
Imperial College London

Department of Computing

Local Accuracy and Global

Consistency for Efficient Visual SLAM

Hauke Strasdat

October 2012

Supervised by Dr. Andrew Davison

Submitted in part fulfilment of the requirements for the degree of PhD in

Computing and the Diploma of Imperial College London. This thesis is entirely

my own work, and, except where otherwise indicated, describes my own research.

To So-Rim Lee

Abstract

This thesis is concerned with the problem of Simultaneous Localisation and

Mapping (SLAM) using visual data only. Given the video stream of a moving

camera, we wish to estimate the structure of the environment and the motion

of the device most accurately and in real-time.

Two effective approaches were presented in the past. Filtering methods

marginalise out past poses and summarise the information gained over time

with a probability distribution. Keyframe methods rely on the optimisation

approach of bundle adjustment, but computationally must select only a small

number of past frames to process. We perform a rigorous comparison between

the two approaches for visual SLAM. Especially, we show that accuracy comes

from a large number of points, while the number of intermediate frames only

has a minor impact. We conclude that keyframe bundle adjustment is superior

to filtering due to a smaller computational cost.

Based on these experimental results, we develop an efficient framework for

large-scale visual SLAM using the keyframe strategy. We demonstrate that

SLAM using a single camera does not only drift in rotation and translation,

but also in scale. In particular, we perform large-scale loop closure correction

using a novel variant of pose-graph optimisation which also takes scale drift

into account. Starting from this two stage approach which tackles local mo-

tion estimation and loop closures separately, we develop a unified framework

for real-time visual SLAM. By employing a novel double window scheme, we

present a constant-time approach which enables the local accuracy of bundle

adjustment while ensuring global consistency. Furthermore, we suggest a new

scheme for local registration using metric loop closures and present several im-

provements for the visual front-end of SLAM. Our contributions are evaluated

exhaustively on a number of synthetic experiments and real-image data-set from

single cameras and range imaging devices.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my

supervisor Andrew Davison for his enduring support and inspiration. He in-

vested lots of time, provided me with helpful comments and critical remarks. I

am very thankful to my colleague and unofficial second adviser José Maŕıa M.

Montiel from Zaragoza. I appreciate all the fruitful discussions we had. Many

thanks to Kurt Konolige, whom I visited in autumn 2010 at Willow Garage,

for the collaborations during the final stages of my research. I also would like

to thank my previous advisors and mentors Martin Riedmiller, Sven Behnke,

Cyrill Stachniss and Wolfram Burgard. They sparked my interest in computer

vision/robotics and provided me with foundations essential for doctoral studies.

It was a great pleasure to do a PhD in such an inspiring and fertile environ-

ment. I wish to express my gratitude to past and current members and visitors

of the Robot Vision Group. To Ankur Handa and his mathematical skills.

To Steven Lovegrove; we had many chats about research, tools, programming

languages and more. To Adrien Angeli who aided me with appearance-based

loop closure detection. To Margarita Chli, Richard Newcombe, Renato Salas-

Moreno, Gerardo Carrera, Javier Civera, Pablo Fernandez, Stefan Holzer, Klaus

Strobl, Jan Jachnik, Jacek Zienkiewicz and Robert Lukierski.

I had the great opportunity to exchange ideas with various experts in the

field. Thanks to Ethan Eade concerning the email correspondences about fil-

ter implementations and Lie theory. Thanks to Giorgio Grisetti and Rainer

Kümmerle for the discussions about efficient optimisation. Thanks to Gabe

Sibley and Christopher Mei for discussing visual SLAM and sharing details of

their implementations.

I treasure the time I spend in London. My thanks go to all my friends and

colleagues at Imperial College who made my studies an enjoyable experience.

Cheers to the Black Lions.

I am very grateful to my family who supported me during my studies and

beyond.

Contents

Contents

1 Introduction 13

1.1 Mobile Robotics and Real-time SLAM 14

1.2 Vision . 15

1.3 A Brief Review of Visual SLAM . 18

1.4 Efficiency, Accuracy and Consistency 23

1.5 Contributions . 25

1.6 Publications . 26

1.7 Structure . 26

2 Preliminaries 29

2.1 Some Revision of Calculus . 29

2.2 Introduction to Optimisation . 31

2.3 Probabilistic State Estimation and Filtering 35

2.4 Lie Groups . 39

2.5 Summary . 54

3 Monocular Exploration 55

3.1 Monocular SLAM and Exploration 56

3.2 Camera Model . 58

3.3 Optimization Back-end . 61

3.4 Visual Front-end . 69

3.5 Qualitative Experiment . 79

3.6 Summary . 81

3.7 Bibliographic Remarks . 81

4 Visual SLAM: Why Filter? 85

4.1 Filtering versus Bundle Adjustment 86

8

Contents

4.2 Experimental Design . 88

4.3 Preliminary Experiment . 90

4.4 Bundle Adjustment and Filter Variants 94

4.5 Implementation of Visual SLAM . 97

4.6 Experiments . 104

4.7 Discussion . 115

4.8 Bibliographic Remarks . 118

5 Scale Drift-Aware Large Scale Monocular SLAM 123

5.1 Gauge Freedoms, Monocular SLAM and Scale Drift 124

5.2 The Group of Similarity Transformations 126

5.3 Loop Closure . 127

5.4 Experiments . 133

5.5 Summary . 137

5.6 Bibliographic Remarks . 138

6 Double Window Optimisation 141

6.1 Optimisation for Visual SLAM . 143

6.2 Double Window Optimisation Framework 146

6.3 Visual Frontends . 154

6.4 Loop Closures . 156

6.5 Experiments . 159

6.6 Discussion and Summary . 171

6.7 Bibliographic Remarks . 172

7 Conclusion 177

7.1 Discussion and Future Work . 178

A Proofs and Formulae related to Lie Groups 181

A.1 Generators . 181

A.2 Adjoint Representations . 182

A.3 Lie brackets . 183

A.4 The Campbell-Baker-Hausdorff Formula 185

A.5 Exponential Map onto Sim(3) . 186

A.6 Derivative of the Lie Logarithm . 189

B Jacobians 191

9

Contents

B.1 Projections and Camera Forward Models 191

B.2 Pose-Point Transformations . 192

B.3 Inverse Depth Point Transformations 193

B.4 Bundle Adjustment . 194

B.5 Anchored Inverse Depth Bundle Adjustment 194

B.6 Pose-graph Optimisation . 195

Bibliography 197

10

11

Contents

12

Chapter 1

Introduction

Imagine a digital video camera moving through the environment. At the same

time it is recording a stream of images. If we make use of the rich amount of

information in the images, it is possible to align the frames to each other, and in

addition, to estimate the camera motion in the three-dimensional space using the

underlying projective geometry. This motion path consists of a number of camera

positions and orientations at different point in time; each such pose being associated

with a camera image. Given these pose/image pairs, we can further integrate the

visual measurements in order to create a consistent map of the environment. If

one performs this motion estimation and mapping task concurrently, we speak of

Simultaneous Localisation and Mapping (SLAM).

In this thesis we discuss how a camera can be used as a general purpose 3D position

and mapping sensor. In particular, we tackle SLAM in real-time. Hence, each time

a new frame arrives the camera pose as well as the map representation needs to

be updated instantly. Such a real-time system enables powerful applications in the

field of robotics and beyond. One such application is augmented reality where a

live camera image is augmented with artificial content. In order to ensure that the

artificial object is displayed correctly in the three dimensional space, the pose of the

camera needs to be estimated which requires an accurate map. Though, the core

application for real-time SLAM is mobile robotics.

13

1. Introduction

c©2011 NASA c©Willow Garage Mariordo CC BY-SA 2.0

(a) Mars rover (b) Service robot (c) Driverless car

Figure 1.1: (a) illustrates the NASA rover ‘Curiosity’ which landed on Mars on 6 Au-
gust 2012. Among various other sensors, it is equipped with stereoscopic cameras
for obstacle avoidance and autonomous navigation. (b) shows the general-purpose
service robot PR2 from Willow Garage. It consists of a mobile base and two arms
for manipulation. Sensing is enabled by means of a structured-light camera. (c)
shows a Toyata Prius which is equipped with a 3D laser range scanner and a set of
cameras for the Google Driverless Car project.

1.1 Mobile Robotics and Real-time SLAM

Autonomous mobile robots, intelligent vehicles equipped with sensors and actuators

which autonomously interact which their environment, are no longer dreams of the

future. Illustrative example are the cleaning robots which have begun to enter our

homes. When iRobot’s first robotic vacuum cleaner ‘Roomba’ was introduced ten

years ago, there was not much competition. Nowadays, dozens of companies have

cleaning robots in their product lines and sell them at commodity prices. Apart

from ethically debatable military applications, other examples of autonomous mobile

robots include toy robots, space exploration rovers, mining robots and autonomous

cars (see Figure 1.1). But surely, we are only at the beginning of this development;

especially personal robotics is predicted to be an uprising market. While nowadays

domestic robots are largely designed for special applications, some belief that general

purpose service robots will have a similar impact as personal computers had in the

1980s and 1990s.

Industry robot arms in assembly lines, the older ‘brothers’ of mobile robots, are

statically bound to a designated spot within a controlled environment and therefore

operate blindly. In contrast, mobile robots do not only need a faithful representation

of their own state, but also their environments. Sensing the environment is the

14

1.2. Vision

minimal prerequisite of even remotely intelligent mobile behaviour. Purely reactive

strategies are sometimes sufficing; e.g. some robotic vacuum cleaners achieve their

task without planning. They change their direction arbitrarily once an obstacles

obstructs their passage and perform random walk. Though in the majority of cases,

a robot needs to plan ahead in order to achieve a decent amount of intelligence and

autonomy. For planning, in turn, it is required to infer and maintain an internal

model of the world. Thus, autonomous mobile robots largely depend on SLAM. In

most applications of mobile robotics, such as collision avoidance or path planning, it

is crucial that such a model of the robot pose and its environment is not only accurate

and consistent, but also up-to-date throughout the operation. The main challenge

is to perform the required processing in a certain time frame. This time frame is

determined by the desired frequency of sensor/map updates and the computational

power of the available processing device. Given this limited computational budget,

real-time SLAM research aims for the best possible strategies and algorithms in order

to achieve the most accurate and consistent representation of the environment.

Mobile robotic tasks are often not limited to a small episodes, but the robot might

operate for hours, days and beyond. Cleaning robots, for instance, typically run in a

continuous operation mode. In addition, the area of operation might be very large.

Hence, in order to still meet the hard real-time constraint it is important that the

computational cost does not grow with the time of operation or the map size, but

stays below the real-time bound. In order to emphasize this requirement, one also

speaks of constant-time SLAM.

1.2 Vision

In this work, we focus on mapping and localisation using vision. This implies extra

difficulties, but also offers several advantages.

The origin of digital image processing dates back to the mid 1960s. At that

time, it was a costly and elaborate process to digitalize and process image data.

With the ‘Dycam Model 1’, the first digital camera emerged in 1990, which could

be directly connected to a personal computer.1 In the last decade, digital cameras

became widely available — mainly due to the integration in mobile phones, but

1It had an image resolution of 376 by 240 and was sold at a cost of approximately one thousand
dollars [http://www.digicamhistory.com/1990.html].

15

http://www.digicamhistory.com/1990.html

1. Introduction

also in terms of other consumer products such as webcams and compact digital

cameras. Nowadays, digital cameras are in general inexpensive and easy to use.

Opposed to other sensors, digital cameras usually have small form factors and low

power consumption. Due to the lack of mechanical parts, they can be enabled to

operate reliable under harsh conditions. Thus, they are suitable for an modular

sensing platform. The only hardware requirement for a SLAM solution based on

vision is a processing unit, a digital camera and a power supply, all which can

be embedded in a small box. Instead of building a custom robotic platform with

special purpose sensors, such a modular solution could for instance be temporally

attached to arbitrary vehicles. To summarize, digital cameras are small, inexpensive,

low-power, rugged and therefore ideal candidates for embedded applications such as

general purpose navigation systems.

However, SLAM using a single camera — called monocular camera in order to

emphasize the fact that such a device only consists of one lens and one image sensor

— is difficult. In contrast to range/bearing sensors such as laser range finders, which

measure distances using the time of flight principle2, geometry does not pop out of

the images of a monocular camera. Instead, the depth of a pixel needs to inferred

from inter-frame motion. Given that a characteristic point is co-observed in two

distinct camera frames, one has to estimate the unknown depth using triangulation.

Furthermore, the necessity to triangulate depth over time has a significant implica-

tion for SLAM. It is impossible to measure absolute scale based on the monocular

measurements only (see Figure 1.2). Finally, a camera image consists of between

tens of thousands and millions of individual measurements. It is a great challenge

to infer the relevant information under real-time constraints.

Despite these difficulties and in addition to the practical benefits of cameras dis-

cussed above, vision is an appealing sensing modality since it is so frequent in nature.

The fact that humans and many animals rely mainly on vision for orientation and

navigation tasks showed that visual SLAM is possible. Also, it allows to developed

biological inspired algorithms which take nature as a role model (e.g., Milford et al.,

2004). Since visual perception is a natural sense, humans have direct access to im-

ages. Even though a camera image consists a large amount of information, our visual

cortex enables us to perceive and interpret them easily. We do not only extract geo-

2 Sensors based on time of flight function as follows. They send out a light wave which is
reflected by objects in the environment. Once the receiving signal is measured, the distance to the
object can be estimated based on the time passed.

16

1.2. Vision

Unknown scale factor in monocular SLAM

Figure 1.2: Illustration of the unknown scale factor. It is impossible to distinguish
whether the camera moved 2 metres (T0 → T1) and the landmarks are 5 and 6 metres
away, whether the camera moved 4 metres (T0 → T′1) and the landmark are 10 and
12 metres away, etc. Only the relation 2:5:6 can be recovered, while the overall scale
factor remains unobservable.

metric informations from images, but are also able to analysis their semantic content

— and so can computers. In recent years, the computer vision community made

great progress. A vast number of systems were developed which are able to detect

humans, objects, locations, events and more in images. Thus, cameras are great

general purpose sensors which could enable a large amount of different applications

beyond mapping.

Cameras capture an array of pixels — each representing an intensity measure-

ments. Besides monocular cameras, there are other camera types such as light field

cameras or range imaging devices. A range imaging device is a camera which does

not only record an array of intensities, but also measure distances. Until recently,

range imaging devices were still produced in low quantities and sold at correspond-

ing prices. Available were digital stereo cameras, which consist of a pair of image

sensors/lens assemblies and which therefore can measure depth instantly based on

triangulation, and time of flight cameras. However, during the last two years range

imaging devices had a break-through and entered the consumer mass market: End

of 2010, Microsoft launched its structured light camera3 called ‘KINECT’ and sold

over eight million devices within the first two month. With the ‘LG Optimus 3D’,

3Range imaging devices using structured light embody a projector which emits a known pattern
onto the environment. If a point in the pattern is detected in the camera image, the depth of the
corresponding pixel can be estimated using triangulation. Structured light devices function therefore
similar to stereo cameras, but have the advantage that dense point clouds can be estimated robustly
even for untextured scenes.

17

1. Introduction

‘HTC Evo 3D’, and ‘Sharp Aquos SH-12C’ three smartphones with integrated stereo

cameras from three different manufacturers became available in 2011. Thus, algo-

rithms which require range image measurements are now useful for a much wider

community.

In this thesis, we have an emphasis on monocular SLAM; we deal with the under-

lying difficulties of such as depth estimation and scale drift. Here and there, however,

we extend our findings to range imaging devices, in particular stereo cameras, and

show how their advantages can be exploited.

1.3 A Brief Review of Visual SLAM

In the following we will briefly review the history of visual SLAM. More detailed

bibliographic remarks are given at the end of the individual chapters.

In early robotics research, localisation and mapping were tackled independently.

This is related to the fact they have cyclic inter-dependency. On the one hand, a

map can only be created when the robot’s pose is known. On the other hand, we

need an accurate map representation in order to perform localisation. Nevertheless,

both tasks usually need to be performed simultaneously: in this case we speak of

Simultaneous Localisation and Mapping. SLAM is particularly hard since an inac-

curacy in the ego motion estimate will have an negative impact on the map quality

which again biases the subsequent ego motion estimate and so on. Due to inherent

noise in the sensor measurements, it is clear that we cannot deal with certain enti-

ties, but we have to deal with probability distributions over the robot’s pose and the

world representation instead. Early attempts of SLAM were unreliable since they

represented the robot’s pose and the world as independent states. However, in this

way one ignores the fact that the pose and the locations of the landmarks are corre-

lated (Castellanos et al., 1997). This wrong assumption together with noisy sensor

measurements leads rapidly to over-confident state estimates. The robot becomes

very certain about a wrong pose estimate which will lead to fatal inconsistencies

sooner or later (Davison, 1998, Sec. 5.4.4). Probably the first statistically sound

formulation of SLAM was presented by Smith et al. (1987). The core principle is to

represent all states, the robot’s pose as well as all landmark locations, using a joint

probability distribution. Smith et al. assumed a uni-modal, in particular a multi-

18

1.3. A Brief Review of Visual SLAM

variate Gaussian distribution, and suggested to perform state estimation using the

Extended Kalman Filter (EKF). In the 1990s, the EKF formulation emerged as the

standard approach for SLAM and stood the test in real robot applications (Leonard

& Durrant-Whyte, 1991; Betgé-Brezetz et al., 1996; Castellanos, 1998; Davison,

1998; Newman, 1999). The limitations of EKF-SLAM, in particular the quadratic

time and space complexity of the algorithm with respect to the number of landmarks

in the map, as well as the occurrence of inconsistencies due to the linearisation of

non-linear sensor and motion models, were well-studied in the past and many im-

proved algorithms were presented subsequently (Julier & Uhlmann, 2001; Thrun

et al., 2002; Paskin, 2003; Montemerlo & Thrun, 2003)

Various sensors were used for SLAM including sonar, laser range finders, and

multi-sensor approaches. Pioneer work on robotic navigation using vision date back

to the 1970’s. Moravec’s robotic cart (1980) was equipped with a camera on a slider

for depth estimation and performed autonomous navigation and obstacle avoidance.

Many SLAM frameworks using cameras were presented in the past 15 years; we will

give a few examples. Davison (1998) employed a mobile robot with a active stereo

head and performed navigation and SLAM. In particular, he followed an active vi-

sion approach where selective visual features are fixated during navigation. Se et al.

(2002) also used a stereo-camera on a mobile robot, but performed bottom-up fea-

ture tracking using SIFT (Lowe, 1999). They initialized the ego motion using wheel

odometry but refined it by means of least-square minimisation. Both approaches in-

tegrated visual information with wheel odometry in order to build two-dimensional

maps. Milford et al. (2004; 2008) presented RatSLAM, a biological-inspired visual

SLAM approach which maintains a two-dimensional topological map. In their ear-

lier approach, visual data was fused with sonar and odometry measurements. In

contrast, Milford & Wyeth (2008) only relied on data from a single camera which

was mounted on an automobile.

In this work we regard visual SLAM in the most general sense. Opposed to the

classic SLAM approach in robotics where one tracks the pose of a robot on the

ground plane, we aim to estimate the camera pose which moves freely in the three

dimensional space. Instead of creating two-dimensional map by either representing

a slice of the world or projecting 3D landmarks onto the ground, we create a full

three dimensional representation of the environment. Furthermore, we assume that

there is no odometry sensoring available which allow us to calculate an accurate

19

1. Introduction

motion prediction and therefore we have to purely rely on the information from the

image measurements.

In an early approach, Harris & Pike (1987) were able to estimate the ego motion

of a single camera and create a three dimensional map in real-time. They performed

iterative inference using Kalman filtering, but assumed independent states and thus

did not model the correlation between the features and the camera pose. Almost

ten years ago, Chiuso et al. (2002) as well as Davison (2003) presented real-time

frameworks using a monocular camera only; they estimated structure and motion

jointly using an EKF. While Chiuso et al. relied on the assumption that a scene of

20-40 predefined features is in view all the time, Davison’s MonoSLAM is a fully

automated framework for visual SLAM including feature tracking using correlation-

based patch matching, initialisation of new features, estimation of the unknown

depth of newly initialised features, redetection of temporally occluded features and

small scale loop closures. This approached allowed to build a map of dozens of

features in real-time while performing a browsing motion in a local workspace.

Visual SLAM research is closely related to scientific discipline of photogrammetry

and structure from motion research of the computer vision community. In pho-

togrammetry, one tries to extract geometric information out of photographs. From

the 1950s, a core area of application was the interpretation and evaluation of aerial

photographs in the context of cartography. Nowadays, an illustrative example is

Google Maps where a symbolic map of road networks and labels can be overlayed

with photographs taken from aircrafts and satellites. In order to create such an

overlay, one need to align the photographs with the symbolic map. In the most

simplistic setting, i.e. under a flat-earth assumption and knowing the configuration

of the camera’s lens/sensor assembly as well as the height and angle from which the

photograph was taken, one can calculate the actual distance of any two points visible

in the image by the intercept theorem. More sophisticated methods employ several

overlapping photographs and are able to reconstruct the three dimensional struc-

ture of the Earth’s surface. Given a set of corresponding points among the images,

a three dimensional point cloud is created. The central technique is bundle adjust-

ment (Brown, 1958; Triggs et al., 1999). It is an iterative optimisation technique

which aims to minimize the distance between reprojections of the three dimensional

model and the associated points in the image. Photogrammetry is largely overlap-

ping with structure from motion research which emerged in the 1980s within the

20

1.3. A Brief Review of Visual SLAM

field of computer vision. The core difference is that computer vision research oper-

ates from an artificial intelligence perspective and thus tries to eliminate the human

in the loop. An illustrative example is Agarwal et al.’s ‘Rome in a day’ (2009). It

is a fully automated framework which queries thousands images of a given location

from the internet, finds correspondences among them, estimates their relative con-

figuration and obtains a three dimensional model of hundreds thousands of point —

using a large scale optimisation based on bundle adjustment.

Thus, visual SLAM using recursive Kalman filtering and structure from motion

using bundle adjustment are largely equivalent. In a nutshell, both approaches

minimise the same cost function, the sum of squares of reprojection errors. Both

approaches estimate motion and structure in the full three dimensional space and do

not incorporate any additional priors besides the image data. The core difference lies

within the problem formulation. SLAM is usually perceived as an online method.

Representative SLAM applications such as autonomous navigation or augmented

reality require pose and map estimates which are up-to-date all the time. Frames

arrive consecutively, and once a new frame arrives, the joint state must be updated

instantly. In contrast, structure from motion is usually a batch approach. First, all

data is collected from a set of images. Afterwards, a three dimensional representation

is estimated using an extensive offline optimisation. In online SLAM methods such

as filtering, the emphasis is to estimate a probability distribution over the current

pose and the map which is statistically valid, e.g. not overconfident. On the other

hand, batch approaches such as bundle adjustment solve the problem from scratch

and hence do not need to directly deal with probability distributions. Here, the

main focus is accuracy.

The close relation between offline structure from motion techniques such as bun-

dle adjustment and online iterative state estimation in SLAM was discovered and

exploited by several researches from various perspectives. Examples include the vari-

able state dimension filter approach of McLauchlan & Murray (1995), the related

sliding window filter of Sibley et al. (2008), the exactly sparse extended information

filter of Walter et al. (2007), smoothing and mapping by Dellaert & Kaess (2006)

and the corresponding incremental approaches by Kaess et al. (2008, 2012). In vi-

sual odometry approaches such as Nistér et al. (2004), bundle adjustment is applied

in a sliding window. This way an accurate incremental motion estimate can be

calculated in real-time; but global consistency is not ensured. At the other end of

21

1. Introduction

the spectrum, there are pose-graph optimisation approaches such as Agrawal (2006)

and Grisetti et al. (2007) which originates from Lu & Milios (1997). Pose-graph

optimisation is an efficient batch method for loop closure correction where feature

measurements are eliminated and approximated by relative pose-pose constraints.

In particular, however, Klein & Murray (2007) made a large contribution to the

mayor amalgamation of both fields. In their stand-out work Parallel Tracking And

Mapping (PTAM), they separated the visual SLAM problem into two subtasks using

a multi-threading approach. In one thread, they track the motion of a single camera

given a three dimensional model of the world. Since this pose tracking given a

known model involves an relatively inexpensive optimisation, it can be performed in

real-time on every single frame using a scene model consisting of hundreds of points.

A key aspect of this system is that a number of keyframes are extracted out of the

image stream. These keyframes are carefully selected frames which cover the area

of operation. In a second thread, PTAM performs joint optimisation over all points

in the map and a number of keyframes using bundle adjustment. Importantly, this

optimisation need not to performed at frame rate but at lower frequency. The main

limitation of PTAM is that it is only suitable for a small area of operation — in order

to restrict the number of keyframes and therefore the computational requirement of

the optimisation back-end.

PTAM surpassed the MonoSLAM approach in terms of accuracy and robustness;

but several enhancements of filter-based visual SLAM were present in subsequent

years such as Montiel et al. (2006), Davison et al. (2007), Eade & Drummond (2007)

and Pietzsch (2008). Meanwhile, in stereo vision-based SLAM robust and accu-

rate approaches were presented which enable large scale mapping and rely on the

keyframes and batch optimisation such as Konolige & Agrawal (2008) and Lim et al.

(2011). To recapitulate, the most accurate solution of structure and motion estima-

tion is clearly the joint optimisation of all available information in a batch approach.

In order to achieve real-time performance, however, both SLAM approaches, filter-

ing and keyframe bundle adjustment, sparsify the problem in different ways. While

filtering includes every single frame in the estimation, keyframes methods only op-

timises over a selected number of frames which then allows to increase the number

of points in the three dimensional model by a magnitude. So the question remained

whether iterative filtering or keyframe bundle adjustment is the method of choice

for real-time visual SLAM.

22

1.4. Efficiency, Accuracy and Consistency

1.4 Efficiency, Accuracy and Consistency

One often distinguishes between two phases of SLAM: The exploration phases where

the robot is travelling through unknown parts of the environment and the loop clo-

sure, hence the event when the robot is returning after some exploration to a known

location. Loop closure is commonly perceived as the hard problem of SLAM; it is

the typically test case when evaluating particular SLAM approaches. Due to the

inherent noise in sensor measurements, the pose estimate is prone to drift during

exploration so that there will be a significant difference between the pose estimate

and the true pose after some time. Once the robot/camera returns to a previous

visited location, it is the challenge to ensure a consistent map representation in spite

of the drift. Filter-based SLAM approaches tackle this problem by modelling the

predicted drift using a joint probability distribution. While the uncertainty of this

distribution grows during exploration, it is likely to peak when a known place is

revisited. Such a metric approach can handle small to middle scale loop closures

well. However, if the robot is only travelling long enough, its pose estimate becomes

so uncertain that it cannot be modelled accurately and at the same time efficiently

any more.4 Instead, large-scale loop closures are very effectively detected using ap-

pearance information (Nister & Stewenius, 2006; Angeli et al., 2008; Cummins &

Newman, 2009). Once the robot enters a scene which appears similar to a place

it visited before, a loop closure hypothesis gets triggered. After a positive verifica-

tion, the drift over the chain of motion is corrected in order to achieve a consistent

map representation (Lu & Milios, 1997; Grisetti et al., 2007; Konolige & Agrawal,

2008). Therefore, we will distinguish between small scale loop closures which can

be detected using metric information and large scale loop closures which rely on

appearance-based place recognition.

Even though drift during exploration is unavoidable, it is beneficial to keep it as

small as possible. Therefore, we will analyse the building blocks of visual SLAM:

the joint motion and structure estimation over a short distance. Our question of

interest is how the incremental motion can be estimated most accurately given a

limited computational budget.

4On the one hand, EKF-based approaches and variants have the problem that the pose distri-
bution will become highly non Gaussian after some time due to the non-linear sensor measurements
and camera motion. On the other hand, non-parametric approaches using particle filters (Monte-
merlo & Thrun, 2003; Sim et al., 2005; Eade & Drummond, 2006) will fail eventually too since the
required number of particles will exceed all bounds.

23

1. Introduction

Despite the exploration phase and loop closure phase, a different type of motion

pattern is prevalent: a local motion where the camera/robot is repeatedly browsing

over a restricted area (which is especially common for augmented reality applica-

tions). One particular challenge is to avoid that the map grows constantly. This

can be achieved using top-down feature matching (Davison, 2005; Klein & Murray,

2007). One actively searches for previous initialized map points and only adds new

features when necessary. A related phase is the one after a large scale loop closure.

When a known place is revisited, one needs to register temporally distinct, but

spatially overlapping scene reconstructions. This is commonly achieved by a com-

bination of exploration and appearance-based loop closures (Konolige & Agrawal,

2008; Mei et al., 2009; Lim et al., 2011) Two separate map segments are maintained

which are linked with a number of constraints. However, we believe local registration

should be treated in a unified way regardless of whether the camera performs local

browsing or revisits a know place after a long loop. Thus, we will discuss how to join

the temporally distant, but spatially overlapping map areas and therefore exploit

the available geometric information in the previous constructed map segment.

In a nutshell, previous approaches concentrated on different aspects of visual

SLAM. MonoSLAM (Davison, 2003; Davison et al., 2007) and PTAM (Klein &

Murray, 2007) deal well with local browsing motion, but have difficulties with rapid

exploration and are restricted to limited workspaces. Visual odometry frameworks

(Nistér et al., 2004; Konolige et al., 2007) were designed for incremental motion

estimation, but do not enforce global consistency. Some approaches combined vi-

sual odometry with pose-graph optimisation (e.g. Steder et al., 2007; Konolige &

Agrawal, 2008) so that they scale well for large scale mapping and loop closing.

However, those approaches are not suitable for local browsing motion since they do

not reuse previous reconstructed geometry. Instead, we aim for a unified framework

for efficient visual SLAM which can deal with all different kinds of motion pattern.

Thereby, we mainly concentrate on the optimisation back-end. How can we best

perform structure and motion estimation in order to achieve a local accurate and

global consistent map under strict time constraints?

24

1.5. Contributions

1.5 Contributions

In this thesis, we present a rigorous comparison of recursive Gaussian filtering versus

keyframe bundle adjustment. Thereby, we concentrate on the local building block

of SLAM — the joint estimation of structure and motion over a short distance. In

particular we show that the main accuracy comes from a large number of points;

the number of intermediate frames only has a minor impact. We conclude that

keyframe bundle adjustment is superior to filtering. While filtering can approach the

accuracy of bundle adjustment, the predominance of keyframe bundle adjustment

is mainly a cost argument. A large set of simulation experiments were performed.

The experiments consider different scene/motion settings, a monocular as well as a

stereo camera model and are therefore widely applicable.

On the basis of these experimental results, we develop an efficient framework

for monocular SLAM using the keyframe strategy. We integrate keyframe bundle

adjustment with a novel approach for pose-graph optimisation. In particular, we

show that monocular SLAM does not only drift in rotation and translation, but

also in scale. Consequently, we employ a loop closure scheme which also takes scale

drift into account. Starting from this two stage approach, where we tackle local

motion estimation and loop closing alternately, we develop a unified framework

for efficient visual SLAM. We use a novel double window scheme and solve bun-

dle adjustment and pose-graph optimisation jointly by minimising a common cost

term. This constant-time approach is suitable for general motion pattern such as

local browsing, exploration and long loops. It achieves the local accuracy of bundle

adjustment while maintaining global consistency. Furthermore, we present a new

strategy for local registration using metric loop closures. The framework is tested

exhaustively on a number of synthetic experiments and real-image data-sets from

monocular cameras, stereo cameras as well as structured light devices.

In addition, we suggest several improvements for the visual front-end. We show

how feature-based visual SLAM is enhanced using accurate dense tracking methods

which can be computed very efficiently on modern GPUs. In particular, we employ

variational optical flow for monocular SLAM and Lucas-Kanade tracking on a three

dimensional point cloud for SLAM using range imaging devices and integrate both

with sparse feature tracking. Also, we organise visual measurements in a quadtree

and present a new traversal method which ensures uniform feature selection.

25

1. Introduction

1.6 Publications

The core of the thesis relies on the following peer-reviewed publications:

• H. Strasdat, J. M. M. Montiel & A. J. Davison: Monocular SLAM: Why

Filter? In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), May 2010. (ICRA best vision paper)

• H. Strasdat, J. M. M. Montiel & A. J. Davison: Scale-drift Aware Large

Scale Monocular SLAM. In Proceedings of Robotics: Science and Sytems

(RSS), June 2010, and in Y. Matsuoka, H. Durrant-Whyte, J. Neira (editors),

MIT Press, September 2011.

• H. Strasdat, A. J. Davison, J. M. M. Montiel & K. Konolige: Double Win-

dow Optimisation for Constant Time Visual SLAM. In Proceedings of

the IEEE International Conference on Computer Vision (ICCV), November

2011.

• H. Strasdat, J. M. M. Montiel & A. J. Davison: Visual SLAM: Why Fil-

ter? In J.-M. Frahm, M. Pantic (editors): Image and Vision Computing,

Volume 30, Issue 2, February 2012.

1.7 Structure

In the subsequent chapter, we will give an overview of theoretical preliminaries which

are relevant for the remainder of the thesis. In particular, we present least-squares

optimisation, probabilistic state estimation and recursive filtering. Furthermore, we

introduce Lie groups as a generalisation of Euclidean vector spaces and elaborate

how optimisation can be performed on them. In Chapter 3, we tackle monocular

exploration. This offers a smooth introduction to the problem of visual SLAM and

bundle adjustment; it allow us to introduce concepts such as camera models, and

the quad tree based feature selection which are required subsequently. Afterwards,

we present the rigorous comparison of filtering versus keyframe bundle adjustment

in Chapter 4. In Chapter 5, we complete the framework for monocular exploration

to a large SLAM framework by tackling the problems of large scale loop closures

and scale drift. Then, in Chapter 6, we will present a novel, uniform and scalable

26

1.7. Structure

approach for visual SLAM using double window optimisation. Finally, in Chapter 7

we discuss our outcomes and future work.

27

1. Introduction

28

Chapter 2

Preliminaries

In which we first revise a number of basic mathematical concepts and

second introduce a generalisation over the Euclidean space: Lie groups.

In an attempt to make this document as self-contained as possible, and also to

clarify notation, a number of mathematical concepts shall be presented including

multivariate differentiation, Taylor series, numerical optimization techniques, prob-

abilistic state estimation and its relation to least squares problems. Motivated as a

generalisation over the Euclidean vectors space, we introduce Lie groups and their

underlying related concepts.

2.1 Some Revision of Calculus

2.1.1 Multivariate Differentiation

A function F : Rn → R, which maps a vector onto a scalar, is called a scalar field.

Furthermore, a function f : Rn → Rm, which maps a vector onto a vector, is called

a vector field.

The first derivative of a scalar field F : Rn → R is a vector field ∇F : Rn → Rn.

29

2. Preliminaries

It is called the gradient of F and defined as

∇F (x) :=

(
∂F (x)

∂x1
, ...,

∂F (x)

∂xn

)>
. (2.1)

The second derivative of F is a function HF : Rn → R(n×n) which maps an n-vector

onto a n× n matrix. It is the Hessian of F :

HF (x) :=

∂2F (x)
∂x21

. . . ∂2F (x)
∂x1xn

...
. . .

...
∂2F (x)
∂x1xn

. . . ∂2F (x)
∂x2n

 . (2.2)

Furthermore, the first derivative of a vector field f : Rn → Rm is the Jacobian

Jf : Rn → R(m×n) which is defined as:

Jf (x) :=

∂f1(x)
∂x1

. . . ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

. . . ∂fm(x)
∂xn

 . (2.3)

Thus, the transpose of the gradient vector can be seen as special case of the Jacobian

matrix (with m = 1). The second derivative of a vector field f is a function Hf :

Rn → R(n×m×n) which maps a vector onto a three dimensional array or a third-order

tensor. Again, Hf is called the Hessian (tensor) of f .

2.1.2 Taylor Series

Let f : R→ R be an infinitely differentiable function. The power series

f(a) +
f ′(a)

1!
(x− a) +

f ′′(x)

2!
(x− a)2 + ... =

∞∑
k=0

f (n)(a)

k!
(x− a)k (2.4)

is called the Taylor series of f at a. If f is analytic1, then its Taylor series has a

positive radius of convergence r and if furthermore |x− a| < r, it holds that

f(x) =
∞∑
k=0

f (n)(a)

k!
(x− a)k. (2.5)

In practice, we often approximate a function f in the neighbourhood of a point a

using a finite series, the nth-order Taylor expansion:

f(x) ≈ f(a) +
f ′(a)

1!
(x− a) + ...+

f (n)(a)

n!
(x− a)n =

n∑
k=0

f (n)(a)

k!
(x− a)k. (2.6)

1A function f : R→ R is analytic in x0

:⇔ ∃ a0, ..., ak, ... ∈ R ∀x in the neighbourhood of x0 : f(x) =
∑∞
k=0 ak(x− x0)k.

30

2.2. Introduction to Optimisation

There is a generalised version of Taylor series for scalar fields F . For instance,

the second-order Taylor expansion of F around a would be

F (a) + (x− a)>∇F (a) +
1

2
(x− a)>HF (a)(x− a). (2.7)

2.2 Introduction to Optimisation

Let F : Rn → R be a scalar field. In typical optimisation problems, we would like

to find the minimum of F :

min
x∈Rn

F (x). (2.8)

For a general scalar field, even if we assume it is infinitely differentiable, we are not

guaranteed to find such a global minimum in countable many steps. Therefore, one

often focuses on finding local minima in the neighbourhood of an initial guess x0

instead. If 〈x̄, F (x̄)〉 is a local minimum of F , then ∇F (x̄) = 0, which is called the

necessary condition. Furthermore, if ∇F (x̄) = 0 and HF (x̄) is positive definite, thus

∀y∈Rn\{0} y> ·HF (x̄) ·y > 0, then 〈x̄, F (x̄)〉 is a local minimum. This is the sufficient

condition.

2.2.1 Gradient Descent

Let us assume that F is differentiable and we would like to find a local minimum of F

in the neighbourhood of x(0). In the method of gradient descent, we walk iteratively,

x(0), x(1), ..., x(k), ..., along the direction of the negative gradient −∇F (x(k)). Thus,

we employ the following update rule:

x(k+1) = x(k) − αk∇F (x(k)). (2.9)

Typically, the factor αk > 0 is selected in a way such that F (x(k+1))� F (x(k)).2 If

no such αk exists, the minimum is reached. For instance, we could select αk using a

back-tracking line search: We initialise αk = 1 and then iteratively downsize it, e.g.

αk ← 1
2αk, until the condition F (x(k+1)) � F (x(k)) is fulfilled or gradient descent

is converged (αk < ε). Gradient descent with line search is guaranteed to converge

locally. However, the convergence rate can be low, especially close to the minimum

(see Figure 2.1(a)).

2Here,� means sufficiently small. In theory, the condition F (x(k+1)) < F (x(k)) is not sufficient
to guarantee convergence. We won’t elaborate here but refer the reader to the Wolfe conditions (No-

31

2. Preliminaries

(a) Gradient descent (b) Newton method

Figure 2.1: (a) Method of gradient descent illustrated on a quadratic form (as defined
below in equation (2.14)). The method always walks along the direction of steepest
descent, which leads to a “zig-zagging” and thus potential slow convergence close
to the minimum. Here, a near optimal line search is used. (b) The Newton method
is illustrated on a one-dimensional higher-order polynomial (solid blue curve). The
neighbourhood around the initial guess x0 is approximated with a one-dimensional
positive definite quadratic form: a parabola (red dashed curve). The initial update
x0 → x1 is performed by stepping to the minimum of the parabola (vertical red
line). Also, a second update x1 → x2 is shown (green parabola, green vertical line)
which brings the estimate very close to the optimum already.

2.2.2 Newton Method

A more efficient approach is the Newton method which requires that F is twice

differentiable. This method cannot distinguish between minima, saddle points and

maxima. In the following, however, we will assume that our initial estimate x0 is

in the neighbourhood of a local minimum at x̄. In other word, we require that the

Hessian HF is positive semi-definite in this neighbourhood. Due to the necessary

condition, x̄ is a root of the gradient ∇F (i.e. a vector x̄ such that ∇F (x̄) = O).

Since we assume that x0 is in the neighbourhood of x̄, we can approximate ∇F (x̄)

using the first-order Taylor expansion,

∇F (x̄) ≈ ∇F (x0) + HF (x0)(x̄− x0) . (2.10)

Because ∇F (x̄) = 0, we get x̄ ≈ x0 − H−1
F (x0)∇F (x0). This leads to the recursive

update formula:

x(k+1) = x(k) − H−1
F (x(k))∇F (x(k)) . (2.11)

cedal & Wright, 2006).

32

2.2. Introduction to Optimisation

Defining the incremental update as δ := x(k+1) − x(k), we can perform the Newton

method by repetitively solving the following linear system

HF (x(k))δ = −∇F (x(k)) (2.12)

followed by an additive update

x(k+1) = x(k) + δ . (2.13)

To get a second view on the method, let us consider the quadratic form, a vector

field generalization of the quadratic function:

1

2
x>Ax− b>x + c . (2.14)

If A is symmetric and positive semi-definite, the quadratic form is minimal for

Ax = b (Shewchuk, 1994). Looking at equation (2.12), it becomes clear that the

Newton method approximates the function F at x(k) with a quadratic form with

A = HF (x(k)) and b = −∇F (x(k)). Hence, if F happens to be a quadratic form, the

Newton method will converge in one iteration. Note that any function is approxi-

mately quadratic around its minimum (= “bowl-shaped”) if it is twice differentiable.

Thus in contrast to gradient descent, the Newton method converges especially fast

in the neighbourhood of the minimum. Figure 2.1(b) illustrates this using a one

dimensional function.

2.2.3 Gauss-Newton Method

For high-dimensional problems, it is often intractable to calculate the HessianHF (a).

We now consider an efficient variant of the Newton method which requires that the

scalar field F : Rn → R is of the following class:

F (x) = a · d(x)>Λd(x) , (2.15)

with a > 0, d : Rn → Rm being a twice differentiable vector field, and Λ ∈ Rm×m

being a symmetric, positive semi-definite matrix. We are interested in the minimum

of F . Even though this optimization domain seem to be very special, it covers a

large problem class. Especially, it covers least square problems where we would like

to estimate a model parameters x by minimising a quadratic cost
∑

i(zi − ẑi(x))2

as we will see later.

33

2. Preliminaries

Without loss of generality, we can assume that a = 1
2 since scaling F does not

change the position of its minima. Due to the product rule, the first derivative of F

becomes:

∇F =
1

2
(d(x)>ΛJd(x))> +

1

2
(Jd(x)>Λd(x)) = Jd(x)>Λd(x) , (2.16)

using the fact that Λ is symmetric. Again by means of the product rule, the second

derivation of F is

HF (x) = Jd(x)>ΛJd(x)) + HdΛd(x) , (2.17)

with Hd being the Hessian tensor of d. The Gauss-Newton method approximates

the Hessian of F as

HF (x) ≈ Jd(x)>ΛJd(x)) . (2.18)

This approximation behaves well when d(x) is small, since then the second term

of equation (2.17) is negligible. It is especially crucial that this property holds

true around the minimum of F where the Newton method approaches quadratic

convergence. To summarize, in Gauss-Newton the linear system of equation (2.12)

is approximated by the normal equation

(J>dΛJd)δ = −J>dΛd . (2.19)

2.2.4 Levenberg-Marquardt

Let us recapitulate that Newton-type methods works well close to the minimum, but

elsewhere they might be attracted by local maxima and saddle points too. On the

contrary, gradient descent converges globally but performs especially poor close to

the minimum. This leads to the Levenberg-Marquardt algorithm which interpolates

between Gauss-Newton and gradient descent by altering the normal equations as

follows: (
J>dΛzJd + µI

)
δ = −J>dΛzd . (2.20)

The parameter µ > 0 rotates the update vector δ towards the direction of the steep-

est descent. If µ approaches zero, Levenberg-Marquardt approaches pure Gauss-

Newton. On the other hand, if µ approaches infinity, the matrix
(
J>dΛzJd + µI

)
approaches a diagonal matrix with infinite trace. Thus, for µ → ∞, Levenberg-

Marquardt approaches an gradient descent update

δ = −αJ>dΛzd , (2.21)

34

2.3. Probabilistic State Estimation and Filtering

with a minimal step-size α→ 0, which is bound to reduce the error by an infinites-

imal small step if the minimum is not reached yet.

The Levenberg-Marquardt algorithm is performed as follows: Only if the update

x(k) +δ reduces the error, i.e. F (x(k) +δ)� F (x(k)), we accept the update x(k+1) =

x(k) + δ. In addition, Levenberg-Marquardt assumes we are approaching the local

minimum and hence µ is reduced to strengthen the influence of Gauss-Newton.

However, if the update x(k) + δ does not reduce the error, it is rejected, and we

try again with a larger µ, i.e. with smaller step size and an update direction more

towards the steepest descent direction.

