
2025 Haskell January Test
Recursive-Descent Parsing

THREE HOURS TOTAL

The maximum mark is 30.

The 2025 Haskell Programming Prize will be awarded for the best overall
solution, or solutions.

• Please make your swipe card visible on your desk.

• Work in the file named Parser.hs inside the parser/src subfolder of your
Home folder. Do not move any files.

• You are not permitted to edit the folder structure, or edit the hft.cabal,
cabal.project, src/Lexer.hs, or src/Types.hs fileswithout having been
directed by the Examiners; any changes will be reverted.

• You may add additional tests, which will be reflected in the final script
(like in the PPTs), but these will not be assessed. However, any changes
made to the code that cause the original given tests to not compile will
incur a compilation penalty.

It is important that you comment out any code that does not compile before
you complete the test. There will be a TWO MARK PENALTY applied to any
program that does not compile.
Credit will be awarded throughout for style, clarity and the appropriate use
of Haskell’s various language features including list comprehensions, higher-
order functions, functors, monads etc.

1

1 Introduction

A programming language parser takes as input the textual representation of a program (a String) and
generates as output the internal representation of that program – the program’s so-called Abstract
Syntax Tree – here as a Haskell data type.

The objective of this exercise is to build a parser for a very simple language, akin to a stripped-down
version of Kotlin or C. The parser will work by recursive-descent, essentially by encoding of the rules of
the language’s grammar (see below) as a recursive program for decomposing the program text (a string)
into its components hierarchically. While hand-written recursive-descent parsers are rarely used in
practice, writing one can be valuable for understanding how parsing tools operate.

1.1 Program structure

A program in the language is a block comprising one or more statements, each of which is either an
assignment or a while loop. Multiple statements within a block are separated by semicolons (;).

An assignment is of the form v = e where v is a variable and e is an expression. Expressions can
be thought of as ‘sums of products’, reflecting the fact that multiplication (*) has higher precedence
than addition (+). The individual atoms forming the arguments to + and * are either variables, integer
constants or bracketed subexpressions; both + and * are left associative. Thus, x = 1+2*(z+3)+y will
be parsed as though it were bracketed x = (1+(2*(z+3)))+y.

A while loop is of the form while c do {b} where c is an expression (the ‘condition’) and b is a
block, delimited by curly braces, comprising at least one statement, as above.

You will not be required to implement the language, so any details of a program’s execution are
irrelevant to the exercise. However, the following can be assumed for completeness:

• There are no booleans in the language, only integers: the integer 0 represents ‘false’ and any
other integer represents ‘true’. Thus, a while loop will only terminate if the ‘condition’ is the
integer 0.

• Any inputs to the program can be assumed to be pre-assigned to the special variables in1, in2,
etc. and any results generated to be assigned to the special variables res1, res2, etc.

As an example, the following string represents a program that will compute the factorial of a given
number passed to it via in1:

fact :: String
fact = "acc = 1;

n = in1;
while n {
acc = acc * n;
n = n + -1

};
res1 = acc"

Notice that subtraction has to be implemented using a combination of addition and negation. Note also
that there is no semicolon at the end of a block; in other words, semicolons are separators.

1.2 Representation

The following types are included in Types.hs and should be self-explanatory from the above:

type Program = Block

type Block = [Stmt]

2

data Stmt = Asgn String Expr
| While Expr Block
deriving (Eq, Show)

data Expr = Add Expr Expr
| Mul Expr Expr
| Val Int
| Var String
deriving (Eq, Show)

The abstract syntax tree (type Program, equivalently Block) for the fact program above, suitably
formatted to aid readability, is:

[Asgn "acc" (Val 1),
Asgn "n" (Var "in1"),
While (Var "n") [
Asgn "acc" (Mul (Var "acc") (Var "n")),
Asgn "n" (Add (Var "n") (Val (-1)))

],
Asgn "res1" (Var "acc")]

1.3 Parsing rules

The grammar for a programming language specifies what it means for a given program to be syntactically
well-formed. Formally speaking, a parser for a language will ‘accept” any input string (i.e. program)
that conforms to the language’s grammar; in practice, of course, it will also generate an abstract syntax
tree representing the program as part of the parsing process.

