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Abstract tems. In MAS the emphasis is on the autonomy, and ra-
tionality of the components, or agents [21]. In this area,
We present an approach to the problem of verification modal logics representing concepts such as knowledge, be-
of epistemic properties of multi-agent systems by means ofiefs, intentions, norms, and the temporal evolution ofthe
symbolic model checking. In particular, it is shown how to are used to specify high level properties of the agentseSinc
extend the technique of unbounded model checking from a&hese modalities are given interpretations that are differ
purely temporal setting to a temporal-epistemic one. In or- from the ones of the standard temporal operators, it is not
der to achieve this, we base our discussion on interpretedstraightforward to apply existing model checking tools de-
systems semantics, a popular semantics used in multi-agenteloped for standard LTL (or CTL) temporal logic to the
systems literature. We give details of the technique andsho specification of MAS. One further problem is the fact that
how it can be applied to the well-known train, gate and con- the modalities that are of interest are often not given a pre-
troller problem. cise interpretation in terms of the computational statésef
system, but simply interpreted on classes of Kripke models
that guarantee (via frame-correspondence) that some intu-
. itive properties of the system are preservebhis makes
1. Introduction it hard to use the semantics to model any actual computa-
tion performed by the system [20]. For the case of knowl-
edge, the semantics of interpreted systems [7], poputhrise
by Halpern and colleagues in the 90’s, can be used to give
an interpretation to the modalities that maintains theitrad
tional S5 properties, while, at the same time, is appropriat
for model checking [8]. Indeed, a considerable amount of
literature now exists on the application of interpreted-sys
tems and epistemic logic to the application areas of secu-
rity, modelling of synchronous, asynchronous systems, dig
ital rights, etc. It is fair to say that this area constituttes
most thoroughly explored, and technically advanced sub-
discipline among the formal studies of multi-agent systems
available at the moment.

Verification of reactive systems by means of model-
checkingtechniques[3] is now a well-established area-of re
search. In this paradigm one typically models a sysfeim
terms of automata (or by a similar transition-based formal-
ism), builds an implementatioRs of the system by means
of a model-checker friendly language such as the input for
SMV or PROMELA, and finally uses a model-checker such
as SMV or SPIN to verify some temporal propetithe
system:Mp = ¢, whereMp is a temporal model repre-
senting the executions dfs. As it is well known, there
are intrinsic difficulties with the naive approach of penfie
ing this operation on an explicit representation of theestat
and refinements of symbolic techniques (based on OBDD’s,
and SAT [1] translations) are being investigated to over-
come these hurdles. Formal results and corresponding apl-1. State of the art and related literature
plications now allow for the verification of complex sys-
tems that generate more thm{zo states. The recent deVeIOpmentS in the area Of m0de| CheCk-

