make conser-

vative approximations and sparsifications to the joint mea-

surement density used by AM such that scalability is much

improved while matching accuracy is maintained. We pro-

pose new algorithms, CLAM and SubAM, based on a tree

structure (CLAM) and a tree of feature subsets (SubAM).

We demonstrate the performance of our new algorithms in

extensive tests in the context of sequential camera track-

ing using a keyframe-optimisation based SLAM system,

and show that SubAM in particular permits highly scalable

AM-style matching performance such that these methods

are now highly competitive with the best other techniques.

2. The Active Matching Paradigm

Given a new image, AM [2] sets its initial matching

search-state to the input probabilistic prior p(z) over the im-

age locations z = (za, zb, . . .)
⊤ of the measurable features.

The evidence gathered by measuring features one-by-one

causes progressive updates in the search-state. A mixture

of Gaussians is employed to handle the multiple matching-

hypotheses arising. Each Gaussian Gk has an associated

probability λk of representing the true scenario:

p(z) =

K
X

k=1

p(zk) =

K
X

k=1

λkGk , where
K

X

k=1

λk = 1 (1)

The algorithm follows a predict-measure-update loop

which terminates when all features have been searched for

(a) Complete Graph (b) Tree of clusters (c) Tree of nodes

Figure 3. Representing matching priors, the predicted joint distribution

over image feature locations as a graph, and sparsifying it for efficiency.

Considering this distribution as a graph of measurement predictions and

correlation potentials, we aim to sparsify the complete graph as considered

in AM with a tree of clusters in SubAM and a tree of nodes in CLAM.

and the mixture converges to a probabilistically dominant

Gaussian. Below we describe each of these stages briefly

which can be visualised in the example of Figure 2:

• Predict: Evaluate the expected utility (in terms of mutual

information — see Section 3.2) of all measurement candi-

dates in terms of how much they should help to resolve the

ambiguity and decrease variance in the mixture.

• Measure: Search for template matches corresponding to

the candidate predicted to provide the most mutual informa-

tion per pixel needed to search (i.e. its 3σ gated ellipse).

• Update: Redistribute the weights according to the new

evidence obtained (e.g. if no match was found, then λi of the

measured Gi should diminish). If the measurement stage

yields M matches, M new Gaussians get spawned each to

represent that one of these matches corresponds to the true

feature, whileGi is updated to represent that all M matches

are false-positives. Finally, any Gaussians with very weak

weights get pruned off the mixture.

While AM exhibits great robustness to mismatches fol-

lowing the probabilistic maintenance of hypotheses, it

spends precious processing time into ‘thinking’ of where to

look for matches next. Following this realisation, here we

attack the scalability of matching studying sparsifications of

the joint input prior as illustrated in Figure 3.

3. Feature Matching Priors

Matching priors are expressed as a joint distribution

on the predicted positions of features in an image before

any image processing is done. Generally, these priors en-

code strong correlation information between the predictions

which is the key to robust consensus matching.

3.1. Probabilistic Predictions in a Graph

The effect of correlations can be visualised as a network

of springs connecting feature predictions. Pinning down the

exact location of one feature in the image za will result in

an associated shift in the rest of the predictions. Formalis-

ing this analogy, we consider the joint prior p(z) as a gen-
eral graph structure where nodes correspond to individual

feature predictions za and edges represent the correlation

potentials between these nodes.

In order to model p(z) with a Gaussian G = {ẑ, S} we

construct the mean ẑ and covariance matrix S consulting the

input graph structure: each partition ẑa holds the predicted

image location of node za, while block Saa
1 describes the

uncertainty in ẑa. The potential of the link shared between

za and zb is stored in Sab.

While in principle S is a dense matrix we need not esti-

mate the covariance blocks of any nodes not sharing direct

links as these links will never be used to propagate informa-

tion (as shown in Section 4.2). Note that in the language of

Kalman filter tracking, S is the ‘innovation covariance’ and

is explicitly available at every frame.

