
2023 Haskell January Test

Cryptic Clue Solving

This test comprises four parts (Part IV is unassessed) and the maximum mark is 30.

There will be a special bonus prize for the first student to complete all four Parts and whose code
passes all the tests in the given test suite.

The 2023 Haskell Programming Prize will be awarded for the best overall solution, or solu-
tions.

Credit will be awarded throughout for clarity, conciseness, useful commenting and the appropriate
use of Haskell’s various language features and predefined functions.

WARNING: The examples and test cases here are not guaranteed to exercise all aspects of your
code. You are therefore advised to define your own tests to complement the ones provided.

1



1 Introduction

A traditional crossword clue typically comprises the definition of some word or phrase which has
to be guessed by the solver. The number of letters in the solution, also called the enumeration,
is also part of the clue, so the length of any guessed answer must match the enumeration. For
example, given the clue

Pardon (7)
the solver might guess solutions such as “forgive”, “condone”, “absolve” etc., all of which mean
“pardon” and have the required seven letters.

In contrast, a cryptic crossword clue typically has two components: a traditional crossword-like
definition and a separate wordplay which is an independent set of instructions, encoded in natural
language, for how to assemble the solution from fragments of text contained within, or derived
from, the clue. For example, in the correct reading of the cryptic clue:

Pardon girl ringing home (7)
the definition is “pardon” (as above) and the wordplay is “girl ringing home”. The trick is to ignore
the surface reading of the wordplay and think of it instead as a code – in this case it’s telling
us that the solution comprises the letters of a synonym for “girl” surrounding (i.e. “ringing”)
the letters of a synonym for “home”. In this case the “girl” refers to “amy” (a girl’s name)
and “home” to “nest”, hence the solution “am nest y” – a word meaning “pardon”. The word
“ringing” in the clue is called an indicator, which, in this case, is the encoded instruction to put
one fragment of text inside another. We will refer to this as an insertion. In this exercise you can
think of insertions as infix operations where the two arguments are sub-clues that specify the text
fragments upon which the insertion operates.

In addition to insertions there are around 20 other operations commonly used by setters, but
in this exercise we’ll focus on the following:

Synonyms

A synonym of a word or phrase is a (single) word which has the same meaning, e.g. “massive” →

“huge”, “maker of bread”→ “baker” (or possibly “earner”, if we take “bread” to mean “money”!).
Synonyms are unindicated, so the word “sort” for example, could refer to the verbatim text “sort”
or to another word with the same meaning, e.g. “order”. The simplest type of cryptic clue type
is a so-called double definition involving just the replacement of one word by a synonym, as in:

Business worry (7)
which has at least one solution: “concern” – a word that means both “business” and “worry”.
Note that it’s not clear which of these two words is the definition and which is the wordplay: both
interpretations resolve to the same answer, so there are arguably two solutions, as there are two
(different) ways to construct the same answer. In fact, the word “problem” can also be seen as a
synonym of both “business” and “worry”, in which case there are arguably four solutions; there
may be many more, depending on whether other similar synonyms can be found.

Anagrams

Anagrams involve rearranging the letters of one or more words. Anagram indicators are words or
short phrases that suggest the notion of rearrangement, scrambling, mixing up etc. For example,
in clue

New toaster revolves (7)
the word “new” suggests making a new version of the letters of “toaster”, ending up with a
word than means the same as “revolves”. The answer is “rotates”. Notice that in this case

2



the definition (“revolves”) appears at the end of the clue, c.f. “pardon” above which is at the
beginning; definitions can appear at either end.

The argument text for an anagram will always be literal text appearing verbatim in the clue
here, as in the text “toaster” above1.

