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Foreword

The Berlin Summit on Robotics took place in Berlin from July 20 until July 24, 2011.
It brought together leading researchers in robotics and related areas to discuss and
tackle strategic challenges in robotics research. While conferences and other profes-
sional meetings are hectic and dominated by conversations about technical details, the
Berlin Summit aimed to create an atmosphere in which big ideas can spring to life and
grow into strategic initiatives for the robotics community.

To make a free exchange of ideas as easy as possible, the program of the Berlin Summit
did not adhere to a fixed schedule. Individuals or small groups of individuals prepared
some topics for discussion and distributed brief "discussion primers" prior to the meeting.
For each of these topics, this report contains a chapter. Each chapter is meant to capture
the content of the discussion primers, the discussion at the workshop, and some conclu-
sion or recommendations. We hope you will find the following chapters as stimulating as
the participants found the discussions in Berlin.

We are greatly indebted to the Alexander von Humboldt Foundation for funding this event.
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On the Conference

“Just wanted to say thanks again for organising this fantastic meeting!”

[Andrew Davison | Imperial College London]

“Let me thank you again for organizing the very rewarding meeting we just
had. [. . . ] Again, that’s for a pleasant, well-organized and fruitful event. It was
a real triumph on your part.”

[Gregory Dudek | McGill University]

“Congratulations on an amazing meeting. I cannot think of a more stimulating
meeting. I can only speculate that it will have some considerable impact in
shaping the field. Also, it was fun. Thanks!”

[Matt Mason | Carnegie Mellon University]

“This is the second-best meeting I have been to. The best meeting took place
in a castle in France with a wine cellar and a swimming pool; and there were
three butlers and a cook pamper us.”

[Stefan Schaal | University of Southern California]

“[. . . ] to say how much I enjoyed that week’s Berlin Summit. You did [. . . ] our
community a great service.”

[Paul Newman | University of Oxford]

“Three most refreshing days of honest introspection, fresh ideas, and food for
thought for the whole year! The reading is an example par excellence of what
is a big picture and a vision for a field.”

[Kostas Daniilidis | University of Pennsylvania]
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1 Is Robotics in Need of a Paradigm Shift? (Brock)

1 Is Robotics in Need of a Paradigm Shift?
Oliver Brock | TU Berlin

Paradigm shifts can lead to explosive progress in the Natural Sciences. A paradigm
shift is a disruptive change in the basic assumptions held by the majority of scientists
working in a field. Here, we examine the possibility that robotics must undergo such a
paradigm shift to make profound progress towards truly autonomous or even intelligent
robotic systems with human-like capabilities.

1.1 What is a paradigm shift? The story of Phlogiston

In 1667 Johann Joachim Becher postulated the existence of phlogiston, a massless,
tasteless, odorless, and colorless substance, to provide an explanation for the phe-
nomenon of combustion. Combustible materials, according to phlogiston theory, contain
phlogiston which is released during combustion. Today, of course, we know that com-
bustion is oxidation and it appears strange that the phlogiston theory would ever have
been accepted. Nevertheless, it was the dominant scientific paradigm to explain combus-
tion until the last third of the eighteenth century. And there were some merits to it. For
example, it could explain why a candle extinguishes when placed in a confined space:
according to the theory, the candle sets free phlogiston and once the air is saturated
combustion stops. It could also explain why combustible materials would only burn for a
certain time: once their phlogiston supply was depleted combustion stopped.

The phlogiston theory was the accepted explanation for combustion for about a cen-
tury. The discovery that metals gain mass during combustion would ultimately lead to its
demise. However, it took several decades until the majority of scientists gave up phlogis-
ton and accepted the theory of oxidation.

This example is typical; there are many more examples: the switch from the geocentric
to the heliocentric world model, or the numerous theories about gravity from Aristotle
to Descartes, from Newton to Einstein. For many of the past paradigm shifts, there is
evidence that well-known and respected scientists deliberately ignored scientific evidence
and stuck to the “old” paradigm. Thomas Kuhn, who coined the term paradigm shift [4],
pointed out in their defense that a paradigm shift is accompanied by fundamental changes
in emphasis and perception. It is thus credible that the scientific community can remain
stuck in an old paradigm until they are ready to change perspective and to embrace the
new paradigm.

History of science thus tells us that we can get stuck in old paradigms that hamper
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progress and make us look stupid in retrospect. The least we should learn from this
lesson is that, every once in a while, we should step back and try to see if we are stuck
in a paradigm whose time has come.

1.2 Are there signs that we need a paradigm shift in robotics?

What are the signs of an imminent paradigm shift? In the natural sciences this question
might be easier to answer and the example of phlogiston already gives us an idea. But be-
fore we can attempt to answer this question for robotics, we have to come to an agreement
what we mean by robotics. For the purpose of this discussion, I would like to assume that
robotics is the field that attempts to build embodied artificial intelligence—machines that
can decide, act, learn, and transfer acquired knowledge between domains autonomously.
These machines differ from today’s robots in that they are to some degree universal and
not limited to perform a narrowly defined task.

It is the very nature of a paradigm shift that it is difficult to see from within the existing
paradigm. And we do not hope to offer a decisive answer here. All we might be able to
do is to point to anecdotal signs. The reader then will have to decide what conclusions to
draw from the evidence.

Thomas Kuhn wrote that “paradigm-testing occurs only after persistent failure to solve a
noteworthy puzzle has given rise to crisis” [4]. So is robotics in a crisis? Is robotics expe-
riencing a persistent failure to solve an important problem? From the very beginnings of
robotics, it has been the goal to build robots that perform general tasks in general environ-
ments. An SRI Technical Memo from 1966 states as the objective of the Shakey project
the development of “concepts and techniques in artificial intelligence enabling an au-
tomaton to function independently in realistic environments” [7]. To this day, this objective
seems to be out of reach. Still in 2006 a program call of the National Science Foundation
stated that the scope of targeted research “encompasses computational understanding
and modeling of [. . . ] capabilities that demonstrate intelligence and adaptability in un-
structured and uncertain environments.” It would seem that we have pursued the same
goal for over forty years.

One could now begin a long debate. Of course, there has been substantial progress in
robotics over the last forty years. We have Stanley and the Mars rover, for example. We
have developed numerous foundational theories and algorithms. Planning, control, ma-
chine learning, computer vision to name but a few – they all have advanced tremendously.
But the key question remains: are these advances making progress towards robots with
human-like capabilities and task generality? Or are we building more and more advanced
machines with super-human capabilities in a specific niche?
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The European Commission in 2009 answered this question as follows: “Engineering
systems with the capability to sense and understand an unstructured environment is a
challenge which goes beyond today’s systems engineering paradigm.” [8] One might call
this a crisis. And if there is even the slightest chance that this assessment is correct, we
should question the existing paradigm and attempt to discover its successor.

1.3 What is the problem?

The expression “pixels to torques” might be the simplest way of describing the high-level
agenda of research at the intersection of AI and robotics: How can we create an agent
capable of taking all of its sensor input and turning into meaningful and purposeful motion
to affect the world and perform active sensing? How can such an agent explore the world,
learn from its mistakes, or apply past experiences to novel situations?

Clearly, our role model is the human. While roboticists would already be deeply im-
pressed by an agent exhibiting the autonomy of a hedgehog, a look at the ultimate target
might give us some ideas about the characteristics of the problem. Assuming that nature
is parsimonious, the complexity of sensing and actuation might give us some idea of the
“pixels to torques”-problem for humans. Of course, the human evolved in response to
various survival pressures our robots will never be subjected to, but let’s just see where
this leads us.

Each human eye has approximately 120 million rods and 6 million cones, for a total of
232 million light-sensitive nerve ends. Forty million nerve endings are dedicated to the
sense of smell, 3.5 million to the sense of touch. Each human ear has 15,000 to 20,000
auditory nerve receptors and the tough possesses 10,000 taste buds. So much for the
input. The output is achieved by actuating between 650 and 850 muscles, depending
on how you count. So overall, the human agent has 300 million inputs and 800 outputs
(ignoring the skin’s 200,000 sweat glands).

In robotics, there is a clear trend towards more sensors with higher resolutions and
more degrees of freedom of the mechanism. Nevertheless, robotic systems are still far
away from the human numbers. Are the mechanical and sensing systems of today’s
robots capable of performing human tasks at human-level performance? One might ar-
gue that a human is capable to perform almost any task teleoperating today’s robots,
even when limited in sensing to the robot’s sensors. However, the question remains to be
answered if a more advanced sensor suite that those found on today’s robots is needed
to acquire the skills necessary for this teleoperation.

To understand the problem solved by human agents it is not sufficient to look at the
numbers at the interface between the agent and its environment. It is in fact the interac-
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tions across the interface that seem most relevant. There is ample evidence in psychol-
ogy and neuroscience to support that this boundary (or interface) is not as strict as we
might assume. Cognitive processes in humans are distributed across this boundary; a
well-established example of this is using the environment as working memory rather than
storing a detailed representation in the brain.

For our considerations this may mean that the interface is just the narrowest part of
information flow within the agent, the world, and in between. The true complexity may
lie in the interactions themselves. These interactions concern many objects with many
properties to achieve many different objectives. Knowledge of the state of the world is
uncertain and the ability to perform the desired action is also imperfect. In addition, the
physics of multi-contact between objects is highly complex: small differences in initial
conditions may have completely different outcomes.

All of this to arrive at a well-known conclusion: the problems we are trying to solve
are extremely high-dimensional, inherently complex, and riddled with uncertainty. These
problems might be graver than the robotics community has assumed or been willing to ad-
mit. Finding a solution might therefore require a paradigm shift. Are there any candidates
for a winning paradigm?

1.4 What are candidates for paradigms in robotics?

1.4.1 System Engineering

The program managers at the European Commission refer to a “current systems engi-
neering paradigm” and already express the opinion that it will not suffice to create au-
tonomous and task-general robots [8]. Clearly, it is a gross oversimplification to speak of
a single current paradigm. Nevertheless, there is value in trying to capture the dominant
characteristics of today’s research in robotics. This is what I will attempt to do in this
section. It will be easy, of course, to find ongoing research activities that do not comply
with these characteristics. But that is not the point.

The politics of the funding landscape today make it necessary for researchers to demon-
strate the immediate applicability of their results to real-world problems. This, in my opin-
ion, creates a strong bias for the type of questions that are being asked. Furthermore,
this bias has a deep interdependency with the current paradigm.

To motivate research in the current paradigm, one has to have an application in mind.
The application implies a decomposition of the targeted problem into sub-problems. The
sub-problems are solved, possibly by different systems (vision system, mobility, etc.) and
then integrated into a bigger system. Hence, we can speak of a systems engineering
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paradigm. This paradigm finds its apex in the App Store-idea: a software system ware-
house from which everybody can obtain sub-systems and compose them into application-
solving systems. There are obvious successes that justify pursuing the current paradigm.
And there also seem to be signs of stagnations in other areas, justifying this document.

1.4.2 Computation

Available computational power continues to increase in accordance to Moore’s law. The
Internet is enabling cloud computing, making enormous amounts of computation avail-
able even to the smallest devices, as long as they are part of the cloud. The idea of
crowdsourcing even leverages human computation for technological artifacts. It seems
only to be a matter of time before the amount of computation available to robots exceeds
the computational capacity of the human brain. Already today, cellular phones can con-
nect to server farms to recognize spoken commands. And it is obvious that this is only
the beginning . . .

It is not easy to compare the computational capabilities of silicon-based computation
with those of the human brain but an attempt might be interesting. A super computer
consumes megawatts of power (costing millions of dollars to operate per year), the hu-
man brain roughly 20W. It is probably impossible to perform a reasonable comparison of
computational power. The fastest supercomputers today perform in the petaFLOP range,
performing thousands of MFLOPS per Watt. It does not make much sense to use FLOPS
to measure the computational performance of the human brain, as humans are slow at
performing floating point operations. However, it would be fair to say that brains today
can do many things that supercomputers cannot do and that they are many orders of
magnitude more energy-efficient than supercomputers. Computation has caused much
progress in robotics, no doubt. And it will continue to do so. But there are three factors
we should consider before we place our bets on computation as the winning paradigm.

First, Moravec’s paradox states that high-level reasoning seems to require relatively
little computational resources, whereas sensorimotor skills on the other hand seem to re-
quire huge amounts. Sensorimotor computation, however, appears to be fundamentally
different from arithmetic as it connects the external world and the internal world of an
agent. Aspects of uncertainty, representation, feedback, memory, learning, adaptation,
etc. become a central factor, not so much pure number crunching. So it might be nec-
essary to develop a deeper understanding of sensorimotor computation before we can
leverage arithmetic computation in that domain.

Second, there is a theoretical limit to how much computation we can perform on earth;
it is called the Bremermann’s limit and is based on Einstein’s mass-energy equivalency
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and Heisenberg’s uncertainty principle. A computer the size of the earth, according to
this limit, could perform 1075 FLOPS per second. We will never reach this limit but this
number serves as a reminder that providing computation comes at a cost. Does it make
sense to give millions or billions of robots access to supercomputers when there is a well-
working example of distributed, low-energy computation in the human? This brings us to
the final point: energy.

A back-of-the-envelope estimate from the year 2007 shows that computers and the
Internet consume over 5% of world’s total energy production [9]. This number may not be
accurate but it illustrates that autonomous and intelligent robots have to be economically
viable and therefore energy-efficient if they are ever to leave academic laboratories and
factory floors.

1.4.3 Machine Learning

Machine learning is maybe the greatest success story of the last decade and therefore an
obvious candidate for a winning paradigm. However, there are convincing arguments that
machine learning by itself will not be able to solve the “pixels to torques”-problem. Taking
the “pixels” as source of input literally, the number of different ways to arrange the pixels
is so large, that methods capable of bootstrapping the “pixels to torques”-problem ab
initio would also be able to break modern encryption algorithms [2]. Given the complexity
of problems addressed by state-of-the-art machine learning techniques today, this point
seems nowhere near.

