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Abstract— Accurate full 3 axis orientation is computed using
a low cost calibrated camera. We present a simultaneous sensor
location and mapping method that uses a purely rotating camera
as sensor and distant points, ideally at infinity, as features. A
smooth constant angular velocity pure rotation motion model
codifies the camera location. Because of the sequential EKF
approach used, and the number of features in the map, about
a hundred, the proposed method has been implemented in real
time at standard video rates.

Experimental results with real images show that the system is
able to close loops with 360

◦ pan and 360
◦ cyclotorsion rotations.

Sequences show good performance under challenging conditions:
hand-held camera, varying natural outdoor illumination, low cost
camera and lens and people moving in the scene.

I. INTRODUCTION

Despite the overwhelming biological evidence for the suit-
ability of vision as a primary sensor for simultaneous sensor
location and map building, it has proven difficult to match
those capabilities using the state of the art digital hardware.
Recently however, the breakthrough work by Davison [1], has
proven the possibility of doing real time visual SLAM with
standard low cost camera hardware.

Our goal is to build full 3 axis visual compass using
standard low cost computer vision hardware, making the most
of the prior information available, namely a calibrated wide
angle camera gathering sequences at 30 fps. while undergoing
smooth motion, and observing a scene where points are at
distances much bigger than the camera translation. We closely
observe the real time constraint using sequential algorithms
able to run online; in fact, between submission and acceptance
of the paper, we have a C++ version successfully running at
30 fps for maps up to 100 features.

Our work has strong links with [1]; it can be considered a
specialization of this work for a rotating camera and features
at infinity, in fact we use for the camera rotation part exactly
the same motion model. In any case both works are quite
complementary because [1] cannot cope with the rotating
camera case nor with features at infinity. It is focused on close
to camera features because it is difficult to represent depth
uncertainty for distant ones. We consider this visual compass
as the first step for real time outdoor visual SLAM, where we
expect to have both close and distant points.

Some of the advantages of the visual compass system in
this paper are:

• Instant start up from any camera orientation or velocity.
No initialisation step or known scene objects are needed.

In fact the tracking can be started from any frame of the
sequence.

• Good performance rejecting non rigid motion objects.
• Routine loop closing. Our experimental results show that

standard sequential processing can deal with loop closing
without any special steps. This is a desirable feature for
a real-time system.

Davison’s work alloys basic vision point matching tech-
niques, gaussian SLAM and particle filtering to detect the un-
derlying geometry in a sequence observed by a moving hand-
held camera. This geometry considers a selected reduced set of
trackable 3D points (the map), and the camera motion jointly
in the same random vector. This joint modeling allows the
observation of the very same features in all the images and the
ability to close loops. The loop closing prevents an explosion
in the number of features when the sensor moves indefinitely
in a confined area revisiting previously observed areas. Image
sequences repeatedly observing the same environment have a
underlying model that SLAM methods detect and exploit.

The standard approach to SLAM is based on the stochastic
map proposed initially by Smith and Cheesman in [2] which
offers a powerful tool to model the geometrical location errors.
It has been widely used in mobile robotics for processing ge-
ometrical information coming for a range of different sensors,
odometry, laser range finder, sonar, and vision among others
[3]–[6].

In the computer vision literature the family of methods
known as Structure From Motion, (SFM), focus on the redun-
dancy that several observations of the same scene have because
all the matched features shuould be consistent with a projective
camera model. These methods can deal with small sets of
shots and with sequences. During the last decade (see [7]
for a review) understanding of this underlying geometry and
its recover by means of robust statics has produced working
methods for dealing with wide-baselines and sequences with
variable and unknown camera parameters. SFM primarily
intended for batch processing, has been successfully applied
for real time robotics in [8]. SFM methods do not model
the camera an the scene in a unique random vector, so the
observed features along the sequence are not intended to be
persistent, and this makes difficult loop closing. Not dealing
with loops has two main drawbacks: the first is that the size
of the map for a confined area increases indefinitely, and
secondly the tight constraints that a loop close enforces in
the reconstruction, sequential or batch are also missed.
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Fig. 1. The infinite point yi coded by its θ (azimut, around yW ), and φ
(elevation, around xW ;) and a texture patch gathered when imaged for the
first time. The camera is located by the rotating reference C, defined by the
rotation matrix RWC or the quaternion q

