
Robotics

Lecture 2: Robot Motion

See course website

http://www.doc.ic.ac.uk/~ajd/Robotics/ for up to

date information.

Andrew Davison
Department of Computing
Imperial College London

January 20, 2024

Robot Motion

• A mobile robot can move and sense, and must process information
to link these two. In this lecture we concentrate on robot
movement, or locomotion.

• Robots might want to move in water, in the air, on land, in space...?

AUV Micro UAV Zero-G Assistant Spider Humanoid

• In this course we will concentrate on wheeled robots which move on
fairly flat surfaces.

Robot Motion Topics

1. Defining the position of a robot, and the possible ways it can move.

2. Standard wheel configurations for robots, and the motions they
allow.

3. Odometry: calculating robot motion from wheel rotations.

4. Actuating and controlling robot wheels.

5. Integrating robot motion on the 2D plane.

6. Position-based path planning.

7. Local and global planning with obstacles.

Motion and Coordinate Frames

R

R

R Coordinate Frame
Carried With Robot

xW

W

W

y

x

y

Fixed World Coordinate
Frame W

θ

World Frame W

W

R

Robot Frame R

x (forward)

Ry (left)

Rz (up)

Wx

Wy

z

2D 3D
• We define two coordinate frames: a world frame W anchored in the
world, and a robot frame R which is carried by and stays fixed
relative to the robot at all times.

• Often we are interested in knowing the robot’s location: i.e. what is
the transformation between frames W and R?

Degrees of Motion Freedom

• A rigid body which translates and rotates along a 1D path has 1
degree of freedom (DOF): translational. Example: a train.

• A rigid body which translates and rotates on a 2D plane has 3 DOF:
2 translational, 1 rotational. Example: a ground robot.

• A rigid body which translates and rotates in a 3D volume has 6
DOF: 3 translational, 3 rotational. Example: a flying robot.

• A holonomic robot is one which is able to move instantaneously in
any direction in the space of its degrees of freedom.

• Otherwise a robot is called non-holonomic.

A Holonomic Ground Robot

• Holonomic robots do exist, but need many motors or unusual
designs and are often impractical.

• Ground-based holonomic robots can be made using omnidirectional
wheels; e.g.
https://youtu.be/xUQ4n1FmiXM

https://youtu.be/xUQ4n1FmiXM

Standard Wheel Configurations

Drive and Steer Differential Drive

• Simple, reliable, robust mechanisms suitable for robots which
essentially move in a plane.

• Both of these configurations are non-holonomic (each uses two
motors, but has three degrees of movement freedom). For instance,
a car-like robot can’t instantaneously move sideways.

Differential Drive

• Two driving wheels on the left and right sides of a robot, each
driven by its own motor. Steering is achieved by setting different
wheel speeds.

• Wheels run at equal speeds for straight-line motion.

• Wheels run at equal and opposite speeds to turn on the spot.

• Other combinations of speeds lead to motion in a circular arc.

Circular Path of a Differential Drive Robot

R

W

∆θ

We define the wheel velocities of the left and right wheels respectively to
be vL and vR (linear velocities of the wheels over the ground: e.g.
vL = rLωL, where rL is the radius of the wheel and ωL is its angular
velocity). The width between the wheels of the differential drive robot is
W .

• Straight line motion if vL = vR
• Turns on the spot if vL = −vR
• More general case: moves in a circular arc.

Circular Path of a Differential Drive Robot
To find radius R of curved path: consider a period of motion ∆t where
the robot moves along a circular arc through angle ∆θ.

• Left wheel: distance moved = vL∆t; radius of arc = R − W
2 .

• Right wheel: distance moved = vR∆t; radius of arc = R + W
2 .

• Both wheel arcs subtend the same angle ∆θ so:

∆θ =
vL∆t

R − W
2

=
vR∆t

R + W
2

⇒ W

2
(vL + vR) = R(vR − vL)

⇒ R =
W (vR + vL)

2(vR − vL)
∆θ =

(vR − vL)∆t

W

These equations are the basis for odometry: given certain control inputs,
how does the robot move?

Car/Tricycle/Rack and Pinion Drive

Car Tricycle
• Two motors: one to drive, one to steer.

• Cannot normally turn on the spot.

• With a fixed speed and steering angle, it will follow a circular path.

• With four wheels, need rear differential and variable (‘Ackerman’)
linkage for steering wheels.

Circular Path of a Car-Like Tricycle Robot
This is a robot configuration which has a single steerable and drivable
wheel at the back. The front wheels are free running.