The successes of machine learning have taught us a valuable lesson though: many
interesting problems can only be solved if one provides an appropriate bias, i.e. informa-
tion about the inherent structure of the problem, encoded in such a way that the learning
algorithm can leverage it to guide the learning. In good old-fashioned AI such biases
were called heuristics.

And this is an important insight to remember when thinking about new paradigms:
many problems, when formulated in a naïve way, are too high-dimensional to be solved by
brute force computation. And I would claim they will remain too high-dimensional, even if
we wait for Moore’s law to play out for another couple of decades (see discussion of Com-
putation above). It is not a question of considering robots with more degrees of freedom,
i.e. 50 instead of six. And it is not even a question of including the degrees of freedom of
objects manipulatable by the robot – now we are talking about thousands, maybe millions
dimensions to consider. A naïve formulation of the problem of autonomous, intelligent
robots must include also all information available to the robot. The robot has to consider
what it knows to change its environment so as to achieve a task. Now we are talking
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about billions of dimensions.
Personally, I think this is a strong argument in support of needing appropriate, i.e.

problem-specific biases. More computation and smarter (but unbiased) machine learning
methods will not be able to solve the “pixels to torques”-problem. Finding good biases
might not be an easy problem but it is probably easier than overcoming the limitations of
computation.

1.4.4 Morphological Computation

Morphological computation [6] captures the idea that morphology itself can perform com-
putation. For example, a hand closing around a rock is “computing” an optimal grasp
through compliance in skin, muscle, and tendons. This kind of computation is particularly
well suited to address uncertainty in the world and therefore could form a good basis for
grounding appropriate higher-level symbols.

The morphological computation paradigm implies that the sensorimotor capabilities of
a robot should not be divided into hardware and software. Instead, computation must
be distributed across these two components in a favorable way. In most of robotics this
insight has at most been exploited accidentally. Is it maybe part of an explanation of
Moravec’s paradox? Biological intelligence relies on morphological computation exten-
sively. And maybe a winning paradigm for intelligent technological artifacts must also
exploit the synergy of hardware and software in more direct ways.

1.4.5 Sensor Technology

The SICK laser range finder has revolutionized mobile robotics; it provided a huge im-
provement over sonar sensors. This improvement made finding an elegant and tractable
solution to the SLAM problem possible. Recursive estimation and probabilistic robotics
are now part of the standard tool box of any roboticist.

It would not be unreasonable to think that a similar improvement in 3-D sensing can
boost the state of the art in robotic manipulation. However, this is based on the assump-
tion that acquisition of information about the world is the bottle neck. If one considers
seriously the implications of Moravec’s paradox and believes in the fundamental idea
behind morphological computation, one might be led to believe that this is not enough.
While better sense information will necessarily lead to improvements, the overall problem
of manipulation at human dexterity-levels might require not only better sensors but also
approaches that have an integrated perspective of sensing, perception, actuation, and
action.
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1.4.6 Development

Piaget’s theory of stage-wise development in humans remains widely accepted in devel-
opmental psychology, 60 years after its publication [5]. An increasing amount of evidence
is uncovered by neuroscientists, psychophysicists, and psychologists that even basic cog-
nitive functions, such as those of the visual system, are learned incrementally by building
on functions learned earlier [1]. It would therefore appear that stage-wise development
plays a pivotal role in the benchmark system for autonomy and intelligence – the human.

The young and emerging field of developmental robotics (or epigenetic robotics) at-
tempts to build autonomous robotic systems by following the idea of development. All too
often, work in this field is concerned with learning about developmental patterns observed
in humans and re-implementing them on robots. The mechanical and computational sub-
strate used for these experiments is rather general and it is therefore no surprise that
developmental patterns can be imitated and replicated by careful system design. The
reimplementation of developmental phenomena is only interesting if it generates new ob-
servations that can be verified in the biological system afterwards. This is rarely the case
in developmental robotics.

The more pertinent question may turn out to be: what are the principles of development
in biological intelligence irrespective of the substrate or a particular developmental pattern
that can be formalized and leveraged to build better robots? It seems that those principles
must exist, as nature seems to have evolved several architectures exploiting the same
principles [3].

One of those principles, so it would seem, must relate to compositionality. The incre-
mental and stage-wise learning of cognitive capabilities in humans and animals realizes
increasingly complex skills based on simpler ones. Good building blocks are therefore
characterized by how well they enable more complex skills and not by how well they
compose into a system that solves a particular problem, as it is the case in the system
engineering paradigm.

The same principle should also relate to the aforementioned biases. One could imagine
that the acquisition of a skill is only possible in the presence of particular biases that
structure the input/output domain of the agent. Skills, once acquired, provide a different
structuring of this space, in turn enabling the acquisition of other, more advanced skills.
Compositionality and biases could therefore be interdependent.

Human development relies on the genetic program we are born with. The nervous
system contains hard-wired processing elements that structure the raw data sensed by
the 300 million external receptive nerve endings in the human body. We know that this
structuring of raw sense data provides a kind of processing and behavioral basis with-
out which development would not be possible. It is therefore likely that development in
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technological artifacts must rely on a similar computational and behavioral basis. Hence,
development might be a part of a winning new paradigm but probably not the whole story.

1.5 What’s the new paradigm?

Only the future can tell if a paradigm shift indeed is needed in robotics. In the brief
discussion above, no obvious winning paradigm emerged. Maybe a new, yet unknown
paradigm will take center stage in the coming years. We can only speculate about the
path that leads us there. Here is my personal speculation:

• Our field should de-emphasize application-specific research. There are too many
fundamental problems that remain unsolved (manipulation, segmentation, object
recognition, etc.); our community should explore novel ways to deal with these prob-
lems, free from the pressure to produce “products.”

• Research should consciously disregard the existing boundaries of sub-disciplines
in robotics, for example between computer vision, manipulation, planning, control,
and mechanism design. Instead, our field should focus on the development of
truly integrated sensorimotor systems. This differs from the systems engineering
paradigm in that the development of the system includes these aspects; in the
system engineering approach the resulting system integrates these aspects but the
aspects have been developed independently.

• Researchers should pay particular attention to the compositionality of skills. The
quality of a skill cannot be determined by evaluating the skill by itself. The quality of
a skill also encompasses the degree to which a skill enables or facilitates the perfor-
mance of other skills. For this type of research we must move away from an exper-
imental methodology that tests skills in isolation and instead move towards testing
skills in the context of larger systems. This implies that skills have two equally
important functions: the skill itself and also a structuring and simplification of the
overall state space that enables more complex skills to be realized.

• The field of machine learning should make the study of appropriate biases a core
part of its research agenda. We need to understand how task-specific biases can
be identified, extracted, represented, and leveraged in learning.

• If we believe that development and autonomous learning are important avenues
towards autonomous, intelligent robots, then it might be advisable to focus on a
set of basic sensorimotor skills that provide sufficient structures on the “pixels to
torques”-problem space. This might be viewed as the computational and behavioral

9



1 Is Robotics in Need of a Paradigm Shift? (Brock)

basis provided to biological intelligence in the form of genetically coded hardware
skills.
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2 The Well-Rounded Roboticist
Gaurav Sukhatme, Stergios Roumeliotis | U. of Southern California, U. of Minnesota

Technical societies are often identified by the common background of their members
usually acquired through undergraduate and graduate training. Members of some fields,
despite the differences in the curricula of different programs among schools across the
world, exhibit a degree of common background. As an example, it is safe to assume
that the vast majority of the members of the IEEE Controls society have taken courses in
control, and a random attendee at the CDC can correctly define a Lyapunov function.

This is not obvious for robotics where it is difficult to determine the defining core of our
community in terms of common technical background. Various factors contribute to this.
Most importantly the inherent diversity of the discipline means that robotics programs are
housed in many different departments (e.g., Computer Science, Electrical-, Mechanical-,
Aerospace Engineering, etc.) – probably a unique characteristic of our discipline.

While this pluralism enriches our society, it sometimes also hinders communication
since people with different training often fail to understand and appreciate different view-
points on the same subject, thus missing the opportunities that result from synthesis of
different ideas. One often sees this e.g., at program committee meetings in the arguments
between area chairs from different areas within robotics.

2.1 Introduction

The main question that poses itself is: Is a common core for robotics possible to envisage,
desirable to implement, and achievable in reality?

2.1.1 Background

In the US1, with one exception (Carnegie Mellon University), all PhD students working
in robotics research are housed within the confines of a degree granting department.
For most students, as far as their universities are concerned, the students are working
on a degree in compter science or mechanical engineering or electrical engineering and
specializing in robotics. The coursework the student takes emphasizes the broader de-
partmental discipline. This can mean that coursework in robotics is marginalized. This
creates a silo effect and the exposure of robotics students to the full breadth of topics

1The authors are not sufficiently familiar with graduate education outside the US so the examples given
here are from the US only.
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in robotics is limited. Large interdepartmental labs (e.g., GRASP at the University of
Pennsylvania) blunt the impact of this effect to a certain extent.

The Carnegie Mellon University offers a true robotics PhD program whereas the Geor-
gia Institute of Technology and the University of Utah offer coordinated “robotics tracks”
for their PhD students housed in multiple departments. At Georgia students who want
to specialize in robotics are advised to take two linkage courses on “Multidisciplinary
Robotics Research”. The remaining coursework is department specific. At Utah, students
in Mechanical Engineering and Computer Science can specialize in “robotics tracks” with
differing requirements and a common core. Other universities (e.g., the University of
Southern California) offer similar track arrangements but only in limited departments (typ-
ically one or two out of CS/EE/ME/AE2). The coordination between a PhD robotics track
in CS and a robotics track in EE or ME is poor.

At the Carnegie Mellon University, the robotics PhD program requires students to take
four core courses, one from each area: Perception, Cognition, Action, and Math Foun-
dations. Perception core courses include “Computer Vision” and “Sensing and Sensors”,
Cognition core courses include “AI” and “Machine Learning”, Action core courses include
“Kinematics, Dynamics, and Control” and “Mechanics of Manipulation” and the Math foun-
dations core course is a specially designed course for roboticists called “Mathematical
Fundamentals for Robotics”.

2.1.2 What should the well-rounded roboticist know?

To seed discussion, we list broad topics that we believe robotics students should be
familiar with:

• Kinematics and dynamics e.g., Siciliano

• Mechanisms and actuators

• Linear control e.g., Hespanha

• Sensors and sensing systems

• Motion planning e.g., LaValle

• Machine vision e.g., Forsyth and Ponce

• Artificial intelligence e.g., Russell and Norvig

• Machine learning e.g., Mitchell

2Computer Science, Electrical Engineering, Mechanical Engineering, Aerospace Engineering
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• Statistics

• Linear algebra e.g., Strang

• Optimization e.g., Boyd

• Estimation

• . . .

Given that there is a huge selection of topics and most of us would like students to
learn to do research there are two choices: Either we accommodate many of the above
topics into a set of coherent courses and campaign at our institutions to train roboticists
or we decide that a common core is not important and teach a selected subset of the
above to students depending on their (and our) departmental affiliations.

2.1.3 Food for thought

The authors advocate the former proposal – a specialized robotics PhD. Open questions
are: Is there a rational middle ground? What is the European view on this topic? Where
or in which cases is formal coursework not part of the PhD program? If students were
trained more broadly would they produce better work? Be more creative? Would the
quality of the reviewing process in our conferences and journals improve? Could we
play a more effective role in our various national lobbying organizations by graduating
broadly educated PhDs who share a common foundation? Would robotics technology
commercialization speed up?

2.2 Meeting Discussion Summary and Outcomes

2.2.1 Questions and Discussion

• Should there be a specialized PhD program in robotics? No consensus was reached
on this point.

• Wouldn’t defining a core educational background for roboticists be useful? There
was some agreement on this topic. Defining the field clearly to professional organi-
zations (e.g., industry, government) could ultimately help academic institutions.

• Should there be a core set of subjects for robotics? If yes, who should define this
core? The sense of the meeting was that the field is too comprehensive to define a
core.
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• What role do Wikipedia, Google and online lectures play in education? Some felt
that we need short modules to be available on demand to all students, rather insist-
ing on a core set of educational requirements.

• The point was made that robotics needs strong links between lectures and labs.
Shouldn’t this be part of the core?

• How do we define the core? Experts certainly have opinions. Should it be the union
of topics defined by us? Or the intersection of topics defined by us? There was no
consensus on this topic.

2.2.2 List of Topics Suggested by Attendees

Each of these topics represents half-a-semester course at a US academic institution:

• Kinematics

• Dynamic systems

• Filtering and estimation

• Math

• Linear algebra

• Differential equations

• Probability theory

• Optimization

• Inference

• Adaptative control

• Motion planning

• Navigation and mapping

• Sensing systems

• Power electronics

• Vision

• Digital systems
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• Algorithms

• Mechatronics

• Machine learning

• Mechanics/mechanical design

• Programming

• Graph theory

• Logic

• Planning (distinct from motion planning)

2.2.3 Next Steps

A subcommittee is being constituted (chair: Sukhatme) to generate a document that will
have a list of important topics (candidates for the list are above) and:

• A short introduction (1 paragraph) to the topic

• Relationship to other topics

• References to monographs/articles for practitioners

• References to books for fundamental understanding
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3 Are we even in the game?
Vijay Kumar, Matt Mason | U. of Pennsylvania, Carnegie Mellon University

We may feel that robotics research has made enormous strides over the past 50 years,
but the real world impact is disappointing to some. How far have we come, and how far is
left to go? This document summarizes several email exchanges before the Berlin Summit
and at the Summit. We hope this will continue to provoke discussion on the current state
and future direction of robotics research.