The following rules define the grammar of the language describe above. It is not necessary to
understand all the nuances of grammar theory in this exercise, but the items enclosed in ‘single quotes’
are terminals, i.e. those strings that can appear verbatim in a program. The items in ⟨angle brackets⟩
are non-terminals which specify the structural components of the language and how they fit together.
The ::= can be read as “is defined to be” and | as “or”. The symbol ϵ will be explained below.

⟨block⟩ ::= ⟨stmt⟩ | ⟨stmt⟩ ‘;’ ⟨block⟩

⟨stmt⟩ ::= ⟨ident⟩ ‘=’ ⟨expr⟩ | ‘while’ ⟨expr⟩ ⟨body⟩

⟨body⟩ ::= ‘{’ ⟨block⟩ ‘}’

⟨expr⟩ ::= ⟨term⟩ ⟨expr’⟩

⟨expr’⟩ ::= ‘+’ ⟨term⟩ ⟨expr’⟩ | ϵ

⟨term⟩ ::= ⟨atom⟩ ⟨term’⟩

⟨term’⟩ ::= ‘*’ ⟨atom⟩ ⟨term’⟩ | ϵ

⟨atom⟩ ::= ⟨nat⟩ | ⟨ident⟩ | ‘(’ ⟨expr⟩ ‘)’

⟨nat⟩ ::= [0-9]+ | ‘-’ [0-9]+

⟨ident⟩ ::= [a-zA-Z][a-zA-Z0-9]*

3

The ⟨block⟩ rule states, for example, that a block is a statement on its own or a statement followed by
a semicolon and a block – note the inherent recursion. In other words, it comprises either a single
statement or multiple statements separated by semicolons.

Similarly, an expression is a term optionally followed by a ’+’ character followed by a term
followed by an ⟨expr’⟩. Note that ‘| ϵ’ implements the ‘optional’ part of the rule: the parser is allowed
to “do nothing” if it can’t see a ’+’. Thus, an expression is either a term on its own or multiple terms
separated by ’+’ symbols. Exactly the same principle applies to terms, but with ’*’ separating atoms.

It is not necessary to understand the last two lines in detail as they are considering tokenisation,
which is done for you (see below), but the notation "[0-9]+" means a string comprising one or more
occurrences of the digits ’0’ to ’9’, e.g. 1492. The notation "[a-zA-Z][a-zA-Z0-9]*" means an
alphabetic character (’a’...’z’ or ’A’...’Z’) followed by zero or more occurrences of a character which
is either an alphabetic character or digit, e.g. x, B52, sec3B.

As an example, here is how the program text "x=-1; while x {x=2*x+2}" is broken down; the
breakdown of the expression "2*x+2" is shown separately on the right:

x=-1︸︷︷︸
<stmt>

; while x { x=2*x+2︸ ︷︷ ︸
<stmt>︸ ︷︷ ︸
<block>

}

︸ ︷︷ ︸
<stmt>︸ ︷︷ ︸

<block>

2︸︷︷︸
<atom>

∗ x︸︷︷︸
<atom>︸ ︷︷ ︸

<term>

+ 2︸︷︷︸
<atom>︸ ︷︷ ︸
<term>︸ ︷︷ ︸

<expr>

For completeness, the atom -1 is formed by the terminal symbol ’-’ followed by a ’1’.
The parsing rules can be thought of as an encoding of the above grammar, so building a recursive-

descent parser is simply(!) a question of implementing the grammar rules in Haskell, and augmenting
them so that the abstract syntax tree is computed as you go along.

Referring back to the Haskell representation above, a ⟨term⟩ will be encoded using Mul, an ⟨expr⟩
will be encoded using Add, each ⟨stmt⟩ will be encoded either as an Asgn or a While, a ⟨block⟩ will be
encoded as a list of Stmt, and so on. A separate copy of this grammar can be found alongside this file.