The field of mu“:i-agent Systems (MAS) has also recenﬂy Ing MAS can broadly be divided into streams: in the first
become interested in the problem of verifying complex sys- category standard predicates are used to interpret the vari
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ous intensional notions and these are paired with standarda CTL,K formula into the problem of satisfiability of a
model checking techniques based on temporal logic. Fol-propositional formula. UMC exploits the characterizatdén
lowing this line is for example [22] and related papers. In the basic modalities in terms of Quantified Boolean Formu-
the other category we can place techniques that make a genas (QBF), and the algorithms that translate QBF and fixed
uine attempt at extending the model checking techniquespoint equations over QBF into propositional formulas. In
by adding other operators. Works along these lines includeorder to adapt UMC for checkingTL, K, we use three
[9, 10, 15, 18]. In[9] local propositions are used to tratesla  algorithms. The first one, implemented by the procedure
knowledge modalities on LTL structures. Once this process forall (based on the Davis-Putham-Logemann-Loveland
is done, the result can be fed into a SPIN model checker.approach [4]) eliminates the universal quantifier from a
In this approach local propositions need to be computed byQBF formula representing @T'L,K formula, and returns
the user. In [18] a compiler is given to translate an inter- the result in conjunctive normal fornC{NF). The remain-
preted system specification into SMV code that is then useding algorithms, implemented by the procedugg§sandIfp
to generate the whole state space on which epistemic for-calculate the greatest and the least fixed points for the moda
mulas can be evaluated. The process allows for testing offormulas in use here. Ultimately, the technique allows for a
static epistemic formulas only. CTL,K formula« to be translated into a propositional for-
These works were preceded by [15], where van der Mey- mula [o](w) in CNF, which characterizes all the states of
den and Shilov presented theoretical properties of the modethe model, wherex holds.
checking problems for epistemic linear temporal logics for ~ For the case o€ TL it was shown by McMillan [14]
interpreted systems with perfect recall. In particulawadts that model checking via UMC can be exponentially more
shown that the problem of checking a language that includesefficient than approaches based on BDD's in two situations:
“until” and “common knowledge” on perfect recall systems whenever the resulting fixed-points have compact represen-
is undecidable, and decidable fragments were identified. tations inCNF, but not via BDD’s; or whenever the SAT-
The authors of this paper have also contributed to this based image computation step proves to be faster than the
line. In [16, 17, 12] presented at AAMAS2003, an exten- BDD-based one. Although we do not investigate these re-
sion of the method of bounded model checking (one of the sults here, similar beneficial effects may occur in the tem-
main SAT-based techniques) to CTLK a language compris-poral epistemic case discussed here.
ing both CTL and knowledge operators, was defined, im-  The rest of the paper is structured in the following man-
plemented, and evaluated. While preliminary results appea ner. Section 2 introduces interpreted systems semanties, t
largely positive, any bounded model checking algorithm is semantics on which we ground our investigation on. The
mostly of use when the task is either to check whether alogic CTL,K is defined in Section 3. Section 4 summarises
universal CTLK formula is actually false on a model, or to the basic definitions that we need for CNF and QBF for-
check that an existential CTLK formulais valid. Thisis a se- mulas, and fixes the notation we use throughout the pa-
vere limitation in MAS as it turns out that many of the most per. A fixed-point characterization @#TL,K formulas is
interesting properties one is interested in checking dlgtua presented in Section 5. The main idea of symbolic model
involve universal formulas. For example, in a security set- checkingCTL,K is described in Section 6, where the algo-
ting one may want to check whether it is true that forever rithms for computing CNF formulas equivalent@I'L,K
in the future a particular secret, perhaps a key, is mutuallyformulas are also given. A simple example of using the al-
known by two participants. gorithms for verifying epistemic properties of a train, gat
and controller system is given in Section 7.

1.2. Aim of this paper
2. Interpreted systems semantics

The aim of this paper is to contribute to the line of SAT-
based techniques, by overcoming the intrinsic limitation  Any transition-based semantics allows for the represen-
of any bounded model checking algorithm, and provide a tation of temporal flows of time by means of a successor
method for model checking the full language of CTLK. The relation. For example, CTL is interpreted on plain Kripke
SAT-based method we introduce and discuss here is an exmodels. To work with a temporal epistemic language, we
tension to knowledge and time of a technique introduced by need to consider a semantics that also allows for the au-
McMillan [14] called unbounded model checking (UMC) tomatic representation of the epistemic relations between
A byproduct of the work presented here is the definition of computational states [20]. The mainstream semantics that
a fixed point semantics for the logi¢TL,K, an extension  allows one to do so is the one of interpreted systems [7].
of CTLK by means of past operators. Interpreted systems can be succinctly defined as fol-

Like any SAT-based method, UMC consists in translat- lows (we refer to [7] for more details). Assume a set of
ing the model checking problem of what is in this case agentsA = {1,...,n}, a set of local stateg; and pos-



sible actionsAct; for each agent € A, and a sefl., and the transitive closure of £, and corresponds to the relation
Act. of local states and actions for the environment. The used to interpret the modality of common knowledge. The
set of possible global states for the system is defined asintersection ofl’s accessibility relations defines the epis-
G =Ly x...xL,x L., where eachelemeft, ... l,,1.) temic relation corresponding to the modality of distrilzlite

of G represents a computational state for the whole systemknowledge~f = 1, ~;. We refer to [7] for an introduc-

(note that, as it will be clear below, some stategsirmay
actually be never reached by any computation of the sys-
tem). Further assume a set of protocB)s: L; — 24,

fori = 1,...,n, representing the functioning behaviour of
every agent, and a functiaR. : L. — 24¢ for the envi-
ronment. We can model the computation taking place in the
system by means of a transition functionG x Act — G,
whereAct C Acty X ... x Act, X Act. is the set of joint
actions. Intuitively, given an initial state the sets of pro-
tocols, and the transition function, we can build a (possi-
bly infinite) structure that represents all the possible €com
putations of the system. Many representations can be give
to this structure; since in this paper we are only concerned
with temporal epistemic properties, we shall find the fol-
lowing to be a useful one.

