
Real-Time Spherical Mosaicing
using Whole Image Alignment

Steven Lovegrove and Andrew J. Davison

Imperial College London, London SW7 2AZ, UK
{sl203,ajd}@doc.ic.ac.uk

Abstract. When a purely rotating camera observes a general scene,
overlapping views are related by a parallax-free warp which can be esti-
mated by direct image alignment methods that iterate to optimise photo-
consistency. However, building globally consistent mosaics from video has
usually been tackled as an off-line task, while sequential methods suitable
for real-time implementation have often suffered from long-term drift. In
this paper we present a high performance real-time video mosaicing algo-
rithm based on parallel image alignment via ESM (Efficient Second-order
Minimisation) and global optimisation of a map of keyframes over the
whole viewsphere. We present real-time results for drift-free camera rota-
tion tracking and globally consistent spherical mosaicing from a variety
of cameras in real scenes, demonstrating high global accuracy and the
ability to track very rapid rotation while maintaining solid 30Hz opera-
tion. We also show that automatic camera calibration refinement can be
straightforwardly built into our framework.

Key words: real-time tracking, spherical mosaicing, SLAM, auto-calibration

1 Introduction

A set of images can be fused into a mosaic if there is no parallax between them,
and this is the case either when a generally moving camera browses a plane or
when a general 3D scene is observed by a camera which only rotates. There is a
great deal of literature on building mosaics from multiple images or video (see
the tutorial by Szeliski [1]). The emphasis has been on methods which operate
off-line, consisting of pair-wise image registration achieved either with features
(e.g. [2] using SIFT matching, or [3]) or whole image alignment (e.g. [4]), and
global optimisation. Meanwhile, methods that were able to operate from video
in real-time such as [5] achieved accurate local registration but were subject to
drift over longer periods due to the lack of explicit global optimisation.

The core issue of mosaicing is to accurately estimate the motion of the cam-
era, and if globally consistent mosaics are to be constructed from video in real-
time this motion estimation must be drift-free over arbitrarily long time peri-
ods. Like any case of estimating the motion of an outward-looking sensor in a
previously unknown environment, mosaicing can be considered as a Simultane-
ous Localisation and Mapping (SLAM) problem. This is important, because in



2 Steven Lovegrove and Andrew J. Davison

SLAM research, originating in the mobile robotics area, there has been great
attention paid to developing algorithms which run sequentially in real-time but
are also able to generate globally consistent scene models.

The predominant early approaches to SLAM were based on sequential prob-
abilistic filtering algorithms, most importantly the Extended Kalman Filter
(EKF), to jointly estimate the positions of both the moving sensor and the fea-
tures which it observed. This methodology was recently successfully applied to
image mosaicing by Civera et al. [6], in the first work which was able to demon-
strate drift-free mosaicing at frame-rate from a rotating camera. The computa-
tional cost of the EKF backbone of this technique, however, scales badly with
the number of features kept in the map state, and this meant that only around
10–15 features (matched using 11×11 pixel patches) could be tracked per frame;
all but 3% of every image was ignored for the purposes of image alignment, and
this sets a limit on the mosaicing quality which can be achieved.

Recently in real-time 3D camera tracking, methods based not on filtering
but parallel pose estimation relative to keyframes and global optimisation have
enabled large amounts of image correspondence information to be used in all
frames. This approach was pioneered by Klein and Murray’s Parallel Tracking
and Mapping (PTAM) system [7] where hundreds of feature points are tracked
per frame and built into a globally consistent 3D model of a workspace. Impor-
tantly, PTAM demonstrated that only tracking relative to the nearest keyframe
is necessarily required to run at frame-rate to maintain live operation. The
global optimisation component of PTAM (bundle adjustment of scene points
and keyframes) runs in a parallel thread and repeats only as often as processing
resources allow at a fraction of frame-rate.

This decoupling of local motion tracking from building a consistent global
world model has become a dominant methodology in more generic SLAM re-
search in robotics, since the pioneering work of Lu and Milios [8] and the first
full implementation of a sequential mapping algorithm combining local tracking
with interleaved global optimisation by Gutmann and Konolige [9], in this case
with 2D laser scan data. With this interleaved approach, one is free to choose raw
data alignment methods for the local tracking component, and the SLAM ‘map’
consists of the historically estimated sensor poses rather than feature locations.

