
Program Debugging with ROBOTC
ROBOTC has a debugging capability that enables unparalleled interactive real-time access to the robot as your
program is running. This has the potential to significantly reduce the time it takes to find and correct errors in
your programs. With the debugger you can:

• Start and stop your program execution from the PC

• “Single step” through your program executing one line of code at a time and examining the results (i.e. the
values of variables) the flow of execution.

• Define “breakpoints in your code that will cause program execution to be suspended when they are reached
during program execution

• Read and write the values of all the variables defined in your program

• Read the write the “values” of motors and sensors.

The following picture shows the ROBOTC windows during an interactive debugging session.

Note: To minimize the size of the picture, the two debugger windows in the above picture were positioned on
top of the main ROBOTC window. This is not a requirement. They can be positioned anywhere on the PC
desktop.

Four debugger capabilities are shown in the above picture. Each of these is highlighted in the following picture.

Item Description
Debugger
Controls This is the main debugger window for controlling user program execution

Current
Execution
Point

The yellow left arrow indicates the next line of code to be executed in the program. Yellow is
used to indicate that program execution is currently suspended. Green is used when the program
is “free running”.

User Defined
Breakpoint

The red “stop sign” indicates a user defined break point. Program execution will be suspended
if this line of code is reached during program execution. Breakpoints are easily defined by left-
clicking in the “gray” column corresponding to the desired breakpoint.

Variable
Display

This is a display of all the variables that are defined in your program. The values are
periodically retrieved from your robot and displayed here. If desired you can select a variable
and rewrite its value.

 Debugger Controls
This is the main debugger window for controlling user program
execution. The buttons on this window allow you to start/stopm
suspend/resume and program execution. Other buttons allow you to
control the rate at which information from your robot is refreshed.

The names of the buttons change based on the state of your program execution. For example “Start” is shown if
no program is running and “Stop” is displayed when a program is executing.

Each of the buttons is described in the following table.

Button Action Performed
Start / Stop Starts or stops the execution of a program

Suspend /
Resume Temporarily suspends (or resumes) the execution of your program.

Step
Causes a suspended program to execute the next line of code in your program.

Note: Some “complicated” lines of code, especially code lines that cause a break in sequential
program execution like a “for” or “while” clause may only be partially executed by a single
“Step” command.

Once Will trigger a single refresh of the debugger windows. It also stops continuous refresh of the
debugger windows.

Continuous /
Stop Starts or stops continuous refresh of the debugger windows.

 User Defined Breakpoints
“Break points” are locations in your source code where program execution can be interrupted for manual
intervention.

The red “stop sign” indicates a user defined break point. Program execution will be suspended if this line of
code is reached during program execution. Breakpoints are easily defined by left-clicking in the “gray” column
on the source code line corresponding to the desired breakpoint.

ROBOTC breakpoints do not impact the speed with which your program executes. The breakpoint capability is
built-into the ROBOTC firmware and does not require insertion of extra instructions in your compiled code.

You can define (virtually) unlimited breakpoints within your program. There are no restrictions on the number
of breakpoints within a single function or task.

 Changing Flow of Program Execution
Sometime during debugging you may want to alter the normal flow of program execution. If you right-click
instead of left-clicking with the mouse a pop-up menu appears. One of the commands is “Set Next Instruction”
which allows you to change the currently executing point of your program to this selected line! The pop-up
menu is shown in the picture below.

Debugger Displays
There are several different debugger windows that can be used when the ROBOTC debugger is operational.
These windows give access to user program and built-in variables. Some of the windows are infrequently used
but can be useful when needed. Debugging windows can be opened from the sub-menu shown in the following

picture.

This picture shows the
Debugger Windows
available for the NXT
platform in ROBOTC.
Other robot platforms may
have a different list of
windows customized to the
robot controller hardware.

The number of available
windows is also impacted
by the “User Level” setting
found on the “Window”
sub-menu. In the “basic”
mode, some of the more
advanced and less-
frequently used windows
are not available.

Several of these windows are shown below.

This window contains a table of all the variables declared in
your program along with their current values.

If needed, you can select and change the value of any
variable.

ROBOTC has several built-in variable ize
performance of your robot. The “
window provides PC access to these va
is for the NXT robot controller.

Of course, all of these variables are directly accessible
within your program code.

Although not usually needed, the advanced user may find a
few of these fields particularly interesti

• ‘avgBackgroundTime’ is the overh
device driver code. The remaining CPU time is available for
user program execution. This example s
overhead at 13%.

• ‘bNoPowerDownOnACAdaptor’ is
prevent the NXT from automatically po
rechargeable battery is being used and it is connected to AC
power.

s that custom the
System Parameters”
riables. This example

ng. For example:

ead time spent in the

hows background

 a neat variable to
wering down if a

This debugging window is only available on the NXT robot platform.

The remote screen allows you to control your NXT from your PC. It
provides an image of the NXT LCD screen. A mouse press over one o
the four buttons will simulate a key press; or you can use one of the
four arrow keys on your PC keyboard.

f

otors

This is the “devices”
debugging window
for the NXT robot
controller platform.
Different versions of
the screen are
available for other
platforms supported
by ROBOTC.

The screen provides
access to current
values for the m
and sensors on the
NXT.

The “More” button expands the window to provide controls that enable you to “write” to the sensors and motors
to setup their initial configuration.

There are no restrictions on the number of debugger windows that can be simultaneously opened. However,
each window does require the PC to “message” with the robot controller to refresh its data. The more windows
that are open the more data transmission required for the refreshing activity.

ROBOTC has been optimized to minimize refresh times. Typically only one or two messages are required to
refresh each window; this is valuable on the robot controllers that have a “slow” communications channel
between the robot and the PC.

For example, Bluetooth messaging on the NXT platform is slow taking about 25 milliseconds per message. Out
of the box, NXT Bluetooth messages are restricted to 58 bytes of data and 13 messages are required to refresh
the 800 byte NXT LCD image. The ROBOTC enhanced firmware performs only requires a single message.

“Traditional” Debugging Techniques
Debugging a program – finding the errors and correcting them – can be a slow process in solutions without a
run-time debugger. Without a debugger you typically resort to techniques like:

• There’s no way to determine if your program is executing the intended logic. So you add code to play
different tones/sounds to your program as it executes different “blocks” of code. You determine from the
sound what is being executed within your program.

• If your robot platform supports a display device (which could be a serial link to your PC) then you add
“print” statements to your program code to tell you about your program execution. By examining the
display, you can (hopefully) determine what’s happened without your program execution.

Both of the above techniques are available in ROBOTC. However, a real-time debugger eliminates the need to
resort to them. There’s no need to add code for debugging to your program. A debugger provides better
functionality without modifying your source code!

	Program Debugging with ROBOTC
	Item
	Description
	Debugger Controls
	Current Execution Point
	User Defined Breakpoint
	Variable Display
	 Debugger Controls
	Button
	Action Performed
	Start / Stop
	Suspend / Resume
	Step
	Once
	Continuous / Stop
	 User Defined Breakpoints
	 Changing Flow of Program Execution
	This picture shows the Debugger Windows available for the NXT platform in ROBOTC. Other robot platforms may have a different list of windows customized to the robot controller hardware.
	The number of available windows is also impacted by the “User Level” setting found on the “Window” sub-menu. In the “basic” mode, some of the more advanced and less-frequently used windows are not available.
	Several of these windows are shown below.
	
	“Traditional” Debugging Techniques

