Robotics

Lecture 3: Sensors

See course website
http://www.doc.ic.ac.uk/~ajd/Robotics/ for up to date information.

Andrew Davison
Department of Computing
Imperial College London
Gradual ‘motion drift’ from perfect square

Causes: initial alignment errors; wheel slip; miscalibration; unequal left/right motors; others . . .?

Careful tuning of PID control and calibration of distance and angle improves matters but we will never achieve a perfect result every time in this experiment.

e.g.: Bigtrak!
https://www.youtube.com/watch?v=MDGIOv-2uf0.
After careful calibration the robot should on average return to the desired location, but scatter will remain due to uncontrollable factors (variable wheel slip, surface, air currents!?)

Systematic error removed; what remains are zero mean errors.

We can model the zero mean errors probabilistically: in many cases a Gaussian (normal) distribution is suitable.

The size of the distribution of the errors will grow as the robot moves further around the square.
What does this mean for estimating motion?

• Perfect motion integration from odometry is not possible:

Recall from the last lecture: state update equations:

• During a straight-line period of motion of distance D:
 \[
 \begin{pmatrix}
 x_{new} \\
 y_{new} \\
 \theta_{new}
 \end{pmatrix}
 =
 \begin{pmatrix}
 x + D \cos \theta \\
 y + D \sin \theta \\
 \theta
 \end{pmatrix}
 \]

• During a pure rotation of angle angle α:
 \[
 \begin{pmatrix}
 x_{new} \\
 y_{new} \\
 \theta_{new}
 \end{pmatrix}
 =
 \begin{pmatrix}
 x \\
 y \\
 \theta + \alpha
 \end{pmatrix}
 \]
Uncertainty in Motion

- A better model acknowledges that this ‘ideal’ trajectory is affected by uncertain perturbations (‘motion noise’). For example, we could use this simple model:

- During a straight-line period of motion of distance D:

 \[
 \begin{pmatrix}
 x_{\text{new}} \\
 y_{\text{new}} \\
 \theta_{\text{new}}
 \end{pmatrix} =
 \begin{pmatrix}
 x + (D + e) \cos \theta \\
 y + (D + e) \sin \theta \\
 \theta + f
 \end{pmatrix}
 \]

- During a pure rotation of angle α:

 \[
 \begin{pmatrix}
 x_{\text{new}} \\
 y_{\text{new}} \\
 \theta_{\text{new}}
 \end{pmatrix} =
 \begin{pmatrix}
 x \\
 y \\
 \theta + \alpha + g
 \end{pmatrix}
 \]

- Here e, f and g are ‘uncertainty’ terms, with zero mean and a Gaussian distribution, which model how actual motion might deviate from the ideal trajectory.

- Adding these terms won’t help us to move a robot more accurately when it is guided with only odometry; but are important later when we probabilistically combine odometry with other sensing.
Sensors: Proprioceptive and Outward-Looking

- Sensors are either *proprioceptive* (literally self-sensing) or *exteroceptive* (outward-looking).
- Proprioceptive sensors (such as motor encoders or internal force sensors) will improve a robot’s sense of its own internal state and motion.
- But without outward-looking sensors a mobile robot is moving blindly. It needs them to, for example:
 - Localise without drift with respect to a map.
 - Recognise places and objects it has seen before.
 - Map out free space and avoid obstacles.
 - Interact with objects and people.
 - In general, be *aware* of its environment.
Sensor Measurements: Proprioceptive

- Sensors gather numerical readings or *measurements*. In the case of proprioceptive sensors, the value of the measurement z_p will depend on (be a function of) just the state of the robot x:

$$z_p = z_p(x).$$

- The ‘state’ of a robot is a vector of variables we use to describe its current status. e.g. for a simple robot moving on a flat ground plane we might have:

$$x = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix}$$

- More generally, a proprioceptive measurement might depend not just on the current state but also previous states in the robot’s history or the current rate of change of state. e.g. wheel odometry will report a reading depending on the difference between the current and previous state. A gyro will report a reading depending on the current *rate* of rotation.
A measurement from an outward-looking sensor will depend both on the state of the robot x and the state of the world around it y:

$$z_o = z_o(x, y).$$

The state of the world might be parameterised in many ways; e.g. a list of the geometric coordinates of walls or landmarks; and may either be uncertain or perfectly known.
• Touch, light and sonar sensors each return a *single value* within a given range.

