
A complete and decidable security-specialised logic
and its application to the TESLA protocol

Alessio Lomuscio and Bożena Woźna
∗

Department of Computer Science, UCL
Gower Street, London WC1E 6BT,UK

email: {B.Wozna,A.Lomuscio}@cs.ucl.ac.uk

ABSTRACT
We examine a logic to reason about security protocols by
means of temporal and epistemic concepts. We report re-
sults on completeness and decidability of the formalism as
well as its expressiveness. As a case study we apply the for-
malism in the analysis of Tesla, a secure stream multi-cast
protocol.

Categories and Subject Descriptors
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Specification techniques; D.2.4 [Software/Pro-
gram Verification]: Model checking; I.2.4 [Knowledge
Representation Formalisms and Methods]: Modal logic;
I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms
Verification, Theory, Security

Keywords
Epistemic logic, security protocols, TESLA

1. INTRODUCTION
There is a long tradition in the use of formal tools (process

algebras, theorem proving, model checking, formal logics,
etc) to analyse cryptographic protocols. In particular, since
the late 80s there has been an attention to modelling security
protocols in terms of the evolution of the states of knowledge
of the principals. The work on BAN logic [6] was the seminal
contribution in this line. BAN logic provides primitives to
represent and reason about principals’ beliefs, reception of
messages, an array of cryptographic-specific concepts such

∗The authors acknowledge support from the EPSRC (grant
GR/S49353), the Nuffield Foundation (grant NAL/690/G),
and The Royal Society (grant 2004/R3 EU).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

as freshness, keys, etc, as well as axioms and rules tailored
to the particular protocol under analysis governing the evo-
lution of these.

It is nowadays customary ([18, 4], etc) to point out that
BAN logic lacks several essential technical features (no rep-
resentation of temporal flows, no well-defined semantics, no
models for the intruder, etc) thereby making it impossible
to use it consistently to prove that a particular protocol is
correct or otherwise. Advances and improvements over the
original formulation [1, 12, 15] have not solved this crucial
concern.

Given that the emphasis in BAN logic was analysing whet-
her particular protocols established authentication of the
principals participating in it, one crucial assumption was
the benevolence of principals. On the contrary, more re-
cently attention has shifted to analysing whether or not a
particular protocol can be exploited by an adversary, or in-
truder, achieving a property originally not intended by the
protocol designer. In this line perfect encryption is normally
assumed, and the intruder follows the Dolev-Yao model [9],
i.e. it can read and compose messages but cannot break en-
crypted messages. This analysis is often carried out in com-
bination with verification techniques, notably model check-
ing, and epistemic notions are not analysed.

Recently, attention has been given again to modelling
epistemic states of the principals in a protocol. In [14] a
notion of algorithmic knowledge has been proposed. The se-
mantics of the logic assumes that adversaries use algorithms
to compute their knowledge. A related paper [20] explores
an epistemic logic where the notion of explicit knowledge
is linked to deductions in a logical framework. Similarly,
in [2] a logic for awareness (originally introduced in [10]) is
augmented with security-specialised predicates.

The referenced papers above do not treat temporal con-
cepts explicitly. In [8] a linear time temporal epistemic logic
is proposed, where properties of a protocol may be shown via
resolution, although an explicit model of the adversary is not
provided. In [21] it is shown that the verification problem
for a linear temporal epistemic logic augmented with the
past operators and security-specific predicates, and tagged
protocols is decidable.

Many of the papers discussed above [1, 6, 12, 15], do not
provide completeness results for the language and/or do not
provide a grounded semantics [22] for the modalities. The
main aim of the present paper is to propose a decidable
security-specialised logic to reason about security concepts,
that:

• has an intuitive, computationally-grounded semantics,
• offers a model of the adversary,
• enables the representation of epistemic and temporal con-

cepts,
• enjoys soundness and completeness.
The logic presented in this paper is a combination of CTL [7],
and a standard epistemic logic [11] augmented to include an
additional epistemic operator representing explicit knowl-
edge. It is further shown that the expressivity of the result-
ing system enables us to represent a non-standard notion
of deductive knowledge. In addition we show how to apply
the logic to model properties of the TESLA protocol [19],
a protocol so far analysed only via process algebras [5] and
Lynch-Vaandrager automata [3].

The rest of the paper is organised as follows. In Section 2
we present our security-specialised logic. Section 3 describes
the standard Dolev-Yao adversary model in the logic of Sec-
tion 2. In Section 4 we describe a scheme of the TESLA
protocol, and analyse it formally in Section 5. We conclude
in Section 6 with some final remarks.

2. A TDL LOGIC
In this section we present the syntax and semantics of a

multi-modal temporal epistemic logic with security-specia-
lised primitives, and we show that this logic is finitely ax-
iomatisable. We call the logic a temporal deductive logic
(TDL).

2.1 Syntax
We assume familiarity with the basic concepts of secu-

rity protocols and we take
�

= {k1, k2, . . .} to be a set of
symmetric and asymmetric keys, � to be a set of nonces,�

= {t1, t2, . . .} to be a set of plain-texts, and � = {f(k) |
k ∈

�
and f :

�
→ {0, 1, . . .} is a pseudo-random function}

to be a set of commitments to keys. The commitment to
a key k is an integer value that is computed by applying a
pseudo-random function f to key k. It is assumed that f is
effectively impossible to invert, so key k cannot be computed
from the commitment to k. We assume that keys, nonces,
texts, and commitments can be distinguished, that is,

�
, � ,�

and � are disjoint sets. A set of messages � is defined
inductively by the following grammar:

m := t | k | n | f(k) | m · m | {m}k | MAC(k, m)

where t ∈
�
, k ∈

�
, n ∈ � , f(k) ∈ �, m is a generic

message, and MAC :
�

× � → {0, 1, . . .} is a pseudo-random
function, called message authentication code. It is assumed
that MAC is effectively impossible to invert, so key k cannot
be computed from the MAC value.

We write m ·m′ for the concatenation of m and m′, {m}k

for encryption of m with the key k, and MAC(k, m) for the
message authentication code of m and k. We assume that
the set

�
is closed under inverses, i.e. for a given key k ∈

�

there is an inverse key k−1 ∈
�

such that {{m}k}k−1 = m.
If the cryptosystem uses symmetric keys, then k = k−1; for
the public cryptosystem k and k−1 are different. We also
define a submessage binary relation v on � as the small-
est reflexive and transitive relation satisfying the following
conditions: (1) m v m · m′, (2) m v m′ · m, (3) m v {m}k.

Let PV be a set of propositional variables. We assume
that AG = {1, . . . , N} is a finite set of agents. The set
WF(TDL) of well-formed TDL formulas is defined by the
following grammar:

ϕ := p | hasi(m) | senti(m) | receivedi(m) | fakedi(m) |
droppedi(m) | ¬ϕ | ϕ ∨ ϕ | E©ϕ | E(ϕ�ϕ) | A(ϕ�ϕ) |

Kiϕ | Xiϕ | Aiϕ

where p ∈ PV, i ∈ AG, m ∈ � . The terms hasi(m),
senti(m), receivedi(m), droppedi(m), and fakedi(m) are
security-specialised propositional variables, which, as one
would expect, are read as “agent i has message m”, “agent
i sent message m”, “agent i received message m”, “agent i
dropped message m, and “agent i faked message m”, respec-
tively. hasi(m) means that agent i has in his explicit pos-
session the message m. What “explicit possession” means
depends on the application, the capabilities of the princi-
pals, and the protocol they are running. In Section 3 we
provide a concrete implementation of the hasi(m) that cap-
tures Dolev-Yao capabilities.

