
2020 Haskell January Test
Hash Array Mapped Tries

This test comprises three parts and the maximum mark is 30. There is one bonus mark available
in Part I which will be added to your total, but marks will be capped at 30.

The 2020 Haskell Programming Prize will be awarded for the best overall solution.

Credit will be awarded throughout for clarity, conciseness, useful commenting and the appropriate
use of Haskell’s various language features and predefined functions.

WARNING: The examples and test cases here are not guaranteed to exercise all aspects of your
code. You are therefore advised to define your own tests to complement the ones provided.

1

1 Introduction

Most modern programming languages provide highly-tuned libraries for managing collections of
objects. An example of a collection is a set, i.e. an assortment of unique objects in no particular
order. Once you have sets, it’s straightforward to build maps which are just sets of (key, value)
pairs. One of the main challenges is to ensure that set operations, such as insertion, deletion and
membership testing execute quickly, regardless of the size of the set. Another is to minimise the
amount of memory used to store the set.

In this exercise you’re going to implement a hash array mapped trie, or HAMT which is a simple,
but ingenious, data structure for implementing sets that fulfils both objectives simultaneously.
HAMTs are used by languages such as Scala, Clojure and Haskell to implement some of the more
common set-related collection types.

2 Hash Array Mapped Tries (HAMTs)

A trie (from the word “retrieve” and pronounced “tree”) is a tree-like data structure for storing
sets of values of some given type. To keep it simple we’ll focus here exclusively on sets of integers,
although the same principles can be applied to many other types.

Tries work by using the internal structure of each stored value to define a path through the trie
from its root to a location where the value is stored. As we’re working with integers the “internal
structure” in this case will be the binary representation of those integers.

In general, tries can have an arbitrary number of levels, i.e. can have arbitrary depth, but in
this exercise tries will have a specified maximum depth, which we will assume is at least 2. We’ll
number the levels from 0, so the root node is at level 0.

To illustrate this, Figure 1 shows a trie with maximum depth of 3 containing the integers 73,
206, 729, 1830 and 2521. Each internal node, shown as a circle, has sixteen (24) subtries, numbered
0...15, i.e. 0000...1111 in binary, and we arbitrarily number them from the right, as shown. The
values in the set are stored in leaves, shown as boxes containing one or more values. Empty tries
are shown as empty boxes, so you can think of these as leaves with no associated values.

In order to explain the structure of the trie we need to look at the binary representations of
the values it contains, each of which is a 64-bit integer – the default for GHC on the lab machines.
These are shown below using 12 bits to save space, as the remaining bits to the left are all 0. A
gap has been added between each four-bit block to aid readability.

73: 0000 0100 1001

206: 0000 1100 1110

729: 0010 1101 1001

1830: 0111 0010 0110

2521: 1001 1101 1001

The least significant four bits of each value determines the index of the root subtrie containing
the value. If this leads to a node (circle) then the next four most significant bits determine which
of that node’s subtries contains the value. The process continues until we reach a leaf, where the
value is stored. Leaves can appear at any level other than level 0 (levels 1 and 2 in the example).
However, only leaves at the lowest level can contain more that one value – the reason for this will
become apparent when we look at how to build a trie (Section 4.3 below).

As an example, the values 206 and 1830 lead to subtries numbered 14 (11102) and 6 (01102)
respectively, both of which are leaves containing the respective (single) values. The other three
integers, i.e. 73, 729 and 2521, all have the same least significant four bits (1001) so they are all
stored in the subtrie numbered 9 = 10012. This is a reference to a node at the next level of the

2

73

206 1830

729,
2521

... 0010 0001 000011101111 01101001

0001 00001111 00101110 1101 00110100......