In our work, we adapt this parallel tracking/optimisation approach to live
video mosaicing, and make use of a state of the art whole image alignment
method both for local rotation tracking and at the heart of a parallel optimisation
thread for globally consistent alignment of a set of keyframes spanning the whole
viewsphere. We are also able to refine estimates of camera intrinsic parameters in
this global optimisation. Whole image alignment, as opposed to feature tracking,
densely makes use of all of the texture in the images to permit registration which
is as accurate as possible. Further, we show that a hierarchical implementation
via an image pyramid permits the tracking to be efficient while maintaining a
wide basin of convergence allowing very rapid camera rotation to be tracked.

Still one of the most widely used methods for estimating the warp between
images, the Lucas-Kanade [10] method is based on the iterative minimisation of



Real-Time Spherical Mosaicing using Whole Image Alignment 3

a cost function related to how well one reference image matches that of a warped
comparison image. The parameters of the warp define the dimensionality of this
space. By computing the derivative of the cost function with respect to the warp
parameters, the parameter space gradient can be ‘surfed’ to a minimum, which
may or may not be the global minimum.

Within our system, we make extensive use of the technique proposed by
Malis, named Efficient Second-order Minimisation (ESM) [11] which instead
finds the second order minimiser of the cost function while using only first or-
der terms. This provides stable convergence in fewer iterations than the Lucas-
Kanade method.

2 Method

Fig. 1. System overview showing separation of tracking and mapping.

Our algorithm is split into two tasks which run as parallel threads on a
multi-core PC: a) tracking from a known map, and b) global map maintenance
and optimisation (see Figure 1), an approach inspired by PTAM [7]. In the
first ‘tracking’ thread, we use the direct, whole image second order optimisation
method ESM of Malis [11], with further contributions from Mei et al. [12], which
we implement on graphics hardware for high-quality real-time tracking relative
to our map. In the second parallel thread, we run a global optimisation procedure
also based on ESM which adjusts the estimated orientations of all keyframes of
our map and camera intrinsics simultaneously. This allows us to produce globally
consistent mosaics in real-time. We remove radial distortion from all live frames
as they enter our system, and deal only with perspective images from then on.
We use a third party tool to establish the distortion parameters. Additionally, we
descrive an automatic method for relocalisation if tracking should fail, allowing
the current mosaic to be re-joined without corruption.



4 Steven Lovegrove and Andrew J. Davison

Keyframe Map Within our system, we store a collection of key historic camera
poses with associated image data, which we call keyframes. Keyframes within
our map are related to one another by a 3DOF rotation. We store the current
estimate of a keyframe’s pose as a rotation matrix Rwk relating the camera’s
local frame of reference, k, to that of the world, w.

Tracking When tracking commences, we set the first live image to be our first
keyframe, k0 with pose Rwk0 set to the identity. For each subsequent live frame,
we use the previous live pose to select the closest keyframe from our map. We
estimate the current pose by considering the image warp between this keyframe
and the current image, which in turn allows us to estimate the relative motion.

Exploration As tracking continues, we create new keyframes and add them to
the map if the overlap between our current image and closest keyframe becomes
too small and falls below a threshold. Keyframes which we add inherit the pose
of the live camera at that time.

2.1 Local Motion Estimation

For local motion estimation, we update our current pose estimate, Rwc, by con-
sidering the live image and a reference keyframe r with known pose, Rwr.

For two cameras in a general configuration observing a plane, we can de-
scribe pixel correspondence within their images by a plane induced homography.
Cameras which purely rotate, however, allow us to disregard the scene entirely.
Defining Hba as the homography that transfers points imaged in camera a to the
equivalent points in camera b, we can write Hba as a function of Rba:

Hba = KRbaK−1 , (1)

where K is the 3× 3 camera intrinsic calibration matrix:

K =

fu 0 u0
0 fv v0
0 0 1

 . (2)

This enables us to generate views from rotated ‘virtual’ cameras by warping
an existing image. Our frame to frame tracking problem is then to find an update
to the parameters of the plane induced homography Hlr which best reflects the
warp between reference keyframe r and our live camera l.

