
MCMAS: a Model Checker for Multi-Agent Systems
Alessio Lomuscio and Franco Raimondi?

Department of Computer Science
University College London – London, UK

{a.lomuscio,f.raimondi}@cs.ucl.ac.uk

1 Overview
This paper presents MCMAS, a model checker for Multi-Agent Systems (MAS). Dif-
ferently from traditional model checkers, MCMAS permits the automatic verification of
specifications that use epistemic, correctness, and cooperation modalities, in addition to
the standard temporal modalities. These additional modalities are used to capture prop-
erties of various scenarios (including communication and security protocols, games,
etc.) that may be difficult or unnatural to express with temporal operators only; a small
number of applications are presented in Section 4. Agents are described in MCMAS by
means of the dedicated programming language ISPL (Interpreted Systems Program-
ming Language). The approach is symbolic and uses ordered binary decision diagrams
(OBDDs), thereby extending standard techniques for temporal logic to other modalities
distinctive of agents. MCMAS and all the examples presented in this paper are available
for download [14] under the terms of the GPL license.

2 Theoretical background
Interpreted systems [5] provide the formal semantics for MCMAS programs. In the for-
malism of interpreted systems, each agent is characterised by a set of local states and
by a set of local actions that are performed following a local protocol. Given a set of ini-
tial states, the system evolves in compliance with an evolution function that determines
how the local state of an agent changes as a function of its local state and of the other
agents’ actions. The evolution of all the agents’ local states describes a set of runs and
a set of reachable states. These can be used to interpret formulae involving temporal
operators, epistemic operators to reason about what agents know, operators to reason
about the correct behaviour of the agents, and ATL operators expressing states of af-
fairs that agents can enforce. Due to space limitations, we refer to [5, 13, 10, 1, 7] for
a detailed presentation of this formalism, and for theoretical results on completeness,
decidability, complexity, etc.

Interpreted systems’ specifications can be given by means of ISPL programs: a sim-
ple example is depicted in Figure 1 (a). We refer to the files available online for the full
syntax of ISPL.

Given an interpreted system and a formula in the syntax of ISPL, MCMAS computes
the set of states in which the formula holds and compares it to the set of reachable
states. The methodology used to calculate this set extends the standard fix-point boolean
characterisation for temporal operators [4] to epistemic, correctness, and cooperation
operators. We refer to [15] for more details.

3 Implementation
Figure 1 (b) shows the structure of the implementation of MCMAS. The tool can be
run from the command line and accepts various options to modify verbosity, to in-
spect OBDDs statistics [16] and memory usage, and to enable variable reordering in the

? Corresponding author. The authors acknowledge EPSRC grants CN04/04 and GR/S49353/01.

OBDDs. The tool is written in C/C++ and it has been compiled on various platforms,
including PowerPC (Mac OS X 10.2 and 10.3), x86 (various CPUs running Linux 2.4
and 2.6), SPARC (SunOS 5.8 and 5.9), and Windows using Cygwin. The source code
has been compiled with gcc/g++ from version 2.95 until version 3.4.

Agent SampleAgent

 Lstate = {s0,s1,s2,s3};

 Action = {a1,a2,a3};

 Protocol:

 s0: {a1};

 s1: {a2};

 s2: {a1,a3};

 s3: {a2,a3};

 end Protocol

 Ev:

 s2 if ((AnotherAgent.Action=a7);

 s3 if Lstate=s2;

 end Ev

end Agent

ISPL program
+

formula

Parse input

Build OBDD
parameters

Compute the set
of states in which
the formula holds

mcmas

TRUE FALSE

(and other output)

(a) (b)

Fig. 1. Implementation structure and ISPL example

4 Examples and experimental results
Various ISPL programs are available for download from [14]. We consider here three
of them to illustrate different verification scenarios.

Communication protocol: the bit transmission protocol with faults. In this ex-
ample from [5], an agent (the Sender) wants to communicate the value of a bit to an-
other agent (the Receiver) using a faulty line that may drop messages. To achieve this,
the Sender starts sending messages to the Receiver; when the Receiver receives the bit,
it starts sending acknowledgements back to the Sender. The protocol terminates when
the Sender receives the acknowledgement. This scenario can be described in terms of
interpreted systems, and it is easy to verify with MCMAS the key specification of the
protocol: recack → AG(KS(KR(bit).)
This formula expresses formally that, upon receipt of an acknowledgement, the Sender
will forever know that the Receiver knows the value of the bit. This scenario is extended
in [11] to include faulty behaviours of the Receiver. In particular, it is possible to model
two faulty scenarios. In the first one, the Receiver “forgets” to send acknowledgements
when it receives the bit. In the second scenario, the Receiver may send faulty acknowl-
edgements without receiving the bit first. It is possible to verify with MCMAS the key
specification of the protocol still holds in the first case, but it fails in the second. More
complex specifications, referring explicitly to violations in the local behaviours, can
also be verified.

Strategic games: a simple card game. This example is presented in [8] and in [9]:
an agent (the player) plays a simple card game against another agent, the environment.
There are just three cards in the deck: Ace (A), King (K), and Queen (Q); A wins over

K, K wins over Q, and Q wins over A. In the initial state no cards are distributed; in
the first step, the environment gives a card to the player and takes a card for itself. In
the second step, the player can either keep its card, or change it. The following ATL
formula can be checked by MCMAS: 〈〈player〉〉F (win).
The formula expresses that the player may always bring about a winning state, by ran-
domly selecting the correct action. In addition to this, MCMAS supports an operator that
considers only feasible strategies in the sense of [9, 8]. These are strategies that cannot
be “guessed”. MCMAS correctly verifies that in this example the player does not have a
feasible strategy to win.