3.1 Introduction

In 1961, there was Unimate, and Joe Engelberger appeared on “The Tonight Show”
with Johnny Carson and showed the Unimate perfectly putting a ball to loud cheers.
The same software presumably was used to handle hot ingots on the shop floor. On
December 23 that same year, Heinrich Ernst defended his doctoral thesis (supervised
by Claude Shannon) in which he described the MH-1, a computer-operated mechani-
cal hand (Fig. 3.1). He developed programs that would, for example, “search the ta-
ble for a box, remember its position, search the table for blocks, take them and put
them into the box.” As he says in his thesis, “The position of the objects is irrelevant,
as long as they are on the table.” His “previous research” includes ideas of building
a versatile hand attributed to a seminar by Claude Shannon and Marvin Minsky. (A
film of Ernst’s project is available online at http://projects.csail.mit.edu/video/

history/aifilms/15-robot.mp4 and an accompanying narration, recorded later, is at
http://projects.csail.mit.edu/films/aifilms/Podcasts/15-robot.mp3+

We roboticists are trying to figure out how to build mechanical people. How far have
we come? How far do we have yet to go? We have made a lot of progress. Our com-
puters are certainly faster (Ernst’s choices were between a TX-O and an IBM 709). We
have power programming abstractions and simulation tools. Hydraulics and pneumatics
with simple on-off actuators are now replaced by backdriveable brush-less DC motors.
Certainly our arms have incredible precision compared to the foundry manipulator. We
have planning algorithms that can explore 11-dimensional spaces. Clearly we have made
progress. Today’s graduate student is incredibly sophisticated in her approach to solving
Ernst’s problems and Ernst would be envious of our research laboratory.

Are we nearing a finish line? If so which finish line is it, and how far is this finish line.
Even though we have made a lot of progress, what is the progress since Ernst’s work
with respect to the finish line? Related to this is a fundamental difficulty. We can measure
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degrees of freedom, speed, force, precision, accuracy, of the robotic mechanism, but
our measures of the actual task performance are almost non-existent. How would we
even construct a numerical measure with which we could mark our progress or compare
competing systems? Can we even say what capabilities ultimately define a general-
purpose manipulation system? How do we define a true dexterity index? Given that we
do not have answers to these questions, it’s hard to imagine we will approach a goal
within the next 50 years!

Figure 3.1: Left: Ernst’s 1961 computer-operated mechanical hand, MH-1, which was at-
tached to an off-the-shelf American Machine and Foundry Servo Manipulator; Right: Barret
Technology’s 2011 four degree-of-freedom hand attached to a seven degree-of-freedom ma-
nipulator.

3.2 Accomplishments

3.2.1 Impact of contributions from the robotics community

This is a compilation of things we can be proud of and have made a real-world impact:

• Work on manipulator kinematics, manipulator design, and manipulator program-
ming systems has been incorporated into all industrial robot systems.

• We can model the three-dimensional geometry of complex environments and rea-
son about configuration spaces in high-dimensions and plan reaching movements
that avoid collisions and joint limits.

17



3 Are we even in the game? (Kumar/Mason)

• Some advanced control algorithms have also made it into industrial robot arms -
the computed torque algorithm, a certain class of adaptive control algorithms, and
force control algorithms.

• Robot architecture, control, and even autonomous navigation software runs on
Spirit and Opportunity on Mars.

• Some automobiles can parallel park autonomously.

• Our mechanical design, control, and teleoperation methods are deployed in surgical
systems.

• Simple perceptual, control, and navigation systems are used in vacuuming robots.
(Some of them do navigate, for example the Neato Robotics and Evolution Robotics
products.)

• Autonomous systems are making inroads in shipping yards, mining, agriculture, and
unmanned air vehicles.

3.2.2 Significant contributions that may not have had the impact we once
thought

Here is another list of accomplishments. Have these accomplishments made a difference
to grasping and dexterous manipulation in unstructured environments?

• Grasp synthesis and analysis – mathematics and algorithms of caging, immobilizing
and grasping ensuring stability – many impressive, well-cited papers but how useful
has any of this proved today?

• Other manipulation – folding towels and origami, catching a tumbling cell phone in
a fingertip grasp, throwing things, even juggling . . . yet these point solutions show
now sign of approaching a more general competency.

• Learning – very impressive appearance-based learning, imitation learning, rein-
forcement learning - nothing that appears to generalize across even a narrowly-
defined set of tasks (how to define this is also a problem).

• Perception – incredible progress in object recognition, image-understanding . . . and
yet, we are nowhere close to achieving real-time perception-action loops. The vision
folks are not interested, perhaps because the problems are too "dirty" (and way too
hard!).
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• Haptics – models and demonstrations of hands feeling and recognizing objects –
presumably a lot of potential but few practical solutions for grasping and manipula-
tion.

Even in automated factories, humans are making a comeback. Smart phones are
generally assembled by hand. In some other cases, automated assembly operations
have fallen into disrepair and been replaced by humans.

3.3 The DARPA ARM-S project

Robotics has been exposed! Witness the tasks in figure 3.2 that top researchers in
the US had to do in a very structured environment (table top, good lighting, perfectly
positioned stereo rig and ranging sensor) with a state-of-the-art manipulator and arm.
Six teams competed. The best team completed task 1 four of five times with an average
completion time of 136.1 seconds. The best team completed task 2 four out of five times
with an average completion time of 153.7 seconds. The best teams completed task 3
two out of five times with average completion times of 84 and 274 seconds. Three of
six teams either did not attempt or complete this task. After 50 years, shouldn’t these
tasks be homework problems in a robotics undergraduate class? Arguably the simple
environment in figure 3.2 is a structured environment and industrial robots have been
used successfully in such environments. Why is this task so difficult?

Figure 3.2: Challenge tasks in the ARM-S Project. Locating, grasp and placing a flashlight
(left: Task 1) and a bottle (center: Task 2) on the orange paper and opening a door (right:
Task 3)
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3.4 Measuring Unstructuredness

One of the greatest weaknesses of our field is the inability to precisely characterize a
task. When measuring progress we have no basis for comparing across task domains. Is
an ant’s job more difficult than a human’s? Surely not, but how do we make that precise?
Are today’s robots “better” than ants? We cannot answer this question today. We don’t
have any precise way of characterizing different tasks or task domains.

One commonly applied characterization of a task is structured versus unstructured
environments. Unfortunately the terms are used without consistency or precision. We
talk of the kitchen as an unstructured environment, but we really depend on having a flat
floor. Is there a precise way of comparing the uncertainty or structuredness of a factory
with a kitchen? It is important that we find a way. Some people feel that factories are
fundamentally uninteresting, that they are too structured, that there is no uncertainty,
and hence that nothing is to be learned from experience in factory automation. A more
precise understanding of structured and unstructured environments might enable robotics
researchers to integrate lessons learned in factory automation.

3.4.1 History of “unstructured environments”

A quick literature search turned up about 200 papers mentioning unstructured environ-
ments, most of them only in passing. Most papers use the term without a definition.
Surprisingly, the term was in use as early as 1967, used in SAIL Memo 51, by Lester
Earnest. His observation was that in order for a computer to operate efficiently in an
unstructured environment, it has to have something like an eye.

Various subdisciplines of robotics use the term in various ways. In navigation, it some-
times means that the robot has a map. Sometimes it means that the road has curbs. To
some people it means that beacons were installed. Shakey was a mobile manipulator
with significant uncertainty in the locations of objects, but later researchers call it a struc-
tured environment. Only certain things were to be found in the environment, they were
very regular in their appearance, and features such as visually contrasting baseboards
were added to the environment to aid localization.

3.4.2 Definitions

In manipulation research at least, it seems the dominant idea is that if you design both
the robot and the task environment, that’s a structured environment. Factories are the
canonical example. Let’s call that the “co-engineering” definition.
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Definition: A structured environment is an environment that is co-engineered with the
robot for solution of the task.

Examples of the co-engineering definition of structured environments would be bea-
cons in a navigation task, or parts feeders in a factory. What happens if an environment
was structured for a different robot? Or, more generally, for a different agent, including
a human? There isn’t a clean line of separation. Imagine you’re in a factory, and you
say this is an unstructured environment. And the engineer says, well it used to be, but
then the robot broke and we swapped in a new robot. So, we introduce the “engineering”
definition:

Definition: A structured environment is engineered for solution of the task.

An example of the engineering definition of structured environments would be the
kitchen, which is engineered for ease of human solution, but with regularities such as
flat floors that also ease robotic solution. A third possibility is that the environment was
not structured for the task, but it has regularities that the robot can exploit. So, we intro-
duce the “regularities” definition:

Definition: A structured environment has regularities that simplify a task.

An example of the regularities definition would be the curbs on the side of a road,
which are actually present to deal with rainfall (I think) but which can be exploited by
range sensors to find the road edge. A cynical view of the robotics literature suggests an
additional definition:

Definition: A structured environment is the environment solved by the previous researchers.

Each time we approach a new task, the environment is frighteningly open and unstruc-
tured. We ultimately solve the task by identifying and exploiting regularities, and perhaps
introducing some regularities. Having accomplished that, the regularities are very obvi-
ous to future researchers who now perceive it as a structured environment.

3.4.3 Implications

The real issue is, what expectations does the robot require of the task environment for it
to do its job? If you are designing a bot for a kitchen, you should optimize for counters
of standard height, for the utensils and appliances commonly used by humans. Drinking
glasses are not made of soap. Kitchen floors are not cobblestone or sand.

Some implications of these definitions:
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• Structuredness is not binary. Whatever definition one chooses, structuredness
varies over a continuum.

• Structuredness is relative to the task. If the task is to emulate a statue, many
uncertainties in the environment might be ignored.

• Structuredness is relative to the robot.

We stipulate some additional observations:

• All task environments have some regularity, derived from whatever source.

• If you know of these regularities, and can exploit them in the design of the robot,
you should.

• If you can add to that regularity offline, inexpensively, you should.

• If the robot or human wants to add to that regularity online, it can. That’s an essential
part of many big tasks, especially kitchen work – creating and maintaining order.

We still lack a means of measuring structuredness, but perhaps we have made some
progress. The idea would be to measure that order in an environment that facilities so-
lution of the task for the given robot. If we could agree on a precise metric, we could
then go back to Les Earnest’s characterization. Is there actually an important distinction
between uncertainties typically faced by a factory robot and those faced in the kitchen.
Factory robots face rampant uncertainty, but generally they don’t need eyes. Typically
they deal with uncertainty with a few binary sensors, plus mechanical compliance, and
perhaps even some tactile sensing and force sensing. But it is essential that they know
approximately where things are.

Tying this back to earlier sections, we might look at the variety of demos/videos by
our community that claim progress. The PR-2 community has collectively bagged gro-
ceries, folded towels and opened/closed doors. Andrew Ng and coworkers learn object
orientation and successful grasp strategies from appearance. Srinivasa has very im-
pressive demonstrations of an arm reaching and grasping in cluttered three-dimensional
environments. Hsiao, Kaelbling and Lozano-Perez have used tactile sensing to grasp and
manipulate a variety of objects with uncertainty showing over 90% success rate.

And yet we have the embarrassing DARPA ARM-S experience. Could it be that the
impressive demo’s are nothing more than proof that the line between “structured” and
“unstructured” environments is malleable? Should we interpret the difficulty of the ARM-
S challenges as evidence that they are well-conceived, or poorly conceived?
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Is it time for us to organize well-defined challenges so as to measure progress and
encourage efforts in well-motivated directions? Or, is our field still so new that it makes
sense for us to continue the loosely-organized-stabs-in-the-dark approach?

3.5 Possible challenge tasks

Some robotic challenges have been very successful – witness the DARPA Grand and
Urban Challenges for autonomous driving, and the robot soccer competitions. There
are also competitions in Search and Rescue. What would be good challenge tasks in
manipulation?

3.5.1 Personal/service robotics challenges

Several groups are working in kitchens. Should we devise challenges or competitions
related to kitchen work? Loading the dishwasher? Extracting items from cabinets and
refrigerators? Unjamming the garbage disposal? Brushing the ants off the dessert with-
out the guests noticing? It raises some interesting questions in defining not just one
set task environment, but a distribution of task environments, or perhaps a continuum of
distributions of graded complexity.

Towel folding races? Gathering coke cans? What about traditional human games:
Jenga, pick-up-sticks, tiddly-winks, sleight-of-hand? Actually, humans have lots of chal-
lenges and metrics and competitions for manipulation tasks. For a taste, check out http:
//www.youtube.com/watch?v=3qjdYpKq4Yw and http://www.youtube.com/watch?v=Bu-

PjOOFyPU. Interestingly, as far as we can find, humans do not have kitchen-cleaning
contests, but they do have kitchen-messing-up contests.

3.5.2 Bin picking: A simple structured task

Bin picking is an interesting problem. There were lots of interesting projects on it, in-
cluding some folks trying to automate the design of bowl feeders, or design general-
purpose feeders, or even trying to do the most “obvious” thing: look in the bin, pick out
an object, accurately determine its pose, plan a grasp, and go get it. Some notable
efforts: Horn and Ikeuchi’s system for picking plastic donuts. And a recent commer-
cial success story called Braintech. Successful, right up until it failed. Sigh. Still, it
shows both interesting capabilities and limitations. A video is available at http://www.
youtube.com/watch?v=09LzufOnbX0. Here’s an Adept video, somewhat similar: http:

//www.youtube.com/watch?v=2zygwhgIO3I
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Here’s another more conventional automation approach to a simpler problem: http://

www.youtube.com/watch?v=wg8YYuLLoM0. There was an interesting system called a Flex
Feeder, developed by Adept. I think Adept gave up on it eventually, but I found this
variation on it: http://www.youtube.com/watch?v=v-Kh588NkVo

It’s a nifty set of recirculating conveyors that provide a randomly scattered stream of
parts on an underlit stage. For some parts, it is enough to do 2D vision, find the parts
that are correctly oriented and isolated, and go get them using preplanned grasps. You
could imagine setting a set of challenges where you change the illumination, vary the
types of parts, whether the parts are familiar or not, whether they are mixed, density of
them, and measure performance as mean time to picked parts, precision with which a
picked part’s pose in the hand is known.