Following the method of Malis [11], we parametrise updates to our pose using
the Lie Algebra. The class of 3 × 3 rotation matrices belong to the Lie Special
Orthogonal group SO(3). This group can be minimally parametrised around the
identity by a three-vector belonging to the associated Lie Algebra so(3). This
parametrisation is locally Euclidean about 0, which is important for the ESM
method. An element x ∈ so(3) is related to a member R(x) ∈ SO(3) through



Real-Time Spherical Mosaicing using Whole Image Alignment 5

the matrix exponential map, where elements of x form coefficients for the group
generators, Ai, i ∈ [1, 2, 3]:

R(x) = exp

(
3∑
i=1

xiAi

)
. (3)

Given a current estimate of the rotation, R̂lr, and an update parametrised by
x ∈ so(3), Rlr(x), we update our estimate using the following rule:

R̂lr ←− R̂lrRlr(x). (4)

We can now define an objective function describing the sum of squared differ-
ences between pixels in the live and reference images related by the homography,
itself a function of the current rotation estimate R̂lr, and the update x:

f(x) =
1

2

∑
pr∈Ωr

[
Il
(
H
(
R̂lrR(x)lr

)
pr

)
− Ir (pr)

]2
. (5)

Ir and Il represent the reference keyframe and live image respectively. The sum
is formed from each pixel pr in the set of pixels Ωr defined in the reference image.

It can be shown that, up to second order, this function is minimised at
x0 (Equation 6), where + is the pseudo-inverse and J the Jacobian relating
change in parameters to changes in the cost function (Equation 7) [12]:

x0 = −J+f(0) (6)

J =

(
JIl + JIr

2

)
JwJKJRJx. (7)

The reader is asked to refer to [11–13] for details, including the definition
of these Jacobians. The special formulation of these Jacobians taken about the
reference and current images and the subsequent minimisation of this objective
function is what is referred to as Efficient Second-order Minimisation (ESM).

If we instead write f(x) explicitly as the norm of a residual difference vector
d (Equation 8), where each row corresponds to a pixel in Ωr (Equation 9), we
see that the size of the system can be reduced by solving instead its normal
equations (Equation 10):

f(x) =
1

2
‖d(x)‖2 (8)

dpr (x) = Il
(
H
(
R̂lrRlr(x)

)
pr

)
− Ir (pr) (9)

x0 = −(JTJ)−1JTf(0). (10)

Since J has dimensions num pixels ×3, JTJ (a 3× 3 matrix) is significantly
smaller than J , and can be computed by summing the individual outer products



6 Steven Lovegrove and Andrew J. Davison

of rows of J . We progress by iteratively solving this non-linear least squares
system, applying the update R̂lr = R̂lrRlr(x0) until convergence.

Upon convergence, R̂lr represents the transformation between the live and
reference cameras. Applying this to consecutive frames from a video sequence
could form the basis for a visual odometry system. Here, instead, we match the
current live image against the ‘closest’ keyframe in our map.

2.2 Global Map Optimisation

Joint global optimisation of all keyframes of the map and camera intrinsics
occurs concurrently in a separate thread. We apply the ESM method to a more
general objective function. We parametrise updates to pose through the Lie
Algebra as before, but formulate updates to the camera intrinsic parameters by
a vector, k ∈ R4, through exponentiation. Thus, k = 0 represents no change to
the intrinsics. The update rule becomes:

fu
fv
u0
v0

←−

fue

k0

fve
k1

u0e
k2

v0e
k3

 . (11)

For N keyframes, our update vector x can be decomposed into rotation pa-
rameters, ri ∈ so(3), and intrinsic parameters: x = (k, r1, r2, ...rN ). The objective
function which we now wish to minimise includes all pairs of overlapping images:

f(x) =
1

2

∑
j

∑
i

∑
pj∈Ωj

[
Ii
(
Hij(x)pj

)
− Ij (pj)

]2
. (12)

Hij(x) = K̂K(k)R̂ijRij(ri, rj)(K̂K(k))−1 (13)

R̂ijRij(ri, rj) = (R̂wiRwi(ri))
TR̂wjRwj(rj). (14)

We calculate the incremental minimiser of this function x0 using exactly the
same machinery as before. Iterations of this minimisation take place continu-
ously, helping to improve the map consistency.

Auto-calibration of camera intrinsics is particularly well posed in the case
of a camera which only rotates [14]. In our system, the expected performance
of calibration refinement is much further enhanced by our ability to match im-
ages automatically around full 360◦ panoramas, giving the potential for accurate
calibration even for cameras with a narrow field of view.