3.2. Mutual Information of Candidates

AM looks for matches on demand while searching for

consensus in a process driven by Mutual Information (MI):

at every step it chooses to measure the candidate predicted

to provide the highest MI to the current matching state, di-

vided by the number of pixels needed to search for image

processing. As defined in Shannon Information Theory, MI

provides a measure of the expected reduction in uncertainty

in the current state upon part observation of this state.

The Pairwise MI score quantifies the information a po-

tential measurement for zb predicted to provide to predic-

tion za as:

I(zb; za) = E

»

log2

p(za|zb)

p(za)

–

=
1

2
log2

|Saa||Sbb|

|Sa,b|
, (2)

where Sa,b is the joint covariance of both za, zb. As

explained in [4] this score provides an absolute, normalised

measure of the correlation between any two measurement

candidates. Transforming all the correlation potentials into

Pairwise MI links, we can form a ‘MI graph’. It is important

to note here that the MI score used in AM is different as

there we consider the information shared between zb and

the rest of the candidates in z (i.e. I(zb; za, zc, . . .)).

4. CLAM: Chow Liu Active Matching

As a first attempt to mitigate the computational overhead

of AM, we considered thinning the complete graph of the

joint prediction p(z) into a singly-connected tree as in Fig-

ure 3(c). While this can indeed be a big approximation,

careful selection of the edges preserved can be very benefi-

cial to the closeness of approximation.

4.1. The ChowLiu Tree

A joint density over z = (z1, z2, . . . , zn)
⊤
can be ap-

proximated with a tree-shaped model via factorisation:

1
Saa describes an ellipse in image space, often referred to as the ‘active

search’ region for feature za

p(z)=p(zn)

n−1
Y

i=1

p(zi|zi+1 . . . zn)≈p(zn)

n−1
Y

i=1

p(zi|zi+1). (3)

Out of all such tree factorisations, Chow and Liu [5]

showed that the optimal approximation can be formed by

retaining the links corresponding to the maximum spanning

tree2 of the complete MI graph (as defined in Section 3.2).

Inspired by the power of the Chow-Liu (CL) tree to

capture the most representative correlation structure in the

scene in [4], here we propose using it to represent the distri-

bution of expected feature locations input to AM in our new

Chow Liu Active Matching (CLAM) algorithm. While in

AM the update stage involves costly EKF-updates, the sim-

ple tree structure in CLAM allows Belief Propagation (BP)

updates of O(n) in the worst case.

4.2. Belief Propagation for CLAM

Given observations for some tree nodes, BP provides ex-

act inference computing marginals for all other nodes by re-

cursively propagating messages along the tree. Bishop [1]

discussed how a full update requires two passes of the tree

(from the leaves to the root and back) so that every node

receives updates from all its neighbours. In our case, ob-

serving one node at a time permits updates to rest of the

nodes by propagating messages all the way to the leaves in

a single pass.

The key idea behind the BP methodology is the exploita-

tion of the properties of d-separation: there is only one

path between any two nodes in the tree, hence an update-

message originating from observed node za is bound to up-

date the probability distributions of any intermediate nodes

in the way until it reaches its final destination, node zc.

4.2.1 Propagating Updates

Considering that the joint distribution p(z) of this tree de-

scribed by a Gaussian G = {ẑ, S} can be partitioned as

follows:

ẑ =

0

@

ẑa

ẑb

ẑc

1

A , S =

2

4

Saa Sab Sac

Sba Sbb Sbc

Sca Scb Scc

3

5 . (4)

Given the observation za = a, applying Schur’s comple-

ment on the S we can obtain the conditioned covariance:
»

Sbb|a Sbc|a

Scb|a Scc|a

–

=

»

Sbb Sbc

Scb Scc

–

−

»

Sba

Sca

–

S
−1
aa

ˆ

Sab Sac

˜

,

(5)
while similar update-rules apply for the means vector:

„

ẑb|a

ẑc|a

«

=

„

ẑb

ẑc

«

−

»

Sba

Sca

–

S
−1
aa (ẑa − a) . (6)

2The acyclic path connecting all nodes in a weighted graph which

yields the maximal sum of weights.