Some people don’t like this stuff because it is "structured", and some would even say
there is no uncertainty. Obviously we could have a long argument over that, but never
mind. It is a task that lends itself to benchmarking and it is sufficiently complex that people
would not compare it to what Ernst tried to do (and accomplished) in 1961.
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4 Learning in Robotics: The complexity is
in the environment

Marc Toussaint, Tomas Lozano-Perez | FU Berlin, Massachusetts Institute of Technology

4.1 Starting point

Learning in robotics has a long tradition that grew into a wide field. One way to categorize
modern approaches to learning in robotics is in the formalization of Reinforcement Learn-
ing: Figure 4.1 provides such a taxonomy strongly biased by the RL formalism. When
surveying such a spectrum of work there are several observations:

1. Most examples of successful Machine Learning (ML) in robotics concern control of
the robot’s own or attached DoFs. Only in relatively few cases has ML been used
for a robot to learn how to control/manipulate a natural environment.

2. Integrated robotic systems are huge – in terms of lines of code, as well as mix of
methodologies/disciplines/formalizations that comprise the system. Most examples
of successful ML in robotics concern tightly constrained learning problems “sprin-
kled” throughout such integrated robotic systems. The engineer identifies a poten-
tial for learning, maybe on the control level, for object recognition, for calibration, or
for automatic optimization/tuning of cost functions, etc. Nevertheless, the learning
rarely concerns the system as a whole.

3. Tackling truly complex manipulation problems (many DoF and very long action se-
quences) requires exploiting/discovering appropriate hierarchies and abstractions.
These are areas where progress in both ML and robotics has been slow.

We believe such issues are central obstacles for the progress of learning in robotics.
While the naive dream of introducing learning to robotics (or AI in general) is that it makes
systems more autonomous and will eventually spare us from pre-programming behaviors,
this goal has – despite the successful demonstrations of learning on specific problems –
not really been achieved. The question is why and what are promising research directions
to overcome the mentioned obstacles.
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Figure 4.1: Five approaches to learning in robotics

4.2 Views on future challenges and premises for ML in
robotics

During the discussion several views on the role of ML in robotics have been mentioned.
To reflect this variety of views and opinions we briefly recapitulate some parts of this
discussion.

4.2.1 Abundant data and longevity

Robotics in principle allows collecting huge amounts of data. One example mentioned
in the discussions is navigation, where a system (e.g., autonomous car) navigating for
years in real environments could collect data on an enormous variety of situations and
conditions (Paul Newman). It is sometimes remarked that such abundance of data (com-
bined with efficient retrieval methods) can make a qualitative jump in model performance,
as demonstrated by current trends in image analysis and internet applications. Following
this line of argumentation we should aim at longevity and life-long learning of robots, and
on collecting more and more data.

From a more abstract point of view, this discussion is about the importance of the
prior versus the data: On which should we put more emphasis? The data-oriented per-
spective diminishes the role of the prior, perhaps only relying on a basic nearest neighbor
method for retrieval and lazy learning, in hopes that eventually we will have data for nearly
any possible situation. In contrast, the prior oriented perspective asks which structural
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aspects of natural environments and types of generalization we should or need to incor-
porate in a prior to enable learning. The latter raises fundamental and open research
questions on what specific priors in robotics could be, which were subject to further dis-
cussion as mentioned below.

4.2.2 The role of learning algorithms in robot architectures – towards the
“Double Down sandwich”?

Some applications of learning algorithms in robotics play the role of filling some gap in a
pre-structured control architecture. That is, in the given architecture there may be some
mapping, classification or relation initially unspecified which is then estimated based on
data. In the discussion this was coined a “sandwich”. This is put in contrast to the “Double
Down sandwich” perspective, where learning should address everything, including the
architecture (Stefan Schaal).

It is interesting and perhaps controversial to discuss which existing learning paradigms
should be viewed as “sandwich” vs “double down”. All types of system identification,
including learning motor dynamics and SLAM, could be viewed as just sandwich. The
family of Reinforcement Learning algorithms could perhaps also be viewed as just sand-
wich, at least when the core RL algorithm is embedded in a larger system architecture.
In fact, it is quite unclear how “double down” can actually work; how learning methods
should be able to learn the architecture itself.

4.2.3 Focus on Robot dynamics vs. interaction and manipulation of
environments.

Arguably, most successful applications of learning methods in robotics to date concerned
“internal degrees of freedom” of the robot it self. By “internal” we want to include the
robot position, as in navigation and SLAM, or directly attached DoFs like in balancing.
This is meant in contrast to learning models of “external degrees of freedom” like how
to manipulate objects in a natural environment. There are examples on the borderline,
like learning to juggle, hitting a ball, etc. as well as learning models of interaction with
one specific object. But this still is in contrast to learning higher level manipulation strate-
gies in natural environments, where the focus is more on learning something about the
environment than about the robot.

This issue seems related to the reduced emphasis on robot manipulation in the last
decades of robotics research, where the success stories in motor control, motor skills,
SLAM and motion planning, including learning methods in the these areas, have some-
what superseded the traditional focus on manipulation research.
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4.2.4 Learning for reasoning – the non-decomposability of learning and
reasoning.

A central question is what to learn. In some cases, e.g., standard system identification,
it is fairly well-defined what the learning problem is because it is clear how the learnt
model can then be used for control. In other cases, where planning and reasoning with
given models is still an unsolved challenge, it becomes less clear what to learn. Generally,
we should aim at learning models that enable efficient reasoning/motion planning/control.
Therefore, in hard domains (like probabilistic relational domains) the research on learning
methods cannot be independent from the research on reasoning methods using learnt
models – only when we have an idea how reasoning could work efficiently we can have
an idea what to learn.

To give an example: If the goal was a robot that “learns how to clean up a kitchen”, it
would be unrealistic to believe that two researchers could split the task: one taking care
of the learning, the other of the reasoning. The first might do research on SVMs for some
years, the other on STRIPS planning for some years, then the meet back and “simply
put things together”. Instead, both would continuously have to communicate what the
learning constraints imply for reasoning and vice versa. For instance (arguably), the need
for learning implies that reasoning must cope with probabilities. The need for reasoning in
environments with many objects implies that learning must cope with relational structures.
Generally, of crucial importance are the representations shared between learning and
reasoning, whether they allow for both efficient learning and reasoning, and what priors
they imply.

4.3 Promising directions

4.3.1 Logic, Probability and Geometry

Moving the focus of robot learning research beyond robot control and “internal degrees of
freedom” towards learning higher-level models of the environment itself will have a series
of implications:

While most learning tasks in the context of motor control, skill acquisition or SLAM are
concerned with a fixed-dimensional vector space, the state space of the “outer environ-
ment” is exponential (e.g., in the number of objects) and naive, propositional vector-space
representations are hardly promising. Therefore, simple off-the-shelf regression and clas-
sification methods are hardly useful to learn interesting models. The structures inherent
in natural environments are very special and very strong – it will remain impossible to
learn efficiently without translating this structure to more sophisticated representations
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and priors. One structural aspect of natural environments (out of many others) is that the
effect of actions depends on relations and properties of objects, not their identity. This
points to the research on statistical relational learning, which seems a good approach to
reflect this prior structure.

Worlds of objects, characterized by their relations and properties, are classically de-
scribed in AI by logical formalisms. These formalisms (relational representations, first
order logic representations) can represent some of the underlying structure of natural en-
vironments, abstracting away from details of shape and location. However, the inability of
logical formalisms to capture details of shape and location (geometry) led to the rejection
of classical AI planning for robotics and to the development of geometry-based motion
planning approaches. Recently, there has been progress in bridging this gap between
logical and geometric representations, such as [4, 5, 12, 3]

But, learning (which includes modelling uncertainty, regularization, model selection) on
these more complex representations has, until recently, been difficult. Recent progress
of Statistical Relational Learning offers some hope that these problems can be tackled.
The popular science article I, algorithm: A new dawn for artificial intelligence (Anil Anan-
thaswamy, NewScientist, January 2011 1) explains this field as “combining the logical
underpinnings of the old AI with the power of statistics and probability.” Stuart Russel
is cited as “It’s a natural unification of two of the most powerful theories that have been
developed to understand the world and reason about it.” The article goes on to suggest
that with these new developments a new “AI spring” is arising after the “AI winter”. Inde-
pendently of how often this has been promised before, we think that at least this is going
exactly in the right direction for robotics!2

Our hope for SRL (enhanced with geometry) is that is has potential to get learning
methods out of the bubble – to lift them to address learning generalizing models of the
manipulability/controllability of worlds of objects based on their relations and properties.
If it works, it will finally show that ML can really make a system more autonomous. The
main current challenge is to ground and demonstrate existing learning methods in real
robotic systems. Here is some work in this direction: [8, 9].

1http://susansayler.wordpress.com/2011/02/01/i-algorithm-a-new-dawn-for-artificial-
intelligence/

2In fact, it leads back to the original root/motivation of Machine Learning as a discipline which should
enable intelligent systems to interact with the environment. See Pat Langley’s editorial on the origins
of ML in the 25th Anniversary issue of Machine Learning: The changing science of machine learning
http://www.isle.org/~langley/papers/changes.mlj11.pdf
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4.3.2 Learning Hierarchy and Abstraction

Once we talk about “controlling” the environment (manipulation) and not just the robot,
the size of the planning, control and learning problems becomes potentially unbounded.
The only reasonable approach is to break up the problem into (hopefully small) pieces.
Two powerful ideas that can help are temporal hierarchies (to break long sequences into
shorter sequences) and abstraction (to focus on relevant aspects of the problem). This
is an area with a long history in AI but characterized by relatively slow progress. It has
received some recent attention within AI/ML/Robotics: [2, 10, 11, 7, 4, 5].

4.3.3 Learning on the system level

The discussion on (learning) system architecture raises the question: Can learning go
beyond addressing isolated aspects (pre-determined by the engineer) and instead ad-
dressing the system as a whole.

An observation in this context is that ML generally works with a “full formalization” of
the domain. Typical conference papers spend about a page to (very briefly) define the
framework – of course by building on previous papers and formalisms, but being more or
less concise and self-contained. What would be a proper formalization of an integrated
robot system as a whole – including all its levels and components, not just focusing on
one specific (e.g., symbolic or control) level? Characterizing the system abstractly as an
MDP, POMDP or PSR (although correct) is not a sufficient answer. The model would
have to reflect the overall structure of a robotic system, capture the approximations that
make the problem tractable, and eventually enable learning within that whole structure.

Mitchell wrote a commentary on the Discipline of Machine Learning www.cs.cmu.edu/

~tom/pubs/MachineLearningTR.pdf where he advocates as long term goal the “design
of programming languages containing machine learning primitives”. Indeed, some re-
searchers [13, 1, 6] have attempted to design robot programming paradigms that inher-
ently integrate learning, e.g., in which some subroutines are hand-coded while others are
specified as “to be learned”. Is this a promising way to go? Will this give the Double Down
sandwich?

4.4 Concluding remark

While this discussion focussed primarily on learning, we belief that many of the con-
clusions would also hold w.r.t. the design of non-adaptive robots in the following sense:
Even when we conceive of robotics aiming to engineer intelligent but non-adaptive sys-
tems, the process of designing such systems has analogous problems as processes of
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learning and adaptation. Development of a system based on inappropriate representa-
tions and structural decompositions will equally come to a halt like learning algorithms
incapable to develop appropriate representations, hierarchies and abstractions. Perhaps
in the field of software engineering such issues are most explicitly expressed, but such
issues seem to penetrate all design, adaptation and learning processes.

The focus of discussion (and in particular this summary) had a strong bias towards
addressing the structure of the environment. Promising research directions we pointed
out are combining the concepts of logic, probability & geometry, Statistical Relational
Learning as addressing two of these aspects.

However, the relational, logic and geometric structure of natural environments is only
one of many aspects of natural environments. We mentioned geometry. Others are kine-
matic structures, structure that arises from Newtonian physics (e.g., that objects mostly
do not float in the air), etc. When efficient robot learning (and reasoning) needs to exploit
such priors, then robotics needs describe and uncover these structures.

One of the participants (Gregory Dudek) coined the expression “Robotics as the new
Physics” (see 10). This can be interpreted in a educational and societal sense: Robotics
will play a role as central as Physics in the past. Or it can be interpreted in the above
sense that robotics becomes eventually a natural science which is, to a large degree,
concerned with researching and describing the structure of natural environments. The
latter corresponds to the shift of focus in robot learning and reasoning research on ex-
ternal degrees of freedom and higher-level models of the environment itself for robot
manipulation.

The complexity is in the environment.
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5 Perception-Action-Learning
Stefan Schaal | U. of Southern California

It appears that the largely monolithic approaches to perception, control, and learning
have reached their limits and a more integrated approach is needed. Interestingly, if one
examines ICCV statistics, one will find hardly any papers on perception for manipulation.
Active vision, i.e. perception that includes moving sensors, seemingly has been disap-
peared since many years ago, despite it was quite popular in the 1990s. Similarly, how
many robotics researchers actually work with real perception systems, and how many
papers can be found where people address control strategies to improve the quality of
perception? Again, there is not too much out there. Learning adds another component to
these problems. There is a community that cares about learning for control, although the
number of people working on machine learning for complex robots is rather small. Obvi-
ously, machine learning is part of computer vision, but there is not too much work where
people try to devise strategies how perception systems learn competency in a bottom-up
approach, e.g., the idea of “autonomous perception systems”.

And perception also includes tactile perception and acoustic perception, which are
rarely addressed in robotics research. Naturally, sensor fusion becomes important in
multi-modal perception, a topic that researches in mobile robotics and state estimation
have looked at, but that has not found wide spread attention in robotics systems, particu-
larly when fusing vision, haptics, and audition. In contrast, the importance of perception-
action cycles has been emphasized in psychology for a long time. Multi-modal and cross-
modal perception is an upcoming topic in cognitive science. Thus, a bigger question for
robotics becomes how to start a more comprehensive approach to perception-action-
learning systems, an approach that emphasizes the need to address all these topics in
an integrated way rather than treating them as independent research topics.

