'r[h\w”q_,

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

EXAMINATIONS 2017-2018

BEng Honours Degree in Computing Part III
BEng Honours Degree in Electronic and Information Engineering Part IIT
MEng Honours Degree in Electronic and Information Engineering Part III
BEng Honours Degree in Mathematics and Computer Science Part III
MEng Honours Degree in Mathematics and Computer Science Part III
MEng Honours Degrees in Computing Part IIT
MSc in Computing Science (Specialist)
for Internal Students of the Imperial College of Science, Technology and Medicine

This paper is also taken for the relevant examinations for the
Associateship of the City and Guilds of London Institute

PAPER C333
ROBOTICS

Friday 15 December 2017, 10:00
Duration: 120 minutes

Answer THREE questions

Paper contains 4 questions
Calculators not required

1 A robot has wheel odometry and a forward-facing sonar sensor, and holds a map
which specifies the locations of the walls of a room relative to a standard
coordinate system. In order to localise against this map as it moves, the robot is
to perform Monte Carlo Localisation (MCL), using a cloud of weighted particles
to represent a probabilistic estimate of its pose.

After some period of operation, its estimate is represented by particleList,
a globally defined Python list of NV = 100 particle objects. Each of these
objects has data members particle.x, particle.y,particle.theta,
and particle.weight. The particles’ weights are normalised.

From this initial uncertain location, the robot is to drive towards a waypoint
specified by coordinates W, W,. It will achieve this by driving in steps, in each
of which it first rotates on the spot to orient itself towards its best estimate of the
current direction of the waypoint, then drives 20cm forwards, stops, makes a
sonar measurement and updates its particle distribution to represent its new pose
estimate. Write clear and precise Python-like pseudocode for the following
elements, which together make up one of these steps.

a Afunction CalculateMeanEstimate () which returns (xMean,
yMean, thetaMean), the current mean estimate of the location of the robot.
Assume that the particle distribution is fairly well clustered such that a simple
mean is sufficient here.

b A function DriveToWaypoint (Wx, Wy, xMean, yMean,
thetaMean) which makes appropriate calculations and then uses built in
functions RotateRobot (alpha) and DriveRobotForward (D) to
actually move the robot through one 20cm step. Use metre and radian units
throughout, and assume that positive rotation is anticlockwise. This function
should also return (D, alpha) to be used in the next part.

¢ A function MotionPrediction (D, alpha) which updates the particle set
to represent the motion of the robot. Remember that the robot rotates, then drives
forwards, and that it does not use any sonar sensing in between these actions.
Make reasonable assumptions about the robot’s motion uncertainty and include
parameters which could be calibrated. You can use library function
random.gauss (mean, sigma) to sample a single random number from a
Gaussian distribution.

d A function MeasurementUpdate (z) which uses an unnormalised Gaussian
likelihood function to alter the weights of all particles in response to a sonar
depth measurement z. Python’s library function math.exp () can be used for
exponentiation. You can assume that a function GetDistanceToWall (x,

© Imperial College London 2017 Paper C333 Page 1 of 6

y, theta) is available which will calculate and return the forward distance to
the closest wall from any robot location (z,y, §) within the map.

e A function void NormaliseParticleSet () which normalises the
particle set.

f A function ResampleParticleSet () which resamples the normalised
particle set to replace it with particles which have equal weights but a spatial
distribution representing the robot’s position estimate. The library function
random. random () returns a uniformly sampled random number in the range
0.0 to 1.0.

The six parts carry, respectively, 15%, 20%, 20%, 15%, 10%, and 20% of the marks.

© Imperial College London 2017 Paper C333 Page 2 of 6

2a A robot operates in area containing obstacles which have previously been
accurately mapped. There are 10 obstacles in total, and each has a circular shape
with radius 0.1m. The locations of the obstacles are available in obstacles, a
global Python list of obstacle objects which store coordinates obstacle.x
and obstacle.y. The robot has a circular shape with radius 0.15m, and its
position and orientation is specified with standard coordinates (z,y, §). Write a
function calculateObstacleDistance (x, y, theta) inPython
pseudocode which returns the distance between the boundary of the robot and
the closest obstacle. The function should return zero if the robot is in contact
with an obstacle, and a negative value if it is in collision.

b Using this function, write a full program which enables a differential drive robot
to plan a safe path across the area from starting pose (z,y,6) = (0,0,0) to a
target location (z,y) = (5.0,0.0). The robot should use local planning similar to
the Dynamic Window Approach. At an update rate of 10Hz, it should choose
between nine options for the combination of the linear velocities vy, and vg of its
two wheels. Each of v, and vg can be kept the same, or increased or decreased
by a single step of 0.05ms ™! in one timestep. Choose the best wheel velocities at
each time step based on a suitable benefit term to reduce distance from the target
location, and a cost term to keep the robot away from obstacles, with a
look-ahead time 7 = 1.0s. The maximum positive or negative velocity of each
wheel is 0.5ms™!. The chosen new wheel velocities can be set with
setWheelVelocities (vL, vR).Assume that the robot moves precisely
as commanded, and that it starts at rest. The general kinematics of a differential
drive robot with width W, representing a pose update during motion along a
circular arc during time At with wheel velocities vy, and vg, are:

Tnew z + R(sin(Af + 0) — sin)
Ynew | = | y— R(cos(Af+6)—cosb) | ,
where: W (o + vp) (A
VUp T UL VYp — VL,
R S U 24 Af = B L)
R 2(vg —vr) ’ o w

Remember to implement special simpler cases either when the robot drives in a
straight line or makes a turn on the spot. The robot has width W = 0.30m.