2.3 Probabilistic State Estimation and Filtering

Assume that we would like to estimate a parameter vector x given a measurement

vector z. Furthermore, we know the form of the likelihood function p(z|x). This

function quantifies the probability that we make a particular measurement z given

that the parameter is x. This state estimation problem can be visualized using

a simple graphical model (see Figure 2.2). The most probable solution is the set

of values x which maximises this likelihood, which is equivalent to minimising the

negative log-likelihood:

arg max
x

p(z|x) = arg max
x

log p(z|x) = arg min
x

(− log p(z|x)) . (2.22)

In many optimisation problems, negative log-likelihood is known as energy and the

goal is to minimise it, which is fully equivalent to maximising the probability of the

solution – under the assumption of a uniform prior on x. In the common case that

the likelihood function is a product of several factors, p(z|x) =
∏K
k=1 φk(x, z), the

energy is a sum of negative log-factors:

arg max
x

(
K∏
k=1

φk(x, z)

)
= arg min

x

(
−

K∑
k=1

log φk(x, z)

)
. (2.23)

2.3.1 State Estimation using Gauss-Newton

We now speak in more specific but still very widely applicable terms, and assume that

the likelihood distribution p(z|x) is jointly Gaussian, and thus has the distribution

35

2. Preliminaries

(a) (b)

Figure 2.2: (a) Illustration of a general state estimation problem as graphical model.
Observable variables, here the measurement z, are visualised as small black circles,
while the parameters to estimate, here x, are within blue circles. (b) Factor graph
representation of an example least squares problem. The energy consists of four mea-
surement functions: ẑ1(x1),ẑ2(x1,x2),ẑ3(x2,x3) and ẑ4(x3,x4,x5). This is reflected
by four constraints in the graph: A unary constraint on x1, two binary constraints,
and a ternary one between x3, x4 and x5.

(up to a constant of proportionality):

p(z|x) ∝ exp(−(z− ẑ(x))>Λz(z− ẑ(x))) , (2.24)

where Λz = Σ−1
z , the information matrix or inverse of the measurement covariance

matrix Σz of the likelihood distribution, and ẑ(x) is the ‘measurement function’ or

‘forward model’ which computes (predicts) the distribution of measurements z given

a set of parameters x. The negative log-likelihood, or energy, − log p(z|x) := χ2(x)

therefore is the following quadratic expression:

χ2(x) = (z− ẑ(x))>Λz(z− ẑ(x)) . (2.25)

Note that it matches the right hand side of equation (2.15) with d := z − ẑ ap-

proximating zero at the minimum. Therefore, it is suitable for Gauss-Newton-type

optimisation methods such as Levenberg-Marquardt.

If the likelihood is a product of several factors φk and the energy is a sum of

negative log-terms (equation (2.23)), the measurement information matrix Λz is

block-diagonal,

Λz =

Λz1 O . . . O

O Λz2
. . .

...
...

. . .
. . . O

O . . . O ΛzK

 =: diag(Λz1 , ..., Λz2) with z =

z1

...

zK

 , (2.26)

36

2.3. Probabilistic State Estimation and Filtering

and the Gaussian energy χ2(x) simplifies to:

χ2(x) =

K∑
k=1

(zk − ẑk(x))>Λzk(zk − ẑk(x)) . (2.27)

This kind of minimisation problem, arg minx χ
2(x), is called (generalised) least

squares. Typically, the factors φk and thus the prediction functions ẑk are only

defined on subsets of x as illustrated in the factor graph in Figure 2.2(b).

2.3.2 Well-posed Problems and Gauge Freedom

Ideally, a Gaussian state estimation problem is well-posed so that the quadratic

energy (2.25) has a unique global minimum. In this case, the matrix J>dΣ
−1
z Jd ∈

Rn×n has full rank such that the the normal equation,

(J>dΣ
−1
z Jd)δ = −J>d d(x) , (2.28)

has a unique solution. On the other hand, if the normal equation has a p-dimensional

solution space, the matrix J>dΣ
−1
z Jd is singular with rank n− p. In this case we say

that the state estimation problem has a p-dimensional gauge freedom.

2.3.3 Covariance Back-Propagation

So far, we have considered only how to find the single most probable set of parameters

x. If there is no gauge freedom in the minimisation of χ2(x), then J>dΣ
−1
z Jd has full

rank and we can determine a full distribution for x. A first-order approximation

of the information matrix Λx can be calculated using covariance backpropagation

(Hartley & Zisserman, 2004, pp.141):

Λx = J>dΣ
−1
z Jd . (2.29)

The covariance Σx = Λ−1
x can be recovered if needed.

2.3.4 Gauss Newton Filter

Let us assume we would like to estimate a parameter x over time. At each time step

1, ..., t, we observe a set of measurements z1, ..., zt. We are interested to estimate

37

2. Preliminaries

the posterior distribution, or belief at time t:

bel(xt) := p(xt|z1, ..., zt). (2.30)

Using the recursive Bayes filter scheme (Thrun et al., 2005, Sec. I.2), we get

bel(xt) ∝ p(zt|xt)
∫
p(xt|xt−1)bel(xt−1) dxt−1 , (2.31)

with p(zt|xt) being the measurement likelihood, p(xt|xt−1) the prediction probability

that xt given xt−1 and bel(xt−1) being the prior distribution at time t − 1. Under

the assumption of a static parameter (e.g. landmarks in SLAM), i.e. x does not

change over time, it holds that
∫
p(xt|xt−1)bel(xt−1) dxt−1 = bel(xt−1). In this case

the Bayes filter reduces to

bel(xt) ∝ p(zt|xt) · bel(xt−1) . (2.32)

Assuming a Gaussian distribution, bel(xt) is proportional to

exp(−(xt − xt−1)>Λxt−1(xt − xt−1)) · exp(−(zt − ẑ(xt))
>Λz(zt − ẑ(xt))). (2.33)

Note, that this term is not only the basis of the Gauss-Newton filter3, but also of

the correction step of other Gaussian filters such as the popular Extended Kalman

Filter (EKF) (Thrun et al., 2005, p.60). As above, maximising the posterior bel(xt)

is equivalent to minimising the negative log-posterior,

χ2(xt) = (xt − xt−1)>Λx(xt − xt−1) + (zt − ẑ(xt))
>Λz(zt − ẑ(xt)). (2.34)

This quadratic energy has two components. The left summand is a regulariser which

ensures that the state estimate xt stays close to the prior distribution 〈xt−1, Λxt−1〉.
The right summand is a data term which makes sure that the measurement error

zt− ẑ(xt) is minimised. For instance, we can minimise the energy (2.34) by forming

the augmented normal equation (2.20) and solve for δ using Levenberg-Marquardt.

The information matrix is updated using uncertainty propagation:

Λxt = Λxt−1 + J>dtΛzJdt . (2.35)

The Gauss-Newton filter can also be used to estimate parameters of a dynamic

system if we assume a uniform prior on the motion. Let us assume that the param-

eter x = (a>,b>)> has a static component a and a dynamic component b. Thus

3The term Gauss-Newton filter is borrowed from Sibley et al. (2005). Alternatively, it could be
described as an iterated extended information filter without state prediction.

38

2.4. Lie Groups

the information matrix has the following form:

Λxt =

[
Λat Λ>at,bt
Λat,bt Λbt

]
. (2.36)

After each update (2.35), the dynamic component b needs to be marginalised out

(Eustice et al., 2005) from the information matrix:

Λ′at = Λat − Λ>at,bt · Λ
−1
bt
· Λat,bt . (2.37)

Afterwards, the information matrix is augmented with a uniform prior

Λ′xt =

[
Λ′at O

O O

]
. (2.38)

2.4 Lie Groups

The optimisation and filtering methods presented in the previous sections are ap-

plicable for scalar fields which are defined on Euclidean vector spaces Rn. When

performing optimisation, we calculate an incremental update δ ∈ Rn which is added

to the current estimate x(k) ∈ Rn:

x(k+1) = x(k) + δ (restating equation (2.13)) . (2.39)

Now let us consider an expression G(ω). We wish to minimize it with respect to

ω = (ω1, ω2, ω3), a rotation in three dimensional space. We can think of ω as being

any parametrisation of rotation in 3D (such as Euler angles or the rotation vector

parametrisation defined below equation (2.71) on page 47). Performing a rotation

by δ and then by ω is in general not equivalent to performing a rotation of ω + δ.

Vector addition is simply not the right operation to concatenate rotations. Thus,

rotations (together with their concatenation) cannot be modelled as a Euclidean

vector space, but as a Lie group.

Lie groups gain more and more popularity among researchers in computer vision

and robotics. Most introductory texts, however, are either purely application ori-

ented and merely state relevant properties of some specific Lie groups; or they are

sophisticated text books which mainly target a mathematical audience. In an at-

tempt to close this gap, a short tutorial on Lie groups is given which does not only

introduce relevant Lie groups such as the group of rotation SO(3) and group of rigid

body motion SE(3), but also gives some insight on the underlying concepts.

39

2. Preliminaries

Thanks to Steven Lovegrove

(a) (b)

Figure 2.3: (a) The (2-)sphere as an example of a smooth manifold. Locally, it can
be approximated by a tangent plane. (b) The circle group (or 1-sphere) represents
rotations in a plane. It is a commutative Lie group. A rotation of π

4 is shown.
Concatenating of two rotations is equivalent to adding its angles.

2.4.1 Smooth Manifolds and Lie Groups

Many elementary mathematical methods and results, including the optimisation

techniques introduced above, assume that the entities of interest are elements of

Euclidean vector spaces. However, most conclusions can be generalised to more ab-

stract concepts. One practical generalisation is the one from Euclidean vector spaces

to (smooth) manifolds. A smooth manifold is an entity which is locally Euclidean,

but might have a different structure globally. Probably the best illustrative example

of a manifold is a sphere (see Figure 2.3(a)). Each local area of the sphere can be

approximately represented using a tangent plane. However, the global structure is

very different from a plane. For instance, while the plane R2 has no bounds, the

sphere is bounded and has a wrap-around. Intuitively, we can regard a manifold as

a Euclidean vector space which is bent.

We would like to focus on a special type of manifold which has particular nice

properties: Lie groups. Formally, a Lie group is a group which is at the same time

a smooth manifold. Introducing Lie groups based on this rather abstract definition,

however, requires a substantial amount of advanced mathematical theory, such as

topology and differential geometry. Instead, we follow the footsteps of Stillwell

(2008) and understand Lie groups as closed subgroups of the group of invertible

matrices GL(n), an approach which dates back to von Neumann (1929). Thus, we

can avoid a formal introduction of smooth manifolds altogether. Our restriction to

40

2.4. Lie Groups

matrix Lie groups is not a major sacrifice since most interesting Lie groups fall into

this class.

Lie groups are difficult to introduce using geometric intuition since there is no ob-

vious illustrative example. The sphere, being a great example of a smooth manifold,

is not a Lie group.4 A trivial Lie group is the Euclidean vector space. Obviously,

this is not a good example for Lie groups in a similar way that a straight line is not

a illustrative example for a smooth function. One of the most basic examples is the

circle group (Figure 2.3(b)). This group defines rotation in a plane. Unfortunately,

the circle group is not general enough either, since it is commutative. We will see

that commutative Lie groups are very special. One of the most simplistic example

of a non-commutative Lie group is the group of three dimensional rotations SO(3).

This group will serve as our main example.

2.4.2 Groups

First and foremost, Lie groups are groups. A group (G, id,⊗) is a set G which

includes the neutral element id ∈ G together with an operation ⊗ : G ×G → G

which fulfils the group axioms:

∀
a∈G

∀
b∈G

∀
c∈G

a⊗ (b⊗ c) = (a⊗ b)⊗ c (associativity) (2.40)

∀
a∈G

a⊗ id = id⊗ a = a (neutral element) (2.41)

∀
a∈G

=1
∃
b∈G

a⊗ b = b⊗ a = id (unique inverse element) (2.42)

From axiom (2.42) it follows directly that each group has an inverse function inv :

G→ G which can be defined as follow:

inv(a) := that b such that a⊗ b = id . (2.43)

A group is called commutative if all elements commute:

∀
a∈G

∀
b∈G

a⊗ b = b⊗ a . (2.44)

A subset S ⊂ G of a group (G, id,⊗) is called a subgroup of G if (S, id,⊗) is a

group. The subgroup Z(G) ⊂ G whose elements commute with all member of G,

Z(G) := {x ∈ G : ∀
y∈G

: x⊗ y = y ⊗ x} , (2.45)

4Indeed, there are only two n-spheres which are Lie groups (for n ∈ N+). The 1-sphere/circle,
and the 3-sphere/unit quaternions (Stillwell, 2008, p.32).

41

2. Preliminaries

is called the centre (German: Zentrum) of G.

2.4.3 Matrix Lie Groups

Let us consider the general linear group GL(n), the most general matrix Lie group.

It is the group of invertible n × n matrices over the real numbers R. The group

operation is the matrix multiplication and the neutral element is the identity matrix

In×n. The matrices must be invertible in order to fulfil axiom (2.42). Note that

matrix multiplication, and therefore matrix Lie groups too, are not commutative in

general. For example,

[
0 1

1 1

]
·

[
1 2

0 1

]
=

[
0 1

1 3

]
, but

[
1 2

0 1

]
·

[
0 1

1 1

]
=

[
2 3

1 1

]
. (2.46)

There are few examples of Lie groups which will be used throughout this tutorial.

One is the circle group, or group of in-plane rotations called SO(2). It consist of

2× 2 matrices of the form R(α),

R(α) =

[
cos(α) − sin(α)

sin(α) cos(α)

]
. (2.47)

If we multiply R(α) by a 2-vector x, the vector x is rotated about the origin by angle

α anti-clockwise — under the assumption of a right-handed coordinate frame. The

Lie group SO(2) is special because it is commutative. For every two rotations R(α)

and R(β), it does not matter which one is applied first: R(α)R(β) = R(β)R(α).

In order to generalise over SO(2), we first note that its members are orthogonal

matrices: R(α)R(α)> = I; or equivalently: R(α)> = R(α)−1. This can be inferred

from sin(−α) = − sin(α) and cos(−α) = cos(α); therefore R(α)> = R(−α) = R(α)−1.

In general, the group of n× n matrices with AA> = I is called the orthogonal group

O(n). The determinant of an orthogonal matrix is either 1 or −1. Orthogonal

matrices with determinant −1 perform a rotation followed by a reflection. If we

want to achieve pure rotation, we have to restrict ourselves to orthogonal matrices A

with det(A) = 1. This group is called the special orthogonal group SO(n). We will

mainly focus on the group of three dimensional rotations SO(3).

42

2.4. Lie Groups

2.4.4 Tangent Space

Most Lie groups, including SO(3), are not commutative. However, every group ele-

ment a commutes with the the identity: a⊗id = id⊗a. Thus, if we go infinitesimally

close to identity, we enter a space which is commutative. This space is the tangent

space of the Lie group at the identity which we will introduce now.

Definition of smooth path

Let X ⊂ Rm. Let [a, b] be a real interval.

P is a smooth path in X :⇔ P : [a, b]→ X is a differentiable function .

(2.48)

Thus, a smooth path is a differentiable function from a real interval into a real

vector space. Note that whenever necessary, we interpret matrices as m-tuples.

Thus, we can consider a square matrix An×n being a member of a vector space Rm

with m = n2. Indeed, we are interested in smooth paths which map into matrix

groups. One such path for SO(3) would be:

Rx : [−π, π]→ SO(3), Rx(t) =

1 0 0

0 cos(t) − sin(t)

0 sin(t) cos(t)

 . (2.49)

The term smooth path is not arbitrary, but is linked to the concept of motion in

a space. Indeed, Rx(t) describes the rotation around the x-axis at time t. Let us

consider a second example: The Lie group SO(2) is completely determined by the

path R(α) defined in equation (2.47).

Definition: Tangent vector of a path

Let P be a smooth path with P (0) = y.

x is the tangent vector of path P at the point y :⇔ x =
∂

∂t
P (t)|t=0 (2.50)

Moreover, we call x a tangent vector of a space X if such a smooth path exists.

43

2. Preliminaries

Definition: Tangent vector of a space

Let X ⊂ Rn be a space with y ∈ X.

x is a tangent vector of X at the point y

:⇔ ∃smooth path P in X

(
P (0) = y ∧ x = ∂

∂tP (t)|t=0

)
.

(2.51)

For example,

∂

∂t
Rx(t)|t=0 =

0 0 0

0 − sin(0) − cos(0)

0 cos(0) − sin(0)

 =

0 0 0

0 0 −1

0 1 0

 (2.52)

is the tangent vector of Rx(t) and therefore a tangent vector of SO(3). Since it holds

that Rx(0) = I, it is a tangent vector at the identity I.

Furthermore, the set of all tangent vectors at a point y spans a vector space, the

tangent space at y. In particular, the tangent vectors at the identity of a Lie group

G spans a vector space g, the tangent spaces at the identity. If not explicitly stated

otherwise, we will assume from now on that tangent vectors and tangent spaces are

taken at the identity.

As R(α) is the only path in SO(2) and R(0) = I2×2, the tangent vector ∂
∂αR(α)|α=0,

∂

∂t
R(α)|α=0 =

[
0 −1

1 0

]
, (2.53)

spans the tangent space (at the identity) so(2).

Finally, let us examine the tangent space of GL(n). Let X ∈ Rn×n be a general

square matrix. It is true that I + tX is invertible for a small enough t:

∃ε>0 ∀t≤ε : det(I + tX) 6= 0 . (2.54)

Hence for t ∈ [0, ε], the path P(t) = I + tX lies within the set of invertible matrices

GL(n). Since it is true that P(0) = I, X = ∂
∂t(I + tX)|t=0 are the tangent vectors of

GL(n) at the identity. Therefore, the tangent space gl(n) consists of the set of all

matrices X ∈ Rn×n.5

5Thanks to Sam L. and Zhen Lin from math.stackexchange.com.

44

math.stackexchange.com

2.4. Lie Groups

Tangent Space of O(3) and SO(3)

Now we will construct the tangent space of O(3) at the identity, which is called

o(3). Later, we will see that it is identical to the tangent space of SO(3), thus

so(3) = o(3).

Let us consider a general smooth path P : [a, b] → O(3) with P(0) = I. Since all

such matrices P(t) are orthogonal, it holds that

P(t) · (P(t))> = I . (2.55)

By differentiating this equation on both sides we get (using the product rule):

∂P(t)

∂t
(P(t))> + P(t)

∂(P(t))>

∂t
= O . (2.56)

Since we are interested in the tangent vector of P, we set t = 0 and receive

∂P(t)

∂t

∣∣∣∣
t=0

+
∂(P(t))>

∂t

∣∣∣∣
t=0

= O . (2.57)

We just showed that the tangent space o(3) consists of tangent vectors Ω := P(t)
∂t |t=0

such that Ω + Ω> = O. Hence, Ω = −Ω> and therefore its diagonal elements have to

be zero: Ω0,0 = Ω1,1 = Ω2,2 = 0. Furthermore, it is skew-symmetric: Ωi,j = −Ωj,i.

Thus, the tangent space is spanned by the following basis vectors:

G1 =

0 0 0

0 0 −1

0 1 0

 , G2 =

0 0 1

0 0 0

−1 0 0

 , G3 =

0 −1 0

1 0 0

0 0 0

 . (2.58)

These basis vectors are sometimes called the (infinitesimal) generators of the un-

derlying Lie group. Since there are three linear independent generators for O(3),

the tangent space o(3) is three-dimensional. As a side note, this also reveals that

group members of O(3) have three degrees of freedom (DoF). Representing a 3-

dimensional space with 9-dimensional basis vectors, written in 3 × 3-matrix form,

might seem to be cumbersome, but allows us to use universal definitions for concepts

such as tangent vectors as well as the exponential map and Lie bracket as we will

see later. However, a minimal vector representation is sometimes useful, for which

we introduce the hat-operator ·̂,

·̂ : Rm → Rn×n, x̂ =
m∑
k=0

xiGi, (2.59)

45

2. Preliminaries

which maps a minimal m-vector tangent representation onto an (n × n) matrix

representation. For o(3) = so(3) the hat-operator is:

·̂so(3) : R3 → so(3), ω̂so(3) =

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0 .

 := [ω]× . (2.60)

The notation [x]× is motivated by the fact that [a]× · b = a × b with × being the

cross product. Sometimes, the inverse function of the hat-operator is required too.

For o(3) = so(3) this vee-operator (·)∨ is:

(·)∨so(3) : so(3)→ R3 , (Ω)∨so(3) =

Ω(3,2)

Ω(1,3)

Ω(2,1)

 =

−Ω(2,3)

−Ω(3,1)

−Ω(1,2)

 =
1

2

Ω(3,2) − Ω(2,3)

Ω(1,3) − Ω(3,1)

Ω(2,1) − Ω(1,2)

 .

(2.61)

2.4.5 Exponential Map

Now we have introduced the tangent space, we need a way to associate elements of

it to elements of the underlying Lie group. This is done using the exponential map.

Let us consider the formal definition of the standard exponential function:

ex : R→ R+, ex =
∞∑
k=0

xn

n!
. (2.62)

This can be generalized for squared matrices:

exp(X) : Rn×n → Rn×n, exp(X) =
∞∑
k=0

Xn

n!
, (2.63)

with X0 := I. Not without reason, this function is called exponential map since it

has similar properties to the exponential function including

∂

∂t
exp(tX) = X exp(tX) = exp(tX)X , (2.64)

and,

XY = YX ⇒ exp(X) exp(Y) = exp(X + Y) . (2.65)

Keep in mind that the latter requires that X and Y commute. Furthermore, it can

be shown that

exp(AXA−1) = A exp(X)A−1 . (2.66)

46

2.4. Lie Groups

Corresponding proofs are in Rossmann (2002, pp.2).

In order to develop another important property, we first note that

exp(O) =
∞∑
k=0

On

n!
= I + O + O + ... = I . (2.67)

Let X be a general square matrix. It is easy to see that X and −X commute; thus

exp(X) exp(−X)
(2.65)

= exp(X− X) = exp(O)
(2.67)

= I , (2.68)

hence

exp(X)−1 = exp(−X) . (2.69)

We just proved that for all X ∈ Rn×n, exp(X) is invertible. Therefore, exp(·) maps

the set of square matrices into the set of invertible matrices. In other words, it maps

element of the tangent space gl(n) into the general linear group GL(n).

Let G be a closed subgroup of GL(n) and g be the tangent space of G at the

identity. It can be shown (e.g. Stillwell, 2008, pp.143) that

X ∈ g ⇒ exp(X) ∈ G . (2.70)

In other words, the matrix exponential maps an element from the tangent space to

the corresponding matrix Lie group.

Exponential Map onto SO(3)

In order to define the exponential map (2.63) for other matrix Lie groups, we simply

have to restrict its domain accordingly. To establish a mapping to SO(3), we have

to restrict the domain on o(3) — matrices of the form [ω]×. It can be shown that

the exponential map exp : o(3) → SO(3) is surjective (Gallier, 2011, p.469). This

confirms our suspicion that o(3) = so(3). For SO(3), the exponential map has a

closed form:

exp([ω]×) =

I + [ω]× + 1
2 [ω]2× = I for (θ → 0)

I + sin(θ)
θ [ω]× + 1−cos(θ)

θ2
[ω]2× else

with θ = ||ω||2 .

(2.71)

This mapping is known as the Rodriguez formula. It has the following geometric

interpretation: A rotation in the three dimensional space can be parametrized using

47

2. Preliminaries

the so called rotation vector ω. Its magnitude defines the rotation angle θ = ||ω||2
and the unit vector uω = ω

θ the rotation axis. The transformation R · x with

R = exp(ω̂) rotates a point x around the axis uω by the angle θ.

2.4.6 Matrix Logarithm

In case that exp(g) → G is surjective (=onto) for a given matrix Lie group G, we

can define its inverse relation, the matrix logarithmic. Even if exp(·) is not injective,

and hence its inverse is a multi-valued function, we typically understand the matrix

logarithm as a smooth single-value function log : G→ g by restricting its codomain

accordingly. It holds that

exp(log(Ω)) = Ω and log(exp(A)) = A . (2.72)

From property (2.69) it follows that

log(Ω−1) = − log(Ω) . (2.73)

The matrix logarithm of SO(3) is

log(R) =

1
2(R− R>) = O for d→ 1

arccos(d)

2
√

1−d2 (R− R>) for d ∈ (−1, 1)
with d =

1

2
(trace(R)− 1) . (2.74)

2.4.7 Adjoint Map

In general, Lie groups are not commutative. Thus, in general ABA−1 6= B. Hence,

it is of interest to ask what ABA−1 equals instead. Let G be a Lie group and g its

tangent space. We define a function Ψ:

ΨA : G→ G , ΨA(B) := ABA−1 , (2.75)

with A ∈ G. More specifically, we now think of B being a smooth path through

the identity. If we calculate the derivative ∂
∂tΨA(B(t))|t=0, we receive AVA−1 with

V := ∂
∂tB(t)|t=0 being a tangent vector in g. This leads to the definition of the

adjoint representation of a Lie group G:

AdjA : g→ g , AdjA(V) := AVA−1 . (2.76)

48

2.4. Lie Groups

The function Adj(·) is actually a linear operator. Thus, there exists an m×m matrix

AdA such that

AdA : Rm → Rm, ÂdA · x = Ax̂A−1 (= AdjA(x̂)) . (2.77)

To get a better understanding of the usefulness of the adjoint, let us apply property

(2.66) to the definition above:

ÂdA · x = Ax̂A−1 (2.66)⇒ exp(ÂdA · x) = A exp(x̂)A−1 (2.78)

Thus, A · exp(x̂) = exp(ÂdA · x) · A, and therefore the adjoint allows us to move the

matrix exponential from the right-hand side to the left-hand side of A.

For instance, the adjoint map of SO(3) is

AdR : R3 → R3 , AdR = R , (2.79)

since

[Rx]× = R[x]×R
> . (2.80)

For commutative matrix Lie groups, Ad = I.

2.4.8 Lie Bracket and Lie Algebra

Let us define the Lie bracket for a matrix Lie group G and its corresponding tangent

space g:

[U, V] := UV− VU . (2.81)

Each such tangent space g is closed under the Lie bracket:

U ∈ g, V ∈ g ⇒ [U, V] ∈ g . (2.82)

Thus, a tangent space g is not only a vector space, but is also an algebraic structure

concerning the Lie bracket and is therefore called Lie algebra. The Lie bracket can

be derived from the adjoint representation (see Appendix A.3).

It is obvious that [U, V] = O if U and V commute. On the other hand for non-

commutative elements U and V, the Lie bracket [U, V] “quantifies” how much the

commutative law is violated. As mentioned in Section 2.4.4, sometimes it is useful

49

2. Preliminaries

to represent the Lie algebra using a set of minimal vectors x instead of a set of

square matrices x̂. In this case, we define the Lie bracket as

[·, ·] : Rm × Rm → Rm , [u,v] := (ûv̂ − v̂û)∨ . (2.83)

For the Lie algebra so(3), the Lie bracket on 3-vectors is the cross product:

([u]× · [v]× − [v]× · [u]×)∨so(3) = u× v , (2.84)

as shown in Appendix A.3.2.

2.4.9 More Examples of Lie Groups

Euclidean Vector Space

Lie groups can be seen as a generalisation of a Euclidean vector space under vector

addition. Therefore, the Euclidean vector space Rn is a trivial example of a Lie

group. Note that addition in the Euclidean vector space Rn can be interpreted as a

multiplicative matrix group,

c = a + b ⇔

[
In×n c

O1×n 1

]
=

[
In×n a

O1×n 1

]
·

[
In×n b

O1×n 1

]
. (2.85)

The tangent space of such matrices is created using the following smooth paths:

Pa(t) =

[
In×n ta

O1×n 1

]
with a ∈ Rn . (2.86)

Thus, the tangent space consists of matrices of the form

â :=
∂

∂t
Pa(t) =

[
On×n a

O1×n 0

]
. (2.87)

Since â is nilpotent with â2 = O, we get for the matrix exponential and logarithmic

map,

exp(â) =
∞∑
k=0

âk

k!
= I + â + O + O + ... =

[
In×n a

O1×n 1

]
and log

[
In×n a

O1×n 1

]
= â .

(2.88)

50

2.4. Lie Groups

Group of Scaling

Let us consider the centre of GL(n). We are looking for matrices S with:

∀
X∈GL(n)

XS = SX . (2.89)

These are matrices of the form S = sI with s ∈ R\{0}. One can verify immediately

that (sI)X = X(sI). Thus, the centre Z(GL(n)) is the group of scaling. If we apply a

vector x to a matrix sI ∈ Z(GL(n)), we receive a scaled version of it: (sI) ·x = sx.

Let us now consider the group of pure scaling R+(n) by restricting ourselves to

positive s ∈ R+. Obviously, paths in R+(n) are of the form

P(s) = sI , (2.90)

and hence the one dimensional tangent space is spanned by the generator

G1 = I . (2.91)

The exponential and logarithmic maps are

exp(σI) = eσI , and log(sI) = ln(s)I . (2.92)

Special Euclidean Group

Finally, we look at the special Euclidean group SE(3). It is the group of rigid

transformation, translation and rotation, in the three dimensional space. A rota-

tion R ∈ SO(3) together with a translation t ∈ R3 is called a pose. Such pose

transformations are of the following form:

Rbaxa + tba = xb . (2.93)

Pose transformations are best understood if one uses the concept of six DoF reference

frames (see Figure 2.4). Let use assume we have two such reference frames a and b.

The transformation Rbaxa + tba transforms a point xa in frame a to a point xb in

reference frame b. Elements of SE(3) can be written in terms of 4× 4 matrices:(
xb

1

)
= Tba

(
xa

1

)
with Tba :=

[
Rba tba

O1×3 1

]
(2.94)

and thus SE(3) is a subgroup of GL(4). It is often convenient to use the shorthand

notation Tba · xa := Rbaxa + tb.

51

2. Preliminaries

Figure 2.4: Pose transformation between three different reference frames a, b and
c. The six DoF frames are represented using three coordinate axis which can be
rotated in 3D.

Concatenation of two rigid transformations — a to b, then b to c — is performed

using matrix multiplication:[
Rca tca

O1×3 1

]
=

[
Rcb tcb

O1×3 1

][
Rba tba

O1×3 1

]
=

[
RcbRba Rcbtcb + tcb

O1×3 1

]
. (2.95)

Given a transformation Tba, the inverse transformation Tab is calculated using the

matrix inverse:

Tab = T−1
ba =

[
R>ba −R>batba
O1×3 1

]
. (2.96)

The tangent space se(3) is spanned by the generators Gi = (êi)se(3) with ei being

the ith Cartesian unit vector of R6 and ·̂se(3),

·̂se(3) : R6 → R6 ,

(̂
υ

ω

)
se(3)

=

[
[ω]× υ

O1×3 0

]
, (2.97)

the hat-operator of se(3). In order to prove that the tangent space of SE(3) indeed

consists of matrices of the form x̂se(3), we need to show that exp(x̂se(3)) ∈ SE(3) for

all x ∈ R6 and that exp : se(3) → SE(3) is surjective. We use the following lemma

from Gallier (2011, pp.479):

Let X ∈ gl(n), y ∈ Rn and A =

(
X y

0 0

)
.

exp(A) =

(
exp(X) Vy

O1×n 1

)
with V =

∞∑
k=0

Xk

(k + 1)!
. (2.98)

52

2.4. Lie Groups

Applying this lemma for X = [ω]×, we get

exp(υ,ω)se(3) := exp

(̂ υ

ω

)
se(3)

 =

(
exp([ω]×) Vυ

0 1

)
∈ SE(3) , (2.99)

since exp([ω]×) ∈ SO(3) and Vυ ∈ R3. It only remains to show that the linear map

V : R3 → R3 is surjective, or in other words, that the matrix V is invertible. Again,

this proof is given in Gallier (2011, pp.480) together with a closed form solution for

V:

V =

I + 1
2 [ω]× + 1

6 [ω]2× = I for (θ → 0)

I + 1−cos(θ)
θ2

[ω]× + θ−sin(θ)
θ3

[ω]2× else
with θ = ||ω||2 (2.100)

2.4.10 Optimization with respect to Lie Groups

Finally, we can generalize the optimization approaches we introduced in Section 2.2

to functions which work on Lie groups. First, we need to define what we understand

by a partial derivatives on Lie groups. For instance, if we consider SO(3), it becomes

clear that expressions of the form ∂R
∂R(i,j)

are not what we want. Changing a single

entry of an orthogonal matrix infinitesimally would make the matrix non-orthogonal

and we would leave the space of SO(3). Elements of SO(3) have only three DoF. If

we want to calculate the derivative at R, there are exactly three Cartesian directions

along which we can modify R: the basis vectors of the tangent space at R.

Let us consider a Lie group G ⊂ GL(n), its m-dimensional Lie algebra g and

and an element T ∈ G. The tangent space at T is spanned by smooth paths of the

form Tk(t) := exp(t̂ek)T with ek ∈ Rm being the kth Cartesian unit vector. Using

property (2.64), we can verify that

∂

∂εk
exp(ε̂)

∣∣∣∣
ε=0

:=
∂

∂t
exp(t̂ek)

∣∣∣∣
t=0

= Gk , (2.101)

with Gk being the kth generator of G. This is not surprising since it holds for all

Lie groups that exp(t̂ek) is a smooth path through the identity; hence its tangent

vector is Gk by definition. Thus, we can define the partial derivative of T as:

∂Tk(t)

∂t

∣∣∣∣
t=0

=
∂ exp(ε̂)T

∂εk

∣∣∣∣
ε=0

= Gk · T . (2.102)

More complex derivatives can be calculated using the chain rule (see Appendix B).

53

2. Preliminaries

Thus, we can perform iterative optimization methods with respect to matrix Lie

groups. As an example, let us consider a simple least-squares problem, F := (d(T))2.

We wish to minimize F with respect to T ∈ G. The Jacobian of d with respect to

T is J := ∂d(exp(ε̂)T)
∂εk

|ε=0, hence we get the following normal equation:

(J>J)δ = −J>d(T) . (2.103)

Since the composition of matrix group elements is performed using the matrix mul-

tiplication (and not vector addition), we have to modify the iterative update rule

(2.13) accordingly:

T(k+1) = exp
(
δ̂
)
· T(k) .6 (2.104)

2.5 Summary

In this chapter, we presented the theoretical foundation which is vital for the remain-

der of this thesis. In particular, we introduced optimisation techniques, probabilistic

state estimation and filtering. Furthermore, we introduced Lie groups as a general-

isation over the Euclidean vector space, and showed several examples — including

the group of rigid transformations SE(3). Finally, we showed how optimisation can

be applied with respect to Lie groups.

6Since we defined the derivative (2.102) using a left multiplication of T by an infinitesimal

change exp(ε̂), we also have to left multiply T by the iterative update exp(δ̂).

54

Chapter 3

Monocular Exploration

In which we present an efficient framework for joint estimation of

structure and motion from a single moving camera.

Various stereo SLAM systems have been presented in recent years which are able

to provide high-accurate camera motion estimates over large areas, while having

only a low computational demand (Konolige & Agrawal, 2008; Mei et al., 2009; Lim

et al., 2011). Important application areas in robotics and beyond open up if similar

performance can be demonstrated using monocular vision, since a single camera will

always be cheaper, more compact and easier to calibrate than a multi-camera rig.

However, it has proven more difficult to achieve real-time large-scale visual SLAM

with a monocular camera, due to its nature as a purely projective sensor. Geometry

does not just ‘pop out’ of the data from a moving camera, but must be inferred over

time from multiple images. Difficulties had to be overcome before a probabilistic

sequential approach could successfully be implemented for monocular SLAM due to

the fact that image features must be observed from multiple viewpoints with parallax

before fully constrained 3D landmark estimates can be made. Special attention

was given to feature initialisation schemes which permitted sequential probabilistic

estimation of the joint camera and map state (Davison, 2003; Solà et al., 2005;

Montiel et al., 2006). These issues, and the fact that monocular maps are just

generally less well constrained than those built by metric sensors, meant that it was

more difficult than in SLAM systems with other sensors to build algorithms which

55

3. Monocular Exploration

could tackle large areas by composing local fragments.

In this chapter we concentrate on the explorational aspects of monocular SLAM:

The problem of estimating a camera path which is exploring the environment. This

concept of exploration is very related to visual odometry : a purely incremental

motion estimate. However, we will highlight that our approach is more general

than visual odometry in a strict sense. In particular, we will talk about the visual

front-end (image processing) as well as the optimisation back-end (joint structure

and motion estimation). For the back-end, we employ bundle adjustment (BA) in a

sliding window fashion. Another popular approach is based on Gaussian filters such

as the Extended Kalman Filter. The advantages of BA over filtering are quantified

in Chapter 4. In this chapter, we do not consider the problem of revisiting known

places. In this case, an incremental error in the pose estimate can be corrected using

loop closure correction techniques which will be discussed in Chapter 5. Even though

this chapter is mainly motivated as an introduction to various concepts required

later such as camera models, efficient bundle adjustment and feature matching, it

contains some novel contributions too: Optical flow guided feature tracking, and a

near uniform feature selection scheme using quadtrees. In addition, we will discuss

feature initialization using a set of independent filters.

3.1 Monocular SLAM and Exploration

Assume a camera is moving in space and is recording a stream of images as illustrated

in Figure 3.1(a). Given these images, we would like to estimate the motion of

the camera. Thus, we would like to estimate the path of the camera through the

space of rigid transformations SE(3). At the same time, we would like to estimate

the structure of the environment. Typically, we discretise the problem in space

and in time. As shown in Figure 3.1(b), we represent the camera path through

poses ..., Tt−1, Tt, Tt+1, ... at discrete time steps and the environment using a set

of points. This problem of SLAM (Simultaneous Localisation and Mapping) using

a monocular camera can be decomposed into two subtasks. The first problem is

to associate points or regions in one image with points or regions in a subsequent

images. While performing this feature tracking, it is not only important to account

for appearance similarities among the images, but also make sure that these feature

tracks mutually agree so they can be explained by the camera motion. A framework

56

3.1. Monocular SLAM and Exploration

������

(a) image stream (b) structure and motion estimate

Figure 3.1: Monocular exploration

which fulfils this task is called a visual front-end. The second task is to jointly

estimate camera motion and structure given the visual feature associations from the

front-end. This task is tackled by the optimisation back-end which estimates the

structure and motion parameters by minimising the distance between the projections

of the estimated 3D points onto the image and their visual measurements.

In this chapter we focus on estimating a camera path while the camera is ex-

ploring the environment. The challenge is to receive an accurate estimate of large

scale motion while keeping the computational cost bounded and thus achieve (near)

real-time performance. The explorational aspect of monocular SLAM is related to

visual odometry. The concept of odometry comes from the field of mobile robotics

where wheel encoders measure the rotations of the individual wheels of a vehicle.

This leads to incremental pose estimate where the current pose Tt of the robot only

depends on the previous pose Tt−1 and the corresponding odometry measurement

ut−1,t. Therefore, visual odometry in a strict sense refers to incremental pose es-

timation where we estimate the current pose Tt given the previous one Tt−1 and

visual measurements Zt−1,t from the temporally adjacent image pair It−1, It. In-

stead we describe our approach as monocular exploration in order to emphasize that

this strict definition of visual odometry shall be relaxed. By allowing the integration

of measurements from non-consecutive frames, we can continue to track visual fea-

tures which are temporarily occluded and therefore can deal with mini loop closures.

Furthermore, we relax the concept of temporally consecutive frames to keyframes

which are sampled in the spatial domain.

Before describing the optimisation back-end and visual front-end of the monocular

SLAM framework in detail, we need to introduce the camera model.

57

3. Monocular Exploration

3.2 Camera Model

3.2.1 Monocular Camera Model

Let us assume we have a camera which provides us with a stream of images. Fur-

thermore, let us denote image coordinates as z = (u, v). We follow the common

convention that the top-left corner is the origin 0 with the u-axis pointing right

and the v-axis down. In the forward model, we would like to project points in the

world y onto the image plane I. Without loss of generality, we assume we have

the following right-handed three dimensional coordinate system: The y1-axis points

right, the y2-axis points down and the y3-axis points forward. The physical pose of

the camera in the world is described by a rigid point transformation Tcw ∈ SE(3).

Thus, in a first step we transform the point y from the world frame into the camera

frame:

x = Tcw · y = Rcwy + tcw . (3.1)

Afterwards, we employ the well-known pinhole camera model. Let proj(·) be the

function which projects a point x onto the (x1, x2)-plane:

proj(x) =
1

x3

(
x1

x2

)
. (3.2)

If f is the focal length and p ∈ I the principal point, the pinhole camera model is

given by

proj(K · x) = f · proj(x) + p with K =

f 0 p1

0 f p2

0 0 1

 , (3.3)

where K is called the intrinsic camera matrix. Putting this together, we receive the

following monocular forward model ẑmono:

ẑmono(Tcw · y) := proj(K · Tcw(y)) . (3.4)

This forward equation does not model lens distortion, such as radial distortion. For

all algorithms we discuss in this thesis, we assume that the camera images I were

undistorted in a preprocessing step. This can be done very efficiently, e.g. using the

OpenCV library.1

1http://code.opencv.org

58

http://code.opencv.org

3.2. Camera Model

For monocular cameras, the inverse model is fundamentally more complicated.

Let us recapitulate that a point in the world can be associated with a point on the

image plane using the forward model ẑmono(Tcw · y). However due to the projective

nature of a monocular camera, a measured point z = (u, v)> on the image plane can

only be associated with a infinite ray in the world:

y(x3) = T−1
cw

x3
f (u− p1)
x3
f (v − p2)

x3

 , (3.5)

where x3 is the unknown depth. Therefore given two camera views with known

relative displacement Tba = [Rba, tba], a point in frame a corresponds to a line in

frame b. In order to concretise this, let us note that a 2D point z = (z1, z2)>

can be represented using a 3-vector such that (z1, z2, 1)> = (kz1, kz2, k)> with k 6=
0. This representation is called the homogeneous representation of a point. Two

representations, (a1, a2, a3) and (b1, b2, b3), are equivalent if a factor k 6= 0 exists

such that (a1, a2, a3) = (kb1, kb2, kb3). Furthermore, a 2D line can be defined using

a homogeneous representation l = (l1, l2, l3)>, such that all homogeneous points

x on the line fulfil the equation x1l1 + x2l2 + x3l3 = 0. In the field of two-view

geometry, it is well known that a (homogeneous) point za in frame a corresponds to

the (homogeneous) line lb,

lb = E · za , (3.6)

in frame b; E := K · Rba · [tba]× · K−1 is called the essential matrix and lb is called the

epipolar line (Hartley & Zisserman, 2004, chap. 9). A point zb lies on the epipolar

line lb if and only if it holds that z>b lb = 0. Thus, for a point correspondence pair

za ↔ zb the following epiploar constraint,

z>b · E · za = 0 , (3.7)

must hold. Due to its homogeneous formulation, this constraint is invariant to the

scale s 6= 0 of the translation tba, which is easy to verify by z>b · KRba[stba]×K−1 · za
= z>b ·KRba[tba]×K−1 · (sza) = z>b ·KRba[tba]×K−1 ·za. However, it has a singularity for

tba = 0 since in that case equation (3.7) is always true. This singularity is illustrated

in Figure 3.2.

59

3. Monocular Exploration

Space of Translations given Image Pair.

Figure 3.2: We can assume without loss of generality that all possible translations
describable by essential matrices E lie on the unit sphere, since the epipolar con-
straint z>j · E · z̃j = 0 has a scale ambiguity. However, E is undefined for zero
translation t = 0. In other words, the space of pure rotations is not smoothly
connected to the space of rotations and translations modulo scale (defined by the
epipolar constraint).

3.2.2 Stereo Camera Model

Even thought we focus on monocular SLAM in this chapter, for completeness we

shall present the stereo camera model as well. By stating also the stereo formulation

of SLAM, we can highlight the unique characteristics of the monocular case even

better. So, let us assume we have a stereo camera rig. A point in the world might

projects in the left image Il as well as the right image Ir. Furthermore, let us assume

that the images are rectified : We can assume that both images lie in the same plane

and that a row in image Ir corresponds to a row in image Il. Thus, it is true that

vl = vr given that (ul, vl) and (ur, vr) are observations of the same physical point

in the world. Therefore, a stereo observation can be represented using a 3-vector

z = (ul, vl, ur)
>. Furthermore, we assume we know the horizontal offset between

the origin in Il and the origin in Ir in metres. This offset is called baseline b. Now,

we have enough information to specify the stereo forward model:

ẑstereo(Tlw · y) :=

(
ẑmono(Tlw · y)

f x1−bx3
+ p1

)
=

(
f · proj(x) + p

f x1−bx3
+ p1

)
with x := Tlw · y .

(3.8)

60

3.3. Optimization Back-end

Figure 3.3: In bundle adjustment, we optimise over the set of 3D points yi and
camera poses Tj by minimising the reprojection errors |zi,j − ẑ(Ti · yj)|.

