
Towards Constant Time SLAM using Postponement

Joss Knight, Andrew Davison and Ian Reid ∗

Department of Engineering Science

University of Oxford

Oxford OX1 3PJ, UK

[joss,ajd,ian]@robots.ox.ac.uk

Abstract

Many recent approaches to Simultaneous Localisa-
tion and Mapping (SLAM) use an Extended Kalman
Filter (EKF) to update and maintain a map of vehi-
cle location and multiple feature positions as a sensor
moves through a scene. Although it is a highly pow-
erful and well-used tool, it suffers from a well-known
complexity problem, that the amount of computation
at each recursion step is proportional to the square
of the number of features in the map. In this paper
we outline the Postponement technique which allows
for much greater flexibility about when to use available
processing time, while in no way affecting the optimal-
ity of the filter. It works by updating a constant-sized
data set based on current measurements, which can be
used to effect updates on all unobserved parts of the
map at a later stage. By expanding the set of updated
features as each new feature is observed we show that
the full map update can be postponed indefinitely. We
also demonstrate how Postponement can be used to
improve the performance of sub-optimal algorithms by
applying it to a simple constant time method.

1 Introduction

If the aim is to produce the most accurate map of
a scene from a set of data collected by the sensors of a
robot or other moving body, the best solution is always
batch post-processing of the data in a computation-
ally costly minimisation. Such systems are common
in machine vision structure-from-motion applications.
Pollefeys, for instance, uses a typical system [12], while
McLauchlan’s Variable State Dimension Filter is an
attempt to cross the divide between batch and recur-
sive techniques [10]. However, in SLAM for mobile

∗This work is supported by the UK’s Engineering and Phys-
ical Sciences Research Council through a studentship to JGHK.

robot navigation, the time factor is crucially impor-
tant, since a robot must respond continuously to the
data obtained: the map must be built sequentially.
More strictly, it is desirable that new data can be in-
corporated into the map within the constant time pro-
cessing interval available between synchronous move-
ment steps. This constant time constraint is problem-
atic for the EKF, commonly applied to SLAM prob-
lems, since when implemented correctly as a single fil-
ter with full representation of the coupled uncertainty
in a map, the computational expense increases with
map size. To fit constant time constraints, the full,
optimal EKF must be modified.

In practice any method which reduces the compu-
tational complexity of the EKF is potentially bene-
ficial. The simplest do not affect the optimality of
the filter. Davison, Durrant-Whyte, Dissanayake and
others have all noted that many map features give re-
dundant information and can be deleted with little
effect on vehicle localisation accuracy [2–4], resulting
in a smaller, more rapidly processed map. In addi-
tion, Newman’s Geometric Projection Filter [11], uses
rapidly built relative maps.

Sub-optimal methods can provide speedier filtering
at the cost of accuracy, by neglecting some of the cou-
pling in map estimates. Nebot et al. [6] do exactly this
explicitly, giving a filter with complexity linear in map
size. Castellanos [1] and Leonard [9] both use static
submapping strategies in which the map is divided up
into groups of features which can be processed sepa-
rately. Leonard’s method results in constant time fil-
ter complexity, as does that of Julier [7], who combines
Kalman Filtering and a technique called Covariance
Intersection so that all cross-correlation information
can be neglected.

Much of the problem with sub-optimal methods
is that there can be unexpected effects on the filter,
which cannot be predicted theoretically. The methods
are usually shown to be conservative (where the over-
all map uncertainty is not less than it should be), but

1

Figure 1: Head Yorick and vehicle GTI

this does not prove consistency (that the map will
eventually converge to the true solution). A fairly
comprehensive review of the various SLAM ‘shortcut’
techniques is given in [8], which includes a discussion
of filter evaluation.

The filtering techniques described in this paper,
while applicable to any EKF implementation of
SLAM, have been devised with the vehicle and sen-
sors of Figure 1 in mind. Fixated triangulation using
a four-axis stereo head-eye platform provides the mea-
surement data. While visual data provides a wealth
of information for a variety of robotic tasks, not least
greatly reducing the problems of data association, the
tradeoff is a heavy cost in time (to find and fixate fea-
tures) and a lack of depth accuracy (relative to sonar
for example).