Reversals

Reversals involve reversing the letters of a fragment of text and are indicated by words/phrases
such as “about”, “backwards”, “in reverse” etc. For example, in the clue:

Cheese made from east to west (4)
the phrase “from east to west” (implying writing the letters out from right to left) is the reversal
indicator and the letters to reverse are those of “made”. The answer is “edam” – a type of
cheese. In this case the text to reverse appears verbatim in the clue. However, unlike anagrams,
the argument can be any nested construction (presumably solved by recursion), e.g. from the
evaluation of a synonym of another word or phrase, as in:

Plans to return junk mail (4)
Here, “to return” is the reversal indicator and the target text (the argument) is “junk mail” which
must first be replaced by “spam” (a synonym of “junk mail”). The answer is “maps” (the letters
of “spam” written in reverse), which is an alternative word for “plans”.

Insertions

An example of an insertion is given above. As with reversals, there are no constraints on the two
arguments, i.e. either could involve a synonym, an anagram, a reversal, a charade (next rule), or
even another insertion.

Note that the insertion in the above clue is sometimes referred to as an envelope in the sense
that the second argument (“home”→ “nest”) defines the text to be inserted and the first argument
(“girl” → “amy”) defines the target of the insertion, which ends up enveloping the insertion text.
A “standard” insertion has the arguments the other way round, as in:

River, one featured in superstitions (5)
where “featured in” is an insertion indicator whose first argument (“one” → “i”) defines the text
to be inserted and whose second (“superstitions” → “lore”) defines the target text; the answer is
thus “lo i re” – the name of a river.

Charades

A charade is simply a concatenation of two text fragments, each derived (recursively) from some
other construction, including a nested charade. For example, the clue

Taxi home from hut (5)
has the solution to “cabin” (a synonym of “hut”), with the wordplay being a charade of “taxi” →

“cab” and “home” → “in” (in the sense of “being home”). The word “from” here is a so-called
link that separates the definition and wordplay. Link words/phrases are optional.

In the above clue the charade is unindicated. A variation allows infix indicators such as “and”,
“next to”, “with” etc., as in:

One with hand that’s perfect (5)
which has the solution “ideal” – a charade of “one”→ “i” and “hand” → “deal”. The word “with”
is the charade indicator and “that’s” is a link word.

1This convention is followed religiously by most setters with so-called “indirect anagrams”, where a word or

phrase is replaced by a synonym before being scrambled, being deemed unfair.

3



Charade

toastertoaster revolves

Synonym Synonym Synonym

Reversal [revolves] Anagram [new]

toaster

Charade

toaster

Synonym Synonym

new

Figure 1: Parse trees for “New toaster revolves (7)”

2 Clue solving in Haskell

Automating the task of clue solving involves:

• Parsing a clue in all possible ways, with each possible interpretation being parsed as a defini-

tion, an optional link word/phrase and a parse tree which represents the various operations
encoded in the wordplay.

• Evaluating the parses in order, each generating zero or more result strings. Every result
string produced is deemed to be a valid solution – there may be more than one and in some
cases the same string may be produced multiple times.

2.1 Clue parsing

Because clues are written using natural language there are typically many parses of a clue. For
example, the above clue:

New toaster revolves (7)
might have the following four interpretations:

1. A reversal (“revolves”) of “toaster”, with definition “new”.

2. A charade of “toaster” and “revolves”, with definition “new”.

3. An anagram (“new”) of “toaster”, with definition “revolves”.

4. A charade of “new” and “toaster”, with definition “revolves”

The number of readings of the clue depends on whether the component words/phrases can be
interpreted as indicators. For example, if we decide that “revolves” should not be interpreted as a
reversal indicator then there might be just three parses instead of four and if “toaster” is treated
as an anagram indicator then there may be as many as six.

The parse trees for these four interpretations are shown in Figure 1. The indicator for each
operation (if there is one) is placed in [square brackets] next to the operation at each node. Notice
that synonyms always appear at the leaves of the tree and that the argument of an anagram is
always verbatim text (it is not parsed as a synonym).

Note that having parsed a clue we have no idea in advance which, if any, of the parses will lead
to a solution – that depends on how the various words and phrases get mapped to synonyms and
how their component letters are manipulated by the various operations – this is the responsibility
of the evaluator (see below). It is therefore necessary to evaluate all valid parses in an effort to
find a solution.