Definition 1 (Models) Given a set of agentsd
{1,...,n}, atemporal epistemimodel(or simply amode)
isaparM = (K, V) with X = (G, W, T, ~1,...,~n,t),
whered is the set of thglobal stategor the system (hence-
forth called simplystate};, ' C G x G is a total bi-
nary (successor) relation odr; W is a set of reach-
able global stateBom., i.e.,W = {s € G | (1,s) € T*}?,

~; € G x G (i € A)is an epistemic accessibility re-
lation for each agenti € A defined bys ~; s iff
l;(s") l;(s), where the function; : G — L; re-
turns the local state of agent from a global states;
obviously~; is an equivalence relation; € W is theini-

tial state V : G — 2PV« is avaluation functionfor a
set of propositional variable®V such thatrue € V(s)

for all s € G.V assigns to each state a set of propo-
sitional variables that are assumed to be true at that
state.

Note that in the definition above we include both all pos-

tion to these concepts.

Computations A computationin M is a possibly in-
finite sequence of statesr = (sg,s1, ...) such that
(si,si+1) € T for each i € IN. Specifically, we as-
sume that(si,siﬂ) e T iff Si+1 = t(si,acti), i.e.,8i+1
is the result of applying the transition functianto the
global states;, and a joint actionact;. All the compo-
nents ofact; are prescribed by the corresponding proto-
cols P; for the agents as;. In the following we abstract
from the transition function, the actions, and the proto-
cols, and simply usé&’, but it should be clear that this is
niquely determined by the interpreted system under con-
sideration. Indeed, these are given explicitly in the ex@amp
in the last section of this paper. In interpreted systems ter
minology a computation is a part of rain; note that we
do not requiresy to be an initial state. For a computation
T = (so0,81,...), letw(k) = s, andm, = (so,...,Sk),
for eachk € IN. By II(s) we denote the set of all the infi-
nite computations starting atin M.

3. Computation Tree Logic of Knowledge
with Past (CTL,K)

Interpreted systems are traditionally used to give a se-
mantics to an epistemic language enriched with temporal
connectives based on linear time [7]. Here we G84. by
Emerson and Clarke [6] as our basic temporal language and
add an epistemic and past component to it. We call the re-
sulting logic Computation Tree Logic of Knowledge with
Past CTL,K).

Definition 2 (Syntax of CTL,K) Let PV be a set of
propositional variables containing the symbioue, and

sible states and the subset of reachable states. The reasot a set of agents. The set 6fTL,K formulas FORM

for this follows from having past modalities in the language

is defined inductively by using the following BNF syn-

(see the next section), which are defined over any possitax: ¢ ::== p € PVg | ~¢ | ¢ Ao | AXp | AGo |

ble global states so that a simple fixed point semantics for
them can be given. Still, note that, if required, it is possi-

ble to restrict the range of the past modalities to reachable

states only, by insisting that the target state is itsel€hea
able from the initial state.

Epistemic relationsLetI' C A. Given the epistemic rela-
tions for the agents i, the union ofl"’s accessibility re-
lations defines the epistemic relation corresponding to the
modality of everybody knowss£ = Uier ~i- ~£ denotes

2 T* denotes the reflexive and transitive closurdof

CF¢7FQA|DF¢7PQA

Additional Boolean connectives are defined in the usual
manner. Moreoveralse I _true. We omit the subscript
T" for the epistemic modalities i’ = A, i.e.,I' is the set
of all the agents. As customal¥y andG stand for respec-
tively “at the next step”, and “forever in the future”. The
operatorsy andH are their past counterparts “at the previ-
ous step”, and “forever in the past’.is theUntil operator:
aUB expresses that occurs eventually and holds con-
tinuously at least until the first occurrencemf