As a result of this, the original system as described
in [2] takes care, in feature initialisation and selection,
to generate a sparse map of high quality features. The
next step, which this paper will describe, is Postpone-
ment, which provides an order of magnitude increase
in the number of features that can be collected, by
allowing most of the processing to be carried out at a
later stage when more processing time may be avail-
able. Essentially, it allows us to gather up all the
changes that would have been made to features that
are not being observed into a set of constant size ma-
trices, and alter these at each step instead until such
time as a full map update is required. At the cost of
occasional expensive updates that can be postponed
indefinitely or carried out in background processing,
most filter steps will be constant time. The final sec-
tion shows Postponement working with partial decou-
pling, a constant time method which generates navi-
gable maps the accuracy of which is greatly improved
by the additional flexibility Postponement provides.

Since the original work on Postponement in [2],
Guivant and Nebot have independently derived the
‘compression’ algorithm [5], which is effectively the

same method except that the set of maintained fea-
tures is defined by geographical boundaries rather
than expanded dynamically (see §4.3).

2 Notation

The following outlines the notation used through-
out the paper. Vectors will appear in bold type (x,y)
and matrices in teletype (M, P). Map building notation
will be as in [2]:

x =

xv

y1

...
yi

...

State vector consisting of vehicle state
and feature states. The v subscript is
dropped from xv where it is not am-
biguous.

P =

Pxx Pxy1
Pxy2

· · ·
Py1x Py1y1

Py1y2
· · ·

Py2x Py2y1
Py2y2

· · ·
...

...
...

. . .

Symmetric
covariance ma-
trix and its
blocks. Note
Pyiyj

= Pyjyi

>

In addition, hi is the measurement equation for mea-
surement of the ith feature.

3 EKF – The Full Filter

We begin by stating the well-known Extended
Kalman Filter equations.

Prediction

Our state and covariance predictions at time k + 1
are based on those at time k and use the state transi-
tion function f and its Jacobian, control inputs u, and
the process noise covariance Q.

x(k + 1|k) = f(x(k|k),u(k))

P(k + 1|k) =
∂f

∂x
(k|k)P(k|k)

∂f

∂x

>

(k|k) + Q(k)

Update

The update to include recent measurements incor-
porates the innovation ν, which is the difference be-
tween the measurement and its prediction, the inno-
vation covariance S, and measurement noise R.

x(k + 1|k + 1) = x(k + 1|k) + W(k + 1)ν(k + 1)

P(k + 1|k + 1) = P(k + 1|k) − W(k + 1)S(k + 1)W>(k + 1)

where

W(k + 1) = P(k + 1|k)
∂h

∂x

>

(k|k) S−1(k + 1)

S(k + 1) =
∂h

∂x
(k|k) P(k + 1|k)

∂h

∂x

>

(k|k) + R(k + 1) .

3.1 Implementation

The previous section states the known EKF equa-
tions. In many typical applications of the EKF the
whole state vector is measured at every step, and the
state transition function also affects the whole state,
so the filter complexity is cubic in the state size. In
SLAM, the state transition function affects only the
vehicle state, and usually only a small subset of fea-
tures are measured at each step. The resulting filter
has complexity of order n2, where n is the number of
map features.

In this section we explain our rearrangement of the
basic equations to give a separate equation for each
feature state and covariance block. The k notation for
time dependency is dropped since it is clear to which
time step is referred. The initial derivation is based
on the measurement of a single feature i at each time
step.

3.1.1 Explanatory equations

First note the sparsity in the Jacobians,

∂f

∂x
=

∂fv
∂xv

0 · · ·

0 I
. . .

...
. . .

. . .

,
∂hi

∂x
=

[

∂hi

∂xv

0 · · ·
∂hi

∂yi

0 · · ·

]

where here there has been a measurement of feature
i. Also sparse is the process noise Q = [Q>

v
0 · · ·]>.

Multiplying out the equation for the innovation co-
variance S, it can now be seen that it is a constant
time calculation (independent of map size):

S =
∂hi

∂xv

Pxx

∂hi

∂xv

>

+
∂hi

∂yi

Pyix

∂hi

∂xv

>

+
∂hi

∂xv

Pxyi

∂hi

∂yi

>

+
∂hi

∂yi

Pyiyi

∂hi

∂yi

>

+ R .

(1)

One final expansion, of the gain term WSW>, should
make it clear how the summary equations of the next
section come about:

WSW
> =

Pxx

Py1x

Py2x

...