We would like to emphasise that the above security-specia-
lised propositional variables are propositions, not predicates.
This is because we assume that the message m, which is
carried by hasi(m), senti(m), receivedi(m), droppedi(m),
and fakedi(m), is not a value, but rather an intrinsic part
of the propositions.

The above syntax extends CTL [7] with a standard epis-
temic modality Ki as well as operators for explicit knowledge
(Xi) and awareness (Ai) as in [11]. The formula Xiα is read
as “agent i knows explicitly that α”, Aiα is read as “agent
i is aware of α”, and Kiα is read as “agent i knows (im-
plicitly) that α”. The formula E©α is read as “there exists
a computation path such that at the next step of the path α
holds”, E(α�β) is read as “there exists a computation path
such that β eventually occurs and α continuously holds until
then”, and A(α�β) is read as “for all computation paths β
eventually occurs and α continuously holds until then”. We
shall further use the shortcut Diα to represent E(Kiα�Xiα).
The formula Diϕ is read as “agent i may deduce α (by some
computational process)”. Note that TDL differs from [16]
only in a security-specialised subset of the set PV.

2.2 Interpreted Systems
In this section we will briefly review the multi-agent frame-

work from [11]; especially we will focus on interpreted sys-
tems, over which a semantics for TDL will be given.

A multi-agent system (MAS) consists of n agents and an
environment, each of which is in some particular local state
at a given point in time. We assume that an agent’s local
state encapsulates all the information the agent has access
to. In the security settings, the local state of an agent might
include some initial information about keys, the messages
that the agent has sent and received so far, and so on. The
local states of the environment describe information that is
relevant to the system but that is not included in any local
agent’s state. Note also that the environment can be viewed
as just another agent, as we will do here.

A multi-agent system is not a static entity. Its computa-
tions are usually defined by means of runs (see [11]), where
a run is a function from the natural numbers to the set of
all the possible global states. Thus, in these settings, an
interpreted system for a multi-agent system is defined as a
set of runs together with a valuation function for the propo-
sitional variables of the language under consideration. More
formally, let each agent i ∈ AG be associated with a set of
local states Li, and the environment be associated with a
set of local states Le. Then, an interpreted system is a tuple
IS = (S, T,∼1, . . . ,∼n,V), where S ⊆

Qn

i=1 Li ×Le is a set

of global states; T ⊆ S ×S is a serial (temporal) relation on
S; for each agent i ∈ AG, ∼i⊆ S×S is an equivalence (epis-
temic) relation defined by: s ∼i s′ iff li(s

′) = li(s), where
li : S → Li is a function that returns the local state of agent
i from a global state; V : S −→ 2PV is a valuation function.
V assigns to each state a set of proposition variables that
are assumed to be true at that state. For more details we
refer to [11].

In order to give a semantics to TDL we extend the above
definition by means of local awareness functions, used to
indicate the facts that agents are aware of. As in [11], we
are not very specific with the notion of awareness, but by
being aware we intutively mean “to be able to figure out the
truth”, or “to be able to compute the truth within time T”,
etc.

Definition 1 (Model). Given AG = {1, . . . , n}, a mo-
del is a tuple M = (S, T,∼1, . . . ,∼n,V, � 1 , . . . , � n), where
S, T , ∼i, and V are defined as above, and � i : Li −→
2WF(TDL) is an awareness function assigning a set of for-
mulas to each state, for each i ∈ AG.

Note that the set of formulas that the agent is aware of
can be arbitrary and may not be closed under sub-formulas.
Note also that the definition of the model is an extension
of the awareness structure (see [11]) by a temporal relation.
Moreover, it restricts the standard awareness function to be
defined over local states only.

In the paper we focus on a specific class of multi-agent
systems, appropriate to modelling security protocols. These
are message-passing systems in which one or more of the
agents is an adversary controling the communication chan-
nel.

We assume that the local state of an agent is a sequence of
events of the form (e0, . . . , em), where e0 is the initial event,
and for i ∈ {1, . . . , m}, ei is a term of the form sent(i, m) or
recv(m), where m is a message and i is an agent. The term
sent(i, m) stands for the agent has sent message m to agent
i. Similarly the term recv(m) represents that the agent has
received message m. Note that in recv(m) the sender is not
specified. This is because the receiver will not in general be
able to determine the sender of a message he has received.

2.3 Satisfaction
A path in M is an infinite sequence π = (s0, s1, . . .) of

global states such that (si, si+1) ∈ T for each i ∈ IN. For a
path π = (s0, s1, . . .), we take π(k) = sk. By Π(s) we denote
the set of all the paths starting at s ∈ S.

Definition 2 (Satisfaction). Let M be a model, s a
state, and α, β TDL formulas. The satisfaction relation
|=, indicating truth of a formula in model M at state s, is
defined inductively as follows:
(M, s) |= p iff p ∈ V(s),
(M, s) |= α ∨ β iff (M, s) |= α or (M, s) |= β,
(M, s) |= ¬α iff (M, s) 6|= α,
(M, s) |= E©α iff (∃π ∈ Π(s))(M, π(1)) |= α,
(M, s) |= E(α�β) iff (∃π ∈ Π(s))(∃m ≥ 0)[(M, π(m)) |= β and

(∀j < m)(M, π(j)) |= α],
(M, s) |= A(α�β) iff (∀π ∈ Π(s))(∃m ≥ 0)[(M, π(m)) |= β and

(∀j < m)(M, π(j)) |= α],
(M, s) |= Aiα iff α ∈ � i (li(s)),
(M, s) |= Kiα iff (∀s′ ∈ S) (s ∼i s′ implies (M, s′) |= α),
(M, s) |= Xiα iff (M, s) |= Kiα and (M, s) |= Ai(α).

Henceforth, we will only consider models with a fixed in-
terpretation for the security-specialised propositional vari-
ables senti(m) and receivedi(m); in particular, we take |=

to be defined for these propositions as follows:
(M, s) |= senti(m) iff (∃m′ ∈ �)(∃j ∈ AG) such that

m v m′ and sent(j, m′) ∈ li(s),
(M, s) |= receivedi(m) iff recv(m) ∈ li(s).

We leave definitions of the other security-specialised propo-
sitions open. Namely, for distinct protocols these proposi-
tions will be defined differently.