However, the block Sca
3 is not explicitly known since za

does not share a direct link with zc. Considering the effect

of propagating a measurement for zb instead and enforcing

Sca|b = 0 (since za|b and zc|b become independent), one

can arrive to the expression Sca = ScbS
−1
bb Sba. Substituting

for Sca back to (5) and (6) it becomes evident that:

Scc|a = Scc − ScbS
−1
bb

`

Sbb − Sbb|a

´

S
−1
bb Sbc (7)

Sbc|a = Scc − ScbS
−1
bb

`

Sbb − Sbb|a

´

(8)

ẑc|a = ẑc − ScbS
−1
bb

`

ẑb − ẑb|a

´

. (9)

The above expressions demonstrate the recursive nature

that the updates can have, since when evaluating p(zc|za)
one can use the moments {ẑb|a, Sbb|a} of p(zb|za). Hence,
S needs to contain explicit entries only for nodes sharing

a direct link in the CL-tree. Interestingly, upon success-

ful measurement of a feature zb, the Gaussian spawned to

represent the hypothesis that the match obtained is a true-

positive will have zero S-blocks for the links of zb to zero,

essentially isolating zb from the rest of the tree. As a result,

the problem of matching is progressively broken down in

smaller sub-trees reducing the computation time greatly.

4.2.2 Evaluating MIs

The flow of information along the branches of tree using BP

has even more attractive properties when evaluating MIs of

candidates. Let us consider the MI that za can give to the

rest of the tree nodes in our tree example above:

I(zb; za, zc) =

Z

z

p(za, zb, zc) log2

p(zb, zc|za)

p(zb, zc)
dz . (10)

Applying Bayes’ rule to the ratio inside the logarithm:

p(za, zb, zc)

p(za)p(zb, zc)
=

p(za)p(zb|za)p(zc|zb)

p(za)p(zb)p(zc|zb)
=

p(zb|za)

p(zb)
. (11)

Substituting (11) back in (10), it is straightforward to

show that I(zb; za, zc) = I(zb; za). The general rule that

arises from further investigation into more complex tree

structures is that the MI of a given node with the rest of

the variables in a tree is is equal to the MI it shares with its

immediate neighbours alone. As a result, the costly over-

head of updating a dense graph in AM is replaced by a few

fast message-passing operations within the sub-tree span-

ning the candidate node and its immediate neighbours only.

Moreover, due to the partitioning of the tree into smaller

sub-trees while matching, the MI scores of any sub-trees

not updated within a particular matching-iteration can be

carried forward to the next step.

4.3. CLAM: A StepByStep Example

Figure 4 illustrates a step-by-step example of CLAM

within a given frame. Given the joint prior p(z), the dense

3Note that Sca = S
⊤
ac since S is symmetric

(a) Initial state: the CL tree (b) Propagate 1st measurement

(c) Failed search for a match (d) Measure a hub-like feature

(e) Updated state (f) Searched area
Figure 4.Matching using CLAM. The prior distribution and the computed

CL tree are illustrated in (a). The arrow points to the feature selected for

measurement by MI. Propagating the match found in (a) results in cuts

of links in (b) and reduction of variance for the rest of the features. The

match found in (b) yields updates in (c) for that subtree only. The failed

search for a match in (c) preserves the same tree structure in (d). Finally (f)

demonstrates the reduced regions searched in CLAM w.r.t. conventional

methods like RANSAC or JCBB. Note that the CL tree links projected

in every image correspond to the most probable Gaussian for the sake of

clarity, while more Gaussians emerged in the mixture during matching.

MI graph is sparsified into the CL tree as shown in 4(a).

Any features tracked consistently and moving coherently

throughout the sequence share strong correlations hence

they lie close to each other in the tree space (e.g. the fea-

tures on the checker-board). Following the measurement of

the hub-like feature selected by MI in 4(b), we propagate

updates causing reductions in uncertainty of different mag-

nitude at all other nodes depending on their closeness in the

tree structure. Since no more information can be passed

through a matched node, any links connecting it to the rest

of the tree can be cut. As a result, matching is partitioned

into subtrees which are highly intercorrelated. Subsequent

measurements and updates result in successful matching as

shown in (f) where the searched regions of CLAM and tra-

ditional methods like JCBB are superimposed.