∂hi

∂xv

>

S
−1

∂hi

∂xv

[Pxx Pxy1
Pxy2

· · ·]

+

Pxx

Py1x

Py2x

...

∂hi

∂xv

>

S
−1

∂hi

∂yi

[Pyix Pyiy1
Pyiy2

· · ·]

+

Pxyi

Py1yi

Py2yi

...

∂hi

∂yi

>

S
−1

∂hi

∂xv

[Pxx Pxy1
Pxy2

· · ·]

+

Pxyi

Py1yi

Py2yi

...

∂hi

∂yi

>

S
−1

∂hi

∂yi

[Pyix Pyiy1
Pyiy2

· · ·]

noting that S is symmetric so S−> = S−1.

3.1.2 Reformulation

First, define some intermediate vectors and matri-
ces as follows:

m =
∂hi

∂xv

>

S
−1

ν n =
∂hi

∂yi

>

S
−1

ν (2)

A =
∂hi

∂xv

>

S
−1

∂hi

∂xv

B =
∂hi

∂xv

>

S
−1

∂hi

∂yi

(3)

C =
∂hi

∂yi

>

S
−1

∂hi

∂xv

= B
>

D =
∂hi

∂yi

>

S
−1

∂hi

∂yi

(4)

From these intermediates and the equations of the
previous sections, the filter equations of Figure 2 can
be derived. They show how to process each block of
the state vector or covariance matrix separately.

3.1.3 Submaps

In the Postponement section we will wish to con-
sider yi as referring not to a single feature, but a group
of features, or submap feature. To emphasise the dis-
tinction here we will call the submap yI . Let us now
write the innovation covariance, as we may, in terms
of Jacobians involving yI and the single measured fea-
ture in the submap, i:

S =
∂hi

∂xv

Pxx

∂hi

∂xv

>

+
∂hi

∂yI

PyIx

∂hi

∂xv

>

+
∂hi

∂xv

PxyI

∂hi

∂yI

>

+
∂hi

∂yI

PyIyI

∂hi

∂yI

>

+ R .

Since ∂hi

∂yI
= [0 · · · ∂hi

∂yi
0 · · ·], it should be clear that

this equation reduces back to the original equation (1).
Similarly, replacing ∂hi

∂yi
with ∂hi

∂yI
in the expansion of

WSW> is valid.
In fact, reassessing all the working in this section

replacing yi with yI is perfectly valid. So, for instance,

Prediction – equations act on
old values

Update – equations act on predicted values

xv(pred) = fv(xv, u) xv(new) = xv + Pxxm + Pxyi
n

yi(pred) = yi yi(new) = yi + Pyix
m + Pyiyi

n

yj(pred) = yj yj(new) = yj + Pyjx
m + Pyjyi

n

Pxx (pred) =
∂fv

∂xv

Pxx

∂fv

∂xv

>

+ Qv Pxx (new) = Pxx − (PxxAPxx + PxxBPyix
+ Pxyi

CPxx + Pxyi
DPyix

)

Pxyi
(pred) =

∂fv

∂xv

Pxyi
Pxyi

(new) = Pxyi
− (PxxAPxyi

+ PxxBPyiyi
+ Pxyi

CPxyi
+ Pxyi

DPyiyi
)

Pyiyi
(pred) = Pyiyi

Pyiyi
(new) = Pyiyi

− (Pyix
APxyi

+ Pyix
BPyiyi

+ Pyiyi
CPxyi

+ Pyiyi
DPyiyi

)

Pxyj
(pred) =

∂fv

∂xv

Pxyj
Pxyj

(new) = Pxyj
− (PxxAPxyj

+ PxxBPyiyj
+ Pxyi

CPxyj
+ Pxyi

DPyiyj
) (5)

Pyiyj
(pred) = Pyiyj

Pyiyj
(new) = Pyiyj

− (Pyix
APxyj

+ Pyix
BPyiyj

+ Pyiyi
CPxyj

+ Pyiyi
DPyiyj

) (6)

Pyjyk
(pred) = Pyjyk

Pyjyk
(new) = Pyjyk

− (Pyjx
APxyk

+ Pyjx
BPyiyk

+ Pyjyi
CPxyk

+ Pyjyi
DPyiyk

) (7)

Figure 2: A summary of the reformulated EKF equations. Subscript i refers to the observed feature (or submap), j and k refer to
other features. Thus the equations for Pyjyk

for instance work for any cross-covariance between two unobserved features, including
if j = k.

equation (6) for the update of Pyiyj
in Figure 2 now

affects the matrix block PyIyj
, which is a tall matrix

containing all the cross-covariances between features
in the submap and feature j. Some of the intermediate
vectors and matrices (n, B, C, and D) will expand in
size to take account of this.