WC

A purely rotating camera offers a particular geometry in
which depth cannot be recovered, but that provides one to
one homography (if the distortion is compensated) mapping
between every image pair. In a real scene this geometry
appears when the distance of the observed features is much
bigger (ideally at infinity), than the camera translation. This
geometry has been used for producing mosaics, with robust
statistics batch approach, e.g. [9] for a rotating and zoom-
ing camera. More recently, Brown and Lowe, [10] use this
geometry and for producing mosaics from discrete images
under severe wide-baseline constraints by using SIFT invariant
feature detectors [11].

Sets of parallel lines, when imaged under a projective
camera intersect at a vanishing point, which actually is the
the image of the point at infinity where the parallel lines meet.
The detection of vanishing points corresponding to dominant
directions in indoors or outdoors man made ”Manhattan like”
environments allows to compute camera orientation from
single frames. This approach has been followed in [12],
and [13]. Compared to ours, they focus on the detection
of predefined infinite direction only available in man-made
environments; their main advantage is that camera translation
is not constrained to be small compared to the distance to the
scene.

II. FEATURE MODELS

Our system deals with directions, not considering at all the
depth of the observed features nor the camera translation, so
points can be regarded as points at infinity. Each gazing direc-
tion is modeled registering both geometrical and photometrical
information (see Fig 1). The geometry for direction is coded
as a angle azimut-elevation pair to avoid overparametrization:

yi =
(

θi φi

)>

Alternatively the direction can be coded by means of a unit
directional vector mi:

mW
i =

(

cos φi sin θi − sin φi cos φi cos θi

)> (1)

The photometrical part stores a texture patch around the
image of the point, extracted when the point is imaged for
the first time. It used for correlation based recognition and
accurate location of matching points inside the predicted
uncertainty ellipse.

III. CAMERA MOTION MODEL

The camera motion is modelled as a smoothly rotating cam-
era. Camera orientation is defined by means of a quaternion
qWC =

(

q0 qx qy qz

)>.
A constant velocity model is used for the smooth camera

motion. The state vector for the camera, xv:

xv =

(

qWC

ωW

)

.

where ωW is the camera angular velocity.
It is assumed an unknown angular acceleration input αW =

(

αx αy αz

)> that is a gaussian processes of zero mean
and known covariance matrix Pα. The effect of the unknown
input during every processing step ∆t produces an impulse
of angular velocity: n = ΩW = αW ∆t. So the camera state
prediction equation is:

fv (xv,k,n) =

(

qWC
k+1

ωW
k+1

)

=

(

qWC
k × q

((

ωW
k + ΩW

)

∆t
)

ωW
k + ΩW

)

IV. MEASUREMENT MODEL

One of the advantages of a projective camera is its ability to
observe points at infinity. First we will consider the projection
of infinite points in an ideal projective camera. Next subsection
is devoted to the lens distortion compensation.

The camera orientation is defined by qWC , from there it can
be computed RCW , which transform the coordinates, between
references W and C. So the coordinates of m expressed in C

are:
mC = RCW (qWC)mW (2)

Hence the undistorted projective image of the infinite point
m is defined by:

hu =

(

uu

vu

)

=





u0 −
f
dx

mC
x

mC
z

v0 −
f
dy

mC
y

mC
z



 (3)

Where, u0,v0 are the camera center in pixels, f is the focal
length and, dx and dy the pixel size.

A. Distortion model
We are using a wide angle lens and the system is showing

sensibility with respect to camera calibration, because of that
we use the two parameters radial distortion model commonly
used in photogrammetry (see [14]). Compared with the dis-
torsion model proposed in [15], ours is more expensive but
more accurate as well. Our main cost is that the model has



not closed form for the distorsion of coordinates nor for its
jacobian.