1.4 Tokenisation

A parser typically works by first turning a given input string into a list of tokens ([Token]), with each
token representing a valid ‘terminal’ symbol in the language, e.g. +, (, while etc., a variable, e.g. v,
thx1138), or a non-negative integer constant, e.g. 0, 10, 3544. The following data type for representing
tokens should be self-explanatory (LBrace and RBrace represent { and } respectively):

data Token = Eq | Plus | Minus | Times | LParen | RParen | LBrace | RBrace |
Semi | Nat Int | Ident String | WhileTok

deriving (Show, Eq)

For example, the tokens generated from the fact function above are as follows:

[Ident "acc",Eq,Nat 1,Semi,Ident "n",Eq,Ident "in1",Semi, WhileTok,
Ident "n",LBrace,Ident "acc",Eq,Ident "acc",Times,Ident "n",Semi,
Ident "n",Eq,Ident "n",Plus,Minus,Nat 1,RBrace,Semi,Ident "res1",
Eq,Ident "acc"]

A predefined tokeniser is provided, so you will not need to write one yourself.

1.5 Handling errors

One of the challenges in the design of a parser is reporting meaningful error messages, should the
program fail to conform to the language’s grammar.

4

The idea is to have a parser take a list of Tokens and return an object of type Error should something
go wrong and a pair of type ([Token], a) if the parse successfully yielded an object of type a. To
support both outcomes we’ll use the Either type, hence the following type synonym, which can be
found in Types.hs:

type Parser a = [Token] -> Either Error ([Token], a)

Here, a denotes the type of object being parsed, e.g. an assignment (Asgn), expression (Expr) etc., and
the [Token] is list of tokens remaining, having successfully parsed the ‘a’. For example, if the input is
the string "x=1; y=2", which tokenises to [Ident "x", Eq, Val 1, Semi, Ident "y", Eq, Val 2],
then an attempt to parse a statement using a parser of type Parser Stmt will return Right ([Semi,
Ident "y", Eq, Val 2], Asgn "x" (Num 1)). Note that the first element of the pair is the list of
tokens following the first statement and the second element of the pair is the parsed Stmt obtained
from the tokens [Ident "x", Eq, Val 1].

If a parse fails for any reason then the resulting Error will be wrapped in a Left. The various errors
that can occur are given by the following, which is also defined in Types.hs:

data Error = BadChar Char
| StmtNotFound (Maybe Token)
| ExprNotFound (Maybe Token)
| IntNotFound (Maybe Token)
| Unexpected (Maybe Token) Token
| UnparsedInput [Token]
deriving (Eq, Show)

Each constructor contains enough information about the input for a meaningful error message to
be manufactured. Further details of these errors will become apparent, but some examples, with
explanations are shown below:

Input string Error Explanation
x=1? y=2 BadChar ’?’ Illegal character ’?’
x=1; 4y=2 StmtNotFound (Just (Nat 4)) A statement (an assignment) was

expected, but a 4 (token Nat 4)
was found.

x={1; y=2 ExprNotFound (Just LBrace) An expression was expected but
left brace (LBrace) was found.

x=(1; y=2 Unexpected (Just Semi) RParen A closing bracket (RParen) was
expected, but a semicolon (Semi)
was found.

x=1 y=2 UnparsedInput [Ident "y",Eq,Nat 2] The statement x=1 defines a valid
program in its own right, but
more text was found ([[Ident
"y",Eq,Nat 2]).

x= ExprNotFound Nothing An expression was expected but
there was no input after the ‘=’.

x=-y IntNotFound (Just (Ident "y")) - is not an operator, but forms
part of a negative integer literal.

Recall that the input is a String and the error object will be wrapped in a Left.

5

2 What to do

There are three parts to the exercise. Parts II and III both build on Part I so you should complete Part I
before moving on. If you get stuck in Part II you can attempt Part III, although there is considerably
less hand-holding there than in the first two parts.