5.1 Introduction

A common feature shared by most autonomous systems is the concept of a perception-
action loop. Biological systems interact with the world by perceiving relevant aspects of
the world and their own state, processing these aspects, and continuously deciding what
actions to take based upon this information. While the computations involved in the pro-
cessing of perceptual data and generation of actions – and in particular the closed-loop
properties of perception-action systems – are far from understood in biological systems,
it is clear that they involve aspects of learning and adaptation as well as processes of
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inference in the face of uncertain and hidden information derived from very high dimen-
sional multi-modal data streams. Moreover, perception, action, and learning are tightly
linked into a functional system, i.e. it is hardly conceivable that the building blocks were
developed independently of each other.

Figure 5.1: Perception-Action-Learning Loop with some relevant research topics, arranged
from simpler to more complex topics (left to right)

Synthetic autonomous systems interacting with the world fundamentally face the same
challenges; they need to perform actions which, based on noisy measurements taken in
a complex world, let them carry out given tasks; e.g., maintain their structural integrity
(homeostasis), navigate in an environment, manipulate an object, or harvest energy.
While in the 1980s and 1990s, robots were largely dominated by minimal sensing ca-
pabilities and most emphasis was given to issues of control and planning in close to de-
terministic and static environments, the advent of cheap 2D and 3D vision and the push
for haptic and auditory perception is in the process of changing this picture, an issue
even more emphasized by the desire to take robots into human domains which are inher-
ently dynamic and stochastic. It becomes apparent that trying to understand autonomous
robots primarily from the viewpoint of control and planning is going to fail, and trying to
approach perception without taking into account what matters for control/planning and
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how control can help perception is equally a doomed approach. Given the complexity of
modern complex robots, the large amount of data available, and the increasing number
of sensors, machine learning, i.e., automatic and adaptive tools for data interpretation,
seems to be a key component in future robotics.

Thus, studying complete perception-action-learning loops (Figure 5.1), not in a component-
wise isolation but rather as an integrated system will most likely form a new focus of
robotics research. Then, the bigger question becomes, how to create a research method-
ology that aims at generating a general understanding of perception-action-learning,
rather than specific non-general case studies. The following issues seem to play impor-
tant roles in learning in perception-action loops, although none of them by itself answers
the question of how to generate general perception-action-learning systems.

5.1.1 Active Perception

Active vision, i.e., vision with moving cameras inspired by the oculomotor system of hu-
mans and animals, was a popular research topic in the 1990s [1]. In the last 10 years,
it has seemingly dropped out of favor – some vision colleagues claim that supporters of
active vision were too dogmatic and did not deliver exciting enough results. One compo-
nent that has survived is research on visual attention [12, 13, 11], although the groups
that work with moving cameras often do not overlap with the groups that work on atten-
tion algorithms, which can be done solely based on video streams from static cameras.
Some researchers consider visual attention as the highest level of active vision [11].

Using a motor system to improve perception can obviously be more general. Moving
a head to improve auditory perception, or moving an arm with a touch-sensor-equipped
hand can provide improved information about the environment (e.g., [7]). Robot manipu-
lation can also re-arrange objects for better perception in various sensory modalities, or
to identify additional properties of an object, e.g., internal degrees of freedom (e.g., [8]).
The navigation and state estimation community (e.g., [16]) has also contributed to ac-
tive perception by means of mobile sensors on a robot, and research on sensor networks
(e.g., [3]) is often a form of active perception, e.g., in order to optimally extract information
in a complex domain with minimal resources.

5.1.2 Active Learning

Closely coupled to active perception is the topic of active learning, i.e. how to choose
where to sample new data points in order to optimize information gain. Again, this topic
was popular in the 1990s, and relatively few fundamentally new pieces of work can be
found in recent years. A useful survey is given by [17]. One key question shared by
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active learning and active perception is how to optimally select new samples in a high
dimensional world, a problem that quick becomes computationally intractable. Active
learning is also related to the exploration-exploitation dilemma of optimal control and re-
inforcement learning, i.e. how to trade-off resources allocated to gaining new knowl-
edge vs. resources spent on maximizing pay-off (also called the dual-control prob-
lem). A useful recent workshop on active learning in robotics can be found at http:
//webdiis.unizar.es/~rmcantin/pmwiki/pmwiki.php/RSS10/RSS10.

5.1.3 Sensor Fusion and Cross-Modal Integration

One of the big differences between biological and artificial systems is that biological
systems have massively parallel sensing using various sensory modalities, e.g., haptics,
vision, audition, stretch sensors, gyros (e.g., [2]). In most robotics approaches, we overly
rely on one or few sensory modality, well, often just because no other one is available.
But robustness of information processing most likely arises from sensor fusion using as
many sensors as possible, potentially having a huge amount of redundancy. In the vi-
sion community, just by intelligent combination of multiple vision processing streams, like
intensity, edges, color, etc., one can significantly improve performance [9]. Of course,
aligning multiple sensory modalities, fusion of modalities, and weighting them appropri-
ately is a complex topic to be explored in more generality (e.g., [6]). But for the future,
instead of relying on rather few modalities and few sensors, understanding how to pro-
cess many sensory modalities, with numerous and high redundant sensors, how to keep
them aligned an calibrated, and how to do all this processing autonomously seems to be
a critically missing topic in robotics.

5.1.4 Associative Memories

The human brain seems to be a huge pattern association machine (slightly extrapolating
the study of [19]), i.e. sensations in one modality automatically predict sensations or
capabilities in other modalities. Thus, anything we do automatically associates what we
should perceive, and anything we perceive associates what we can do. The concept of
affordances [10] in psychology has this flavor, and research on mirror neurons in the brain
[4] plays along the same line of thought. If different sensory modalities can be associated,
they could potentially be fused into a more robust percept, i.e. this topic connects also to
the previous paragraph on sensor fusion. Building task specific associative memories that
span perception and control, that can work on a continuous time scale and also a discrete
(more conceptual) time scale, that can be used for inference, planning, and control, would
be very interesting. Some related work is in [18, 15] and maybe components of deep
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learning [5] could be of interest for this topic.

5.1.5 Autonomous bootstrapping of perception and control

Assuming that representations and algorithms for autonomous perception-action-learning
systems are somewhat understood, it will be interesting to find methods how the system
can automatically bootstrap competence in perception and control over a lifetime. Imita-
tion learning is currently a favored approach to endow a system with some initial biases
for motor skills. Bootstrapping perception in an autonomous way maybe more complex
as it is harder to provide feedback about the quality of perception. Shaping performance
based on some generic optimization criteria would be desirable, although the creation of
general optimization criteria is usually quite hard, and the creating of very specific cost
functions quickly degrades to “cost function hacking”.

5.1.6 Self-Organization

A fundamental question for perception-action-learning systems concerns their design
principles. Is there really hope that a well-managed software engineering approach can
do the job, or is it doomed to become a monster like Mircosoft Windows? While a “re-
boot” in an operating system can be tolerated to some extent, an unexpected reboot in
a robotic system could be catastrophic. One could proceed with the realization that rad-
ically new design principles will have to be developed for autonomous perception-action
systems. Biological systems give us the appeal that mechanisms of evolution, adapta-
tion, goal-oriented self-organization and learning are the key structures. Thus, we would
need to focus on algorithmic realizations that can grow automatically, detect structure by
themselves, have appropriate reward systems, can self-repair, etc. But it is hard to name
successful realizations of this vision. DNA computing might be among the most salient
[14], but it is a domain of self-assembly that seems to be largely confined to a DNA world,
i.e. DNA systems can only interact with a DNA environment. How this world generalizes
to more general domains, even “just” proteins, is completely unclear.
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6 The Singularity
Andrew Davison | Imperial College London

6.1 Introduction

The aim of this presentation was to look even farther forward than in most of the other
sessions, and test the Summit attendees’ views with regard to the “Technological Singu-
larity” idea, recently much discussed by “futurists”, technologists, science fiction writers
and scientists but still on the fringes of mainstream scientific debate. I started the pre-
sentation by asking for a show of hands on the following questions:

1. Who knows what The Singularity is?

2. Who thinks it might happen during our lifetimes?

Probably around half of the attendees had at least heard of the idea; and at the start of
the discussion I don’t think any hands went up in answer to “who thinks it might happen
during our lifetimes?”. I then explained the Singularity concept, briefly presented the main
arguments for it, and we had some discussion. At the end I revisited the second question,
and there were three people (including me) out of about eighteen agreeing that it “might”
happen during our lifetimes.

A question I had wanted to get to by the end of the session was given that it might
happen, what should we do about it? Should foresight of this possibility change the way
that we do robotics research? However it was not appropriate to move onto this question
when the majority of those present were very sceptical about the whole concept. I must
admit that overall I was surprised that such a big concept seemed to be much less on the
radar of the world’s top roboticists than I might have expected.

6.2 The Singularity

The Singularity is usually defined as an event that could happen in the future when
the accelerating progress of technology becomes so rapid that human life is irrevoca-
bly changed (for the better or worse). Perhaps the most significant event associated with
the Singularity, and certainly the one most relevant to roboticists, is the arrival of human-
level artificial intelligence, and then very soon afterwards vastly super-human AI. It seems
clear to me at least than human life would not continue in anything like the current way
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once super-human AI exists. A super-human AI would be able to develop concepts and
technologies we cannot understand; would continually self-improve; and for me by defini-
tion it would be impossible to control. Various futurists have predicted what might happen
to humanity if this were to happen. Some of the possible scenarios are catastrophic of
course. The most optimistic scenarios, predicted and hoped for by Kurzweil and others,
forsee humans gradually merging completely with their technology, on a path where there
might first be great advances in medicine with aspects like longevity expansion, body re-
pair by nanorobots, and brain-computer interfaces. The final destination of this predicted
path is “uploading”, where expanded human minds are finally transferred from biological
brains to another computing substrate.

This, of course, is far out thinking . . . and as a normal cynical scientist I can understand
reluctance to take it seriously. But having thought quite hard about this idea for several
years I have not yet found a strong counter-argument which persuades me that it is not
possible that something like this will happen in the next few decades. In many ways I
would like to hear one! My belief in the idea that the rate of change in technology is
accelerating is informed not just by the views of futurists, but strongly by my observation of
what is happening in my own field of real-time computer vision, where the new computing
power, algorithms and devices we can take advantage of are year on year leading to
increasingly staggering capabilities. If we might really be heading towards a Singularity,
foresight of this should surely shape everything about the way we are doing robotics
research. Let us look at the arguments.

6.2.1 Accelerating Change

The main argument put forward in favour of the Singularity is that the progress of technol-
ogy has historically followed a law of accelerating change, well described by an exponen-
tial curve as a function of time, and that his shows no sign of slowing down. The obvious
modern example of this is “Moore’s Law”, originating in a specific observation over 40
years ago about transistor density by Intel founder Gordon Moore, but commonly used
to describe the continuing “doubling every 18 months” exponential performance improve-
ment in computer processors and related technology. It is easy to forget how staggering
it is that we have moved comfortably, even in my own experience, through talking about
computers in the “kilo”, “mega”, “giga” and now “tera” eras.

The idea of the Singularity relies on similar laws describing not just computing perfor-
mance, but the general progress of technology. The key reason for the rate of progress
to keep increasing is that each new generation of technology has the benefit of the last,
best so far generation which can be used to develop it. Different areas of science and the
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Figure 6.1: A sequence of overlapping S-curved paradigms, each with steeper progress than
the last, leading to overall exponential progress.

whole technological economy continually feed back on each other so that every advance
makes progress easier in other fields. We are familiar for instance with the idea that
scientific supercomputing has revolutionalised many areas of science and engineering
through advanced simulation; or that the internet, online research resources and code
repositories make it much easier to learn or put together projects in previously inaccessi-
ble domains; advances in those areas in turn feed back into the better concepts, designs,
methods, factories and robots needed to make the next generation of processors. While
some areas of technology do not currently seem to be experiencing exponential progress
(e.g., transport speeds?), it can be argued that as more and more industries become
information technology and software-dominated they can experience the full benefit of
accelerating change – for instance this might happen in manufacturing if 3D printing or
nano-technology based self-assembly come to full fruition and an object is just another
software file.

Accelerating change is not always smooth, but has been described as taking place via
a set of overlapping “S-curves”, each corresponding to a paradigm shift (Figure 6.1). A
new technology appears; takes some time to break through and overtake the previous
model, but then goes through rapid take-up, investment and improvement before even-
tually reaching the end of its usefulness as some physical limit is approached and slows
down; at this point the next technology waiting in the wings, and probably inspired and
motivated by observation and desire to beat the previous one, takes over. Even within the
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narrow domain of digital computer processors, we can see this happening; the increases
in performance of single-core CPUs are slowing down, but massively parallel processors
such as GPUs, now easily programmable with tools like CUDA, have taken over the ex-
ponential progress in terms of the most processing capacity obtainable for commodity
prices and are leaving CPUs far behind.

Singularity advocates argue that paradigm shifts have been occuring at an accelerating
rate not just in the recent past but right back through human history and beyond into
evolutional times. Consider the follow sequence of advances: origin of life, cells, reptiles,
primates, upright primates, homo-sapiens, art, agriculture, city-states, writing, printing,
industry, electricity, computer, internet, smartphone etc. The “time to next event” vs.
“time” plot of these events on a log/log scale is approximately linear. Could we argue that
each of these paradigm shifts has similar importance, and just that culture and technology
have overtaken biological evolution as the main agents for change in the world (because
they happen so much faster)?

6.2.2 Super-Human AI

If we accept the “Strong AI Hypothesis”, that general intelligence of the type humans
display is achieved by an algorithmic process which can in principle be simulated by an
artificial digital processor of sufficient speed and memory, then a continuing exponential
increase in computer technology implies that we will at some point all have computers
on our desks (and not many years later in our pockets) which are as powerful in raw
processing and storage terms as the human brain. Rejecting the Strong AI Hypothesis
implies either a spiritual/mystical view that the human mind is more then the brain, or a
Penrosian type belief that deep in the brain there might be important processes which
are not described by current physics. I think that most modern roboticists are inclined
to accept that the brain can in principle be simulated by a Turing machine-like digital
computer.