For stereo cameras, the inverse model is:

y = T−1
lw

x3
f (ul − p1)
x3
f (vl − p2)

x3

 with x3 =
b

f(ul − ur)
. (3.9)

Thus, in contrast to monocular SLAM, the inverse model is straightforward. While a

monocular measurement (u, v) can only be associated with an infinite ray, the stereo

measurement (ul, vl, ur) has a one to one relation to a point y in the world. However,

this inversion can only be done under the assumption that the measurement (ul, vl)

in the left frame is associated with the corresponding measurement ur in the right

frame.

3.3 Optimization Back-end

3.3.1 Introduction to Bundle Adjustment

Let us assume a camera is moving in space and recording a sequence of images

I1, I2, ..., It. In visual SLAM, we would like to estimate the camera motion T1, T2, ..., Tt

as well as the scene geometry represented using a set of discrete points y1,y2, ...,yj

as illustrated in Figure 3.1. For now, we assume that the data association problem

is solved. Thus, we assume we have a set of observations Z given, where zi,j ∈ Z is

a measurement of point yi in frame Tj . In the optimisation back-end, we perform a

joint estimation over a set of poses Ti and a set of points yj called bundle adjustment

61

3. Monocular Exploration

(Triggs et al., 1999). In bundle adjustment (BA), we estimate these parameters by

minimizing the distance di,j between point prediction ẑ(Tj ·yi) and its measurement

zi,j :

di,j(Tj ,yi) := zi,j − ẑ(Tj · yi) . (3.10)

This is illustrated in Figure (3.3). Under a Gaussian assumption, this joint problem

can be formulated using the following cost function:

χ2 = d>Λzd =
(

d>1,1 . . . d>m,1 d>1,2 . . . d>m,n

)
Λz

d1,1

...

dm,1

d1,2

...

dm,n

, (3.11)

where Λ is the inverse covariance of the underlying measurement model. We will

elaborate on the structure of Λ later.

In order to solve this problem using a Gauss-Newton type method, one could

calculate the Jacobian J of d,

J =
(

JT Jy

)
with JT :=

(
∂d(exp(x̂)T1,...,Tm,y1,...,yn)

∂x |x=0 . . . ∂d(T1,...,exp(x̂)Tm,y1,...,yn)
∂x |x=0

)
Jy :=

(
∂d(T1,...,Tm,y1,...,yn)

∂y1
. . . ∂d(T1,...,Tm,y1,...,yn)

∂yn

)
(3.12)

with respect to all poses and points. Afterwards, we can set up the normal equation:

J>ΛzJδ = −JΛzd . (3.13)

3.3.2 Gauge Freedom and Monocular Scale Ambiguity

If one proceeds exactly as explained above, one would realise that the matrix J>ΛzJ

is singular. This is caused by our decision to optimise over all poses T1, ..., Tm and

all points y1, ...,yn. To get a better understanding of this, let us first consider

bundle adjustment using a calibrated stereo rig; i.e. the observations z are three

dimensional and the prediction function is ẑstereo. Now, let us assume that T̄1, ...,

T̄m, ȳ1, ..., ȳn is the optimal solution to the BA minimization problem where the

reprojection error of each point in each frame is minimal. It is important to note

62

3.3. Optimization Back-end

that all point measurements are relative, so that the solution does not depend on

the absolute frame of reference. If we were now to apply a general rigid body

transformation A ∈ SE(3) to all parameters, the reprojection error would still be

minimal. In other words, AT̄1, ..., AT̄m, Aȳ1, ..., Aȳn is another optimal solution to

the problem. Therefore, we do have a six dimensional solution space, and thus we

say that there is a gauge freedom of six dimensions. That is the reason why the

approximated Hessian is rank deficient. We can remove the gauge freedom by fixing

six parameters, e.g. the first pose. Thus, we would optimize over the poses T2, ..., Tm

and all points y1, ...,yn while keeping T1 fixed which now defines the reference frame.

Let us assume we have done that, but now consider monocular BA; z is two-

dimensional and the prediction function is zmono. If we optimize over T2, ..., Tm,

y1, ...,yn there remains a one dimensional gauge freedom. This is because a monoc-

ular camera is an angular measuring device, but it cannot measure distances di-

rectly. If one knows the absolute baseline between two frames, one could measure

absolute distance using triangulation. However, since we estimate structure and

motion jointly, an overall scale ambiguity remains: The set of parameters [R2, t2], ...,

[Rm, tm],y1, ...,yn leads to exactly the same reprojection error as the scaled set

[R2, st2], ..., [Rm, stm], sy1, ..., syn for s 6= 0 (see also Figure 1.2, p.17). Thus, in

monocular BA we need to fix seven parameters in order to remove the Gauge free-

dom.

3.3.3 Constant-time Bundle Adjustment

If SLAM is performed over time, the number of parameters — frames and points —

keeps constantly increasing. Thus, if we were to perform bundle adjustment on all

these parameters, the computational cost of a single iteration is unbounded. How-

ever, if we wish to perform SLAM in real-time, we need a constant-time algorithm

such that the cost of a single iteration does not exceed a certain threshold. To

achieve this, we need to restrict the number of parameters in the optimisation. It

is natural to restrict the number of frames involved, which leads to a restriction on

the number of poses and points. There are two common approaches to select a sub-

set of frames. In a pure visual odometry application one can simply select the last

m frames and therefore apply BA in a sliding window fashion. Another approach

is to sample keyframes from the whole trajectory such that they are approximate

63

3. Monocular Exploration

uniformly distributed over the explored space. A typical heuristic to achieve this is

to only add a new keyframe to the back-end if the distance to the closest keyframe

exceeds a threshold. This keyframe approach achieves constant-time performance

only if the area of operation is bounded.

Since our focus is monocular exploration, we use a combination of both ap-

proaches: As in Mouragnon et al. (2006), we perform BA in a sliding window over a

number of spatially separated keyframes. Thus, we only add a new keyframe to our

sliding window once the camera has moved significantly far away from the previous

keyframe. In this way we can deal with large scale exploration. A pure sliding

window approach might have problems with varying camera motion. Especially, it

is likely to fail if the camera stays stationary for some time: If there is no significant

translation among all frames in the sliding window, no scene depth can be observed.

In order to fix the monocular scale ambiguity and anchor the sliding window to the

previous poses in the trajectory, we fix the first two keyframes T1 and T2 during

the optimisation. Even though we fix 12 parameters and therefore five more than

necessary, this does not introduce a significant bias in practise. Since T1 and T2

were optimised in the previous iterations, we can assume that their relative pose is

near optimal. The translation between T1 and T2 defines the relative scale which

will remain fixed during optimisation (see also Figure 3.4(a)).

3.3.4 Efficient Solution of the Normal Equation

Let us now revisit the normal equation (3.13). First we note that the Jacobian J

looks slightly different now, since we do not optimize over T1 and T2: The first two

column blocks of JT are missing (i.e. 2 · 6 = 12 columns). Under the assumption

that there are m frames, n poses, and p observations in the sliding window, the pose

Jacobian is a 6(m − 2) × 2p matrix and the point Jacobian is a 3n × 2p matrix.

Therefore, we have a (6(m− 2) + 3n)× 2p Jacobian matrix J and the Hessian J> · J
is a (6(m − 2) + 3n) × (6(m − 2) + 3n) matrix. Therefore a naive implementation

of BA would have a computational cost of O((m + n)3) — under the assumption

of a cubic complexity to solve the linear system.2 Even though we restricted the

2The standard implementation of (dense) matrix multiplication and therefore (dense) matrix
solvers is cubic in the number of rows/columns m. In 1971, Schönhage & Strassen (1971) pre-
sented a faster matrix multiplication/inversion with a complexity of O(m2.807) — with the price
of slightly reduced numerical stability (Highham, 1990). When talking about cubic complexity
for matrix inversion, we keep in mind that practical algorithms exists which are actually slightly

64

3.3. Optimization Back-end

(a) Markov random field (b) Jacobian (c) Hessian

(d) Schur complement

Figure 3.4: Bundle adjustment toy example with five poses and seven points. (a)
illustrates this estimation problem using a Markov Random Field (MRF). An MRF
can be seen as a bipartite factor graph (Figure 2.2), thus with only binary con-
straints, which represent the measurement zi,j of point yj from pose Ti. The first
two poses T1, T2 are fixed in order to remove the Gauge freedom of monocular BA.
Strictly speaking, constraints linked to one of the two fixed poses are unary since
they only depend on one variable: the point yj . (b) shows the sparse pattern of
the corresponding Jacobian. Each row represents an observation zi,j . Binary con-
straints result in two non-zero blocks per row, while unary constraints have one
non-zero block. (c) shows the sparse Hessian. An off-diagonal block is non-zero if
the corresponding point yj is visible in frame Ti. (d) illustrates the calculation of
the Schur complement.

number of keyframe, this optimization would be quite inefficient since there are

typically hundreds or even thousands of points within the sliding window. However

if the errors of the individual measurements zi,j are independent, which is commonly

assumed when measurements are made from a calibrated sensor such as a camera

with known intrinsics and the energy simplifies to

χ2 =
∑
di,j

(di,j(Ti,yj))
>Λzi,j (di,j(Ti,yj)) . (3.14)

In this case, the measurement inverse covariance Λz is block-diagonal and J is sparse.

As illustrated in Figure 3.4(b), JT and Jy have at most one non-zero block in each row

faster. According to Williams (2011), the theoretical asymptotic complexity is believed to be even
quadratic in m, while the most efficient algorithm to date has a complexity of O(m2.3727). However,
algorithms of this class have such a large overhead that they would only pay off for astronomically
large matrices which are far beyond any practical use.

65

3. Monocular Exploration

(= per measurement). Thus, the matrices J>T ΛzJT and J>y ΛzJy are block-diagonal

(Figure 3.4(c)). This reflects the fact that there are only binary pose-point con-

straints, but no pose-pose, point-point or higher order constraints. This special

structure of the Hessian leads to the following algebraic trick.

3.3.5 The Schur Complement Trick

Let us consider the invertible block matrix

M =

[
A U

V B

]
, (3.15)

with B being invertible too. If we like to solve the linear equation system[
A U

V B

](
x

y

)
=

(
a

b

)
, (3.16)

it is equivalent to solving the following linear system instead:

(A− UB−1V)x = a− UB−1b . (3.17)

This results from pre-multiplying the second line of the system (3.16) by UB−1 and

subtracting it from the first line. The matrix A− UB−1V is called the Schur comple-

ment of M. After solving for x, we can solve for y using back-substitution:

y = B−1(b− Vx) . (3.18)

Rewriting the normal equation (3.13) in this form, thus

A = J>T ΛzJT , (3.19)

B = J>y ΛzJy , (3.20)

U = V> = J>T ΛzJy , (3.21)

a = −JTΛzdT , (3.22)

and b = −JyΛzdy , (3.23)

leads to the following solution scheme:

(J>T ΛzJT − J>T ΛzJy(J>y ΛzJy)−1J>y ΛzJT)x = −JTΛzdT + J>T ΛzJy(J>y ΛzJy)−1JyΛzdy

(3.24)

66

3.3. Optimization Back-end

y = −(J>y ΛzJy)−1(JyΛzdy + J>y ΛzJTx) . (3.25)

Since J>y ΛzJy is block-diagonal, we can perform the inversion (J>y ΛzJy)−1 in linear

time (wrt. the number of points n). The solution of equation (3.24) is typically

dominated either by the outer product J>T ΛzJy · (J>y ΛzJy)−1 · J>y ΛzJT, or by solving

the linear system for x which has a cubic complexity in the number of frames m —

under the assumption that a dense solver is used. An explicit description of how to

calculate the scheme (3.24, 3.25) efficiently (using the notion of ‘point tracks’) are

given in Engels et al. (2006) and Konolige (2010).

3.3.6 Solving Sparse Linear Systems

The off-diagonal blocks of the Hessian J>T ΛzJy and J>y ΛzJT and thus the linear sys-

tem (3.24) are dense if and only if all points are visible in all frames. In this case

p = m · n, and the overall computational complexity is O(max(m3, nm2)). Other-

wise we do have a second order sparseness structure: Not all points are visible in all

frames. Compared to the first order sparseness, which we can exploit using the Schur

complement trick, a more general way to exploit the sparseness is needed. There are

two successful approaches: Sparse exact solvers and sparse iterative solvers. Within

exact solvers, sparse Cholesky (Davis, 2006) is a common solution: It nicely exploits

the fact that the normal equation is positive (semi)definite and symmetric, and is

therefore more efficient than other approaches (such as sparse LU, or sparse QR).

For iterative solvers, conjugate gradient is a common choice (Shewchuk, 1994). In a

conjugate gradient approach, one typically premultiplies the linear system Ax = b

to solve with a preconditioner which approximates A−1 in order to start the iteration

close to the solution. For BA, a block-diagonal preconditioner has proved to be very

effective which can be calculated efficiently too (Jeong et al., 2010).

3.3.7 Robust Least Squares

Let us reformulate the BA energy (3.14) as

χ2 =
∑
di,j

(
||di,j ||Λzi,j

)2
with ||di,j ||Λzi,j :=

√
(di,j(Ti,yj))>Λzi,jdi,j(Ti,yj)

(3.26)

67

3. Monocular Exploration

to emphasize that the error magnitudes have a quadratic influence on χ2. A single

outlier among the measurements would have major negative impact on the estimate,

since the quadratic influence of the large error would dominate the cost term. In

order to be more outlier-robust, we can replace the quadratic error function (·)2 by a

robust kernel ρ(·) which weights large errors less. Here, we choose the Huber kernel,

ρH =

x2 if |x| < b

2b|x| − b2 else
, (3.27)

which is quadratic for small |x| but linear for large |x|. Compared to other, even

more robust cost functions, the Huber kernel has the advantage that it is still convex

and thus does not introduce new local minima (Hartley & Zisserman, 2004, pp.616).

In practice, we do not need to modify equation (3.14). Instead, the following scheme

is applied. First the error di,j is computed as usual. Then, di,j is replaced by a

weighted version wi,jdi,j such that

(wi,jdi,j)
>Λzi,j (wi,jdi,j) = ρ

(√
d>i,jΛzi,jdi,j

)
(3.28)

For the Huber kernel ρH these weights are

wi,j =

√
ρH(||di,j ||Λzi,j)

||di,j ||Λzi,j
with ||di,j ||Λzi,j :=

√
d>i,jΛzi,jdi,j . (3.29)

3.3.8 The g2o Software Package

At this point, we take the opportunity to introduce g2o, a graph optimisation li-

brary by Kümmerle, Grisetti, Strasdat, Konolige and Burgard (2011a)3. On one

hand, g2o is a very universal software package for least square optimisation. It can

solve least square problems of the most general form (2.27), and therefore solves

minimisation problems which can be represented by factor graphs. Especially, it

can not only deal with the binary constraints which occur in BA, but has also

support for unary constraints (e.g. Lovegrove et al., 2011, for fusing GPS measure-

ments) and higher-order constraints (e.g. Kümmerle et al., 2011b, used for sensor

calibration). Furthermore in g2o, robust kernels can be activated and configured

for individual graph constraints. On the other hand, g2o is very efficient and does

3http://openslam.org/g2o. The implementation is mainly thanks to the first two authors
Rainer Kümmerle and Giorgio Grisetti.

68

http://openslam.org/g2o

3.4. Visual Front-end

Figure 3.5: Performance comparison of g2o with other more specialized optimisation
packages (SAM (Dellaert & Kaess, 2006)1, SPA (Konolige et al., 2010), sSBA (Kono-
lige, 2010), RobotVision (Strasdat et al., 2010b)) on different problems/data sets.
For more details please refer to Kümmerle et al. (2011a).

offer all the heuristics described above to exploit sparsity. Thus, it supports the

Schur complement trick, and it offers various sparse solvers such as sparse Cholesky

(Davis, 2006), and block-diagonal preconditioned conjugate gradient. Despite its

generality, it can therefore compete with other more application-specific optimiza-

tion/BA packages. A performance comparison is shown in Figure 3.5. Thus, g2o is

used throughout this thesis for various least square optimization tasks which require

high-end performance.

3.4 Visual Front-end

3.4.1 Bottom-up Matching versus Top-Down Guided Search

Three dimensional objects in the world appear as intensity measurements in camera

images. In order to infer the scene geometry, one typically tries to detect primitives

in the images. By far the most popular primitives are point features (such as corners,

or blobs), even though other primitives such as line-based features are occasionally

used too (Smith et al., 2006; Eade & Drummond, 2009). Given a set of camera

frames I1, I2, ..., Im, we would like to associate two dimensional point measurements

〈z[1]
j , z

[2]
j , ..., z

[m]
j 〉 among them. Ideally, each such m-tuple of two dimensional points

is associated with a single three dimensional point in the world. In this case, each

point z
[k]
j in such an m-tuple corresponds to the reprojections of the three dimen-

sional point yj in frame Ik. For this problem of feature matching, there are two

69

3. Monocular Exploration

canonical approaches: Bottom-up and top-down matching.

In bottom-up approaches, one usually tackles feature tracking in terms of match-

ing correspondences between a pair of images. Thus one associates feature points in

one image with feature points in the other image using appearance information only.

The challenge is to find features in the image which have a unique appearance and

can be easily redetected in other images taken from other view points. To be robust

to view-point changes, rotational and scale invariant features such as SIFT (Lowe,

2004) or SURF (Bay et al., 2006) are very popular. Given a set of candidate matches

Z̃ := {(z1, z̃1), ..., (zj , z̃j)}, we must look for a geometric constraint between the two

images which agrees with the candidate matches. This constraint is described by

the essential matrix E such that z>j ·E · z̃j = 0 (see Section 3.2.1). In order to select a

subset of inliers from all candidates Z̃ which agrees with this epipolar constraint, a

robust estimation process is required. By far the most popular approaches are based

on Random Sample Consensus (RanSaC) and its variants. Here, a random subset

is drawn from all candidates Z̃ and E is calculated using a closed-form approach

— such as Nistér’s five point method (2004) or the eight point algorithm (Hartley,

1995). Afterwards, only those pairs in Z̃ which agree with E are labelled as inliers.

Once an inlier set is found, the initial guess E can be improved upon using least

squares optimisation.

Top-down tracking is model based and therefore a recursive method. The main

idea is to guide the feature tracking using our geometric model which was estimated

from the previous frames I1, ..., It−1. First, let us assume that the joint state of

the camera pose and the point map is described by a multivariate Gaussian, e.g.

when using EKF-based SLAM. Also we assume we have some kind of motion prior

which allows us to predict the distribution over the camera pose 〈Tt, ΣTt〉 before any

measurements from It are integrated. Then, we can calculate the distribution in the

image space – the mean ẑ(Tt · y) and the innovation covariance

S =

 (
∂
∂x

ẑ(exp(ε̂)Tt · yj)
)>
ε=0

∂
∂y

ẑ(Tt · yj)>

> [ΣTt ΣTt,y

Σ>Tt,y Σy

] ∂
∂x

ẑ(exp(ε̂)Tt · yj)
∣∣∣
ε=0

∂
∂y

ẑ(Tt · yj)

+ Σz

(3.30)

where the point yj is expected to be seen in the image. Thus, µẑ and S define an

elliptical region in the image which can be used for to actively search for features at

their expected locations as described by Davison (2005).

70

3.4. Visual Front-end

To summarize, bottom-up matching has the advantage that it does not require

any motion prior and can therefore detect matches between frames with arbitrary

camera configuration. However, it is computationally expensive since it does not

only requires to touch every single pixel in the image at least once, but also de-

pends on a high number of RanSaC iterations to run robustly. On the other hand,

top-down matching is model-based, and more efficient since feature matching can

be restricted to small elliptical search regions. However, it usually requires an un-

certainty estimate for the point maps as well as a narrow motion prior.

3.4.2 Optical Flow-guided Search

We suggest a framework that combines bottom up-tracking and top-down search

techniques. The idea is to perform first a per pixel association between images using

brightness information, called optical flow. Afterwards, we continue with guided

feature matching using the current map prediction and the optical flow estimate.

In optical flow, we try to find for each image coordinate z = (u, v) a flow vector

qz = (q
(1)
z , q

(2)
z) such that |It(z + qz)− It−1(z)| is minimal. Given the images have a

resolution of W ·H, it follows that optical flow is a high-dimensional problem with

2(W · H) unknowns. The problem is clearly under-constrained, since the residual

error has only W · H dimensions. One way out is to introduce soft constraints

which enforce that flow vectors close by should be of similar length and orientation.

This kind of soft constraint which adds a penalising cost to the energy is called a

regulariser. One often enforces that the spatial gradient of the flow field ∇q stays

small; an idea which dates back to the seminal work of Horn & Schunck (1981). One

possible optical flow formulation using such a regulariser is:

min
q

{
||∇q||1 + λ

∑
u,v

∣∣∣It (u+ q(1)
u,v, v + q(2)

u,v

)
− It−1(u, v)

∣∣∣} (3.31)

with ||∇q||1 :=
∑
u,v

√√√√(∂q(1)
u,v

∂u

)2

+

(
∂q

(1)
u,v

∂u

)2

+

(
∂q

(2)
u,v)

∂v

)2

+

(
∂q

(2)
u,v

∂v

)2

. (3.32)

Here, λ is the essential parameter which weights the influence between the regulariser

and the data term. Instead of using a quadratic error function, the 1-norm is used

for the regulariser and the data term so that the minimisation is robust to outliers,

e.g. due to occlusions, specular highlights etc. Note that the energy (3.31) does not

71

3. Monocular Exploration

only depend on q but also on the gradient ∇q which can be seen as a functional

(= higher-order function) over q. The theory of minimising funtionals is called

calculus of variation, thus this visual tracking approach is denoted as variational

optical flow. Variational optical flow is highly parallelisable, since the regulariser

and the data term can be computed for each pixel independently, and can therefore

be efficiently implemented on a modern GPU. A particularly efficient solution for this

minimisation problem is given by the primal dual algorithm of Chambolle & Pock

(2011). In order to increase the basin of convergence, typically an image pyramid

approach is employed (Adelson et al., 1984). We used the ‘FlowLib’ implementation

which is available online.4

Even though variational optical flow can lead to high quality results, there is no

mechanism which enforces that the flow field is consistent with the camera motion.

Especially if there is repetitive structure in the scene, it can easily happen that

a flow field is generated which is partially wrong as illustrated in Figure 3.6(a).

Therefore, we suggested the following approach: First we calculate an optical flow

field between the previous and the new frame. Afterwards, we project all visible

points in our model yj into the previous frame It−1 and push these coordinates

ẑ(Tt−1·yj) through the flow field from It−1 to It. The resulting predictions ẑ(Tt−1·yj)
+ qẑ(Tt−1·yj) in the new image are used to estimate the new pose Tt by minimizing

the following energy:

χ2(Tt) =
∑
i

ρH

(
ẑ(Tt−1 · yj) + qẑ(Tt−1·yj) − ẑ(Tt · yj)

)2
. (3.33)

We employ a robust kernel ρH so that the pose estimation of Tt is robustly fitted

and flow vectors which violate the epipolar constraint only have a minor impact.

The initial guess for Tt is simply set to Tt−1, thus no motion model is required. This

approach only fails if a large portion of the flow field is wrong (e.g. because the

motion is too large) or the rigid scene assumption is heavily violated.

Once we have a good pose estimate Tt, we can perform a guided search to verify

feature matches. As described in equation (3.30), the uncertainty of the feature

location and thus the size and shape of the search region depends on the uncer-

tainty of map point y ∈ Y and the camera pose Tt+1 as well as the measurement

uncertainty Σz. Given that all points in Y are already optimised using keyframe

bundle adjustment, and that the pose Tt+1 is well estimated using the robust optical

4http://www.gpu4vision.org

72

http://www.gpu4vision.org

3.4. Visual Front-end

(a) optical flow field (b) robustly fitted feature tracks

Figure 3.6: Optical flow field (a) containing regions of outliers; six such regions are
highlighted above. Feature tracks (b) are robustly fitted to the flow field.

flow constraint, it is sufficient to consider merely a small circular search region of

a few pixels for feature matching. The search within this region is based on tem-

plate matching using normalised sum of squares. Using the pose estimate Tt+1, the

target templates can be warped accordingly. As in PTAM (Klein & Murray, 2007),

we do not apply the matching at every single pixel in the search region, but only

there where FAST features (Rosten & Drummond, 2006) were detected in order to

speed-up the search even further. As a result, we receive a set of 2D-3D matches

between image locations zk and feature points yk. Finally, we can optimize the pose

Tt+1 even further using motion-only BA. Thus, we minimize

χ2(Tt) =
∑
k

(zk − ẑk(Tt · yj))2 (3.34)

wrt. Tt using Levenberg-Marquardt. Resulting feature tracks are shown in Fig-

ure 3.6(b).

3.4.3 Feature Selection using a Quadtree

An image recorded using a digital camera typically consists of tens of thousands

to millions of pixels. For image processing tasks such as feature initialisation for

visual SLAM, it is crucial to select the relevant parts of the image in order to bound

the computational cost. We can perform a preselection using keypoint detection

mechanism such as FAST. While such keypoints usually have some kind of tunable

thresholds which allow coarse variation of the number of features per image or image

region (e.g. by filtering out extrema in the intensity image with a low strength),

73

3. Monocular Exploration

(a) Old map points (b) New features added

Figure 3.7: Quadtree used for feature initialisation. New (red) features are only
added in regions with low feature density.

a more fine-grained control is usually required. For instance, it is a good idea to

initialize new features in those image regions where the feature density is low. In

order to implement such a strategy efficiently, it is a good idea to store image features

in an appropriate data structure which embodies the spatial relations in the image.

One such representation is a (region) quadtree (Finkel & Bentley, 1976). Here, each

tree node represents an image region, so that the root represents the whole image.

Each node has either zero or four children. A parent node partitions its region

equally among its children: top left quarter, top right quarter, bottom left quarter

and bottom right quarter. The content, 2D image points, is only stored at the

leaves of the tree. On the other hand, there are leaves which do not hold any points.

This becomes obvious if we consider a simple example such as a quadtree which is

storing two points. By definition it must have four leaves. It is often convenient

to define a minimum region size in order to control the maximum possible point

density and also the maximum tree height. We follow the approach of Mei et al.

(2009) who suggested to storing image features in this data structure to promote a

uniform feature distribution. Especially, one can base the decision whether to add a

candidate feature z to the image on how many features are already in the bounding

box around z as illustrated in Figure 3.7.

However, only being selective during feature initialization is not sufficient; one

has to be careful during feature tracking too. Even if one is selective in the feature

initialisation process, situations can easily arise where thousands of points are visible

in the current image, while the prepossessing budget only allows one to measure a

small subset of them. Thus, it can be beneficial to have a mechanism for selecting

74

3.4. Visual Front-end

Algorithm 1 BFS quadtree traversal, returns next node

global queue : Queue<pointer<Node> >

while queue.size()>0 do
pointer<Node> node := queue.pop()
if node->children.size()=0 then //node is leaf
if node->constains_point then

return node->point2d
end

else //node has 4 children
queue.append(node->children[0])
queue.append(node->children[1])
queue.append(node->children[2])
queue.append(node->children[3])

end
end
throw Exception("Reached end")

e.g. a hundred representative features out of thousands of unevenly distributed

keypoints. At first glance, the following heuristic seems to provide a uniformly

distributed feature selection: We store all candidates in a quadtree, and then perform

a breadth first search (BFS) traversal as described in Algorithm 1. Following this

approach, the image regions and sub-regions are indeed traversed in an approximated

uniformly manner. However, this strategy does not lead to the desired result since

keypoints are only stored in the leaves of the quadtree. In particular, BFS traversal

leads to a biased selection where leaves of low levels, and thus features which lie in

low density regions, are selected first.

Instead, we suggest the following advanced traversal strategy which is essentially

a combination of BFS and depth first search (DFS). First, a node is selected using

BFS. If it is a leaf, there are two options: Either the node carries a point in which case

we return it. Otherwise, we continue with BFS. However, if the node is not a leaf,

we still wish to return a keypoint in its region. Thus, we perform DFS to find one

of its leaves which carries a point (and which was not returned before). The details

of the algorithm, that allows for a equi-distributed feature traversal, are listed in

Algorithm 2. In order to diminish further bias, it is important to traverse/select the

children of a node in non-deterministic way. The difference between BFS traversal

and our advanced traversal strategy are compared in Figure 3.8. While BFS has

75

3. Monocular Exploration

Algorithm 2 Equi-distributed quadtree traversal, returns next node

global map : Map<Integer, List<pointer<Node> > >

while map.size()>0 do
//do BFS with random sibling selection
level := map.getSmallestKey()
if map[level].size()=0 then

map.eraseElement(level)
continue

end
pointer<Node> node := map[level].popRandomElement()
if node->children.size() = 0 then

//node is a leaf
if node->contains_point and node->visited=false then

//only return leaf, if it contains a point and was not returned before
node->visited := true

end
else

if not map.hasKey(level+1) then
map.insert(level+1,[])

end
map[level+1].append(node->children[0])
map[level+1].append(node->children[1])
map[level+1].append(node->children[2])
map[level+1].append(node->children[3])

//perform DFS with random child traversal to return single entry
define stack : Stack
stack.addChildrenInRandomOrder(node->children)
while stack.size()>0 do
pointer<Node> dfs_node := stack.pop()
if dfs_node->children.size()=0 then

if dfs_node->contains_point
and dfs_node->visited=false

then
dfs_node->visited := true
return dfs_node->point2d

end
else

stack.addChildrenInRandomOrder(dfs_node->children)
end

end
end

end
throw Exception("Reached end")

76

3.4. Visual Front-end

B
F

S
E
qu

i-
di
st
ri
bu

te
d

4 points 20 points 80 points

Figure 3.8: Comparison of BFS and equi-distributed quadtree traversal to select 4,
20, and 80 representative feature from a set of over thousand keypoints.

(a) Feature initialisation (b) After a single update

Figure 3.9: Illustration of the feature initialisation process. First features are ini-
tialised as inverse depth points with infinite uncertainty in depth (a). A single
update leads to a significant reduction of the depth uncertainty (b). The inverse
depth features are plotted using a 99.7 percent confidence interval.

a strong preference to select features from low density areas, our advanced strategy

results in approximately uniform feature distribution.

3.4.4 Feature Initialisation

In monocular SLAM approaches using filtering such as MonoSLAM, no special treat-

ment for feature initialisation is needed if an inverse depth representation (Montiel

77

3. Monocular Exploration

et al., 2006) is used. New features are jointly estimated together with all other

parameters, but at a cost of O(n3) where n is the number of features visible. In

keyframe-based SLAM approaches a dedicated feature intialisation scheme is re-

quired. Finding feature matches is difficult in a top down manner, since such a

partially initialised feature with unknown depth can lie anywhere on the epipolar

line of the subsequent keyframe. Typically, a strong depth prior is enforced in or-

der to restrict the search and therefore minimize matching ambiguities (Klein &

Murray, 2007). Once feature matches are established, features can be triangulated

between keyframes. We suggest a feature initialisation method based on a set of

three dimensional information filters which can estimate the position of arbitrarily

distant features. A similar method was briefly described by Klein & Murray (2009).

Ultimately, we would like to update a set of partially initialised 3D points ynew:j

given the current camera pose Tt. If Tt is known, the features ynew:n become inde-

pendent:

p(ynew:1, ...,ynew:j , ..|Ti) = p(ynew:1) · · · p(ynew:n) . (3.35)

Since the current camera Tt is well-optimised wrt. the set of map points Y, the

independence assumption is approximately true. Thus, our method employs a set

of information filters. Each filter estimates the position of a single landmark given

the current pose estimate. In this sense, our approach has some similarities to

FastSLAM (Montemerlo & Thrun, 2003). The difference to FastSLAM is that the

partially initialised features ynew:j are not used for state estimation immediately.

New features are only used for pose estimation after they are jointly bundle adjusted

and added to the map Y.

The design of a single filter is inspired by Eade’s filtering framework (2008). Fea-

tures are represented using an inverse depth parametrisation ψ wrt. the origin

keyframe Tcw in which they were seen first. Here, ψ3 represents inverse depth,

whereas (ψ1, ψ2) are normalised pixel coordinates. The anchored inverse depth point

ψ can be mapped to a Euclidean point y = T−1
cw · (

ψ1

ψ3
, ψ2

ψ3
, 1
ψ3

)> in this global coor-

dinate frame. The uncertainty of an inverse depth feature is represented using the

information matrix Λψ. In each keyframe, we initialise new features. Appropriate

locations are determined using a quadtree (as described above). Given the feature

location z = (u, v)>, we set ψ = (u−p1f , v−p2f , q) with q ∈ R+. The uncertainty Λ
(0)
ψ

is set to diag(f
2

σ2
z
, f

2

σ2
z
, 0). Note that initially there is an infinite uncertainty along the

feature depth, so we do not enforce any depth prior no matter which start value we

78

3.5. Qualitative Experiment

assign for q.

We employ a Gauss-Newton filter scheme (Section 2.3.4) to minimise

χ2(ψ) = (ψ − ψ̂)>Λψ(ψ − ψ̂) + (z− ẑ(Ti · y))>Λz(z− ẑ(Ti · y)) (3.36)

wrt. ψ using Levenberg Marquardt. The first term in χ2(ψ) ensures that the

optimisation of ψ is based on its prior distribution 〈ψ̂, Λψ〉. The second term takes

care that the projection error with respect to the current frame is reduced. In other

words, the point ψ is moved along its uncertain depth rather than via its certain

u, v coordinate in order to reduce the projection error in the current image. We also

update the uncertainty using uncertainty propagation (see Figure 3.9):

Λ
(k+1)
ψ = Λ

(k)
ψ +

(
∂∆z

∂ψ

)>
Λ

(k)
z

(
∂∆z

∂ψ

)
. (3.37)

3.5 Qualitative Experiment

We performed the evaluation of our monocular exploration system using the Keble

College data set of Clemente et al. (2007) — a sequence where a hand-held sideways-

facing camera completes a circuit around a large outdoor square. Images were

captured using a low cost IEEE Unibrain camera with resolution 320×240, and

using a lens with 80 degree horizontal field of view. Our framework performed

at near real-time at approximately 12 FPS. The computation was performed on a

desktop computer with an Intel Core 2 Duo processor and an NVIDIA 8800 GT

GPU which were used for dense optical flow computation.

To bootstrap the joint structure and motion problem, we performed optical flow

based feature tracking and the classic 8-point algorithm (Hartley & Zisserman, 2004)

in the conjunction with RanSaC (Fischler & Bolles, 1981) to find a robust structure

and motion estimate. A qualitative evaluation of monocular exploration is presented

in Figure 3.10. First, we illustrate the feature and pose tracking pipeline. In (a),

variational optical flow is shown; feature tracks and therefore the common incre-

mental motion is fitted to the flow field (b), which leads to an initial pose estimate

(c). Now, as illustrated in (d), guided search is performed in elliptical search regions

(red), whereas patch matching is only performed where FAST keypoints (blue) are

found. Successful matches and the refined pose are shown in (e) and (f) respectively.

Then, (g) illustrates the initialisation of inverse depth features, while the feature and

79

3. Monocular Exploration

(a) Optical flow (b) Fitted feature tracks (c) Initial pose estimate

(d) Guided matching (e) Found features (f) Pose refinement

(g) Initialisation of inverse depth points

(h) Tracking and update of inverse depth points

(i) Keyframe sliding
window (j)

Imagery c©2012 GeoEye,
Getmapping plc, Infoterra Ltd &
Bluesky, The GeoInformation

Group, Map data c©2012 Google

(k) Reconstruction

Figure 3.10: Keble College experiment

80

3.6. Summary

depth estimates after several updates are shown in (h). Keyframe sliding window

optimisation is shown in (i). In particular, we employ bundle adjustment using the

Schur complement trick and sparse Cholesky to exploit the sparsity of the Hessian

as well as a Huber kernel, so that the optimisation is robust to the small fraction of

spurious matches. Finally, (j) shows an aerial image of the Keble college campus,

while (k) shows the 3D reconstruction of the first half of the dataset. Results on

the full data set, are shown in Chapter 5 where we complete the monocular SLAM

framework by discussing the problem of scale drift and by presenting a framework

for loop closure correction. Furthermore, a quantitative evaluation of the accuracy

and cost of bundle adjustment is given in the following chapter.

3.6 Summary

In this chapter, we presented a framework for visual SLAM, with the emphasis on

monocular exploration. This chapter mainly served as an introduction to visual

SLAM on a technical level. In particular, we introduced various related concepts,

such as the pinhole camera model, optimization back-end versus visual front-end,

gauge freedom in optimization and the monocular scale ambiguity as well as tech-

niques, e.g. efficient bundle adjustment, the Schur complement trick, guided feature

tracking, and robust least squares, which are essential for the remainder of this

work. However, we also presented some novelties such as optical flow guided feature

and pose tracking as well as equi-distributed quadtree traversal. In addition, we

introduced the g2o optimization framework of Kümmerle et al. (2011a) which will

be used throughout this thesis.

3.7 Bibliographic Remarks

The origin of on bundle adjustment dates back to the work of Brown (1958) in the

context of photogrammetry. Note that he already applied the Schur complement

trick to exploit the first order sparseness structure, so that the underlying linear

system only depends on the number of frames. A vast quantity of work on bundle

adjustment was published in the last decades. An excellent and comprehensive

survey on bundle adjustment was presented by Triggs et al. (1999), which can be still

81

3. Monocular Exploration

seen as the standard reference today. In 2006, Engels et al. highlighted the usefulness

of bundle adjustment for real-time camera tracking. Especially, they showed how

the organisation of the data in point tracks can lead to efficient implementation of

the outer product. According to Triggs et al. (1999), Gyer & Brown (1967) were

the first to exploit the second order sparsity, i.e. that not all points are visible

in all frames, using recursive partitioning. Recently, it caught on to exploit the

second order sparsity using either sparse Cholesky (Davis, 2006), e.g. Agarwal et al.

(2009), Lourakis & Argyros (2009), Strasdat et al. (2010b), Konolige (2010), or

preconditioned conjugate gradient as in Byrod & Astrom (2010) and Jeong et al.

(2010).

Feature matching is very commonly done with a bottom-up approach, where in a

first abstraction step some keypoints are extracted from the target images. While

initial structure from motion approaches applied corner features such as Harris &

Stephens (1988) or Shi & Tomasi (1994), rotation and scale invariant blob features

are very common nowadays. Most prominently is the Scale Invariant Feature Trans-

form (SIFT) of Lowe (1999, 2004), which consists of a difference of Gaussian detector

and a histogram of gradient orientations descriptor. In 2006, Bay et al. presented

Speeded-Up Robust Features (SURF) which employs integral images to compute

determinant of Hessian keypoints and distribution-based descriptors efficiently. In

2011, even more efficient blob features based on Calonder et al.’s Binary Robust

Independent Elementary Features (BRIEF) were presented by Rublee et al. (2011)

and Leutenegger et al. (2011). For bottom-up approaches, RanSaC (Random Sam-

ple Concensus, Fischler & Bolles, 1981) and its variants such as MSaC and MLESaC

(Torr & Zisserman, 2000) are the de facto standard to separate inliers from outliers.

Underlying models are typically based on the epipolar constraints and can be solved

in closed form using either {7, 8}-point approaches (Hartley & Zisserman, 2004) or,

if the camera intrinsics are known, using Nistér’s 5-point method (2004).

In contrast to bottom-up techniques, top-down tracking is model-based. Davison

(2003, 2005) incorporated prior knowledge in terms of a Gaussian map estimate

as well as a velocity-based motion model to restrict the search window for feature

tracking. In order to test whether those matched features mutually agree, Neira

& Tardós’s ‘joint compatibility test’ (2001) can be used. Alternatively, Chli &

Davison (2009) showed that guided search can be extended to an advanced active

matching algorithm where the predictions are updated after each match so that the

82

3.7. Bibliographic Remarks

search regions shrink continuously. Here, multi-hypothesis are maintained in order

to deal with mismatches. In PTAM, Klein & Murray (2007) used top-down guided

tracking with constant circular search region in a pyramidal approach. Matching is

only performed for pixels where FAST keypoints (Rosten & Drummond, 2006) were

detected.

Optical flow is commonly used for feature tracking. In visual SLAM, the KLT ap-

proach (Lucas & Kanade, 1981; Tomasi & Kanade, 1991) is sometimes applied which

performs local searches for a sparse set of features (Rybski et al., 2003; Klippenstein

& Zhang, 2007; Lim et al., 2011). Our guided feature tracking using variational

optical flow is related to the work of Wedel et al. (2008). In contrast to our ap-

proach, where we first estimate the flow field and then fit robustly the motion,

Wedel et al. estimate a flow field which is coherent with the epipolar constraint by

adding a corresponding cost term to the energy. This approach is beautiful since it

always estimates a motion-coherent flow field; but it is not straight forward when

the essential matrix is not given a priori. Despite the fact that it depends on a slow

alternation approach in this case, it is less clear what a good initial guess for the

optimisation would be since the space of essential matrices has a singularity around

zero (see Figure 3.2).

In the original MonoSLAM, Davison (2003) used a set of particles to represent the

unknown depth of newly initialised features, while Lemaire et al. (2005) and Solà

et al. (2005) used mixture of Gaussian approaches. The inverse depth formulation of

Montiel et al. (2006), which allows representation of even partially initialized features

well using a Gaussian distribution, first made it possible to deal with monocular

features in a unified manner. No special treatment for partially initialised features

with unknown depth is required. Though, this unified approach is only valid if the

map is represented jointly using a multi-variate Gaussian distribution. In keyframe-

based optimisation approaches, special treatment for feature initialisation is still

required. Klein & Murray (2007) used a depth prior in order to restrict the search

on the epipolar line. The feature initialisation method introduced in this chapter,

that was first described in Strasdat et al. (2010b), was developed independently from

Klein & Murray (2009) which was published half a year earlier. On a technical level,

our approach differs from theirs’ by using of three dimensional feature representation

instead of filtering only depth (= one dimension).

Quadtrees were introduce by Finkel & Bentley (1976). They showed that insertion

83

3. Monocular Exploration

and search can be performed efficiently. Quadtrees, and related data structures

using recursive partitioning, are commonly used for applications in image processing

and computer graphics (Samet, 1984). Mei et al. (2009, 2010a) suggested to use a

quadtree for feature tracking in the context of visual SLAM.

In the beginning of the past decade, several promising systems for incremental

structure and motion estimation were developed such as Zhang & Shan (2003) and

Corke et al. (2004). Nistér et al. (2006) presented a framework for visual odometry

using monocular and stereo vision. The approach is based on bottom-up tracking

using Harris corners (Harris & Stephens, 1988) and RanSaC. For the monocular ap-

proach it is based on the five point method (Nistér, 2003) and for stereo vision it uses

the three point method (Haralick et al., 1994). Sliding window bundle adjustment is

used for iterative refinement of structure and motion. Nistér et al. (2004) showed a

qualitative evaluation for real-time monocular exploration and extensive results for

real-time visual odometry using stereo vision over trajectories of hundreds of meters.

Mouragnon et al. (2006) presented a framework for monocular exploration which re-

lies on bundle adjustment in a sliding window of keyframes. Using a three point

RanSaC approach, features are tracked against the 3D model. The system runs in

real-time on 7.5 fps image sequences and produces accurate results. Konolige et al.

(2007) presented a real-time approach for stereo visual odometry using sliding win-

dow BA, and performed experiments over kilometer-long trajectories. Many other

stereo visual odometry frameworks followed such as Kaess et al. (2009), Beall et al.

(2010), Geiger et al. (2011) and Alcantarilla et al. (2012). Civera et al.’s monocu-

lar framework (2010) makes use of a camera-centric parametrisation and performs

inference by means of an EKF. A novel 1-point RanSaC scheme is used to enable

robust model-based tracking. Large scale results show accuracies comparable to ap-

proaches based on bundle adjustment, while the computational performance is short

of real-time at 1 fps (under the absence of wheel odometry).

This chapter is partially based on Strasdat et al. (2010b).

84

Chapter 4

Visual SLAM: Why Filter?

In which we compare rigorously the relative advantages of Gaussian

filters versus keyframe bundle adjustment for real-time visual SLAM.

While the most accurate solution to offline structure from motion problems is

undoubtedly to extract as much correspondence information as possible and per-

form batch optimisation, sequential methods suitable for live video streams must

approximate this to fit within fixed computational bounds. Live motion and struc-

ture estimation from a single moving video camera has a long history dating back

to work such as Harris & Pike (1987), but recent years — through advances in com-

puter processing power as well as algorithms — have seen great progress. Two quite

different approaches to real-time visual SLAM have proven successful, but they spar-

sify the problem in different ways. Filtering methods (e.g. Jung & Lacroix, 2003;

Davison et al., 2007; Eade & Drummond, 2007; Pietzsch, 2008) marginalise out past

poses and summarise the information gained over time with a probability distri-

bution. Keyframe methods (e.g. Mouragnon et al., 2006; Klein & Murray, 2007;

Pirker et al., 2011) retain the optimisation approach of bundle adjustment (BA),

but computationally must select only a small number of past frames to process.

Understanding of the generic character of localisation and reconstruction problems

has recently matured significantly. In particular, recently a gap has been bridged

between the structure from motion research area in computer vision and the SLAM

sub-field of mobile robotics research. The essential character of these two problems,

85

4. Visual SLAM: Why Filter?

estimating sensor motion by modelling the previously unknown but static environ-

ment, is the same, but the motivation of researchers has historically been different.