5. SubAM: Subset Active Matching

The tree approximation of the joint prior in CLAM

achieves a dramatic reduction in timings with respect to AM

as demonstrated in Section 6 allowing real-time matching

for hundreds of features. However, due to the fact that MI

guides the division of the matching problem into smaller

subtrees no particular care is taken to balance the size of

the partitions. As a result, CLAM becomes unsuitable for

super-dense online matching. Following this realisation, we

developed Subset Active Matching (SubAM) which explic-

itly aims at balanced partitions into subsets connected in a

tree (e.g. Figure 3(b)). All correlation links between fea-

tures of the same subset are preserved as well as any links

shared by features belonging to subsets in the order they get

measured.

5.1. The SubAM Algorithm

As in CLAM, in SubAM we construct the CL tree from

the input prior G1 and then form groups of features (‘sub-

sets’) by considering their proximity in this tree: given a

target group-cardinality c (set to 10 for all experiments pre-

sented), we place partitions at nodes where the number of

their descendants not already grouped is greater than or

equal to c − 1. Note that this strategy can lead to subsets

smaller than c, but we fix the minimum size to cmin = 3.
Similar ideas to that in SubAM have been used in

other recent matching algorithms which perform matching

cluster-by-cluster. The N3M algorithm [10] defines groups

of nearby features which have one more than the minimum

number of feature members needed to offer their own con-

sistent pose estimate, but these definitions are not as rig-

orously founded as our information theoretical measures.

GroupSAC [13], on the other hand, clusters candidate fea-

tures based on cues such as similar optical flow vectors.

However, such clustering relies on exactly the kind of blan-

ket image processing which we wish to side-step in our

method. Instead, we show that useful clusters for match-

ing can be determined just from matching priors, before the

image data has even been accessed.

SubAM(G1)

1 mixture = [[1,G1]] (each entry is a [λi, Gi] tuple)

2 T = find tree of subsets(G1)

3 V = [] (to hold all subsets visited by SubAM)

4 for ∀ si ∈ T (selecting si in a depth-first manner)

5 mixture = AM(mixture, si)

6 V = append(si, V)

7 Gbest = get most probable G(mixture)
8 while ∃ f ∈ V: is unmeasured(f ,Gbest)

9 sj = get subset of f (f)

10 mixture = AM(mixture, sj)

11 Gbest = get most probable G(mixture)
12 end while

13 end for

14 return Gbest

Having formed the tree T of subsets si (preserving the

same hierarchy as in the CL tree) we attempt matching by

considering subsets in tandem. Starting with the root sub-

set, we traverse T in a depth first manner and perform full

AM but only limited to features in the examined si. This

means that while each Gaussian in the mixture has a rep-

resentation for every feature in the image, one AM process

is only allowed to operate within the part of each Gaussian

corresponding to the features in si. Following an AM step,

the most probable Gaussian of the mixtureGbest is checked

for any unmeasured features belonging to visited subsetsV.

If Gbest has all visited features measured, then we can con-

fidently propagate the probabilistic state to the next subset,

otherwise the algorithm seeks to measure all of them. Note

that in the latter case, the nature of the matches obtained

might reveal a different Gaussian as the most probable one,

leading to a reassignment of Gbest.

5.2. SubAM: A StepByStep Example

Figure 5 illustrates a step-by-step example of SubAM in

action. The CL tree and the subset structure for this frame

are shown in (a). Running AM on subset s1 creates a new

AM process to operate on s2 as shown in (b). By the time

s3 is visited, the mixture contains a single Gaussian pro-

jected as small search regions for the features in s3 in (c).

Since subsets are visited sequentially, their state is updated

on demand so any yet-unmeasured subsets retain their orig-

inal search-state. Finally, in (f) we superimpose the area

searched by SubAM, with the area that conventional meth-

ods would look for matches. It is worth noting that the big-

ger the subsets, the closer the approximation but also the

more time AM needs to complete. However, if subsets are

very small it becomes more likely to generate erroneous hy-

potheses, so one has to select a suitable subset size c to com-

promise the desirable speed with the quality preserved.