Level 2

Level 1

Level 0

Figure 1: Example trie.

trie, so we therefore use the next four bits, bits 4-7, to index into that node’s subtries. The value
73 leads to the subtrie numbered 4 = 01002, which is a leaf containing just that value. The other
two have the same bits in positions 4-7, i.e. 1101, and so end up in the same subtrie numbered
13 = 11012. Because the trie has only three levels there can be no nodes further down the trie. We
therefore say that the values 729 and 2521 “clash”, in the sense that they cannot be distinguished
using the least significant eight bits alone. Both values are therefore stored in the same leaf at the
lowest level (level 2). Of course, we could add additional layers to the trie in the hope of avoiding
clashes like this, but the example here is restricted to just three levels; this particular clash is
therefore unavoidable.

2.1 Searching the trie

In order to determine whether a value, v say, is a member of a set represented by the above trie,
we simply use the binary representation of v to define a path through the trie. If at any point we
reach a leaf then v is a member of the set if and only if it is stored somewhere in the leaf. For
example, if v = 1830 = 0111001001102 then 0110 (underlined) directs the search to the subtrie
(leaf) numbered 6 = 01102 where the value 1830 is stored. The search and stored values match:
success. If v = 134 = 1000000001102, which has the same four least significant bits as 1830, we
end up in the same subtrie as the previous search, but the value stored there is 1830 6=134: failure.
If v = 1922 = 011110000010 the search ends at subtrie number 2 = 00102 of the root, which is
empty: failure. If v = 2521 = 100111011001 then we need all eight least-significant bits to reach
a leaf and this contains 729 and 2521: success.

3

2.2 Space efficiency

The problem with tries like Figure 1 is that most of the subtries are empty; collectively, they
consume an enormous amount of memory that is essentially wasted. Rather than storing 16
subtries in each node regardless, it is much more space efficient to store only the non-empty ones,
e.g. in an array: if there are three non-empty subtries, say, then the array will contain exactly
three entries. But which of the 16 possible subtries do these three correspond to?

The trick is to add to each node a 16-bit bit vector and we can use a single (non-negative)
integer to do this, because an integer can be thought of as a vector of bits (64 bits in the case of
GHC). If the ith bit of the integer is set, i.e. is equal to 1, then the ith subnode is non-empty. So
far so good, but which array element is associated with this bit? The answer comes from looking
at the number of other ‘1’ bits to its right in the bit vector; we could equally count bits to the
left – the choice is arbitrary.

To illustrate this, Figure 2 (left) shows an equivalent trie to Figure 1 with this optimisation.
Nodes are now shown as big circles. They contain a bit vector and an array of what we’ll refer
to as subnodes; each subnode is either a terminal, containing exactly one value, and shown as a
single box, or a reference to a subtrie in the next level. If two or more values clash then they end
up in a leaf at the lowest level of the trie, shown as a double box. In contrast to the trie structure
in Figure 1, terminals (essentially singleton leaves) are now considered to be part of a node. By
construction, leaves are now guaranteed to contain two or more values and collectively they make
up the lowest level of the trie, as shown in the figure.

2.3 Modifying the search

Determining whether a value v is a member of the optimised trie of Figure 2 (left) now involves a
little more work. First, we extract the least significant four bits, i.e. bits 0-3, of v. This will be a
number, i say, between 0 and 15. Now use i to index the bit vector at the root of the trie. If this
is 0 then v is not a member of the set and we’re done. If it is 1 then the ith subtrie is non-empty.
To find its index in the subnode array, count the number of 1s, in the bit vector to the right of,
but not including, index i and call this n, say. Now use n to index into the subnode array: if
the subnode is a terminal then v is a member of the set if and only if the value at the terminal
matches v; if the subnode is not a terminal then it refers to a subtrie in the next level, where the
search continues.

The search scheme at the next level is identical to that at the root, except that we must use
bits 4-7 of v. The last level of a trie – level 2 in the example here – comprises only leaves, each
containing two or more values. If the search reaches a leaf then v is a member of the set if and
only if it is contained in the list of values stored in the leaf.