Structure from motion tackled problems of 3D scene reconstruction from small sets

of images, and projective geometry and optimisation have been the prevalent meth-

ods of solution. In SLAM, on the other hand, the classic problem is to estimate

the motion of a moving robot in real-time as it continuously observes and maps its

unknown environment with sensors which may or may not include cameras. Here

sequential filtering techniques have been to the fore.

It has taken the full adoption of Bayesian methods for both to be able to be

understood with a unified single language and a full cross-over of methodologies to

occur. We will discuss several approaches which aim at pulling together the best

of both worlds. There remains, however, the fact that in the specific problem of

real-time camera tracking, the best systems have been strongly tied to one approach

or the other. The question of why, and whether one approach is clearly superior

to the other, needs resolving to guide future research in this important application

area.

4.1 Filtering versus Bundle Adjustment

Let us recapitulate that the general problem of SLAM can be posed in terms of

inference on a graph.1 We represent the variables involved by the graphical models

shown in Figure 4.1(a). The variables of interest are Ti, each a vector of parame-

ters representing a historic pose of the camera, and yj , each a vector of parameters

representing the position of a 3D feature, assumed to be static. These are linked by

image feature measurements zij — the observation of feature yj from pose Ti — rep-

resented by edges in the graph. In real-time SLAM, this network will continuously

grow as new pose and measurement variables are added at every time step, and new

feature variables will be added whenever new parts of a scene are explored for the

first time. Although various parametric and non-parametric inference techniques

have been applied to SFM (structure from motion) and SLAM problems such as

particle filters (Sim et al., 2005; Eade & Drummond, 2006), or global optimisation

based on the L∞-norm (Hartley & Schaffalitzky, 2004), the most generally success-

1The close relation between graphical models and structure of the corresponding least squares
problem was discussed in detail by Thrun et al. (2002) and Dellaert & Kaess (2006).

86

4.1. Filtering versus Bundle Adjustment

(a) Full SLAM Problem (b) Filter (c) Keyframe BA

Figure 4.1: (a) illustrates the full SFM problem as a Markov random field, which
can be seen as a special factor graph with only binary constraints. Measurements
zi,j (= binary constraints) are represented by an edge between poses Ti and features
yj . (b) shows sequential filtering in a factor graph. (c) shows the sparsification in
keyframe-based optimisation.

ful methods in both filtering and optimisation have assumed Gaussian distributions

for measurements and ultimately state-space estimation; equivalently we could say

that they are least-squares methods which minimise the reprojection error. Bundle

adjustment (BA) in structure from motion, or the Extended Kalman Filter (EKF)

and variants in SLAM, all manipulate the same types of matrices representing Gaus-

sian means and covariances. The clear reason is the special status of the Gaussian

as the central distribution of probability theory which makes it the most efficient

way to represent uncertainty in a wide range of practical inference (Jaynes, 2003).

We therefore restrict our analysis to this domain.

A direct application of optimal BA to sequential SLAM would involve finding the

full maximum likelihood solution to the graph of Figure 4.1(a) from scratch as it grew

at every new time-step. The computational cost would clearly get larger at every

frame, and quickly out of hand. In inference suitable for real-time implementation,

we therefore face two key possibilities in order to avoid computational explosion. In

the filtering approach illustrated by Figure 4.1(b), all poses other than the current

one are marginalised out after every frame. Features, which may be measured again

in the future, are retained. The result is a graph which stays relatively compact;

it will not grow arbitrarily with time, and will not grow at all during repeated

movement in a restricted area, adding persistent feature variables only when new

areas are explored. The downside is that the graph quickly becomes fully inter-

connected, since every elimination of a past pose variable Ti−1 causes fill-in in terms

of a high-order constraint ẑ(Ti,y1, ...,yj) between all feature variables to which it was

joined. A joint distribution over all of these interconnected variables must therefore

87

4. Visual SLAM: Why Filter?

be stored and updated. The computational cost of propagating joint distributions

scales poorly with the number of variables involved, and this is the main drawback

of filtering: in SLAM, the number of features in the map will be severely limited.

The standard algorithm for filtering using Gaussian probability distributions is the

EKF, where the dense inter-connections between features are manifest in a single

joint density over features stored by a mean vector and large covariance matrix.

The other option is to retain BA’s optimisation approach, solving the graph from

scratch time after time as it grows, but to sparsify it by removing all but a small

subset of past poses. As discussed in Section 3.3.3, it is sometimes sensible for the

retained poses to be in a sliding window of the most recent camera positions, but

more generally they are a set of intelligently or heuristically chosen keyframes (see

Figure 4.1(c)). The other poses, and all the measurements connected to them, are

not marginalised out as in the filter, but simply discarded — they do not contribute

to estimates. Compared to filtering, this approach will produce a graph which has

more elements (since many past poses are retained), but importantly for inference

the lack of marginalisation means that it will remain sparsely inter-connected. The

result is that graph optimisation remains relatively efficient, even if the number of

features in the graph and measured from the keyframes is very high. The ability

to incorporate more feature measurements counters the information lost from the

discarded frames. So the key question is whether it makes sense to summarise the

information gained from historic poses and measurements by joint probability dis-

tributions in state space and propagate these through time (filtering), or to discard

some of those measurements in such a way that repeated optimisation from scratch

becomes feasible (keyframe BA), and propagating a probability distribution through

time is unnecessary.

4.2 Experimental Design

Hence, there are two main classes of real-time visual SLAM systems capable of

consistent local mapping. The first class is based on filtering. Early approaches

based on the EKF were developed by Chiuso et al. (2002), Jung & Lacroix (2003)

and Davison (2003). Several enhancements — mainly improving the parametrisation

— were suggested afterwards (e.g. Montiel et al., 2006; Pietzsch, 2008; Civera et al.,

2009b). Probably the best representative of this class is the approach of Eade &

88

4.2. Experimental Design

Drummond (2007) which builds a map of locally filtered sub-maps. The other class

is based on keyframe BA, mainly dominated by Klein & Murray’s Parallel Tracking

and Mapping (PTAM, 2007) framework (but also highly related to the BA-based

visual odometry approaches discussed in the previous chapter).

For defining an experimental setup, we keep the two successful representatives,

PTAM and Eade & Drummond’s system, in mind. These systems are similar

in many regards, incorporating parallel processes to solve local metric mapping,

appearance-based loop closure detection and background global map optimisation

over a graph. They are very different at the very local level, however, in exactly the

way that we wish to investigate, in what constitutes the fundamental building block

of their mapping processes. In PTAM, it is the keyframe, a historical pose of the

camera where a large number of features are matched and measured. Only informa-

tion from these keyframes goes into the final map. All other frames are used locally

for tracking but that information is ultimately discarded. Klein & Murray’s key

observation which permits real-time operation is that BA over keyframes does not

have to happen at frame-rate. In their implementation, BA runs in one thread on a

multi-core machine, completing as often as possible, while a second tracking thread

does operate at frame-rate with the task of pose estimation of the current camera

position with respect to the fixed map defined by the nearest keyframe. In Eade &

Drummond’s system, the building block is a ‘node’, which is a filtered probabilistic

sub-map of the locations of features. Measurements from all frames are digested in

this sub-map, but the number of features it contains is consequently much smaller.

The spacing of keyframes in PTAM and Eade & Drummond’s nodes is decided au-

tomatically in both cases, but turns out to be similar. Essentially, during a camera

motion between two neighbouring keyframes or nodes, a high fraction of features in

the image will remain observable. So in our simulations, we aim to isolate this very

local part of the general mapping process: the construction of a building block which

is a few nodes or the motion between a few keyframes. Thus, we wish to analyse

both accuracy and computational cost. As a measure of accuracy, we consider only

the error between the start and end point of a camera motion. This is appropriate as

it measures how much camera uncertainty grows with the addition of each building

block to a large map.

89

4. Visual SLAM: Why Filter?

4.3 Preliminary Experiment

Before getting deep into a complex evaluation scheme by regarding the full SLAM

pipeline, specific BA and filter variants, implementation subtleties, state space

parametrisations as well as the connection between computational cost and accuracy,

we will consider a simplified experimental setup.

4.3.1 Setup and Problem Formulation

We simulate a scenario in which a stereo camera performs a short sideway motion

(see Figure 4.2(a)). The length of the camera trajectory is one metre and a bounded

fronto-parallel planar object at three metres depth is visible in the scene. The ob-

ject is fully observable from all intermediate frames. This scenario is motivated

twofold: Firstly, it represents a situation of relatively detailed local scene recon-

struction, essentially optimising the local environment of one view with the support

of very nearby surrounding views, as might be encountered practically for instance

in small scale augmented reality, or object model reconstruction. Secondly, the esti-

mation produced in this setting could be seen as a building block of a sub-mapping

SLAM system. In particular it is very comparable to a single filter node of Eade &

Drummond’s SLAM framework.

We choose a camera with a resolution of 640 × 480 pixels and a focal length of

f = 500. Thus, the simulated camera has a horizontal view angle of 65.2◦ and a

vertical view angle of 51.3◦. The baseline between the stereo camera pair is set

to 10cm. Let us assume that our camera captures a number of 36 frames during

the one meter trajectory — in addition to the initial frame which is captured at

the reference pose T0. Furthermore, we assume that the planar object consists of

a number of 425 regularly arranged feature points. Thus, there are two essential

parameters to vary: First, we select the number of keyframes M out of the range

{1, 2, . . . 36}. In the case of M = 1, only the first frame at T0 and the last frame at

TM are used for the SLAM estimate. Second, we vary the number the number of

features N in the range {12, . . . 425}. In particular, we select the number of points

out of the regular pattern in such a way that a pattern with a higher density always

includes all points from a pattern with lower density — as illustrated Figure 4.2(b).

Our objective is to maximize the accuracy of the estimated motion. In particular,

90

4.3. Preliminary Experiment

.

a) sideways motion with varying number of frames M

. . .

b) planar scenes with varying number of points N

Figure 4.2: Preliminary experiment. (a) shows a stereo camera moving sideways
in front of a planar scene. (b) shows the planar scene which consists of 12 to 425
points arranged in a regular pattern.

we measure the accuracy of the final camera pose TM with respect to the initial

reference pose T0.

In our SLAM problem, we seek to estimate the state vector x over the joint state

of all camera poses Ti and scene points yj . In a least squares formulation, we wish

minimize the cost χ2,

χ2(x) =
M∑
i=0

N∑
j=1

(zi,j − ẑ(Ti · yj))Σ−1
zi,j (zi,j − ẑ(Ti · yj)) , (4.1)

with respect to x = (T1, . . . , TM ,y1, . . . ,yn). Here, ẑ is the stereo forward model as

specified in Section 3.2.2. The first pose T0 is fixed and defines the reference frame.

The measurement noise is set to a standard deviation of σ = 1
2 pixels:

Σz =

Σ1,1

. . .

ΣM,N

 =

σ2

. . .

σ2

 . (4.2)

91

4. Visual SLAM: Why Filter?

4.3.2 Accuracy Analysis using Entropy Reduction

The accuracy of our SLAM problem for a specific setting – M poses and N points

– can be estimated without the need of minimizing χ2 explicitly. Starting form the

ground truth, we can estimate the uncertainty Σx over the joint SLAM state given

the measurement uncertainty Σz using covariance back-propagation:

Σx = (J>Σ−1
z J)−1 , (4.3)

with J being the Jacobian of the least-squares cost (4.1). We are only interested in

the 6× 6 sub-matrix ΣT which specifies the uncertainty of the final camera pose TM ,

ΣT =

[
Συ Σ>ω,υ

Σω,υ Σω

]
. (4.4)

We are analysing the translational uncertainty Συ and the rotational uncertainty

Σω independently. In this way, we avoid the ill-posed question of forming a single

unified measure representing both rotation and translation accuracy.

Finally, we analyse the influence of different parameter combinations 〈M,N〉 in

terms of entropy reduction. The differential entropy of a multivariate Gaussian

X = 〈µX , ΣX〉 is defined as:

H(X) =
1

2
log2((2πe)N det(ΣX)) . (4.5)

Now, the relative difference between two Gaussians X = 〈µX , ΣX〉, Y = 〈µY , ΣY 〉
can be described using the difference of entropy:

E(X,Y) := H(X)−H(Y) . (4.6)

This measure is only meaningful if both distributions share (at least approxima-

tively) the same mean. If H(X) > H(Y) it can be seen as a entropy reduction

measure: How much more accuracy do we gain, if we do Y instead of X. It holds

that

E(X,Y) = H(X)−H(Y) (4.7)

=
1

2
log2((2πe)N det(ΣX))− 1

2
log2((2πe)N det(ΣY)) (4.8)

=
1

2
log2

(
det(ΣX)

det(ΣY)

)
. (4.9)

92

4.3. Preliminary Experiment

 1 6 11 16 21 26 31 36

 12
 87

 213

 425

 2

 4

 6

E in bits

M

N

E in bits

 1 6 11 16 21 26 31 36

 12
 87

 213

 425

 2

 4

 6

E in bits

M

N

E in bits

rotational accuracy translational accuracy

Figure 4.3: Result of the preliminary experiment. The surfaces show the rotational
and translational accuracy for varying number of keyframes M and points N in
terms of entropy reduction in bit (the higher, the better).

Here, we use this relative entropy measure in order to compare the general setting

〈M,N〉 to the minimal setting 〈1, 12〉 where only one end pose and 12 points are

used for the SLAM estimate. Note that both means µ〈1,12〉 = µ〈N,M〉 are set to be

the ground truth. Thus, we compute how much accuracy we gain, i.e. how much

entropy is reduced

E =
1

2
log2

(
det(Σ〈1,12〉)

det(Σ〈M,N〉)

)
, (4.10)

if we use M keyframes and N points instead of the minimal setting, with Σ〈i,j〉 being

both either 3×3 covariance matrices of the final camera translation Συ or covariance

matrices of the final camera rotation Σω. Geometrically, the measure E describes

the ratio of the volumes of the two ellipsoids Σ〈1,12〉 and Σ〈M,N〉 on a log scale. For

numerical stability, the natural logarithms of the absolute values of the determinants

are calculated directly, subtracted and normalised afterwards:

E =
1

2 ln(2)
(ln | det(Σ〈1,12〉)| − ln |det(Σ〈M,N〉)|) (4.11)

Here, we exploit the fact that the determinant of a covariance matrix is always

positive.

4.3.3 Preliminary Results

The influence of the parameters 〈M,N〉 is illustrated in Figure 4.3. As can be seen,

increasing the number of features significantly increases the accuracy. On the other

93

4. Visual SLAM: Why Filter?

hand, increasing the number of intermediate frames has only a minor influence.

At each point on the accuracy surface it is more beneficial to double the number

of points N instead of doubling the number of intermediate frames M in order to

maximise the accuracy. This is true for accuracy measured on the rotational as

well as on the translational component of the pose. Comparing the cost of BA

(linear in N) to the cost of filtering (cubic in N), it becomes clear that BA is the

more efficient technique — especially if high accuracy is required. This is the most

important result of our analysis.

So far, this result relies on a number of assumptions: First, we merely analysed the

accuracy of SLAM using uncertainty propagation. We did not analyse the absolute

accuracy and cost of full incremental SLAM pipeline (including pose tracking and

feature initialisation). Especially, we have not taken the well-known effect into

account that the accuracy of filtering can degrade from the maximum likelihood

estimate due to linearisation issues (Julier & Uhlmann, 2001; Castellanos et al.,

2004). Second, we only analysed stereo SLAM and did not investigate the specifics

of monocular vision. Finally, we assumed that all points are visible in all frames,

which is an idealisation of a typical camera path where there is only a partial scene

overlap between the first and the last frame. In the following we will lift these

assumptions and see that the results of the preliminary experiment can be confirmed

under more general conditions.

4.4 Bundle Adjustment and Filter Variants

In our main comparison, we want to analyse the difference between BA and filtering

in a series of Monte Carlo experiment. Therefore, we need to decide on specific

implementations.

4.4.1 State Prediction and Motion Prior

EKF-based SLAM consists of two phases: The state prediction and the update step.

Let 〈µt−1, Σt−1〉 denote the mean and covariance of the EKF state space. Further-

more, let g(·,ut−1) be a state prediction model, and ut−1 some control input. For

instance, ut−1 could be the output of a wheel odometer and g the corresponding

94

4.4. Bundle Adjustment and Filter Variants

motion model. Then the new state 〈µ̄t, Σ̄t〉 can be predicted as:

µ̄t = g(µt−1,ut−1) , (4.12)

Σ̄t = ∂g
∂µt−1

Σt−1
∂g

∂µt−1

>
+ ∂g

∂ut−1
Σut−1

∂g
∂ut−1

>
(Thrun et al., 2005, p.59) .(4.13)

In visual SLAM, no external odometry measurements are available. In MonoSLAM,

Davison et al. (2003; 2007) incorporate a constant velocity motion model. Thus,

they calculate a prior distribution 〈µ̄t, Σ̄t〉 before any visual measurement is inte-

grated in the update step. This works well as long as the smooth motion assumption

is not violated. However, if there are rapid changes in the motion, such a prior

could potentially introduce a strong bias in the estimation process. Probably, this

is the reason why PTAM as well as the filtering approach of Eade & Drummond

do not incorporate a motion prior, but assume a uniform prior instead (see also

Section 2.3.4). Therefore, we will use BA and filter variants with uniform priors on

the camera poses.

4.4.2 Implementation for Bundle Adjustment and Filtering

For BA, we apply a state of the art approach using the Schur-Complement, and

a sparse Cholesky solver. It is less obvious what kind of filter variant to use. The

standard EKF is fundamentally different from the BA formulation of SLAM, but has

well-known limitations. However, there is a broad middle ground between filtering

and BA/smoothing (which we will discuss in Section 4.7.1). Indeed, if one tries

to define the best possible filter by modifying the standard approach, one would

converge more and more towards BA. Therefore, it is important to define precisely

what we understand by a filter. Our concept of a filter is a cluster of related

properties:

1. Explicit representation of uncertainty : A set of parameters is represented using

a multivariate normal distribution.

2. Marginalisation: Temporary/outdated parameters are marginalised out in or-

der to keep the state representation compact.

3. Cheap access to covariance: The joint covariance can be recovered from the

filter representation without increasing the overall algorithmic complexity.

95

4. Visual SLAM: Why Filter?

It is obvious that property 1 is the core property of the (Gaussian) filter concept.

Property 2 is very common in visual SLAM, since filters are often applied at frame-

rate. Each single frame produces a new pose estimate. In order to avoid an explosion

in the state space, past poses are marginalised out. Still, property 3 is a crucial

characteristic which distinguishes BA from filtering: It is possible to calculate the

covariance of the BA problem using covariance propagation, but this would increase

the algorithmic complexity of BA significantly.

There are two fundamentally different approaches of Gaussian filters. The stan-

dard approach is the EKF, which represents uncertainty using a covariance matrix

Σ. It is easy to see that the EKF fulfils all the three properties defined above. Its

dual is the extended information filter which represent the uncertainty using the

inverse covariance or information matrix Λ = Σ−1. In the SLAM community, the

EKF and its variants are particular popular since its computational complexity is

O(K2) while it is in general O(K3) for the information filter, with K being the total

number of features in the map. Since we only consider a local building block of

SLAM the computational complexity is dominated by the number of visible features

N , leading to a complexity of O(N3) for both filter types. Thus, both approaches

are largely equivalent for our purposes. Indeed we choose the information matrix

representation. The reasons are twofold: First, the information filter approach is

conceptually more appropriate for our comparison since the relation between filter-

ing and BA becomes more obvious — both are non-linear least-squares methods.

Second, the information form allows us to include variables without any prior on

the state space. Thus, we can include new poses without any motion prior, and

also we are able to represent infinite depth uncertainty for monocular inverse depth

features. In particular, we follow Eade & Drummond (2007) as well as Sibley et al.

(2005) and employ the Gauss-Newton filter (see Section 2.3.4). It iteratively solves

the normal equations using the Cholesky method and therefore is the dual of the

iterative EKF (Bell & Cathey, 1993).

Furthermore, note that the Gauss-Newton filter is equivalent to the correction

step of the classic Square Root Information Filter (SRIF, Dyer & McReynolds,

1969). The SRIF never constructs the normal equations explicitly and solves the

problem using an orthogonal decomposition on the square root form. While per-

forming Gauss-Newton using Cholesky decomposition is less numerically stable than

performing the orthogonal decomposition method, it is computationally more effi-

96

4.5. Implementation of Visual SLAM

Algorithm 3 BA-SLAM pipeline

X := initialise_points(Z0)
for each keyframe/time step i = 1 to M do
if a number of n ≥ 1 points left field of view then
Y := Y ∪ initialise_n_new_points(Zi, n)

end
Ti := motion_only_BA}(Y,Zi)
Y := structure_only_BA(T0:i,Y,Z0:i)
T1:i,Y := full_BA(T1:i,Y,Z0:i)

end

cient and therefore the standard approach for real-time least-squares problems nowa-

days. Indeed, a sufficient numerical stability of even rank-deficient problems can be

archived by applying a robust variant of Cholesky — such as the pivoted L>DL

decomposition used in the Eigen matrix library2 — and the Levenberg-Marquardt

damping term, called Tikhonov regularisation (Tikhonov & Arsenin, 1977) in this

context.

4.5 Implementation of Visual SLAM

In this section, we describe the concrete implementation we used for BA and filter-

SLAM. We first focus on stereo SLAM. The specifics of monocular SLAM are dis-

cussed afterwards.

4.5.1 BA-SLAM

In BA, we optimise simultaneously for structure and motion by minimising the

reprojection error:

χ2(x) =
∑

zi,j∈Z0:i

(zi,j − ẑ(Ti · yj))2 (4.14)

with respect to x = (T1, ..., Ti,Y)> with Y being the set of all points yj . The first

frame T0 is typically fixed in order to eliminate the underlying gauge freedom. We

employ the standard approach to BA as discussed in Section 3.3.4, and we implement

it using the g2o framework (Kümmerle et al., 2011a).

2http://eigen.tuxfamily.org/dox/TutorialLinearAlgebra

97

4. Visual SLAM: Why Filter?

BA is just the core of the full SLAM pipeline. We use the following scheme which

is summarised in Table 3. In the first frame, we initialise the 3D points yj ∈ Y from

the set of initial measurements Z0. As described in Section 3.4.3, we select a set X
of N points from a larger set of scene point candidates using a quadtree to ensure

that the corresponding 2D observations z0,j ∈ Z0 are spread approximately equally

across the image. For each time step, that is for each new keyframe, four steps are

performed. First, we optionally initialise new 3D points in case some old features

have left the field of view. Using the quadtree, we initialise new points where the

feature density is low. Second, the current pose Ti is estimated using motion-only

BA. Thus, we minimise the reprojection error:

χ2(Ti) =
∑

zj∈Zi

(zj − ẑ(Ti · yj))2 (4.15)

with respect to the current camera Ti. We simply initialise the current pose to the

previous pose Ti = Ti−1, though one could also use a motion model to predict a

better initial guess.3 Third, we perform structure-only BA by minimising

χ2(Y) =
∑

zi,j∈Z0:i

(zi,j − ẑ(Ti · yj))2 (4.16)

with respect to the set of points Y. Finally, we perform joint optimisation of struc-

ture and motion as formalised in equation (4.14).

4.5.2 Filter-SLAM

For filtering, it is especially important that the state representation is as ‘linear’

as possible. It proved to be useful, especially but not exclusively for monocular

SLAM, to represent 3D points using anchored inverse depth coordinates (Civera

et al., 2008). Our effort is to combine the most successful approaches. We represent

points using the inverse depth formulation of Eade (2008). As in Pietzsch (2008),

the bundle of points, which were initialised at the same time, are associated with

its common anchor pose Ta(j); a(j) = k is a function which assigns an anchor frame

index k for each point index j. We use the inverse depth representation as described

3 Note that one can integrate a motion model without enforcing a motion prior. For instance,
PTAM uses a constant-velocity motion model to calculate the initial pose for motion-only optimi-
sation. The optimisation, however, is free to depart from this initial guess in order to minimise the
reprojection error without any penalty cost.

98

4.5. Implementation of Visual SLAM

in Section 3.4.4. Thus, the reprojection error of a point ψj in frame Ti is

di,j := zi − ẑ(Ti · T−1
a(j)Π(ψi)) with Π(a) =

1

a3

a1

a2

1

 (4.17)

As motivated above, we perform filtering using a Gauss-Newton filter. Thus, we

minimize the following sum of squares function,

χ2(Φi, Ti) = (Φi 	Φi−1)>ΛΦi−1(Φi 	Φi−1) +
∑

zj∈Zi

d>i,jΛzdi,j , (4.18)

with respect to the map Φi and the current camera pose Ti. Here, 〈Φi−1, ΛΦi−1〉 is

the Gaussian map prior. Differences between two poses are calculated in the tangent

space of SE(3):

T[i] 	 T[i−1] := log

(
T[i] ·

(
T[i−1]

)−1
)∨

se(3)

, (4.19)

while the difference between inverse depth points is simply standard subtraction

ψ[i]	ψ[i−1] := ψ[i]−ψ[i−1]. Since we do not impose a motion prior on Ti, the prior

joint information over the current pose Ti and the map Φi−1 is

Λi−1 :=

(
ΛΦi−1 Λ>Φi−1,Ti

ΛΦi−1,Ti ΛTi

)
=

(
ΛΦi−1 O3n×6

O6×3n O6×6

)
. (4.20)

Following Section 2.3.3, we calculate the update of the information matrix:

Λi = Λi−1 + D>

Σ−1

z

. . .

Σ−1
z

 D . (4.21)

D is the sparse Jacobian of the stacked reprojection function:

d = (d>1 , ...,d
>
N)> (4.22)

with respect to the pose Ti, to the points ψ1, ...,ψN and to the corresponding an-

chor frames {Ta(j)|j = 1, ..., N}. Details of this uncertainty propagation are in

Algorithm 4.

The whole filter-SLAM pipeline is sketched in Table 5. In the first frame, the

inverse depth points ψ are initialised from the stereo observation zs:

ψ =
(

ul−pu
f

vl−pv
f

ul−ur
fb

)>
, (4.23)

99

4. Visual SLAM: Why Filter?

Algorithm 4 Uncertainty propagation

for each point ψj in X do

JT :=
∂d(exp(ε)·T,Ta(j),ψj)

∂ε

∣∣∣
ε=0

//pose Jacobian

JT :=
∂d(T,Ta(j),ψj)

∂ψj
//point Jacobian

ΛTi,Ti := ΛTi,Ti + J>T ΣzJT //update pose block

ΛTi,ψj := ΛTi,ψj + J>T ΣzJψ //update pose-point blocks

Λψj ,Ti := Λψj ,Ti + J>ψΣzTT

Λψj ,ψj := Λψj ,ψj + J>ψΣzJψ //update point-point blocks

if a(j) > 1 then

JTa :=
∂d(T,exp(ε)Ta(j),ψj)

∂ε

∣∣∣
ε=0

//anchor pose Jacobian

ΛTa(j),Ta(j) := ΛTa(j),Ta(j) + J>TaΣzJTa //update anchor block

ΛTa(j),ψj := ΛTa(j),ψj + J>TaΣzJψ //update anchor-point blocks

Λψj ,Ta(j) := Λψj ,Ta(j) + J>ψΣzJTa

ΛTi,Ta(j) := ΛTi,Ta(j) + J>T ΣzJTa //update pose-anchor blocks

ΛTa(j),Ti := ΛTa(j),Ti + J>TaΣzJT

end
end

with f being the focal length and b being the baseline of the stereo camera. As a side

note, this formula highlights the close relationship between inverse depth ψ3 = ul−ur
fb

and stereo disparity ul − ur. We initialise the corresponding information matrix as

Λψ =

(
∂zs
∂ψ

Σz
∂zs
∂ψ

>
)−1

with
∂zs
∂ψ

=

1
f 0 0

0 1
f 0

1
fb 0 − 1

fb

 . (4.24)

At each time step i, we do the following: First, we decide whether we want initialise

new points. If this is the case, we define the previous estimated pose Ti−1 as the new

anchor frame Ta and augment the map state accordingly Φi = (Φi−1, Ta)
>. Then,

we marginalise out n old points from the filter state and replace them with n new

points anchored to Ta. As in BA-SLAM, a quadtree is used for point initialisation.

Otherwise, we marginalise out the pose Ti−1 from Λi−1

ΛΦi−1 = ΛΦi−1 − Λ>Ti−1,Φi−1
Λ−1
Ti−1

ΛTi−1,Φi−1 . (4.25)

Next, we approximate the new camera pose Ti given the previous map Φi−1. In

traditional filter-based SLAM implementations, this step is often omitted. However,

in the case of large camera displacements (e.g. due to low filter frequency) it is

100

4.5. Implementation of Visual SLAM

Algorithm 5 Filter-SLAM pipeline.

Ta := T0

〈Φ0, ΛΦ0〉 := Initialise map using equations (4.23) and (4.24).
for each time step i = 1 to M do
if a number of n ≥ 1 points left field of view then

Ta := Ti−1 //old pose is a new anchor pose

Φi :=

(
Φi−1

Ta

)
//augment map with anchor pose

ΛΦi := Λi−1

〈Φi, ΛΦi〉 := Marginalise out the n invisible points
and initialise n new points anchored to Ta.

else
Φi := Φi−1

ΛΦi := ΛΦi−1 − Λ>Ti−1,Φi−1
Λ−1
Ti−1

ΛTi−1,Φi−1 //marginalise out old pose

end
ΣΦi := Λ−1

Φi
//calculate covariance, optionally

Ti := Calculate motion either using motion-only BA (4.15)
or using a map prior 〈Φi, ΣΦi〉 (Algorithm 6).(

Φi

Ti

)
:= Joint filter update by minimising energy (4.18).

Λi := Augment information matrix and update it (Algorithm 4).
end

desirable to approximate the camera motion before applying the joint filter update.

There are two possibilities to estimate the camera pose given a known map. One can

either do motion-only BA by minimising the cost (4.15). Here we assume that the

points are accurately known. In the case that there is a significant uncertainty in

the map, and a model of this uncertainty is available, we can do better. As shown in

Algorithm 6 and described by Eade (2008, pp.126), we can estimate a pose given a

Gaussian map prior. The effect is that taking account of the 3D uncertainty in point

positions will weight their impact on camera motion estimation, and better accuracy

will be obtained because accurately located points will be trusted more than uncer-

tain ones. The pros and cons of these two approaches are analysed in Section 4.6.3.

Finally, we perform the joint filter estimate and update the information matrix as

discussed above.

101

4. Visual SLAM: Why Filter?

Algorithm 6 Pose estimation given Gaussian map prior 〈Φ, ΣΦ〉.

1 S := JΦ(T)ΣΦJΦ(T)> + Σz //calculate innovation covariance

2 χ2 := d(Φ, T)>S−1d(Φ, T) //calculate residual error
3 for some iterations do
4 repeat
5 δ := (JT(T)>S−1JT(T) + µI)−1 · (−JT(T)S−1d(Φ, T))

//solve linear system
6 Tnew := exp(δ) · T //update pose

7 S := JΦ(Tnew)ΣΦJΦ(Tnew)> + Σz //update innovation

8 χ2
new := d(Φ, Tnew)>S−1d(Φ, Tnew) //calculate new residual error

9 if χ2
new ≥ χ2 then

10 Increase damping term µ.
11 end
12 until χ2

new < χ2

13 T← Tnew
14 χ← χnew
15 Decrease damping term µ.
16 end

Here, JΦ(T) := ∂d(Φ,T)
∂Φ and JT(T) := ∂d(Φ,exp(ε)·T)

∂ε |ε=O. In an approximative version,
step 7 is skipped so that S−1 needs only to be calculated once.

4.5.3 Monocular SLAM

Monocular Bundle Adjustment

In Section 3.3.2 we learned that the gauge freedom of bundle adjustment increases

from 6 DoF to 7 DoF if one moves from stereo to monocular vision. Even after

fixing the origin T0, one dimension of scale gauge remains. We simply leave this one

degree unfixed, since the damping term of Levenberg-Marquardt acts as a Tikhonov

regulariser and can deal with gauge freedom effectively (Jeong et al., 2010). In BA-

SLAM, new 3D points are triangulated between two consecutive keyframes using a

set of independent filters as described in Section 3.4.4.

Monocular Filter

Since an anchored inverse depth representation was chosen for the filter, no substan-

tial improvements are necessary when moving from stereo to monocular vision. As

opposed to monocular BA, the monocular filter does not introduce a scale ambiguity.

102

4.5. Implementation of Visual SLAM

The reason is that a non-trivial map distribution 〈Φ, ΛΦ〉 (with ΛΦ having full rank)

introduces a scale prior and therefore the degree of free gauge in equation (2.34)

remains zero. This arbitrary scale factor is invented during bootstrapping (see be-

low). For monocular vision, new features ψ are initialised with infinite uncertainty

along the feature depth ψ3:

ψ =
(

u−pu
f

v−pv
f 1

)>
and Λψ = diag

(
f2

σ2
z

,
f2

σ2
z

, 0

)
. (4.26)

Structure and Motion Bootstrapping

Unless there is any additional prior knowledge such as a known object in the scene,

monocular SLAM requires a special bootstrapping mechanism. We perform boot-

strapping between three consecutive keyframes Tb0, Tb1, T0. The standard approach

relies on the 5-point algorithm (Nistér, 2004), which however requires a RanSaC-like

procedure. We instead employ an iterative optimisation, exploiting the fact that the

consecutive keyframes share similar poses. First, we define Tb0 as our fixed origin

and apply monocular filtering between Tb0 and Tb1. Let us assume without loss of

generality that Tb0 = I. Note that now equation (2.34) has one dimension of gauge

freedom, since there is infinite uncertainty along all feature depths ψ3. This scale

freedom during optimisation is handled with the LM damping term. Afterwards,

we ensure the estimated motion Tb1 has sufficient parallax. To summarise, we have

estimated 6 + 3N parameters, while the underlying problem only has 5 + 3N DoF.

In order to avoid a rank-deficient map distribution, we convert the pose Tb1 into

a 5 DoF representation by enforcing the additional constraint on SE(3) that the

translation must be unity |tb1| = 1. First, we scale the whole state estimate — all

inverse depth points ψj as well as the initial motion Tb1 — such that |tb1| = 1. After-

wards, we perform uncertainty propagation (Algorithm 4) with a modified Jacobian

D reflecting that the pose only has 5 DoF. Then, the 5 DoF pose is marginalised

out. The resulting precision matrix ΛΦ has full rank and enforces a scale prior (that

the initial translation between Tb0 and Tb1 has unit length). Finally, we perform a

standard monocular filter update (as described above) between frame Tb1 and T0 so

that the resulting map is well initialised and can be used for either BA-SLAM or

filter-SLAM.

103

4. Visual SLAM: Why Filter?

4.6 Experiments

Finally, we analyse the performance of BA-SLAM versus filter-SLAM by evaluating

local motion in a set of Monte Carlo experiments.

4.6.1 Four Different Settings

In our final series of experiments, we consider four different scenes/motion pat-

terns (see Figure 4.4). In Setting (i), the camera performs a motion sideways of

0.5 metre while observing an approximately planar scene. Here, all points are

visible in all frames, and therefore the number of points in the map equals the

number of observations per frame. The number M of keyframes (intermediate

keyframes plus end frame, excluding the first frame) is varied between 1 and 16;

more specifically M ∈ {1, 2, 4, 8, 16}. The number of observations N is chosen from

N ∈ {15, 30, 60, 120, 240}. In addition, we also consider N = 480 for some specific

cases.

The configuration of Setting (i) is designed following the preliminary experiment

in Section 4.3.1. Since no new points need to be initialised, all points are anchored

to the fixed origin T0. Setting (i) is very specific in the sense that all points are

visible in all frames. In a typical visual odometry building block, there is only

partial scene overlap. In each new frame of a sequence, some point projections leave

the field of view while new points become visible. For Setting (ii), we have chosen a

translation of 1.1m, so that the first and the final frame barely overlap. Therefore,

at least one intermediate keyframe has to be used and we choose M ∈ {2, 4, 8, 16}.
In Setting (iii), the camera performs a sideways motion plus rotation which leads to

a partial scene overlap. Again, we choose M ∈ {2, 4, 8, 16}. In the final Setting (iv),

the camera performs a sharp forward turn. This setting is typical for a camera

mounted on a robot which performs a sharp 90◦ turn in an indoor environment.

This setting is especially hard for Monocular SLAM: Scene points leave the field

of view quickly while parallax is low due to the lack of translation. To achieve an

acceptable level of robustness, we select M ∈ {4, 8, 16}.

For all optimisations (motion update, structure-only BA, full BA, joint filter up-

date) we perform three LM iterations in Setting (i,ii) and ten LM iterations in

Settings (iii,iv).

104

4.6. Experiments

���
���

����

������	
	���
��

Setting (i) All Points Visible Setting (ii) Partial Scene Overlap

���
���

����

���	�
��	��

Setting (iii) Rotation Setting (iv) Sharp Forward Turn

Figure 4.4: Birds-eye view of different motion/scene settings. Black cameras repre-
sent start and end pose. Intermediate poses are presented in gray. Unfilled cameras
indicate the poses used for monocular bootstrapping Tb0, Tb1. Scene points are ini-
tialised within the gray-shaded areas. In Setting (i), all points are visible in all
frames. In Setting (ii), there is only a partial scene overlap. Here, we illustrate
the case with a single intermediate camera (M = 2). Some points are triangulated
between the first and middle frames (right/red area), with others between middle
and end frame (left/green area). In Setting (iii), the camera performs a 30◦ rotation
while still moving sideways. In Setting (iv), the camera performs a sharp forward
turn so that the scene points quickly leave the field of view. To avoid cluttering the
figure, we do not show intermediate and bootstrapping poses here.

105

4. Visual SLAM: Why Filter?

xy yz xy yz xy yz xy yz xy yz
n

u
m

b
er

of
ob

se
rv

at
io

n
s
N 240

120

60

30

15

1 2 4 8 16

number of frames M

xy yz xy yz xy yz xy yz xy yz

n
u

m
b

er
of

ob
se

rv
at

io
n

s
N 240

120

60

30

15

1 2 4 8 16

number of frames M

(a) Stereo SLAM (b) Monocular SLAM

Figure 4.5: End pose accuracy of stereo and monocular SLAM. Filtering results
are shown in green (top rows), whereas BA results are shown in red (below). The
distributions are shown in a zero-centred 1.5 cm sector.

4.6.2 Accuracy of Visual SLAM

We analyse the accuracy using the difference between the true final camera position

ttrue and the corresponding estimate test:

∆t = ttrue − test . (4.27)

For each chosen number of frames and points 〈M,N〉, we perform a set of k = 500

Monte Carlo trials. The sampling is performed over the measurement noise (with

σ = 0.5 pixels) as well as the scene points (uniformly). For Setting (i) using stereo

SLAM, the resulting plots are shown in Figure 4.5(a). Approximately, the presented

discrete error distributions appear to consist of samples from unimodal, zero-mean

Gaussian-like distributions.

In the case of monocular SLAM, we can only estimate the translation modulo an

unknown scale factor. Therefore, we eliminate the scale ambiguity in our evaluation

by normalising the estimated translation to the true scale:

t∗ =
|ttrue|
|test|

test. (4.28)

Hence, all normalised estimates t∗ lie on the sphere of radius |ttrue|. This explains

why the projection of the error distribution onto the xy plane is elongated, with no

106

4.6. Experiments

Entropy reduction in bits: RMSE in m:

 1 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

 8

E in bit

M

N

E in bit

 1 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

 8

E in bit

M

N

E in bit

 1 2 4 8
 16

 15
 60

 120

 240
 0.002

 0.006
 0.008

RMSE

M

N

RMSE

(a) Stereo BA (c) Stereo Filter (e) Stereo BA

 1 2 4 8
 16

 15
 60

 120

 240

 2

 4

E in bit

M

N

E in bit

 1 2 4 8
 16

 15
 60

 120

 240

 2

 4

E in bit

M

N

E in bit

 1 2 4 8
 16

 15
 60

 120

 240
 0.002

 0.006
 0.008

RMSE

M

N

RMSE

(b) Monocular BA (d) Monocular Filter (f) Monocular BA

Figure 4.6: Setting (i). Accuracy plots in terms of entropy reduction in bits and
RMSE.

uncertainty along the unknown scale dimension (here x-axis). Interestingly, error

distributions in the yz plane for monocular and stereo SLAM are of similar shape

and size. In order to have a minimal and Gaussian-like parametrisation of the

monocular error distribution, we calculate the error in the tangent plane around the

point ttrue:

∆t = φttrue(t
∗). (4.29)

Here, φttrue is a orthogonal projection which maps points on the ball with radius

|ttrue| onto the tangent plane around ttrue (so that ttrue is mapped to (0, 0)>).

We use two ways to describe the error distribution. Our first measure is based

on information theory. As in our preliminary experiment (see Section 4.3.2), we

analyse the influence of different parameters 〈M,N〉 in terms of entropy reduction.

Therefore, for each setting 〈M,N〉 we estimate the sample covariance matrix Σ〈M,N〉

of the translation error distribution ∆t. Then, we can compute the entropy reduction

in bits,

E =
1

2
log2

(
det(Σ〈Mmin,15〉)

det(Σ〈M,N〉)

)
, (4.30)

in relation to the least accurate case where only the minimal number of frames

Mmin
4 and 15 points are used for SLAM.

4This is Mmin = 1 for Setting (i) and Mmin = 2 for Settings (ii,iii), and Mmin = 4 for Setting (iv).

107

4. Visual SLAM: Why Filter?

Stereo SLAM: Monocular SLAM:

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 2 4 8
 16

 15
 60

 120

 240

-2
 0
 2
 4
 6

E in bit

M

N

E in bit

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

(a) BA (c) BA (whole plot) (e) BA

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

(b) Filter (d) Low accuracy 〈2, 15〉 (f) Filter vs. BA

Figure 4.7: Setting (ii). Accuracy plots in terms of entropy reduction in bits (a-
c,e,f). Plot (d) illustrates the error distribution for the low robustness case 〈M,N〉 =
〈2, 15〉. For both BA (left, red) and filtering (right, green), the distributions for this
lowest accuracy case contain outliers, i.e. complete SLAM estimation failures, and
this explains the discontinuities in the otherwise smooth plots (c,e,f) in the low
accuracy corner. Even though we show a range of one metre, a significant portion
of outliers lies outside this range.

The influence of the parameters 〈M,N〉 in Setting (i) is illustrated in Figure 4.6(a-

d). As can be seen in all plots (Monocular vs. Stereo, Filtering vs. BA), increasing

the number of features leads to a significant entropy reduction. On the other hand,

increasing the number of intermediate frames has only a minor influence. Thus,

we could reproduce the important result of our preliminary experiment. Also, we

can see that the accuracy of our filter is in fact very close to the accuracy of BA,

confirming that we have chosen the filter parametrisation well.

The accuracy results for Setting (ii), where the camera still moves sideways but

now over a distance such that there is hardly any scene overlap between the first

and last frames, are shown in Figure 4.7(a,b). The plots for stereo SLAM look

similar to Setting (i). The whole accuracy plot for monocular BA is shown in

Figure 4.7(c). Note that for the low accuracy cases 〈2, 15〉 and 〈2, 30〉 the estimation

is not very robust, and SLAM fails occasionally. Thus, the corresponding error

distributions are heavy tailed/non-Gaussian as shown in Figure 4.7(d), and therefore

the entropy reduction measure is not fully meaningful. Therefore, we excluded these

two cases from the subsequent analysis and defined 〈4, 15〉 as the minimal base case.

108

4.6. Experiments

Monocular BA Stereo BA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1->2 2->4 4->8 8->16

e
n
tr

o
p
y
 r

e
d
u
c
ti
o
n
 i
n
 b

it
s

Setting (i), N=15
Setting (i), N=30
Setting (i), N=60

Setting (i), N=120
Setting (i), N=240
Setting (ii), N=15
Setting (ii), N=30
Setting (ii), N=60

Setting (ii), N=120
Setting (ii), N=240

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1->2 2->4 4->8 8->16

e
n
tr

o
p
y
 r

e
d
u
c
ti
o
n
 i
n
 b

it
s

(a) Increasing number of keyframes M

Monocular BA Stereo BA

 0

 0.5

 1

 1.5

 2

15->30 30->60 60->120 120->240

e
n
tr

o
p
y
 r

e
d
u
c
ti
o
n
 i
n
 b

it
s

 0

 0.5

 1

 1.5

 2

15->30 30->60 60->120 120->240

e
n
tr

o
p
y
 r

e
d
u
c
ti
o
n
 i
n
 b

it
s

Setting (i), M=1
Setting (i), M=2
Setting (i), M=4
Setting (i), M=8

Setting (i), M=16
Setting (ii), M=2
Setting (ii), M=4
Setting (ii), M=8

Setting (ii), M=16

(b) Increasing number of observations N

Figure 4.8: Relative entropy reduction when (a) we double the number of interme-
diate frames and (b) we double the number of observations. Note the difference
between Setting (i) (blue, connected lines) versus Setting (ii) (red, dotted lines).