Note that since Diα is a shortcut for E(Kiα�Xiα), as
defined on page 2, we have that (M, s) |= Diα iff (M, s) |=
E(Kiα�Xiα). We would like to emphasise that satisfaction
for Xi can be defined using only the ∼i relation and the � i

function, but we will find it convenient in the axiomatisation
to have a dedicated operator Ai for awareness of agent i.
This is in line with [11]. Note also that the definition of
the satisfaction relation is quite general; in particular, it
contains nothing that is specific to security protocols, except
the interpretation of the security-specialised propositional
variables.

The remaining operators can be introduced as abbrevia-

tions in the usual way, i.e., α ∧ β
def
= ¬(¬α ∨¬β), α ⇒ β

def
=

¬α ∨ β, α ⇔ β
def
= (α ⇒ β) ∧ (β ⇒ α), A©α

def
= ¬E©¬α,

E♦α
def
= E(>�α), A♦α

def
= A(>�α), E�α

def
= ¬A♦¬α,

A�α
def
= ¬E♦¬α, A(α�β)

def
= ¬E(¬α�¬β), E(α�β)

def
=

¬A(¬α�¬β).
Let M be a model. We say that a TDL formula ϕ is valid

in M (written M |= ϕ), if M, s |= ϕ for all states s ∈ S, and
that a TDL formula ϕ is valid (written |= ϕ), if ϕ is valid
in all the models M .

2.4 A Complete Axiomatic System for TDL
An axiomatic system consists of a collection of axioms and

inference rules. An axiom is a formula, and an inference rule
has the form “from previously derived formulas ϕ1, . . . , ϕm

infer formula ϕ”. We say that ϕ is provable (written ` ϕ) if
there is a sequence of formulas ending with ϕ, such that each
formula is either an instance of an axiom, or follows from
other provable formulas by applying an inference rule. An
axiom system is said to be sound with respect to the models
defined as in Definition 1, if ` ϕ implies |= ϕ. An axiom
system is said to be complete with respect to the models
defined as in Definition 1, if |= ϕ implies ` ϕ.

Let i ∈ {1, . . . , n}. Consider an axiom system for TDL as
defined below:
PC. All substitution instances of classical tautologies.
T1. E©> T2. E©(α ∨ β) ⇔ E©α ∨ E©β
T3. E(α�β) ⇔ β ∨ (α ∧ E©E(α�β))
T4. A(α�β) ⇔ β ∨ (α ∧ A©A(α�β))
K1. (Kiα ∧ Ki(α ⇒ β)) ⇒ Kiβ K2. Kiα ⇒ α
K3. ¬Kiα ⇒ Ki¬Kiα X1. Xiα ⇔ Kiα ∧Aiα
A1. Aiα ⇒ KiAiα A2. ¬Aiα ⇒ Ki¬Aiα
R1. From α and α ⇒ β infer β
R2. From α infer Kiα, i = 1, . . . , n

R3. From α ⇒ β infer E©α ⇒ E©β
R4. From γ ⇒ (¬β ∧ E©γ) infer γ ⇒ ¬A(α�β)
R5. From γ ⇒ (¬β∧A©(γ∨¬E(α�β))) infer γ ⇒ ¬E(α�β)

Theorem 1 ([16]). The system TDL is sound and com-
plete, i.e. |= ϕ iff ` ϕ, for any formula ϕ ∈ WF(TDL).

3. THE DOLEV-YAO ADVERSARY
The Dolev-Yao adversary [9] can compose messages, re-

play them, or decipher them if he has the right keys. In

the paper we use a formalisation of the Dolev-Yao adver-
sary given in [14]. Namely, we define a derivation relation
H `DY m between a set of messages H and a message m.
Intuitively, `DY means that an adversary can “extract” mes-
sage m from a set H of received messages and keys, using
the admissible operations.

The derivation relation `DY is defined as follows:
• if m ∈ H , then H `DY m

• if H `DY {m}k and H `DY k−1, then H `DY m

• if H `DY m · m′, then H `DY m

• if H `DY m · m′, then H `DY m′

In our framework, to capture the capabilities of the Dolev-
Yao adversary, we specify how the adversary can extract a
message, by defining an awareness function � DY

i for the in-
truder i, and by introducing the following fixed interpreta-
tion for the proposition hasi(m):

M, s |= hasi(m) iff there exists m′ such that m v m′ and
recv(m′) ∈ li(s).

The function � DY
i : Li → 2WF(TDL) is defined by: hasi(m) ∈

� DY
i (l) iff one of the following conditions holds:

• recv(m) ∈ l.
• m ∈ e0(l), where the function e0 returns the set of mes-

sages contained in the initial event of the local state l.
• there exists m′ such that hasi(m·m′) ∈ � DY

i (l) or hasi(m
′·

m) ∈ � DY
i (l).

• there exists an asymmetric key k such that hasi({m}k) ∈
� DY

i (l) and hasi(k
−1) ∈ � DY

i (l).
• there exists a symmetric key k such that hasi({m}k) ∈
� DY

i (l) and hasi(k) ∈ � DY
i (l).

• m = m1 · m2 and hasi(m1) ∈ � DY
i (l) and hasi(m2) ∈

� DY
i (l).

• m = {m1}k and hasi(m1) ∈ � DY
i (l) and hasi(k) ∈ � DY

i (l).
We can now show that using � DY

i an adversary can check
that he explicitly knows hasi(m) in a state s iff m can be
derived from the messages received in the states s together
with the messages initially known via the relation `DY .

Lemma 1. Let M = (S, T,∼1, . . . ,∼n,V, � 1 , . . . , � n) be
a model such that � i = � DY

i . Then, M, s |= Xi(hasi(m)) iff
{m′ | recv(m′) ∈ li(s)} ∪ e0(li(s)) `DY m.

Proof. (Left to right). Assume M, s |= Xi(hasi(m)) hold.
By the definition of |=, we have that M, s |= Ki(hasi(m))
and hasi(m) ∈ � i (li(s)). Since hasi(m) ∈ � i (li(s)), by the
definition of � DY

i we have that either m ∈ {m′ | recv(m′) ∈
li(s)} ∪ e0(li(s)), or there exists m′′ such that m v m′′ and
m′′ ∈ {m′ | recv(m′) ∈ li(s)} ∪ e0(li(s)). This implies that
{m′ | recv(m′) ∈ li(s)} ∪ e0(li(s)) `DY m.
(Right to left). Assume {m′ | recv(m′) ∈ li(s)}∪e0(li(s)) `DY

m hold. Then, we have that either recv(m) ∈ li(s) or there
exists m′ such that m v m′ and recv(m′) ∈ li(s). So, by
the definition of � DY

i we have that hasi(m) ∈ � DY
i (li(s)).

Moreover, by the definition of |= we have that M, s |= hasi(m).
Since � DY

i is defined over the local states of agent i, we
have that for all t ∈ S such that s ∼i t, M, t |= hasi(m)
holds. Hence, by the definition of |= we have that M, s |=
Ki(hasi(m)). Hence, we conclude that M, s |= Xi(hasi(m)).
�

A model of the Dolev-Yao adversary was already consid-
ered in the interpreted system framework in [14, 20]. How-
ever, in those papers, the notion of algorithmic knowledge
was used to capture the capabilities of the Dolev-Yao adver-
sary instead.