In [2] Postponement is derived without submaps in
mind, and to maintain consistency with this the yI no-
tation is now dropped. However, note that in future
derivation, wherever yi is used, it may be replaced
with yI and thereby represent a submap instead. It
should also be noted that i may easily represent mul-
tiple features measured simultaneously, although, de-
pending on the implementation, it may be easier in-
stead to present each measurement to the filter sepa-
rately, which will give the same results.

4 Postponement

In the last section we derived an order n2 filter with
a separate equation for each map element and covari-
ance block. The problem is that measurement of any
one feature will affect every part of the state and co-
variance. In this section we illustrate how the changes
that are occurring to data not directly related to the
measured feature can be accumulated in a set of con-
stant sized vectors and matrices, and the filter steps
replaced with constant time recursive updates of this
postponement data. The only ordinary updates car-
ried out affect a constant sized portion of the state

and covariance.

4.1 Derivation

The full derivation of Postponement is lengthy and
the space is best used for presenting the full algorithm.
Instead the reader is referred to [2], and only a repre-
sentative part of the derivation is shown here. Let us
rewrite equations (5) and (6), for the update of Pxyj

and Pyiyj
as

Pxyj
(new) = EPxyj

+ FPyiyj

Pyiyj
(new) = GPyiyj

+ HPxyj

where

E = I− [PxxA + Pxyi
C] (8)

F = −[PxxB + Pxyi
D] (9)

G = I− [PyixB + Pyiyi
D] (10)

H = −[PyixA + Pyiyi
C] . (11)

These equations are mutually recursive, that is, we
can write the overall update of Pxyj

and Pyiyj
after k

update steps in terms of recursively updated matrices
ET, FT, GT and HT acting on the old values (referred to
by (0)):

Pxyj
(new) = ETPxyj

(0) + FTPyiyj
(0) (12)

Pyiyj
(new) = GTPyiyj

(0) + HTPxyj
(0) (13)

where the recursive updates for ET to HT are

ET(new) = EET + FHT FT(new) = EFT + FGT

GT(new) = GGT + HFT HT(new) = GHT + HET .

This is true while observing any feature from the same
submap i, and is a bounded amount of computation.

The insertion of equations (12) and (13) into (7)
shows a similar argument for Pyjyk

, and the equations
for yj can be manipulated on similar grounds. The
prediction step is easily incorporated.

4.2 Algorithm summary

Here we summarise the basic Postponement pro-
cess. It uses ten matrices and vectors of postponement
data, mT, nT, AT, BT, CT, DT, ET, FT, GT and HT. The
constant-sized set of state and covariance data always
kept up to date, that is, xv, yi, Pxx , Pxyi

and Pyiyi
,

are referred to as the up-to-date data.

1. The process begins when observations start to be
made of a new feature or submap i. The state and
covariance are currently fully up to date. Start by
setting all the postponement data to zero, except
ET and GT which are set to the identity.

2. Prediction. When the sensor moves, alter the
up-to-date data, and change ET and FT as follows:

ET(pred) =
∂fv

∂xv

ET

FT(pred) =
∂fv

∂xv

FT

3. Update. At every measurement of a feature in
i, calculate vector m and n as in (2), A to D as in
(3) and (4), and E to H as in (8) to (11).

Now update the up-to-date data, as shown in Fig-
ure 2, and change the postponement data as fol-
lows:

mT(new) = mT + E
>

T
m + H

>

T
n

nT(new) = nT + F
>

T
m + G

>

T
n

AT(new) = AT + E
>

T
AET + E

>

T
BHT + H

>

T
CET + H

>

T
DHT

BT(new) = BT + E
>

T
AFT + E

>

T
BGT + H

>

T
CFT + H

>

T
DGT

CT(new) = CT + F
>

T
AET + F

>

T
BHT + G

>

T
CET + G

>

T
DHT

DT(new) = DT + F
>

T
AFT + F

>

T
BGT + G

>

T
CFT + G

>

T
DGT

ET(new) = EET + FHT

FT(new) = EFT + FGT

GT(new) = GGT + HFT

HT(new) = GHT + HET

It remains to show how to carry out a full update
of the state and covariance following a period of post-
ponement (when a new submap is observed). Here (0)

refers to the value at the last full update.