L

d

s

R

R

s

Robot Centre

∆θ

Assuming no sideways wheel slip, we intersect the axes of the front and
back wheels to form a right-angle triangle, and obtain:

R =
L

tan s
.

The radius of the path that the rear driving wheel moves in is:

Rd =
L

sin s
.

Circular Path of a Car-Like Tricycle Robot

L

d

s

R

R

s

Robot Centre

∆θ

In time ∆t the distance along its circular arc moved by the drive wheel is
v∆t, so the angle ∆θ through which the robot rotates is:

∆θ =
v∆t

Rd
=

v∆t sin s

L
.

R =
L

tan s
∆θ =

v∆t sin s

L

Mapping Wheel Rotation Speed to Velocity

• What is the robot speed, when the wheels turn?

ω
v=rwω

• Calculating a robot’s motion based on measuring the angles of
motors and how much wheels turn is called wheel odometry.

• In principle, we could measure the radius of each wheel rw to turn
angular velocity into linear motion. However, in practice (due to
hard to model factors, such as surface slip and tyre softness) it is
much better to calibrate such things empirically. i.e., via
experiments (guided trial and error), work out the scaling between
the motor reference angle and distance travelled over the ground.

Actuation of Driving Wheels: DC Motors
• In practise, how do we make a wheel turn at a desired angular rate?

• DC motors are available in all sizes and types.

• A power signal is sent to the motor (using Pulse Width Modulation
PWM).

• For precision, encoders and feedback can be used for servo control
using a PID control law. Many real motors have built in encoders
which are sensors which measure their angular position.

• This is an internal view of a Lego NXT motor, which includes an
encoder and a gearing system to turn high rotation rate/low torque
at the DC motor into low rotation rate/high torque at the output
connector.

Powering and Controlling Motors

• Most basically, we can set an amout of power to send to a motor,
which will cause it to start to move. Most often, this will be a
voltage signal with a fixed amplitude but with the amount of ‘fill-in’
set using Pulse Width Modulation (PWM).

• A set power level will cause an angular response of the motor which
depends on various things: the friction in the gears; the amount of
load connected to the motor (e.g. the mass of the robot it has to
move, or the resistance it is pushing).

Feedback or Servo Control Using an Encoder

• A Lego motor has an encoder which records angular position.
(Actually the encoder is attached directly to the motor spindle, but
the driver software scales this via the gearing to report the angular
position of the orange end effector of the motor).

• So we can use feedback control (servo control) to make the motor
do what we want.

• Principle: decide where we want the motor to be at every point in
time. At a high rate, check where the motor actually is from the
encoder. Record the difference (the error). Send a power demand to
the motor depending on the error, aiming to reduce it.

• Our motors: record motion rotational position in degrees.
• Two main modes: position control (where demand is a constant)

and velocity control (where demand increases linearly with time).

PID (Proportional/Integral/Differential) Control

• Error e(t) is demand minus actual position.

• PID expression: sets power as a function of error:

P(t) = kpe(t) + ki

∫ t

t0

e(τ)dτ + kd
de(t)

dt

• kp, ki and kd are gain constants which can be tuned.

• kp is the main term: high values give rapid response but possible
oscillation.

• ki , integral term, can be increased to reduce steady state error.

• kd , differential term, can be increased to reduce settling time.

Motion and State on a 2D Plane

• If we assume that a robot is confined to moving on a plane, its
location can be defined with a state vector x consisting of three
parameters:

x =

 x
y
θ


• x and y specify the location of the pre-defined ‘robot centre’ point

in the world frame.

• θ specifies the rotation angle between the two coordinate frames
(the angle between the xW and xR axes).

• The two coordinate frame coincide when the robot is at the origin,
and x = y = θ = 0.

Integrating Motion in 2D
• 2D motion on a plane: three degrees of positional freedom,

represented by (x , y , θ) with −π < θ <= π.
• Consider a robot which only drives ahead or turns on the spot:

R

R

R Coordinate Frame
Carried With Robot

xW

W

W

y

x

y

Fixed World Coordinate
Frame W

θ

• During a straight-line period of motion of distance D: xnew
ynew
θnew

 =

 x + D cos θ
y + D sin θ

θ


• During a pure rotation of angle angle α: xnew

ynew
θnew

 =

 x
y

θ + α



Integrating Circular Motion Estimates in 2D

• Simple rotate, move motion like Bigtrak!
https://www.youtube.com/watch?v=due9mvuUL-I.

y

θ
R

∆θ θ

y

x x new

new

new

• More generally, in the cases of both differential drive and the tricycle
robot, we were able to obtain expressions for R and ∆θ for periods
of constant circular motion. Given these: xnew

ynew
θnew

 =

 x + R(sin(∆θ + θ)− sin θ)
y − R(cos(∆θ + θ)− cos θ)