A corresponding accuracy plot is shown in Figure 4.7(e). The characteristic pattern

we saw before is repeated: increasing the number of points is the most significant

way to increase accuracy. Meanwhile, increasing the number of frames has the main

effect of increasing robustness — i.e. avoiding complete failures. Once robustness

is achieved, a further increase in M has only a minor effect on accuracy. Finally, as

we can see in Figure 4.7(f), monocular BA leads to marginally better accuracy than

filtering, especially for small M .

In general, the accuracy plots for Setting (i) and Setting (ii) show a similar pattern.

However, there is a significant difference between Setting (i) and Setting (ii). Let us

consider the relative entropy reduction when we double the number of intermediate

frames, i.e. comparing Σ〈M,N〉 with Σ〈2M,N〉. From Figure 4.8(a), one can clearly see

that Setting (ii) benefits more from the increased number of keyframes than Setting

(i). This effect is especially prominent for monocular SLAM. While all points are

visible in all frames in Setting (i), the scene overlap is larger for more closely placed

keyframes in Setting (ii). Increasing the number of observations per frame has a

109

4. Visual SLAM: Why Filter?

Stereo BA: Monocular SLAM:

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 2 4 8
 16

 15
 60

 120

 240

 2
 4
 6
 8

E in bit

M

N

E in bit

Setting (iii) BA, Setting (iii) Filter vs. BA, Set.(iii)

 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 4 8
 16

 15
 60

 120

 240

 2
 4
 6
 8

E in bit

M

N

E in bit

Setting (iv) Filter, Setting (iv) Filter vs. BA, Set.(iv)

Figure 4.9: Accuracy plots in terms of entropy reduction in bits. The stereo filter
leads to very similar results to stereo BA and is therefore not shown here.

similar impact on both settings (Figure 4.8(b)).

The second error measure we use is the root mean square error (RMSE):

R =

√√√√1

k

k∑
k=0

∆t2
k (4.31)

where k = 500 is the number of Monte Carlo trials. Compared to the entropy

reduction, this is a measure which is not relative but absolute. It is still meaningful

for non-Gaussian and non-zero-centred error distributions. The RMSE for Setting (i)

is illustrated in Figure 4.6(e,f). In the case that the error distributions are zero-

mean Gaussians, entropy reduction and RMSE behave very similarly: they are

anti-monotonic to each other. Our main reason for including the entropy reduction

is to make our analysis comparable to our preliminary experiment, in which the

experiments were performed using covariance propagation and other error metrics

such as RMSE were not applicable. We will introduce two combined cost error

measures, one relying on entropy reduction and the other on RMSE.

Accuracy plots for the two motion cases with rotational components, Setting (iii,iv),

are shown in Figure 4.9. One can see that the result of Setting (iii) is comparable

to Setting (ii). This is not surprising since both settings lead to a similar amount of

scene overlap. Again, the two low accuracy cases 〈2, 15〉 and 〈2, 30〉 lead to unstable

results and are excluded. For both rotational cases, Setting (iii) and Setting (iv), the

110

4.6. Experiments

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 0.1 0.2 0.3 0.4 0.5

R
M

S
E
 i
n
 m

distance in m

Gauss prior
Gauss prior (approx)

motion-only BA
 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 0.1 0.2 0.3 0.4 0.5

co
m

p
u
ta

ti
o
n
a
l
co

st
 i
n
 s

distance in m

Gauss prior
Gauss prior (approx)

motion-only BA

(a) error (b) cost

Figure 4.10: Pose update given known map estimated by monocular filter.

stereo filter approaches the accuracy of stereo BA. However, for the difficult case,

monocular vision in Setting (iv), the results are different. BA leads to significantly

better results than filtering. Especially for a low number of frames, the performance

of the filter is worse. We only removed the very inaccurate case 〈2, 15〉, since it is

not practical to exclude all non-robust cases. Even for many features and frames,

e.g. 〈16, 240〉, the error distributions are slightly heavy tailed. This low level of

robustness might also explain the slightly chaotic, non-monotonic behaviour of the

accuracy plots. Thus, conclusions drawn from Setting (iv) have to be considered

with care.

4.6.3 The Cost and Accuracy of Motion-Only Estimation for

Filter-SLAM

As described in Section 4.5.2, when performing filter-SLAM there are two main

options to perform motion-only estimation. Either one can do motion-only BA by

minimising equation (4.15) or one can also consider the map uncertainty. While

motion-only BA is linear in the number of points N , pose estimation using a Gaus-

sian map prior is cubic in N due to the inversion of innovation matrix S. In a

approximated but much more efficient version of this algorithm, the innovation ma-

trix S and its inverse are only calculated once. For stereo SLAM, we can usually

measure the 3D points precisely so that motion-only BA leads to accurate results.

However, for a monocular filter where the point depth is uncertain, it is beneficial to

consider this uncertainty explicitly (Figure 4.10(a)). Considering map uncertainty in

pose estimation leads to a significant increase in computation time (Figure 4.10(b)).

111

4. Visual SLAM: Why Filter?

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

15 30 60 120 240

co
st

 i
n
 s

number of points

BA
structure-only

motion-only

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

15 30 60 120 240

co
st

 i
n
 s

number of points

filter
pose update

covariance

(a) BA-SLAM (b) Filter-SLAM

Figure 4.11: Computational cost of monocular SLAM with respect to the number
of points. Note the difference in scale on the vertical cost axis: 0.008 seconds (a)
versus 0.8 seconds (b).

In the monocular filtering experiments, we use the approximated version of the

algorithm.

4.6.4 The Cost of Visual SLAM

Under the assumption that all points are visible in all frames, the cost of BA is

O(NM2 +M3), where the first term reflects the Schur complement, while the second

term represents the cost of solving the reduced linear system Engels et al. (2006).

The costs of structure-only and motion-only estimation are both linear in the number

of points. In filtering, the filter update is cubic in the number of observations, which

leads to O(MN3) for the whole trajectory. The cost of pose update given a map is

either linear or cubic (see previous section). The cost of the whole SLAM pipelines

for varying number of points N are shown in Figure 4.11. Here we illustrate the

case of M = 1, Setting (i) and monocular SLAM.

4.6.5 Trade-off of Accuracy versus Cost

We would like to analyse the efficiency of BA and filtering for visual SLAM by trading

off accuracy against computational cost.5 First, we do this using the combined

5In order to assume the best case for filtering, we do not consider covariance estimation and
pose estimation given a known map. Thus, we compare the cost of joint BA updates against the
cost of the joint filtering steps for the whole trajectory.

112

4.6. Experiments

Setting (i): Setting (ii):

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 100

 200

 300

 400

 500

 600

 700

 800

(a) Stereo BA (c) Monocular BA (e) Monocular BA

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 100

 200

 300

 400

 500

 600

 700

 800

(b) Stereo Filter (d) Monocular Filter (f) Monocular Filter

Figure 4.12: Accuracy/cost measure in bits per second (bps).

accuracy/cost measure. Thus, we evaluate visual SLAM using entropy by cost in

terms of bits per second (bps): E
c . E is the amount of entropy reduction as defined

in equation (4.30) and c is the average computational cost in seconds of the whole

SLAM pipeline. Corresponding plots are shown in Figure 4.12. First one can see

that BA seems to be in general more efficient than filtering. Furthermore, there is

a pattern that BA is especially efficient for small M , while filtering is only efficient

for low accuracy (small M and small N).

Finally, we contrast error with cost in common plots in Figure 4.13. Each curve

shows the error and cost for a constant number of frames M and varying number

of observations N . For the lowest number of frames (bold curves), we also show

results for N = 480. In these plots the bottom left corner is the desired area, where

we find the highest accuracy and lowest computational cost. For all four settings,

we can observe that BA is clearly superior to filtering. Furthermore, we see that

for Setting (i) it is always preferable to choose the lowest number of frames. This is

still the case for sideways motion BA with partial scene overlap (Setting (ii-iii)) —

except for the monocular, low-robustness cases (M = 2, and N ∈ {15, 30}) which

are not shown in the plots. However, for filtering (Setting (ii-iii)), there is actually

113

4. Visual SLAM: Why Filter?

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1 10

R
M

S
E
 i
n
 m

cost in s

BA M=16
BA M=8
BA M=4
BA M=2
BA M=1

Filter M=16
Filter M=8
Filter M=4
Filter M=2
Filter M=1

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1 10

R
M

S
E
 i
n
 m

cost in s

Stereo, Setting (i) Monocular, Setting (i)

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

BA M=16
BA M=8
BA M=4
BA M=2

Filter M=16
Filter M=8
Filter M=4
Filter M=2

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

Stereo, Setting (ii) Monocular, Setting (ii)

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

BA M=16
BA M=8
BA M=4
BA M=2

Filter M=16
Filter M=8
Filter M=4
Filter M=2

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

Stereo, Setting (iii) Monocular, Setting (iii)

 0.0005

 0.001

 0.002

 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

BA M=16
BA M=8
BA M=4

Filter M=16
Filter M=8
Filter M=4

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

Stereo, Setting (iv) Monocular, Setting (iv)

Figure 4.13: Error versus cost on a logarithmic scale.

114

4.7. Discussion

a cross-over. In order to reach high accuracy, it seems desirable to increase the

number of keyframes M . The monocular Setting (iv), low parallax and low scene-

overlap, is the most challenging one. The inaccurate case M = 4 results in a RMSE

greater than 0.02m and is therefore not shown. Here, BA outperforms filtering by

magnitudes, but increasing M helps the filter. To summarise, it is usually a good

strategy to increase the number of points N . Increasing the number of keyframes M

seems only to be sensible if both following requirements are fulfilled: First, we use

filtering instead of BA, and thus there is significantly higher cost with respect to N

compared to M . Second, there is a varying scene overlap which can be maximised

with increasing M .

4.7 Discussion

We have shown that filter-SLAM can indeed reach the accuracy of BA for moderately

difficult motion patterns and scene structures (Setting (i-iii)), even if we only filter

sparse keyframes. In general, increasing the number of points N leads to a significant

increase in accuracy, while increasing the number of frames M primarily establishes

robustness. Once a level of robustness is reached, a further increase of M has only a

minor effect. This shows that the greater efficiency of BA compared to filtering for

local SLAM is primarily a cost argument: The cost of BA is linear in N , whereas

the cost of filtering is cubic in N . For the sharp forward turn (Setting (iv)) using

monocular vision, our analysis is slightly different. It illustrates the known problem

of Gaussian filters. Since measurement Jacobians are not re-linearised, the accuracy

can significantly decrease compared to BA. Note, however, that the amount of insight

we can gain from Setting (iv) is limited. It might be possible to find a better filter

parametrisation/implementation which can deal significantly better with this low

parallax case. Setting (iv) is merely added as an illustrative example that the

accuracy of filtering can be inferior to BA, even for very short trajectories. Here,

the dominance of BA compared to filtering is primarily an accuracy argument.

The greater cost of filtering wrt. BA is mainly due to the fact that we represent

uncertainties explicitly. In this work, we focused on the SLAM back-end and we did

not analyse the accuracy and cost of feature tracking. Instead, we assumed that a

perfect data association is given. On one hand, the availability of the covariance can

facilitate feature tracking (Neira & Tardós, 2001; Davison, 2005; Chli & Davison,

115

4. Visual SLAM: Why Filter?

2009; Civera et al., 2009a). On the other hand, modern tracking techniques such

as variational optical flow (Werlberger et al., 2010) do not require covariances, and

are very effective. For the SLAM back-end, it does not seem beneficial to propagate

uncertainties explicitly. Thus, one should only calculate covariances if one needs

them elsewhere.

In addition, we did not focus on all aspects of SLAM in our analysis. We intention-

ally did not consider large-scale SLAM and loop-closing since these issues have been

intensively studied in the past. A SLAM framework which works reliably locally,

whether it is BA or filtering, can easily be applied to a large scale problems using

methods such as sub-mapping or graph-based global optimisation. Furthermore, it

was shown that loop-closing can be solved efficiently using appearance-based meth-

ods (Nister & Stewenius, 2006; Cummins & Newman, 2009) which can be formulated

independently from metric SLAM systems. Thus, we assume in our analysis that

the choice between BA and filtering is not relevant at this global level.

4.7.1 Middle Ground between BA and Filtering

While we focussed on the two extreme cases, there is a broad middle ground between

filtering and BA.6 Let us reconsider the three properties of our filter concept defined

in Section 4.4. While all three properties are inherently coupled for the EKF, infor-

mation filters can deal with them independently. Let us lift property 2: Indeed, if we

never marginalise out past poses and invisible features, we keep the corresponding

information matrix relatively sparse, thus leading to the class of exactly sparse infor-

mation filters (Walter et al., 2007). Figure 4.14(a) shows the corresponding factor

graph. In general, each observation connects a point to several poses. However, no

point is directly connected to another point. This leads to a similar, but slightly

different sparseness structure than standard BA. In BA the factor graph has only

binary point-pose constraints ẑ(T,y) and thus the corresponding Jacobian has one

frame block and one point block per row (=observation). The factor graph of this

sparse filter has n-ary constraints ẑ(Ti, . . . , Ti+n,ψ) where Ti is the anchor frame of

ψ and Ti+1, ..., Ti+n are all the following frames in which ψ is visible. Thus, the

6Strictly speaking, the Gauss-Newton filter, which we used in the comparison, is already one
step towards BA. Some poses — the anchor poses — are not marginalised out; so their means
get constantly re-estimated. In addition, the current pose Ti does not have a motion prior and is
therefore ’bundle adjusted’.

116

4.7. Discussion

(a) Factor Graph (b) Jacobian (c) Hessian

Figure 4.14: Exactly sparse information filter using anchored landmarks.

Jacobian (Figure 4.14(b)) has several frame blocks and one point block per row.

Still, the point block of the Hessian (Figure 4.14(c)) remains block-diagonal, the

Schur-complement trick would be applicable, and the algorithmic complexity would

decrease to the level of BA. However, there are two caveats. First, if we compute the

covariance Σ = Λ−1, the performance benefit would vanish. Thus, we do not have

cheap access to the covariance (= forfeit property 3), and therefore lose the main

advantage of Gaussian filters. Second, the Jacobians are only linearised once and

the update of the information matrix remains additive. Thus, this exactly sparse

filter remains inferior to BA.

Another option is to follow the approach of Sibley et al. (2008) and partially lift

property 1. One represents some variables using a Gaussian, while others are rep-

resented as in BA. In particular, it is sensible to deal with a sliding window of the

last current poses using batch processing. All corresponding observations are saved,

no uncertainties are maintained and the Jacobians are constantly re-linearised. One

represents variables outside this sliding window using a Gaussian distribution, as-

suming they are well estimated so no further re-linearisation is necessary. This slid-

ing window filter basically performs BA for local motion estimates, and is therefore

covered by our analysis.

Typically in BA-SLAM and unlike in filtering, the SLAM problem is solved from

scratch each time a new node is added to the graph. Kaess et al. (2008, 2012)

introduced a framework for incremental BA. For large scale mapping, this framework

can have a lower computational cost than batch BA. However, it remains unclear

whether there is a significant performance benefit for local SLAM.

117

4. Visual SLAM: Why Filter?

4.7.2 Summary

In this chapter, we have presented a detailed analysis of the relative merits of fil-

tering and bundle adjustment for real-time visual SLAM in terms of accuracy and

computational cost. We performed a series of experiments using covariance back-

propagation and Monte Carlo simulations for motion in local scenes. Starting from

a simplified preliminary experiment, we lifted several assumptions by considering

partial scene overlap, full SLAM pipelines including monocular bootstrapping, and

feature initialisation. Our conclusion is: In order to increase the accuracy of visual

SLAM it is usually more profitable to increase the number of features than the num-

ber of frames. This is the key reason why BA is more efficient than filtering for visual

SLAM. Although this analysis delivers valuable insight into real-time visual SLAM,

there is space for further work. In this analysis we assumed known data association.

However, the accuracy of a SLAM back-end such as BA is highly coupled with the

performance of the visual front-end — the feature tracker. A detailed analysis of

this coupling would be worthwhile.

4.8 Bibliographic Remarks

In his seminal paper, Kalman (1960) did not only present an optimal approach

for state estimation of linear dynamic systems, which became known as Kalman

filtering. He also described the duality between control inputs versus observations

as well as covariance matrices versus information matrices and therefore laid the

foundation of information filters too.

Smith et al. (1987) presented the stochastic map which is the first recursive for-

mulation of SLAM where the pose and the map are represented using a joint nor-

mal distribution. Especially, they point out that under the assumption of a linear

model, Kalman filter-based SLAM leads to optimal estimates, while for non-linear

measurements — such as angular observations — reasonable results can be obtained

in practise.

In the 1990s, the Extended Kalman Filter (EKF) emerged as the standard ap-

proach for SLAM (Leonard & Durrant-Whyte, 1991; Betgé-Brezetz et al., 1996;

Castellanos, 1998; Davison, 1998; Newman, 1999). Its capabilities were demon-

118

4.8. Bibliographic Remarks

strated in various simulated and real-robot experiments, but also its drawbacks

were studied exhaustively. First, the computational cost grows quadratically with

the number of landmarks so that it is only applicable for small scale mapping. Var-

ious strategies and filter variations were suggested to overcome this limitation (see

Section 5.6). Second, the linearisation of non-linear functions (such as angular mea-

surements) might lead to inconsistencies. Julier & Uhlmann (2001) argued that

EKF-SLAM under certain conditions is doomed to diverge. Especially, they showed

that the pose covariance of a stationary vehicle, hence using a state prediction with

zero covariance, will be reduced during the measurement updates; this results in

an overconfident state estimate eventually. Castellanos et al. (2004) showed that

inconsistency are coupled with the filter uncertainty. They illustrate that the filter

becomes inconsistent earlier when an initial pose uncertainty is assumed. Conse-

quently, they suggested a robo-centric parametrisation in order to keep the filter

uncertainty small.

In the 2000s, most visual SLAM approaches relied on Gaussian filters. Davison’s

MonoSLAM (2003) employed the standard EKF and a constant velocity motion

model. Jung & Lacroix (2003) performed stereo SLAM on a blimp combining visual

odometry and Kalman filtering. Montiel et al. (2006) suggested to use an inverse

depth parametrisation for monocular SLAM. Especially, they showed that the dis-

tribution over uncertain depth of newly initialised points is highly non-Gaussian.

On the other hand, inverse depth can be well represented by a normal distribution.

An inverse depth feature representation leads to a more linear observation model

and therefore more accurate and consistent results. Pietzsch (2008) presented an

improved anchored inverse depth parametrisation where simultaneous initialized fea-

ture share a common anchor frame. This reduces the dimension of the filter state

and therefore the computational cost significantly. In their MonoSLAM adaptation,

Holmes et al. (2009) compared the EKF with Unscented Kalman Filtering (UKF,

Julier & Uhlmann, 2004) — an improved non-linear filter variant with sigma point

linearisation. In particular, they incorporated an efficient square-root implementa-

tion. In a set of experiments, Holmes et al. showed that UKF-based monocular

SLAM leads to more consistent estimates, but its computational cost is more than

ten times higher. They concluded that the “EKF remains properly the algorithm of

choice” since the square-root UKF “is outweighed by the speed handicap”. Civera

et al. (2009b) adapted the approach of Castellanos et al. (2004, 2007) to monocular

SLAM and used a camera-centric filter parametrisation in order to minimize the

119

4. Visual SLAM: Why Filter?

negative impact of non-linearities during exploration. The Gauss-Newton filter we

use in this chapter can be characterised as an iterative extended information filter

with uniform pose priors. The term Gauss-Newton filter is borrowed from Sibley

et al. (2005) who employed it for long-range stereo. Eade & Drummond (2007)

or rather (Eade, 2008, Chap. 6) used the Gauss-Newton filter in their monocular

submapping framework, and presented the approach for pose estimation given a

map prior which we incorporated in our analysis.

From the field of photogrammetry, Bundle Adjustment (BA) emerged as the gold

standard for structure and motion batch estimation. In the 2000s, visual odometry-

type frameworks incorporated sliding window BA strategies for efficient incremental

motion estimation (see Section 3.7). With their stand-out system PTAM, Klein &

Murray (2007) demonstrated that BA can be used for real-time visual SLAM if a

keyframe sparsification is used.

Comparisons between Gaussian filtering and least-squares optimisation have been

presented in the past. Bell & Cathey (1993) showed that “the iterated Kalman filter

(IKF) update is an application of the Gauss-Newton method for approximating a

maximum likelihood estimate.” In the context of 2D bearing-only SLAM, Deans

& Herbert (2001) performed a experimental comparison between BA and Kalman

filtering in a loop closure scenario. They argued that EKF-SLAM is computational

more efficient in this setting since the state space stays compact, while the state

space of BA grows constantly with each new measurement. However, the EKF-

SLAM is doomed to diverge — mainly due to the non-linearities of bearing-only

landmark initialisation. Deans & Herbert suggest to combine BA and filtering such

that some variables are filtered while others are used in a batch approach so that a

better linearisation as in the standard EKF is achieved. This approach was taken

further by Sibley et al. (2008). Their sliding window filter is a hybrid between BA

and filtering, and was used for stereo SLAM. In the context of camera calibration

and structure from motion, a similar approach was described earlier by McLauchlan

& Murray (1996, 1995)

In our analysis, we concentrated on techniques which assume a Gaussian distribu-

tion over the joint SLAM state, or, equivalently, which minimizes a quadratic cost.

Other parametric and non-parametric approaches were presented for the joint esti-

mation of structure and motion. Hartley & Schaffalitzky (2004) suggested to solve

structure from motion problems by minimizing the L∞-norm instead of the common

120

4.8. Bibliographic Remarks

quadratic cost functions. This approach has the advantage that it leads to a convex

optimisation problem; instead of multiple local minima, the corresponding cost func-

tion has a single minimum. On the other hand, such an approach requires that the

data is absolutely outlier free. Montemerlo & Thrun (2003) presented FastSLAM

where the distribution over the pose is represented by a set of particles. Each parti-

cle carries a set of independent landmark representations exploiting the property of

Rao-Blackwellization: Two landmarks are conditionally independent given the pose

is known. Such a Rao-Blackwellized Particle Filter (RBPF) has a space and time

complexity which is linear in the number of particles. Visual SLAM approaches

using an RBPF include Sim et al.’s stereo framework (2005) and Eade & Drum-

mond’s monocular framework (2006). Bailey et al. (2006) argued that FastSLAM

performs a non-optimal local search and inconsistent estimates are unavoidable in

the long run. These results were confirmed by Eade (2008, pp.139) in the context

of monocular SLAM.

This chapter is mainly based on Strasdat et al. (2012) and partially on Strasdat

et al. (2010a).

121

4. Visual SLAM: Why Filter?

122

Chapter 5

Scale Drift-Aware Large

Scale Monocular SLAM

In which we introduce a new pose-graph optimisation technique which

allows for the correction of rotation, translation and scale drift at loop

closures.

Accurate and efficient local motion estimation is a crucial component of a real-

time SLAM framework. However, structure and motion estimates are prone to

drift over time — which is especially apparent if SLAM is applied in a large-scale

setting. The main challenge is to maintain a map representation which is globally

consistent. Once a known place is revisited, the error in the estimate needs to be

propagated over a chain of poses. In stereo vision-based SLAM, there have been

systems presented which offer end to end solution for real-time large-scale SLAM

such as Konolige & Agrawal (2008) who combined visual odometry (to achieve local

accuracy) with pose-graph optimisation (to ensure global consistency). Developing

such a large scale SLAM system for monocular vision proved to be more difficult. A

classic issue with monocular visual SLAM is that due to the purely projective nature

of a single camera, motion estimates and map structure can only be recovered up to

scale (see Figure 1.2, p.17). The fact that a single camera does not measure metric

scale means that either scale has to be introduced by an additional information

source (such as a calibration object as in Davison (2003) or even by exploiting

123

5. Scale Drift-Aware Large Scale Monocular SLAM

nonholonomic motion constraints (Scaramuzza et al., 2009)). Or one must proceed

mapping with scale as an undetermined factor. Since we do not want to rely on any

additional prior information, we follow the latter approach and invent an arbitrary

scale at the beginning. Due to the unobservability of absolute scale, however, the

scale of locally constructed map portions and the corresponding motion estimates

is liable to drift over time — a problem, we have to account for.

Our analysis of filtering versus BA, presented in the previous chapter, indicates

that keyframe approaches — with BA at the local level — are strongly advanta-

geous compared to methods whose building blocks are based on filtering. In light

of this analysis, the previous large scale monocular systems (Eade & Drummond,

2007; Clemente et al., 2007; Pinies & Tardós, 2008) can be seen as somewhat unsat-

isfactory approaches, which combine filtering at a local level with optimisation at

the global level. For instance, when loop closures are imposed, the relative positions

of their filtered submaps changes, but any drift within the local maps themselves

cannot be resolved. In this chapter, we therefore present a new pose-graph opti-

misation technique which allows for the efficient correction of rotation, translation

and scale drift at loop closures. In combination with the monocular exploration

approach of Chapter 3, it leads to a keyframe optimisation approach from top to

bottom, aiming for maximum accuracy while taking into full account the special

character of SLAM with monocular vision. Our approach is based on the Lie group

of similarity transformations which is discussed in detail. Furthermore, we present

a framework for how the Jacobians of general pose-graph optimisation problems can

be approximated efficiently. Our approach is proven via large-scale simulation and

real-world experiments where a camera completes large looped trajectories.

5.1 Gauge Freedoms, Monocular SLAM and Scale

Drift

Metric SLAM systems aim to build coherent maps, in a single coordinate frame, of

the areas that a robot moves through. But they must normally do this based on

purely relative measurements of the locations of scene entities observable by their

on-board sensors. As discussed in Section 3.3.2, there are always certain degrees of

gauge freedom in the maps that they create, even when the best possible job is done

124

5.1. Gauge Freedoms, Monocular SLAM and Scale Drift

of estimation. These gauge freedoms are degrees of transformation freedom through

which the whole map, consisting of feature and robot position estimates taken to-

gether, can be transformed without affecting the values of the sensor measurements.

In SLAM performed by a robot moving on a ground plane and equipped with a

range-bearing sensor, there are three degrees of gauge freedom, since the location of

the entire map with regard to translations and rotation in the plane is undetermined

by the sensor measurements. In SLAM by a robot moving in 3D and equipped with

a sensor like calibrated stereo vision or a 3D laser range-finder, there are six degrees

of gauge freedom, since the whole map could experience a rigid body transformation

in 3D space. In monocular SLAM, however, there are fundamentally seven degrees

of gauge freedom (Triggs et al., 1999), since the overall scale of the map, as well as a

6 DoF (degrees of freedom) rigid transformation, is undetermined (scale and a rigid

transformation taken together are often known as a similarity transformation).

It is the number of gauge degrees of freedom in a particular type of SLAM which

therefore determines the ways in which drift will inevitably occur between different

fragments of a map. Consider two distant fragments in a large map built continu-

ously by a single robot: local measurements in each of the fragments have no effect

on pulling either towards a particular location in the degrees of gauge freedom. If

they are not too distant from each other, they will share some coherence in these

degrees of freedom, but only via compounded local measurements along the chain of

fragments connecting them. The amount of drift in each of these degrees of freedom

will grow depending on the distance between the fragments, and the distribution of

the potential drift can be calculated if needed by uncertainty propagation along the

chain.

It is very well known that planar maps built by a ground-based robot drift in three

degrees of freedom. Furthermore maps built by 3D range-bearing sensors such as

stereo cameras drift in six degree of freedom; so maps built by a monocular camera

with no additional information drift in seven degrees of freedom. It is through these

degrees of freedom therefore which loop closure optimisations must adjust local map

fragments (poses or submaps in a graph).

125

5. Scale Drift-Aware Large Scale Monocular SLAM

5.2 The Group of Similarity Transformations

Our approach is based on the group of rotation, translation and scaling in 3D, in

other word the group of similarity transformations which we will introduce now.

Let us first consider the group of rotation and scaling which consists of matrices

of the following form:

sR with s ∈ R+ and R ∈ SO(n) (5.1)

The group of rotations and scaling can be seen as the direct product R+(n)×SO(n)

of special orthogonal group SO(n) and the group of scaling R+(n) (Section 2.4.9).

A matrix A ∈ R+(n) × SO(n) has the following properties: AA> = A>A = s2I and

det(A) = sn. Thus, R+(n) × SO(n) is a proper generalisation of the well-studied

special orthogonal group SO(n). Let us now concentrate on the three dimensional

case. The tangent space of R+(3) × SO(3) consists of matrices of the form X =

[ω]× + σI3×3. Since rotation and scaling commute, one can verify easily that the

exponential map is

exp([ω]× + σI]) = eσ exp([ω]×) . (5.2)

The exponential map expR+(3) is surjective. This follows from the surjectivity of

e : R→ R+ and exp : so(3)→ SO(3) and thus the logarithm can be calculated as

log(sR) = log(R) + ln(s)I . (5.3)

The purpose of the following side-note is to underline the close relation between

SO(3) and R+(3)×SO(3): It is commonly known that the group of unit quaternions

is homomorph to the group of rotation SO(3). In particular, SU(2) is the double

cover of SO(3) so that each rotation matrix has two quaternion representations.

Analogously, the group of non-zero quaternions is the double cover of the group of

rotation and scaling, so that quaternions are an elegant way to represent elements

of R+(3)× SO(3).

Now, we can define the group of similarity transformations which is a generalisa-

tion of SE(3) by including a scale factor s. Thus we have matrices S of the form

S =

(
sR t

O1×3 1

)
with sR ∈ R+(3)× SO(3) and t ∈ R3 . (5.4)

126

5.3. Loop Closure

(a) Poses and points (b) Pose-graph (c) Corrected pose-graph

Figure 5.1: The loop closure problem. (a) illustrates the error (dotted red line)
between the final camera pose (in grey) and the drifted pose estimate. The loop
closure constraint is shown in green. (b) illustrates the pose-graph representation,
where point observations are replaced by relative pose graph constraints (blue line).
We correct the pose graph (c) and close the loop by distributing the error over all
relative constraints.

Analogous to the tangent space of SE(3), members of the tangent space sim(3) are

of the form

Y =

(
[ω]× + σI3×3 υ

O1×3 0

)
with υ ∈ R3 , ω ∈ R3 and σ ∈ R. (5.5)

Furthermore, we show in Appendix A.5 that the exponential map exp : sim(3) →
Sim(3) has the following closed form expression:

expSim(3)(υ,ω, σ) := exp

(
[ω]× + σI3×3 υ

O1×3 0

)
=

(
eσ exp([ω]×) Wυ

O1×3 1

)
(5.6)

with

W =

(
eσ − 1

σ

)
I +

Aσ + (1−B)θ

θ(σ2 + θ2)
[ω]× +

(
eσ − 1

σ
− (B − 1)σ +Aθ

σ2 + θ2

)
[ω]2×
θ2

, (5.7)

A = eσ sin(θ), B = eσ cos(θ) and θ = ||ω||2. The corresponding logarithm is

log

[
sR t

O1×3 1

]
=

[
log(R) + ln(s)I W−1t

O1×3 0

]
. (5.8)

5.3 Loop Closure

Let us consider a loop closure scenario in a large-scale map (as exemplified by Fig-

ure 5.1(a)). The camera is travelling around in a cycle and returns close to its

start position. However, because of drift, there is an error between the final pose

127

5. Scale Drift-Aware Large Scale Monocular SLAM

frontal view top view

Figure 5.2: Illustration of depth estimation using nearest neighbour interpolation.
3D map points are shown in grey, centres of SURF with interpolated depth are
shown in green.

and its estimate. The loop closure problem is typically divided into two sub-tasks:

First we detected that a place is revisited. This ultimately involves the detection

of a geometric constraint between two camera views which typically belong to two

topologically distant fragments of the map. Second, we correct the drift in the final

pose estimate by distributing the error along the chain of camera pose constraints.

5.3.1 Loop Closure Detection

It is well known that loop closures can be detected effectively using appearance in-

formation only (Nister & Stewenius, 2006; Angeli et al., 2008; Cummins & Newman,

2009). These methods often rely on visual bags of words based on SIFT or SURF

features. Given that we have a loop closure detected between two frames associated

with a set of feature matches, the standard method would apply RanSaC in con-

junction with the 5-point method (Nistér, 2004) in order to estimate the epipolar

geometry. Then the relative Euclidean motion up to an unknown scale in translation

can be recovered.

However, we can exploit the fact that in our SLAM system each frame is associated

with a large set of three-dimensional feature points. First, we create a candidate set

of SURF feature pairs by matching features between the current frame and the loop

frame based on their descriptors. Then, we create a dense surface model using the

three-dimensional feature points visible in both frames. Next, the unknown depths of

the SURF features of the loop frame are calculated using this dense surface model.1

1The underlying assumption is that the scene structure is smooth enough. However, this as-
sumption is not only vital if dense surface models are used, but always if we aim to calculate the

128

5.3. Loop Closure

The computationally very efficient k-nearest neighbour regression algorithm proved

to be sufficient for our needs. In other words, we calculate the depth of SURF

features by simply interpolating the depth of nearby 3D points (Figure 5.2). Note

that there are more sophisticated, but still computationally efficient dense surface

models available such as implicit surfaces (Newcombe & Davison, 2010). Finally,

a 7 DoF similarity constraint Sloop can be calculated based on the 3D-3D SURF

correspondences in a three point RanSaC scheme. In particular given three such

correspondences xi ↔ x̄i, one can calculate the similarity transformation

S =

[
sR t

O 1

]
with xi = sRx̄i + t for i ∈ 1, 2, 3 (5.9)

(5.10)

in a closed form approach following Arun et al. (1987):

c =
1

3
(x1 + x2 + x3), c̄ =

1

3
(x̄1 + x̄2 + x̄3), (calculate centroids) (5.11)

yi = xi − c, ȳi = x̄i − c̄, (subtract centroids from points) (5.12)

H = y1ȳ
>
1 + y2ȳ

>
2 + y3ȳ

>
3 , U · Σ · V> = H (singular value decomposition) (5.13)

R = VU>, s =

√
||y1||22 + ||y2||22 + ||y3||22√
|ȳ1||22 + ||ȳ2||22 + ||ȳ3||22

, t = c− sRc̄ (5.14)

Given this initial transformation estimate, more matches can be found using guided

search, and the transformation is refined using robust optimisation (i.e. bundle

adjustment using a robust kernel).

5.3.2 Loop Closure Correction

After the loop closure is detected and feature matches are found between the two

frames, the loop closing problem can be stated as a large BA problem. We have to

optimize over all frames and points in the cycle (Figure 5.1(a), p.127). However,

optimising over a large number of frames is computationally demanding. More

seriously, since BA is not a convex problem, and we are far away from the global

minimum, it is possible that BA will get stuck in a local minimum.

One solution is to optimise over relative constraints between poses using pose-

graph optimisation (Lu & Milios, 1997; Agrawal, 2006). In a first step one usually

3D position of a blob feature no matter which method is used. In other words, the 3D position of
a blob is only properly defined if its ‘carrying’ surface is smooth enough.

129

5. Scale Drift-Aware Large Scale Monocular SLAM

marginalises out the points in a way such that a set of point measurements between

two frames is replaced by a single relative pose constraint Tji. This leads to a pose

graph as shown in Figure 5.1(b) on page 127. Let us consider two absolute poses Ti

and Tj .
2 The relative constraint between two such initial pose estimates are calcu-

lated as: Tji := Tj ·T−1
i , except for the loop closure constraint which is calculated as

described above. These relative pose constraints Tji are now regarded as measure-

ments (constants). The target of the optimisation is to modify the absolute poses

Tj , Ti in a way such that the pose concatenations Tji · Ti · T−1
j are as close to the

identity as possible. Initially, all pose concatenations equals the identity except for

the one containing the loop closure constraint (Figure 5.1(b), p.127). The purpose

of the pose graph optimisation is to distribute this error over all constraints, and

hence close the loop as illustrated in Figure 5.1(c).

We define the residual error di,j between two poses in the tangent space

di,j := log(Tji · Ti · T−1
j)∨ , (5.15)

where log(·)∨ := (log(·))∨ is the logarithmic map plus vee-operator which maps

elements of the Lie group (e.g. SE(3)) to the minimal tangent vector representation

(e.g. R6). Specifying the error in the tangent space can be done safely for all

groups G whose exponential map is surjective, which is true for all examples we

have considered so far; this ensures that the logarithm is defined for all Tk ∈ G.3 If

the exponential map is not one-to-one, we have to make sure that the image of the

logarithm is defined around zero. In particular, if the underlying Lie group is SO(3)

or any from SO(3) derived group such as SE(3) or Sim(3), it is important to define

the logarithm in such a way that it returns elements with θ = ||ω||2 ∈ [0, π], and

not for instance θ ∈ [0, 2π]; this way we make sure that group members close to the

identity are mapped to tangent vectors close to zero. Similarly, if the underlying

group is SO(2), the in-plane rotation angle should lie in [−π, π].

We can formulate pose-graph optimisation as a least-squares problem by minimis-

ing the energy

χ2(T2, ..., Tm) :=
∑
Tji

d>i,jΛTjidi,j , (5.16)

2To be more precise, we have two poses Tiw and Tjw where w is the global world reference
frame. In the following the w is dropped, but we keep in mind that absolute poses denote point
transformations from the world reference frame w into the particular camera reference frame.

3If however, the exponential map is not surjective, such as for the special linear group SL(3)
which is used to represent homographies (Mei et al., 2008), one has to make sure that the relative
errors Tji · Ti · T−1

j are small enough so that they fall into the domain of the matrix logarithm.

130

5.3. Loop Closure

with respect to the absolute poses T2, ..., Tm. The first transform T1 is typically fixed

and defines the coordinate frame. The inverse covariance ΛTji of the relative pose

constraint is often simply set to the identity, but can be computed accurately using

point marginalisation and lifting (Konolige & Agrawal, 2008).

In the BA formulation, scale is an implicit parameter. For instance, one could

understand the scale linked to a particular pose Tk as the average scene depth; the

average depth of all points visible in pose Tk. However, since all points are eliminated

in the pose graph formulation, these implicit parameters vanish. Thus, if we were

to perform an optimisation using 6 DoF rigid body transformation Tk ∈ SE(3),

we can efficiently correct translation and rotational drift. However, it would not

deal with scale drift, and would lead to an unsatisfactory overall result as we also

will confirm experimentally in Section 5.4. Therefore, we perform optimisation

based on 7 DoF similarity constraints Sk ∈ Sim(3) where the scale of a particular

pose is represented explicitly. In order to prepare for the 7 DoF optimisation, we

transform each absolute pose Tk to an absolute similarity Sk, and each relative

pose constraint Tji to a relative similarity constraint Sji by leaving rotation and

translation unchanged and setting the scale s = 1. Only the relative loop constraint

Sloop has a scale sloop 6= 1 (as explained in the previous section). Thus, the residual

di,j between two transformations Si and Sj minimally in the tangent space sim(3)

is:

di,j = log(Sji · Si · S−1
j)∨sim(3) . (5.17)

We solve the corresponding least squares problem (5.16) using Levenberg Marquardt.

Its Jacobian is sparse with two dense blocks per constraint/row. We exploit the

sparseness pattern using sparse Cholesky (Davis, 2006).

After the similarities Scor
i are corrected, we also need to correct the set of points.

For each point yj , a frame Ti is selected in which it is visible. Now we can map

each point relative to its corrected frame: ycor
j = (Scor

i)−1(Tiyj). Afterwards, each

similarity transform Scor
i is transformed back to a rigid body transform Tcor

i by setting

the translation to st and leaving the rotation unchanged. Finally, the whole map

can be further optimised using structure-only or full BA.

131

5. Scale Drift-Aware Large Scale Monocular SLAM

5.3.3 Jacobian of Pose-graph Optimisation

Let Ti, Tj , Tji being elements of a respective Lie group (e.g. SE(3), or Sim(3)).

In order to perform pose graph optimisation in a least square manner, we need to

calculate the Jacobians

∂

∂ε
log(Tji exp(ε̂)TiT

−1
j)∨|ε=0 (5.18)

and

∂

∂ε
log(TjiTi(exp(ε̂)Tj)

−1)|ε=0
(2.73)

= − ∂

∂ε
log(exp(ε̂)TjT

−1
i T−1

ji)∨|ε=0 . (5.19)

We can treat both Jacobians in a unified manner by considering

JBA :=
∂

∂ε
log(A exp(ε)B)∨|ε=0 (5.20)

and setting A := Tji, B := TiT
−1
j or A := I, B := TjT

−1
i T−1

ji respectively. Using

the chain rule, the Jacobian JBA could be calculated under the assumption that the

derivative of the matrix logarithm ∂
∂Xi,j

log(X)∨ would be known. However, unlike the

matrix exponential whose derivatives can be calculated efficiently and represented

compactly,

∂ exp(ε̂)T

∂εi
|ε=0 = Gi · T (restating equation (2.102)) ,

no such trick exists for the matrix logarithm. A symbolic expression for ∂
∂Xi,j

log(X)∨

can be only derived for particular Lie groups G where a closed form expression of

log : G→ g exists. Even if such a closed form expression of the logarithm is known

(as for SO(3)), it is typically not very compact so that the symbolic expression of

the derivative ∂
∂Xi,j

log(X)∨ is rather lengthy; the corresponding symbolic expression

for JBA would be even more complicated and hence costly to compute.

Therefore, we suggest the following approach by exploiting that

JBA =
∂

∂ε
log(A exp(ε)B)∨

∣∣∣∣
ε=0

(2.66,2.77)
=

∂

∂ε
log
(

exp(ÂdAε)AB
)∨∣∣∣∣

ε=0

=
∂

∂ε
log
(

exp(ÂdAε) exp(d̂)
)∨∣∣∣∣

ε=0

=
∂

∂ε
cbh(AdAε,d)

∣∣∣∣
ε=0

. (5.21)

Here AdA is the adjoint of A, d := log(AB)∨, and cbh(·, ·) = log(exp(x̂) · exp(ŷ))

the Campbell-Baker-Hausdorff formula (described in Appendix A.4). Thus, we can

132

5.4. Experiments

Group σ ||d||2 ||Jnum − J1||2 ||Jnum − J2||2 ||Jnum − J3||2
0.0005 8.0622 · 10−4 5.7008 · 10−4 8.7931 · 10−8 1.2267 · 10−10

SO(3) 0.015 2.5554 · 10−2 1.8070 · 10−2 8.5531 · 10−5 7.8969 · 10−9

0.5 7.7543 · 10−1 5.5622 · 10−1 8.6935 · 10−2 1.9021 · 10−3

0.0005 1.1390 · 10−3 1.0167 · 10−3 1.5861 · 10−7 3.0536 · 10−10

SE(3) 0.015 3.6641 · 10−2 3.2604 · 10−2 1.6346 · 10−4 6.3008 · 10−9

0.5 1.1857 1.0576 1.6580 · 10−1 3.1948 · 10−3

0.0005 1.5068 · 10−3 1.7052 · 10−3 2.9849 · 10−7 4.7997 · 10−10

Sim(3) 0.015 4.3008 · 10−2 4.9284 · 10−2 2.4271 · 10−4 1.1705 · 10−8

0.5 1.5567 1.7407 2.9783 · 10−1 6.8600 · 10−3

Table 5.1: Accuracy of first, second and third-order approximation of the pose graph
Jacobian. At a magnitude of 10−10, the precision of the numerical Jacobians Jnum

is reached.

approximate the Jacobian JBA using the kth order Campbell-Baker-Hausdorff expan-

sion. For instance, the third order approximation is:

JBA =
∂cbh(AdAε,d)

∂ε

∣∣∣∣
ε=0

≈ AdA +
1

2
· ∂[y,d]

∂y

∣∣∣∣
y=0

AdA +
1

12

(
∂[y,d]

∂y

∣∣∣∣
y=0

)2

AdA .

(5.22)

Its derivation is given in Appendix A.6. This approximation depends on the deriva-

tive of the Lie bracket. Lie brackets and their derivatives for SO(3), SE(3) and

Sim(3) are presented in Appendix A.3. Note, that under ideal least-square condi-

tions where di,j approximates zero, TjiTiT
−1
j = AB approximates the identity, then

∂
∂ε log(A exp(ε)B)∨

∣∣
ε=0

approximates the first-order expansion
∂
∂εcbh(AdAε,0)

∣∣
ε=0

= AdA.

5.4 Experiments

In a first experiment, we analyse the accuracy of the CBH approximations for the

pose graph Jacobian JBA. We define A = exp(a) and B = exp(b) with bi = −ai +

N (0, σ) and N (0, σ) being zero mean normal distributed noise with variance σ2. In

Monte Carlo experiments with one hundred samples each, we compare the numerical

Jacobian Jnum (using finite differences) with first, second and third order CBH

approximations J1, J2, J3. The results for SO(3), SE(3) and Sim(3) are listed in

Table 5.1. Under small and medium noise (σ = 0.0005 and σ = 0.015), the first

order approximation J1 seems to provide a decent approximation, while the third

133

5. Scale Drift-Aware Large Scale Monocular SLAM

(a) before optimisation (b) SE(3) optimisation

Imagery c©2012 GeoEye, Getmapping plc, Infoterra Ltd &
Bluesky, The GeoInformation Group, Map data c©2012 Google

(c) Sim(3) optimisation (d) aerial photo

Figure 5.3: Keble college data set

order approximation approaches the accuracy of the numerical Jacobian Jnum. For

high noise σ = 0.5, J3 still provides a decent approximation.