yj(new) = yj(0) + Pyjx(0)mT + Pyjyi
(0)nT

Pyjyk
(new) = Pyjyk

(0)−

(Pyjx(0)ATPxyk
(0) + Pyjx(0)BTPyiyk

(0)+

Pyjyi
(0)CTPxyk

(0) + Pyjyi
(0)DTPyiyk

(0))

Pxyj
(new) = ETPxyj

(0) + FTPyiyj
(0)

Pyiyj
(new) = GTPyiyj

(0) + HTPxyj
(0)

The computational complexity of this update in-
creases linearly with submap size. So Postpone-
ment will cause an overall reduction in computation
if submap features are measured multiple times (al-
though some account must be taken of the time re-
quired to update the postponement data at each step).
The saving could be very large, for instance if the ve-
hicle explores the same submap for a long time.

4.3 Dynamic submap selection

Postponement as derived in [2] is intended to post-
pone full update while the same feature is being ob-
served repeatedly. We have shown here how this ex-
tends easily to individual observations made within
the same submap of features. This extension car-
ries with it issues of how best to divide the map into
submaps. One particular limitation of other submap-
based methods is that they require the map space to
be predivided geographically, with no guarantees that
there will be a consistent number of features in each
submap, or that the vehicle will spend any length of
time there. Instead, we would like to consider our
submap as being the set of features most recently ob-
served, rather than defined by geographical bound-
aries. We can think of it as being a cache of features
whose update is cheap, but which ultimately must be
‘swapped out’. Naturally, an ideal cache would con-
tain the set of features about to be observed as well as
those just measured, which would result in the longest
possible time before a non-cache feature was observed
and a full map update was necessary.

Thankfully, forming such a feature set is quite sim-
ple. We can grow the postponement data to take
account of a newly observed feature, expanding the
submap size until processor time is available for a full
map update or it reaches some size limit.

4.3.1 Growing the submap

Let us say we have a submap containing M features,
and the sensor observes a postponed feature i′ which
is not currently in the submap and therefore out of
date. First we use the current postponement matrices

to bring up to date this new feature’s state yi′ , and
the covariance blocks Pxyi′

, Pyi′yi′
, and Pyiyi′

, where
the latter refers of course to all the cross-covariances
between features in the submap and feature i′.

Now this feature can be included in the current
submap as the (M + 1)’th feature without any effect
on the next full map update, if the postponement data
are modified as follows:

mT(new) = mT nT(new) =

[

nT

0

]

AT(new) = AT BT(new) =
[

BT 0
]

CT(new) =

[

CT

0

]

DT(new) =

[

DT 0

0 0

]

ET(new) = ET FT(new) =
[

FT 0
]

GT(new) =

[

GT 0

−(Pyi′x
(0)BT + Pyi′yi

(0)DT) I

]

HT(new) =

[

HT

−(Pyi′x
(0)AT + Pyi′yi

(0)CT)

]

The size of the added blocks can be gleaned from
the full update equations of §4.2. Derivation of the
above is not given, but it should be clear that in the
case of GT and HT the added blocks ensure correct up-
date of Pyi′yj

, which is now part of Pyiyj
, and every-

where else the zero blocks simply remove it from the
equations.

4.4 New features

The previous section describes how postponed fea-
tures can be incorporated into the submap. Features
which have never been observed before can be dealt
with in a similar way. They must become part of the
submap, and the postponement data expanded as de-
tailed in the previous section, excepting GT and HT.
The cross-covariance of a new feature i with map fea-
ture j is initialised with ∂yi

∂xv
Pxyj

. Therefore GT and
HT are modified as follows:

GT(new) =

[

GT 0
∂yi

∂xv
FT 0

]

HT(new) =

[

HT

∂yi

∂xv
ET

]

4.5 Results

It is not feasible with our hardware to carry out
tests of our modified filter on large-scale scenes at this
stage. However, Postponement is a simple reworking
of the filter equations and synthetic scenes tested in
simulation are sufficient to demonstrate the system’s
performance.