Definition 3 (Interpretation of CTL,K) Let M be a The BNF syntax of a QBF formulais given by:::= p |
model,s € G a state,m a computation, andy, 5 formu- -a | aAa|Ip.a|Vp.a The semantics of the quantifiers
las of CTL,K. M,s = « denotes thatx is true at the is defined as follows:

states in the modelM. M is omitted if it is implicitly un-
derstood. The relatiofi= is defined inductively as follows
(we omit the definition of the basic propositional connec-

o dp.aiff a(p — true) v a(p < false),
o Vp.aiff a(p — true) A a(p < false),

tives): wherea € QBF, p € PV anda(p < ¢) denotes substi-
sEpiffp e V(s), tution with the variable; of every occurrence of the vari-
s = AXaiff Vo € II(s) 7(1) = o, ablep in formulac. We will use the notatioivv.a, where
s = AGaiff Vr € II(s) V>0 (M) = a, v = (v[1],...,v[m]) is a vector of propositional variables,
s = A(aQUP) iff ¥Yr € II(s) (m>o [7(m) = B and to denotevv([1].Vv[2] .. . Vu[m].c.. For a given QBF formula

Viem 7(J) E= ), Vv.a, we can construct &NF formula equivalent to it by

s EAYaliff Vs’ € G (if (¢',s) € T, thens' = «), using the algorithnfiorall [14].
s E AHaiff Vs’ € G (if (s, s) € T*, thens’ = ),
s E Kiaiff Vs’ € W (if s ~; &', thens’ = «), procedure forall(v,a), where v = (v[1],...,v[m])
s = Draiff Vs’ € W (if s ~£ s/, thens’ = a), and « is a propositional formula
s E Eraiff Vs’ e W (if s ~E &', thens’ = a), let ¢ =CNF(a)A-l,, x=true, and A=10
s = Craiff Vs’ € W (if s ~& s, thens’ |= a). r epeat

if ¢ contains false return x

else if sone cin ¢ is in conflict
add cl ause deduce(c,A,¢) to ¢
remove sone literals fromA

Definition 4 (Validity) A CTL,K formula ¢ is valid in
M (denotedM = o) iff M, ¢ = ¢, i.e., ¢ Is true at the ini-
tial state of the model/.

Notice that the past component 6fTL,K does not con- elseif A, is total

tain the modalitySince which is the past counterpart of the choose a bl ocking cl ause ¢

modality Until denoted byJ. Extending the logic byince renove literals of form vl or

is possible, but complicates the semantics, so this is set di —w[i] from ¢

cussed in this paper. The reason for interpreting the past op add ¢ to ¢ and x

erators over the states @frather than ofV is strictly tech- el se

nical. In this way, we can easily compute the validity of choose a literal [ such that | ¢ A
the past formulas using fixed point equations over the re-and -l ¢ A

lation 7. Moreover, the reachable states can be charac- add [ to A

terized by the formulanAH—init, whereinit is a proposi-

tion holding in the initial state only. So, past propertigsio ~ The procedurededuce (not explicitly given here) is
reachable states can be specified as well. a generic conflict-based learning procedure that takes

an assignment4d, a CNF formula «, and a conflict-

. . . ing clausec and produces a conflict clause by repeat-

4. Formulas _'_n Conjunctive Normal Form edly applying resolution steps. The proceduiaall
and Quantified Boolean Formulas works as follows. Initially it assumes an empty assign-

, ) . mentA, a formulay to betrue and¢ to be a CNF formula
The method presented in the next section relies on Ma-cArF(a) A —l.. The algorithm aims at building a satis-

nipulation of formulas in conjunctive normal forr®NF), fying assignment for the formula, i.e., an assignment
and in quantified boolean form (QBF), and related algo- ¢ taisifies a. The search for an appropriate assign-
rithms and techniques for verifying their satisfiability(c ment is based on the Davis-Putnam-Logemann-Loveland
flict clauses, block clauses, implication graphs, etc). Yeée a approach, and it is rather complex. We refer to [11] for de-
forced to assume familiarity with these concepts and CaNgails. On termination, when becomes unsatisfiablg, s a

only report brief definitions to fix the notation. We refer to conjunction of the blocking clauses and precisely charac-
[11] for more details. terizesvv.ou.

