Program Debugging with ROBOTC

ROBOTC has a debugging capability that enables unparalleled interactive real-time access to the robot as your
program is running. This has the potential to significantly reduce the time it takes to find and correct errors in
your programs. With the debugger you can:

e Start and stop your program execution from the PC

e “Single step” through your program executing one line of code at a time and examining the results (i.e. the
values of variables) the flow of execution.

e Define “breakpoints in your code that will cause program execution to be suspended when they are reached
during program execution

e Read and write the values of all the variables defined in your program

e Read the write the “values” of motors and sensors.

The following picture shows the ROBOTC windows during an interactive debugging session.

® ROBOTC - Execution Speed Test.c
File Edit View Robot Window Help
IR EREE
+ C Constructs 424 loopTime /= 100.0; s
+ Battery & Power Control 430 #endif
+ Bluetoath 431 .I elapsed =_10r_janimE - iu:_ileLm:up‘_IimE.:
. Math 432 nElapsedTime [nInstructionType] = elapsed;
; 433
+- Messaging 434
+- Motors 435 // 'elapsed' cont - s
Y Sensors S 20 Sl xwieh By Index 'lv'anal:ule | Value:
1 F S 14.6 If"'-""‘-"CSE-;“C el 0
— LR ;-E: 11"-:" AH| testTupe wddConstant2 = .
i 2400 ST e e ElapsedTmeltypeldieL 1.1]
1|~ Debug Stabus Refresh R ate - 1,460 mill 5 nEIapsedeme[PD;I.E] 2'3 I
- At nElapzedTime[typedlivea] ;
Stop I HESUI‘HEJ Step J Once o 10| nElapzedTime[lvpelntegerdssignCo 1.6
- . iy - 2 12| nElapzedTime[lvpel ntegerbzsign''a 309
Sty PlaySound (=oundBl
Clear All [—pJ Ieiiiﬁ-r R 14| nElapzedT ime[bypelntegertssignS e 424
Help ; & 16| nElapzedT ime[typelntegert ddy ara 325
s 18| nElapzedT ime[lypelntegerbddCons 1.95
446 20| nElapzedTime[typeClearscieen] BE.78
247 22| nElapzedT ime[typeClearPixel] 233
448 24| nElapzedT ime[bypeR ectangleliraw] A0.29
449 AT S 26 nEIapsedeme[t}lpeH ectangIeElrase 51.43
& i B 28| nElapzedTime[typeR ectanaleFill] 5.4
450 SensorType [middle 201 rEl TTimeltoesi Ta5d
451 SensorType [right] 2l e SR - s
452
453 for (index = (int) typeldleloop: index < (int) typelast;
454 O nElap=sedTime [index] = 0.0;
455 it
£ >
For Help, press F1 Ln 432, Col 7 RAW [NUM

Note: To minimize the size of the picture, the two debugger windows in the above picture were positioned on
top of the main ROBOTC window. This is not a requirement. They can be positioned anywhere on the PC
desktop.

Four debugger capabilities are shown in the above picture. Each of these is highlighted in the following picture.