The filter was tested on multiple randomly gener-
ated maps of 100 features (Figure 3(a)). The sim-
ulated robot has identical parameters to that of the
real system, and the system uses many of the same
autonomous capabilities for choosing which feature to
observe at any one time. This includes data associa-
tion restrictions and simulated occlusion.

Given that every SLAM system has very different
parameters, citing map accuracy data is somewhat
meaningless. Suffice it to say that the results are the
same as for the full filter, as required. To illustrate,
Figure 3(b) shows true and estimated robot and fea-
ture positions after a single traverse of the map. Most
telling, however, is Figure 3(c) which shows a close-
up of the time spent filtering during a second map
traverse. The full filter and Postponement filter were
run in parallel. Note the sparsely occurring single step
spikes, representing full map updates of the postponed
map. Over 18 different maps the robot took 50 mea-
surements per metre, and only 0.78% of time steps in-
cluded full map updates. Overall, the Postponement
filter ran in 37% of the full filter time.

4.6 Discussion

Although Postponement will normally conserve
processing time, this is not its most useful attribute.
The key feature of Postponement is that it gives the
system considerable control over exactly when to use
available processing time. The use of dynamic submap
selection means that submap sizes do not need to be
fixed, but can keep increasing until the time is avail-
able to carry out a full update. Many extensions to
this technique are possible to achieve even faster exe-
cution. The only features that must be up to date
are those being observed. When a new submap is
formed the postponement data can be retained and
used to update features before they are inserted into
the submap.

Two other important points have been noted by
Guivant and Nebot regarding their parallel compres-
sion algorithm [5]. Firstly, for reasons just mentioned,
much of the full map update could be carried out as
background processing, taking advantage of all avail-
able processing time, such as when the CPU is waiting
on I/O. Secondly, postponement allows a far greater
number of observations to be made of each feature
with no computational impact on the full update, re-
sulting in a considerably slower rate of increase in un-
certainty as the vehicle explores the map. As a result,
much larger exploration loops could be closed robustly.

Robot start

X

Z

(a) Plan view of a randomly gen-
erated scene of 100 features, and
the path of the robot. The Scene
is 20m×2m×20m, robot is approxi-
mately a cube of side 0.5m

X

Z

(b) True (grey) and estimated (black)
map after a single traverse, with 3σ

error ellipses.

8000 8500 9000 9500 10000 10500 11000 11500
0

0.1

0.2

Time step

Fi
lte

r
tim

e
/ s

ec
s

Postponement
Full Filter

(c) Filter processing time chart com-
paring full filter to filter with Post-
ponement and a submap size limit of
10. Simulation was run on a 600MHz
Pentium III.

Figure 3: Results of Postponement tests

5 Partial Decoupling – an Application

of Postponement

The previous section explains and evaluates the
Postponement technique, showing how it provides con-
siderable control over use of processing time. Funda-
mentally, however, the overall complexity of order n2

is unchanged, and this could still prove a problem in
very large maps.

The solution must be to use a sub-optimal approx-
imation to the full EKF. There are many available,
and most require the system to select a portion of the
map for which some coupling information is discarded.
Ideally, this is as small a portion as possible, and this
is where Postponement can be beneficial. It enables us
to process a much larger portion of the map optimally,
since the dominant parameter for processing speed is
the submap size, not the size of the set of features for
which full coupling is retained.

To illustrate this we introduce a simple technique
called partial decoupling. A portion of the map is
kept up to date with the optimal filter, but the rest
is decoupled from it and the vehicle. The algorithm
is not consistent, but it can be used to produce dis-
torted but navigable maps which do not diverge. As a
general rule, maps must be navigable, but inaccuracy
can be tolerated since it can always be corrected by
off-line processing of sensor data. Partial decoupling
simply provides a compromise between the processing
expense of the optimal filter and the inaccuracy of a
fully decoupled filter.

5.1 Definition

Partition the state and covariance as follows:

x =

[

xA

xB

]

P =

[

PAA PAB

P>

AB
PBB

]

Partition A consists of the vehicle state and a fixed
sized set of the most recently observed features, and
therefore may change at every observation. xA and
PAA are updated using the optimal algorithm. xB and
the covariances of partition B features are left un-
changed, and the remaining cross-covariances in P are
set to zero. The effect is to decouple features that
have not been observed for a long time.

The technique is provably not conservative, but as
might be expected, the severity of its inconsistency
depends on the size of partition A, which is why Post-
ponement can improve its performance.