4. TESLA
The timed efficient stream loss-tolerant authentication

(TESLA) protocol was developed by A. Perrig et al. [19].
It was designed to enable authentication of a continuous
stream of packets over an unreliable channel. The develop-
ers of TESLA proposed five variants of the protocol; only
the first of these is discussed here.

Every variant of the TESLA protocol assumes a single
sender broadcasting a continuous stream of packets. Since
receivers act independently of one another, only one re-
ceiver will be considered below. TESLA uses cryptographic
primitives like commitments to keys and MAC values. Recall
that the commitment to a key k is computed by applying a
pseudo-random function f to k, and the MAC value is com-
puted by applying a message authentication code function
MAC to a part of the packet content and a key. It is assumed
that both the sender and the receiver know the pseudo-
random function f , and the message authentication code
function MAC. With the exception of the two initial packets,
each TESLA packet (in the variant we analyse here) con-
tains: (1) the message to be delivered; (2) a commitment to
the key to be used to encode the MAC of the next packets;
(3) the key that was used to encode the MAC of the previous
sent packet; (4) the MAC of the current packet.

We now introduce a TESLA variant assuming that the
protocol uses one pseudo-random function only. We have
introduced such a simplification, because in our opinion the
extra pseudo-random function does not provide any addi-
tional security; the same assumption is made in [3, 5].

Let S stand for the sender, R stand for the receiver, and
[x, y] denote the concatenation of x and y. Moreover, assume
that S has a digital signature key pair, with private key
k−1
S

and public key kS known to R. Further, assume that
R chooses a random and unpredictable nonce. Then, the
initial n steps, for n > 1, of the protocol for one sender and
one receiver are the following:
(-1) R → S : nR

(0) S → R : {f(k1), nR}
k
−1

S

(1) S → R : [P1, MAC(k1, P1)], for P1 = [t1, f(k2)]
(2) S → R : [P2, MAC(k2, P2)], for P2 = [t2, f(k3), k1]
. . .

(n) S → R : [Pn, MAC(kn, Pn)], for Pn = [tn, f(kn+1), kn−1]

In the first step (i.e. step (-1.)) R sends a nonce nR to S
in order to ensure freshness of the session. In step (0), S
encodes with k−1

S
the pair composed by the nonce just re-

ceived and the commitment to key k1 (i.e. f(k1)), produced
by the agreed pseudo-random function f . This is sent to R.
R knows kS, so he can decode the message {f(k1), nR}

k
−1

S

.

Given this, R knows that commitment f(k1) is authentic;
however, because he does not know the reverse of f , he
cannot compute the value of the key k1. In step (1), S
transmits in clear the first packet P1 together with its MAC,
i.e. the value MAC(k1, P1). P1 contains message t1 and com-
mitment to key k2 only. k2 is used to compute the MAC of
the next packet. After this step R knows the content of t1,
but he cannot be sure of its authenticity. This is because
he does not know the value of the key k1, and so he can-
not check the MAC value. The authentication of packet P1 is
done by the sender’s disclosing of k1 in step (2). In steps
(2),. . . ,(n) S sends packet Pi, for i ∈ {1, . . . , n}, authenti-
cated by the MAC value computed from key ki and Pi (i.e.
the value MAC(ki, Pi)). Pi contains message ti, commitment

to key ki+1 that is computed by applying pseudo-random
function f to ki+1 , and key ki−1 thereby enabling R to
verify the commitment f(ki−1) and the MAC of packet Pi.

The TESLA scheme is susceptible to packet loss. In par-
ticular, once a packet is dropped no further packets can be
authenticated; in the next section we will formally show that
TESLA satisfies this property. Moreover, the scheme can be
subverted if an attacker gets packet Pi+1 before the receiver
gets Pi. This is because the attacker would then know the
secret key ki that is used to compute the MAC value of Pi, and
use this to forge all subsequent traffic by impersonating S.
To prevent this attack, the TESLA participants are initially
synchronised, they know the precise schedule of packets, and
S has to send packets at regular intervals that were agreed
with R during the synchronisation process. More details are
in [19]. This is not essential for our analysis.

TESLA guarantees the following security property: “the
receiver does not accept as authentic any message unless it
was actually sent by the sender”. A streaming scheme that
provides this guarantee is usually called a secure stream au-
thentication scheme [19]. The main aim of the rest of the
paper is to analyse this statement formally.

5. MODELLING OF TESLA IN TDL

Intruder Receiver
send

receive

receive

send

getData putData
Sender

Figure 1: The Dolev-Yao assumption

So far, the TESLA protocol has been modelled and checked
via process algebras [5] and Lynch-Vaandrager automata [3]
only. Here, we are interested in applying the interpreted
systems framework and the TDL language, which has a
computationally-grounded semantics, to perform a seman-
tic analysis of this protocol. So, let us begin by building a
model M = (S,T,∼S, ∼R,∼I,V, � S , � R , � I) for TESLA. In
order to perform this task, we have to provide definitions of
the set of reachable global states S, the transition relation
T , the valuation function V, and the awareness functions
� S , � R and � I .

There are three active components in the TESLA proto-
col: a sender, a receiver, and an intruder. In the formalism
of interpreted systems, it is convenient to see the sender
and the receiver as agents, and the intruder as the environ-
ment. We assume that the communication channel is under
complete control of the intruder, hence all messages from the
sender to the receiver and vice versa go through the intruder
(see Figure 1). The intruder can overhear, capture, drop, re-
send, delay and fake messages. We do not allow the intruder
to encrypt and decrypt messages unless he has the appro-
priate key, and we force the intruder to send well-formed
packets only. Namely, a packet sent (re-sent, faked) by the
intruder has to contain a message body, a key commitment,
a key, and a MAC value computed from the packet and some
key. Moreover, we assume that the sender, the receiver, and
the intruder use a shared pseudo-random function f and a
shared message authentication code function MAC. Namely,
they can all compute f(m) and MAC(m, n), if they have m
and n. Further, we assume that the receiver and the intruder
know the public key of the sender, and that the sender and
the intruder start off with disjoint sets of keys.

Each of the principals as well as the intruder can be mod-

elled by considering their local states. Before we define
them, we first introduce the following notion. For ti ∈ � ,
f(ki+1) ∈ � , ki ∈

�
, nR ∈ � we define a message Pi, called

a packet, as follows:

Pi =

8

>

>

<

>

>

:

(ti · f(ki+1) · ki−1) · MAC(ki, (ti · f(ki+1) · ki−1)),
if i > 1;
(ti · f(ki+1)) · MAC(ki, (ti · f(ki+1))), if i = 1;
{f(ki+1) · nR}

k
−1

S

, if i = 0.

We assume that the receiver knows the precise sending
schedule of packets, and that this information is incorpo-
rated into packet P0. Notice, that from this assumption it
follows that P0 always has to arrive to the receiver safely
for the protocol to function. Further, we assume the sender
and the receiver to keep the three most recent packets, and
the intruder to keep five.