¢ Briefly discuss the problems of a purely local planning approach with limited
look-ahead, and explain the concept of global planning which can be used
instead of or in combination with a local method.

The three parts carry, respectively, 20%, 60%, and 20% of the marks.

© Imperial College London 2017 Paper C333 Page 3 of 6

3a

A differential drive robot has two sonar sensors which face horizontally in the
sideways left and right directions respectively relative to its forward movement
direction. It must move forwards through a cave tunnel, which has unevenly
shaped walls on both sides but is wider than the robot at all points. In
Python-like pseudocode, implement a proportional control servo law which takes
measurements from both sonars at a fixed rate of 10Hz and aims to steer the
robot safely down a path in the middle of the tunnel by aiming to stay the same
distance from both walls. The robot should move forward at a steady reference
speed v = 0.5ms ™! while adjusting the relative velocities of its left and right
wheels in order to steer. It can set the linear velocities of its left and right wheels
using the built-in function setWheelVelocities (vL, VR),anditcan
obtain the current measurements from its sensors using
getSonarMeasurements () which returns readings (zI1, zR).Note that
the sideways-looking sensors are mounted slightly forward of the centre of the
robot to make them more suitable for this servoing behaviour. Your program
should include a suitable tunable gain constant. It should also use median
filtering of the past 5 timesteps to ensure that occasional garbage measurements
do not cause major problems.

Once the controller above has been well implemented and tested, we can assume
that the robot will smoothly move down the centre of the tunnel. At any point,
the sum of its sonar measurements zy = zg + z; will be a measurement of the
current width of the irregular tunnel. The robot records the complete history of
these width measurements as it moves along the tunnel, which is 50m long in
total, and saves them to a file at the end.

Explain with diagrams and formulae how the robot could use a signatures
method to relocalise against this width measurement history if in the future it
were to become lost in the tunnel. What would the robot need to do to determine
its distance along the centre of the tunnel from the entrance, and with what
accuracy would we expect it to be able to find this distance? Assume that the
tunnel is irregular enough that any 1m of its length is unique in terms of width
profile.

The two parts carry, respectively, 60%, and 40% of the marks.

© Imperial College London 2017 Paper C333 Page 4 of 6

4a

A robot has an infra-red depth sensor with minimum range 50cm and maximum
range 4m. The sensor is precise but not very robust at close range, with
Gaussian-distributed zero-mean uncertainty of standard deviation lcm at its
minimum range when it receives a good measurement but on 24% of
measurements it reports random ‘garbage’ values between the minimum and
maximum range. At greater range the precision decreases such that the standard
deviation of good measurements is proportional to the square of ground truth
distance; but becomes more reliable, with a ‘garbage’ measurement rate
inversely proportional to depth.

Draw a suitable likelihood function p(z|m) for the sensor in the form of three
separate 2D ‘slice’ plots which show the probability of obtaining depth
measurement z at ground truth distance m =1m, 2m, 3m respectively. Your plots
should be carefully drawn and annotated with the appropriate numerical values.

A way for a different robot to find its location in a room without learning
signatures in advance is to attempt global relocalisation against a map using
Monte Carlo Localisation. Suppose that the robot is provided with the following
map:

50cm

i) Make a copy of the diagram above, and draw 50 arrowed circles like the
one shown to indicate how the robot would initialise a particle distribution
to represent its initial state of knowledge that it is definitely within the
room, but in an otherwise unknown position and orientation.

ii) Without moving, the robot now points its sonar sensor forward and makes
a single measurement. It records a depth of 30cm, and executes the
measurement update, normalisation and resampling steps of MCL to
update its particle distribution. Make a new drawing of the mapped area,
and copy into it only those particles from your previous drawing which
would have been highly likely to have obtained large weights after the
measurement and therefore be copied in the resampling step. Assume that

© Imperial College London 2017 Paper C333 Page 5 of 6

the sonar sensor has no systematic error, is robust with no ‘garbage’
measurements, and reports measurements with fixed standard deviation
around Scm.

ii1) In its next full MCL iteration, the robot makes a precise turn on the spot of
90° to the right, makes another depth measurement, obtains a reading of
20cm, and then completes update, normalisation and resampling steps.
Draw one more diagram, copying from your previous one any of the
original particles which would still be likely to survive.

iv) Explain why and how the robot would be able to perform global
relocalisation more efficiently if it also had a magnetic compass sensor.

The two parts carry, respectively, 40%, and 60% of the marks.

(© Imperial College London 2017 Paper C333 Page 6 of 6