2.3 Recovery from Tracking Loss

We have provided our SLAM system with a straightforward relocalisation ca-
pability similar in spirit to the ‘small blurry image’ method of PTAM [7] but
which directly takes advantage of the main ESM pose estimate algorithm. If



Real-Time Spherical Mosaicing using Whole Image Alignment 7

the camera becomes ‘lost’ then we aim to recover a pose estimate by simply
attempting ESM pose estimation from a number of seed locations visible in our
current mosaic, starting at the smallest image size in an image pyramid. Of the
estimated warp parameters obtained, we refine the most photo-consistent esti-
mate by performing more ESM iterations at higher resolutions in the pyramid.
We use the poses of our keyframes as seed locations, but indeed any regular
sample would be equally valid.

Computation time for relocalisation is proportional to the number of seed
locations. For spherical mosaics, relocalisation need not be costly. When lost
(measured using observed photoconsistency between the current keyframe and
live camera), we run the relocalisation procedure on one in ten frames. This
method operates well in environments with low perceptual aliasing.

3 Implementation

To achieve real-time performance, we make extensive use of commodity graphics
hardware and the parallelism that this can afford. Graphics cards usually have
a number of very simple, high throughput shaders that are ideal for stream
processing tasks; taking quantities of data which are largely independent of each
other and transforming this data in some way.

We use the portable graphics language Cg, which can run on the majority
of today’s PCs and laptops. In this section, we will outline some of the more
interesting implementation details of our system.

3.1 Real-Time Hierarchical ESM for Local Tracking

Our local tracking ESM implementation is split into three very simple stages
targeting the graphics card, described below.

Hierarchical Construction After a frame is received from the video camera,
it is uploaded as a texture on the GPU. Once in graphics memory, a fragment
shader is invoked once for each desired level in a power-of-two reduction pyramid.

The fragment shader, which operates per pixel, simply takes the value of the
average of the corresponding 4-block from the level above. This gets rendered
back into a different texture of half the size. Typically, we use five levels in our
pyramid which correspond to four invocations of this fragment shader. The indi-
vidual levels of the pyramid are left on the graphics card and never downloaded
to the CPU.

By first estimating the warp parameters between images at the smallest res-
olution in the pyramid, we benefit from a wider parameter-space convergence
basin and lower processing costs. By assuming that per-pixel derivatives are
meaningful at each of the levels, we are able to reuse our estimated warp pa-
rameters in the next highest resolution image and repeat. We can tune for per-
formance/accuracy by setting how many iterations to perform at various levels.



8 Steven Lovegrove and Andrew J. Davison

Construction of Least Squares System Elements For every step in the
ESM method, Jacobian terms common to all pixels are computed on the CPU
(JK , JR, Jx). This leaves the data-centric terms (Jw, JIl , JIr ) to be computed
on the GPU. JIl and JIr are computed by central difference. The 9× 3 matrix
JKJRJx is loaded onto the GPU as parameters to a fragment shader in three
3× 3 blocks, which are supported as primitives in the Cg language.

Invoking the fragment shader runs a simple Cg function per pixel pr that
enables us to compute the appropriate row of J , Jpr and the residual dpr . This
shader function also computes the outer product JT

prJpr and product JT
prdpr .

Since JT
prJpr is symmetric, it has 6 unique elements; JT

prdpr has 3. The shader
function returns these 9 values as pixel ‘colours’ across three floating point RGBA
textures stored on the GPU. We use OpenGL framebuffers to enable this.

Reduction to Linear System Given our three textures, where a channel of
each image, for every pixel pr, corresponds to elements of JT

prJpr and JT
prdpr , we

wish to compute JTJ and JTd. This involves summing the channels of each pixel,
which we perform in two stages. The first is a vertical reduction in another Cg
fragment shader. This shader is invoked on an output set of images containing
a single row. For each pixel, this shader sums the pixels of the input images in
the same column.

Finally, we download these three row images to the CPU, where the final
horizontal reduction takes place to a single vector, which is unpacked into the
appropriate matrix and vector. Here, it is solved using an efficient Cholesky
decomposition.

3.2 Rendering

Two common approaches to visualising rotational mosaics are spherical and
cylindrical projection. A spherical mosaic is visualised from within the center
of a view-sphere, where images are projected to the sphere surface. Cylindrical
projections are instead projected on to a cylinder, which we can then unwrap
into a single image, visualising all of the mosaic at once.