We evaluate our loop closing framework on the Keble College data set. This time,

the monocular exploration framework introduced in Chapter 3 was used to perform

an incremental motion estimate of the whole loop as shown in Figure 5.3 (a). It

consists of 766 keyframes, 11885 points and 84820 observations. A significant amount

of rotational and scale drift is visible. Using the method described in Section 5.3,

we detected a loop closure constraint Sloop — with a a relative scale change of

1 : 0.37. The large amount of drift can be partially explained by the fact that the

visible scene is always very local in the Keble college data set. Due to the sideway

motion, all newly triangulated 3D points leave the field of view rapidly. Also, only

a rough intrinsic camera calibration was available. Certainly, future improvements

in our sliding-window monocular SLAM framework could lead to a reduction of

134

5.4. Experiments

 0.01

 0.1

 1

 10

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

re
s
id

u
a
l
e
rr

o
r

time in s

Numerical Jacobian

First-order CBH

Second-order CBH

Third-order CBH

 0.0023

 0.0024

 0.0025

 0.0026

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

re
s
id

u
a
l
e
rr

o
r

time in s

 0.00227

 0.00228

 0.00229

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

re
s
id

u
a
l
e
rr

o
r

time in s

(a) full plot (b) from first iteration (c) from second iteration

Figure 5.4: Error-versus-cost plots of the similarity graph optimisation using differ-
ent Jacobian approximation. (a) shows the full plot. (b) and (c) shows close-ups
after one and two iterations respectively. One can see that the second and third
order CBH-based Jacobians lead to very similar residual errors and computational
costs. They converge to the same minima as when employing the numerical Jaco-
bian, but four to five times faster. Using the first-order CBH expansion, however, a
near-optimal solution is reached.

drift during exploration. Nevertheless, a certain amount of drift during exploration

is unavoidable and our main focus is how to deal with drift when it occurs. A

traditional 6 DoF pose-graph optimisation closes the loop but leaves the scale drift

unchanged which leads to a deformed trajectory as shown in Figure 5.3 (b). However,

if we perform graph optimisation using the similarity transform, the result looks

significantly better (see Figure 5.3 (c)). The pose-graph optimisation was performed

using g2o and a sparse Cholesky solver. In Figure 5.4, the computational cost and

accuracy of this Sim(3) optimisation is shown for various Jacobian approximations.

A single iteration brings the energy close to the minimum, taking only 10ms using

the CBH-based Jacobians and 45ms using the numerical one. After the pose-graph

optimisation, 10 iterations of structure-only BA were performed to refine the points

which took 225ms.

In addition to this real-world experiment, we also performed a series of simulation

experiments in full 3D space. A simulated camera was moved in a circular trajectory

with radius 10m. The camera is directed outwards. A set of 5000 points was drawn

from a ring shaped distribution with radius 11m. The camera trajectory consists

of 720 poses. In this simulation environment, our monocular exploration framework

was applied including feature initialisation and sliding-window bundle adjustment

with size 10. Only the camera is not simulated; visual observations are synthetic

and data association is given. The difference between the true trajectory and the

estimated one is shown in Figure 5.5 (a). In this particular example, we simulated

135

5. Scale Drift-Aware Large Scale Monocular SLAM

(a) before optimisation (b) SE(3) optimisation (c) Sim(3) optimisation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.2 0.4 0.6 0.8 1 1.2
 0

 0.2

 0.4

 0.6

 0.8

R
o

o
t

m
e

a
n

 s
q

u
a

re
 e

rr
o

r
in

 m

S
c
a

le
 c

h
a

n
g

e

Gaussian image noise in pixel

7 DoF optimisation
6 DoF optimisation

Scale drift

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4
 0

 0.025

 0.05

 0.075

 0.1

 0.125

R
o
o
t
m

e
a
n
 s

q
u
a
re

 e
rr

o
r

in
 m

S
c
a
le

 c
h
a
n
g
e

Gaussian image noise in pixel

(d) whole plot (e) close-up

Figure 5.5: Monte Carlo experiments on synthetic data

Gaussian image noise with a standard deviation of one pixel. Figure 5.5 (b) and (c)

show loop closure correction using SE(3) and Sim(3). In a Monte Carlo experiment,

we varied the amount of image noise from 0 to 1.2 pixels. An important result of our

experiment is that there is a clear relation between scale drift and image noise (see

Figure 5.5 (d), thin curve). This indicates the correctness of our characterisation

of scale as a parameter in SLAM which drifts during exploration in a similar way

to rotation and translation. If we define the first pose as our origin, there is still

a scale ambiguity of possible maps. Therefore we define a measure between the

corrected poses Tcor
i and the true poses Ttrue

i using the minimum of the sum of

square differences over the scale s: M = mins
∑

i(t
true
i − stcor

i)2. By dividing M by

the number of frames and taking the square root, we obtain the root mean square

error RMSE =
√

M
720 . The average RMSE over the ten simulation runs is shown in

Fig. 5.5 (d). One can see that Sim(3) optimisation (red curve) outperforms SE(3)

optimisation (green curve) by a large amount, particularly if the scale change is large.

But interestingly, even for small scale changes of one to four percent the Sim(3)

optimisation performs significantly better than SE(3) optimisation (see Fig. 5.5 (e)).

Finally we did an experiment to illustrate that our optimisation framework natu-

136

5.5. Summary

(a) aircraft
over sphere

(b) before
optimisation

(b) SE(3)
optimisation

(c) Sim(3)
optimisation

Figure 5.6: Multi-loop-closure example: An aircraft is flying over a sphere and
performing SLAM using a single downward-directed camera. The ground truth
trajectory is shown in grey.

rally extends to multiple loop closures. Imagine an aircraft flying over a sphere and

performing monocular SLAM using a downward directed camera (see Figure 5.6 (a)).

Note that no additional prior information regarding the motion and the scene is used:

As before, we perform a full 3D SLAM without exploiting the fact that the camera

is flying at a constant height over a perfect sphere. After performing monocular

exploration, we compute a set of ten loop closure constraints (shown as blue line

segments in Figure 5.6 (b)). In this particular example, the Sim(3) optimisation

leads to a small RMSE of only 0.328, whereas SE(3) optimisation results in an

RMSE of 2.187 (see Figure 5.6 (c-d)).

5.5 Summary

In this chapter, we have presented a framework for loop closure detection and cor-

rection in the context of monocular SLAM. Our approach explicitly acknowledges

the issue of scale drift at all stages, and offers a practical way to resolve this drift

effectively upon loop closures. The extensive experiments, performed in simulation

and using a real outdoor sequence, indicates that a certain amount of scale drift

is unavoidable during exploration and this must be taken into account during loop

closure to achieve the best results. Furthermore, we have shown how the Jacobians

of general pose-graph problems can be efficiently approximated using the nth-order

CBH-expansion. Also, we have demonstrated that our optimisation approach natu-

rally extends to multiple loop closures.

137

5. Scale Drift-Aware Large Scale Monocular SLAM

5.6 Bibliographic Remarks

Several approaches were presented in the past to apply SLAM in a large-scale sce-

nario. In the context of filter-based SLAM, submapping approaches are predomi-

nant. By dividing the map into several submaps, one can not only reduce the overall

computational cost, but also reduce the filter uncertainty and therefore the nega-

tive influence of non-linearities of the EKF and variants. Early approaches were

presented by Tardós et al. (2002), Bosse et al. (2003) and others. Paz et al. (2007)

employed EKF submapping using a divide and conquer strategy. This approach

lead to a computational complexity which is only linear in the number of land-

marks. Clemente et al. (2007) used a submapping technique to large-scale monoc-

ular SLAM. Independent submaps are created; by keeping the individual map size

limited, the computational cost is bounded during exploration. Loop closures are

detected using a scale-invariant map matching approach which aims to detect a

subset of features which are geometrically consistent. Relative constraints between

the submaps are enforced using an iterated EKF as described by Estrada et al.

(2005). A similar monocular SLAM approach is the one of Eade & Drummond

(2007). Small submaps, called ‘nodes’, are estimated using information filters. A

graph of similarity constraints is maintained which is optimised using least-squares

optimisation.

The approaches above assume that the submaps are statistically independent so

that no information can be shared between them. Pinies & Tardós (2008) presented

a frame-work for conditionally independent submapping. Two submaps are only

conditionally independent given a set of features present in both submaps, so that

updates can be propagated between them in a probabilistically sound way. Thus,

no approximation with respect to standard EKF-SLAM is performed.

Another way to adapt filtering to large scale SLAM is to exploit the sparsity in

the information matrix. Thrun et al. (2002) showed that while the covariance of the

EKF is naturally dense, the information matrix of the extended information filter is

approximatively sparse. Their sparse extended information filter ignores near-zero

blocks stemming from topological distant observations, which leads a more efficient

SLAM approach, though with reduced accuracy compared to standard EKF. In

a similar approach by Paskin (2003), the information matrix is represented using

a junction tree while approximation is achieved by limiting the maximal cluster

138

5.6. Bibliographic Remarks

size. Walter et al. (2007) introduced the exactly sparse extended information fil-

ter. By ignoring selected measurements and careful marginalisation of robot poses,

the information matrix stays exactly sparse, so that no approximation-induced in-

consistency is introduced (apart from the inherent non-linearity issues of filtering).

With smoothing and mapping, Dellaert & Kaess (2006) went one step further. As

in bundle adjustment, neither poses nor points are marginalised so that the related

Jacobian stays sparse. Thus, least-squares optimisation can be performed efficiently

and inconsistencies are avoided by repetitive relinearisation. Incremental variants

of smoothing and mapping were developed by Kaess et al. (2008, 2012). The earlier

approach relied on QR factorisation. During exploration, an update only requires a

constant number of Givens rotations. At loop closures, however, variable reordering

and relinerarisation has to be performed in a batch approach. Kaess et al. (2012)

presented the ‘Bayes tree’, a new graphical model representing the sparse square

root information matrix, and employed it for incremental smoothing and mapping.

In this formulation, variable reordering and relinearisation can be performed in a

full incremental manner.

The concept of pose-graph optimisation originates from Lu & Milios (1997). Gut-

mann & Konolige (1999) extended their approach by including loop closure detection

based on map correlation and an improved incremental estimation scheme. Many

other pose-graph methods followed. Eustice et al. (2005) performed pose-graph es-

timation using exactly sparse information filtering, and applied it in the context of

visual underwater SLAM. Olson et al.’s framework (2006) is based on stochastic

gradient descent and relative pose representations. Their approach dealt well with

poorly initialised pose graphs in contrast to previous methods. Grisetti et al. (2007)

extended this framework by organising poses in a tree structure so that the compu-

tational cost does not increase over time, but only with the map size. Unfortunately,

the innovative work of Agrawal (2006) was mainly overlooked by the community.

It is an early approach which generalized pose-graph optimization to 3D SLAM —

by representing rigid motion using the Lie group SE(3). Independently, Strasdat

et al. (2010b) and Konolige et al. (2010) discussed the close relation between bundle

adjustment and pose-graph optimisation, and proposed to solve pose-graph optimi-

sation using Levenberg-Marquardt and sparse Cholesky. The latter demonstrated

in a series of experiments the low computational cost as well as the better con-

vergence properties of such a sparse least-squares optimisation approach compared

to frameworks using stochastic gradient descent (Grisetti et al., 2007), decomposed

139

5. Scale Drift-Aware Large Scale Monocular SLAM

non-linear systems (Frese, 2006) or information filtering (Eustice et al., 2005).

Steder et al. (2007) combined visual odometry with pose-graph optimisation in

order to perform globally consistent visual mapping. They combined stereo vision

with inertial measurements from an IMU. Absolute roll and pitch measurements

were integrated directly, so that poses could be represented using four-dimensional

states. In a second setup, they performed visual SLAM on a blimp using a single

downward-looking camera. Due to careful control, roll and pitch were kept approx-

imately zero; the problem of scale drift was ignored. Konolige & Agrawal (2008)

applied pose graph optimisation to full 3D SLAM using stereo vision. They com-

puted incremental pose updates using 3-point RanSaC, and sliding window bundle

adjustment. Afterwards, observations were marginalised out between carefully se-

lected keyframe in order to build a graph of relative poses consttraints. More recent

frameworks for large-scale visual SLAM such as Sibley et al. (2009); Mei et al.

(2010a) and Lim et al. (2011) are discussed in the following chapter.

This chapter is partially based on Strasdat et al. (2010b)

140

Chapter 6

Double Window Optimisation

In which we present a general optimisation framework for constant-

time visual SLAM, which scales for both local, highly accurate reconstruc-

tion and large-scale motion with long loop closures.

Visual SLAM algorithms are approaching performance levels in terms of accuracy,

robustness and computational efficiency which now seem close to what would be

required for widespread real world applications (Mei et al., 2010a; Lim et al., 2011).

Let us recapitulate that several successful early systems (Davison, 2003; Jung &

Lacroix, 2003; Eade & Drummond, 2007) solved this inference problem via purely

sequential filtering approaches, while the best modern systems work via interleaved

tracking and mapping via ‘bundle adjustment’ optimisation, as pioneered by ‘visual

odometry’ systems such as by Nistér et al. (2006) and Konolige et al. (2007), or Klein

& Murray’s Parallel Tracking and Mapping (PTAM). The reason for the advantage

of this approach, as discussed in Chapter 4, is that the large number of image

correspondences which are essential to tracking and mapping accuracy are much

more efficiently handled by repeated bundle adjustment optimisation over a selected

set of keyframes than by sequential filtering of an uncertain state.

Nevertheless, there remains a divide between visual SLAM systems, not in terms

of the fundamental estimation algorithm used but more in the choice of operat-

ing domain and the approaches to management of the localisation and mapping

process that this implies. On one hand there are systems which target large scale

141

6. Double Window Optimisation

exploration, usually of outdoor scenes. Originating from work on open-loop visual

odometry, these systems now also have the ability to recognise when places are re-

visited, and handle these loop closures via large scale graph correction (as discussed

in the previous chapter).

The other main category is systems designed for real-time and very accurate,

always metric local mapping, suitable not for exploration but for precise, drift-free

localisation in a small domain. This would be what is needed in applications such

as augmented reality tracking, or local indoor robot guidance. Here it is assumed

that the camera(s) browses a space in a highly repetitive way, and it is necessary

to enforce small and medium-sized closures very frequently to maintain the overall

consistency of the map. This is achieved by continual map correction in a single

metric frame covering the workspace. The classic system here is PTAM (which has,

if at all, only been bettered very recently by cutting edge dense approaches such

as Newcombe et al. (2011b,a)). It runs repeated global bundle adjustment over a

spatially selected set of keyframes.

Thus, different motion patterns are addressed using different optimisation ap-

proaches. In this chapter, we present a novel and unified optimisation framework

for visual SLAM which is highly accurate, but at the same time very efficient; it

can deal with large scale exploration, long loop closures as well as local browsing

motion. We take a double window approach that combines accurate pose-point con-

straints in the primary region of interest with a stabilising periphery of pose-pose

soft constraints. Our algorithm automatically builds a suitable connected graph of

keyposes and constraints, dynamically selects inner and outer window membership

and optimises both simultaneously in a constant-time approach. In particular, we

borrow the idea of a manifold (Howard et al., 2004; Sibley et al., 2009), represent-

ing a neighbourhood metrically and accurately, while relying on the topology of

relative relations elsewhere. Furthermore, we present a novel solution for local reg-

istration by combining metric loop closures with top-down feature search in local

neighbourhoods of the graph topology. This enables a unified treatment of drift free

local browsing and place revisiting after long loops. The framework is applicable for

and is tested on various different types of cameras including monocular, stereo and

structured light devices.

142

6.1. Optimisation for Visual SLAM

6.1 Optimisation for Visual SLAM

Full bundle adjustment in visual SLAM, while improving rapidly in absolute com-

putation time (Jeong et al., 2010; Konolige, 2010), still suffers from linear to cubic

time in the number of variables (depending on particulars of the system), thus

limiting its use in large-scale operation. For example, PTAM (Klein & Murray,

2007) runs full bundle adjustment in a background thread, which limits its scale to

small workspaces. Our design goal is to have the same accuracy as PTAM in small

workspaces while also scaling much better than full BA in handling rapid explo-

ration. There are three main techniques that have been used in the past to tackle

this issue:

• Active windows

• Pose-pose reduction

• Relative representations

Active Windows In order to achieve constant-time operation in visual SLAM

system, it is common practise to dynamically define a sub-set of all keyframes as the

‘active window’ over which to apply optimisation. Every keyframe is therefore de-

noted as either active or inactive at any point in time. There are different strategies

possible for the choice of window definition, depending on the camera motion and

the system’s goals. In visual odometry window frameworks designed for constant

time operation during exploration, the active window often consists simply of the

most recently captured frames (see Section 3.3.3).

An active window for optimisation must define more than just a set of frames;

we must also decide which points to include. One natural selection would be all

the points which are visible from the keyframes in the active window. However, this

approach has problems. Let us consider one of those points y at the boundary of the

active window which is visible from only two active keyframes, but also from a large

number of other keyframes (e.g. eight) outside of the window. The ten observations

held for this point would give the potential to triangulate it very accurately in a

full joint optimisation. If we optimise its location using only the active window its

accuracy will degrade since it is only weakly constrained by the two active keyframes.

143

6. Double Window Optimisation

(a) Exploration & loop closure (b) Loopy browsing

Figure 6.1: Active windows. Keyframes within the active window are red (filled);
keyframes at the boundary are blue (dark, unfilled); inactive keyframes are grey
(light, unfilled). In (a), the camera performs exploration around a loop. The active
window has two open ends. In (b), there is very loopy browsing motion. Here, the
boundary of the active window consists of many keyframes.

Weakly defined points on the boundary, might lead to weakly defined keyframes and

therefore a degeneracy in accuracy.

A common work-around is to fix keyframes at the boundary during optimisa-

tion (Mouragnon et al., 2006; Lim et al., 2011). First, we include all points Y which

are visible from the active keyframes. Then, we add all other keyframes from which

the points Y are visible as fixed keyframes These are used in order to calculate repro-

jection errors as the points are optimised, but their own poses remain fixed. Fixing

keyframes is a common heuristic and works well in exploratory situations with large

but few loops as illustrated in Figure 6.1(a).1 In general, however, it introduces

strong bias: Points triangulated from fixed keyframes are very much bound to their

positions, and therefore induces strong constraints on the active keyframes nearby.

Hence, for a loopy camera motion (Figure 6.1(b)), the number of keyframes at the

boundary is relatively large with respect to the total number of keyframes within

the active window, and fixing them hampers convergence.

1Using an absolute pose parametrisation, this active window should only be fixed at one end. If
one uses a relative pose parametrisation (see below), one can fix the window at both ends without
hampering convergence too much.

144

6.1. Optimisation for Visual SLAM

Pose-graph Reduction We have seen in the previous chapter that the proce-

dure of bundle adjusting all frames and points can be approximated using a graph

of binary pose-pose constraints. Pose graphs do not reduce the computational com-

plexity of the problem, since (again depending on the particulars of the graph) they

have linear to cubic complexity. However, their computational cost is many times

smaller than that of BA; and, in practise, their convergence rate is superior too so

that pose graph optimisation offers an effective means to close large loops.

A pose graph is an approximation, because binary links between frames do not

fully encode the non-linear connections between frames and points. Let us inspect

this approximation more closely. The replacement of point-pose constraints by pose-

pose constraints is typically understood as marginalisation. Strictly speaking, if we

marginalise out a set of points which are visible in m frames, this would lead to

a joint Gaussian distribution over all those poses. Instead of representing pose

variables with such an absolute distribution (i.e. putting an absolute and joint prior

on these poses), the joint Gaussian is turned into an m-ary constraint to specify

relative pose configuration. The introduction of relative pose measurements is the

key property of pose graphs; they allow us to re-linearise and therefore perform

inference in terms of non-linear optimisation. In all predominant approaches, m-

ary constraints are approximated by a set of binary constraints which link all poses

pairwise. This approximation proved to be very effective since it significantly reduces

the computational complexity, and it leads to very accurate results. Its theoretical

justification has not yet been fully understood; however, it seem to be linked to the

procedure of turning absolute distributions into relative constraints.

In practise, the question remains of when to join two poses by a binary con-

straint. In the previous chapter, we followed the simple heuristic of Konolige &

Agrawal (2008) by adding constraints along the path of motion plus a few loop

closure constraints. In this work, we employ the concept of covisibilty (Mei et al.,

2010b); in this more rigorous approach, we connect all those poses which have a

significant scene overlap.

Relative Representations Instead of representing poses with respect to a global

frame of reference, one can alternatively use a relative parametrisation. Note that we

are not talking about relative pose constraints which can be seen as measurements

in the context of pose graph optimisation, but about a relative formulation of the

145

6. Double Window Optimisation

pose variables themselves — the entities we are modifying during optimisation.2

One prominent example is Sibley et al.’s Relative Bundle Adjustment (RBA, 2009)

which uses a relative representation for frame and point variables. Since the global

position of the frames is not computed, this must be recovered from the relative

variables, and involves significant computation. However, Sibley et al. argue that

there is usually no need for full reconstruction, and this argument aligns with our

notion of a manifold, in which metric reconstruction occurs only in a local region.

To work in constant time, RBA makes the active window assumption. RBA is

equivalent to standard bundle adjustment if the network of relative poses form a

tree. Thus, it works especially well on exploratory scenarios where there are no

cycles within the active window (Figure 6.1(a)). However, if there are loops within

the active window, the accuracy degrades as it does not enforce the condition that

relative pose transformations around the loop add up to the identity.

As we will see shortly, our double window formulation is somewhat between a

fully relative formulation such as RBA and the absolute formulation of standard BA.

Poses within an active window are represented with respect to a common reference

frame so that metric consistency is fulfilled. Poses outside the active window are

merely defined by a set of relative pose-pose constraints.

6.2 Double Window Optimisation Framework

In this section, we introduce our scalable back-end for visual SLAM. For an example,

we will concentrate on stereo SLAM. In Section 6.2.7, we explain how this framework

is extended to monocular SLAM — including appropriate treatment of scale drift

in constant time.

6.2.1 Overview

In order to achieve scalable, usually constant-time performance, we apply an active

window scheme. The novelty of our framework is the fact that we use a double

window approach. An inner window of point-pose constraints (as in bundle adjust-

2 Indeed, there are pose graph optimisation frameworks such as Grisetti et al. (2007) where not
only the constraints but also the pose variables are relative.

146

6.2. Double Window Optimisation Framework

(a) Example graph (time step 1) (b) Example graph (time step 2)

Figure 6.2: Illustrations of the Double Window Optimization (DWO) framework.
Keyframes and points in the inner window are shown in red, while keyframes in the
outer window are shown in blue. The current reference keyframe is shown in green.

ment) is supported by an outer window of pose-pose constraints (as in pose graph

optimisation). Pose-pose constraints are defined by covisiblity (Mei et al., 2010b).

Two poses are connected to each other if they share enough common features. As

opposed to the approach we described in the previous chapter where we used slid-

ing window BA for exploration and then pose-graph optimization for loop closing,

we couple the point-pose constraints and the pose-pose constraints within a single

optimisation framework. While the inner window serves to model the local area as

accurately as possible, the pose-graph in the outer window acts to stabilise the pe-

riphery. The soft constraints of the periphery contrast with fixed keyframes within a

(relative) BA approach, which are hard constraints. An example graph is illustrated

in Figure 6.2.

6.2.2 The SLAM Graph Structure

The SLAM graph consists of a set of keyframe vertices V, a set of 3D points P,

and a set of relative edges E . Each keyframe vertex Vi saves its absolute pose Ti,

remembers which points yk ∈ P are visible from Ti and also saves all corresponding

observations zik. An edge Eij between two pose vertices Vi and Vj has a covisibility

weight wij , which is the number of points which are visible both in Vi and Vj . Also,

an edge is marked as being marginalised or not. If it is marginalised it also stores

147

6. Double Window Optimisation

(a) UML structure diagram (b) example graph

Figure 6.3: SLAM graph structure used for the double window framework.

the relative pose constraint Tij between Ti and Tj . Otherwise, the relative pose is

implicitly defined as Tij = Ti · T−1
j . A sample graph is visualized in Figure 6.2(a).

At all times, exactly one keyframe vertex is labelled as being the reference keyframe

Vref . This is usually the keyframe which is added last, but could also be an older

keyframe which is revisited during loopy motion.3

A UML (Unified Modelling Language) structure diagram and a corresponding

example graph are shown in Figure 6.3.

6.2.3 Optimisation and Marginalisation

To construct the double-window structure, we start from the reference keyframe Vref,

and perform a weighted breath-first search over the neighbours of Vref, in such a way

that the neighbour with the highest covisibility weight wij is selected first. The first

M1 keyframes are considered as being part of the inner window W1, whereas the

following M2 keyframes are members of the outer window W2 (typically M1 <<

M2). All points visible from the inner window are included in the optimisation.

Thus, all frames in the inner window W1, and some frames in the outer window

3Despite calling Vref the reference keyframe, its absolute pose Tref needs not to be the identity.
Its name stems from the fact that it is the current centre of interest. The inner and outer window
should shape around it as shown in Figure 6.2.

148

6.2. Double Window Optimisation Framework

W2 are connected with point-pose constraints zik to the set of points as is usually

done in BA. In addition, all frames in the outer window are connected to their

local neighbours using pose-pose constraints Tji as in pose-graph optimisation. This

results in the following cost function:

χ2 =
∑
zik

(zik − ẑ(Ti · yk))2 +
∑
Tj,i

υ>jiΛTjiυji . (6.1)

Here, υji := log(Tji · Ti · T−1
j)∨SE(3) is the relative pose error in the tangent space

of SE(3). A corresponding factor graph is shown in Figure 6.4(a). The matrix

ΛTji in equation (6.1) is the inverse covariance of the binary constraint Tji. Instead

of estimating this uncertainty accurately using proper marginalisation (Konolige &

Agrawal, 2008), we suggest to approximate ΛTji coarsely:

ΛTji = wij

[
λ2

transI3×3 O3×3

O3×3 λ2
rotI3×3

]
. (6.2)

While the rotational component λrot is a constant, the translational λtrans component

is chosen to be proportional to the parallax of Tji — the translation tji normalised

by the average scene depth. As we will see in the experimental section, this efficient

approximation of ΛTji leads to very accurate results. Furthermore, we were not

able to reproduce significantly better results using proper pair-wise marginalisation

instead. We believe the reason for this is twofold: On one hand, turning BA into

a binary pose graph is an approximation per se, because the marginalisation of a

landmark visible in N frames should ideally lead to an hyper-edge jointly connecting

all those frames. On the other hand, the pose-pose network we use embodies a

covisibility graph with typically many inter-connections (such as in Figure 6.9). We

believe that the accuracy supported by this structure overwhelms the approximation

due to the use of diagonal precision matrices.

Double window optimisation is performed by minimising the sum of squared error

χ2 with respect to all poses Ti ∈ W1∪W2 in the double window and all corresponding

points yk. First and second order sparsity is taken into account, and the optimisation

is performed using g2o (Kümmerle et al., 2011a). During optimisation, we do not

define a fixed origin, since fixing a keyframe as the global origin can seriously degrade

convergence if the selected keyframe is badly localized relative to its neighbours.

Instead, we let the damping factor of Levenberg-Marquardt take care of the gauge

freedom.

149

6. Double Window Optimisation

(a) Standard parametrisation
(b) Anchored inverse depth

points

Figure 6.4: Factor graphs of double window optimisation. In (a), points are rep-
resented with respect to a global coordinate frame. Point observations as well as
pose-pose relations result in binary constraints. In (b), we illustrate the improved
parametrisation using anchored inverse depth points. In general, observations usu-
ally result in ternary constraints; but observations in their anchor frame are unary
constraints.

As the camera moves in space, the reference pose Tref changes as well as the

configuration of the inner and outer window (see Figure 6.2). When a keyframe Tj

is added to the double window — i.e. Ti 6∈ Wold
1 ∪Wold

2 , but Ti ∈ Wnew
1 ∪Wnew

2 —

we need to make sure it is well initialized before we perform the joint optimisation.

Starting from the reference pose Tref, we initialise

Tj = Tjk · ... · Tka · Tref (6.3)

along the path of relative pose constraints Tjk · ... · Tka which connects Tj with Tref.

This is done to ensure that the pose Tj is well localised relative to its neighbours in

the inner window.

However, there is a caveat in the case that the relative constraints form a large

loop within the double window. If the loop constraints do not add up to the identity

(due to estimation errors), we need to make sure that the loop does not break

within the inner window — in order to abet low reprojection errors and thus high

accuracy. To achieve this, we use the following strategy: First, breath-first traversal

is performed on Wnew
1 ∪Wnew

2 to create a spanning tree with root Tref. This tree

connects all members in the new double window, with Tref being in the centre. Now,

we do not only reinitialise all poses Ti 6∈ Wold
1 ∪Wold

2 , but also all of their children.

In this way, we will make sure that a loop will break in the outer periphery of the

outer window. In order to make sure that the points in the inner window are also

150

6.2. Double Window Optimisation Framework

localised well, we perform a few iterations of structure-only BA, which can be done

very efficiently.

Let us recapitulate that a frame in the inner window is defined by its absolute

pose; all other frames are merely defined by relative constraints which connect them

to their neighbours. Once a frame leaves the inner window, its relative constraints

need to be recomputed since its configuration relative to its neighbours might have

changed. Thus, let Ti ∈ Wold
1 and Tj ∈ Wold

1 . If Ti 6∈ Wnew
1 or Tj 6∈ Wnew

1 we

compute Tji = Tj · T−1
i and ΛTji as explained above.

6.2.4 Improved Point Parametrisation using Anchored Inverse

Depth Features

So far, we considered a point parametrisation in which points are stored using stan-

dard Euclidean 3-vectors with respect to a common world reference frame. This

approach is appealing through its simplicity, since no special point management is

required. However, it has two major drawbacks: First, the projection of Euclidean

points is highly non-linear, and this slows down the joint structure and motion es-

timation in bundle adjustment significantly.4 Second, while structure-only bundle

adjustment is usually very effective to triangulate a point with respect to a set of

frames, this optimisation, as well as joint bundle adjustment, is doomed to diverge

catastrophically if the initial point estimate lies behind any of those frames. This,

however, can easily happen in a large scale scenario since the absolute poses of

keyframes might change drastically once they re-enter the double window as we dis-

cussed previously. Therefore, we suggest to use an improved parametrisation where

points are stored as anchored inverse depth features (as in Sibley et al., 2009; Lim

et al., 2011). Each point is represented using inverse depth parameters ψk and an-

chored to the frame Ta(k) in which it was seen first. We modify equation (6.1) and

end up with the following energy:

χ2 =
∑
zik

(zik − ẑ(Ti · T−1
a(k) ·Π(ψk)))

2 +
∑
Tj,i

υ>jiΛTjiυji . (6.4)

4There are two effective workarounds. First, one could represent the points using homogeneous
coordinates, thus as members of the 3-sphere. This more linear parametrisation is well known for
leading to faster convergence (Triggs et al., 1999). The incremental update can be specified in the
tangent space of the 3-sphere (Hartley & Zisserman, 2004, pp.624). Or one could speed-up the
point convergence within bundle adjustment using embedded point iteration (Jeong et al., 2010).

151

6. Double Window Optimisation

The corresponding factor graph is illustrated in Figure 6.4(b). As one can see,

anchored point observations result in ternary constraints. If, however Ti = Ta(k),

the prediction simplifies to ẑ(Π(ψk)) so that the observation of a point in its anchor

frame can be represented more concisely using a unary constraint.

This anchored inverse depth parametrisation is beneficial since its points are al-

ways well localized relative to their anchor frame; in practice, the point-behind-frame

problem does not occur. Furthermore, the inverse depth parametrisation leads to

faster convergence. However, there is one complication: A point ψk can only be

used in the double window optimisation if the corresponding anchor frame Ta(k) is

included. We use the following strategy: For each point ψk which is visible from the

inner window, we identify its anchor frame Ta(k). If Ta(k) is in the inner window, we

can safely include ψk in the optimisation. Otherwise, we check whether there is a

direct edge Ea(k),b between the anchor frame Ta(k) and a frame Tb ∈ W1 in the inner

window. This ensures that the anchor is still accurately defined. If this is the case,

we can include the point ψk; its anchor frame Ta(k) is added to the outer window.

6.2.5 Candidate Points Set for Top-down Tracking

For ego motion estimation, we seek to detect a set of 3D points in the current

image. In PTAM, all 3D points in the map are potential candidates for tracking.

This strategy is suitable for small workspaces, but does not scale very well with for

large scale mapping. In previous large scale SLAM frameworks (e.g., Mouragnon

et al., 2006; Konolige & Agrawal, 2008; Strasdat et al., 2010b; Lim et al., 2011),

features are either tracked using a purely bottom-up visual odometry approach or

points from the last m frame or keyframes are considered. Instead, we select points

which are visible from the topological neighbourhood around the reference keyframe

Vref. This local neighbourhood N1 consists of all keyframes Vi connected to Vref

including itself:

N1 := {Vi : Eref,i ∈ E} ∪ {Vref}. (6.5)

All points visible from these frames are considered as potential candidates for track-

ing. As in PTAM, a point is only actively searched for if its reprojection lies within

the current image boundaries, it is not too far or too close, and is not seen from a

too different viewing angle compared to its initial observation.

152

6.2. Double Window Optimisation Framework

(a) Project all points (b) Project points from local neighbourhood

Figure 6.5: Construction of point candidate set for pose tracking. In the naive
approach (a) all points are selected which project into the reference frame. In our
scalable approach (b), we only consider points visible from the local neighbourhood.
Points which are occluded are unlikely to be considered.

Apart from scalability, selecting points using the local neighbourhood of frames

has another advantage over PTAM’s approach: it implicitly takes care of occlusion

(see Figure 6.5). Points which are occluded in the current frame are probably not

visible from nearby frames either.

6.2.6 Adding New Keyframes and Local Registration

If a certain criterion is fulfilled (e.g. the incremental translation/parallax exceeded

a threshold, or the number of tracked feature dropped below a critical limit) the

current video frame is added as a new keyframe Vi to the graph. For all keyframes

Vj in the graph which share at least Θ (typically Θ being 15 to 30) covisible points

with the current frame, we include an edge Eji, mark it as unmarginialized and

assign a corresponding covisibility weight wji. This local registration ensures that the

new keyframe Vi is connected to keyframes with significant scene overlap. Further

registration is performed using metric loop closure as will be elaborated below.

Finally the new keyframe is chosen to be the new reference keyframe Vref := Vi.

6.2.7 Extension to Monocular SLAM

In monocular SLAM there is a scale ambiguity. For BA, this has no particular

consequences apart from the fact that the overall gauge freedom increases from

six DoF to seven DoF. However, in pose graph optimisation more care has to be

153

6. Double Window Optimisation

taken. As we have seen in the previous chapter, relative SE(3) constraints cannot

represent scale change in a pose graph. Thus, we use seven DoF constraints to

correct for rotational, translational and scale drift.

Since significant scale drift only occurs along large loops, and we are interested

in a constant-time treatment of scale drift, we apply the following heuristic. The

absolute poses Ti as well as the relative poses Tij are members of Sim(3) instead

of SE(3). However, the scale parameter s remains fixed most of the time. When

a new keyframe is added to the graph, the corresponding scale is set to s = 1.

There is only one case when a relative scale s 6= 1 is introduced: at large-scale,

appearance-based loop closures (see Section 6.4.2). In particular, we use a RanSaC

scheme to determine the rotation R, translation t, and scale s of the relative loop

closure constraint. This scale change gets propagated once poses are reinitialised

using equation (6.3).

6.3 Visual Frontends

In order to evaluate the double window optimisation framework not only on synthetic

data, but also using real-image sequences, a visual front-end for the corresponding

sensor is required.

Our monocular front-end is based on PTAM since this is probably the most robust

and best tested front-end freely available.5 We adapt the PTAM front-end to the

needs of the DWO back-end. 3D candidate points for tracking are estimated as

described in Section 6.2.5. Epipolar search for feature initialisation is only performed

between keyframes which are connected with an edge. In general, all for loops in

PTAM which iterate over all points or all keyframes are replaced. Instead, sets of

points and frames are accessed along the local connectivity of the SLAM graph.

In the case of stereo SLAM, we use a custom front-end which exploits the advan-

tages of stereo-cameras as well as the computational power of modern GPUs. Given

a pair of rectified frames Il, Ir, we estimate the disparity d = ul − ur for each pixel

in the left frame. This can be done very efficiently – either on the GPU or on the

5The source code of PTAM is available from http://www.robots.ox.ac.uk/˜gk/PTAM/
under a custom license for non-commercial use.

154

http://www.robots.ox.ac.uk/~gk/PTAM/

6.3. Visual Frontends

CPU – using the block matching stereo algorithm implemented in OpenCV.6 This

efficient method works if the scene is textured sufficiently. For settings with many

untextured regions, stereo method using variational optimisation should be used in-

stead (e.g. Ranftl et al., 2012). Once the disparity is estimated for a pixel (ul, vl) in

the left reference frame, we can calculate the corresponding 3D point yul,vl :

yul,vl =

y3
f (ul − p1)
y3
f (vl − p2)

y3

 with y3 =
b

f · d
. (6.6)

with f being the focal length, p being the principal point and b being the baseline of

the calibrated stereo rig. Thus, we create a dense model of 3D points with respect

to the camera pose Tn. Now, we wish to estimate the camera pose Tn+1 of the

subsequent (left) frame I
[n+1]
l in order to guide the feature tracking. Given the

dense point model, we perform Lucas-Kanade tracking (Baker & Matthews, 2004).

In particular, we follow the approach of Newcombe, Lovegrove and Davison (2011b)

and minimise the following photometric energy:

χ2 =
∑
u,v

ρ

((
I

[n]
l (u, v)− I [n+1]

l (ẑmono(Tn+1 · yu,v))
)2
)

(6.7)

with respect to the camera pose Tn+1 ∈ SE(3); here, ρ is a robust kernel. One way

to interpret this least-squares method is the following: It estimates an optical flow

field which is forced to be consistent with the dense point model as well as with a

rigid body motion. The kernel ρ is used in order to be robust to pixels where this

assumption is violated. This can be due to violation of the static scene assumption,

wrong disparity estimates, specular highlights etc. The least-squares optimisation

can be performed very efficiently on a modern GPU. A pyramidal approach is used in

order to achieve a large basin of convergence, so that this incremental pose estimator

can deal with very rapid motion. Since this leads to an accurate pose estimate

already, so guided feature tracking can be performed within small circular regions

(i.e. 1-3 pixel radius). Afterwards, the pose is refined using motion-only bundle

adjustment on the sparse point cloud. This way we make sure that the pose remains

consistent to the 3D points, which are estimated using double window optimisation.

This hybrid dense/sparse tracking is illustrated in Figure 6.6.

In each keyframe, we evaluate using a quadtree (see Section 3.4.3) where new 3D

points should be initialised. These candidate points are immediately used for pose

6http://code.opencv.org/

155

http://code.opencv.org/

6. Double Window Optimisation

(a) left image (b) disparity image (c) residual image (d) feature tracks

Figure 6.6: Given a stereo pair — the left frame is shown in (a) — we calculate a
disparity image (b). Using dense Lucas-Kanade tracking, the incremental pose is
estimated. The corresponding residual errors are shown in (c). The error is high
(black) where the static scene assumption is violated, e.g. moving woman (top left),
or the disparity estimate is wrong, e.g. puddle (bottom right). This dense tracking
leads to accurate ego motion estimate, which makes the sparse point tracking (d)
very efficient and robust.

tracking. However, we only add them to the map if they are redetected in one of

the subsequent keyframes. In this way we make sure that only high-quality feature

points which could be detected repeatedly are added to the map.

6.4 Loop Closures

Keyframes are locally registered to each other by including new edges in the SLAM

graph. A large portion of this registration happens when new keyframes are added

(Section 6.2.6). The remaining registration is tackled by loop closure events. We

distinguish between two types of loop closures. The first type is local loop closures

which can still be detected metrically. The second type is large loop closures which

are detected using appearance-based place recognition.

6.4.1 Metric Loop Closure

Checking for metric loop closures is done by searching for 3D points in the ref-

erence keyframe Vref which are not visible from its neighbourhood N1 (see equa-

tion (6.5)). The process is illustrated in Figure 6.7. First, we determine a larger

neighbourhood N2 around Vref using weighted breath-first search (as described in

Section 6.2.3). We construct a set A of potential loop closure points by selecting

156

6.4. Loop Closures

(a) (b) (c) (d)

Figure 6.7: Metric loop closure: In (a), we first determine all points (=red dots)
visible from the local neighbourhood N1 of the reference keyframe. Afterwards, in
(b), we construct a wider neighbourhood N2. We determine a set of (blue) points
which are visible from N2 but not N1. In (c), we determine the subset of those
(blue) points which indeed are visible in the reference keyframe. Finally, in (d), we
add new edges between the reference keyframe Vref and keyframes Vi in the wider
neighbourhood if at least Θ of those points visible in Vref are also visible in Vi.

points which are visible in N2, but not in N1. Then we try to measure such a point

y ∈ A in the reference keyframe using guided search on a larger search radius (e.g.

10 pixels). If enough of those points are found, we minimise their reprojection error

with respect to a common pose Tloop using robust motion-only bundle adjustment,

starting from Tref as the initial guess. Afterwards, we prune all points from A whose

reprojection error exceeds a threshold (e.g. one pixel). The motivation for this

approach is the following: We only want to consider a set of points for metric loop

closure if their observations in Vref mutually agree with each other, hence can be

explained by a common pose Tloop.

Then, for each keyframe Vi ∈ N2\N1 we check how many points in A are also

visible in Vref. If there are Θ or more co-visible points between Vi and Vref, we have

detected a metric loop closure, and we include a new edge Eref,i. This edge is marked

as being marginalised, and the corresponding pose constraint Tref,i is set:

Tref,i := Tloop · T−1
i . (6.8)

Note that if there is some drift along the chain Ti · Ta1a2 · ... · Tan−1an · Tref, then

Tloop 6= Tref and the residual υref,i = log(Tref,iTrefT
−1
i) might be large, something

which will be resolved during the next round of double window optimisation.

157

6. Double Window Optimisation

(a) large view-point changes (b) (c) more conservative (d)

Figure 6.8: Examples of metric loop closures.

These metric loop closures lead to an effective scheme for local registration. When

we follow this approach, almost each keyframe pair which has some scene overlap

is connected with an edge. Even for significant view-pointed changes, we can de-

tect loop closures as shown in Figure 6.8(a,b). However, this way, many edges are

added to the SLAM graph which are only weakly defined, thus the relative pose

is inaccurate. This is especially true if the feature matches are only located in the

image background as in Figure 6.8(b)7. Being too lavish with metric loop closures

increases the SLAM graph connectivity and therefore the computational cost of the

optimisation; at the same time, an accuracy benefit is unlikely since many pose con-

straints are only weakly defined in this case. Therefore we suggest a heuristic which

avoids weakly defined constraints by ensuring that loop closure correspondences are

well-spread in the reference keyframe. We only accept the metric loop closure if

there are at least 1
2Θ matches in the upper, lower, right and left half of the reference

image. Typical loop closures using this more conservative approach are shown in

Figure 6.8(c,d).

6.4.2 Large-scale Loop Closure

Candidates for large loop closures can be efficiently detected using appearance in-

formation only. We use the following approach. First, we perform an offline training

procedure. From the INRIA holiday image dataset8, we learn a dictionary of visual

7Cadena et al. (2011) discussed the benefits to use near as well as far visual information for
loop closure detection.

8http://lear.inrialpes.fr/˜jegou/data.php

158

http://lear.inrialpes.fr/~jegou/data.php

6.5. Experiments

words. In particular, we detect SURF keypoints (Bay et al., 2006) in every image.

We rescale the image adaptively such that 500 to 2000 keypoints are detected. For

all these keypoints in all training images (e.g. 150) we calculate SURF descriptors.

Using the hierarchical K-means clustering approach of Muja & Lowe (2009), we de-

tect approximately 10,000 clusters (=visual words) in the 64-dimensional space of

SURF descriptors.

During SLAM, we calculate SURF keypoints and descriptors for each new keyframe.

We match those keypoints against the dictionary using an approximate nearest

neighbour search (Muja & Lowe, 2009). Then we employ the well-known term

frequency-inverse document frequency (tf-idf) statistic, popularised by Sivic & Zis-

serman (2003) in the context of visual recognition, to hypothesise loop closures.