To recover the ideal projective undistorted coordinates hu =
(uu, vu)

>, from the actually distorted ones gathered by the
camera, hd = (ud, vd)

>, the next formulas are applied:

hu

(

ud

vd

)

=

(

u0 + (ud − u0)
(

1 + κ1r
2
d + κ2r

4
d

)

v0 + (vd − v0)
(

1 + κ1r
2
d + κ2r

4
d

)

)

rd =

√

(dx (ud − u0))
2

+ (dy (vd − v0))
2 (4)

To compute the distorted coordinates from the undistorted:

hd

(

uu

vu

)

=





u0 + (uu−u0)

(1+κ1r2

d
+κ2r4

d)

v0 + (vu−v0)

(1+κ1r2

d
+κ2r4

d)



 (5)

ru = rd

(

1 + κ1r
2
d + κ2r

4
d

)

(6)

ru =

√

(dx (uu − u0))
2

+ (dy (vu − v0))
2 (7)

Being the problem that formula (5) depends on rd that has
to be solved from (6), e.g using Newton-Raphson, once ru is
computed from (7).

In summary:

h
(

yi,q
WC

)

= hd

(

hu

(

mC(yi, RCW (qWC))
))

(8)

given an infinite point yi and a camera position qWC it
is computed its image. It the composition of expressions
(1,2,3,5).

Equation (8), can be inverted giving an analytic expression
for yi

yi = y
(

zi,q
WC

)

(9)

from a single infinite point observation zi and the camera
orientation qWC .

Despite the accurate calibration, because of the radial dis-
tortion, points close to the center are more accurate than points
close to the image border. Because of that we have applied a
heuristic covariance assignment for image points that increases
the standard deviation linearly with the radius with respect to
the image center:

σh = σh0

(

1 + β
rd

rdmax

)

rdmax
=

√

u2
0 + v2

0 (10)

rd is computed using (4). In our experiments, σh0
= 2pixel

and β = 1. And for every point, the corresponding measure-
ment noise matrix:

Ri =

(

σ2
h 0
0 σ2

h

)

Undistortion jacobian, ∂hu

∂hd

has analytical expression:

















(

1 + κ1r
2
d + κ2r

4
d

)

+

2 ((ud − u0) dx)
2
×

(

κi + 2κ2r
2
d

)

2d2
y (ud − u0) (vd − v0)×

(

κ1 + 2κ2r
2
d

)

2d2
x (vd − v0) (ud − u0)×

(

κ1 + 2κ2r
2
d

)

(

1 + κ1r
2
d + κ2r

4
d

)

+

2 ((vd − v0) dy)
2
×

(

κi + 2κ2r
2
d

)

















(11)
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Fig. 2. New features initialization and patch prediction. Right image shows
acceptance region and the matched measurement. The acceptance region has
been magnified for displaying

The jacobian for the distortion is computed by inverting
expression (11).

V. KALMAN FILTER SEQUENTIAL PROCESSING

The classical prediction-match-update EKF is applied [16]
to deal with geometrical information producing an elliptical
acceptance region where the measurement should be. The
usage of the photometrical data plays key role to determine
where inside the region the actual matching measurement.

All the estimated variables: the camera state xv and all the
estimated features yi i = 1 . . . n are considered in a joint
gaussian state: x =

(

xv y1 . . . yn

)> vector with its
corresponding covariance P.

Next the EKF steps are detailed:
a) Prediction:

x̂k+1|k =





fv

(

x̂v,k|k, 0
)

ŷ1,k|k

. . .





P̂k+1|k = FP̂k+1|kF
> + G

(

(∆t)
2
Pα 0

0 0

)

G>

F = diag
(

∂fv

∂xv

, I

)

G = diag
(

∂fv

∂n
, 0

)

And hence the predicted features in the image:

ĥi,k+1|k = h
(

ŷi,k+1|k, x̂v,k+1|k

)

each predicted feature, has associated a two linearized mea-
surement equations, defined by the two rows matrix, composed
of a 02×2 block except for the considered feature:

Hi =

(

∂h

∂xv

, 01
2×2, . . . , 0

i−1
2×2,

∂h

∂yi

, 0i+1
2×2, . . . , 0

n
2×2

)

All the Hi are piled up vertically to produce the full
linearized measurement equation H, and hence the innovation
covariance is derived:

Sk+1|k = HPk+1|kH
> + diag (R1, . . . ,Rn)

b) Match: Every prediction ĥi,k+1,k and its correspond-
ing Si,k+1|k 2 × 2 diagonal submatrix matrix extracted from
Sk+1|k define an elliptical acceptance region in the image
where the image of the predicted feature should be:

(u, v)S−1
i,k+1|k

(

u

v

)

≤ χ2
0.05,2



For every map feature, when it was imaged for the first time,
we have stored both a texture patch and the camera orientation,
then at the prediction stage, the image of the predicted patch
is synthesized being quite effective for dealing with distortion,
and cyclotorsion. Figure2 shows an example of the stored and
predicted patches.

A normalized correlation score is computed for every pixel
in that region, the highest score, over a threshold, is con-
sidered to be matching measurement zi,k. See figures fig-
prediction 3 and 5 for examples of this regions. It has to be
noted that we only use a feature detector at the initialization
stage (see Sec. VII), at the matching stage no feature detection
is performed in the acceptance region and the predicted patch
correlation score is computed with respect to all the pixels in
the region.

c) Update: Using only the submatrices corresponding
with actually matched features, Hm,Rm, ĥm and zm are built
and hence the state estimate is updated:

x̂k+1|k+1 = x̂k+1|k + K
(

zm − ĥm

)

K = P̂k+1|kH
>
m

(

HmP̂k+1|kH
>
m + Rm

)−1

P̂k+1|k+1 = (I − KHm) P̂k+1|k

Finally the camera orientation quaternion is normalized. The
P̂k+1|k+1, has to be affected by the corresponding normaliza-
tion jacobian.

VI. STATE INITIALIZATION

As an infinite point can be initialized from a single image
(see eq. 9), the camera initial state is null rotation and null
angular velocity:

xv,0|0 =
(

1 0 0 0 0 0 0
)> (12)

P0|0 = diag
(

0 0 0 0 σ2
Ω σ2

Ω σ2
Ω

)

(13)

The camera orientation for the first frame is considered as
the reference frame, hence the null uncertainty in orientation.
For the angular velocity, a high value is assigned to σΩ, in
our case

√

(2) rad
sec , in order to deal with an initial unknown

velocity. This is a remarkable system characeristic that allows
to initialize the map from any frame, at any initial angular
velocity. In fact in the experiments, the initial angular velocity
is not null.

Once the initial value for the camera vector has been
defined, about 10 well spread over the image Harris [17] points
are detected and the corresponding scene features initialized,
expanding the state vector as defined in the next section.

VII. FEATURE INITIALIZATION AND DELETION

Once a new image is processed, if the number of features
predicted to be visible inside the image goes below a threshold,
in our case 14, a new feature is initialized. An area without
features is searched randomly in the image, if found the most
salient interest point in that area, zj , is located using Harris
point detector. Figure 2 shows an initialization example.

For every new measurement the corresponding feature es-
timate is computed using equation (9) and the state vector is
expanded with the new feature estimate ŷj . The covariance
matrix has to be expanded as well:

P
new
k|k = J

(

Pk|k 0
0 Rj

)

J
>, J=

(

I 0
J1

)

, J1 =

(

∂h
−1

∂xv

, 0, . . . ,
∂h

−1

∂zi

)

Features that are predicted to be in the image but not
matched are deleted based on the accumulated ratio between
times visible and times effectively matched. This simple mech-
anism allows us to delete non trackable features for example
those over non rigid objects (see fig 4 (a)). The deletion method
allows us to remove non persistent static scene elements if a
scene is continuously revisisited.

VIII. EXPERIMENTAL RESULTS

The experiments, currently programmed in Matlab, are
directed to test the feasibility of the system for real time
performance. In particular we are focusing the 360◦ loop
closing because this will allow us to completely map a scene.
In fact, between submission and acceptance of the paper, we
have a C++ version successfully running at 30 fps for maps
up to 100 features

Two sequences of an outdoor scene have been acquired with
a rotating camera. The processed images were 90◦ field of
view, 320 × 240 B&W, acquired at 30 fps. with a low cost
Unibrain IEEE1394 camera.