4



Synonym

Synonym the frenchSynonym

worrychap

Insertion [about]

Charade [on]

Figure 2: Correct parse tree for “Worry about chap on the French port (9)”

2.2 Recursive constructions

The argument(s) of the insertion, reversal and charade operations can be arbitrary “nested” sub-
clues, which means that clue parsing and clue evaluation are inherently recursive in nature. In
principle, the depth of nesting is unbounded, although clues tend to be short, which limits the
amount of nesting seen in practice. As an example,

Worry about chap on the French port (9)
has the solution “fremantle” (an Australian port) and the correct reading of the wordplay is a
charade of: a. An insertion of “chap” → “man” into “worry” → “fret” and b. “the” → “le”
(the French word for “the”); the two indicators are “about” (envelope form of insertion) and “on”
(charade). There are thus two levels of operation nesting, as show in the “correct” parse tree, i.e.
the one that resolves to the answer, in Figure 2.

Note that a charade of three or more text fragments can be constructed by nesting two-way
charades accordingly, in the same way that three numbers, x, y and z, can be added together
using binary addition, viz. x + (y + z) or (x + y) + z. The fact that concatenation is associative
means that there may be two ways to construct a three-way charade when one will do, but we will
ignore that for the purposes of the exercise; the effect will be that two or more parse trees might
evaluate to give the same result string.

2.3 Representation

The following data types for representing clues and their parses is given in the Typesmodule (note
that definitions, indicators and links may comprise multiple words, hence their representations as
lists of strings):

type Clue = (String, Int)

type Definition = [String]

type Indicator = [String]

type Link = [String]

data ParseTree = Synonym String |

Anagram Indicator String |

Reversal Indicator ParseTree |

Insertion Indicator ParseTree ParseTree |

Charade Indicator ParseTree ParseTree

5



deriving (Show)

type Parse = (Definition, Link, ParseTree)

There is an additional ParseTree constructor in the Types module, but this is only relevant for
Part IV, which is unassessed.

For example, the “fremantle” clue above will be represented by ("Worry about chap on the

French port",9) and the Parse that leads to the correct solution is (formatted to aid readability):

(["port"],[],Charade ["on"] (Insertion ["about"] (Synonym "chap")

(Synonym "worry"))

(Synonym "the french"))

Notice that there is no link separating the wordplay and definition in this clue, hence the [].
We will assume throughout that the first argument of the Insertion constructor defines the

text to be inserted, here “chap”→ “man”, and the second the target of the insertion, here “worry”
→ “fret”.

2.4 Evaluation

There are several ways one might go about evaluating a parsed clue. In this exercise you’ll
build a backwards evaluator which starts by using the Definition to guess a solution and then
determining whether the guess matches the corresponding ParseTree. Each definition may have
many synonyms (guesses), and any number of them might match the parse tree, so you should
try to match them all, in order.

Synonym mapping and indicator recognition are clearly crucial to any solver. To simplify the
task you are provided with a collection of static data sets from which to build a solver: a thesaurus

which contains a list of synonyms of around 2000 common words and phrases, and a list of indicator
words and phrases for each of the indicated operations (anagram, reversal, insertion and charade).
Access to the thesaurus is provided via a function synonyms :: String -> [String] in the
module WordData.hs. For example:

Solver> synonyms "ornate"

["detailed","fine","grand","ornate"]

Note that every word has itself as one of its synonyms.
The indicators for each operation are provided in a suitably named constant in the same

module, e.g.

*Solver> reversalIndicators

["about","after recovery","back","backed","backward",...]

You’ll need the indicator lists in Part III, but not Parts I and II.
The rules for matching a string, s, against a parse tree are as follows:

• If the tree is a Synonym of some string s’ then the match succeeds if the list of synonyms of
s’ contains s.

• If the tree is an Anagram of the verbatim text s’ then the match succeeds if s and s’ contain
the same letters. The order is unimportant, so you can solve the problem by asking whether
the sorted versions of s and s’ are the same.