Let PV be a finite set of propositional variables.lit& -
eral is a propositional variablg € PV or the negation of ~ 1heorem 1 Let o be a propositional formula and =
one:—p, p € PV. A clauseis a disjunction of a set of zero  (v[1]; -, v[m]) be a vector of propositions, then the QBF
or more literals[1] V ... V {[n]. A disjunction of zero lit- formula Vv.« is logically equivalent to the CNF formula

erals is taken to mean the constéise. A formulaisina  forall(v, ).
conjunctive normal fornfCNF) if it is a conjunction ofa  The proof of the above theorem follows from the correct-
set of zero or more clausef| A ... A ¢[n]. ness offorall algorithm (see [14]).



5. Fixed-point characterization of CTL,K

In this section we show how the set of states satisfying
any CTL,K formula can be characterized by a fixed point
of an appropriate function. To this aim, we follow and adapt
definitions given in [19, 3].

LetM = ((G,W,T,~1,...,~n,t),V) be a model. No-
tice that the se2 of all subsets of7 forms a lattice un-
der the set inclusion ordering. Each eleméthtof the lat-
tice can also be thought of aspedicateon G, where

The first three equations are standard (see [5], [3] ), wiserea
the fourth one is defined analogously taking account that
~£ is the transitive closure of£.

6. Symbolic model checking orCTL, K

LetM = (K, V) with K = (G, W, T, ~1, ..., ~n, ). Re-
call that the set of global stat€s = x7_; L; is the Carte-
sian product of the set of local states (without loss of gener
ality we treat the environment as one of the agents).

the predicate is viewed as being true for exactly the states We assumel; C {0,1}", wheren; = [log,(|L;|)]

in G’. The least element in the lattice is the empty set,
which corresponds to the predicdtdse, and the greatest
element in the lattice is the sét, which corresponds to
true. A function 7 mapping2¢ to 2¢ is called a predi-
cate transformerA setG’ C G is afixed pointof a function
7:2% — 2C¢10f 7(G") = G'. Whenever- is monotonic (i.e.,
whenP C @ implies7(P) C 7(Q)), 7 has a least fixed
point denoted by.Z.7(Z), and a greatest fixed point, de-
noted byvZ.7(Z). Whenr is monotonic and J-continuous
(i.e.,whenP, C P, C ...implies7(J, P) = U, (7)),
then uZ.7(Z) = U,s, 7' (false). When r is monotonic
and (-continuous (i.e., wher’, O P, 2 ... implies
(N, P) =N, 7(P)), thenvZ.7(Z) = ;5,7 (true).

In order to obtain fixed-point characterizations of the moda
operators, we identify eadiTL,K formulaa with the set
() Of states inM at which this formula is true, formally
(aym = {s € G| M,s = a}. If Mis clear from the con-
text we omit the subscritl. Furthermore, we define func-
tionsAX, AY,K;, Er, Dr from2€ to 2¢ as follows:

e AX(Z) = {s € G | forevery s’ € G if (s,§) €
T, then s’ € Z},
AY(Z) = {s € G | for every ¢
T, then s’ € Z},
K;(Z) = {s € G | for every &
T* and s ~; §', then s’ € Z},
Er(Z) = {s € G | forevery ¢
T* and s ~F s, then s’ € Z},
Dr(Z) = {s € G | for every ¢
T+ and s ~£ ¢, then s’ € Z}.
Observe that (Oa) O({a)), for O €
{AX,AY,K;,Er,Dr}. Then, the following tempo-
ral and epistemic operators may be characterized as th
least or the greatest fixed point of an appropriate mono-
tonic (N-continuous or| J-continuous) predicate trans-
former.
(AGa) =vZ.(a) NAX(Z),
(A(aUB)) = pZ.(B) U ({) N AX(2)),
(AHa) = vZ.(a) NAY(Z),
(Cra) =vZ.Er({o) N Z).

e Gif (¢,s) €
e Gif (,,8) €
e Gif (1,9) €
e Gif (v,9) €

e

and letny + ... + n,, = m. Moreover, letD; be a set of
the indexes of the bits of the local states of each agent
the global states, i.eD; = {1,...,n1},...,D, = {m —
nn, + 1,...,m}. So, each global state= (I4,...,l,) €
G can be represented by global state variablew =
(w[l],...,w[m]), where eachu[i] fori = 1,...,mis a
propositional variable ifPV. Note that in this way each lo-
cal state is represented by a tuple of propositional vaggbl

Let Fpy be the set of propositional formulas ovEw,
and letiit: {0, 1} xPV — Fpy be afunction defined as fol-
lows:lit (0, p) = —p andlit(1, p) = p. Furthermore, letv, v
be global state variables. We define the following proposi-
tional formulas:

o I, (w) = AL, lit(s;, wi]).