The sequences are challenging because only the camera
translation were tightly controlled; there were pedestrians
walking around and cars moving along a road; the camera
automatic control exposition introduces a great deal of change
in the image contrast and brightness in response to the
outdoors natural illumination conditions.

The fist sequence is on a tripod 360◦ pan sequence. Being
the camera on at tripod the translation is almost assured to
be about 1-2cm. and the camera motion is approximately
repetitive. Figure 3 shows frames with the acceptance region
for every predicted feature and the matched observation. The
selected frames are the beginning (frame 14) and the loop
closing (frame 286). It is seen how among the first 3 revisited
features, 2 were not matched and the third was detected very
close to the limit; however in next frame and all the following
(frame 319) the reobserved features are regarded as such. It
should be noticed that the loop is closed with the normal
sequential prediction-match-update, without being necessary
any additional computation.

Figure 4 (a) displays a magnified view of two intermediate
steps where it is seen how the system rejects the matches
for features being initialized on a moving pedestrian The
predicted texture patch for the feature cannot be matched
inside the acceptance region because the pedestrian motion is
not coherent with the rotating camera observing a rigid scene
model.

The camera trajectory and all the map features have been
plotted over the unit sphere (see fig. 4 (b).) Uncertainties
(α = 95%) for each scene point has been plotted as well.
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Fig. 3. Loop closing. From left to right frames 14, 286 and 319. It is shown how two features are lost, and a feature has been matched close to the limit of
the acceptance region. The rest of the map features has been correctly matched, can be verified comparing frames 14 and 319.

The sphere surface has been magnified around the estimated
camera trajectory to illustrate the rotation accuracy; the camera
was on a tripod so the first and the second lap should be close.

The second sequence (see Fig. 5) is more challenging be-
cause the camera is hand-held, and the trajectory includes both
a 360◦ pan and 360◦ cyclortorsion; the outdoor natural illumi-
nation was challenging as well. The systems also performed
successfully. From top left to right bottom, several sequence
frames, with the predicted acceptance regions are shown. Third
image in the second shows that loop is closed without loosing
any of the reobserved features. The camera trajectory over the
unit sphere is displayed as well.

IX. CONCLUSION

A SLAM visual compass has been build and tested off line
on outdoor sequences gathered with a hand-held and on a
tripod camera. The sequences were challenging because of the
natural illumination and the moving pedestrians. The ability to
close loops reidentifying most of the persistent map features
inside of the acceptance 95% region is a clear signal of the
correctness of the gaussian stochastic model for coding the
geometry of the scene.

Because of the number of features, about a hundred, and
the sequential processing this system can, and has been,
implemented in real time hence being effectively a real time
visual compass.

Our proposal has strong links with the existent real time
system proposed in [1] that only deals with features close to
the camera. Besides our proposal shows that distant points can
provide a robust and accurate information about orientation,
specially outdoors. This extend the applicability of SLAM
real time computer vision combining both points close to the
camera and points at infinity.

Beside the direct application in mobile robotics, this work
shows the feasibility of SLAM to process image sequences
and its ability to detect a map composed of a reduced set of
trackable features, selected for being detectable in the frames
where they should visible; this turns out to be a reduced
set of key features detected also at loop closing. This loop
closing matches provide a rich information not only for real
time processing but also to for batch non-linear optimization
methods. In particular this system could be well used for build
image mosaics for sequences both real time or off line.
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(a) (b)
Fig. 4. (a) Shows how features initialized over mobile objects are rejected. Right image shows the predicted feature, that clearly cannot be matched in the
acceptance region. (b) Shows a general view of the unit sphere with the extracted features and its corresponding covariances represented; the full trajectory
is plotted over the sphere. It is shown as well a magnified view of the final part of the camera trajectory over the sphere; given the sequence was taken with
tripod, the first and the second lap should be very close.

Fig. 5. Hand-held camera sequence with 360 pan and cyclotorsion. Images ordered from top left to bottom right. First image is at the beginning of the
sequence, second row last image shows the loop closing; all the features over the walls and the banister are successfully reobserved. The camera trajectory
has been plot over the unit sphere; trajectory points are triangles to display the camera cyclotorsion.