θ +∆θ



https://www.youtube.com/watch?v=due9mvuUL-I

Position-Based Path Planning

x

y

θ

Assuming that a robot has localisation, and knows where it is relative to
a fixed coordinate frame, then position-based path planning enables it to
move in a precise way along a sequence of pre-defined waypoints. Paths
of various curved shapes could be planned, aiming to optimise criteria
such as overall time or power usage. Here we will consider the specific,
simple case where we assume that:

• Our robot’s movements are composed by straight-line segments
separated by turns on the spot.

• The robot aims to minimise total distance travelled, so it always
turns immediately to face the next waypoint and drives straight
towards it.

Position-Based Path Planning

In one step of path planning, assume that the robot’s current pose is
(x , y , θ) and the next waypoint to travel to is at (Wx ,Wy).

• It must first rotate to point towards the waypoint. The vector
direction it must point in is:(

dx
dy

)
=

(
Wx − x
Wy − y

)
The absolute angular orientation α the robot must drive in is
therefore given by:

α = tan−1 dy
dx

Care must be taken to make sure that α is in the correct quadrant of
−π < α ≤ π. A standard tan−1 function will return a value in the range
−π/2 < α <= π/2. This can be also achieved directly with an
atan2(dy, dx) in most languages.

Position-Based Path Planning

• The angle the robot must rotate through is therefore β = α− θ. If
the robot is to move as efficiently as possible, care should be taken
to shift this angle by adding or subtracting 2π so make sure that
−π < β ≤ π.

• The robot should then drive forward in a straight line through

distance d =
√
d2
x + d2

y .

More General Planning

• If a robot has a map of environment, how can it make a plan to get
from one place to another in the presence of obstacles?

• We have already looked at the specific case of purely position-based
planning, where a robot has a sequence of waypoints to follow and it
follows straight line paths between them.

• What about more generally, such as if the robot wants to plan a
path around a complicated set of obstacles?

Local Planning: e.g. Dynamic Window Approach

• Consider robot dynamics and possible changes in motion it can
make within small time dt.

• For each possible motion look ahead longer time τ . Calculate
benefit/cost based on distance from target and obstacles.

• Choose the best and execute for dt, then do it again.

Dynamic Window Approach for Differential Drive Robot

• Robot can control vL, vR up to maximum values.

• Max acceleration ×dt is the maximum change we can make to
either in time dt (e.g. 0.1s).

• 9 possible actions at each step: each of vL, vR can either go down,
up or stay the same.

• Use the equations from earlier to predict the new position after
longer time τ (e.g. 1.0s) for each action. We know the special
simple cases for straight line or pure rotation motion well; in the
general case the robot moves on a circular arc: xnew

ynew
θnew

 =

 x + R(sin(∆θ + θ)− sin θ)
y − R(cos(∆θ + θ)− cos θ)

θ +∆θ


http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/

planning.py

http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/planning.py
http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/planning.py

Dynamic Window Approach for Differential Drive Robot
• For each motion calculate benefit and cost. Benefit will be one

weight times the amount the robot would moved closer to its target
at (Tx ,Ty). e.g.

DF =
√

(TX − x)2 + (Ty − y)2 −
√
(TX − xnew)2 + (Ty − ynew)2

B = WB × DF

• Subtract from this a cost which is based on the distance the robot
would be from the closest obstacle at (Ox ,Oy). e.g

C = WC×
(
Dsafe −

(√
(OX − xnew)2 + (Oy − ynew)2 − rrobot − robstacle

))
We need to find (Ox ,Oy) by search through obstacles. Dsafe is some
distance we would ideally like to stay from contact. rrobot and
robstacle are robot and obstacle radii.

• Choose the path with the maximum B − C and execute for dt.

http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/

planning.py

http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/planning.py
http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/planning.py

Global Planning: Wavefront Method

• Brute force ‘flood fill’ breadth first search of whole environment.

• Guaranteed to find shortest route, but slow.

• Thanks a lot to Sajad Saeedi for the implementation!

http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/

planningwavefront.py

http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/planningwavefront.py
http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/planningwavefront.py

Global Planning: Rapidly Exploring Randomised Trees
(RRT) Method

• Algorithm grows a tree of connected nodes by randomly sampling
points and extending the tree a short step from the closest node.

• Expands rapidly into new areas, but without the same guarantees.
http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/

planningrrt.py

http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/planningrrt.py
http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/planningrrt.py