We again make use of Cg shaders to enable us to visualise the full quality,
blended mosaic live, and for correctly sampling from the constituent keyframes.

Spherical Panorama For rendering a spherical panorama, we treat our vir-
tual (OpenGL) camera much like a keyframe, positioned at the origin and
parametrised by the camera to world transform Rwc. We can map image space
coordinates from our OpenGL viewport to a keyframe k by composing the ho-
mography Hkc = KRwk

T
RwcK−1.

We use a shader which we invoke once for each keyframe within the field of
view of the virtual camera, passing in as a parameter the homography Hkc which
enables us to place the keyframe within the viewport. This shader, operating
per-pixel, simply adds the keyframe’s colour value to the colour already in the



Real-Time Spherical Mosaicing using Whole Image Alignment 9

frame buffer associated with the viewport. Additionally, it adds 1.0 to the alpha
channel for the pixel which serves as a counter.

Finally, we invoke another normalisation shader, which simply divides the
Red, Green and Blue channels by the alpha channel. The result is a panorama
where each keyframe is displayed blended with equal weight. One of the nice
aspects of this method is that image fusion occurs in the space of the viewport.
This means that each keyframe, whose pixel data is not sampled to the same
‘grid’ in viewport space, gets mixed to form an image of higher resolution of
the constituent images. Dependent on the quality of image registration, this can
enable ‘super resolution’ images to be displayed at frame rate.

Cylindrical Panorama To create cylindrical panoramas, we use similar ma-
chinery as for spherical panoramas. Within the shader, the u and v viewport
coordinates are interpreted as yaw (ψ) and pitch (θ) in the range [−π,+π] and
[−π2 ,+

π
2 ] respectively.

For each keyframe, we invoke the shader, where, for each pixel we then com-
pute the desired image ray described by the unit vector r̂,

r̂ = (cos θ cosψ, sin θ, cos θ sinψ)
T
. (15)

This is transferred into the frame of reference of the keyframe using the virtual
camera to keyframe rotation matrix, Rkc, which is uploaded as a parameter to
the shader. Finally, the camera intrinsic matrix can be used to map this to
keyframe image-space coordinates. Given this correspondence, we proceed as
with the spherical panorama.

4 Results

We wish to evaluate our system against two criteria; how accurately local motion
is estimated, and how consistently frames are registered into a final mosaic.

In all of the results, as our submitted video also highlights, mosaics were
computed incrementally and rendered live at frame rate, a solid 30fps. We cap
per frame ESM iterations to 48 at the 5th level of the pyramid, 16 at the 4th,
8 at the 3rd, 4 at the 2nd, and 2 at the 1st. We use any remaining time to
perform iterations at the 0th level which corresponds to the original image —
this typically is one, two or three iterations. We drop new keyframes when less
than 80% of the current keyframe is visible.

4.1 Local Motion Estimation and Dynamics

To test the ability of our method to track dynamic local motion, we have com-
pared the angular velocity output of our method against a solid state gyroscope
bolted to the back of the camera, which was mounted on a tripod and oscillated
to produce increasingly rapid motion (up to around 5 cycles per second) about
each of its axes in turn.



10 Steven Lovegrove and Andrew J. Davison

-8

-6

-4

-2

0

2

4

6

8

0 1082 4 6 971 3 5 11

-8

-6

-4

-2

0

2

4

6

8

0 1082 4 6 971 3 5

-8

-6

-4

-2

0

2

4

6

8

0 82 4 6 971 3 5

Fig. 2. Graphs illustrating high dynamic tracking performance; the plots show angular
velocity estimates from our vision system compared with the output from a gyroscope
as the camera was vigorously oscillated about each of the three camera-oriented axes
in turn (y axis pan; x elevation, z cyclotorsion).

The characteristics of estimation are somewhat different depending on the
axis of rotation, as the plots of Figure 2 illustrate. Angular velocity about the
z-axis (cyclotorsion) is estimated very accurately. Note that the truncated peaks
of the gyroscope data show that the tracking limits of the device were exceeded
while visual tracking still continued accurately — our system was able to main-
tain fidelity about this axis in excess of 7 rads−1, which is significantly faster
than a camera would normally move in a tracking scenario.