Compared to pure appearance-based approaches, we thereby exploit the topology

of our SLAM graph. Especially, we never try to detect an appearance-based loop

closure between two keyframes which are topologically close. In such a case the

metric detection scheme is more effective. Once a loop closure hypothesis is gener-

ated between two keyframes Va and Vb, we verify it using a geometric consistency

check based on a three point RanSaC scheme. In the case of monocular SLAM, the

depths of the SURF keypoints are approximated using k-nearest neighbour regres-

sion (Section 5.3.1). Given a set of three 3D-3D correspondences, a relative pose

Ta,b ∈ Sim(3) is uniquely defined.

For stereo SLAM, we modify the model of Arun et al. (1987) which we presented

in equation (5.11-5.14) by setting the scale to one and thus

R = VU>, t = c− Rc̄ . (6.9)

If more than Θ inliers are found, the loop closure is accepted and an edge Ea,b is

added the graph.

6.5 Experiments

6.5.1 Simulation Experiments

The main motivation for the double-window optimisation (DWO) approach is that

it can deal with different motion patterns. In particular, it can smoothly handle

159

6. Double Window Optimisation

Spiral Inner window Inner & outer Constant time

Figure 6.9: Spiral simulation scenario

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 50 100 150 200 250 300 350 400 450 500

R
M

S
E

 i
n
 m

m

in
n
e
r

w
in

d
o
w

frame number

BA
cDWO

cDWO (fixed outer window)

 1

 2

 3

 4

 0 50 100 150 200 250 300 350 400 450 500

R
M

S
E

 i
n
 m

m

w
h
o
le

 g
ra

p
h

frame number

 1.5

 2

 2.5

 3

R
M

S
E

 i
n
 m

m

d
o
u
b
le

 w
in

d
o
wBA

cDWO
gDWO

(a) relative translation error, stereo

 0
 500

 1000
 1500
 2000
 2500
 3000

 0 50 100 150 200 250 300 350 400 450 500

n
u
m

b
e
r

o
f
..
.

frame number

Frame edges
Point edges

Frames
Points

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

c
o
s
t
in

 s

BA
cDWO
gDWO

 2

 4

 6

 0 50 100 150 200 250 300 350 400 450 500

R
M

S
E

 i
n
 m

m

w
h
o
le

 g
ra

p
h

frame number

 3.5

 4

 4.5

 5

R
M

S
E

 i
n
 m

m

d
o
u
b
le

 w
in

d
o
wBA

cDWO
DWO

(b) computational cost (c) relative translation error,
monocular

Figure 6.10: Spiral simulation experiment. The plot shows averages over ten Monte
Carlo trials.

160

6.5. Experiments

both very loopy local motion and large scale exploration. We evaluate a combina-

tion of both of these in our first set of Monte-Carlo simulation experiments. Here

the camera moves in a spiral (see Figure 6.9), and the trajectory consists of 500

keyframes. We assume a stereo camera model with focal length of 300, a baseline of

5cm, a resolution of 640× 480, Gaussian image noise of one pixels and perfect data

association. We compare BA over all frames to our double-window optimisation.

Both methods are implemented using the efficient state-of-the-art sparse graph op-

timizer g2o (Kümmerle et al., 2011a) and executed on a single core of an Intel(R)

Core(TM) i7 960 desktop computer.

For each keyframe, we perform three iterations of joint structure and motion opti-

misation (BA or DWO). We apply two variants of the double window optimisation.

The first variant (cDWO) is made to have strictly constant-time operation by re-

stricting the inner window to 15 frames and the outer window to 50. In the second

variant (gDWO) the outer window covers all remaining 485 frames and therefore

allows global metric mapping.

In order to define an error measure, we have to remember that our scheme does not

have a fixed global origin, and therefore comparing absolute poses is meaningless.

Instead we follow the approach of Kümmerle et al. (2009) and define a relative

error in terms of the relative differences ∆Tij := TiT
−1
j between two absolute poses.

In particular, we define the root mean square error (RMSE) over the difference of

estimated and true relative translations,√√√√ 1

|E|
∑
Eij∈E

(
∆t

[est]
ij −∆t

[true]
ij

)2
, (6.10)

with ∆tij being the translational component of ∆Tij . We analyse the RMSE at three

different levels as shown in Figure 6.10(a). First, we consider the local error within

the inner window (left). One can see that the constant time framework (cDWO)

reaches the same accuracy as BA. Furthermore, we evaluated an adapted cDWO

version where all frames in the outer window are fixed during optimisation. One

can clearly see that the usage of such hard constraints can lead to inferior results.

A second RMSE is computed at an intermediate level considering errors in both

windows (top right). Once the 15th frame is passed cDWO slightly degrades from

BA, but settles down quickly. Finally, we calculate a global error by considering

all relative constraints (bottom right). Here, gDWO stabilises close to BA, while

cDWO is clearly inferior since it only ensures accuracy within the double window.

161

6. Double Window Optimisation

Double loop Start Loop closure End

Figure 6.11: Double loop simulation scenario: At the start, the most recent 25
frames lie within the inner window, while the outer window is dragged behind. At
loop closure, the inner window is at the centre, while the outer window extends in
both directions.

 2

 2.5

 3

 3.5

 0 50 100 150 200 250 300

R
M

S
E

 i
n
 m

m

d
o
u
b
le

 w
in

d
o
w

frame number

BA
cDWO

 3

 4

 5

 6

 7

R
M

S
E

 i
n
 m

m

in
n
e
r

w
in

d
o
wBA

cDWO
cDWO (fixed)

 2500
 5000
 7500

 10000
 12500
 15000

 0 50 100 150 200 250 300

n
u
m

b
e
r

o
f
..
.

frame number

Frame edges
Point edges

Frames
Points

 0.2
 0.4
 0.6
 0.8

 1

c
o
s
t
in

 s BA
cDWO

(a) Translation error (b) Computational cost

Figure 6.12: Double loop experiment. The plot shows averages over ten Monte Carlo
trials

Figure 6.10(b) illustrates the computational cost for all three methods (BA,

cDWO, gDWO). The constant computation times of cDWO can be well understood

by studying the number of frames, points, point-to-frame constraints and frame-to-

frame constraints used within the optimisation windows (bottom). We performed a

comparable simulation experiment using a monocular camera. The RMSE is con-

verted into a scale-invariant version by normalising the translation vectors ∆tij to

length one. The corresponding accuracy plots are shown in Figure 6.10(c), forming

a similar pattern as in stereo SLAM.

A second set of monocular simulation experiments is performed in order to demon-

strate that our double window framework can deal with large loops and scale drift

in a constant time fashion. The motion trajectory goes around a large loop twice

as shown in Figure 6.11. The corresponding accuracy and cost are shown in Fig-

ure 6.12. Here, we have chosen an inner window size of 30 and an outer window

size of 100. Note that the computational cost of cDWO slightly increases at loop

162

6.5. Experiments

Imagery c©Infoterra Ltd &
Bluesky, Map data c©2012 Google

(a) (b) (c)

(d) (e) (f)

Figure 6.13: Stereo experiment, New College. The inner window is visualised in red;
the outer window is visualised in blue (b-f).

closure (frame 150), simply because the number of visible point-to-frame constraints

increases as can be seen in Figure 6.12(b).

6.5.2 Real-image experiments

To further evaluate the DWO back-end, we have employed a range of real-image

simulation experiments using stereo cameras, monocular cameras and an RGB-D

camera. The experiments were performed on desktop computer with an Intel(R)

Core(TM) 2 Duo CPU with 2.66 GHz and a NVIDIA 580 GTX (used for stereo

front-end).

Stereo SLAM

We fully integrated the stereo front-end with DWO and the appearance based loop

closure module. Each of the three modules is running in a separate thread. In

order to be robust and efficient for large scale scenarios, we used the improved point

parametrisation using anchored inverse depth features. The complete source code

163

6. Double Window Optimisation

(a) Right before (b) At (c) After
large-scale loop closure

Figure 6.14: Large scale loop closure in stereo SLAM: At the loop closure event (b),
the active (red) region expands. Afterwards (c), local registration is performed by
means of metric loop closures (green).

is available online.9 We performed several large scale SLAM experiments using the

New College dataset10 of Smith et al. (2009). It was recorded on and around the

campus of the New College in Oxford by teleoperating a Segway robot which was

equipped with several sensors including a Bumblebee stereo camera. The stereo

images have a resolution of 512 × 384 and were recorded at 20 fps. Figure 6.13(a)

shows an image of the New College quadrangle.

In a first experiment, we evaluated our stereo SLAM framework while the robot

performs one and a half loops of the courtyard. We have chosen an outer window

size (|W1| = 25, |W2| = 175) large enough to cover the whole loop. In this constant

time setting, the runtime is with 25-30 fps faster than real-time. In the beginning,

Figure 6.13(b), all frames are within the inner window. Figure 6.13(b) illustrates

how the outer window is ‘dragged behind’ the inner window while the robot explores

the environment. We visualise points in the inner window as well as in the outer

window. Note that points in the outer window are not optimised over. However, we

can visualise them efficiently since they are anchored relative to the optimised poses

in the outer window. Figure 6.13(d) and Figure 6.14(a) illustrate the situation right

before loop closure when the robot has traveled 115m. At this point, the SLAM

graph consists of almost 13000 points and 149 keyframes which are inter-connected

by over 400 edges. Most of the local registration was performed when new key frames

are added; less than 10% are metric loop closure edges. At the appearance-based

loop closure event (Figure 6.13(e) and Figure 6.14(b)), both ends of the graph get

9https://github.com/strasdat/ScaViSLAM
10http://www.robots.ox.ac.uk/NewCollegeData/

164

https://github.com/strasdat/ScaViSLAM
http://www.robots.ox.ac.uk/NewCollegeData/

6.5. Experiments

Imagery c©2012 GeoEye, Getmapping plc, Infoterra Ltd &
Bluesky, The GeoInformation Group, Map data c©2012 Google

(a) Aerial image of the New College (b) Metric point map

Figure 6.15: Large-scale experiment with 1.8 km trajectory. (a) shows an aerial pho-
tograph of the environment. The robot performed five loops of the quadrangle (top
left) and two larger loops in the park (right). (b) shows the metric map consisting
of over 2000 keyframes and over 200.000 points.

connected, and the inner window automatically expands so that it shapes around

the current pose. The DWO framework is designed in such a way that appearance-

based loop closure are rarely triggered — only to close large loops. Figure 6.14(c)

shows how, after the appearance-based loop closure, the graph of robot poses become

interconnected due to metric loop closure events and further local registration. When

the 200th keyframe is added to the graph, the robot traveled for 155m. The SLAM

graph consists now of over 17000 points and 812 edges — 110 of them are metric loop

closures; no new appearance-based loop closure where triggered. After the robot had

performed one and a half loops, the total number of keyframes exceeded the size of

the double window, so that the outer window formed a stabilising periphery around

the inner window (Figure 6.13(f)).

In a second experiment, we used a longer image sequence where the robot trav-

elled for about 25 minutes and covers a distance of 1.8 km. In particular, the robot

performed five loops on the courtyard of the campus and two larger loops in the park

close-by (Figure 6.15(a)). The whole trajectory consists of over 2000 keyframes. A

qualitative evaluation of this constant-time SLAM experiment is presented in Fig-

ure 6.16 and 6.17. Altogether, the appearance based loop closure place recognition

module detected only 15 loops closures (Figure 6.18), while the vast majority of

relative constraints were introduced due to local registration and metric loop clo-

sures. The efficiency of the appearance-based loop closure module is reflected by the

165

6. Double Window Optimisation

0.17km, 2nd loop (clockwise) 0.21km 0.29km

0.45km, 3rd loop (anti-clock.) 0.51km 0.57km, 4th loop (clockwise)

0.62km, 4th loop (clockwise) 0.69km 0.78km, 1st park walk

0.79km, 1st park walk 0.89km, 1st park walk 1.00km, 1st park walk

1.01km, 1st park walk 1.08km, 2nd park walk 1.30km, 2nd park walk

Figure 6.16: Constant-time, large scale stereo experiment. Top views of double
window are shown over time (1-15).

166

6.5. Experiments

1.40km, 2nd park walk 1.58km, 2nd park walk 1.61km

1.68km, 5th loop (anti-clock.) 1.76km, 5th loop (anti-clock.)

Figure 6.17: Constant-time, large scale stereo experiment (16-20).

Figure 6.18: All appearance-based loop closures of the 1.8km experiment.

167

6. Double Window Optimisation

Start Exploration

Before Loop Closure After Loop Closure

Figure 6.19: Monocular large-scale SLAM evaluated on the New College dataset in
constant time (17 FPS)

fact that it only used approximately one third of its computational resources. In a

final experiment, we increased the outer window enough so that the whole area was

covered by the double window. Nevertheless, the whole framework still run in near

real-time at 15-20 fps. Figure 6.15(b) shows the metric map of over 200,000 points.

Monocular SLAM

We tested our monocular SLAM framework (adapted PTAM tracker plus DWO

back-end) on two different image sequences. The first one is the loop on campus

of the New College. For the monocular experiment, we only used the images of

the left camera of the stereo pair. We have chosen a strictly constant time setting,

such that the double window only covers approximately a third of the loop. In

particular we chosen an inner window of 20 keyframes and an outer window of 35.

168

6.5. Experiments

Figure 6.20: Loopy browsing motion plus exploration in office environment (monoc-
ular SLAM)

Qualitative results are shown in Figure 6.19. At loop closure, a scale drift of 6% is

detected and both ends of the graph are attached appropriately. The whole system

runs at 17 FPS — applying the tracker and the optimisation alternately in a single

thread. In a second monocular experiment, we demonstrate that our back-end can

deal with loopy browsing motion (which is the speciality of PTAM), but also with

rapid exploration. Snap shots of the sequence are shown in Figure 6.20. Here, the

camera is browsing over the desk, and rapidly explores in one direction. Then it

returns to the origin and zooms out.

6.5.3 RGB-D SLAM

Our visual SLAM framework can be also used with RGB-D cameras that have be-

come popular very recently. RGB-D cameras are devices with measure for each pixel

not only intensities (RGB), but also depth (D). We used a device from PrimeSense

which calculates a dense 3D cloud using structured light and is largely identical to

Microsoft’s Kinect. It outputs an RGB image together with a registered 3D point

cloud. As a first step, we transform the 3D point cloud into a disparity image reg-

istered to the RGB image. By doing so, we can employ a stereo front-end such as

the one described above.11

Figure 6.21 illustrates loopy browsing motion using the RGB-D camera. The

tracking and optimisation solely depend on sparse feature matching (a). However,

11Indeed, the RGB-D experiments were performed using an older iteration of the stereo front-end
described in Strasdat et al. (2011).

169

6. Double Window Optimisation

(a) Sparse point map (b) Dense 3D model

Figure 6.21: Loopy browsing motion in office environment, RGB-D

Figure 6.22: SLAM using a RGB-D camera on a wheeled robot.

the dense point clouds can be registered to the optimised frames and used to con-

struct a dense environment model cheaply (b). Also, we attached the RGB-D camera

to a wheeled robot and mapped an indoor environment (Figure 6.22),

Finally, we demonstrate how our framework can be used to create dense object

models (see Figure 6.23). An object is placed on a turntable and observed by a static

RGB-D camera. We need to create an image mask which only covers the object.

First, we remove the background by rejecting all pixels with a depth greater than

a particular threshold. Second, we detect the ground plane and only accept pixels

whose corresponding 3D points are significantly above it.12 Thirdly, pixels on the

object boundary are smeared, since they mix colour values of the object with colour

values of the background. Thus, we perform erosion operations on the object mask

in order to make sure that pixels at the object boundary are rejected. Note that the

loop is detected using a metric loop closure.

A number of videos are available online which illustrate our simulation and real-

image experiments13.

12Thanks to Suat Gedikli for providing the preprocessed data set.
13http://www.doc.ic.ac.uk/˜strasdat/website/php/thesis

170

http://www.doc.ic.ac.uk/~strasdat/website/php/thesis

6.6. Discussion and Summary

Figure 6.23: Dense object models using an RGB-D camera. Bottom left: Sparse
points clouds are used for SLAM. Bottom right: RGB measurements are overlaid to
create a dense object model.

6.6 Discussion and Summary

We have presented a novel framework for visual SLAM, which is unique in being

able smoothly to cope with both detailed, loopy browsing, and rapid large-scale

exploration in constant time, attaining comparable results to bundle adjustment

locally. The whole map is represented using a graph of keyframes and points, while

the optimisation is performed in a double window. We tested this double window

optimisation exhaustively on a set of synthetic as well as real image experiments

using data from monocular, stereo and RGB-D cameras.

Furthermore, we developed a novel stereo front-end, which combines dense 3D

Lucas-Kanade tracking with a guided search of sparse 3D points. While the dense

tracker ensures an accurate incremental ego motion estimate, local metric consis-

tency is achieved by means of the optimised sparse point cloud.

Finally, we presented a mechanism for local registration using top-down feature

search and metric loop closures. This enables the uniform treatment of repetitive

local browsing and large loop mapping. As opposed to previous approaches, which

tried to detect as many appearance-based loop closures as possible, we only aim to

171

6. Double Window Optimisation

detect them between places which are topologically distant and rely on top-down

metric loop closures otherwise. This offers a computational advantage. While an

appearance-based loop hypothesis needs to be evaluated using a potentially expen-

sive validation scheme, metric loop closures only require a guided search and are

therefore more efficient.14 In addition, our approach seems to reduce the risk of

false positive loop closures. First, we can rely on a reluctant detection scheme for

place recognition since our framework only requires that appearance-based detec-

tion is performed once per large loop. Second, metric loop closures rely on a strong

geometric prior so that false positives are only conceivable for pathological cases

(such as highly repetitive scene structure). We did not observe any false positives;

though a quantitative evaluation is pending.

6.7 Bibliographic Remarks

Topological maps already were used in early robotic research. Mataric (1990) high-

lighted the advantages of graph representations over metric maps for autonomous

robot navigation. Besides performing real-robot experiments, she performed a re-

view of biological studies: “insects, animals, and people use cognitive maps as in-

ternal representations of spatial information. The maps have been shown to contain

both topological and metric information.”

In their biologically inspired RatSLAM, Milford et al. (2004) combined a weak

Cartesian grid with a topological structure. They stressed that for topologically

usable maps it is not necessary to propagate metric errors along loops. Milford

& Wyeth (2008) adopted this approach to a single-camera 2D SLAM framework.

Howard et al. (2004) discussed the benefits of manifolds — a local Euclidean, but

global topological representation — for 2D SLAM. In particular, they represent a

two-dimensional manifold by means of a set of partially overlapping patches. They

illustrated how such a representation sidesteps the problem of mapping cross-overs

and elaborated the capabilities of lazy loop closure corrections.

Sibley et al. (2009) introduced Relative Bundle Adjustment (RBA). Unlike Howard

et al. (2004) and other submapping approaches, it relies on a continuous manifold

14Very efficient appearance-based loop closure techniques were presented recently such as the
one of Galvez-Lopez & Tardós (2012) which relies on binary bag of words. Still, such approaches
require a RanSaC-like validation.

172

6.7. Bibliographic Remarks

representation. In RBA, points and poses are represented in a purely relative man-

ner. In order to calculate measurement predictions, points are projected into the

designated frame along the chain of relative poses. An active window strategy en-

ables constant-time performance. Mei et al. (2009, 2010a) integrated RBA in their

real-time stereo SLAM framework and demonstrated its outstanding capabilities

on a number of large-scale indoor and outdoor datasets (including New College).

However it is unclear how RBA performs for repetitive local browsing since, unlike

DWO, RBA does not enforce metric consistency on loopy graph structure.

Holmes et al. (2009) introduced a framework for efficient monocular SLAM by

combining PTAM with RBA. In particular they showed how the relative representa-

tion allows the SLAM problem to be split into two subtasks. The local motion can

be estimated in an active window of relative poses in constant-time, while the whole

map is optimised using global RBA in the background. This approach enables local

browsing and rapid exploration. However, Holmes et al. (2009) did not tackle the

problems of large-scale loop closures and scale drift.

Castle et al. (2011) presented a monocular framework for large-scale augmented

reality applications by extending PTAM (Klein & Murray, 2007) to multiple maps.

The spatial relations between the maps is ignored, and map switching is performed

using appearance-based relocalisation.

Handling relocalisation and loop closures using appearance-based place recogni-

tion is now the de-facto standard for visual SLAM. It has been used in the frame-

works of Konolige & Agrawal (2008), Eade & Drummond (2008), Mei et al. (2009),

Lim et al. (2011), Pirker et al. (2011), Johannsson et al. (2012) and many others.

An early system was the one of Dudek & Jugessur (2000). They represented visual

features using a rotation-invariant polar representation and performed dimensional-

ity reduction using PCA. Sivic & Zisserman (2003) highlighted the strong relation

between visual recognition and text retrieval. In particular, they introduce the con-

cept of visual words and applied techniques from computational linguistics such as

the tf-idf statistic. In their stand-out system, Nister & Stewenius (2006) performed

object recognition using a vocabulary tree. Due to its hierarchical structure, the

framework is highly scalable and was tested using a database of tens of thousands

of images. Angeli et al. (2008) presented an incremental method for appearance-

based loop closure detection where the dictionary of visual words is created online.

Cummins & Newman’s FAB-MAP (2008; 2009) is highly scalable appearance-only

173

6. Double Window Optimisation

SLAM framework which relies on the co-occurance probability of visual words and

was demonstrated on a extremely long trajectory of 1000km. Maddern et al. (2012)

combined FAB-MAP with metric pose filtering to improve the recall of loop closures.

Galvez-Lopez & Tardós’s approach (2012) rely on binary visual words and a binary

vocabulary tree which results in a very efficient detection scheme.

In previous work, the concept of co-visibility was exploited in order to organize the

SLAM graph topology. Often, keyposes are connected along the chain of motion plus

additional links due to appearance-based place recognition as in Konolige & Agrawal

(2008), Mei et al. (2009) and Lim et al. (2011). Instead, our approach is related to

Mei et al. (2010b) who discussed the usefulness of co-visibility graphs for appearance-

based loop closing. Especially, they highlighted the structural differences between

the co-visibility graph and the RBA graph. DWO takes a step forward by defining

the topology of the SLAM graph purely based on co-visibility which allows the active

generation of loop hypothesis along the graph of relative constraints using metric

priors. Williams et al. (2009) compared map-to-map, image-to-map and image-

image loop closure techniques for monocular SLAM and concluded that image-to-

map techniques work best; metric loop closures fall into this category.

DWO is related to the stereo SLAM approach of Lim et al. (2011). They rep-

resented the map using a similar graph structure, but performed local adjustment

and global optimisation independently. For the global optimisation, the whole map

is divided into a set of disjoint segments. First local segments are optimised using

BA. Then global consistency is enforced by treating the segments as rigid bodies.

Unlike in DWO, the visual front-end relies on bottom-up KLT tracking so that no

previous geometric reconstruction can be exploited once a known place is revisited.

Instead, all loop closures are detected using appearance information.

Another relevant work is the recent monocular approach of Pirker et al. (2011). It

also relies on a keypose graph and performs local BA using an active window strat-

egy. Loop closures are detected using FAB-MAP and metric consistency is enforced

globally. Pirker et al. followed the approach described in Chapter 5; pose graph

optimisation is used to correct for rotation, translation and scale drift. Optimisation

is performed only over the uncorrected loop, while the remaining keyposes remain

fixed.

Johannsson et al. (2012) presented a large-scale SLAM framework for range im-

174

6.7. Bibliographic Remarks

age devices. Similar to Konolige & Agrawal (2008), they combined bottom-up vi-

sual odometry, appearance-based place recognition and pose-graph optimisation. A

reduced pose-graph representation is used which does not scale with the distant

travelled, but only with the area of operation. Johannsson et al. evaluated their ap-

proach on a large-scale dataset recorded in a ten-floor building; the vertical motion

of elevators is estimated using an IMU.

SLAM using RGB-D cameras became popular very recently. Henry et al. (2010)

used a structured light camera from PrimeSense to build a dense 3D map. They

used depth and visual information in an combined RanSaC and iterative closes point

(ICP, Besl & McKay, 1992) approach. Global consistency is enforced using pose-

graph optimisation. Newcombe et al. (2011a) presented a real-time system for dense

tracking and mapping. They ignore the intensity measurements and only rely on

depth data. All depth measurement are fused into a single implicit surface, while

the motion is estimated using coarse to fine ICP. The approach is highly robust and

accurate, but the area of operation is limited (small room size).

This chapter is partially based on Strasdat et al. (2011).

175

6. Double Window Optimisation

176

Chapter 7

Conclusion

In this thesis, we have tackled efficient visual SLAM by concentrating on real-time

strategies for locally accurate and globally consistent estimation of scene structure

and camera motion. Previous approaches have been thoroughly analysed and a

number of new techniques have been presented. The main achievements are:

• A rigorous comparison of Gaussian filtering versus keyframe bundle adjustment

(Chapter 4). The main result is: Increasing the number of observations N

increases the accuracy, while increasing the number of intermediate frames M

only has a minor effect. Considering the cost of bundle adjustment (linear in

N) to the cost of filtering (cubic in N), it becomes clear that bundle adjustment

is the more efficient technique – especially if high accuracy is required.

• A framework for monocular exploration based on keyframe sliding window

bundle adjustment (Chapter 3). A novel and effective monocular tracker has

been developed which combines bottom-up dense optical flow with top-down

guided search. The unknown depth of newly initialised feature is inferred using

a set of Gauss-Newton filters.

• An efficient technique for monocular loop closure correction based on novel

pose-graph optimisation by taking scale drift into account (Chapter 5). Since

monocular SLAM does not only drift in rotation and translation, but also

in scale, this new technique outperforms previous approaches designed for

177

7. Conclusion

range-bearing sensors. Furthermore, we showed how the Jacobians of general

pose-graph problems can be calculated efficiently using an n-order Campell-

Baker-Haussdorf expansion.

• A novel and unified framework for constant-time visual SLAM using double

window optimisation (Chapter 6). Accurate reconstruction are performed in

the inner window (which approaches the local accuracy of bundle adjustment)

while the outer window acts as a stabilising periphery. Inner window pose-

point constraints and outer pose-pose relations are jointly optimised using a

common cost term.

• An effective strategy for local registration using metric loop closures and active

point search in the topological neighbourhood of the SLAM graph. This offers

a unified and efficient solution for repetitive local browsing and place revisits

after large loop closure. By relying on the graph topology, occlusion problems

are handled implicitly.

• An effective strategy for uniform feature selection using quadtrees. A new

traversal technique has been developed (Chapter 3) which is used for feature

selection throughout the thesis.

• A new stereo front-end based on hybrid dense/sparse tracking (Chapter 3).

This approach combines 3D Lukas Kanade tracking with active search and

has proved to be efficient, accurate and robust.

• Extensive Monte Carlo evaluations using synthetic data (Chapters 4,5,6) as

well as real-image experiments using monocular, stereo and structured light

cameras (Chapters 3,5,6).

7.1 Discussion and Future Work

Most recent large-scale SLAM approaches consist of largely independent modules.

Bottom-up visual trackers and purely appearance-based place recognisers do not rely

on any input but raw camera images. This design is appealing since it allows an un-

complicated software architecture — the modules can be evaluated individually and

parallel computing is enabled straightforwardly. On the other hand, top-down and

model-based approaches require a higher integration of the individual components

178

7.1. Discussion and Future Work

which complicates the software design. Our work highlights that such a complica-

tion is worthwhile. Top-down active search and metric loop closures highly facilitate

local registration — a requirement which enables accurate and continues large-scale

mapping in real-time. The resulting double window framework (laid out in Chap-

ter 6) is widely applicable to general-purpose SLAM tasks, but also offers a basis

for future work. The following three areas are especially promising:

• The double window framework employs effective heuristics which allow re-

visits of previous places again and again. If one takes a step forward, the

problem of ‘lifelong mapping’ (Biber & Duckett, 2005; Konolige & Bowman,

2009; Pirker et al., 2011; McDonald et al., 2011; Churchill & Newman, 2012)

emerges. In order to solve lifelong mapping, several difficulties need to be

tackled. First and foremost, the environment is prone to change over time.

One could approach this problem by inferring which parts of the environment

are persistent and which ones are transient. Our double window approach

offers some mechanisms already to handle changing environments. When a

known place is revisits, it aims to join overlapping map segments using local

registration. If this attempt fails in certain parts of the trajectory, it is an

indication that a scene variation occurred. However, such a classification is

not straight-forward; for instance variation in lightning affects scene appear-

ance as well. Furthermore, long term mapping brings additional problems.

Under ideal condition, the application of SLAM in a bounded environment

has a constant space complexity. However, if SLAM is performed for hours,

days and beyond and if the environment keeps on changing, new data need

to be added constantly. Novel algorithm and heuristics (such as the removal

of outdated features, constraints or even whole map segments) are required

in order to restrict the memory requirement and allow continuous real-time

operation.

• Apart from modelling large static environments which gradually change over

time, there is the open challenge of performing SLAM in dynamic scenes.

There has been initial work on real-time multibody SLAM (e.g. Kundu et al.,

2011), but more work has to be done. Even more challenging is the problem

of non-rigid structure and motion estimation (Fayad et al., 2011).

• Very recently, systems for real-time dense tracking and mapping were pre-

179

7. Conclusion

sented (Newcombe et al., 2011b; Graber et al., 2011). These frameworks per-

form highly parallel computation on modern GPUs and produce scene models

which are more descriptive than sparse point clouds. Their accurate outputs

allow the decoupling of scene reconstruction and camera tracking in small

areas of operation. For large scale mapping drift is unavoidable, but the (ef-

ficient) joint estimation of dense structure and motion is an open problem.

We belief there is space for a hybrid sparse/dense SLAM framework where di-

rect and dense methods are used for accurate local reconstruction while global

consistency is enforced using a sparse optimisation approach.

180

Appendix A

Proofs and Formulae related

to Lie Groups

A.1 Generators

Let G be a Lie group, g be the corresponding Lie algebra and ·̂ its hat-operator.

The generators of G can be calculated as Gk = êk with ek being the kth Cartesian

unit vector.

A.1.1 Generators of SE(3)

G1 =

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 G2 =

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 G3 =

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

G4 =

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 G5 =

0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 G6 =

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

(A.1)

181

A. Proofs and Formulae related to Lie Groups

A.1.2 Generators of Sim(3)

The generators of Sim(3) includes the ones of SE(3) plus:

G7 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 . (A.2)

A.2 Adjoint Representations

A.2.1 Adjoint Map of SE(3)

The adjoint map of SE(3) is

AdT =

[
R [t]×R

O R

]
(A.3)

since

[
R [t]×R

O R

]
·

(
υ

ω

)
=

(
Rυ + t× Rω

Rω

)
=

[
[Rω]× Rυ − (Rω)× t

O 1

]∨
se(3)

(A.4)

and [
[Rω]× −[Rω]×t + Rυ

O 1

]
=

[
R t

O 1

][
[ω]× υ

O 0

][
R> −R>t

O 1

]
. (A.5)

A.2.2 Adjoint Map of Sim(3)

The adjoint map of Sim(3) is

AdS =

sR [t]×R −t

O3×3 R 0

O1×3 O1×3 1

 (A.6)

182

A.3. Lie brackets

since

sR [t]×R t

O3×3 R 0

O1×3 O1×3 1

 ·

υ

ω

σ

 =

sRυ + [t]×Rω − σt

Rω

σ

 (A.7)

=

[
[Rω]× + σI sRυ − [Rω]×t− σt

O 0

]∨
sim(3)

(A.8)

and

[
[Rω]× + σI −[Rω]×t− σt + sRυ

O 0

]
=

[
sR t

O 1

][
[ω]× + σI υ

O 0

][
1
sR
> −1

sR
>t

O 1

]
.

(A.9)

A.3 Lie brackets

A.3.1 Derivation of the Lie Bracket from the Adjoint

Let G be a Lie group and g be the corresponding tangent space. Furthermore, let

us assume that A is a smooth path through the identity. Thus, we can assume that

A(t) = exp(tU) with U being a general tangent vector in g. If we differentiate the

adjoint map AdjA(V) = A(t) · V · A(t)−1 with respect to A, we end up with the Lie

bracket:

∂

∂t
AdjA(t)(V)

∣∣∣∣
t=0

=
∂

∂t

(
exp(tU) · V · (exp(tU))−1

)∣∣∣∣
t=0

(A.10)

(2.69)
=

∂

∂t
(exp(tU) · V · exp(−tU))

∣∣∣∣
t=0

(A.11)

(2.64)
= U exp(O)V− V exp(O)U (A.12)

(2.67)
= UV− VU . (A.13)

In the following, we give close form solutions for the Lie brackets and its derivatives

using the minimal vector representations for various relevant Lie groups.

183

A. Proofs and Formulae related to Lie Groups

A.3.2 Lie bracket and its Jacobian of SO(3)

Let ω, φ be elements of the Lie algebra so(3). Their Lie bracket is:

[ω,φ]so(3) = (ω̂φ̂− φ̂ω̂)∨ =

[
0 −ω1φ2 + ω2φ1 −ω1φ3 + ω3φ1

ω1φ2 − ω2φ1 0 −ω2φ3 + ω3φ2

ω1φ3 − ω3φ1 ω2φ3 − ω3φ2 0

]∨
so(3)

=

(
ω2φ3 − ω3φ2

ω3φ1 − ω1φ3

ω1φ2 − ω2φ1

)
= ω × φ . (A.14)

We can calculate the partial derivative ∂
∂ωi

(ω×φ) = (ei×φ); for instance ∂
∂ω1

(ω×
φ) = (0,−φ3, φ2)>. Thus, we get

∂

∂ω
(ω × φ) = −[φ]× . (A.15)

A.3.3 Lie bracket and its Jacobian of SE(3)

The Lie bracket for elements of the Lie algebra se(3) is:[(
υ

ω

)
,

(
τ

φ

)]
se(3)

=

(
ω × τ + υ × φ

ω × φ

)
. (A.16)

The derivative wrt. the translational component is ∂
∂υ

[(
υ

ω

)
,

(
τ

φ

)]
se(3)

=

(
−[φ]×

O3×3

)

while the derivative wrt. the rotational component equals ∂
∂ω

[(
υ

ω

)
,

(
τ

φ

)]
se(3)

=(
−[τ]×

−[φ]×

)
. Thus, the full Jacobian is

∂

∂u
[u,v]se(3) =

[
− [φ]× −[τ]×

O3×3 −[φ]×

]
with u =

(
υ

ω

)
and v =

(
τ

φ

)
.

(A.17)

A.3.4 Lie bracket and its Jacobian of Sim(3)

Finally, we present the Lie bracket of the tangent space sim(3):

υ

ω

σ

 ,

τ

φ

ς

sim(3)

=

ω × τ + υ × φ+ στ − ςυ

ω × φ
0

 . (A.18)

184

A.4. The Campbell-Baker-Hausdorff Formula

Its Jacobian is:

∂

∂u
[u,v]sim(3) =

− [φ]× − ςI −[τ]× τ

O3×3 −[φ]× 0

O1×3 O1×3 0

 with u =

υ

ω

σ

 , v =

τ

φ

ς

 .

(A.19)

A.4 The Campbell-Baker-Hausdorff Formula

Let G be a Lie group and A, B ∈ G. It is of interest to ask what

CBH(A, B) := log(exp(A) · exp(B)) (A.20)

looks like. If A and B commute, it follows from (2.65) that CBH(A, B) = A + B:

AB = BA ⇒ log(exp(A) · exp(B)) = A + B . (A.21)

For commutative Lie groups, multiplications in the Lie group is equivalent to addi-

tion in the tangent space. Thus, the global structure of a commutative Lie group is

covered by its tangent space. For instance for SO(2) it holds that

γ = α+ β ⇔ R(γ) = R(α)R(β) . (A.22)

For general Lie groups it can be shown (e.g. Rossmann, 2002, pp.22) that

CBH(X, Y) =
∞∑
k=0

(−1)k−1

k

∑
(rk,sk)∈N2,rk+sk≥1

Xr1Ys1 · · · XrkYsk
r1!s1! · · · rk!sk!

. (A.23)

This bulky formula has no closed form solution. The first three terms are:

T1 = X + Y , (A.24)

T2 =
1

2
[X, Y] , (A.25)

T3 =
1

12
([X, [X, Y]]− [Y, [X, Y]]) . (A.26)

All higher-order terms can be expressed using Lie brackets over X and Y (Stillwell,

2008, p.153). We can define a variant of the Campbell-Baker-Hausdorff formula

cbh : Rm × Rm → Rm, cbh(x,y) = log(exp(x̂) · exp(ŷ))∨ (A.27)

where the Lie algebra elements are minimal vectors x,y ∈ Rm.

185

A. Proofs and Formulae related to Lie Groups

A.5 Exponential Map onto Sim(3)

The exponential map exp : sim(3)→ Sim(3) is given by

exp

(
[ω]× + σI3×3 υ

O1×3 0

)
=

(
eσ exp([ω]×) Wυ

O1×3 0

)
(A.28)

with

W = CI +
Aσ + (1−B)θ

σ2 + θ2

(
[ω]×
θ

)
+

(
C − (B − 1)σ +Aθ

σ2 + θ2

)(
[ω]×
θ

)2

,

(A.29)

A = eσ sin(θ), B = eσ cos(θ), C = eσ−1
σ and θ = ||ω||2.

Proof

In order to derive the exponential map for Sim(3), we employ lemma (2.98). It

follows immediately that

exp

(
[ω]× + σI3×3 υ

O1×3 0

)
=

(
exp([ω]× + σI3×3) Wυ

O1×3 0

)
, (A.30)

with W =
∑∞

k=0
Xk

(k+1)! and X = [ω]× + σI. Furthermore, exp([ω]× + σI3×3) =

eσ exp([ω]×). Thus, it remains to show that

W = CI +
Aσ + (1−B)θ

σ2 + θ2

(
[ω]×
θ

)
+

(
C − (B − 1)σ +Aθ

σ2 + θ2

)(
[ω]×
θ

)2

. (A.31)

Let Ω := 1
θ [ω]×. It holds that [ω]× = θΩ, [ω]2× = θ2Ω2, and [ω]3× = −θ3Ω since

Ω3 = −Ω (Gallier, 2011, pp.471). Thus, in general we get for k ∈ N:

[ω]4k+1
× = θ4k+1Ω, [ω]4k+2

× = θ4k+2Ω2,

[ω]4k+3
× = −θ4k+3Ω, and [ω]4k+4

× = −θ4k+4Ω2.
(A.32)

Now we can calculate the first few terms of the sequence Xk

X = θ Ω+ (σ − σ) Ω2+ σI,

X2 = (2σθ) Ω+ (σ2 − (σ2 − θ2)) Ω2+ σ2I,

X3 = (3σ2θ − θ3)) Ω+ (σ3 − (σ3 − 3σθ2) Ω2+ σ3I,

X4 = (4σ3θ − 4σθ3) Ω+ (σ4 − (σ4 − 4σ2θ2 + θ4)) Ω2+ σ4I,

X5 = (5σ4θ − 10σ2θ3 + θ5) Ω+ (σ5 − (σ5 − 10σ3θ2 + 5σθ3)) Ω2+ σ5I,

(A.33)

186

A.5. Exponential Map onto Sim(3)

and so on. Note that the kth term consists of binomial coefficients of the order k.

Using a proof by induction, one can show that the general pattern is:

Xk = σkI + Φodd(θ, σ, k)Ω +
(
σk − Φeven(θ, σ, k)

)
Ω2 (A.34)

with Φodd(θ, σ, k) =

b
k
2c∑
j=0

(−1)j
(

k

2j + 1

)
σk−(2j+1)θ2j+1

 , (A.35)

Φeven(θ, σ, k) =

b
k
2c∑
j=0

(−1)j
(
k

2j

)
σk−2jθ2j

 , (A.36)

and b·c being the floor operator. Hence, we get for W =
∑∞

k=0
Xk

(k+1)! ,

W =
∞∑
k=0

σk

(k + 1)!
I +

∞∑
k=0

Φodd(θ, σ, k)

(k + 1)!
Ω +

(∞∑
k=0

σk

(k + 1)!
−
∞∑
k=0

Φeven(θ, σ, k)

(k + 1)!

)
Ω2 .

(A.37)

Since Ω = 1
θ [ω]× and

∞∑
k=0

xk

(k + 1)!
=

∑∞
k=0

xk

k! − 1

x
=
ex − 1

x
, (A.38)

we receive:

W = CI +
∞∑
k=0

Φodd(θ, σ, k)

(k + 1)!

(
[ω]×
θ

)
+

(
C −

∞∑
k=0

Φeven(θ, σ, k)

(k + 1)!

)(
[ω]×
θ

)2

(A.39)

with C =
(
eσ−1
σ

)
. Comparing this with proposition (A.29), it remains to show

that
∑∞

k=0
Φodd(θ,σ,k)

(k+1)! = Aσ+(1−B)θ
σ2+θ2

and
∑∞

k=0
Φeven(θ,σ,k)

(k+1)! = (B−1)σ+Aθ
σ2+θ2

. Thus, we can

187

A. Proofs and Formulae related to Lie Groups

finish the proof with

∞∑
k=0

Φodd(θ, σ, k)

(k + 1)!

=
∞∑
k=0

1

(k + 1)!

b k2c∑
j=0

(−1)j
(

k

2j + 1

)
σk−(2j+1)θ2j+1

=
θ

2!
+

2σθ

3!
+

3σ2θ − θ3

4!
+

4σ3θ − 4σθ3

5!
+ . . .

=
1

2i

[
1 +

σ + iθ

2!
+
σ2 + 2iσθ − θ2

3!
+
σ3 + 3iσ2θ − 3σθ2 − iθ3

4!
+ . . .

−
(

1 +
σ − iθ

2!
+
σ2 − 2iσθ − θ2

3!
+
σ3 − 3iσ2θ − 3σθ2 + iθ3

4!
+ . . .

)]
=

1

2i

(∞∑
n=0

1

(n+ 1)!
(σ + iθ)n −

∞∑
n=0

1

(n+ 1)!
(σ − iθ)n

)
(A.38)

=
1

2i

(
eσ+iθ − 1

σ + iθ
− eσ−iθ − 1

σ − iθ

)
=

eσσ sin(θ) + θ − eσθ cos(θ)

σ2 + θ2

=
Aσ + (1−B)θ

σ2 + θ2
,

and
∞∑
k=0

Φeven(θ, σ, k)

(k + 1)!

=

∞∑
k=0

1

(k + 1)!

b k2c∑
j=0

(−1)j
(
k

2j

)
σk−2jθ2j

= 1 +
σ

2!
+
σ2 + θ2

3!
+
σ3 − σθ2

4!
+

4σ4 − 6σ2θ2 + θ2

5!
+ · · ·

=
1

2

[
1 +

σ + iθ

2!
+
σ2 + 2iσθ − θ2

3!
+
σ3 + 3iσ2θ − 3σθ2 − iθ3

4!
+ . . .

+

(
1 +

σ − iθ
2!

+
σ2 − 2iσθ − θ2

3!
+
σ3 − 3iσ2θ − 3σθ2 + iθ3

4!
+ . . .

)]
=

1

2

(∞∑
n=0

1

(n+ 1)!
(σ + iθ)n +

∞∑
n=0

1

(n+ 1)!
(σ − iθ)n

)
(A.38)

=
1

2

(
eσ+iθ − 1

σ + iθ
+
eσ−iθ − 1

σ − iθ

)
=

eσσ cos(θ)− σ + eσθ sin(θ)

σ2 + θ2

=
(B − 1)σ +Aθ

σ2 + θ2
. �

188

A.6. Derivative of the Lie Logarithm

A.6 Derivative of the Lie Logarithm

Let G be a Lie group, A, B ∈ G, AdA the adjoint of A and d̂ = log(AB).

JBA :=
∂

∂ε
log(A exp(ε)B)∨

∣∣∣∣
ε=0

(A.40)

(2.78)
=

∂

∂ε
log
(

exp(ÂdAε)AB
)∨∣∣∣∣

ε=0

(A.41)

=
∂

∂ε
log
(

exp(ÂdAε) exp(d̂)
)∨∣∣∣∣

ε=0

(A.42)

=
∂

∂ε
cbh(AdAε,d)

∣∣∣∣
ε=0

(A.43)

(∗)
≈ ∂

∂ε

(
AdAε+

1

2
[AdAε,d] +

1

12
([AdAε, [AdAε,d]] + [d, [AdAε,d]])

)
ε=0

(A.44)

=

(
∂y

∂y
+

1

2
· ∂[y,d]

∂y

∣∣∣∣
y=0

(A.45)

+
1

12

(
∂[y, [y,d]]

∂y
− ∂[d, [y,d]]

∂y

)
y=0

)
∂AdAε

∂ε

∣∣∣∣
ε=0

=

(
I +

1

2
· ∂[y,d]

∂y

∣∣∣∣
y=0

(A.46)

+
1

12

(
∂[y, [0,d]]

∂y
+
∂[0, [y,d]]

∂y
− ∂[d,w]

∂w

∣∣∣∣
w=[y,0]

∂[y,d]

∂y

))
AdA

=

(
I +

1

2
· ∂[y,d]

∂y
+

1

12

∂[w,d]

∂w

∂[y,d]

∂y

)
AdA (A.47)

=

(
I +

1

2
· ∂[y,d]

∂y
+

1

12

(
∂[y,d]

∂y

)2
)
AdA . (A.48)

From line (A.46) to line (A.47), we used that [d,w] = −[w,d]. At (∗), the third

order Campbell-Baker-Hausdorff expansion is used. If we use the first-order or

second-order expansion instead, we receive

JBA :=
∂

∂ε
log(A exp(ε)B)∨

∣∣∣∣
ε=0

≈ AdA , (A.49)

or

JBA :=
∂

∂ε
log(A exp(ε)B)∨

∣∣∣∣
ε=0

≈
(
I +

1

2
· ∂[y,d]

∂y

)
AdA (A.50)

respectively.