• If the tree is a Reversal of some subtree t then the match succeeds if the reversal of s

matches t.

6



• If the tree is an Insertion with argument subtrees t1 and t2 then you need to decompose s
into all pairs of non-empty strings, s1 and s2, say, such that the insertion of s1 into s2 yields
s. The match then succeeds provided s1 matches t1 and s2 matches t2. For example, if s
= "ache" then the valid decompositions are ("c","ahe"), ("ch","ae") and ("h","ace");
you can think of this decomposition being a process of “uninsertion”.

• If the tree is a Charade with argument trees t1 and t2 then you need to split s into all
pairs of strings, s1 and s2, say, such that s1 ++ s2 == s. Similar to insertions, the match
succeeds provided s1 matches t1 and s2 matches t2.

Given a parse p = (def, link, t) of some clue c, a valid solution is a synonym, s say, of the
definition, def, that matches the parse tree t; this is returned as a component of a triple of type
Solution = (Clue, Parse, String), viz. (c, p, s). For example, for the “correct” parse of
the “fremantle” clue above def = "port", s = "fremantle" and t is the representation of the
parse tree in Figure 2, as shown in Section 2.3. The Solution type synonym above is included in
the Types module.

3 What to do

3.1 Part I: Preliminaries

1. When solving a cryptic clue all punctuation can be removed before starting, as it’s invariably
“bluff”. Hence, define a function cleanUp :: String -> String that will remove all
punctuation from a string and convert all upper-case characters to lower case (use toLower

from Data.Char). The punctuation characters are defined by the constant punctuation =

"’;.,-!?" in the template. For example:

*Solver> cleanUp "half-baked"

"halfbaked"

*Solver> cleanUp "Haskell - everyone’s favourite language!"

"haskell everyones favourite language"

[1 Mark]

2. Define a function split2 :: [a] -> [([a], [a])] that will split a list into all pairs of
non-empty sublists which, when concatenated (++) reconstruct the original list. For example,

*Solver> split2 ""

[]

*Solver> split2 [1,2,3,4]

[([1],[2,3,4]),([1,2],[3,4]),([1,2,3],[4])]

Hint: You might like to use functions like length, splitAt etc. (it’s an O(n2) problem).
The order of the elements in the resulting list is unimportant.

[2 Marks]

3. Define a function split3 :: [a] -> [([a], [a], [a])] that will split a given list into all
triples of sublists which, when concatenated (++) reconstruct the original list. The first and
third elements must be non-empty, but the middle element can be null ([]). For example,

7



*Solver> words "a sample word play"

["a","sample","word","play"]

*Solver> split3 (words "a sample word play")

[(["a"],["sample"],["word","play"]),

(["a"],["sample","word"],["play"]),

(["a","sample"],["word"],["play"]),

(["a"],[],["sample","word","play"]),

(["a","sample"],[],["word","play"]),

(["a","sample","word"],[],["play"])

]

The order of the elements in the resulting list is unimportant.

Hint: Use split2: once to split the original list into a list of pairs. For each pair, (xs1,
xs2), say, split xs1 (or, equivalently xs2) similarly and use the results to form the required
triples of non-empty lists. You can re-use xs1 and xs2 to build those triples with null middle
elements.

[2 Marks]

4. Using split3, or otherwise, define a function uninsert :: [a] -> [([a], [a])] that
will decompose a list into all pairs of non-empty sublists, xs1 and xs2, say, such that the
original list can be reconstructed by inserting xs1 into xs2 at some point. For example:

*Solver> uninsert "abcde"

[("b","acde"),("bc","ade"),("bcd","ae"),("c","abde"),

("cd","abe"),("d","abce")]

*Solver> uninsert [1,2]

[]

The order of the elements in the resulting list is unimportant.
[2 Marks]

Mirrored splits

Later on you’ll see that it’s useful to have versions of split2 and split3 that include “mirror
images” of the results of the original functions, suitable named by appending “M” to their names,
e.g.