As an example, the bit vector at the root of Figure 2 (left) is 0100001001000000. If v = 206 =
110000001110 then we inspect bit 14 = 11102 (underlined) of the bit vector, which is 1. We
therefore count the number of bits to the right of index 14 and there are two, so n = 2 in this case.
We therefore index the subnode array at index 2. This references a terminal with value 206 and
the search and stored values match: success. If, however, v = 31 = 0000000111112 then the bit
index is 15 = 11112 and the corresponding bit in the vector is 0: failure. If v = 73 = 000001001001
then the bit index is 9 and the corresponding bit in the bit vector is 1. There is one bit to the right
of this so n = 1 in this case. The subnode at index 1 is a reference to a node in the next level of
the trie, where the search continues using bits 4-7 of v. The bit vector here is 0010000001000000.
Bits 4-7 of v are 0100 = 410 and the bit vector at index 4 is 1. There are no 1s to the right of
this, so n = 0 in this case and we index the subnode array at 0. This references a terminal with
value 73: success. If v = 2521 = 100111011001 then the search continues as for 73 until we get to
level 1 of the trie. Now bits 4-7 are 1101 = 1310 and the corresponding bit in the bit vector is 1.

4

729, 2521

2061830

1 20

0126914 3457811121315 10

0126914 3457811121315 10

10

73

Bit vector

Bit vector

Subnode array

Leaf

Level 0

Level 1

Level 2

Subnode array

Terminals

Terminal

1 20 3

10

Bit vector

Bit vector

0126914 3457811121315 10

0126914 3457811121315 10

2521 206 729

183073

Subnode array

Subnode array

Level 1

Level 0

Terminals

Terminals

Figure 2: Array mapped tries indexed by raw (left) and hashed (right) values

There is a single 1 to the right of this, so we index the subnode array at index 1, which leads to a
leaf containing the values 729 and 2521 in the lowest level of the trie. The search value v = 2521
matches one of these: success.

In general, if a trie contains more than three levels then the search process repeats similarly
using successively more significant bits. Similarly, if there are more (or less) than a maximum
of 16 subnodes at each level then more (or fewer) bits will be used at each level for indexing, as
determined by the block size.

2.4 Hashing

One problem remains with the above scheme: in the worst case it is possible for the entire set
to end up at the same leaf, whereupon the trie essentially degenerates into a list. A list is not a
good structure for storing sets, as the search cost increases linearly with the size of the set. As
an example, if the integers are are all multiples of 256 then their least significant eight bits will
all be 0, so they will all clash in same leaf via subnode 0 in layer 1 and subnode 0 again in layer
2. Notice that choosing some other set of eight bits to do the indexing won’t solve the problem.

5

For example, if we instead use the most significant bits, then all integers whose most significant
bits are zero, e.g. the integers 0...N − 1 for some N , will end up in the same leaf. In short, we’d
like to “spread the values out”, ideally so that all values end up in terminals, rather than leaves;
if they do end up in leaves then we’d like the number of clashes there to be small.

A very effective general solution to this problem is to use a hash of each integer, instead of
the integer itself, to do the indexing. A hashing function maps an object to an integer and the
idea is for these “hash values” to be spread out, so that objects that are grouped in some way in
the space of values, e.g. numbers having all 0s in their least significant bits, become uniformly
scattered in the corresponding space of hash values. The beauty of hash functions is that they
can be applied to different object types1, e.g. strings, lists, arrays etc., which makes it easy to
generalise tries to store objects of any “hashable” type. To keep it simple, we will only focus on
sets of integers in this exercise, so we only need to consider hash functions that map integers to
integers.

Figure 2 (right) shows the trie produced when using a hashing function that maps the values
2521,73, 206, 729 and 1830 to 391636870159797326, 1105127178103142997, 3910943446213641574,
8629109329697440862 and 4922377257571046896 respectively. Notice that the values are now all
stored at terminals inside nodes, i.e. there are no clashes and hence no leaves. Bingo!

3 Representing HAMTs

A fully optimised implementation of HAMTs in Haskell would use Haskell arrays to store the
subnodes at each node. However, because arrays are not covered in the course we’ll instead mock
them up using lists. A Java-like array access like a[n] will be implemented here via a !! n,
where a is a list. Don’t won’t worry about the fact that !! isn’t a constant-time operation, as
it’s straightforward to replace lists with arrays, should we wish to make the implementation more
efficient.