189

A. Proofs and Formulae related to Lie Groups

190

Appendix B

Jacobians

B.1 Projections and Camera Forward Models

Let a ∈ Rn. The Jacobian of the projection function,

proj : Rn → Rn−1, proj(a) = 1
an

 a1

.

.

.

an−1

 , (B.1)

is

∂proj(a)

∂a
= 1

an

In×n − 1
an

 a1

.

.

.

an−1

 . (B.2)

Let x ∈ R3, f being the focal length and p the principal point. The Jacobian of the

monocular forward model,

ẑmono(x) = f · proj(x) + p , (B.3)

is

∂ẑmono(x)

∂x
= f · ∂proj(x)

∂x
= f

x3

[
1 0 −x1

x3

0 1 −x2
x3

]
. (B.4)

Similarly, for the stereo forward model

ẑstereo(x) =

(
f · proj(x) + p

f x1−bx3
+ p1

)
(B.5)

191

B. Jacobians

we get

∂ẑstereo(x)

∂x
= f

x3

1 0 −x1

x3

0 1 −x2
x3

1 0 −x1−b
x3

 , (B.6)

with b being the baseline.

B.2 Pose-Point Transformations

When a point y ∈ R3 is transformed using the homogeneous (4 × 4) matrix T ∈
SE(3), we often use the shorthand notation T ·y for Ry+t with R being the rotation

matrix and t being the translation vector of T. However, in order to derive the

Jacobians of such transformations, we need to be more precise. We write instead

proj(T · ẏ) = Ry + t (B.7)

with ẏ = (y1, y2, y3, 1)> being a function with maps the 3-vector y to its homoge-

neous counterpart. Note that the derivative of proj(ẋ) with respect to ẋ is

∂proj(q)

∂q

∣∣∣∣
q=ẋ

(B.2)
=
[
I3×3 −x

]
, (B.8)

since q4 = 1.

In the following, we wish to derive the partial derivatives of the transformation

proj(T · ẏ) with respect to the point x and pose T. The point Jacobian is simply

∂proj(T · ẏ)

∂y
=

∂(Ry + t)

∂y
= R (B.9)

As discussed in Section 2.4.10, the Jacobian with respect to a pose T is calculated

using the smooth paths Tk(t) := exp(t̂ek)T through T. Thus, the partial derivative

of the transformation proj(T · ẏ) with respect to T is

∂proj(exp(ε̂se(3)) · T · ẏ)

∂εk

∣∣∣∣
ε=0

=
∂proj(exp(ε̂se(3)) · ẋ)

∂εk

∣∣∣∣ ε = 0

x = R · y + t

=
∂proj(q)

∂q

∣∣∣∣
q=ẋ

∂ exp(ε̂se(3)) · ẋ
∂εk

∣∣∣∣
ε=0

(2.101)
=

[
I3×3 −x

]
· Gkẋ , (B.10)

192

B.3. Inverse Depth Point Transformations

with Gk being the kth generator of SE(3). For SE(3) (and Sim(3) too), the last

row of each generator Gk consists of zeros only (see Appendix A.1). Thus, the last

entry of the vector Giẋ is zero too and therefore

∂proj(exp(ε̂se(3)) · ẋ)

∂εk

∣∣∣∣
ε=0

=
[
I3×3 −x

]
· Gkẋ =

[
I3×3 0

]
· Gkẋ , (B.11)

Now, we can write down the (3× 6) pose Jacobian for SE(3):

∂proj(exp(ε̂se(3)) · T · ẏ)

∂ε

∣∣∣∣
ε=0

=
[
I3×3 0

]
·
[
G1ẋ G2ẋ G3ẋ G4ẋ G5ẋ G6ẋ

]
=

[
I3×3 −[x]×

]
with x = R · y + t . (B.12)

Using similar arguments, we get for S ∈ Sim(3)

∂proj(S · ẏ)

∂y
=

∂(sRy + t)

∂y
= sR (B.13)

and

∂proj(exp(ε̂sim(3)) · S · ẏ)

∂ε

∣∣∣∣
ε=0

=
[
I3×3 −[x]× x

]
, (B.14)

with x = sR · y + t.

B.3 Inverse Depth Point Transformations

Let ψ ∈ R3. The function Π(ψ) = (ψ1

ψ3
, ψ2

ψ3
, 1
ψ3

)> maps an inverse depth point to its

Euclidean counterpart and vice versa. Its Jacobian is

∂Π(ψ)

∂ψ
=

1
ψ3

0 −ψ1

ψ2
3

0 1
ψ3
−ψ2

ψ2
3

0 0 − 1
ψ2
3

 = 1
ψ3

1 0 −y1

0 1 −y2

0 0 −y3

 with y = Π(ψ) . (B.15)

The Jacobian of the transformation proj(T · Π̇(ψ)) = R · Π(ψ) + t with respect to

the inverse depth point ψ is:

∂(R ·Π(ψ) + t)

∂ψ
=

∂(Ry + t)

∂y
· ∂Π(ψ)

∂ψ
= R ·

 1

ψ3

1 0 −y1

0 1 −y2

0 0 −y3

=
1

ψ3

[
r1 r2 −Ry

]
with y = Π(ψ) , (B.16)

and r1, r2 being the first two column vectors of R.

193

B. Jacobians

B.4 Bundle Adjustment

Under the assumption of a monocular camera, the Jacobians of bundle adjustment

are

∂(z− ẑmono(proj(T · ẏ)))

∂y
= − ∂ẑmono(x)

∂x

∣∣∣∣
x=Ry+t

· ∂(Ry + t)

∂y

= − f
x3

[
1 0 −x1

x3

0 1 −x2
x3

]
· R (B.17)

and

∂(z− ẑmono(proj(exp(ε̂se(3)) · T · ẏ)))

∂ε

∣∣∣∣
ε=0

= − ∂ẑ(x)

∂x

∣∣∣∣
x=Ry+t

· ∂proj(exp(ε̂) · ẋ)

∂ε

∣∣∣∣
ε=0

= − f
x3

[
1 0 −x1

x3

0 1 −x2
x3

]
·
[
I3×3 −[x]×

]
. (B.18)

B.5 Anchored Inverse Depth Bundle Adjustment

The reprojection errors of anchored inverse depth bundle adjustment are defined as:

z− ẑ(proj(Tlw · T−1
aw · Π̇(ψ))) (B.19)

with Tlw ∈ SE(3) being the observer pose, Taw ∈ SE(3) being the anchor pose and

ψ ∈ R3 the inverse depth point. Furthermore, let Tla = TlwT
−1
aw and y = Π(ψ).

Assuming a stereo camera, the inverse depth point Jacobian is:

∂(z− ẑstereo(proj(Tlw · T−1
aw · Π̇(ψ)))

∂ψ

= − ∂ẑstereo(x)

∂x

∣∣∣∣
x=Rlay+tla

· ∂(Rla ·Π(ψ) + tla)

∂ψ

= − f
ψ3x3

1 0 −x1

x3

0 1 −x2
x3

1 0 −x1−b
x3

[rla1 rla2 −Rlay
]
. (B.20)

with rla1, rla2 being the first two column vectors of Rla.

194

B.6. Pose-graph Optimisation

The derivative with respect to the observer pose Tlw is:

∂(z− ẑstereo(proj(exp(ε̂se(3)) · Tlw · T−1
aw · Π̇(ψ)))

∂ε

∣∣∣∣∣
ε=0

= − ∂ẑstereo(x)

∂x

∣∣∣∣
x=Rlay+tla

·
∂proj(exp(ε̂se(3)) · ẋ)

∂ε

∣∣∣∣
ε=0

= − f
x3

1 0 −x1

x3

0 1 −x2
x3

1 0 −x1−b
x3

[I3×3 −[x]×

]
. (B.21)

Finally, the Jacobian with respect to the anchor pose Tla equals:

∂(z− ẑstereo(proj(Tlw · (exp(ε̂se(3)) · Taw)−1 · Π̇(ψ)))

∂ε

∣∣∣∣∣
ε=0

(2.69)
= −

∂ẑstereo(proj(Tlw · T−1
aw · exp(−̂εse(3)) · ẏ))

∂ε

∣∣∣∣∣
ε=0

=
∂(ẑstereo(proj(Tla · exp(ε̂se(3)) · ẏ))

∂ε

∣∣∣∣
ε=0

=
∂ẑstereo(x)

∂x

∣∣∣∣
x=Rlay+tla

· ∂proj(Tlaẏ)

∂y
·
∂proj(exp(ε̂se(3)) · ẏ)

∂ε

∣∣∣∣
ε=0

= f
x3

1 0 −x1

x3

0 1 −x2
x3

1 0 −x1−b
x3

 · Rla · [I3×3 −[y]×

]
. (B.22)

B.6 Pose-graph Optimisation

The energy of pose-graph optimisation is the sum of squares over terms of the form

log(TjiTiT
−1
j)∨ . (B.23)

Here, Tji is the constant ’measurement’ and Ti, Tj are the variables we wish to

modify during the optimisation.

Again, let us first assume Tji, Ti, Tj ∈ SE(3). Then, the residual error is defined

as
(
τ

φ

)
:= log(TjiTiT

−1
j)∨se(3) with τ ,φ ∈ R3. The partial derivative with respect

195

B. Jacobians

to Ti can be calculated as:

∂

∂ε
log(Tji exp(ε̂se(3))TiT

−1
j)∨se(3)

∣∣∣∣
ε=0

(A.50)
≈

I +
1

2
·
∂
[
y,
(
τ

φ

)]
se(3)

∂y

 AdTji (B.24)

(A.17)
=

(
I +

1

2
·

[
− [φ]× −[τ]×

O3×3 −[φ]×

])
·

[
Rji [tji]×Rji

O Rji

]
.

Here, we approximate the derivative of the matrix logarithm using the second-order

Campell-Baker-Haussdorf expansion (see Appendix A.6). Similarly, for the Jacobian

with respect to Tj it holds:

∂

∂ε
log(TjiTi(exp(ε̂se(3))Tj)

−1)∨se(3)

∣∣∣∣
ε=0

(2.73)
= − ∂

∂ε
log(exp(ε̂se(3))TjT

−1
i T−1

ji)∨se(3)

∣∣∣∣
ε=0

(A.50)
≈ −

I +
1

2
·
∂
[
y,
(

−τ
−φ

)]
se(3)

∂y

 AdI

(A.17)
= −

(
I +

1

2
·

[
[φ]× [τ]×

O3×3 [φ]×

])
. (B.25)

For the group of similarity transformations Sim(3), the residual error is defined

as (τ>,φ>, ς)> := log(SjiSiS
−1
j)∨sim(3) with ς ∈ R and Sji, Si, Sj ∈ Sim(3). The

Jacobians are

∂

∂ε
log(Sji exp(ε̂sim(3))SiS

−1
j)∨sim(3)

∣∣∣∣
ε=0

(B.26)

(A.50,A.19)
≈

I +
1

2
·

− [φ]× − ςI −[τ]× τ

O3×3 −[φ]× 0

O1×3 O1×3 0

 ·

sjiRij [tji]×Rji −tji

O3×3 Rji 0

O1×3 O1×3 1

 ,

and

∂

∂ε
log(SjiSi(exp(ε̂sim(3))Sj)

−1)∨sim(3)

∣∣∣∣
ε=0

(A.50,A.19)
≈ −

I +
1

2
·

[φ]× + ςI [τ]× −τ

O3×3 [φ]× 0

O1×3 O1×3 0

 . (B.27)

196

Bibliography

Bibliography

Adelson, E., Anderson, C., Bergen, J., Burt, P., and Ogden, J. (1984). Pyramid

methods in image processing. RCA engineer, 29(6):33–41. 72

Agarwal, S., Snavely, N., Simon, I., Seitz, S., and Szeliski, R. (2009). Building

Rome in a day. In Proceedings of the International Conference on Computer

Vision (ICCV). 21, 82

Agrawal, M. (2006). A Lie algebraic approach for consistent pose registration for

general euclidean motion. In Proceedings of the IEEE/RSJ Conference on Intel-

ligent Robots and Systems (IROS). 22, 129, 139

Alcantarilla, P., Yebes, J., Almazán, J., and Bergasa, L. (2012). On combining visual

SLAM and dense scene flow to increase the robustness of localization and mapping

in dynamic environments. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). 84

Angeli, A., Filliat, D., Doncieux, S., and Meyer, J.-A. (2008). Fast and incremental

method for loop-closure detection using bags of visual words. IEEE Transactions

on Robotics (T-RO), 24(5):1027–1037. 23, 128, 173

Arun, K., Huang, T., and Blostein, S. (1987). Least-squares fitting of two 3-d point

sets. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

9(5):698–700. 129, 159

Bailey, T., Nieto, J., and Nebot, E. (2006). Consistency of the FastSLAM algorithm.

In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA). 121

197

Bibliography

Baker, S. and Matthews, I. (2004). Lucas-Kanade 20 years on: A unifying frame-

work: Part 1. International Journal of Computer Vision (IJCV), 56(3):221–255.

155

Bay, H., Tuytelaars, T., and Van Gool, L. (2006). SURF: Speeded up robust features.

In Proceedings of the European Conference on Computer Vision (ECCV). 70, 82,

159

Beall, C., Lawrence, B., Ila, V., and Dellaert, F. (2010). 3D reconstruction of

underwater structures. In Proceedings of the IEEE/RSJ Conference on Intelligent

Robots and Systems (IROS), pages 4418–4423. 84

Bell, B. and Cathey, F. (1993). The iterated Kalman filter update as a Gauss-

Newton method. IEEE Transactions on Automatic Control, 38(2):294–297. 96,

120

Besl, P. and McKay, N. (1992). A method for registration of 3D shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 14(2):239–

256. 175

Betgé-Brezetz, S., Hébert, P., Chatila, R., and Devy, M. (1996). Uncertain map

making in natural environments. In Proceedings of the IEEE International Con-

ference on Robotics and Automation (ICRA). 19, 118

Biber, P. and Duckett, T. (2005). Dynamic maps for long-term operation of mobile

service robots. In Proceedings of Robotics: Science and Systems (RSS). 179

Bosse, M., Newman, P., Leonard, J. J., Soika, M., Feiten, W., and Teller, S. (2003).

An atlas framework for scalable mapping. In Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA). 138

Brown, D. C. (1958). A solution to the general problem of multiple station analytical

stereo triangulation. Technical report, Patrick Airforce Base, Florida. 20, 81

Byrod, M. and Astrom, K. (2010). Conjugate gradient bundle adjustment. In

Proceedings of the European Conference on Computer Vision (ECCV). 82

Cadena, C., McDonald, J., Leonard, J., and Neira, J. (2011). Place recognition

using near and far visual information. In World Congress of the International

Federation of Automatic Control (IFAC). 158

198

Bibliography

Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). BRIEF: binary robust

independent elementary features. In Proceedings of the European Conference on

Computer Vision (ECCV). 82

Castellanos, J., Martinez-Cantin, R., Tardós, J., and Neira, J. (2007). Robocentric

map joining: Improving the consistency of EKF-SLAM. Robotics and Autonomous

Systems, 55:21–29. 119

Castellanos, J., Neira, J., and Tardós, J. (2004). Limits to the consistency of EKF-

based SLAM. In Proceedings of the IFAC Symposium on Intelligent Autonomous

Vehicles (IAV). 94, 119

Castellanos, J. A. (1998). Mobile Robot Localization and Map Building: A Multi-

sensor Fusion Approach. PhD thesis, Universidad de Zaragoza, Spain. 19, 118

Castellanos, J. A., Tardós, J. D., and Schmidt, G. (1997). Building a global map of

the environment of a mobile robot: The importance of correlations. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA). 18

Castle, R., Klein, G., and Murray, D. (2011). Wide-area augmented reality using

camera tracking and mapping in multiple regions. Computer Vision and Image

Understanding (CVIU). 173

Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for con-

vex problems with applicationsto imaging. Journal of Mathematical Imaging and

Vision, 40(1):120–145. 72

Chiuso, A., Favaro, P., Jin, H., and Soatto, S. (2002). Structure from motion causally

integrated over time. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence (PAMI), 24(4):523–535. 20, 88

Chli, M. and Davison, A. J. (2009). Active Matching for visual tracking. Robotics and

Autonomous Systems, 57(12):1173 – 1187. Special Issue ‘Inside Data Association’.

82, 115

Churchill, W. and Newman, P. (2012). Practice makes perfect? managing and

leveraging visual experiences for lifelong navigation. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA). 179

199

Bibliography

Civera, J., Davison, A. J., Magallón, J. A., and Montiel, J. M. M. (2009a). Drift-

free real-time sequential mosaicing. International Journal of Computer Vision

(IJCV), 81(2):128–137. 116

Civera, J., Davison, A. J., and Montiel, J. M. M. (2008). Inverse depth parametriza-

tion for monocular SLAM. IEEE Transactions on Robotics (T-RO), 24(5):932–

945. 98

Civera, J., Grasa, O., Davison, A. J., and Montiel, J. M. M. (2010). 1-point RANSAC

for EKF filtering. Application to real-time structure from motion and visual odom-

etry. Journal of Field Robotics, 27(5):609–631. 84

Civera, J., Grasa, O. G., Davison, A. J., and Montiel, J. M. M. (2009b). 1-point

RANSAC for EKF-based structure from motion. In Proceedings of the IEEE/RSJ

Conference on Intelligent Robots and Systems (IROS). 88, 119

Clemente, L. A., Davison, A. J., Reid, I., Neira, J., and Tardós, J. D. (2007).

Mapping large loops with a single hand-held camera. In Proceedings of Robotics:

Science and Systems (RSS). 79, 124, 138

Corke, P., Strelow, D., and Singh, S. (2004). Omnidirectional visual odometry for a

planetary rover. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots

and Systems (IROS). 84

Cummins, M. and Newman, P. (2008). Accelerated appearance-only SLAM. In

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA). 173

Cummins, M. and Newman, P. (2009). Highly scalable appearance-only SLAM —

FAB-MAP 2.0. In Proceedings of Robotics: Science and Systems (RSS). 23, 116,

128, 173

Davis, T. A. (2006). Direct Methods for Sparse Linear Systems. SIAM. 67, 69, 82,

131

Davison, A. J. (1998). Mobile Robot Navigation Using Active Vision. PhD thesis,

University of Oxford. 18, 19, 118

Davison, A. J. (2003). Real-time simultaneous localisation and mapping with a

single camera. In Proceedings of the International Conference on Computer Vision

(ICCV). 20, 24, 55, 82, 83, 88, 95, 119, 123, 141

200

Bibliography

Davison, A. J. (2005). Active search for real-time vision. In Proceedings of the

International Conference on Computer Vision (ICCV). 24, 70, 82, 115

Davison, A. J., Molton, N. D., Reid, I., and Stasse, O. (2007). MonoSLAM: Real-

time single camera SLAM. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 29(6):1052–1067. 22, 24, 85, 95

Deans, M. and Herbert, M. (2001). Experimental comparison of techniques for

localization and mapping using a bearing-only senser. Experimental Robotics VII,

pages 395–404. 120

Dellaert, F. and Kaess, M. (2006). Square root SAM: Simultaneous localization

and mapping via square root information smoothing. International Journal of

Robotics Research (IJRR), 25:1181–1203. 21, 69, 86, 139

Dudek, G. and Jugessur, D. (2000). Robust place recognition using local appearance

based methods. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). 173

Dyer, P. and McReynolds, S. (1969). Extension of square-root filtering to include

process noise. Journal of Optimization Theory and Applications, 3(6):444–458. 96

Eade, E. (2008). Monocular Simultaneous Localisation and Mapping. PhD thesis,

University of Cambridge. 78, 98, 101, 120, 121

Eade, E. and Drummond, T. (2006). Scalable monocular SLAM. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 23,

86, 121

Eade, E. and Drummond, T. (2007). Monocular SLAM as a graph of coalesced

observations. In Proceedings of the International Conference on Computer Vision

(ICCV). 22, 85, 88, 90, 96, 120, 124, 138, 141

Eade, E. and Drummond, T. (2008). Unified loop closing and recovery for real

time monocular SLAM. In Proceedings of the British Machine Vision Conference

(BMVC). 173

Eade, E. and Drummond, T. (2009). Edge landmarks in monocular SLAM. Image

and Vision Computing (IVC), 27(5):588 – 596. 69

201

Bibliography

Engels, C., Stewénius, H., and Nistér, D. (2006). Bundle adjustment rules. In

Proceedings of Photogrammetric Computer Vision. 67, 82, 112

Estrada, C., Neira, J., and Tardós, J. D. (2005). Hierarchical SLAM: Real-time

accurate mapping of large environments. IEEE Transactions on Robotics (T-RO),

21(4):588–596. 138

Eustice, R. M., Singh, H., and Leonard, J. J. (2005). Exactly sparse delayed state

filters. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). 39, 139, 140

Fayad, J., Russell, C., and Agapito, L. (2011). Automated articulated structure and

3d shape recovery from point correspondences. In Proceedings of the International

Conference on Computer Vision (ICCV). 179

Finkel, R. A. and Bentley, J. L. (1976). Quad trees a data structure for retrieval on

composite keys. ACTA INFORMATICA, 4(1):1–9. 74, 83

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm

for model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395. 79, 82

Frese, U. (2006). Treemap: An O(logn) algorithm for indoor simultaneous localiza-

tion and mapping. Autonomous Robots, 21(2):103–122. 140

Gallier, J. (2011). Geometric Methods and Applications: For Computer Science and

Engineering. Springer, second edition. 47, 52, 53, 186

Galvez-Lopez, D. and Tardós, J. D. (2012). Bags of binary words for fast place

recognition in image sequences. IEEE Transactions on Robotics (T-RO), 28(5).

172, 174

Geiger, A., Ziegler, J., and Stiller, C. (2011). Stereoscan: Dense 3d reconstruction

in real-time. In Proceedings of the IEEE Intelligent Vehicles Symposium. 84

Graber, G., Pock, T., and Bischof, H. (2011). Online 3d reconstruction using con-

vex optimization. In 1st Workshop on Live Dense Reconstruction From Moving

Cameras @ ICCV. 180

Grisetti, G., Stachniss, C., Grzonka, S., and Burgard, W. (2007). A tree parameteri-

zation for efficiently computing maximum likelihood maps using gradient descent.

In Proceedings of Robotics: Science and Systems (RSS). 22, 23, 139, 146

202

Bibliography

Gutmann, J.-S. and Konolige, K. (1999). Incremental mapping of large cyclic envi-

ronments. In International Symposium on Computational Intelligence in Robotics

and Automation (CIRA). 139

Gyer, M. S. and Brown, D. C. (1967). The inversion of the normal equations of

analytical aerotriangulation by the method of recursive partitioning. Technical

report, Rome Air Development Center, Rome, New York. 82

Haralick, R., Lee, C., Ottenberg, K., and Nölle, M. (1994). Review and analysis of

solutions of the three point perspective pose estimation problem. International

Journal of Computer Vision (IJCV). 84

Harris, C. G. and Pike, J. M. (1987). 3D positional integration from image sequences.

In Proceedings of the Alvey Vision Conference, pages 233–236. 20, 85

Harris, C. G. and Stephens, M. (1988). A combined corner and edge detector. In

Proceedings of the Alvey Vision Conference, pages 147–151. 82, 84

Hartley, R. (1995). In defence of the 8-point algorithm. In Proceedings of the

International Conference on Computer Vision (ICCV). 70

Hartley, R. and Schaffalitzky, F. (2004). L-infinity minimization in geometric recon-

struction problems. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 86, 120

Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision.

Cambridge University Press, second edition. 37, 59, 68, 79, 82, 151

Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2010). RGB-D map-

ping: Using depth cameras for dense 3D modeling of indoor environments. In

Proceedings of the International Symposium on Experimental Robotics (ISER).

175

Highham, N. (1990). Exploiting fast matrix multiplication within the level 3 BLAS.

ACM Transactions on Mathematical Software (TOMS), 16. 64

Holmes, S., Sibley, G., Klein, G., and Murray, D. W. (2009). A relative frame

representation for fixed-time bundle adjustment in SFM. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). 119, 173

203

Bibliography

Horn, B. and Schunck, B. (1981). Determining optical flow. Artificial Intelligence,

17:185–203. 71

Howard, A., Sukhatme, G. S., and Mataric, M. J. (2004). Multi-robot mapping using

manifold representations. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). 142, 172

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge Univer-

sity Press. 87

Jeong, Y., Nister, D., Steedly, D., Szeliski, R., and Kweon, I. (2010). Pushing

the envelope of modern methods for bundle adjustment. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

1474–1481. 67, 82, 102, 143, 151

Johannsson, H., Kaess, M., Fallon, M., and Leonard, J. (2012). Temporally scalable

visual slam using a reduced pose graph. Technical report, Massachusetts Institute

of Technology. 173, 174, 175

Julier, S. and Uhlmann, J. (2004). Unscented filtering and nonlinear estimation.

Proceedings of the IEEE, 92(3):401–422. 119

Julier, S. and Uhlmann, K. J. (2001). A counter example to the theory of simultane-

ous localization and map building. In IEEE International Conference on Robotics

and Automation. 19, 94, 119

Jung, I. and Lacroix, S. (2003). High resolution terrain mapping using low altitude

aerial stereo imagery. In Proceedings of the International Conference on Computer

Vision (ICCV). 85, 88, 119, 141

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., and Dellaert, F. (2012).

iSAM2: Incremental smoothing and mapping using the Bayes tree. International

Journal of Robotics Research (IJRR). To appear. 21, 117, 139

Kaess, M., Ni, K., and Dellaert, F. (2009). Flow separation for fast and robust stereo

odometry. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), Kobe, Japan. 84

Kaess, M., Ranganathan, A., and Dellaert, F. (2008). iSAM: Incremental smoothing

and mapping. IEEE Transactions on Robotics (T-RO), 24(6):1365–1378. 21, 117,

139

204

Bibliography

Kalman, R. (1960). A new approach to linear filtering and prediction problems.

Journal of Basic Engineering, 82(1):35–45. 118

Klein, G. and Murray, D. W. (2007). Parallel tracking and mapping for small

AR workspaces. In Proceedings of the International Symposium on Mixed and

Augmented Reality (ISMAR). 22, 24, 73, 78, 83, 85, 89, 120, 141, 143, 173

Klein, G. and Murray, D. W. (2009). Parallel tracking and mapping on a camera

phone. In Proceedings of the International Symposium on Mixed and Augmented

Reality (ISMAR). 78, 83

Klippenstein, J. and Zhang, H. (2007). Quantitative evaluation of feature extractors

for visual SLAM. In Proceedings of the Canadian Conference on Computer and

Robot Vision (CRV). 83

Konolige, K. (2010). Sparse sparse bundle adjustment. In Proceedings of the British

Machine Vision Conference (BMVC). 67, 69, 82, 143

Konolige, K. and Agrawal, M. (2008). FrameSLAM: From bundle adjustment to

real-time visual mapping. IEEE Transactions on Robotics (T-RO), 24:1066–1077.

22, 23, 24, 55, 123, 131, 140, 145, 149, 152, 173, 174, 175

Konolige, K., Agrawal, M., and Solà, J. (2007). Large scale visual odometry for rough

terrain. In Proceedings of the International Symposium on Robotics Research

(ISRR). 24, 84, 141

Konolige, K. and Bowman, J. (2009). Towards lifelong visual maps. In Proceedings

of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS). 179

Konolige, K., Grisetti, G., Kümmerle, R., Burgard, W., Limketkai, B., and Regis, V.

(2010). Sparse pose adjustment for 2d mapping. In Proceedings of the IEEE/RSJ

Conference on Intelligent Robots and Systems (IROS). 69, 139

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011a).

g2o: A general framework for graph optimization. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA). 68, 69, 81, 97,

149, 161

Kümmerle, R., Grisetti, G., and W.Burgard (2011b). Simultaneous calibration,

localization, and mapping. In Proceedings of the IEEE/RSJ Conference on Intel-

ligent Robots and Systems (IROS). 68

205

Bibliography

Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C.,

and Kleiner, A. (2009). On measuring the accuracy of SLAM algorithms. Au-

tonomous Robots, 27(4):387–407. 161

Kundu, A., Krishna, K. M., and Jawahar, C. V. (2011). Realtime multibody vi-

sual SLAM with a smoothly moving monocular camera. In Proceedings of the

International Conference on Computer Vision (ICCV). 179

Lemaire, T., Lacroix, S., and Solà, J. (2005). A practical 3D bearing-only SLAM

algorithm. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and

Systems (IROS). 83

Leonard, J. J. and Durrant-Whyte, H. F. (1991). Simultaneous map building and

localization for an autonomous mobile robot. In Proceedings of the International

Workshop on ’Intelligence for Mechanical Systems’ @ IROS. 19, 118

Leutenegger, S., Chli, M., and Siegwart, R. (2011). BRISK: Binary robust invariant

scalable keypoints. In Proceedings of the International Conference on Computer

Vision (ICCV). 82

Lim, J., Pollefeys, M., and Frahm, J.-M. (2011). Online environment mapping. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 22, 24, 55, 83, 140, 141, 144, 151, 152, 173, 174

Lourakis, M. I. A. and Argyros, A. A. (2009). SBA: A software package for generic

sparse bundle adjustment. ACM Transactions on Mathematical Software, 36(1):1–

30. 82

Lovegrove, S. J., Davison, A. J., and Ibanez-Guzmán, J. (2011). Accurate visual

odometry from a rear parking camera. In Proceedings of the IEEE Intelligent

Vehicles Symposium (IV). 68

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In

Proceedings of the International Conference on Computer Vision (ICCV). 19,

82

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. In-

ternational Journal of Computer Vision (IJCV), 60(2):91–110. 70, 82

Lu, F. and Milios, E. (1997). Globally consistent range scan alignment for environ-

ment mapping. Autonomous Robots, 4(4):333–349. 22, 23, 129, 139

206

Bibliography

Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique

with an application to stereo vision. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI). 83

Maddern, W., Milford, M., and Wyeth, G. (2012). CAT-SLAM: probabilistic local-

isation and mapping using a continuous appearance-based trajectory. The Inter-

national Journal of Robotics Research, 31(4):429–451. 174

Mataric, M. (1990). A distributed model for mobile robot environment-learning and

navigation. PhD thesis, Massachusetts Institute of Technology. 172

McDonald, J., Kaess, M., Cadena, C., Neira, J., and Leonard, J. J. (2011). 6-DOF

multi-session visual SLAM using anchor nodes. In Proceedings of the European

Conference on Mobile Robotics (ECMR). 179

McLauchlan, P. and Murray, D. (1996). Active camera calibration for a head-eye

platform using a variable state-dimension filter. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 18(1):15–22. 120

McLauchlan, P. F. and Murray, D. W. (1995). A unifying framework for structure

and motion recovery from image sequences. In Proceedings of the International

Conference on Computer Vision (ICCV). 21, 120

Mei, C., Benhimane, S., Malis, E., and Rives, P. (2008). Efficient homography-based

tracking and 3-D reconstruction for single-viewpoint sensors. IEEE Transactions

on Robotics (T-RO), 24(6):1352–1364. 130

Mei, C., Sibley, G., Cummins, M., Newman, P., and Reid, I. (2009). A constant

time efficient stereo SLAM system. In Proceedings of the British Machine Vision

Conference (BMVC). 24, 55, 74, 84, 173, 174

Mei, C., Sibley, G., Cummins, M., Newman, P., and Reid, I. (2010a). RSLAM:

A system for large-scale mapping in constant-time using stereo. International

Journal of Computer Vision (IJCV), 94:198–214. 84, 140, 141, 173

Mei, C., Sibley, G., and Newman, P. (2010b). Closing loops without places. In Pro-

ceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS),

pages 3738–3744. 145, 147, 174

207

Bibliography

Milford, M., Wyeth, G., and Prasser, D. (2004). Simultaneous localisation and

mapping from natural landmarks using ratslam. In Australasian Conference on

Robotics and Automation 2004. 16, 19, 172

Milford, M. J. and Wyeth, G. (2008). Single camera vision-only SLAM on a suburban

road network. In IEEE International Conference on Robotics and Automation

(ICRA). 19, 172

Montemerlo, M. and Thrun, S. (2003). Simultaneous localization and mapping

with unknown data association using FastSLAM. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA). 19, 23, 78, 121

Montiel, J. M. M., Civera, J., and Davison, A. J. (2006). Unified inverse depth

parametrization for monocular SLAM. In Proceedings of Robotics: Science and

Systems (RSS). 22, 55, 77, 83, 88, 119

Moravec, H. P. (1980). Obstacle Avoidance and Navigation in the Real World by a

Seeing Robot Rove. PhD thesis, Stanford. 19

Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., and Sayd, P. (2006). Real-

time localization and 3D reconstruction. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 64, 84, 85, 144, 152

Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with auto-

matic algorithm configuration. In International Conference on Computer Vision

Theory and Application (VISSAPP), pages 331–340. 159

Neira, J. and Tardós, J. D. (2001). Data association in stochastic mapping using

the joint compatibility test. IEEE Transactions on Robotics and Automation,

17(6):890–897. 82, 115

Newcombe, R. A. and Davison, A. J. (2010). Live dense reconstruction with a single

moving camera. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 129

Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J.,

Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011a). KinectFusion:

Real-time dense surface mapping and tracking. In Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR). 142, 175

208

Bibliography

Newcombe, R. A., Lovegrove, S., and Davison, A. J. (2011b). DTAM: Dense tracking

and mapping in real-time. In Proceedings of the International Conference on

Computer Vision (ICCV). 142, 155, 180

Newman, P. (1999). On the Structure and Solution of the Simultaneous Localization

and Map Building Problem. PhD thesis, University of Sydney. 19, 118

Nistér, D. (2003). Preemptive RANSAC for live structure and motion estimation.

In Proceedings of the International Conference on Computer Vision (ICCV). 84

Nistér, D. (2004). An efficient solution to the five-point relative pose problem. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(6):756–

777. 70, 82, 103, 128

Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual odometry. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

21, 24, 84

Nistér, D., Naroditsky, O., and Bergen, J. (2006). Visual odometry for ground

vehicle applications. Journal of Field Robotics, 23(1):–. 84, 141

Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 23, 116, 128, 173

Nocedal, J. and Wright, S. (2006). Nummerical Optimization. Springer Series in

Operations Research and Financial Engineering. Springer, second edition. 31

Olson, E., Leonard, J. J., and Teller, S. (2006). Fast iterative alignment of pose

graphs with poor initial estimates. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). 139

Paskin, M. A. (2003). Thin junction tree filters for simultaneous localization and

mapping. In Proceedings of the International Joint Conference on Artificial In-

telligence (IJCAI). 19, 138

Paz, L. M., Jensfelt, P., Tardós, J. D., and Neira, J. (2007). EKF SLAM updates in

O(n) with divide and conquer SLAM. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). 138

209

Bibliography

Pietzsch, T. (2008). Efficient feature parameterisation for visual SLAM using inverse

depth bundles. In Proceedings of the British Machine Vision Conference (BMVC).

22, 85, 88, 98, 119

Pinies, P. and Tardós, J. D. (2008). Large scale SLAM building conditionally in-

dependent local maps: Application to monocular vision. IEEE Transactions on

Robotics (T-RO), 24(5):1094–1106. 124, 138

Pirker, K., Rüther, M., and Bischof, H. (2011). CD SLAM - continuous localization

and mapping in a dynamic world. In Proceedings of the IEEE/RSJ Conference

on Intelligent Robots and Systems (IROS). 85, 173, 174, 179

Ranftl, R., Gehrig, S., Pock, T., and Bischof, H. (2012). Pushing the limits of

stereo using variational stereo estimation. In Proceedings of the IEEE Intelligent

Vehicles Symposium). 155

Rossmann, W. (2002). Lie Groups: An Introduction Through Linear Groups. Oxford

Graduate Texts in Mathematics. Oxford University press. 47, 185

Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner de-

tection. In Proceedings of the European Conference on Computer Vision (ECCV).

73, 83

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: An efficient

alternative to SIFT or SURF. In Proceedings of the International Conference on

Computer Vision (ICCV). 82

Rybski, P., Zacharias, F., Lett, J., Masoud, O., Gini, M., and Papanikolopoulos, N.

(2003). Using visual features to build topological maps of indoor environments.

In IEEE International Conference on Robotics and Automation. 83

Samet, H. (1984). The quadtree and related hierarchical data structures. ACM

Computing Surveys (CSUR), 16(2):187–260. 84

Scaramuzza, D., Fraundorfer, F., Pollefeys, M., and Siegwart, R. (2009). Absolute

scale in structure from motion from a single vehicle mounted camera by exploit-

ing nonholonomic constraints. In Proceedings of the International Conference on

Computer Vision (ICCV). 124

Schönhage, J. and Strassen, V. (1971). Schnelle Multiplikation grosser Zahlen. Com-

puting, 7:281–292. 64

210

Bibliography

Se, S., Lowe, D., and Little, J. (2002). Mobile robot localization and mapping with

uncertainty using scale-invariant visual landmarks. The International Journal of

Robotics Research, 21(8):735–758. 19

Shewchuk, J. (1994). An introduction to the conjugate gradient method without the

agonizing pain. Technical report, School of Computer Science, Carnegie Mellon

University. 33, 67

Shi, J. and Tomasi, C. (1994). Good features to track. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 82

Sibley, G., Matthies, L., and Sukhatme, G. (2005). Bias reduction filter convergence

for long range stereo. In 12th International Symposium of Robotics Research. 38,

96, 120

Sibley, G., Matthies, L., and Sukhatme, G. (2008). A sliding window filter for

incremental SLAM. Unifying perspectives in computational and robot vision, pages

103–112. 21, 117, 120

Sibley, G., Mei, C., Reid, I., and Newman, P. (2009). Adaptive relative bundle

adjustment. In Proceedings of Robotics: Science and Systems (RSS). 140, 142,

146, 151, 172

Sim, R., Elinas, P., Griffin, M., and Little, J. J. (2005). Vision-based SLAM using

the Rao-Blackwellised particle filter. In Proceedings of the IJCAI Workshop on

Reasoning with Uncertainty in Robotics. 23, 86, 121

Sivic, J. and Zisserman, A. (2003). Video Google: A text retrieval approach to object

matching in videos. In Proceedings of the International Conference on Computer

Vision (ICCV). 159, 173

Smith, M., Baldwin, I., Churchill, W., Paul, R., and Newman, P. (2009). The

new college vision and laser data set. International Journal of Robotics Research

(IJRR), 28(5):595–599. 164

Smith, P., Reid, I., and Davison, A. J. (2006). Real-time single-camera SLAM with

straight lines. In Proceedings of the British Machine Vision Conference (BMVC).

69

211

Bibliography

Smith, R., Self, M., and Cheeseman, P. (1987). A stochastic map for uncertain

spatial relationships. In Workshop on Spatial Reasoning and Multisensor Fusion.

18, 118

Solà, J., Devy, M., Monin, A., and Lemaire, T. (2005). Undelayed initialization in

bearing only SLAM. In Proceedings of the IEEE/RSJ Conference on Intelligent

Robots and Systems (IROS). 55, 83

Steder, B., Grisetti, G., Grzonka, S., Stachniss, C., Rottmann, A., and Burgard, W.

(2007). Learning maps in 3D using attitude and noisy vision sensors. In Proceed-

ings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS). 24,

140

Stillwell, J. (2008). Naive Lie Theory. Springer. 40, 41, 47, 185

Strasdat, H., Davison, A. J., Montiel, J. M. M., and Konolige, K. (2011). Dou-

ble window optimisation for constant time visual SLAM. In Proceedings of the

International Conference on Computer Vision (ICCV). 169, 175

Strasdat, H., Montiel, J., and Davison, A. (2012). Visual SLAM: Why filter? Image

and Vision Computing (IVC). 121

Strasdat, H., Montiel, J. M. M., and Davison, A. J. (2010a). Real-time monocular

SLAM: Why filter? In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA). 121

Strasdat, H., Montiel, J. M. M., and Davison, A. J. (2010b). Scale drift-aware large

scale monocular SLAM. In Proceedings of Robotics: Science and Systems (RSS).

69, 82, 83, 84, 139, 140, 152

Tardós, J. D., Neira, J., Newman, P., and Leonard, J. J. (2002). Robust mapping

and localization in indoor environments using sonar data. International Journal

of Robotics Research (IJRR), 21(4):311–330. 138

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. Cambridge:

MIT Press. 38, 95

Thrun, S., Koller, D., Ghahramani, Z., Durrant-Whyte, H., and Ng, A. Y. (2002).

Simultaneous mapping and localization with sparse extended information filters.

In Proceedings of the Fifth International Workshop on Algorithmic Foundations

of Robotics. 19, 86, 138

212

Bibliography

Tikhonov, A. and Arsenin, V. (1977). Solutions of ill-posed problems. Winston,

Washington,DC. 97

Tomasi, C. and Kanade, T. (1991). Detection and tracking of point features. Tech-

nical report, Technical Report CMU-CS-91-132, Carnegie Mellon University. 83

Torr, P. H. S. and Zisserman, A. (2000). MLESAC: a new robust estimator with

application to estimating image geometry. Computer Vision and Image Under-

standing (CVIU), 78(1):138–156. 82

Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (1999). Bundle adjust-

ment — a modern synthesis. In Proceedings of the International Workshop on

Vision Algorithms, in association with ICCV. 20, 62, 81, 82, 125, 151

von Neumann, J. (1929). Über die analytischen Eigenschaften von Gruppen lineare

Transformationen und ihrer Darstellungen. Matematische Zeitschrift, 30:3–42. 40

Walter, M., Eustice, R., and Leonard, J. (2007). Exactly sparse extended informa-

tion filters for feature-based SLAM. International Journal of Robotics Research

(IJRR), 26(4):335–359. 21, 116, 139

Wedel, A., Pock, T., Braun, J., Franke, U., and Cremers, D. (2008). Duality tv-l1

flow with fundamental matrix prior. In Image and Vision Computing New Zealand

(IVCNZ). 83

Werlberger, M., Pock, T., and Bischof, H. (2010). Motion estimation with non-

local total variation regularization. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 116

Williams, B., Cummins, M., Neira, J., Newman, P., Reid, I., and Tardós, J. (2009).

A comparison of loop closing techniques in monocular slam. Robotics and Au-

tonomous Systems. 174

Williams, V. (2011). Breaking the Coppersmith-Winograd barrier. Technical report,

UC Berkeley and Stanford University. 65

Zhang, Z. and Shan, Y. (2003). Incremental motion estimation through modified

bundle adjustment. In Proceedings of the International Conference on Image

Processing (ICIP). 84

213

	Introduction
	Mobile Robotics and Real-time SLAM
	Vision
	A Brief Review of Visual SLAM
	Efficiency, Accuracy and Consistency
	Contributions
	Publications
	Structure

	Preliminaries
	Some Revision of Calculus
	Introduction to Optimisation
	Probabilistic State Estimation and Filtering
	Lie Groups
	Summary

	Monocular Exploration
	Monocular SLAM and Exploration
	Camera Model
	Optimization Back-end
	Visual Front-end
	Qualitative Experiment
	Summary
	Bibliographic Remarks

	Visual SLAM: Why Filter?
	Filtering versus Bundle Adjustment
	Experimental Design
	Preliminary Experiment
	Bundle Adjustment and Filter Variants
	Implementation of Visual SLAM
	Experiments
	Discussion
	Bibliographic Remarks

	Scale Drift-Aware Large Scale Monocular SLAM
	Gauge Freedoms, Monocular SLAM and Scale Drift
	The Group of Similarity Transformations
	Loop Closure
	Experiments
	Summary
	Bibliographic Remarks

	Double Window Optimisation
	Optimisation for Visual SLAM
	Double Window Optimisation Framework
	Visual Frontends
	Loop Closures
	Experiments
	Discussion and Summary
	Bibliographic Remarks

	Conclusion
	Discussion and Future Work

	Proofs and Formulae related to Lie Groups
	Generators
	Adjoint Representations
	Lie brackets
	The Campbell-Baker-Hausdorff Formula
	Exponential Map onto Sim(3)
	Derivative of the Lie Logarithm

	Jacobians
	Projections and Camera Forward Models
	Pose-Point Transformations
	Inverse Depth Point Transformations
	Bundle Adjustment
	Anchored Inverse Depth Bundle Adjustment
	Pose-graph Optimisation

	Bibliography