*Solver> split2M [1,2,3]

[([1],[2,3]),([1,2],[3]),([2,3],[1]),([3],[1,2])]

*Solver> split3M "abcd"

[("a","b","cd"),("a","bc","d"),("ab","c","d"),("a","","bcd"),

("ab","","cd"),("abc","","d"),("cd","b","a"),("d","bc","a"),

("d","c","ab"),("bcd","","a"),("cd","","ab"),("d","","abc")]

The code for these functions is essentially “boilerplate”, so they have been defined for you, but
commented out, in the template. Once you’ve defined split2 and split3 you should uncomment
them and make sure that they work as expected.

8



3.2 Part II: Evaluation

To help you to test these functions, a number of parse trees are provided in the module Examples
in the form of a list trees :: [ParseTree]. A function showT :: ParseTree -> IO () is
also provided in the Types module that will pretty-print a parse tree, with the five constructions
being respectively displayed by the abbreviations SYN, ANAG, REV, INS, and + (infix) for charades.
Where relevant the indicators are shown in [square brackets]. For example,

*Solver> trees !! 2

Anagram ["unusual"] "hensdark"

*Solver> showT (trees !! 2)

ANAG[unusual] hensdark

*Solver> trees !! 12

Charade ["on"] (Insertion ["about"] (Synonym "chap") (Synonym "worry"))

(Synonym "the french")

*Solver> showT (trees !! 12)

INS[about] (SYN chap) (SYN worry) +[on] SYN the french

1. Define a function matches :: String -> ParseTree -> Bool that implements the match-
ing scheme described in Section 2.4 above. The list strings :: [(String, String)] in
the Examples module contains pairs of strings that respectively do and do not match the
corresponding elements of trees. For example,

*Solver> matches "road" (Synonym "street")

True

*Solver> matches "road" (Synonym "apricot")

False

*Solver> zipWith matches (map fst strings) trees

[True,True,True,True,True,True,True,True,True,True,True,True,

True,True,True,True]

*Solver> zipWith matches (map snd strings) trees

[False,False,False,False,False,False,False,False,False,False,

False,False,False,False,False,False]

[7 Marks]

2. Using matches define a function evaluate :: Parse -> Int -> [String] that, given
a clue parse comprising a definition, a link word/phrase (unused here) and a parse tree,
will return all synonyms of the definition that match the tree. Note that the definition is
represented as a list of words, so you should apply unwords before generating the list of
synonyms. The integer argument is the enumeration, so, as an optimisation, you can filter
out synonyms that do not have the required length.

For example (figParses contains the representations of the four parses whose parse tree
feature in Figure 1):

*Solver> evaluate (figParses !! 0) 7

[]

*Solver> evaluate (figParses !! 2) 7

["rotates"]

*Solver> map (flip evaluate 7) figParses

[[],[],["rotates"],[]]

9



Note that only the anagram (parse index 2) resolves to the answer.

The parses for the first 19 clues in the Clues.hs module that resolve to give the correct
answer are given in parses :: [Parse] in the Examples module. The corresponding
enumerations are given in enumerations :: [Int], so you can further test your evaluate
function thus:

*Solver> zipWith evaluate parses enumerations

[["concern","problem"],["rotates"],["redshank"],["master"],["edam"],

["repaid"],["amnesty"],["remainder"],["sustain"],["loire"],["cabin"],

["snappy"],["fremantle"],["nasty"],["rotate"],["inapt"],

["kensington"],["defiant"],["speed"]]

Note that the thesaurus has two synonyms for business that are also synonyms of worry
(“concern” and “problem”), so both are treated as valid solutions (the order is unimportant).

[3 Marks]

4 Part III: Clue parsing

1. Define a parsing rule for each of the five constructions (synonym, anagram, reversal, inser-
tion, charade). In each case the argument is a fragment of clue text (a list of words) and
the result is a list of parse trees.