Angular velocity about the y-axis, corresponding to camera pan, tracks the
gyroscope data closely, with a very slight systematic under-estimation. We sus-
pect that camera calibration may be the predominant cause, or a slight mis-
alignment between the camera and gyroscope frames of reference.

The plot showing rotation about the x-axis, corresponding to camera eleva-
tion, demonstrates a failure case of visual tracking caused by extreme motion.
The tracking under-shoots, and takes several oscillations to re-acquire corre-
spondence with the keyframe against which it is tracking. If the motion was
non-cyclic, it would be harder for the system to recover to an orientation fixed
in the global frame without resorting to relocalisation. The system is least stable
about this axis. We suggest that this is due to the narrower vertical field of view.



Real-Time Spherical Mosaicing using Whole Image Alignment 11

4.2 Global Consistency and Intrinsics Refinement

For evaluation of global registration, we present several cylindrically projected
360◦ panoramas (Figures 3, 5) captured with two different cameras, and with
two different lenses for each camera. They are constructed by blending every
keyframe of the map with equal weight, as described in Section 3.2, enabling us
to visualise the quality of their alignment.

For areas of the mosaic formed from multiple images, pixel noise is signifi-
cantly reduced, and the mosaic appears smoother. The different sampling pattern
of keyframes and sub-pixel accuracy we achieve in alignment combine to create
a super-sampling, or ‘super-resolution’ image, efficiently rendered in real-time
on the graphics card.

Figure 4 demonstrates the importance of our joint estimation of camera
intrinsic parameters, even for pre-calibrated cameras. Starting with intrinsics
estimated from a third party camera calibration tool, and continuing with no
intrinsics optimisation, the first mosaic in this figure appears fuzzy. Upon inspec-
tion we can see that the estimated loop length is longer than the actual length
(in pixels), causing the images to bunch up (the enlargement of the whiteboard
helps to convey this point). This is caused by intrinsic parameters which are
wider than the actual camera. The second mosaic in this figure is the result of
allowing our algorithm to optimise intrinsics as well as pose parameters (from
the starting point of the first mosaic).

The mosaics in Figure 3 were generated from three different lenses, all at
640× 480 resolution, and initialised with ‘Generic’ intrinsic calibration (nearest
10◦ FOV and central principal point). Table 4.2 shows the initial horizontal field
of view, which was based on our knowledge of the lens, and the converged field
of view estimate after a full loop was completed for these sequences.

Table 1. Calibration Refinement results for Different Cameras and Lenses. Calibration
initialised from Quoted Horizontal Field of View (FOV), and refined by mosaicing
cylindrical loops from 640 × 480 indoor sequences.

Camera Lens Lens Quality Initial FOV Estimate Refined FOV

Point Grey Flea2 Wide Angle Good 70◦ 69.42◦

Point Grey Flea2 TV Lens Fair 50◦ 51.43◦

Unibrain Standard Poor 50◦ 45.56◦

4.3 Convergence to Global Minimum

The results from mosaicing based on poor initial intrinsics (Figure 3) help to mo-
tivate that our system has useful convergence properties. By including intrinsics
in our optimisation, we help to enable loop closure by increasing the accuracy
of our pose estimate when we come to complete a loop. By completing a loop



12 Steven Lovegrove and Andrew J. Davison

Fig. 3. 360◦ cylindrically-projected panoramas for three indoor sequences, taken with
different lenses. Point Grey Flea2, 70◦ FOV wide angle (top, close to full sphere in-
cluding full hemispherical upward coverage, 27 keyframes), 50◦ FOV TV Lens (middle,
single horizontal loop trajectory, 17 keyframes), and Unibrain 45◦ FOV Standard lens
(bottom, single horizontal loop trajectory, 19 keyframes).

Fig. 4. Mosaicing with fixed intrinsics estimated from a third party calibration tool
(top), compared against enabling live intrinsics estimation (middle). An enlargement
of the whiteboard from the two mosaics, emphasising improvement in alignment, is
shown at the bottom. The whiteboard is representative of several areas of the mosaic.



Real-Time Spherical Mosaicing using Whole Image Alignment 13

too soon, or too early, we are more likely to fall into local minima — especially
if perceptual aliasing in this area is high.

Figure 5 shows an outdoor mosaic generated from rapid hand-held motion
of a Unibrain webcam with a wide angle lens. Note that in this experiment the
pure rotation assumption was approximately satisfied without a tripod due to
the large distance to the scene. This scene contains high perceptual aliasing in
the windows and building pillars, making loop closure difficult. For this sequence,
we were unable to converge to a globally consistent mosaic from our generic 80◦

FOV calibration parameters. Instead, we started from the parameters estimated
from a third party calibration tool.