This formula encodes the state= (sq,. .., sp) Of
the model, i.e.s; = 1 is encoded byw[i], ands; = 0
is encoded by-w]i].

Hi(w,v) := \ep, wlj] & vlj].

This formula represents logical equivalence be-
tween local state encodings for agerdf two global
states encoded by the variablesand v, represent-
ing the fact that they represent the sarocal

state.
e T(w,v) is a formula, which is true for a valuation
(8154 8m) Of (w[1],...,w[m]) and
avaluation(s}, ..., s ) of (v[1],...,v[m])
iff ((s1,---,8m),(s],-..,8,)) €T.

Our aim is to translateCTL,K formulas into proposi-
tional formulas. Specifically, for a giveiTL,K formulas

we compute a corresponding propositional formiglgw)
which encodes those states of the system that satisfy the
formula. Operationally, we work outwards from the most
hested subformulas, i.e., the atoms. In other words, to com-
pute [O«a](w), whereO is a modality, we work under the
assumption of already having computed(w). To calcu-

late the actual translations we use either the fixed-point or
the QBF characterization (fTL,K formulas. For exam-
ple, the formula]AXa](w) is equivalent to the QBF for-
mulaVu.(T'(w,v) = [a](v)). We can use similar equiv-
alences for formulad\Y «, K;«, Dra, Era. More specifi-
cally, we use three basic algorithms. The first one, imple-



mented by the proceduferall, is used for formula®a
such thatO € {AX, AY, K;, Dr, Er}. This procedure

eliminates the universal quantifier from a QBF formula rep-

resenting &CTL,K formula, and returns the result in con-

—gfpan(-1.(v))) = [a](v))) and Z(w) = forall(v,
(T(w,v) = ZW))A [« ](w} with Z(w) = forall(v,

(Vier Hi(w,v)A=gfpan (=1.(v))) = (Z(v)Ala](v))))-

junctive normal form. The second algorithm, implemented procedurelfp 4y ([a](w), [3](w)),

by the procedurgfpo, is applied to formula®« such that

O € {AG, AH,Cr}. This procedure computes the great-
est fixed point. For formulas of the fort(aUS) we use

a third procedure, calleip 47, which computes the least
fixed point. In so doing, given a formuld we obtain a
propositional formula3](w) such thatg is valid in the
model M iff the propositional formulds](w) A I,(w) is
satisfiable, i.e., € (). Below, we formalise the above dis-
cussion.

Definition 5 (Translation for UMC) Given aCTL,K for-
mula ¢, the propositional translation](w) is inductively
defined as follows:

e [p|(w) _Vse(p) I(w), forp € PVk,

o [al(w) = ~lal(w), o A Alw) = o)) A B](w)
oV B](w) = [a](w) V [8](w),

o [AXa](w) := forall (v, (T(w,v) = [a](v))),

o [AYo](w) = forall (v, (T'(v,w) = [a](v))),

e [K;a](w) :=forall (v, (Hi(w,v)A=gfpam (=1 (v)))
= [a](v))),

e [Dra(w) = forall(v, ((Njer Hi(w,v) A
=g fpan(—1,(v))) = [](v))),

e [Era](w = forall(v, ser Hi(w,v) A
~gfpan(=1.(v))) = [0](v))),

o [AGa](w) =gfpac([a](w))
o [A(@UB)](w) :=lfpav ([e](w), [B](w)),
o [AHo)(w) :=gfpan([a](w)),
e [Craj(w) :=gfpcy ([a](w)).