6. Results

To test the capabilities of the CLAM and SubAM algo-

rithms, we have generated a test-bed of matching scenarios

spanning different camera dynamics and numbers of fea-

tures. Since probabilistic filter-based camera trackers such

as [8] are unsuitable for processing the number of corre-

spondences which we aim at here, we have based our exper-

iments on a new camera tracking system using keyframe op-

timisation, following very much the design of PTAM [11].

In all experiments presented we detect FAST features [16]

as the only blanket pre-processing, and save the 24×24 sur-

rounding image patches as descriptors. Following the low-

cost detection of FAST peaks in a given image (around 2ms

for a 640 × 480 image) we check for template matches of

features using ZNCC within the search-regions determined

by the matching algorithm. We evaluate the performance of

(a) CL tree and subsets (b) Initial AM state in subset s2

(c) Ambiguity resolved (d) AM in s4

(e) AM in s7 (f) Searched area
Figure 5. Matching using SubAM. The prior is projected in (a) together

with the CL tree and the partition into subsets. The mixture resulting from

AM in s1 is projected to s2 in (v) where a new AM process is initialised.

In (c) the ambiguity is resolved and AM is attempted in s3. In (d) and (e)

AM is applied to subsequent subsets until all features are matched. In (f)

we superimpose the regions searched by SubAM with the initial regions

that conventional methods like JCBB would need to search.

CLAM and SubAM with respect to AM by feeding exactly

the same input predictions to all three algorithms.

6.1. ObtainingMatching Priors fromOptimisation
based Camera Tracking

While matching priors are straightforwardly obtained

from the innovation covariance matrix S calculated at

every step in filtering-based camera trackers such as

MonoSLAM [8], we need to work a little to obtain them

from the alternative keyframe optimisation trackers in the

style of PTAM [11] which we use in our experiments.

Such a camera tracker does not store distributions over

feature positions due to prohibitive computational cost.

However, uncertainty in feature positions has a relatively

small effect on matching priors, since it tends to be aligned

with the camera’s viewing direction in monocular SLAM.

Instead, the main uncertainty in image space comes from

the unknown motion which is described by a probabilistic

motion model with process noise Q. Since the pose of the

previous frame is already optimised with respect to the 3D

map, we are only interested in the relative uncertainty P
(rel)
xv

between the previous and the current frame: P
(rel)
xv

= Q. Pro-

T
IM

E
 (

M
S

)

NUMBER OF FEATURES

50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

Image Proc.

Evaluate MIs

Update

Extras

CL tree

T
IM

E
 (

M
S

)

NUMBER OF FEATURES

50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

160

180

Image Proc.

Evaluate MIs

Update

Extras

CL tree

(a) CLAM timings (b) SubAM timings

Figure 7. Breakdown of the average processing time for CLAM (a) and

SubAM (b) with respect to the number of features searched in the individ-

ual stages of the algorithms (‘Extras’ includes initialisation of data struc-

tures). It is evident that the update of the mixture of Gaussians takes up

most of the processing time in CLAM, while the evaluation of MIs is the

dominant factor in SubAM. Note that the Image Processing, Extras and CL

tree building stages consume comparable time in both methods.

jecting P
(rel)
xv

to the current image, we can compute S:

S =
∂h(y1:n)

∂xv

P
(rel)
xv

∂h(y1:n)

∂xv

T

+ R , (12)

where h is the projection function of map features yi, xv

is the camera pose and R is a block-diagonal measurement

noise matrix. The resulting S is dense whereas the inter-

feature covariances only come from the motion uncertainty.

6.2. Time Requirements

We have tested the scalability of our algorithms with

respect to the number of features matched per frame in

keyframe-based SLAM. Figure 6 illustrates the time re-

quired to perform matching using AM, CLAM and SubAM

for frames where the number of features predicted to be vis-

ible ranges from 20 up to 420. As suggested in [3], it is evi-
dent that AM is not suitable for real-time matching of more

than 50 features per frame, with its curve soon disappearing

off the top of the graph. CLAM exhibits a vast reduction in

processing time, with real-time performance looking feasi-

ble up to the 100–200 feature level and a relatively modest

loss of speed beyond this.