• Sensors such as a camera or laser range-finder return an *array* of values. This can be achieved by scanning a single sensing element (as in a laser range-finder) or by having an array of sensing elements (such as the pixels of a camera’s CCD chip).
• Binary on/off state — no processing required.
• Switch open — no current flows.
• Switch closed — current flows (hit).
Light Sensors

- Detect intensity of light incident from a single forward direction, with some range of angular sensitivity.
- Multiple sensors pointing in different directions can guide steering behaviours.
- The Lego sensors also have a mode where they emit their own light, which will reflect off close targets and can be used for following a line on the floor or quite effective short-range obstacle avoidance.
Sonar (Ultrasonic) Sensors

- Measures depth (distance) by emitting an ultrasonic pulse and timing the interval until echo returns. Sonar beam typically has an angular width of 10 to 20 degrees.
- Fairly accurate depth measurement (centimetre) in one direction but can give noisy measurements in the presence of complicated shapes. Maximum range a few metres.
- Robots sometimes have a ring of sonar sensors for obstacle detection.
- Especially important underwater where it is the only serious option beyond very short ranges.
External Sensing: Laser Range-Finder

- Like a sonar, measures depth using an active signal. Commercial Ladar sensors return an array of depth measurements from a scanning beam.
- Very accurate measurement depth (sub-millimetre) and works on most types of surface.
- Normally scans in a 2D plane but 3D versions are also available.
- Rather bulky (and expensive) for small robots.
External Sensing: Vision

- The generalisation of a light sensor. A camera measures light intensity in many directions simultaneously by directing incident light onto a sensing chip with an array of sensitive elements.
- Returns a large, rectangular array of measurements.
- A single camera measures light intensity, rather than any direct information about geometry. 3D information processing and matching with data from either multiple cameras a single moving one.
- Vast research area: object recognition, location recognition, tracking, 3D reconstruction, etc.
- Huge motivation from biology
- Highly attractive for general purpose, low-cost robotics
• Sensor detects when an obstacle has been hit (last line of defence).
• Demands immediate reaction — evasive manoeuvre, or stop forward motion at least.
Multiple Touch Sensors — Where was I hit?

Touch sensors mounted inside ‘floating skirt’ around circular robot:

- Four sensors give the ability to measure eight bump directions.

![Diagram showing touch sensors and their sectors]
Strategies After a Collision

- Explore — reverse, and try to go around (e.g. turn to a fixed angle from hit and proceed).
- Moving object? Follow (turn towards hit, wait, then drive forward), or run away (turn away from hit and drive forward).
Servoing

- Servoing is a robot control technique where control parameters (such as the desired speed of a motor) are coupled directly to a sensor reading and updated regularly in a negative feedback loop. It is also sometimes known as closed loop control.
- Servoing needs high frequency update of the sensor/control cycle or motion may oscillate.
- The PID control we implemented last week using the encoders in a motor is one example of servoing and negative feedback. This concept can also be used with outward-looking sensors.
Proportional Control using an External Sensor: Servoing

- In servoing, a control demand is set which over time aims to bring the current value of a sensor reading into agreement with a desired value.
- Proportional control: set demand proportional to negative error (difference between desired sensor value and actual sensor value): e.g. set velocity proportional to error:

\[v = -k_p(z_{desired} - z_{actual}), \]

where \(k_p \) is the proportional gain constant. (Note that since this is a different control loop, \(k_p \) will not have the same value as in last week’s motor tuning but will need to be individually adjusted through trial and error.)

- Proportional control is a special case of more general PID Control (Proportional, Integral, Differential).
Outward-Looking Sensor Servoing: Some Details

- In the previous slide we saw a proportional law to control velocity; but in our robots when we set a velocity demand there is another level of PID control underneath (as we looked at last week) which monitors the motor encoders translates velocity demands into a sequence of PWM values which are actually sent to the motors.

- This is an example of *cascade control* where the output of one control loop is used to set the input to another. While in principle both controllers could be combined into a unified whole, this is a very useful abstraction which hides the details of motor/encoder control from the upper level work with sensor control. Problems will not arise unless the top level controller requests velocity changes too rapidly, exceeding the *bandwidth* of the lower level controller.