For the sender S we take the following set of local states:

LS = {[·], [recv(nR)], [sent(R, P0)]}∪,
{[sent(R, Pi−1), sent(R, Pi)] | i > 0}∪

{[sent(R, Pi−1), sent(R, Pi), sent(R, Pi+1)] | i > 0}

[·] represents S’s initial state in the protocol. In any state,
we assume that S has all the information he needs to prepare
a packet, i.e. he has a complete set of messages MS ⊆ � .
Further, we assume that MS constitutes S’s initial database
that remains accessible to him throughout the run. For con-
venience we do not add this explicitly to the local states.
The local state [recv(nR)] represents the message from R to
establish communication, whereas [sent(R, P0)] represents
the state in which S has just sent P0 to R. [sent(R, Pi−1),
sent(R, Pi)] and [sent(R, Pi−1), sent(R, Pi), sent(R, Pi+1)]
represent states, in which S has sent packets Pj , where
j ≤ i + 1 and i > 0.

We take the following set of local states for the receiver R:

LR = {[·], [sent(S, nR)], [stop], [recv(P0)]}∪
{[recv(P0), recv(P2)]}∪ {[recv(Pi), recv(Pi+1)] | i ≥ 0}∪

{[recv(Pi−1), recv(Pi), recv(Pi+1)] | i > 0}∪
{[recv(Pi−1), recv(Pi), recv(Pi+2)] | i > 0}∪
{[recv(Pi), recv(Pi+1), recv(P ′

i+2)] | i ≥ 0}∪
{[recv(P0), recv(P ′

1)]} ∪ {[recv(P0), recv(P ′
1), recv(P ′

2)]}
∪{[recv(P0), recv(P ′

1), recv(P2)]}

[·] represents R’s initial state in the protocol, in which R
has his set of nonces only. [sent(S, nR)] represents the local
state in which R has just sent the nonce nR to S, and he
is waiting for packets. [stop] represents the local state, in
which R has just stopped collecting packets. The local states
[recv(P0)], [recv(P0), recv(P2)], [recv(Pi), recv(Pi+1)] for
i ≥ 0, [recv(Pi−1), recv(Pi), recv(Pi+2)] and [recv(Pi−1),
recv(Pi), recv(Pi+1)] for i > 0 represent the packets R has
received from S, whereas [recv(P0), recv(P ′

1)], [recv(P0),
recv(P ′

1), recv(P ′
2)], [recv(P0), recv(P ′

1), recv(P2)], and
[recv(Pi), recv(Pi+1), recv(P ′

i+2)] for i ≥ 0 represent the
faked packets R has received. Specifically, these states rep-
resent situations in which I has produced a new packet, say
P ′

i , and has sent it to R instead of forwarding the intercepted
packet Pi.

It remains to model the intruder’s set of local states. For
I we take the following set:

LI = {[·], [recv(nR)], [recv(P0)]}∪
{[recv(Pi), recv(Pi+1)] | i ≥ 0}∪

{[recv(Pi−1), recv(Pi), recv(Pi+1)] | i > 0}∪

{[recv(P0), recv(P1), send(R, P ′
1)]}∪

{[recv(P0), recv(P1), send(R, P ′
1), recv(P2)]}∪

{[recv(P0), recv(P1), send(R, P ′
1), recv(P2), send(R, P ′

2)]}∪
{[recv(Pi−1), recv(Pi), recv(Pi+1), send(R, P ′

i+1)] | i > 0}

[·] represents I’s initial state in the protocol. In any state,
we assume that I has all the information needed to prepare
well-formed packets, with MI ⊆ � such that MI ∩ MS =
∅. Further, we assume that MI can grow during the run.
[recv(nR)] represents I’s state following the interception of
R’s initial message to S. [recv(P0)], [recv(Pi), recv(Pi+1)]
and [recv(Pi−1), recv(Pi), recv(Pi+1)] represent the pack-
ets intercepted by I sent by S to R. [recv(P0), recv(P1),
send(R, P ′

1)], [recv(P0), recv(P1), send(R, P ′
1), recv(P2)],

[recv(P0), recv(P1), send(R, P ′
1), recv(P2), send(R, P ′

2)], and
[recv(Pi−1), recv(Pi), recv(Pi+1), send(R, P ′

i+1)] for i > 0,
represent the packets intercepted by I sent by S to R and
their faked versions.

Given the sets of local states for the TESLA agents, i.e.
the sets LS, LR and LI, the following sets of actions are
available to the agents:
• ActS = {sendPi | i ≥ 0} ∪ {acceptPi | i ≥ 0} ∪ {λ},
• ActR = {λ, nonce, stop} ∪ {acceptPi | i > 0},
• ActI = {λ} ∪ {dropPi | i > 0} ∪ {fakePi | i > 0} ∪

{acceptPi | i > 0},

where λ stands for no action.
The protocols executed by agents are defined as follows:
Sender:
• PS([·]) = {λ}
• PS([recv(nR)]) = {sendP0}
• PS([sent(R, P0)]) = {sendP1}
• PS([sent(R, Pi−1), sent(R, Pi)]) = {sendPi+1},
• PS([sent(R, Pi−1), sent(R, Pi), sent(R, Pi+1)]) =

{acceptPi−1, λ}, for i ≥ 0.
Intruder:
• PI([·]) = PI([recv(nR)]) = {λ}
• PI([recv(P0)]) = {λ, dropP1, fakeP1}
• PI([recv(Pi), recv(Pi+1)]) = {λ, dropPi+2, fakePi+2}, for

i ≥ 0
• PI([recv(Pi−1), recv(Pi), recv(Pi+1)]) = {acceptPi−1, λ},

for i > 0
• PI([recv(P0), recv(P1), send(R, P ′

1)]) = {fakeP2},
• PI([recv(P0), recv(P1), send(R, P ′

1), recv(P2)]) = {λ},
• PI([recv(P0), recv(P1), send(R, P ′

1), recv(P2),
send(R, P ′

2)]) = {λ},
• PI([recv(Pi−1), recv(Pi), recv(Pi+1), send(R, P ′

i+1)]) =
{λ}, for i > 0

Receiver:
• PR([·]) = {nonce}
• PR([sent(S, nR)]) = PR([recv(P0)]) = {λ}
• PR([recv(Pi), recv(Pi+1)]) = {λ}, for i ≥ 0
• PR([recv(Pi−1), recv(Pi), recv(Pi+1)]) = {acceptPi}, for

i > 0
• PR([stop]) = PR([recv(P0), recv(P2)]) = {stop},
• PR([recv(Pi−1), recv(Pi), recv(Pi+2)]) = {stop}, for i > 0
• PR([recv(P0), recv(P ′

1)]) = {λ},
• PR([recv(P0), recv(P ′

1), recv(P ′
2)]) = {stop},

• PR([recv(P0), recv(P ′
1), recv(P2)]) = {stop},

• PR([recv(Pi−1), recv(Pi), recv(P ′
i+1)]) = {stop}, for i > 0

The evolution of the system during the execution of TESLA
is defined by means of an evolution function t : (LS ×LR ×
LI) × Act → 2LS×LR×LI , where Act is a subset of ActS ×
ActR × ActI. More precisely, let us assume that the system
starts from the initial state ([·], [·], [·]), and let rv denote
the even recv, and st the even sent. Then, the evolution
function for TESLA is defined as follows:

Intruder forwards all packets
1. t(([·], [·], [·]]), (λ, nonce, λ)) = ([rv(nR)], [st(S, nR)], [rv(nR)]);
2. t(([rv(nR)], [st(S, nR)], [rv(nR)]), (sendP0, λ, λ))

= ([st(R, P0)], [rv(P0)], [rv(P0)]);
3. t(([st(R, P0)], [rv(P0)], [rv(P0)]), (sendP1, λ, λ)) =

([st(R, P0), st(R, P1)], [rv(P0), rv(P1)], [rv(P0), rv(P1)]);
4. t(([st(R, P0), st(R, P1)], [rv(P0), rv(P1)], [rv(P0), rv(P1)]),

(sendP2, λ, λ)) = ([st(R, P0), st(R, P1), st(R, P2)],
[rv(P0), rv(P1), rv(P2)], [rv(P0), rv(P1), rv(P2)]);

5. t(([st(R, P0), st(R, P1), st(R, P2)], [rv(P0), rv(P1), rv(P2)],
[rv(P0), rv(P1), rv(P2)]), (acceptP0, acceptP1, acceptP0)) =
([st(R, P1), st(R, P2)], [rv(P1), rv(P2)], [rv(P1), rv(P2)]);

6. t(([st(R, P1), st(R, P2)], [rv(P1), rv(P2)], [rv(P1), rv(P2)]),
(sendP3, λ, λ)) = ([st(R, P1), st(R, P2), st(R, P3)],
[rv(P1), rv(P2), rv(P3)], [rv(P1), rv(P2), rv(P3)]);

7. t(([st(R, P1), st(R, P2), st(R, P3)], [rv(P1), rv(P2), rv(P3)],
[rv(P1), rv(P2), rv(P3)]), (acceptP1, acceptP2, acceptP1)) =
([st(R, P2), st(R, P3)], [rv(P2), rv(P3)], [rv(P2), rv(P3)]]);

. . .

• t(([st(R, Pn), st(R, Pn+1)], [rv(Pn), rv(Pn+1)],
[rv(Pn), rv(Pn+1)]), (sendPn+2, λ, λ)) =
([st(R, Pn), st(R, Pn+1), st(R, Pn+2)], [rv(Pn), rv(Pn+1),
rv(Pn+2)], [rv(Pn), rv(Pn+1), rv(Pn+2)]), for n > 0;

• t(([st(R, Pn), st(R, Pn+1), st(R, Pn+2)],
[rv(Pn), rv(Pn+1), rv(Pn+2)], [rv(Pn), rv(Pn+1), rv(Pn+2)]),
(acceptPn, acceptPn+1, dropPn)) = ([st(R, Pn+1), st(R, Pn+2)],
[rv(Pn+1), rv(Pn+2)], [rv(Pn+1), rv(Pn+2)]), for n > 0;

Intruder blocks packet P1

1. t(([st(R, P0)], [rv(P0)], [rv(P0)]), (sendP1, λ, dropP1)) =
([st(R, P0), st(R, P1)], [rv(P0)], [rv(P0), rv(P1)]);

2. t([st(R, P0), st(R, P1)], [rv(P0)], [rv(P0), rv(P1)]),
(sendP2, λ, λ)) = ([st(R, P0), st(R, P1), st(R, P2)],
[rv(P0), rv(P2)], [rv(P0), rv(P1), rv(P2)]);

3. t([st(R, P0), st(R, P1), st(R, P2)], [rv(P0), rv(P2)],
[rv(P0), rv(P1), rv(P2)]), (λ, stop, λ)) = ([st(R, P0),
st(R, P1), st(R, P2)], [stop], [rv(P0), rv(P1), rv(P2)]);

4. t([st(R, P0), st(R, P1), st(R, P2)], [stop], [rv(P0), rv(P1),
rv(P2)]), (λ, stop, λ)) = ([st(R, P0), st(R, P1), st(R, P2)],
[stop], [rv(P0), rv(P1), rv(P2)]);

Intruder blocks packet Pn, n > 1
1. t(([st(R, Pn−2), st(R, Pn−1)], [rv(Pn−2), rv(Pn−1)],

[rv(Pn−2), rv(Pn−1)]), (sendPn, λ, dropPn)) =
([st(R, Pn−2), st(R, Pn−1), st(R, Pn)],
[rv(Pn−2), rv(Pn−1)], [rv(Pn−2), rv(Pn−1), rv(Pn)]);

2. t(([st(R, Pn−2), st(R, Pn−1), st(R, Pn)],
[rv(Pn−2), rv(Pn−1)], [rv(Pn−2), rv(Pn−1), rv(Pn)]),
(acceptn−2, λ, acceptn−2)) = ([st(R, Pn−1), st(R, Pn)],
[rv(Pn−2), rv(Pn−1)], [rv(Pn−1), rv(Pn)]);

3. t(([st(R, Pn−1), st(R, Pn)], [rv(Pn−2), rv(Pn−1)],
[rv(Pn−1), rv(Pn)]), (sendPn+1, λ, λ)) = ([st(R, Pn−1),
st(R, Pn), st(R, Pn+1)], [rv(Pn−2), rv(Pn−1),
rv(Pn+1)], [rv(Pn−1), rv(Pn), rv(Pn+1)]);

4. t(([st(R, Pn−1), st(R, Pn), st(R, Pn+1)], [rv(Pn−2),
rv(Pn−1), rv(Pn+1)], [rv(Pn−1), rv(Pn), rv(Pn+1)]),
(λ, stop, λ)) = ([st(R, Pn−1), st(R, Pn), st(R, Pn+1)],
[stop], [rv(Pn−1), rv(Pn), rv(Pn+1)]);

5. t([st(R, Pn−1), st(R, Pn), st(R, Pn+1)], [stop],
[rv(Pn−1), rv(Pn), rv(Pn+1)]), (λ, stop, λ)) =
([st(R, Pn−1), st(R, Pn), st(R, Pn+1)], [stop],
[rv(Pn−1), rv(Pn), rv(Pn+1)]);

Intruder fakes packet P1

1. t(([st(R, P0)], [rv(P0)], [rv(P0)]), (sendP1, λ, fakeP1)) =
([st(R, P0), st(R, P1)], [rv(P0), rv(P ′

1)],
[rv(P0), rv(P1), st(R, P ′

1)]);
2.a t([st(R, P0), st(R, P1)], [rv(P0), rv(P ′

1)], [rv(P0), rv(P1),
st(R, P ′

1)]), (sendP2, λ, fakeP2)) = ([st(R, P0),
st(R, P1), st(R, P2)], [rv(P0), rv(P ′

1), rv(P ′
2)],

[rv(P0), rv(P1), st(R, P ′
1), rv(P2)], st(R, P ′

2));
3.a t([st(R, P0), st(R, P1), st(R, P2)], [rv(P0), rv(P ′

1), rv(P ′
2)],

[rv(P0), rv(P1), st(R, P ′
1), rv(P2), st(R, P ′

2)]), (λ, stop, λ)) =
([st(R, P0), st(R, P1), st(R, P2)], [stop],
[rv(P0), rv(P1), st(R, P ′