A function mHead – a “safe head” function that will prove useful when dealing with errors – is
defined in the skeleton as follows:

mHead :: [a] -> Maybe a
mHead (x : _) = Just x
mHead _ = Nothing

Various inputs and token lists are defined in Examples.hs for testing and will be referred to below.

2.1 Part I

For this part of the exercise you should ignore both bracketed expressions, e.g. x*(1+y), and while
loops; these will be considered in Part III. Furthermore, expressions will be restricted to be variables
(e.g. Ident "x") or values (e.g. Val (-1), Val 224); expressions involving addition and multiplication
will be considered in Part II.

Because of the above restriction, expressions, terms and atoms in the grammar start the same.
Therefore, the following definitions suffice for the term and expression parsing functions in Part I:

parseTerm :: Parser Expr
parseTerm = parseAtom

parseExpr :: Parser Expr
parseExpr = parseTerm

You should not modify these until you attempt Part II; however, you must be careful to use exactly the
function required by the grammar in your code, so that your changes in Part II automatically work later.

1. Define a function checkTok :: Token -> [Token] -> Either Error [Token] that will check
to see whether a given token appears at the head of a given list of tokens. If so, it should return
the remaining tokens in the list, wrapped up in a Right. If the tokens don’t match then it should
return an Unexpected error, wrapped in a Left. The Unexpected constructor has two arguments:
1. ‘Just’ the token at the head of the given list, or Nothing if the list was empty, and 2. the token
that was expected. For example:

ghci> checkTok Plus [Plus,Nat 4,RBrace]
Right [Nat 4,RBrace]
ghci> checkTok Plus [Minus,Nat 4,RBrace]
Left (Unexpected (Just Minus) Plus)
ghci> checkTok Plus []
Left (Unexpected Nothing Plus)

Hint: use mHead to acquire the unexpected token in the failure case.
[2 Marks]

2. Define a function parseAtom :: Parser Expr that will parse an atom, noting that atoms are
just a particular kind of expression.
Note that the type signature is equivalent to parseAtom :: [Token] -> Either Error ([Token],
Expr), so the function takes a list of Tokens and return either an error (Left ...) or a successfully
parsed atom together with the tokens that follow those representing the atom (Right ...).

6

Referring back to the grammar, parsing a Ident token produces a Var atom and parsing a Nat
token produces a Val atom. A Minus followed immediately by a Nat token is to be treated as one
thing: the atom (Val) produced should be the negation of the integer within the Nat; you can
use negate for this. If a Minus is seen without a corresponding Nat, this must produce a special
error – IntNotFound. In all other cases it is not possible to parse an atom, so the function should
return an ExprNotFound error. The argument to ExprNotFound and IntNotFound is of type Maybe
Token, i.e. Nothing if the token list was null and the first token in the list otherwise (use mHead).
Recall that bracketed subexpressions should be ignored for now, even though they are also atoms
according to the grammar.
Some predefined token lists of the form atomToksX are provided in Examples.hs for testing
parseAtom. For example:

ghci> parseAtom atomToks1
Right ([Plus,Ident "y",RBrace],Var "x")
ghci> parseAtom atomToks2
Right ([Plus,Ident "y",RBrace],Val 2)
ghci> parseAtom atomToks3
Right ([Plus,Ident "y",RBrace],Val (-2))
ghci> parseAtom atomToks4
Left (ExprNotFound (Just Plus))

[2 Marks]