Optional idea: You can implement the parsing rules in any way you wish, but you may
observe from reading below that there is quite a lot of similarity among the one-argument
(anagrams and reversals) and two-argument constructions (insertions and charades), so you
might find it useful to abstract the corresponding parsing rules as higher-order functions.
The rule for synonyms will be a special case, but if you get the higher-order functions right
you should be able to express each of the remaining rules as one- or two-liners.

The template contains a type signature for each parsing rule and a definition for a function
parseWordplay that combines them all together:

parseWordplay :: [String] -> [ParseTree]

parseWordplay ws

= concat [parseSynonym ws,

parseAnagram ws,

parseReversal ws,

parseInsertion ws,

parseCharade ws

]

For example, in the above clue “New toaster revolves (7)” the wordplay text, ws, will initially
be either be the list of words ["new","toaster"] or ["toaster","revolves"], with the
remaining word in each case being the definition, which will be handled separately (see
below). The template has been set up with appropriately defined defaults for each parsing
function so that you can define and test each in turn before moving onto the next. The order

of the elements in the lists generated by each parsing rule is unimportant. The wordplay
parsing rules are as follows.

10



Synonyms

Any fragment of text can be parsed as a synonym, provided there is a synonym of the
words of that text in the thesaurus (use the synonyms function to check this), e.g. "new"

has a synonym, so the text fragment ["new"] can be parsed to give a singleton parse tree
[Synonym "new"]. However, there is no synonym of "new toaster" so ["new","toaster"]
will return [] in this case. Note that the rule returns either one tree or none at all. For
example,

*Solver> parseSynonym (words "great")

[Synonym "great"]

*Solver> parseSynonym (words "at home")

[Synonym "at home"]

*Solver> parseSynonym (words "triangular mollusc")

[]

Anagrams

Anagrams are explicitly indicated and the indicator can appear either to the left or to
the right of the argument text, e.g. ["mixed","bag"] and ["bag","mixed"] will both be
parsed as an anagram of the literal text "bag", because the string "mixed" is an element
of anagramIndicators – see the WordData module. To parse an anagram, first split the
argument text into two fragments in all possible ways using split2M (e.g. ["mixed","bag"]
will be split as [(["mixed"],["bag"]), (["bag"],["mixed"])]). Now inspect each pair:
if the words of the first fragment form an anagram indicator, ind say, then build the singleton
parse tree [Anagram ind arg] where arg is the concatenation (no spaces) of the words of
the second fragment; otherwise return []. Note that using split2M rather than split2

means that the left- and right-hand cases can be handled by a single rule, rather than two.
For example,

*Solver> parseAnagram (words "mixed bag")

[Anagram ["mixed"] "bag"]

*Solver> parseAnagram (words "bag mixed")

[Anagram ["mixed"] "bag"]

*Solver> parseAnagram (words "changed the car")

[Anagram ["changed"] "thecar"]

*Solver> parseAnagram (words "fruit cake")

[]

As with synonyms, note that the resulting list is either [] or a singleton.

Hint: use unwords to convert a candidate indicator into a string, e.g. unwords ["mixed",

"up"] → "mixed up".

Reversals

The parsing rule for reversals is similar to that of anagrams except that the second fragment
of each split pair must be recursively parsed using parseWordplay to yield a list of parse
trees; each such tree, t say, is then used to build a parse tree of the form Reversal ind t

(ind is the indicator), e.g.:

11



*Solver> parseReversal (words "go backwards")

[Reversal ["backwards"] (Synonym "go")]

*Solver> parseReversal (words "backwards go")

[Reversal ["backwards"] (Synonym "go")]

*Solver> parseReversal (words "mixed bag")

[]

Note that, in general, any number of trees may be produced; you can test this later (see
below).

Insertions

Insertions are assumed to be infix operations, so the input text must first be split into
three fragments in all possible ways using split3. A split of the form (arg, ws, arg’)

is parsed as an insertion if the words of ws form an insertion indicator, ind, say. The
two arguments arg and arg’ must then be recursively parsed using parseWordplay and all
pairwise combinations of the elements of the resulting lists used to form the arguments to
the Insertion in the resulting parse trees.