The algorithmgfpandifp are based on the standard pro-
cedures computing fixed points.

procedure gfpac([a](w)), where « is an CTL,K
formul a
let Q(w) = [true](w), Z(w) = [a](w)
while =(Q(w) = Z(w)) is satisfiable

let Q(w) = Z(w),

let Z(w) =forall(v, (T'(w,v) = Z(v))) A [o](w)
return Q(w)

The proceduregfpay is obtained by replacing in the
aboveZ(w) = forall(v,(T(w,v) = Z(v))) A [a](w)
with Z(w) = forall(v,(T(v,w) = Z(v))) A [a](w).
Similarly, the procedure fpc,. is obtained by replacing
Z(w) = [a](w) with Z(w) = forall(v, (\/;ep Hi(w,v)A

where «,8 are CTL,K formul as
let Qw) = [falsg(w), Z(w)=[B](w)
while =(Z(w) = Q(w)) is satisfiable
let Q(w) =Q(w)V Z(w),
let Z(w) =forall(v, (T(w,v) = Q(v))) A [ (w)

return Q(w)

We now have all the ingredients in place to state the main
result of this paper: modal satisfaction ofd'L, K formula
can be rephrased as propositional satisfaction of an appro-
priate conjunction. Note that the translation is sound and
complete as we state below. We refer to [11] for a proof.

Theorem 2 (UMC for CTL,K) Let M be a model and
be aCTL,K formula. ThenM = ¢ iff [p](w) AL, (w) is
satisfiable.

7. Example of Train, Gate and Controller

In this section we exemplify the procedure above by dis-
cussing the scenario of the train controller system (adbpte
from [10]). The system consists of three agents: two trains
(agents 1 and 3), and a controller (agent 2). The trains, one
Eastbound, the other Westbound, occupy a circular track.
At one point, both tracks need to pass through a narrow tun-
nel. There is no room for both trains to be in the tunnel at
the same time, therefore the trains must avoid this to hap-
pen. Traffic lights are placed on both sides of the tunnel,
which can be either red or green. Both trains are equipped
with a signaller, that they use to send a signal when they ap-
proach the tunnel. The controller can receive signals from
both trains, and controls the colour of the traffic lightseTh
task of the controller is to ensure that the trains are never
both in the tunnel at the same time. The trains follow the
traffic lights signals diligently, i.e., they stop on red.

We can model the example above with an interpreted
system as follows. The local states for the agents are:

o Lirgin, = {away;, waity, tunnely },
L4 Lcontroller = {Ted7 g'f'een},
o Lirain, = {aways, waity, tunnels}.

The set of global states is defined & = Liyqin, X
Leontrolier X Lirain,- L€t L = (away, green, aways) be

the initial state. We assume that the local states are num-
bered in the following wayaway, = 1, wait; = 2,
tunnel; = 3, red;= 4, green := 5, aways := 6,
waity = 7, tunnely := 8 and the agents are numbered
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Figure 1. The local transition structures for
the two trains and the controller

as follows:train; := 1, controller := 2, trainy := 3.
Thus we assume a set of ageAtto be the sef1, 2, 3}.

Let Act = {ai,...,as} be a set of joint actions. For
a € Act we define the preconditions-e(a), postconditions
post(a), and the setagent(a) containing the numbers of
the agents that may change local states executing

e pre(ay) = {1}, post(ar) = {2}, agent(ai) = {1},
pre(az) = {2,5}, post(az) = {3,4}, agent(az) =
{1,2},

pre(as) = {3,4},post(as) = {1,5}, agent(as) =
{1,2},

pre(as) = {6}, post(as) = {7}, agent(as) = {3},
pre(as) = {5,7},post(as) = {4,8}, agent(as)
{273}1

pre(ag) = {4, 8}, post(ag) = {5,6}, agent(ag) =
{2,3}.

In our formulas we use the following two proposi-
tional variables in_tunnel; and in_tunnel, such

that in_tunnely € V(s) iff lyain,(s) = tunnely,
in_tunnely € V(8) iff lirqin, (s) = tunnels, fors € G.

We now encode the local states in binary form in or-

Letw = (w[l],...,w[5]), v = (v[1],...,v[5]) be two
global state variables. We define the following proposaion
formulas over andv:

i I”(w) = /\j€D1UD2UD3 ﬁw[]]’
this formula encodes the initial state,

o Hi(w,v) = \jcp, wlil & vlj], fori € {1,2,3},

e pi(w) := ~w[l] A ~w[2], p2(w) = w[l] A ~w[2],
p3(w) = ~w[l] A wf2], ps(w) = w[3], ps(w) :=
—wl[3], pe(w) = ~wl[4] A ~w[b], pr(w) = w[4] A
—w[5], ps(w) := ~w[4] A w[5],

the formulap; (w) for j = 1,...,8is alocal propo-
sition encoding a particular local state for an agent.