With this in mind HAMTs (Haskell type Trie) can be implemented using the following types,
which should be self-explanatory:

type BitVector = Int

data Trie = Leaf [Int] | Node BitVector [SubNode]

deriving (Eq, Show)

data SubNode = Term Int | SubTrie Trie

deriving (Eq, Show)

type Hash = Int

type HashFun = Int -> Hash

Note that each SubNode is either a (Term)inal value, i.e. a single Int, or a SubTrie, i.e. a reference
to a Trie in the next level2.

Note also that integers in GHC are 64-bits long, so if we use them to implement bit vectors,
as here, then each node in a trie can have a maximum of 64 = 26 subnodes, i.e. the maximum

1There are infinitely many possible hashing functions for a given object type and picking a “good” one is an
art in itself.

2Note that a smart implementation in C or C++, for example, might use a single bit to distinguish terminal
values from SubTrie references, enabling values to be stored directly in the array, but we won’t worry about that
in this exercise.

6

block size will be b = 6 bits. In order to simplify the manipulation of the bits of an integer the
Data.Bits module has been imported in the skeleton file; a crib sheet is provided separately.

4 What to do

There are three parts to this exercise. Part III is tricky, as you have to work out some of the
details yourself, so you are advised to complete Parts I and II before attempting Part III.

To help with testing, a number of example tries are included in the Examples module, including
those corresponding to Figure 2, i.e. indexed with both raw and hashed values respectively:

figure :: Trie

figure

= Node 16960 [Term 1830,

SubTrie (Node 8208 [Term 73,

SubTrie (Leaf [729,2521])]),

Term 206]

figureHashed :: Trie

figureHashed

= Node 16481 [Term 2521,

Term 206,

Term 729,

SubTrie (Node 48 [Term 73,

Term 1830])]

A show function, showT is also included in the Types module for displaying tries. Nodes are
displayed starting with the bit vector, which is shown as a 16-bit string. The subnodes are then
shown indented in index order, starting from 0. Terminal values within nodes (of the form Term

v) are shown within <angle brackets> and leaves are displayed as Haskell lists, i.e. using [square
brackets]. Deeper levels of nesting are reflected in the indentation. For example:

*Tries> showT figure

0100001001000000

<1830>

0010000000010000

<73>

[2521,729]

<206>

*Tries> showT figureHashed

0100000001100001

<2521>

<206>

<729>

0000000000110000

<73>

<1830>

Note that showT assumes that subnodes are indexed using a maximum of four bits, so each bit
vector is displayed using 24=16 bits. However, your code should accommodate any valid block
size.

7

A function showBitVector is also provided that computes the binary representation of an
integer using a specified number of bits. The result is a string, e.g.

*Tries> showBitVector 15 5

"01111"

*Tries> showBitVector 1024 11

"10000000000"

4.1 Part I: Utilities

1. Define a function countOnes :: Int -> Int that will count the number of 1 bits in the
binary representation of a given integer. You can process the bits one at a time using div

and mod for full marks. Alternatively, you can process them in batches of four bits at time
using the following table, defined in the template, which should be faster:

bitTable :: [Int]

bitTable

= [0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4]

Here, element 0 ≤ i ≤ 15 is the number of bits in the integer i. There is a bonus of 1 mark
for the batched solution. For example,

*Tries> countOnes 0

0

*Tries> countOnes 65219

11

Note that there are much faster ways to solve the problem, e.g. Kernighan’s algorithm which
is used in the equivalent popCount function in Data.Bits3. However, please do not write
countOnes = popCount, or similar!