Importantly, there are two “flavours” of insertion: envelopes, of the form ‘X around Y’, and
standard insertions, of the form ‘X within Y’ and there are separate indicator lists for each:
envelopeIndicators and insertionIndicators respectively. The parsing rule therefore
requires two sub-rules differing in two respects: 1. The list of indicator words/phrases used
to check the parse and 2. the order of the two arguments of each Insertion if/when the
check succeeds. The reason for using split3 as suggested, rather than split3M, for example,
is because the argument order is significant. Note also that a split of the form (arg, [],

arg’) will yield an empty list of parses, as required, because the empty string (unwords [])
is not an envelope/insertion indicator.

*Solver> parseInsertion (words "back in business")

[Insertion ["in"] (Synonym "back") (Synonym "business")]

*Solver> parseInsertion (words "work around town")

[Insertion ["around"] (Synonym "town") (Synonym "work")]

*Solver> parseInsertion (words "back pain")

[]

Note the order of the arguments to Insertion in the second case (an envelope).

Charades

The parsing rule for charades is almost identical to that of insertions, the main difference
being the indicator lists used. As with insertions there are two “flavours” of charade: a
left-to-right version, which may be indicated or not, i.e. of the form ‘X Y’ (unindicated
concatenation), or ‘X before Y’, and a right-to-left version of the form ‘X after Y’. The
corresponding indicator lists are beforeIndicators and afterIndicators. Note that ""
is an element of beforeIndicators, so if there is no indicator ([]) then the corresponding
three-way split will be correctly parsed as an unindicated charade.

12



*Solver> parseCharade (words "stop go")

[Charade [] (Synonym "stop") (Synonym "go")]

*Solver> parseCharade (words "stop and go")

[Charade ["and"] (Synonym "stop") (Synonym "go"),

Charade [] (Synonym "stop") (Charade [] (Synonym "and") (Synonym "go")),

Charade [] (Charade [] (Synonym "stop") (Synonym "and")) (Synonym "go")]

*Solver> parseCharade (words "go after stop")

[Charade [] (Synonym "go") (Charade [] (Synonym "after") (Synonym "stop")),

Charade [] (Charade [] (Synonym "go") (Synonym "after")) (Synonym "stop"),

Charade ["after"] (Synonym "stop") (Synonym "go")]

Again, note the order of the arguments to Charade in the final case. Note also the redundancy
referred to earlier when parsing charades as described, as the second and third parses of
"stop and go" above will will both evaluate to the same result(s). Fixing this is messy, so
we will not worry about such redundancy in the exercise.

Now is a good time to re-test your parsing rules for reversals and insertions, e.g.:

*Solver> parseReversal (words "back at home")

[Reversal ["back"] (Synonym "at home"),

Reversal ["back"] (Charade [] (Synonym "at") (Synonym "home"))]

*Solver> parseInsertion (words "was back in time")

[Insertion ["in"] (Reversal ["back"] (Synonym "was")) (Synonym "time"),

Insertion ["in"] (Charade [] (Synonym "was") (Synonym "back")) (Synonym "time")]

[9 Marks]

2. Define a function parseClueText :: [String] -> [Parse] that combines the functions
split3M and parseWordplay to parse the text of a given clue (a list of its component words)
in all possible ways. This involves

(a) Splitting the text into a candidate definition, optional link, and wordplay

(b) Checking that the link word/phrase is recognised as one of the given linkWords

(c) Checking that there is at least one synoynm of the definition (otherwise no solution can
ever be found)

(d) Parsing the wordplay

in all possible ways. Recall that there may be one or more link words between the defini-
tion (D) and wordplay (WP), but these will assume to “commute”, so that a particular link
word/phrase can have the definition to the left and the wordplay to the right, or the other
way round. For example, D that is WP and WP that is D are both taken to be valid, be-
cause the string "that is" is an element of linkWords. Hence, you should use the “mirror”
version split3M for building three-way splits in this case. Importantly, "" is an element of
linkWords so, given a split of the form (D, [], WP), for example, unwords [], i.e. "", will
be recognised as a valid link.