1), rv(P2), st(R, P ′
2)]);

4.a t([st(R, P0), st(R, P1), st(R, P2)], [stop],
[rv(P0), rv(P1), st(R, P ′

1), rv(P2), st(R, P ′
2)]),

(λ, stop, λ)) = ([st(R, P0), st(R, P1), st(R, P2)],
[stop], [rv(P0), rv(P1), st(R, P ′

1), rv(P2), st(R, P ′
1)]);

2.b t([st(R, P0), st(R, P1)], [rv(P0), rv(P ′
1)],

[rv(P0), rv(P1), st(R, P ′
1)]), (sendP2, λ, λ)) =

([st(R, P0), st(R, P1), st(R, P2)], [rv(P0), rv(P ′
1),

rv(P2)], [rv(P0), rv(P1), st(R, P ′
1), rv(P2)]);

3.b t([st(R, P0), st(R, P1), st(R, P2)], [rv(P0), rv(P ′
1),

st(R, P ′
1), rv(P2)], [rv(P0), rv(P1), rv(P2)]), (λ, stop, λ))

= ([st(R, P0), st(R, P1), st(R, P2)], [stop],
[rv(P0), rv(P1), st(R, P ′

1), rv(P2)]);
4.b t([st(R, P0), st(R, P1), st(R, P2)], [stop], [rv(P0), rv(P1),

st(R, P ′
1), rv(P2)]), (λ, stop, λ)) = ([st(R, P0), st(R, P1),

st(R, P2)], [stop], [rv(P0), rv(P1), st(R, P ′
1), rv(P2)]);

Intruder fakes packet Pn, n > 1
1. t(([st(R, Pn−2), st(R, Pn−1)], [rv(Pn−2), rv(Pn−1)],

[rv(Pn−2), rv(Pn−1)]), (sendPn, λ, fakePn)) =
([st(R, Pn−2), st(R, Pn−1), st(R, Pn)], [rv(Pn−2),
rv(Pn−1), rv(P ′

n)], [rv(Pn−2), rv(Pn−1), rv(Pn)]);
2. t(([st(R, Pn−2), st(R, Pn−1), st(R, Pn)], [rv(Pn−2),

rv(Pn−1), rv(P ′
n)], [rv(Pn−2), rv(Pn−1), rv(Pn)]),

(λ, stop, λ)) = ([st(R, Pn−2), st(R, Pn−1), st(R, Pn)],
[stop], [rv(Pn−2), rv(Pn−1), rv(Pn)]);

3. t([st(R, Pn−2), st(R, Pn−1), st(R, Pn)], [stop],
[rv(Pn−2), rv(Pn−1), rv(Pn)]), (λ, stop, λ)) =
([st(R, Pn−2), st(R, Pn−1), st(R, Pn)], [stop],
[rv(Pn−2), rv(Pn−1), rv(Pn)]);

The above evolution function determines not only the set
of reachable global states S ⊆ LS × LR ×LI, but also gives
the transition relation T ; namely, for all the s, s′ ∈ S,
(s, s′) ∈ T iff there exists act ∈ Act such that t(s, act) = s′.

We have now defined states, actions, protocols, and tran-
sitions for the model M for TESLA. To conclude, we define
a valuation function V : S → 2PV and the awareness func-
tions � X : LX → 2WF(TDL), for X ∈ {S, R, I}. We first
introduce the following set PV of propositional variables,
which we find useful in analysis of the TESLA scenario:

PV = {hasR(m), sentS(m), receivedR(m),
droppedI(m), fakedI(m) | m ∈ MS ∪ MI}

We define V : S → 2PV by assuming that:
• for i > 0, hasR(ti) ∈ V(s) if there exist packets Pi−1, Pi

and Pi+1 such that f(ki) v Pi−1, ti v Pi, ki v Pi+1,
recv(Pi−1) ∈ lR(s), recv(Pi) ∈ lR(s) and recv(Pi+1) ∈
lR(s),

• sentS(m) ∈ V(s) if there exists packet Pi such that m v Pi

and sent(R, Pi) ∈ lS(s), for any m ∈ MS,
• receivedR(m) ∈ V(s) if recv(m) ∈ lR(s), for any m ∈

MS ∪ MI,
• droppedI(m) ∈ V(s) if recv(m) 6∈ lR(s) and recv(m) ∈

lI(s), for any m ∈ MS,
• fakedI(m) ∈ V(s) if there exist packets Pj such that m v

Pj and send(R, Pj) ∈ lI(s), for any m ∈ MS ∪ MI.
For X ∈ {S, I}, we take the following awareness function

� X : LX → 2WF(TDL): � X (l) = ∅, for any l ∈ LX . In turn,

R’s awareness function � R : LR → 2WF(TDL) is defined as
follows. For any l ∈ LR, α ∈ � R (l) if one of the following
holds:

• α = receivedR(m) and recv(m) ∈ l and m ∈ MS∪MI,
• α = fakedI(m) and l = [stop] and m ∈ MS ∪ MI,
• α = droppedI(m) and l = [stop] and m ∈ MS,
• α = hasR(m) and (recv(m) ∈ l or ∃m′ such that m v

m′ and recv(m′) ∈ l) and m ∈ MS ∪ MI.
We have now completed defining the model M for TESLA.
Note that when we put a bound on the number of packets

to be sent, M becomes finite.
Given the model M as defined above, we proceed to the

semantical analysis of the TESLA protocol. First, we would
like to establish whether or not TESLA satisfies the desired

security property: “the receiver does not accept as authentic
any message unless it was actually sent by the sender”. It
can be expressed by the following TDL formula: for any
i > 0,

hasR(ti) ⇒ (sentS(Pi−1) ∧ sentS(Pi) ∧ sentS(Pi+1)) (1)

It is easy (albeit tedious) to check manually that formula 1
is valid in M .

As one can notice, formula 1 is a pure propositional for-
mula, so in order to verify the TESLA security property
there is no need to use strong formalisms like epistemic or
temporal logics. Indeed, this property can be checked via
process algebras [5] or via Lynch-Vaandrager automata [3].
However, unlike the process algebras and Lynch-Vaandrager
automata, the TDL language together with its semantic
model is a powerful formalism that allows us to model and
verify other properties of TESLA. In particular, using the
model M and TDL we can show that TESLA satisfies a
much stronger property: “the receiver does not accept as
authentic any message unless he knows that it was actually
sent by the sender”. Indeed it can be checked that, for any
i > 0,

M |= hasR(ti) ⇒ KR(sentS(Pi−1)∧
sentS(Pi) ∧ sentS(Pi+1))

(2)

Note that our model M of TESLA does not fulfil the con-
trappositive of the above, i.e. the following holds:

M 6|= KR(sentS(Pi−1) ∧ sentS(Pi)∧
sentS(Pi+1)) ⇒ hasR(ti)

(3)

The above seems reasonable, and it does not violate the
security property given the presence of the intruder.