3. Define a function parseStmt :: Parser Stmt that will parse a statement. As above, since while
loops will be added in Part III, all statements at this point will be assignments.
The token sequence for a valid assignment statement looks like this: [Ident v, Eq, et1, ...,
etN, etc.] where the tokens et1, ..., etN1 collectively represent an expression.
There are two ways to proceed: you can either check for an Ident at the head of the token list
and use checkTok to check that the next token is Eq, or you can check that the first two tokens
are an Ident and an Eq in a single pattern match. Either way, if successful the next step is to
parse an expression from the tokens et1, ..., etN that follow the Eq. If the expression parses
successfully then the result will be of the form Right (etc., e)where e is the parsed expression
and etc. is the list of tokens that remain after parsing e (this could be empty).
If the assignment statement is invalid for any reason then the result will be of the form Left err
where err is an Error that summarises what went wrong.
Some predefined token lists of the form asgnToksX are provided in Examples.hs for testing
parseStmt. For example:

ghci> parseStmt asgnToks1
Right ([RBrace],Asgn "x" (Val 1))
ghci> parseStmt asgnToks2
Right ([],Asgn "x" (Var "y"))
ghci> parseStmt asgnToks3
Left (StmtNotFound (Just (Nat 4)))
ghci> parseStmt asgnToks4
Left (ExprNotFound (Just RBrace))
-- There are two possible errors for asgnToks5:
ghci> parseStmt asgnToks5
Left (Unexpected (Just Times) Eq)

1In Part I the N is either 1 or 2, but the example shows the general situation: this should not affect your parseStmt.

7

-- Or:
ghci> parseStmt asgnToks5
Left (StmtNotFound (Just (Ident "x")))

Note that asgnToks5 = [Ident "x",Times,Ident "y"] begins with an Ident but the next token
is not an Eq. Depending on how you define parseStmt the error returned can indicate either an
unexpected token or a missing statement – both are acceptable for the purposes of testing.
Hint: Either is both a functor and a monad, so can you use fmap or do?

[4 Marks]

2.2 Part II

The restriction on expressions and terms is now removed so that they can include addition (+) and
multiplication (*); the corresponding tokens are Add and Mul respectively.

Recall from the grammar that an expression is either a single term or multiple terms separated by a
+. Similarly, a term is either a single atom or multiple atoms separated by a *. Note the similarity!

1. Define a function parseTerm :: Parser Expr that uses parseAtom to parse a term. You should
use the grammar rules to help: first try parsing an atom representing the first (left-most) argument
of the multiplication; if that succeeds then pass the atom and the remaining tokens to a helper
function (⟨term’⟩ in the grammar). The first argument of that function is an accumulating
parameter, t say, and the second the current list of tokens, toks, say. It should do the following:

• If the first token in toks is a Times then use parseAtom recursively to parse the second
argument to the multiplication. If that succeeds, giving an atom x and remaining tokens
toks’, say, then recursively invoke the helper function with the accumulator Mul t x and
tokens toks’. In short, if the term is valid then each Times token causes an additional Mul
expression to be accumulated in a manner that reflects the left-associativity of *.

• If the first token is not a Times then we’re done: t is the required term and toks the
remaining tokens. Note that this corresponds to the ϵ symbol in the grammar, which allows
us to stop parsing a larger term if the Times is missing.

• If at any point an error is found (Left) then that error must be returned as the result.

Some predefined token lists of the form termToksX are provided in Examples.hs for testing
parseTerm. For example:

ghci> parseTerm termToks1
Right ([RBrace],Mul (Var "x") (Val 3))
ghci> parseTerm termToks2
Right ([],Mul (Mul (Var "x") (Var "y")) (Val 2))
ghci> parseTerm termToks3
Left (ExprNotFound (Just Semi))
ghci> parseTerm termToks4
Left (ExprNotFound Nothing)

Hint: Again, recall that Either is a monad. [4 Marks]
2. Define a function parseExpr :: Parser Expr that works identically to parseTerm except that

it looks for Plus tokens instead of Times and uses parseTerm instead of parseAtom to perform
the recursive parsing.
Given that the two functions above have identical structure, can you think of a nice way to
capture that structure as a single function that can be parameterised in two different ways to
define parseExpr and parseTerm? Two of the three marks for parseExpr are reserved for this.