So if we do accept that, then the question of course is how powerful would that com-
puter have to be that could simulate everything a human brain does with enough fidelity
to produce the same kind of “generally intelligent” behaviour, and how soon will we have
it? I guess that depends on how fiddly you think things are, and how closely you would
have to model what each element of the brain does – at the molecular or chemical level,
or just at the gross level of unit connections and dynamics. I don’t think anyone knows the
answer to that precisely yet, but my guess is the latter, that it is the general pattern of con-
nections and signal types that is important. And so if you believe that you have to figure
out what level of processing you’d need to simulate that. I’ve heard recent estimates like
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1015 calculations per second. Interestingly in his 1950 paper “Computing Machinery and
Intelligence” at the dawn of AI, Turing considered that memory capacity, rather than pro-
cessing speed, was the main limiting factor for AI, and that estimated that 1015 bits would
be the memory capacity needed to model a human brain. These figures of 1015, whether
for processing operations per second or storage capacity, must have seemed stupendous
to Turing but for us in 2011 these are “around the corner” figures for desktop computing,
coming in 10-20 years surely without much doubt by projecting current curves. But a very
significant point is that even if these figures are very wrong, like a million times off, then
Moore’s Law means this this only makes a difference of a few years. I agree that if it’s
more like 10100 that you’d need to simulate at a much finer level then we are still miles
away!

I don’t think that even the idea that we will fairly soon have computers available with
equivalent computational capacity to the human brain was controversial at the summit.
The doubts were naturally about whether we will have any suitable software to run on
these devices to achieve human-like “Artificial General Intelligence” (AGI). Where is this
fiendishly complicated software going to come from? It might come from a continuation
of current AI research and lots of components of the type I develop in computer vision
for instance, all joined up with machine learning, some kind of embodiment and training
environment, and that something amazing and open-ended happens when you reach
the right scale. We have already seen with phenomena like Wikipedia how quickly a
vast amount of knowledge can quickly be assembled by relatively uncoordinated means
and made easily accessible. Of course this information is not yet in AI-understandable
form, though there are efforts in this direction. But we see how current communications
and storage capacity might form the way for a set of self-learning and communicating
AI agents/robots to build up and share a vast store of “general knowledge”. The time,
probably near in the future, when commonly available computers achieve the capacity to
“in principle” simulate the human brain is a particularly important event in my opinion. Al-
though we still see many weaknesses in current AI and robotics systems, we have never
yet run those systems on computers with the processing and memory capacity that we
estimate the human brain has; but we will be able to do so soon. Some “magic”, emer-
gent, behaviour may happen with the current techniques we have for machine learning,
vision, etc. when applied at this scale; or maybe not. It may be that AI still needs seri-
ous re-invention, and that we are missing vital algorthmic pieces in the software which
might be needed for very general reasoning. But surely we should not dismiss candidate
algorithms for AGI (Artificial General Intelligence) until we have tested them at this scale.

Another completely different approach to the software problem might be much more
like reverse-engineered biology, where continual improvements in brain scanning give us
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eventually the ability to see how a whole brain is wired together at the neuronal level and
therefore to simulate it functionally on a computer of sufficient capacity. This architecture
could then possibly be reverse engineered, improved and expanded.

An important point is that even if your software is not very good, perhaps vastly ineffi-
cient compared to what the brain is doing, exponential growth in computing might mean
that this just means the need to wait a few more years for the right processor to run that
software on. Another point in favour of the singularity that I find convincing is that the hu-
man brain, with its capabilities which are dramatically more advanced than those of any
other animal, evolved really extremely rapidly to separate us from our common ancestors
with the other apes. Surely whatever the human brain does is special is a one particular
evolutionary trick (extra piece of code) just massively scaled up and repeated. Personally
I am with others in thinking that what we can do that other animals can’t is all about a
massive, well-organised memory store which we are able to use constantly for prediction.

6.3 Reactions and Discussion

This is clearly a controversial topic, and as I said in the Introduction, after explaining and
discussing these ideas with the group, I took a final show of hands where there were three
of us with the opinion that the Singularity “might” happen within our lifetimes. To repeat,
natural cynic though I am, I find it hard to find any strong argument that the concept
doesn’t at least merit very serious thought.

There is a tendency I think for scientists working deep in a discipline to see all the lo-
cal difficulties of that area and to extrapolate those into the future in a kind of “scientific
pessimism”. For instance, much of the discussion in this summit was about robot ma-
nipulation problems, with the perception and planning challenges they present, which is
where I think we were mostly agreed that the main thrust of exciting robotics research
will be focused over the next few years. There were views expressed that the very high
dimensionality of the reasoning needed for manipulation or learning about manipulation
makes it doubtful about whether we are making any progress at all on these problems
at the moment, and also doubtful whether we would be likely to in the “seemingly short”
next 20-30 years.

But history teaches us that our “intuitive linear” view of progress is usually overtaken
by historical exponential growth. When a new technology appears we often overestimate
the effect that is will have in the near future; but then dramatically underestimate the long-
term effect. If half-way through the time allotted to an imformation processing project we
have only completed 1% of the planned goals, this might actually be right on schedule
for full completion under an accelerating change regime (the human genome sequencing
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project was an example of one about which there was much pessimisim based on early
slow progress, but then was suddenly and surprisingly completed ahead of schedule).

Let’s remember that we have only had computers at all for 60-70 years; and only had
them at home for around 30; and look at how much has been achieved. People say that
AI hasn’t come anywhere, but AI is just the moving target of things computers can’t yet
do; there are plenty of problems that computers couldn’t do once where it seemed like
“real intelligence” was needed (Being a travel agent? Vacuuming a floor? Route plan-
ning and even autonomous driving? Face recognition?) which are now just considered
computation. Of course AI has achieved a lot already.
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7 Effects of the Funding Environment1

Cécile Huet | European Commission – Cognitive Systems, Interaction and Robotics

The intention of this talk was to present the activities we are funding in the area of cog-
nitive systems and robotics in the EU research programme and to take the opportunity
of having the top level researchers in the field to discuss with them ideas to better serve
the community. This was indeed a unique opportunity to learn from these key figures,
visionary and experienced, representing the international scene in Robotics. The level of
the panel was impressive. Having a panel of international researchers added the global
perspective and allowed to benefit from the experience carried out in the US for instance.
We acknowledge that the panel represented more a scientific perspective, given that its
members were all academics; however we also acknowledge that given their experience,
they have a good grasp of the industrial landscape and needs, through cooperation with
industry, launching of spin-off companies, etc.

Several ideas have been discussed and the main outcomes are summarized below:

7.1 First outcome

In the coming call for proposals, one of the targets is: "speeding up progress towards
smarter robots through targeted competition" The goal is to use such competitions as a
tool to support sciences, with a view of providing a mechanism to objectively compare
results and measure progress as well as sharing results. To avoid that such initiative
becomes an engineering exercise, during which participants tune their algorithms and
systems to win the competition, rather than focusing on demonstrating scientific progress.

It is important to run the competition several times and to make sure over-fitting on the
data-sets is avoided; the definition of metrics is also key. Tuning the level of difficulty is
also critical: it has to be hard enough to connect to deep issues, but not too hard to be
relevant to current methodologies. The example of the challenges run by the PASCAL
project2 was discussed. The intention of that project was to “exploit the competitive na-
ture of many researchers and drive progress forward at a faster pace. The challenges
could be organized by industrial and academic institutes and would promote the creation
of a new generation of more effective methods, demonstrated on real-world problems.
The results are published as papers and presented at PASCAL sponsored workshops, in

1Disclaimer: The information in this document does not necessarily represent the official view of the Euro-
pean Commission (EC).

2http://www.pascal-network.org/?q=node/15
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addition to some of the major conferences in the field.” This was considered as a break-
through and changed the field when introduced, but now it seems that it has reached a
stage of minimal improvements through tuning. So it is important to learn the lessons
from that example. Such challenges or competitions have the potential to increase the
visibility of the field and also give the opportunity to small players to be highlighted. In
conclusion, this is a delicate initiative but could play an important role in the field, for the
various stakeholders. Therefore we have to be careful in guiding the proposers, during
the selection and the negotiation of the potential proposals in order to best exploit such
potential.

7.2 Second outcome

Through our activities, we also try to stimulate the cooperation between the academia and
the industry, in particular supporting the transfer of knowledge and finding mechanisms
generating win-win situations. The intention is to initiate a snowball effect to gradually
develop the exchanges between the research results and the industry needs.

To that end, through our next call for proposal we expect to fund projects aiming at
“gearing up and accelerating cross-fertilization between academic and industrial robotics
research”, through definition of joint industrially-relevant scenarios, shared research in-
frastructure, experimentation with industrial platforms, benchmarking activities, etc. A
possible mechanism to reach that goal could follow the example of the existing project
ECHORD3.

It was interesting to hear the perspective from the academic side regarding such activi-
ties, and in particular ECHORD. The feeling is that such initiative could be good. From the
experience of the panel, in general academia-driven cooperation tends to be more suc-
cessful than industry driven, so is the cooperation with SME as opposed to cooperation
with large industry as experienced in the US, in the context of earlier programmes encour-
aging academia-industry cooperation. There were also some concerns raised regarding
the current model of ECHORD, some expressed concerns regarding the selection and
monitoring process which should ideally be run by an independent body, such as the EC,
as opposed to research laboratories, also due to the infrastructure that has to be built
in order to run such projects. Another concern, from the academic perspective, is the
scientific contribution of such experiments.

The community can be reassured regarding the fairness and un-biased selection pro-
cess, in which the EC is involved and carefully monitors all the steps, which are in line
with the rules applied for EC selection process. Regarding the scientific contributions,

3http://www.echord.info/
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this will have to be demonstrated by the running experiments. Lessons will have to be
learned from the first set of experiments in order to optimize both industrial and scientific
benefits. This is a key element to keep the level of involvement and commitment form the
academic side.

7.3 Third outcome

This event was also timely to expose to the experts the future EU funding programme for
research and innovation, covering the period 2014-2020: “Horizon2020”. We are indeed
in a consultation process to prepare this future programme, so the timing is ideal to collect
ideas about topics and potential new mechanisms to support the field, including areas of
international cooperation.

Regarding possible international cooperation in basic research, the intention is to build
on excellence available in the world for more efficient scientific progress. However, it was
stressed that we should not try to avoid duplication in basic research, since competing
approaches breed new ideas. Regarding areas of cooperation, we should not be too
directive, but rather let cooperation emerge. In terms of standardization, it was felt that
at this stage, it is more important to try to provide common tools rather than trying to
establish standards. Mechanisms to foster international cooperation were also discussed
and exchanges of researchers at all levels (e.g., Max Planck Guest Professorship pro-
gramme4) as well as summer schools were considered as powerful tools. It is however
important to find simple and flexible procedures to implement these.

The concept of a shared infrastructure, possibly in form of a network of “Physical Nodes
– Robotics Living Labs” was also discussed as another potential tool to support the com-
munity. The intention would be to give access to researchers to robotics platforms and
maintain them, to offer testing and validation infrastructure, which could also be used as
a means to disseminate results and have show-cases to demonstrate to potential users
and industry the capabilities of today’s technologies and research results. Later on, this
could also serve as certification center, for robotics-related products or services. How-
ever several concerns were raised regarding this idea in particular the overhead to run
such facilities and the doubts regarding the possibility to develop the software remotely
from the hardware (either using remote access to the hardware or testing with simulators
and having occasional access to the hardware).

Several provocative questions were also raised to trigger discussions in view of identi-
fying how to better serve the community (both the research community and the European

4http://www.research-in-germany.de/info/senior-researchers/funding-for-senior-
researchers/funding-programmes-senior-researchers/58820/max-planck-foreign-visiting-
scientists-at-max-planck-institutes.html
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Industry)
How to make multidisciplinary international cooperation work – or are forced marriages

wrong? How to demonstrate that the field is progressing? How to make sciences meeting
the industry and industry helping scientific progress? How to create a snowball effect
between the offer from sciences and the needs from industry? How is the academy-
industry couple doing? More generally how to transfer scientific results to real life? Why
is there little progress in service robotics despite all the research efforts?

Artificially forcing people to work together is not the right approach. One of the reasons
why there is little progress is because hard problems have to be solved to do something
useful in service robotics (see for instance limited dexterous manipulation capabilities of
current robots, in particular when it comes to daily tasks for non-fully specified tasks and
environments). Selected projects tend to focus too much on showing capabilities (leading
to hacks) rather than exploring new, basic ideas that will take time to show impressive re-
sults for the wider public. Funding mechanisms should be more open to such exploratory
activities.

It was considered a good idea to target as interim goal, for the field of robotics in
general, the deployment of service robots in real production (e.g., surgery, maintenance,
logistics, SME manufacturing, dangerous/heavy tasks) as a step towards the longer term
vision of having pervasive useful robots, exploiting robotics technologies to solve “time
wasting” problems and to supporting the ageing society.

Several open questions were finally raised not all of them were addressed due to time
constraint: How to better link/align the EU Programme to Education? Could multidis-
ciplinary curricula help? How to better link/build synergies between EU-National pro-
grammes? How to build synergies – optimize resources? How to reconcile the require-
ments of EU projects versus Academic career and versus PhD training? How to assess
progress Academic/research/industry/users?

How to foster excellence through European projects? How to make it more competitive
during projects? Instead of the suggested go/no go decisions mid-term in the projects,
depending on the achievement of their targets, it is suggested to implement a ramp in
support depending on the success.