Further, we can check that TESLA actually meets the
following property: “it is always the case that the receiver
does not accept as authentic any message unless he knows
that it was actually sent by the sender”.

M |= A�(hasR(ti) ⇒ KR(sentS(Pi−1)∧
sentS(Pi) ∧ sentS(Pi+1)))

(4)

The principals know about the presence of the intruder,
so, the following should holds: for some i > 0:

M |= KSE♦(sentS(Pi) ∧ ¬receivedR(Pi)) (5)

Indeed, a manual checking of M that we have done con-
firmed the above observation.

Also, by analysing TESLA one can expect that the proto-
col should fulfil the following property: if a packet is faked,
then the receiver should discover this. It expresses the fact
that the receiver is able to check the source of messages.
This can be formalised as follows:

M |= fakedI(Pi) ⇒ DR(fakedI(Pi)) (6)

Again, a manual checking of M confirmed the above.
Investigating the TESLA model M , we could observe that

if the receiver obtains some packets Pi−1, Pi, and Pi+1 with
a message ti v Pi, and he does not accept ti as authentic,
then he knows that at least one of the packets was not sent
by the intended sender. Moreover, if a packet was indeed
faked, the receiver is able to deduce this fact. So, property 7
should hold, and a manual check of M that we have done

confirmed this. For any i > 0,

M |= (receivedR(Pi−1) ∧ receivedR(Pi) ∧
receivedR(Pi+1)∧¬hasR(ti)) ⇒

`

KR(¬sentS(Pi−1)∨
¬sentS(Pi) ∨ ¬sentS(Pi+1)) ∧ (DR(fakeI(Pi−1)) ∨
DR(fakeI(Pi)) ∨ DR(fakeI(Pi+1)))

´

(7)

Messages are sent to the receiver according to the sched-
ule. This schedule is known to the intruder as well. So,
when the intruder tries to fake the current transmission, he
has to follow the sending schedule, otherwise, the receiver
will stop the reception immediately. This means that the
intruder has to send a packet at each interval, which was
agreed by the sender and the receiver at the beginning of
the transmission under consideration. This observation can
be formalised as follows. For any i > 0,

M |= A�(droppedI(Pi) ⇒ DR(droppedI(Pi)) (8)

It can be checked that property 8 also holds.

6. CONCLUSION
In the paper we have proposed a new security-specialised

logic TDL defined on a computationally-grounded seman-
tics, and with a sound and complete axiomatisation. TDL
employs different concepts of knowledge (based on the no-
tion of awareness), as well as time in order to represent the
knowledge of principals that operate in an environment that
is under control of an intruder. Further, we have applied
the logic to reason about TESLA, which we have formalised
in the interpreted system framework. A temporal epistemic
analysis has allowed us not only to reconfirm the TESLA au-
thentication property but also to check more sophisticated
specifications.

Obviously we do not suggest one should check security
protocols manually as done here. Work is in progress to
extend a BDD-based model checker [17] to encode the epis-
temic notions described here. Since the semantics of TDL
is defined on interpreted systems we are hopeful that the
exercise conduced here manually can be automated. Since
TDL has a computationally-grounded semantics, a model
checking technique for it can be defined, which is the scope
of a further investigation.

7. REFERENCES
[1] M. Abadi and M. R. Tuttle. A semantics for a logic of

authentication. In Proc. of PODC ’91, pp. 201–216.
ACM Press, 1991.

[2] R. Accorsi, D. Basin, and L. Viganò. Towards an
awareness-based semantics for security protocol
analysis. In Post Proc. of LACPV’01, volume 55(1) of
ENTCS, pp 5–24. Elsevier, 2003.

[3] M. Archer. Proving correctness of the basic TESLA
multicast stream authentication protocol with TAME.
In Proc. of WITS’02, 2002.

[4] C. Boyd and W. Mao. On a limitation of BAN logic.
In Proc. of EUROCRYPT ’93, pp. 240–247.
Springer-Verlag, 1994.

[5] P. J. Broadfoot and G. Lowe. Analysing a stream
authentication protocol using model checking. In Proc.
of ESORICS’02, pp. 146–161. Springer-Verlag, 2002.

[6] M. Burrows, M. Abadi, and R. Needham. A logic of
authentication. In Proc. of the Royal Society of
London A, volume 426, pp. 233–271 , 1989.

[7] E. Clarke and E. Emerson. Design and synthesis of
synchronization skeletons for branching-time temporal
logic. In Proc. of WLP, volume 131 of LNCS, pp.
52–71. Springer-Verlag, 1981.

[8] C. Dixon, M. C. Fernandez Gago, M. Fisher, and
W. van der Hoek. Using temporal logics of knowledge
in the formal verification of security protocols. In
Proc. of TIME’04, pp. 148–151. IEEE, 2004.

[9] D. Dolev and A. Yao. On the security of public key
protocols. IEEE Trans. Inf. Theory, 29(2):198–208,
1983.

[10] R. Fagin and J. Y. Halpern. Belief, awareness, and
limited reasoning. Artificial Intelligence, 34(1):39–76,
1988.

[11] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning about Knowledge. MIT Press, 1995.

[12] Li Gong, R. Needham, and R. Yahalom. Reasoning
About Belief in Cryptographic Protocols. In
Proceedings of IEEE Symposium on Research in
Security and Privacy, pp. 234–248. IEEE Press, 1990.

[13] J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Algorithmic knowledge. In Proc. of TARK 1994, pages
255–66. Morgan Kaufmann Publishers, 1994.

[14] J.Y. Halpern and R. Pucella. Modeling Adversaries in
a Logic for Security Protocol Analysis. In Proc. of
FASec’02, volume 2629 of LNCS, pp. 115–132.
Springer-Verlag, 2002.

[15] R. Kailar and V. D. Gligor. On belief evolution in
authentication protocols. In Proc. of Computer
Security Foundations Workshop IV, pp. 103–116.
IEEE Press, 1991.

[16] A. Lomuscio and B. Woźna. A combination of explicit
and deductive knowledge with branching time:
completeness and decidability results. In Post-proc. of
DALT’05, volume 3904 of LNAI. 2006. To appear.

[17] A. Lomuscio and F. Raimondi. MCMAS: A model
checker for multi-agent systems. In Proc. of
TACAS’06. Springer Verlag, March, 2006. To appear.

[18] D. M. Nessett. A critique of the Burrows Abadi Need-
ham logic. Operating Systems Review, 24(3):35–38,
1990.

[19] A. Perrig, R. Canetti, J.D. Tygar, and Dawn X. Song.
Efficient authentication and signing of multicast
streams over lossy channels. In IEEE Symposium on
Security and Privacy, pp. 56–73, 2000.

[20] R. Pucella. Deductive Algorithmic Knowledge. In
Proc. of SAIM’04, AI&M 22-2004, 2004.

[21] R. Ramanujam and S. P. Suresh. Deciding knowledge
properties of security protocols. In Proc. of TARK’05,
pp. 218–235, 2005.

[22] M. Wooldridge. Reasoning about Rational Agents.
MIT Press, 2000.