A function parseClue :: Clue -> [Parse] is defined in the template that invokes parseClueText
on the words a of a cleaned-up version of the clue text. You will find that there can be sev-
eral hundred parses for some clues, so a quick way to check that you’ve not missed any is to
count them. Hence, for example:

13



parseClue clue@(s, n)

= parseClueText (words (cleanUp s))

For example,

*Solver> parseClue (clues !! 0)

[(["business"],[],Synonym "worry"),(["worry"],[],Synonym "business")]

*Solver> parseClue (clues !! 1)

[(["new"],[],Reversal ["revolves"] (Synonym "toaster")),

(["new"],[],Charade [] (Synonym "toaster") (Synonym "revolves")),

(["revolves"],[],Anagram ["new"] "toaster"),

(["revolves"],[],Charade [] (Synonym "new") (Synonym "toaster"))]

*Solver> length (parseClue (clues !! 16))

72

[3 Marks]

3. Finally, define a function solve :: Clue -> [Solution] that will solve a given clue,
returning a list of solutions, as there may be more than one. A valid solution comprises the
clue, the Parse that led to the solution and a valid answer (a String); there will thus be
one solution for each string generated by evaluate. If there is no solution then the result
should be []. The function showSolutions in the Typesmodule will pretty-print a solution,
making the output easier to read, e.g.

*Solver> solve (clues !! 1)

[(("New toaster revolves",7),

(["revolves"],[],Anagram ["new"] "toaster"),

"rotates")]

*Solver> showSolutions (solve (clues !! 16))

CLUE: Carol, in county, working for palace (10)

Solution: kensington

DEF: palace

LINK: for

TREE: INS[in] (SYN carol) (SYN county + SYN working)

CLUE: Carol, in county, working for palace (10)

Solution: kensington

DEF: palace

LINK: for

TREE: INS[in] (SYN carol) (SYN county) + SYN working

----

Note that clue 16 has two structurally distinct parses that resolve to the same (correct)
solution, “kensington”.

If you’ve got this far then you should be able to solve the first 19 clues, which you can test
via:

*Solver> solveAll 19

[["concern","problem"],["rotates"],["redshank"],["master"],["edam"],

14



["repaid"],["amnesty"],["remainder"],["sustain"],["loire"],["cabin"],

["snappy"],["fremantle"],["nasty"],["rotate"],["inapt"],

["kensington"],["defiant"],["speed"]]

[1 Mark]

5 Part IV

There are no marks for this, so you should only attempt this if you have completed the above.
A “hidden word” is a word that is contained verbatim with one or more other words, e.g.

gillingham contains the word ling and molecular genetics contains the word large, which
spans both words. The rule is that the hidden word must be strictly within the target text (it
must not include the first and last letters of the target text) and it must span all the words in the
target text, e.g. ham is not a hidden word in either gillingham or gillingham town.

Add an evaluation rule and parsing rule for hidden words to your solver. A constructor
HiddenWord is already included in the ParseTree data type, with a corresponding rule in the show
functions. The hidden word indicators are provided in hiddenWordIndicators. For example:

*Solver> clues !! 19

("Fish from Gillingham",4)

*Solver> showSolutions (solve (clues !! 19))

CLUE: Fish from Gillingham (4)

Solution: ling

DEF: fish

TREE: HW[from] gillingham

----

*Solver> clues !! 20

("Boy hiding in fitted wardrobe",6)

*Solver> showSolutions (solve (clues !! 20))

CLUE: Boy hiding in fitted wardrobe (6)

Solution: edward

DEF: boy

TREE: HW[hiding in] fitted wardrobe

----

There is a special bonus prize for the first student who can solve all 24 clues in the Clues module
(solveAll 24).

Good luck!

15