In conclusion, the questions raised triggered very interesting discussions and ideas on
concrete mechanisms to better serve the community. I have reported on them and we
will take them into account, to the extent possible as input to our consultation process.
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8 Plastic Maps for Life Long Navigation
Paul Newman and Winston Churchill | University of Oxford

8.1 Thoughts On Arriving at the Summit

I don’t know how to do this, but I know we must - our machines must be plastic1. Not
physically of course, but in terms of perception, scene understanding and performance.
We want our robots to get better through everyday use. Sure we can demand that we
manufacture them with certain baseline competencies that fulfil worse case operational
requirements but that is in no way sating. Say I had a car which could drive itself some
of the time, so I spend my mediocre salary on buying such an robot so I can have part
of my day back. If I drive that car every day on the same commute I expect it to be able
to do more and more of it autonomously each day. Generalising away from autonomous
transport, I want machines to learn on the job, I want it to stretch base line performance
by executing and analysing a core competency again and again, it should mould itself to
its daily surroundings. And finally to add one more simile to plastic it should be durable.
This for me is lifelong learning. The tricky part is finding a problem domain that is narrow
enough to avoid ultimately equating lifelong learning with “thinking machine” so one can
get started. Vast scale, vast time navigation seems plausible but could anything learnt
here be generalised? Will it all end up being a mixed bag of tricks?

The above is what I wrote before the meeting and I think I got the emphasis wrong
– figuring this out was a great outcome of the meeting. You see, in my mind I equate
longevity with plasticity. One could only have a machine navigate for years if it maintained
a plastic representation of the world - one that moulded itself to new data and could
accommodate slow changes of appearance and structure. Now, the solution I had in
mind to achieve this is one of accumulation of experience and as I explain below this will
work (indeed on leaving the summit I wrote a paper on just that). However it became
clear to me that these ideas do not easily migrate to other domains - especially those like
manipulation and planning. I left wondering if the navigation problem was in some way
special. Certainly I was not so convinced that simply “recording everything” is going to
help the manipulator guys or the planning guys. But I was even more sure I wanted to try
it out for large scale navigation . . .

1http://www.youtube.com/watch?v=CsrLHP26zvk
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8.2 Thoughts On Leaving the Summit

Without doubt the summit shaped my thoughts and without doubt it was some of the
most valuable days of research/talking time I have had in the past few years. The format
was extraordinary – we had time to engage, we had an excellent group of people who
knew all the right things and the venue was ideal for this kind of scholarship. I left with a
clearer picture of what I was actually advocating and set about writing a paper that made
that crystal clear and demonstrated it working. I fear that without the summit the point I
wanted to make would be adorned with miscellaneous distraction. So here now, on the
back of that summit is where I stand on this issue of plastic maps now:

To achieve long term autonomy robotic systems must be able to function in changing
environments – we see this as a big challenge. Change can come from many sources:
sudden structural change, lighting conditions, time of day, weather and seasonal change.
To illustrate, consider the problem of ego-motion estimation with a camera mounted on
a robot operating outdoors. This is a richly mined area of research and immediately
we reach for a visual navigation (SLAM) system that can map and localise all at once.
But what should we do if we revisit a place and its appearance has changed drastically
– perhaps it has snowed? What do we do if a place’s appearance slowly creeps as
summer turns to autumn? Should we undertake some unifying data fusion activity to
yield a monolithic map in which we can localise? We argue that we should not; in the
limit such a map would have to contain features from every possible scene modality. The
things we see on a given tree in winter are simply not the things we see in summer;
the details we see on a wet road at high noon are different to those we see at dawn
when the road is dry. We shall not force things to be coherent. If, for example, part of a
workspace on Tuesday looks wildly different on Wednesday then we shall treat these as
two independent experiences which equally capture the essence of the workspace. We
shall only ever tie them together topologically.

A high level view of our approach is appropriate here. On the initial visit to a new area
we save a constellation of visual features like most systems. For reasons that will become
clear we call this an “experience” rather than a map. When revisiting the area the robot
attempts to use the live stream of images to localise in the saved experience. If at any
point this is unsuccessful, a new experience is created based on the current appearance
of the world. As the robot continues, still saving to this new experience, it is also trying
to re-localise in its previous experience(s). If this is successful at any point, saving is
stopped and the system returns to localising in its previous experience. Importantly this
methodology causes the system to “remember” more representations for regions that
change often, and fewer for regions that are more staid. We call the collection of all
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experiences the plastic map. Note that we handle new routes and complete localisation
failures seamlessly – indeed it is the failure of localisation which drives the saving of a new
experience. This is because we make the assumption that our localisation fails because
of bad or unsolvable data association – what was there before is simply not there now.

A core competency on which we depend is a visual odometry (VO) system which con-
tinuously produces a (possiblyephemeral) 3D model of the world using a stereo pair. This
system is always on, always consuming the live stereo pair stream and estimating the rel-
ative transformations between camera poses and producing 3D feature locations relative
to camera poses. Concretely an experience is a stored set of relative poses and feature
locations. Note the emphasis on relative; we entirely avoid operating in a single global
frame. All we require is an ability to render a metrically correct idea of camera motion and
3D feature locations in the vicinity of the robot’s current pose – we do not care about the
location of things that are far away and which we cannot see. Upon revisiting an area,
localisation is attempted in all previous experiences that are relevant to the area.

By keeping experiences independent we are able to run a “localiser” for each. This
can trivially be done in parallel and allows the system to utilise relevant experiences. In
reality, at runtime we see that the number of active and successfully localised experiences
is small. After all, each new experience is only created out of necessity because it is
visually different from all others. Therefore subsequent visits to an area should be able
to localise in only a small number of experiences as they are by construction visually
different. Finally we would like to stress that although we describe the framework using
vision, it is actually agnostic to the sensing modality and could be used with other sensors
such as laser range finders so long as equivalent systems to the ones described above
are supplied.

We have tested our system on 53 runs of two laps of a 0.7 km circuit, covering 37 km in
total and consisting of over 136000 stereo frames. The data were collected over a three
month period at many different times of day and in different weather conditions.

At the moment it does seem to be working . . .
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9 Towards High-Performance 24/7
Cognitive Humanoids

Tamim Asfour | Karlsruhe Institute of Technology

Recently, considerable progress has been made towards the realization of humanoid
robot systems which are able to move in a human-like way and perform tasks in human-
centered environment. However, current systems are still limited in their actuation, sens-
ing, prediction, interaction and learning capabilities. We define High-Performance Hu-
manoids as integrated complete humanoid robot systems able to act, interact, predict
and learn in 24/7 manner in the real world and to perform a wide variety of tasks.

9.1 State of the Art

In recent years there are renewed efforts to develop robot systems that can perceive,
move and perform actions. An encouraging spectrum of many isolated elements in the
area of cognitive systems has been realized with a focus on performance in well-defined,
narrow domains. The development of cognitive robots relies on artificial embodiments
having complex and rich perceptual and motor capabilities. This leads to robots with rich
sensorial inputs and complex actions necessary to develop higher cognitive processes.
These aspects are, thus, particularly supported by humanoid robots ([7, 6, 3, 2, 4, 14,
11, 16, 13, 1, 12, 5, 15, 10, 8]), i.e. (embodied) robots that perceive, move, and perform
diverse actions, which are often acquired by learning techniques.

Although current systems are technologically advanced, they are not able to learn in
an open-ended way and their behaviours and lifelong learning capabilities are limited.
Successful attempts in building complete systems are still limited to systems designed
for “sunshine” environments with limited scope and simple tasks in a given scenario. The
transferability of the developed skills and abilities to varying contexts and tasks without a
costly redesign of specific solutions is still impossible. Complete robot systems integrating
perception, action, planning and lifelong learning capabilities, which are necessary to
interact with the environment, as well as a variety of functionalities which are needed to
carry out diverse tasks in real environments are still missing.

Recent examples of complete systems which are able to perform a variety of tasks
are the Willow Garage Personal Robot PR2, a wheel-driven robot with two arms which
is able to perceive its environment detect wall outlets and plug itself in for recharging.
The Twendy-one robot (see [8]) developed at the Waseda University in Tokyo posses a
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wide range of capabilities in human environments such as carrying a tray, fetching objects
from the refrigerator, etc. Similar tasks have been presented using the HRP-2 humanoid
robot series in [12]. The humanoid robot ARMAR-III (see [1]) is endowed with a variety
of capabilities to perform tasks in a kitchen environment such as grasping daily objects,
loading the dishwasher and fetching objects for the refrigerator as well as learning various
behaviours from human observation. On the humanoid robot DB at ATR, Japan, various
behaviours have been demonstrated such as paddling a single ball on a racket, learning
a folk dance by observing a human perform it, drumming synchronized to sounds the
robot hears (karaoke drumming), juggling three balls, performing a Tai Chi exercise in
contact with a human, and various oculomotor behaviours [2]. However, although these
robots can perform different tasks, they do not possess the ability of autonomous, life-
long learning, which is crucial for robots with the ambition to operate in human living
spaces. Although learning has been employed to acquire single tasks, the applied learn-
ing techniques were specialized and did not consider the problem of lifelong learning from
sensorimotor experience.

9.2 Challenges and Research Roadmap

Today, humanoid robots can be considered as highly advanced mechatronics systems
with complex and rich sensorimotor capabilities. Thus, such systems are as the most
suitable experimental platform for studying human behaviors and cognitive information
processing. In the following some of the challenges towards the realization of high-
performance humanoids are briefly discussed.

9.2.1 New Bodyware for Humanoids

Research efforts related to the development of high-performance humanoid robots must
address the question of how the body morphology must support processes and repre-
sentations for emergence of cognitive capabilities.

• The design of humanoid robots with human-like capabilities requires a new think-
ing regarding design mechanisms, materials and control. Novel technologies and
methodologies are needed for the development of compliant, high-performance and
energy efficient actuators, sensor technologies (in particular skin), soft materials, as
well as dynamically reconfigurable software and hardware architectures and high
density lightweight power sources.

• Investigation of design principles and quantitative models for the development of
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systems that

– explore their own sensorimotor primitives and body morphology

– explore the environments and the effective interaction with it

– predict the body dynamics and the physics of the world

• How body morphology allows to cope with morphological change arising through
the interaction with the environment and tolerance to uncertain variability in perfor-
mance of single robot components.

• How reconfigurability and self-reconfigurablility, redundancy, robustness and flexi-
bility in technical systems can be implemented.

9.2.2 Objects, Actions and Prediction

To deal with problems on perception and action researchers in the late 80s introduced
two new frameworks with parallel efforts, in the field of Computer Vision and the field of
AI/Robotics, under the headings of Active Vision (Animate, Purposive, Behavioural) and
Behaviour-based robotics respectively. In both formalisms, the old idea of conceiving an
intelligent system as a set of modules (perception, action, reasoning) passing results to
each other, was replaced by the new idea of thinking of the system as a set of behaviours.
Behaviours are sequences of perceptual events and actions. These efforts still go on, but
have only led to limited success. One reason for that is that such perceptual events
involve recognition which is such a hard problem that it prevented the new formalisms
from making a breakthrough. A further reason for failure is that the behaviours were
never meant to involve objects into the action (e.g. for recognition). A third reason was
that no one managed to formulate any theory for behaviour-based robotics. Hence, it
was impossible to predict how the systems developed would scale up and deal with new
situations.

Human understanding of objects is essentially multi-sensorial. It develops during an
intensive exploration making use of visual and haptic information. Therefore, the cross-
connection between haptic and vision must be analysed. The gained knowledge would
play a key role in modelling multi-sensorial processes in artificial cognitive systems, which
then can develop a more holistic understanding of the perception-action coupling and
thus objects and actions. In traditional information theory, the environment only plays the
part of a passive, undirected disturbance (for example also in closed loop control theory)
negatively affecting the input-to-output transfer characteristics of a system. Here we pro-
pose, instead that the environment should be treated as an active component. It is active
through “my own actions” (the actions of ego) and those of “the others” (the actions of
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alter), which feed back to ego. Thus, traditional information theory is not sufficient to de-
scribe the interaction of an agent with its world correctly. Instead this problem needs to be
addressed in a closed loop paradigm where ego acts in its environment and observes the
consequences of its actions (in interrelation also with alter). This notion has entered mod-
ern robotics theories by the qualitative term “rootedness”, which refers to the necessity
to embed an artificial acting agent in an environment. Thus, instead of using the con-
ventional I/O paradigm, new approaches should introduce so called encased closed loop
situations defined by the mutual interactions of an organism (ego) with its environment.
An encased closed loop describes a conventional sensor-motor feedback control loop
but with an active environment monitored from the perspective of ego. This represents a
central shift of paradigm and follows a constructivist’s viewpoint where the environment
becomes an integral part of the system’s description. This notion goes clearly beyond the
conventional concept of a perception-action loop. It embeds the agent into its environ-
ment and into its social group by the same formalism. On the side of theory this will lead
to intrinsically consistent and technologically applicable measures of “autonomy”, “con-
tingency”, and “complexity” of agent-world- as well as agent-agent interactions, resulting
in the first steps towards an information theory of encased closed loops.

Research into cognitive robots should combine the study of perceptual representations
that facilitate motor control, motor representations that support perception, and learning
based on actively exploring the environment and interacting with people that provides the
constraints between perception and action. This will then allow, e.g., to learn the actions
that can be carried out on and with objects when making use of the interplay of different
sensorial modalities, such as vision, haptics and acoustics. Action-centred cognition pre-
supposes that artificial cognitive systems will be equipped with eyes, sophisticated haptic
sensors for its end-effectors and microphone-ears. This allows for efficient interaction
with the world making use of the full potential of multi-sensorial representations.

Object-Action Complexes

The European project PACO-PLUS (Perception, Action and Cognition through Learning
of Object-Action Complexes, www.paco-plus.org) has introduced the concept of Object-
Action Complexes (OACs) to emphasize the notion that for a cognitive agent objects and
actions are inseparably intertwined and that categories are therefore determined (and
also limited) by the action an agent can perform and by the attributes of the world it can
perceive (see [9]). The resulting OACs (pronounced “oaks” are the entities on which
cognition develops (action-centered cognition). Entities “things” in the world of a robot (or
human) will only become semantically useful objects through the action that the agent
can/will perform on them.
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The OAC concept is based on, but extends the Gibsonian concept of “affordance”.
In contrast to constructivist approaches, Gibson claimed that objects and events in our
environment provide an actor all the information they need about the actions they “afford”.
This claim was motivated by the idea that perception is not a static process, but rather is
a temporally extended act of information acquisition. In other words, the affordances our
environment provides are revealed by actively exploring it.