Fig. 5. 360◦ Tower panorama from 21 keyframes (live hand held Unibrain webcam,
320×240 resolution), shown in horizontally and vertically-oriented cylindrical projec-
tion. Note the vertical hole due to poor texture and cloud movement in the sky.

Time to convergence is another important evaluation criterion. Each iteration
in our global minimisation is costly — forming the linear system from image
data dominates computational time. Actually solving this system is cheap since
spherical mosaics require only a relatively small number of keyframes. For this
reason, computation time scales linearly with the number of pairs of overlapping
pixels. For N keyframes, depending on keyframe alignment, this has a worst case
complexity of O

(
N2
)
. In practice, our system achieves convergence within time

in the order of seconds of completing a loop; often less than one second when a
wide angle lens means that the number of keyframes to span a loop is low.

5 Conclusions

We have presented an algorithm based on full image alignment which produces
accurate, globally consistent mosaics in real-time. Our key contribution is to
show how state of the art image alignment can be used in a robust and accurate
real-time mosaicing system which combines the best of a visual gyroscope, with
its ability to track rapid motion, with the properties of a visual compass, able
to function without long-term drift. We also demonstrate convincing automatic
camera calibration refinement, and explain how real-time tracking and rendering
can be comfortably achieved using commodity graphics hardware.



14 Steven Lovegrove and Andrew J. Davison

The clear extension to our method which we plan to investigate is the capabil-
ity to track general motion viewing multi-planar scenes, such as building façades
and room interiors. We can enforce strong priors in such environments and hope
to demonstrate very fast, robust tracking and coarse model construction.

Acknowledgements

This research was supported by an EPSRC DTA studentship to S. Lovegrove
and European Research Council Starting Grant 210346. We are very grateful to
Richard Newcombe and other colleagues at Imperial College London for many
useful discussions.

References

1. Szeliski, R.: Image alignment and stitching: A tutorial. Foundations and Trends
in Computer Graphics and Vision 2 (2006) 1–104

2. Brown, M., Lowe, D.G.: Recognising panoramas. In: Proceedings of the Interna-
tional Conference on Computer Vision (ICCV). (2003)

3. Steedly, D., Pal, C., Szeliski, R.: Efficiently stitching large panoramas from video.
In: Proceedings of the International Conference on Computer Vision (ICCV).
(2005)

4. Szeliski, R., Shum, H.Y.: Creating full view panoramic image mosaics and envi-
ronment maps. In: ACM Transactions on Graphics (SIGGRAPH). (1997)

5. Morimoto, C., Chellappa, R.: Fast 3D stabilization and mosaic construction. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (1997)

6. Civera, J., Davison, A.J., Magallón, J.A., Montiel, J.M.M.: Drift-free real-time
mosaicing. International Journal of Computer Vision (IJCV) 81 (2009) 128–137

7. Klein, G., Murray, D.W.: Parallel tracking and mapping for small AR workspaces.
In: Proceedings of the International Symposium on Mixed and Augmented Reality
(ISMAR). (2007)

8. Lu, F., Milios, E.: Globally consistent range scan alignment for environment map-
ping. Autonomous Robots 4 (1997) 333–349

9. Gutmann, J.S., Konolige, K.: Incremental mapping of large cyclic environments.
In: International Symposium on Computational Intelligence in Robotics and Au-
tomation (CIRA). (1999)

10. Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-
cation to stereo vision. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI). (1981)

11. Malis, E.: Improving vision-based control using efficient second-order minimization
techniques. In: Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA). (2004)

12. Mei, C., Benhimane, S., Malis, E., Rives, P.: Efficient homography-based track-
ing and 3-D reconstruction for single-viewpoint sensors. IEEE Transactions on
Robotics (T-RO) 24 (2008) 1352–1364

13. Silveira, G., Malis, E., Rives, P.: An efficient direct approach to visual SLAM.
IEEE Transactions on Robotics (T-RO) 24 (2008) 969–979

14. Agapito, L., Hayman, E., Reid, I.: Self-calibration of rotating and zooming cameras.
International Journal of Computer Vision (IJCV) 45 (2001) 107–127