@ ROBOTC - Execution Speed Test.c

o

File Edit Wiew Robot Window Help T Defined B XBolnt Variable Disbl
-~ ser in rea in danapie LiIspla
D& d Fx: ! po play
+-_C Constructs 429 e /= 100.0; -
+- Batterv & Power Control 430 ® dif
431 elapsed = loopTime - idle
T DEbugger 432 nElapsedTime [nInstruct? ype] = elapsed:
> Controls 433
¥ 434
+ e i e d cont —
b aoors a6 cach wich 20) |Ie Vaiatle [vawla]’
i z SRR 3| index 0
1 7 l 14.6 microseco ==
i — - 1 480 i1l 4H | testType WddConstant2]
2400 Rt . B| nElapzedT me[hypeldeloop] 1.1
1| Debug Status Refresh Rate = 1,460 mill lhEl T Y 57 r
~ divide by nElapsedT imeltypedlive] :
Stop J HBSUI‘"B] Step J Once 10| nElapsedT imellvpel ntegertssignCo 16
" - . - 12| nElapzedT me[typelntegerd zaigria 309
St laySound {soundB1l
Clear &l g 5&33:::.' o C 14| nElapzedT ime[typelntegerdszignSe 4.24
Help ; 16| nElapsedT mellypelntegerdddy ana 3125
= 18| nElapzedT ime[typelntegertddCons 1.95
o 20| nElapsedT ime[typeClearS creen] B6.78
aq7 22| rElapzedT ime[typellearFixel] B.33
gqé 24| pElapzedT me[typeRectangleliraw] 5029
: 5 - o = 26| nElapszedT ime[typeRectangleE rase 51.43
449 SensorType[left] . -
450 it ey ‘middl 28| nElapsedT ime[typeR ectangleFil] 51.4
VSO YPe LIS S I 0] il bt e 1854
451 SensorTIype[right] e = st
452
5 L____ 453 for (index = (int) typeldleloop; index < (int) typelast;
Current Execution S T nElapsedTime [index] = 0.0;
Point ass o
4 b
For Help, press F1 Ln 432, Col 7 RAW NUM
Item Description
Debugger
Contr%?s This is the main debugger window for controlling user program execution
Current The yellow left arrow indicates the next line of code to be executed in the program. Yellow is
Execution used to indicate that program execution is currently suspended. Green is used when the program
Point

is “free running”.

User Defined

The red *“stop sign” indicates a user defined break point. Program execution will be suspended
if this line of code is reached during program execution. Breakpoints are easily defined by left-

Breakpoint C . . .
P clicking in the “gray” column corresponding to the desired breakpoint.
Variabl This is a display of all the variables that are defined in your program. The values are
D?Sr:)allaye periodically retrieved from your robot and displayed here. If desired you can select a variable
and rewrite its value.
Debugger Controls
! .| This is the main debugger window for controlling user program
' 2400 execution. The buttons on this window allow you to start/stopm
|- Debug Status RefreshBate,. syspend/resume and program execution. Other buttons allow you to

Stop ‘Hesl.m&‘ Step ‘ Once I
Clear All

Stop

Help |

control the rate at which information from your robot is refreshed.

The names of the buttons change based on the state of your program execution. For example “Start” is shown if
no program is running and “Stop” is displayed when a program is executing.

Each of the buttons is described in the following table.

Button Action Performed

Start / Stop Starts or stops the execution of a program

ggzg;ned / Temporarily suspends (or resumes) the execution of your program.
Causes a suspended program to execute the next line of code in your program.

Step Note: Some “complicated” lines of code, especially code lines that cause a break in sequential
program execution like a “for” or “while” clause may only be partially executed by a single
“Step” command.

Once Will trigger a single refresh of the debugger windows. It also stops continuous refresh of the

debugger windows.

Continuous /

Stop Starts or stops continuous refresh of the debugger windows.

User Defined Breakpoints

“Break points” are locations in your source code where program execution can be interrupted for manual
intervention.

430 ¥endif

431 . elapsed = loopTime - idleLoopTime;

432 nElapsedTime [nInscructionType] = elapsed;
433

The red “stop sign” indicates a user defined break point. Program execution will be suspended if this line of
code is reached during program execution. Breakpoints are easily defined by left-clicking in the “gray” column
on the source code line corresponding to the desired breakpoint.

ROBOTC breakpoints do not impact the speed with which your program executes. The breakpoint capability is
built-into the ROBOTC firmware and does not require insertion of extra instructions in your compiled code.

You can define (virtually) unlimited breakpoints within your program. There are no restrictions on the number
of breakpoints within a single function or task.

Changing Flow of Program Execution

Sometime during debugging you may want to alter the normal flow of program execution. If you right-click
instead of left-clicking with the mouse a pop-up menu appears. One of the commands is “Set Next Instruction”
which allows you to change the currently executing point of your program to this selected line! The pop-up
menu is shown in the picture below.