PACO-PLUS has made significant use of the Gibsonian approach in two respects. First,
PACO-PLUS has made the robot an information-seeker that is actively experimenting with
the objects it is facing in order to find out more about its perceptual features and the action
opportunities they provide. In other words, the PACO-PLUS agent is no longer a passive
knowledge receiver but an active explorer. Second, the idea that active information ac-
quisition reveals the objective structure of our environment makes it possible to ground
cognitive representations. Once objective environmental information about sensorimotor
opportunities is encoded in the lowest level OACs, these OAC level provide a reliable
basis for forming higher-level, more abstract representations suitable for reasoning and
action planning, while still being grounded in the robot’s sensorimotor experience.

9.2.3 Representations

Building humanoid robots able to learn to operate in the real world and to interact and
communicate with humans, must model and reflectively reason about their perceptions
and actions in order to learn, act, predict and react appropriately. Such capabilities can
only be attained through physical interaction with and exploration of the real world and
requires the simultaneous consideration of perception and action. Representations built
from such interactions are much better adapted to guiding behaviour than human crafted
rules and allow situated and embodied systems, such as humanoid robots in human-
centered environments, to gradually extend their cognitive horizon. Such representations
should allow for learning and extending representation in ways that transform intractable
problems into tractable ones and support generalization and knowledge transfer between
different cognitive systems. These representations should take into account space and
motion, objects (things that move) and actions, properties and affordances, goals, plans,
beliefs and desires, communication, and models of other minds. In this context several
research questions must be addressed.

• How to extend and improve exploration-based and stimulus-driven knowledge ac-
quisition?

• How to define the actual algorithmic mechanisms by which an agent can generalize
knowledge across domains leading to a generative extension of its experience?
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• How to embed these two mechanisms in a dynamically stable process to drive the
extension of knowledge in a generative way while interacting with its environment
and other agents (humans)?

• How to allow the agent to predict its own perception-action loops, but also - im-
portantly - the actions of other agents, leading to advanced abilities to cooperate,
interact and communicate?

• How to integrate exploration-based and generative inside-out processes into an
advanced, complete embodied cognitive system?

9.3 Examples for Research Challenges

9.3.1 High-Performance 24/7 Humanoid for daily life

The challenges of creating high-performance 24/7 humanoid robots can be summarized
as follows

• Understanding and interpretation of scenes, contexts and situations

• Categorization of daily objects

• Grasping and manipulating any object (Pin, book, . . . , beer box)

• Navigation in every environment (Home, street, super market, etc.)

• Human-Robot interaction

– Multimodal interaction

– Physical interaction

– Natural communication

– Action and activity and intention recognition

– Human tracking, gesture detection, face detection and identification, emotion
recognition

• Social interaction (Humor, trust, privacy)

• Personalization: Adapt to humans needs and habits.

58



9 Towards High-Performance 24/7 Cognitive Humanoids (Asfour)

What to measure?

Criterion

Energy consumption Similar to other household appliances (oven, fridge, dishwasher, etc.)

Program complexity FLOPs, Memory requirements

Performance 2015: set/clean the table, load the dish washer/washing machine, prepare food.
2030: Clean the apartment, go shopping (in super market, Italian shop, etc.)
2049: Similar to human caregiver in performance and social interaction

Price Cheap car

9.3.2 High-performance humanoid robot that can play tennis

It is not about tennis but about the following scientfic and technological challenge:

• Understanding the body dynamics, body balancing and motor coordination

• Safe falling and recovery

• Real-time prediction: reaction based on vision would be too late. Sense-Plan-Act
would not work. Instead Predict-Act-Sense.

• Learning of others behavior and adaptation of own behavior based on past experi-
ence and learning to predict and adapt from little experience and few examples.

• Multisensory integration (vision, vestibular, haptics, . . . )

• High speed perception and high speed control.

What to measure?

Criterion

Energy consumption Humanoid robot should be able to play a game with the energy equivalent of a
”Maultaschen” dish.

Program complexity FLOPs, Memory requirements

Performance 2020: Perform basic tennis playing
2030: Steadily win against number 500 of the ATP ranking
2049: Steadily win against number one of the ATP ranking

Price Cheap car
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10 Is Robotics the new Physics?
Gregory Dudek | McGill University

This is a position statement from the author, meant to generate some debate at the recent
Berlin Summit on Robotics. It relates to the role robotics can play as a unifying banner
for several areas of inquiry.

The key argument is the potentially primal role that robotics seems destined to play in
the intellectual lives of people in the next century. This can be framed in the context of
the history of science. Looking back to Ancient Greece, Physics (or “Natural Science”
as it was more generally framed) played a critical unifying role in shaping humanity’s un-
derstanding of the natural world and our role within it. This unified vision was significant
in that it allowed for an organized and coherent development of new ideas and source
of knowledge (and power) that the Western world went on to develop over the subse-
quent two millennia; a process of intellectual growth akin to, and related to, developments
elsewhere in the world. It has served as the intellectual framework that related mathe-
matics, the physical world and our conception of how it works and how to control it. As
Natural Science became known as “physics” (which was essentially synonymous with
“all science”), and which eventually bifurcated into the allied specialties that make up the
various natural sciences (such as Chemistry and Biology) it allowed scientists to deter-
mine what common bodies of basic knowledge constituted their domains, and to develop
not only theories and models, but also shared curricula, academic programs and even
political agenda.

Our field is now facing the same challenges in the domain of “synthetic science”: the
science of the artificial, virtual and man-made systems that are already of enormous in-
fluence and importance. The constructs of synthetic science (such as a major computer
operating system) are already as complex as anything that mankind has ever built, both
in purely intellectual terms as well as in terms of actual artifacts. We need to not only
develop tools and methodologies, but also to identify and formalize basic questions, and
to circumscribe coherent new domains of discourse. Thus, as synthetic science pro-
gresses, new challenges are developing based not only on ambitious new goals we want
to achieve, but due to the complexity of the objects and ideas under consideration. Much
of this new domain of science and engineering can be described by one broad term:
robotics.

Robotics in its broadest form can be defined as the discipline concerned with both the
development and modeling of systems that (1) make measurements of the real world, (2)
perform computations, and then (3) act upon the real world in some substantial way. By
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this definition, more and more of the objects in our everyday world are becoming robots,
and this is happening rapidly. This includes, of course, cell phones, cars, security sys-
tems, and many of the appliances in our homes. The microwave oven in my own home,
for example, measures the weight and humidity of food we put into it, computes the ap-
propriate cooking time and power levels needed, and then acts upon the food to cook
it. As almost every object within our lives becomes computationally enabled, myriad new
challenges are starting to emerge. As many devices start to become independently mo-
bile, or interact with other devices that are mobile, these inherent challenges will increase
substantially. As our culture is subsumed by robotics technologies, do we not need an
all- embracing domain for this huge new body of challenges?

The implications of defining robotics as a broad umbrella are twofold: one pragmatic
and one conceptual. The conceptual implications relate to the development and organi-
zation knowledge, the construction of pedagogical systems and programs of instruction,
and the development of formal mathematical frameworks for very complex artificial or
emergent systems. The pragmatic implications relate to the fight for funding, recognition
of programs within our universities, and the ability to efficiently carry out our research.

Physics and natural science has been defined as the understanding of the “laws and
phenomena of the natural world,” while traditional engineering deals with the application
of that understanding to the creation of new artifacts. Our challenge in robotics is also to
understand and predict the operative laws in our discipline, but they are not exclusively
the laws of the “natural world”, and in fact we have the option to generate new laws (for
example network protocols that govern information flow or connectivity). Thus, robotics
is profoundly theoretical as well as distinctly experimental.

Moreover, a critical part of the robotics research enterprise is to build, measure and
eventually control the artifacts we are envisioning. These steps are not always sequential:
with networked systems, for example, we often observe unintended phenomena that must
be understood after a system has been designed, built and is already under control.

Not only will (does) robotics impact our conception of the world and our conceptualiza-
tion of our role in it, robotics also has the potential to impact our very sense of identity. It
is a domain that has already impacted notions of how people function and how biological
organisms evolve. As such, robotics is reshaping not only our lives and our society in
pragmatic terms, but also how we see the world and ourselves within. Is this not the
same kind of conceptual reformulation that led to the Renaissance?

What is required is a unifying science of what will govern a critically important new
world view. If robotics and related technologies have the impact we expect, and which in
fact seems inevitable, then there can be no doubt it will impact our conception of science,
engineering and society. One needs only to reflect on how notions of computing, com-
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puters and algorithms have shaped most areas of human though over the last 50 years,
where computational ideas have fundamentally changed thinking in areas as diverse as
biology, banking, dating, sculpture, communications and criminology.

In addition, is it clear that many important ethical and social issues are looming. They
need to be addressed in a context that is technically broad and mature.

A topic of current discussion and debate both at the workshop and in society at large is
the notion of “The Singularity”, as defined by Ray Kurzweil (see also 6). While the singu-
larity itself is a topic of substantial controversy and some doubt, the accelerating pace of
technological change that is used to substantiate this notion is broadly agreed upon. This
accelerating rate of change increases the need, and the urgency, of recognizing the role
of robotics today and bringing the disparate ideas and disciplines involved into a coherent
and collaborative framework.

Robotics is the branch of human endeavor that integrates both engineering and sci-
ence, and cannot be pegged well in either alone. By subdividing the field into 2 different
academic faculties (Science and Engineering) or disparate disciplines (Computer Sci-
ence, Mechanical Engineering and Electrical Engineering), the additional potential for
fruitful interaction is decreased precisely in a subject where this interaction is critical. In
addition, it becomes more difficult to recognize a common body of prerequisites, knowl-
edge, and tools that the students and practitioners would best be equipped with. In short,
the divide between Science and Engineering is not appropriate to a domain of discourse
defined by intellectual constructs that are created by human hands. Robotics, perhaps
more than any other area of inquiry, falls on both sides of this divide and thus progress is
directly impeded by the partition between traditional engineering and science.

Robotics has a fundamentally different (and broader) mandate from many classical
areas of computer science like complexity theory, compilers, quantum information theory.

Much of classical science is reductionistic, but even the scientific part of robotics are
not.

Artificial Intelligence, as a research domain without robotics, becomes increasingly
arcane and irrelevant. Likewise Computer Vision without robotics would have to ignore
fundamental issues of great value and importance.

Traditional academic disciplines like Computer Science, Mechanical Engineering, and
Electrical Engineering are likely to be preoccupied primarily with embedded systems,
smart machines, and self-diagnostics systems. Systems which are, in a deep sense,
robotic systems. Moreover, systems which fundamentally and by their very nature cross
the barriers between these narrow disciplines.

No other containment relationship between academic disciplines is as consistent as
using robotics to refer to the high-level aggregate. Robotics cannot be a little niche within
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Mechanical Engineering or Computer Science, it just does not fit such narrow confines.
On the other hand, while no strict hierarchical ordering of academic disciplines is per-
fect, making Robotics an umbrella discipline for several other sub- areas is probably very
natural, and will become more so as the science and technologies of the discipline evolve.

We need to promote this coherent world view in education and government. Such a
unified framing of the discipline is useful in the quest funding, student development, the
consideration of ethical issues and other integrative-level issues.
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Despite the heavy investments into R&D in robotics and the important progress of the last
years, robots are still lacking far behind humans when it comes to scene understanding
and complex navigation and manipulation tasks. Even though that the research commu-
nity promised since years, that robots will soon be able to support us like a butler in our
daily life, we are still far from having robots that can reliable operate and fulfill tasks even
in simple environments.

However, what science fiction movies already “created” and presented many years
ago is gradually becoming reality – humans are converting to cyborgs, thus converting
to the most sophisticated robots. This offers novel concepts and opportunities for getting
humans’ help for service robots or even us humans as service robots – the Robot Human.

Today, humans permanently carry sensor and communication devices with them that
allow measuring their actual position (GPS), their motion activates (IMU), their currently
perceived environment (camera) and much more. Soon also mental activities and phys-
ical / health status will be available. Furthermore, humans are, e.g., through Facebook,
permanently on-line, ready to take message or even orders from the world-wide internet
community. And incoming information about local offers (e.g., parties, restaurants . . . )
are easy available through iPhones and other devices. Thus our behavior and activities
are more and more controlled through these devices and the internet community. There-
fore humans becoming controllable devices like robots that can be used for fulfilling tasks
and services. Potential human service providers (e.g., I can guide you through Berlin) and
service requesters (e.g., I need a tourist guide for Berlin) can be matched according to
their collocation and activities. The usage of the internet community for service tasks has
already been implemented for text recognition or image annotation, and tele-operation
and tele-presents of humans is gradually being implemented.

Up to recently, robots had the big advantage over humans, that they could easily share
knowledge over the internet. However, thanks to recent technological advancements
in mobile communication and smartphone technology, humans are today permanently
on-line and are also sharing knowledge on a fast pace. A striking example is the orga-
nization of political movements, like the recent revolutions in Arabic countries that were
“controlled” through Facebook and Twitter. Another typical example is the GeoCaching
game, through which a large community is fulfilling treasure-hunting tasks free of charge
– just motivated by the fun of it. In both cases, humans can be considered as autonomous
agents that are “controlled” very efficiently through a self-organizing network. Consider-
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ing the fact, that kids, especially boys, spend many hours each day in the cyberspace
and on social networks, the potential of “the robot human” is huge.

Robotics technology is of key importance for these developments and already making
major contribution to it. It is expected that humans will become important service provides
for robots or other humans, e.g., be helping robots in scene understanding and contextual
learning. It has recently been demonstrated, that object recognition and image annotation
of images perceived by robots can successfully be solved in nearly real-time through
posting an inquiry on the internet. In the near future similar approaches might also help
robots to select appropriate action in complex setting or learn complex manipulation tasks
– just by asking for help through social networks.

There is no doubt about the potential of taping humans competences for solving tough
robotics problem or even to use humans as “robot humans” for offering services to society.
This development has already gained momentum and will surely shape the future of the
human-robot society.
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