However, it is SubAM which really takes performance

into the real-time domain for large numbers of features per

frame. SubAM demonstrates nearly constant runtime across

the range of numbers of features tried, achieving matching

of 400 features in only 170ms. Up to 150 features, CLAM

and SubAM are comparable but as shown in Figure 7(a)

both the Update and the Evaluation of MIs stages consume

increasing processing time in CLAM. As explained earlier

in Section 5 this is due to the maintenance costs of the tree

representation, which gets partitioned into smaller subtrees

but these are not explicitly balanced, the decision is instead

being driven by MI. The timings breakdown for SubAM in

Figure 7(b) suggests that the most significant factor then is

the Evaluation of MIs. This is expected as SubAM performs

full AM on small subsets of features and we have already

seen that this is the most expensive step in AM [3].

50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

NUMBER OF FEATURES

A
R

E
A

 S
E

A
R

C
H

E
D

 (
P

IX
E

L
S

)

CLAM

SubAM

Figure 8. The number of pixels searched for ZNCC matches with respect

to the input uncertainty regions. While conventional methods like JCBB

and RANSAC need to look for matches within the regions corresponding

to the input prior, AM and variants exploit correlations of features to reduce

this as shown in Figures 4(f) and 5(f).

Note that the jagged nature of the processing time results

in both Figures 6 and 7 is due to the variation in our real

dataset. Some frames can be matched very quickly due to

inherent lack of ambiguity or a fortunate choice of initial

matching candidates, while others require more effort.

6.3. Area Searched and Matches Found

Matching a growing number of features per frame with

conventional methods increases the image processing time

since more pixels need to be tested for a template match

which increases the likelihood of false positives. However,

AM exploits the priors in such a way that it reduces the area

searched for matches. Our new approximations of AM still

reduce the searched areas significantly as shown in Figures

4(f) and 5(f), which is to be accredited to the use of the CL

tree to identify highly correlated links to preserve. Figure

8 superimposes the area searched for matches using CLAM

and SubAM. It is worth noting that the matches accepted

using AM and both variants are in agreement with the ref-

erence result provided by an independent matcher. In some

cases, AM in fact rejects some of the matches that CLAM

and SubAM seem to accept (comprising no more than 6%
of the features matched). This is because of the rigid distri-

bution of AM, whereas both CLAM and SubAM relax this

distribution allowing some extra (conservative) freedom in

the expected configuration of matches.

7. Conclusions

This paper presented two conservative approximations

which enable the efficient use of probabilistic priors in an

active matching approach: CLAM approximates the prior

distribution by a tree of features while SubAM partitions

the matching problem into a tree of subsets of features. Ex-

ploiting the power of probabilistic priors and the insights

of Mutual Information to drive decision making, both al-

gorithms have been demonstrated to achieve much lower

processing time than standard Active Matching. In fact, our

SubAM method is able to complete matching of 400 fea-

tures in 170ms which to our knowledge is faster than any

other fully probabilistic method. Future plans involve fur-

ther study into graph-theoretic relaxations for super-dense

online matching. We expect that there is a point where

the intermediate updates performed in a top-down approach

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

NUMBER OF FEATURES

M
A

T
C

H
IN

G
 T

IM
E

 (
m

s
)

SubAM

CLAM

AM

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450

500

550

NUMBER OF FEATURES

M
A

T
C

H
IN

G
 T

IM
E

 (
m

s
)

SubAM

(a) CLAM vs SubAM w.r.t. AM (b) SubAM close-up

Figure 6. Timing requirements per frame for AM, CLAM and SubAM as a function of features matched per frame. The processing time for standard AM is

displayed in (a) for comparison, but its use becomes it computationally unfeasible beyond 76 features. CLAM demonstrates a vast speed improvement over

AM, but becomes expensive when matching around 200 features per frame and beyond. SubAM on the other hand, in (a) and the close-up in (b) exhibits

much more scalable performance achieving matching of 420 features in only 170ms.

will come at diminishing returns, which raises the funda-

mental question of top-down versus bottom-up methods.