5.2 Results and Discussion

To illustrate partial decoupling we used a
40m×40m map of 400 evenly spaced features (Figure
4). The vehicle travels around the edge of the map re-
sulting in the longest possible time before it returns to
the start. There will therefore likely be some disconti-
nuity in the map when the vehicle adjusts its position
when the loop is closed, which would be smoothed out
in a working system.

Figure 4(b) shows the map generated for a partition
A size of 40 features. The distortion and discontinuity
are clearly apparent. In Figure 4(c) the partition A
size was 80 features and the observation rate doubled.

(a) 40m×40m ‘corridor’ map gener-
ated in 1 circuit by the optimal filter.
264 features were observed.

(b) Corridor map generated in 1 cir-
cuit using Partial Decoupling with a
partition A size of 40. 269 features
were observed.

(c) Corridor map generated in 1 cir-
cuit using Partial Decoupling with a
partition A size of 80. 268 features
were observed.

Figure 4: Results of Partial Decoupling tests

However, Postponement was used with a submap size
of 10, which enabled the vehicle to complete the circuit
in the same time while producing an improved map.

Partial decoupling is flawed in that it is not conser-
vative, yet Postponement can enable even this method
to produce useful maps, demonstrating that it is a very
effective tool in the effort to implement SLAM with no
computational complexity issues.

6 Summary and Conclusions

In this paper we have derived the Postponement
technique for aiding the computational efficiency of
the Extended Kalman Filter used in SLAM. We
have shown it to enable considerable control over the
scheduling of processing time while retaining filter op-
timality, and we have demonstrated how it can be used
to improve the performance of sub-optimal filter ap-
proximations.

References

[1] J. A. Castellanos, M. Devy, and J. D. Tardós. Simulta-
neous localisation and map building for mobile robots: A
landmark-based approach. In IEEE International Con-

ference on Robotics and Automation Workshop on Mobile

Robot Navigation and Mapping, 2000.

[2] A. Davison. Mobile Robot Navigation Using Active Vision.
PhD thesis, Robotics Research Group, Oxford University
Department of Engineering Science, Feb. 1998. Full text
available at www.robots.ox.ac.uk/~ajd/.

[3] G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A com-
putationally efficient solution to the simultaneous localisa-
tion and map building (SLAM) problem. In IEEE In-

ternational Conference on Robotics and Automation, San
Francisco, USA, Apr. 2000.

[4] H. F. Durrant-Whyte, M. W. M. G. Dissanayake, and
P. W. Gibbens. Toward deployment of large scale simul-
taneous localisation and map building (SLAM) systems.
Technical report, Australian Centre for Field Robotics,
University of Sydney, 2000.

[5] J. Guivant and E. Nebot. Optimization of the simultane-
ous localisation and map building algorithm for real time
implementation. IEEE Trans. Robotics and Automation,
17, June 2001.

[6] J. Guivant, E. Nebot, and H. Durrant-Whyte. Simulta-
neous localisation and map building using natural features
in outdoor environments. Intelligent Autonomous Systems,
Feb. 2000.

[7] S. J. Julier and J. K. Uhlmann. Simultaneous localisa-
tion and map building using split covariance intersection.
In Proc. IEEE Conf. on Intelligent Robots and Systems,

Maui, Nov. 2001.

[8] J. Knight. Computationally tractable SLAM. Technical
Report OUEL 2232/2001, Department of Engineering Sci-
ence, University of Oxford, 2001.

[9] J. J. Leonard and H. J. S. Feder. Decoupled stochas-
tic mapping. Technical Memorandum 99-1, MIT Marine
Robotics Laboratory, Dec. 1999.

[10] P. F. McLauchlan. The variable state dimension filter
applied to surface-based structure from motion. CVSSP
Technical Report VSSP-TR-4/99, School of Electrical En-
gineering, Information Technology and Mathematics, Uni-
versity of Surrey, 1999.

[11] P. Newman. On the Structure and Solution of the Simulta-

neous Localisation and Map Building Problem. PhD thesis,
Australian Centre for Field Robotics, University of Sydney,
Mar. 1999.

[12] M. Pollefeys, R. Koch, and L. Van Gool. Self calibration
and metric reconstruction in spite of varying and unknown
internal camera parameters. In Proc. 6th Int’l Conf. on

Computer Vision, Bombay, pages 90–96, 1998.