[3 Marks]

8

3. Define a function parseBlock :: Parser Block that will parse a block comprising either a
single statement, or multiple statements separated by semicolons.
Hint: There are several ways you can define this for full marks, but arguably the most efficient
approach is to define a helper function that takes the current list of tokens and an accumulating
parameter that contains the list of statements parsed so far. Initially this will be [].
Some predefined token lists of the form blockToksX are provided in Examples.hs for testing
parseBlock. For example:

ghci> parseBlock blockToks1
Right ([],[Asgn "y" (Var "x")])
ghci> parseBlock blockToks2
Right ([],[Asgn "x" (Val 4),Asgn "y" (Var "x")])
ghci> parseBlock blockToks3
Left (ExprNotFound (Just RParen))
-- For blockToks4, either:
ghci> parseBlock blockToks4
Left (StmtNotFound (Just (Ident "x")))
-- Or:
ghci> parseBlock blockToks4
Left (Unexpected (Just Times) Eq)
ghci> parseBlock blockToks5
Left (StmtNotFound Nothing)

As with parseStmt there are two equally valid errors for blockToks4, which comprises an ex-
pression, rather than a statement.
Hint: Having successfully parsed one statement, if the next token is a Semi then what follows
must be a block for the parse to succeed (recursion?); if not, you’re done.

[4 Marks]

4. Define a function parse :: String -> Either Error Program that will parse a string rep-
resenting the text of a program (equivalent to a Block). A function tokenise is provided in
Lexer.hs with type tokenise :: String -> Either Error [Token]. You should use this to
tokenise the input; if this succeeds then you should attempt to parse the tokens generated as a
Block. For this top-level parse to succeed there must be no input text remaining having parsed
the block; if there is then an UnparsedInput error must be returned.
Some predefined token lists of the form progStrX are provided in Examples.hs for testing parse.
For example (recall that programs are blocks):

ghci> parse progStr1
Right [Asgn "res1" (Val 0)]
ghci> parse progStr2
Right [Asgn "v1" (Val 1),Asgn "v2" (Val 2),

Asgn "res1" (Add (Var "v1") (Mul (Var "v2") (Val 3)))]
ghci> parse progStr3
Left (BadChar ’?’)
ghci> parse progStr4
Left (StmtNotFound (Just (Nat 4)))
ghci> parse progStr5
Left (ExprNotFound (Just LBrace))
ghci> parse progStr6
Left (UnparsedInput [Ident "res1",Eq,Nat 2])

[4 Marks]

9

2.3 Part III

1. Extend your parseAtom function to accommodate parenthesised sub-expressions. For example:

ghci> parseAtom parenToks1
Right ([],Var "x")
ghci> parseAtom parenToks2
Right ([],Mul (Var "x") (Var "y"))

and, using parseExpr:

ghci> parseExpr parenToks3
Right ([],Mul (Var "x") (Add (Val 2) (Var "y")))
ghci> parseExpr parenToks4
Left (ExprNotFound (Just RParen))
ghci> parseExpr parenToks5
Left (Unexpected Nothing RParen)

Hint: you might find checkTok useful.

[2 Marks]

2. Extend your parseStmt function to accommodate while loops. For example:

ghci> parse fact == factParse
True
ghci> parse badFact1
Left (Unexpected (Just LParen) LBrace)
ghci> parse badFact2
Left (StmtNotFound (Just RBrace))
ghci> parse badFact3
Left (Unexpected (Just (Ident "acc")) RBrace)

Hint: you might find checkTok useful.

[5 Marks]

Final note: A function printParse :: String -> IO () is provided in the skeleton which will sum-
marise the result of parsing a given program string. In particular, errors are “pretty-printed” similarly
to how they might be in a ‘production’ compiler. You may wish to experiment with this. For example:

ghci> printParse progStr1
Parse successful...
[Asgn "x" (Val 0)]
ghci> printParse progStr3
Parse error: Unrecognised character: ’?’
ghci> printParse progStr4
Parse error: Statement expected, but 4 found
ghci> printParse progStr5
Parse error: Expression expected, but { found

Good luck!

10