Acknowledgements

This research was supported by European Research

Council Starting Grant 210346. We are grateful to Adrien

Angeli, José Marı́a Montiel, Klaus H. Strobl and other col-

leagues at Imperial College London for very helpful discus-

sions and software collaboration.

References

[1] C. M. Bishop. Pattern Recognition and Machine Learning.

Springer-Verlag New York, Inc., 2006. 4

[2] M. Chli and A. J. Davison. Active Matching. In Proceedings

of the European Conference on Computer Vision (ECCV),

2008. 2

[3] M. Chli and A. J. Davison. Active Matching for visual track-

ing. Robotics and Autonomous Systems, 57(12):1173 – 1187,

2009. Special Issue ‘Inside Data Association’. 2, 7

[4] M. Chli and A. J. Davison. Automatically and efficiently

inferring the hierarchical structure of visual maps. In Pro-

ceedings of the IEEE International Conference on Robotics

and Automation (ICRA), 2009. 3, 4

[5] C. K. Chow and C. N. Liu. Approximating discrete probabil-

ity distributions with dependence trees. IEEE Transactions

on Information Theory, 14(3):462–467, 1968. 4

[6] O. Chum and J. Matas. Optimal randomized RANSAC.

IEEE Transactions on Pattern Analysis and Machine Intel-

ligence (PAMI), 30(8):1472–1482, 2008. 2

[7] J. Civera, O. G. Grasa, A. J. Davison, and J. M. M. Mon-

tiel. 1-point RANSAC for EKF-based structure frommotion.

In Proceedings of the IEEE/RSJ Conference on Intelligent

Robots and Systems (IROS), 2009. 2

[8] A. J. Davison, N. D. Molton, I. Reid, and O. Stasse.

MonoSLAM: Real-time single camera SLAM. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 29(6):1052–1067, 2007. 2, 6

[9] M. A. Fischler and R. C. Bolles. Random sample consen-

sus: a paradigm for model fitting with applications to image

analysis and automated cartography. Communications of the

ACM, 24(6):381–395, 1981. 2

[10] S. Hinterstoisser, S. Benhimane, and N. Navab. N3M: Nat-

ural 3D markers for real-time object detection and pose es-

timation. In Proceedings of the International Conference on

Computer Vision (ICCV), 2007. 5

[11] G. Klein and D. W. Murray. Parallel tracking and map-

ping for small AR workspaces. In Proceedings of the Inter-

national Symposium on Mixed and Augmented Reality (IS-

MAR), 2007. 6

[12] J. Neira and J. D. Tardós. Data association in stochastic map-

ping using the joint compatibility test. IEEE Transactions on

Robotics and Automation, 17(6):890–897, 2001. 2

[13] K. Ni, H. Jin, and F. Dellaert. GroupSAC: Efficient con-

sensus in the presence of groupings. In Proceedings of the

International Conference on Computer Vision (ICCV), 2009.

5

[14] D. Nistér. Preemptive RANSAC for live structure and motion

estimation. In Proceedings of the International Conference

on Computer Vision (ICCV), 2003. 2

[15] R. Raguram, J.-M. Frahm, and M. Pollefeys. Exploiting un-

certainty in random sample consensus. In Proceedings of the

International Conference on Computer Vision (ICCV), 2009.

2

[16] E. Rosten and T. Drummond. Machine learning for high-

speed corner detection. In Proceedings of the European Con-

ference on Computer Vision (ECCV), 2006. 6

[17] B. J. Tordoff and D. W. Murray. Guided-MLESAC: Faster

image transform estimation by using matching priors. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 27(10):1523–1535, 2005. 2

[18] A. Vedaldi, H. Jin, P. Favaro, and S. Soatto. KALMANSAC:

Robust filtering by consensus. In Proceedings of the Inter-

national Conference on Computer Vision (ICCV), 2005. 2

[19] C. Zach, T. Pock, and H. Bischof. A duality based ap-

proach for realtime TV-L1 optical flow. In Proceedings of

the DAGM Symposium on Pattern Recognition, 2007. 1