Fora € Act, let Ba := U;c a\agent(a) Di b€ the set of the
labels of the bits that are not changed by the acticthen

i T(U), U) = \/aEAct ( /\jEpre(a) by (U)) A
/\jEpost(a) p](v) A /\jEBa (w[]] A ’U[]]))\/
(/\aEAct Vjepre(a) (_‘pj (w))/\/\jEDl UD>UD3 (U)[]] g
v[j]))-

Intuitively, T'(w, v) encodes the set of all couples of
global states ands’ represented by variablesandv
respectively, such that is reachable frons, i.e., ei-
ther there exists a joint action which is availablesat
ands’ is the result of execution at s or there is not
such action and’ equalss. Notice that the above for-
mula is composed of two parts. The first one encodes
the transition relation of the system whereas the sec-
ond one adds self-loops to all the states without suc-
cessors. This is necessary in order to satisfy the as-
sumption thafl" is total.

Consider now the following formulas:
o oy = ~AX(~in_tunnely),
o a1 = AG(in_tunnely = Kirqin, (min_tunnels)),

o ay = AG(—in_tunnely = (—Kirqin, in_tunnely A
“Kirain, (Cin_tunnels))),

der to use them in the model checking technique. Givenwhere in_tunnel, (respectivelyin_tunnely) is a local
that agentrain; can be in 3 different local states we shall proposition true whenever the local statetafin, is equal
need 2 bits to encode its state; in particular we shall take:to tunnel; (respectivelytrain, in statetunnels).

(0,0) = aways, (1,0) = waitq, (0,1) = tunnel;. Simi-
larly for the agentraing: (0,0) = aways, (1,0) = waits,

The first formula states that agentiin; may at the next

step be in the tunnel. The second formula expresses that

(0,1) = tunnel,. The modelling of the local states of the when the agentrain; is in the tunnel, it knows that agent

controller requires only one bif0) = green, (1) = red.

trains is not in the tunnel. The third formula expresses

In view of this a global state is modelled by 5 bits. For in- that when agentrain; is away from the tunnel, it does not

stance the initial state= (away., green, aways) is repre-

sented as a tuple of five O's. Notice that the first two bits of a

know whether or not ageimtain, is in the tunnel.
As discussed above, the translation of propositions

global state encode the local state of agent 1, the thirchbite in_tunnel; andin_tunnels is as follows:

codes the local state of agent 2, and two remaining bits en-
code the local state of agent 3. We represent this by taking:

D, = {17 2}’ Dy = {3}’ D3 = {47 5}'

o [in_tunnel](w) = ~w[1] A w[2],

o [in_tunnels](w) = ~w[4] A w(5].



Now we show how to translate the formulg: [«g](w)
[= AX (min_tunnel;)|(w) = =[AX (—in_tunnely)](w).

(8]

—

The formula[AX (—in_tunnely)](w) is computed as fol-

lows: [AX (min_tunnely)](w) = forall(v,T(w,v) =
[-in_tunneli](v)) = forall(v,T(w,v) = (=(-w[1] A 9]
v[2)))).

Consequentlyoo)(w) = —forall(v, T(w,v) = (v[1] V
-w[2])) and [ao)(w) A I,(w) = —forall(v,T(w,v) =
(v[1] vV —w[2])) A I,(w) = false Thereforeng is not valid
in the model. But, both the formulas, and a, are valid
in the model sincéa; |(w) A I,(w)=I,(w) and[az](w) A
I, (w)=I,(w).

This corresponds to our intuition about the scenario.

[10]

[11]

8. Conclusions

Verification of multiagent systems is quickly becoming [12]
an active area of research. In the case of model check-
ing, plain temporal verification is not sufficient because of
the variety of modalities that are commonly used to spec-
ify multiagent systems. In this paper we have extended the[13]
state-of-the-art of the area by providing a model checking
theory to perform unbounded model checking on a tempo-
ral epistemic language interpreted on interpreted systems
This surpasses the possibilities available already witlerot
SAT-based approaches, namely bounded model checking,
in that it is possible to check the full CTLK language, not
just its existential fragment. [15]

A description of the implementation of the algorithm
presented in this paper and some experimental results are
already available [13].
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