Anonymity example: the protocol of the dining cryptographers. The protocol of
the dining cryptographers is introduced in [3] to describe a scenario in which informa-
tion is exchanged anonymously. The scenario consists of three cryptographers having
dinner at a restaurant. When the waiter informs them that the charge has been covered
already, they would like to find out whether it is one of them, or the company they
work for who paid for it. In order to guarantee the anonymity of the payer (in case it is
one of them), they proceed as follows: each of them flips a coin behind a menu on the
right hand side of his dish and observes this coin and the coin at his left (flipped by an-
other cryptographer). If the cryptographer did not pay for the dinner, then he announces
whether the two coins he can see are equal or different. However, if the cryptographer
paid for the dinner, he says the opposite of what he sees. It is possible to check that, if
a cryptographer did not pay for the dinner and he hears an odd number of “different”
utterances, then he knows that one of the remaining cryptographers paid for the dinner,
but he cannot say who. This property is captured by the following formula:
(¬paid1 ∧ odd) → AX(KC1

(paid2 ∨ paid3) ∧ ¬KC1
(paid2) ∧ ¬KC1

(paid3))
Notice that the same protocol works for any number of cryptographers greater or equal
than three, thereby allowing for an evaluation of the scalability of MCMAS. The ISPL
code for various instances of the protocol, including some in which cheating cryptogra-
phers are introduced, is available form [14].

5 Discussion
Differently from previous approaches [2], MCMAS does not involve the translation nor
the reduction of the model checking problem for MAS to other available model check-
ers. Our technique is based on OBDDs but, differently from [6], we consider various
modalities on top of the epistemic and the temporal ones, and our semantics does not
assume perfect recall. The tool presented in [12] allows for the verification of tempo-
ral, epistemic, and correct behaviour operators but, differently form MCMAS, it uses
bounded and un-bounded techniques, and it has a different input language.

Average experimental results for the example of the dining cryptographers on a 2.8
GHz Pentium 4 running Linux 2.4.20 with 1 Gbytes of RAM are presented in Table 1.
We see these results as encouraging, considering that optimisation techniques have not
been included in MCMAS yet, and that the code is currently under active development.
In particular, we aim at including fairness constraints in the verification process, and
counter-example generation for false formulae.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of
the ACM, 49(5):672–713, 2002.

N.Crypt. States (n. bool var) OBDDs nodes Memory (MBytes) Time (sec)
3 ≈ 7 · 1013(47) ≈ 104

≈ 4.4 0.37
4 ≈ 2 · 1018(63) ≈ 6 · 104

≈ 5.2 3.9
5 ≈ 2 · 7.522(77) ≈ 8 · 104

≈ 5.6 12.6
6 ≈ 1.2 · 1027(91) ≈ 1.6 · 105

≈ 7.1 64.5
7 ≈ 2 · 1031(105) ≈ 1.7 · 105

≈ 7.5 168.8
8 ≈ 1.3 · 1036(121) ≈ 1.2 · 107

≈ 450 28788
Table 1. Experimental results.

2. R. Bordini, M. Fisher, C. Pardavila, W. Visser, and M. Wooldridge. Model checking multi-
agent programs with CASP. In Proceedings of the 15th International Conference on Com-
puter Aided Verification (CAV’03), volume 2725 of LNCS, pages 110–113. Springer-Verlag,
2003.

3. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology, 1(1):65–75, 1988.

4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

5. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press,
Cambridge, 1995.

6. P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge. In
Proceedings of 16th International Conference on Computer Aided Verification (CAV’04),
volume 3114 of LNCS, pages 479–483. Springer-Verlag, 2004.

7. W. van der Hoek and M. Wooldridge. Tractable multiagent planning for epistemic goals.
In M. Gini, T. Ishida, C. Castelfranchi, and W. L. Johnson, editors, Proceedings of the First
International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’02),
pages 1167–1174. ACM Press, 2002.

8. W. Jamroga and W. van der Hoek. Agents that know how to play. Fundamenta Informaticae,
62:1–35, 2004.

9. G. Jonker. Feasible strategies in alternating-time temporal epistemic logic. Master’s thesis,
University of Utrech, The Netherlands, 2003.

10. A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63–92, 2003.
11. A. Lomuscio and M. Sergot. A formalisation of violation, error recovery, and enforcement

in the bit transmission problem. Journal of Applied Logic, 2(1):93–116, March 2004.
12. W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, and M. Szreter. VerICS 2004:

A model checker for real time and multi-agent systems. In Proceedings of the Interna-
tional Workshop on Concurrency, Specification and Programming (CS&P’04), volume 170
of Informatik-Berichte, pages 88–99. Humboldt University, 2004.

13. W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems via
bounded model checking. In Proceedings of the Second International Joint Conference on
Autonomous Agents and Multi-agent systems (AAMAS’03), pages 209–216. ACM, 2003.

14. F. Raimondi and A. Lomuscio. MCMAS - A tool for verification of multi-agent systems.
http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/.

15. F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by model
checking via OBDDs. Journal of Applied Logic, 2005. To appear in Special issue on Logic-
based agent verification.

16. F. Somenzi. CUDD: CU decision diagram package - release 2.4.0. http:/ /vlsi.colorado.edu/
∼fabio/CUDD/cuddIntro.html.