- Outward looking sensors such as sonar or cameras will sometimes produce ‘garbage’ readings for a number of different possible reasons. It can often be sensible to use a strategy to try to remove these outliers, such as median filtering which doesn’t use the most recent sensor value in the control law but a smoothed value such as the median of the past n measurements. Note though that this will also reduce the responsiveness of the system.
Very High Speed Visual Servoing

- Research from the University of Tokyo, late 1990s, using a custom 1000Hz camera and high performance robotics.
- https://youtu.be/3FT23UPLv5s
- https://youtu.be/y0BnvoeGn1I
Visual Servoing to Control Steering

• For a robot with a tricycle or car-type wheel configuration.
• Simple steering law which will guide robot to collide with target:
 \[s = k_p \alpha \]

• Steering law which will guide robot to avoid obstacle at a safe radius: subtract offset:
 \[s = k_p (\alpha - \sin^{-1} \frac{R}{D}) \]

• [YouTube video link](https://youtu.be/Ce2FrSBKwB8)
Visual Servoing Trajectories
Combining: Sensing/Action Loops

- No modelling and planning! Consider each local ‘servo’-like sensing-action loop as a **behaviour**.

Sense → Act

- The challenge is in combining many behaviours into useful overall activity: see TR Programs, Subsumption, Braitenberg vehicles.
Combining Sensors: World Model Approach

- Capture data; store and manipulate it using symbolic representations.
- *Plan* a sequence of actions to achieve a given goal
- Execute plan.
- If the world changes during execution, stop and re-plan.
- Powerful, but computationally expensive and complicated!

Shakey: one of the first mobile robots.

- Probabilistic state inference and planning is the modern version of this able to cope with uncertainty in sensors.
• Like robot motion, robot sensing is also fundamentally *uncertain*. Real sensors do not report the exact truth of the quantities they are measuring but a perturbed version.

• Having characterized (modelled; calibrated?) a sensor and understood the uncertainty in its measurements we can build a probabilistic measurement model for how it works. This will be a probability distribution (specifically a *likelihood function*) of the form:

\[p(z_o|x, y) . \]

Such a distribution will often have a Gaussian shape.
• A likelihood function fully describes a sensor’s performance.

• \(p(z|v) \) is a function of both measurement variables \(z \) and ground truth \(v \) and can be plotted as a probability surface. e.g. for a depth sensor:

```
Constant Uncertainty

Growing

Systematic Error (Biased)
```
Robust Likelihood for Sonar Measurements

- We will return to this in later lectures on probabilistic robotics, but a suitable likelihood function for a sonar sensor is as follows: it says ‘what is the probability of obtaining sensor measurement z given that the ground truth value I expect is m?'

- This distribution has a narrow Gaussian band around the expected value, plus a constant additive band representing a fixed percentage of ‘garbage’ measurements.

$$p(z|m) \propto e^{-\frac{(z-m)^2}{2\sigma_z^2}} + K$$
This week’s practical: Simple Sensor Control Loops and Wall Following

- Example wall follower: https://www.youtube.com/watch?v=BU9k5Z0CKjs. We will try to do even better with smooth proportional gain!
Simple behaviours: Braitenberg vehicles

- Direct connections between sensors and motors
- Created in 1984 as thought experiments in study of intelligence in Braitenberg's book "Vehicles".
Variable speed - single direction

- Sensor controls speed of motor - always forward
- Sensor detects increasing heat or light increasing motor speed in response
Observed Anthropomorphic Behaviour

- With heat sensor robot appears to avoid warmth, seek cool areas.
- If uses a light sensor, appears to avoid light.
- If sensor has a threshold then motor will cut when sensed value is below a certain level.
- Light sensor robot appears to run towards shade - so exhibits **timid** behaviour
Two sensors and two motors

Sensors again control speed of motors

Increase in sensed value increases speed of motor
Observed behaviours

Light avoider

Light seeker
Two inhibiting sensors and two motors

Increase of sensed value decreases linked motor speed, and vice-versa.
Observed behaviour

- turns to light and stops when light intensity stops motors
- turns away
Merged behaviours
Following/leading behaviours

light seeking robot

lights

direction of triggered movement

light aversion robot

threshold light sensor
Reactive control architectures

- Many of the successful robot control architectures are assemblies of concurrently executing micro-behaviours.
- Two different ways of combining action outputs of the concurrently executing behaviours: subsumption and potential field (or vector field) summation.
- Subsumption similar to TR rule hierarchy, in which behaviours are ranked and highest ranked behaviour wanting to control the robot has control.
- Vector fields similar to the action merging of Braitenberg vehicles (light seeking + obstacle avoidance).
Subsumption:
Rodney Brooks, MIT AI Lab, 1980s
Subsumption Philosophy

- Behaviours are grouped into layers of competence.
- Behaviour at a higher lever subsume behaviours at a lower level.
- Higher behaviour can also use computed percepts and intermediary or final output values of any lower lever behaviour.
- Layers of competence developed from bottom up
 - Starting with N=0, N layer behaviour developed and debugged before next layer is added.