[2 (+1) Marks]

2. Using countOnes above, or popCount from Data.Bits, define a function countOnesFrom

:: Int -> Int -> Int such that countOnesFrom i n returns the number of 1 bits to the
right of, i.e. not including, bit i in the binary representation of n. The bits are numbered
from the right, so index 0 corresponds to the least significant bit. For example,

*Tries> countOnesFrom 0 88

0

*Tries> countOnesFrom 3 15

3

Hint: Use .&. and bit from Data.Bits to mask the least significant i bits of n.
[2 Marks]

3. Define a function getIndex :: Int -> Int -> Int -> Int that will extract a specified
number of bits, given by the block size (third argument), from a given integer (first ar-
gument), returning the result as an integer. For example, if the given integer is 53767 =
1101 0010 0000 01112 then there are four blocks of four bits in its 16-bit representation, as

3You might like to time your solution against popCount: you will lose!

8

highlighted by the spacing, with the rightmost being block 0. The second argument specifies
which of those blocks to choose. In practice, when manipulating tries, this argument will
represent the current trie level. Thus, for example:

*Tries> showBitVector 53767 16

"1101001000000111"

*Tries> getIndex 53767 0 4

7

*Tries> getIndex 53767 3 4

13

*Tries> getIndex 53767 1 8

210

(the topmost 8 bits of 53767 are 11010010 = 21010).
[2 Marks]

4. Define a function replace :: Int -> [a] -> a -> [a] that will replace the nth item
(first argument) of a given list with a given value. For example,

*Tries> replace 0 "trie" ’b’

"brie"

*Tries> replace 3 "trie" ’p’

"trip"

A precondition is that the index is less than the length of the list.
[3 Marks]

5. Define a function insertAt :: Int -> a -> [a] -> [a] that will insert a given item at
a given position (index) in a given list. For example:

*Tries> insertAt 3 ’p’ "trie"

"tripe"

*Tries> insertAt 4 ’s’ "trie"

"tries"

A precondition is that the index is less than or equal to the length of the list.
[3 Marks]

4.2 Part II: Functions on HAMTs

1. Define a function sumTrie :: (Int -> Int) -> ([Int] -> Int) -> Trie -> Int that
will ‘sum” the components of a trie. By “summing” the components we might mean com-
puting the number of values stored in the trie, the sum of those values, or the total number
of “bins”, i.e. the sum of the number of Terminals and Leafs. The two function-valued
arguments allow these, and possibly other, notions of “sum” to be specified. The rules are:

• To sum a Terminal, apply the first function to the associated value (an Int).

• To sum a Leaf, apply the second function to the list of elements stored at the leaf (a
[Int]).

• To sum a Node, recursively sum the elements in its list of SubNodes.

• To sum a SubTrie, apply sumTrie to the Trie it refers to.

9

Note that supplying (const 1) and length as the two functions causes sumTrie to compute
the number of values stored in the given trie and supplying (const 1) and (const 1)

causes it to compute the number of bins. You will find three functions commented out in
the template that make use of sumTrie:

trieSize :: Trie -> Int

binCount :: Trie -> Int

meanBinSize :: Trie -> Double

The function meanBinSize computes the average number of values in each “bin” – this is one
way of measuring the effectiveness of the hashing function in spreading values throughout
the trie. If you wish you can uncomment these when you’ve defined sumTrie, as they may
be useful in testing. Thus, for example:

*Tries> sumTrie (const 1) length empty

0

*Tries> trieSize empty

0

*Tries> sumTrie (const 1) (const 1) figure

4

*Tries> binCount figure

4

*Tries> meanBinSize figure

1.25

*Tries> meanBinSize figureHashed

1.0

The constant empty = Node 0 [] is defined in the template4.
[4 Marks]

2. Using getIndex and countOnesFrom define a function member :: Int -> Hash -> Trie

-> Int -> Bool that will determine whether a given value (first argument) is a member of
a given trie. In order to do this you need to use the hash of the value (second argument) to
traverse the trie. The fourth argument is the block size. For testing purposes the imported
module HashFunctions contains a function hash :: HashFun, equivalent to hash :: Int

-> Hash, that generates a hash value from a given integer, e.g.

*Tries> hash 1

5364745905576871

*Tries> hash 73

391636870159797326

You don’t need to understand how the function works. For example (recall that figure is
built using the raw values to index the trie, rather than their hashed values):

*Tries> member 12 12 figure 4

False

*Tries> member 73 73 figure 4

4Recall that the smallest maximum depth is 2, so all tries have at least one node at their root.