430 #endif

431 @ elapsed = loopTime - idleLoopTime;

432 Remove Breakpoint ictionType] = elapsed;

*ad Remove all breakpoints

434

435 Toggle bookmark }= the number of 10 msec 'ticksa' to execute 100,000
438 Set Mext Instruction itements. Thus if 'elapsed' is 146, a single stateme:
137 Go to Disassembly E

438 J:ccr.-s total ‘adijusted' Time in loop (146 ticka x 10 7
439 Go to Listing {:-:'cr.-::is iz same as 1,460,000 microseconds

440 — oIy oY Ion,000 to get 14.6 microseconds

441

447 PlaySound (soundBlip)

Debugger Displays

There are several different debugger windows that can be used when the ROBOTC debugger is operational.
These windows give access to user program and built-in variables. Some of the windows are infrequently used
but can be useful when needed. Debugging windows can be opened from the sub-menu shown in the following

Several of these windows are shown below.

! ROBOTC - Execution Speed Test.c
File Edit View Reobot Window Help
O & [Download Program F5
#- C Constructs | Recompile Program F7
i :Iattiwt?: Fowe, Debugger
+- Bluetoo
i 3
L Math Debugwinduws
+ Messaging Hexadecimal _
+- Mators NXT Brick »
+- Sensors i
+- Sound Flatform Type L
+- Timing Motors and Sensors Setup
+- User Defined _
Download Firmware
TFT 7
438 S
439 J

l

i

lrrTime = +timelleverntion
Global Variables
MWXT Devices
MNXT Remote Screen FdleL
Task Status =
Event Variables
Task Stack
System Parameters :';it
Datalog
Debug Stream Ins t©
7 =R I I ITEEConds

picture.

This picture shows the
Debugger Windows
available for the NXT
platform in ROBOTC.
Other robot platforms may
have a different list of
windows customized to the
robot controller hardware.

The number of available
windows is also impacted
by the “User Level” setting
found on the “Window”
sub-menu. In the “basic”
mode, some of the more
advanced and less-
frequently used windows
are not available.

Global Variables tl
Index| Y ariable | Value | a
3| index]

4H | testT ype ¥yddConstant2
| nElapzedTimeftypeldleLoop] 1
2| nElapzedTimeltypedlive] 2.3
10| nElapzedT imeltypelntegerd zzignCo 1.6
12| nElapzedTimeltypelntegerd szigntia 309
14| nElapzedTimeltypelntegerd zzignSe 4,24
16| nElapzedT ime[tvpelntegerddd aria 3.25
18| nElapzedT ime[tvpelntegerdddConz 1.95
20| nElapzedTimeftypeClearScreen) BE. 78
22| nElapzedTimeftypeClearFixel] 8,33
24| nElapzedTimeltypeR ectangleliraw] a0.29
26| nElapzedT ime[tvpeR ectangleEraze a1.43
28| nElapzedT imeltypeR ectangleFill] A1.4
30| nElapzedTimeltypesine] 18.54f -
System Parameters X,
Index | W ariable Yalugl
0f nClockMinutes B10
1| nE scephionR eparts 1]
2| werzion .23
3| n5ysTime 351036102
4| nPgmTime 14.023 zec
| avgBackaroundT ime 13%
6| avglnterpreterTime bl
7| n5hutdowntoltage B.30Y
3| b aPowerDownOnd CAdaptor true
9| bMxtRechargable true
10| nPowerD ownD elapkdinutes 10
11 | ndvwgB attenlevel 224
12| nimmediatel atterylevel 820
13| bRobolab falze
14| n0poodesPerTimeslice pialal
15 nDebuaT askMode 1]
16| bFloatDiuringlnactivetd otorFhs, falze
17 | mifirtualtd otorChanges) =

This window contains a table of all the variables declared in
your program along with their current values.

If needed, you can select and change the value of any
variable.

ROBOTC has several built-in variables that customize the
performance of your robot. The “System Parameters”
window provides PC access to these variables. This example
is for the NXT robot controller.

Of course, all of these variables are directly accessible
within your program code.