10

True

*Tries> member 206 (hash 206) figureHashed 4

True

Hints: Use a helper function, and carry round the current level (initially 0) as you traverse
the trie. You’ll need this when invoking getIndex to make sure you pick out the correct
bits from the hashed value (Hash) to index into the subnode array. You can use testBit

from Data.Bits to test a specified bit in the bit vector associated with a node.
[6 Marks]

4.3 Part III: Tree building

To complete the exercise you’re now going to build a trie from a given list of integers.

1. Define a function insert :: HashFun -> Int -> Int -> Int -> Trie -> Trie that will
deliver the result of inserting a value (fourth argument) into a trie. The first argument is
the hashing function – you may need this to re-compute the hash of a value that’s already
in the trie (see below). The second and third arguments are the maximum trie depth and
block size respectively.

You can build the trie any way you see fit, but are strongly advised to follow the scheme
below for inserting a value, v say:

• You need to keep track of which level you’re inserting into, so carry this round. Recall
that the top level is indexed 0.

• If you reach a Leaf then add v to the elements in the leaf, unless v is already there,
in which case return the leaf unmodified. Note that the order of the elements within a
Leaf list is unimportant.

• If you reach the lowest level of the trie (maximum depth - 1) then return a Leaf

containing the singleton list [v]. Wait: aren’t leaves supposed to contain at least two
values? Don’t worry – they will (see below)!

• If you encounter a Node then inspect the bit vector at the required index (see Sec-
tion 2.3). If this is 0 then build a new node with the bit set to 1 and use insertAt to
add a new Term containing v to the subnode array. If it is already 1 then use replace

to replace the corresponding element of the subnode array with a new SubNode. The
rules are:

– If the current SubNode is a SubTrie then insert v into the subtrie.

– If the current SubNode is of the form Term v’ then then return it unmodified if v
== v’; otherwise insert v’ into an empty trie and then insert v into the result you
get back. This is where you need the HashFun, as you need to re-compute the hash
for v′ in order to insert it. Notice that we’re doing two insertions here so if we’ve
hit the lowest level of the trie we’ll end up with a leaf containing two elements
when we’re done.

You clearly need a helper function to carry stuff around, but what should its type be?

For example:

*Tries> let t1 = insert id 3 4 2521 empty

*Tries> showT t1

11

0000001000000000

<2521>

*Tries> let t2 = insert id 3 4 1830 t1

*Tries> showT t2

0000001001000000

<1830>

<2521>

*Tries> let t3 = insert id 3 4 729 t2

*Tries> showT t3

0000001001000000

<1830>

0010000000000000

[729,2521] <--- Note: any order will do here

*Tries> let t4 = insert hash 3 4 729 empty

*Tries> let t5 = insert hash 3 4 2521 t4

*Tries> let t6 = insert hash 3 4 206 t5

*Tries> showT t6

0000000001100001

<2521>

<206>

<729>

Note that using id as the hashing function has the effect of using the raw integers themselves
to perform trie indexing.

[7 Marks]

2. Use a fold to define a function buildTrie :: HashFun -> Int -> Int -> [Int] ->

Trie that uses insert to build a trie from a given list of integer values. The HashFun

and two Int arguments are the same as the first three arguments of insert. Again, the
order of the elements with a Leaf list is unimportant. For example:

*Tries> let t1 = buildTrie id 3 4 [1..3]

*Tries> showT t1

0000000000001110

<1>

<2>

<3>

*Tries> let t2 = buildTrie id 3 4 [n * 256 | n <- [1..5]]

*Tries> showT t2

0000000000000001

0000000000000001

[256,512,768,1024,1280]

*Tries> buildTrie id 3 4 [73,206,729,1830,2521] == figure

True

*Tries> buildTrie hash 3 4 [73,206,729,1830,2521] == figureHashed

True
[1 Mark]

12