Although not usually needed, the advanced user may find a
few of these fields particularly interesting. For example:

e ‘avgBackgroundTime’ is the overhead time spent in the
device driver code. The remaining CPU time is available for
user program execution. This example shows background
overhead at 13%.

e ‘bNoPowerDownOnACAdaptor’ is a neat variable to
prevent the NXT from automatically powering down if a
rechargeable battery is being used and it is connected to AC
power.

NXT Remote Screen || This debugging window is only available on the NXT robot platform.

-—— _ The remote screen allows you to control your NXT from your PC. It
#<UsB Dickl [-) =} | provides an image of the NXT LCD screen. A mouse press over one of
i the four buttons will simulate a key press; or you can use one of the
four arrow keys on your PC keyboard.

Selectk

My Files

2 2

qHE

NXT Device Control Display || Thisis the “devices”
Read Values from NXT]Ejeb'tjhggll\rllg('\ll'v'ng()\tlv
r r
Mator| Speed| PID|Mode | Regulate |Run State| Tach User| Tach Move| Tach Limit| Tach Total ° ¢ e” | t? 0
A 0| 0 OFF(Foat) 0 none | Ide 0 0 0 p| || controlier plattorm.
B 0 0 OFF(Float) 0 nore | Idie 0 0 0 p| | Different versions of
¢ 0 0| OFF(Float) 0 none Idle 0 0 0 o| || the screen are
Sensor | Type | Mode | ‘u"alue| Raw| |Varable Value available for other
51 |Raw Value modeRay 1023 1023 |Sync Type synchMone platforms Supported
52 |RawValue modeRav 1023 1023| |Sync Tum 0 by ROBOTC.
53 |Raw Value modeRay 1023 1023| |Batteny 330V .
540 Raw Vaue |modeRav] 1023] 1023] | Siken Tine 10 min 5 The screen provides
T 4 access to current
values for the motors
| Mﬂr*3| and sensors on the
NXT.

The “More” button expands the window to provide controls that enable you to “write” to the sensors and motors
to setup their initial configuration.

There are no restrictions on the number of debugger windows that can be simultaneously opened. However,
each window does require the PC to “message” with the robot controller to refresh its data. The more windows
that are open the more data transmission required for the refreshing activity.

ROBOTC has been optimized to minimize refresh times. Typically only one or two messages are required to
refresh each window; this is valuable on the robot controllers that have a “slow” communications channel
between the robot and the PC.

For example, Bluetooth messaging on the NXT platform is slow taking about 25 milliseconds per message. Out
of the box, NXT Bluetooth messages are restricted to 58 bytes of data and 13 messages are required to refresh
the 800 byte NXT LCD image. The ROBOTC enhanced firmware performs only requires a single message.

“Traditional” Debugging Techniques

Debugging a program — finding the errors and correcting them — can be a slow process in solutions without a
run-time debugger. Without a debugger you typically resort to techniques like:

e There’s no way to determine if your program is executing the intended logic. So you add code to play
different tones/sounds to your program as it executes different “blocks” of code. You determine from the
sound what is being executed within your program.

e If your robot platform supports a display device (which could be a serial link to your PC) then you add
“print” statements to your program code to tell you about your program execution. By examining the
display, you can (hopefully) determine what’s happened without your program execution.

Both of the above techniques are available in ROBOTC. However, a real-time debugger eliminates the need to
resort to them. There’s no need to add code for debugging to your program. A debugger provides better
functionality without modifying your source code!

	Program Debugging with ROBOTC
	Item
	Description
	Debugger Controls
	Current Execution Point
	User Defined Breakpoint
	Variable Display
	 Debugger Controls
	Button
	Action Performed
	Start / Stop
	Suspend / Resume
	Step
	Once
	Continuous / Stop
	 User Defined Breakpoints
	 Changing Flow of Program Execution
	This picture shows the Debugger Windows available for the NXT platform in ROBOTC. Other robot platforms may have a different list of windows customized to the robot controller hardware.
	The number of available windows is also impacted by the “User Level” setting found on the “Window” sub-menu. In the “basic” mode, some of the more advanced and less-frequently used windows are not available.
	Several of these windows are shown below.
	
	“Traditional” Debugging Techniques

