
Bounded Model Checking for Knowledge and

Real Time

Alessio Lomuscio a,1 Wojciech Penczek b,2 Bożena Woźna c,3

aDepartment of Computing, Imperial College London
180 Queen’s Gate, London SW7 2BZ, United Kingdom

e-mail: A.Lomuscio@imperial.ac.uk
bInstitute of Computer Science, PAS, Ordona 21, 01-237 Warsaw, and

Institute of Informatics, Podlasie Academy, Sienkiewicza 51, Siedlce, Poland
e-mail: penczek@ipipan.waw.pl

cInstitute of Mathematics and Computer Science, Jan Dlugosz University
Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland

e-mail: b.wozna@ajd.czest.pl

Abstract

We present TECTLK, a logic to specify knowledge and real time in multi-agent
systems. We show that the TECTLK model checking problem is decidable, and we
present an algorithm for bounded model checking based on a discretisation method.
We exemplify the use of the technique by means of the “Railroad Crossing System”,
a popular example in the multi-agent systems literature.

Key words: Temporal epistemic logics, model checking, interpreted systems, real
time systems.

1 The author acknowledges partial support from the EPSRC (grant GR/S49353).
2 The author acknowledges partial support from the Royal Society (grant ESEP
2004/R3-EU).
3 The research presented here was conducted while B. Woźna was supported by
EPSRC (grant GR/S49353). The author also acknowledges partial support from
the Ministry of Science and Information Society Technologies under grant number
3 T11C 011 28.

Preprint submitted to Elsevier Science 2 April 2007

1 Introduction

Reasoning about knowledge [9] has always been a core concern in artificial
intelligence. This is hardly surprising given that knowledge is a key concept
to model intelligent, rational activities, human or artificial. A plethora of for-
malisms have been proposed and refined over the years, many of them based on
formal logic. One of the most widely studied is based on variants of modal log-
ics and is commonly referred to as temporal epistemic logic [9]. Rather than
providing a computational engine for artificial agents’ reasoning, epistemic
logic, at least in this line, is seen as a specification language for modelling and
reasoning about systems, much in common with formal methods in computer
science. Formal properties of the logics such as completeness, decidability and
complexity have been explored [13, 12, 20, 10].

Specification languages are most useful when they can be verified automati-
cally. In this effort both theorem proving and model checking techniques as
well as tools for epistemic logic have been developed. In the model checking
approach the question of whether or not a system of agents S satisfies a prop-
erty P is tackled by trying to establish whether or not MS |= φP , where MS is
a suitable model for S and φP is an appropriate logical formula representing
P ; we refer to [8] for more details.

In particular, for what concerns temporal epistemic logic, model checking tech-
niques based on BDD [26, 29], bounded model checking [23], unbounded model
checking [16] have been developed and their implementation either publicly
released [26, 11] or made available via a web-interface [22].

While, one could now argue that verification via model checking of temporal
epistemic logic has now become of age, in many respects the area is still lacking
support for many essential functionalities. One of these is real-time. While the
formalisms above deal with discrete sequence of events, it is often of both
theoretical and practical interest to refer to a temporal model that assumes a
dense sequence of events and uses operators able to represent dense temporal
intervals. The aim of this work is to make a first step in this direction. In
particular, recent contributions have focused on extending model checking
techniques and tools [14, 23, 25, 26, 28, 32], to adapt them to the needs of
multi-agent systems (MAS) formalisms [6, 9, 14, 15].

Specifically, we make two contributions: first we present a logic, that we call
TECTLK, to reason about real time and knowledge in MAS; second, we
present a bounded model checking technique for verifying automatically prop-
erties of multi-agent systems expressed in this logic.

The rest of the paper is organised as follows. The next section defines Real
Time Interpreted Systems, the semantics on which we work with throughout

2

the paper. In Section 3 the logic TECTLK is introduced. Section 4 deals with
the discretisation process necessary for the bounded model checking algorithm,
discussed in Section 5. Section 6 shows how this method can be applied to
the “railroad crossing system”, a typical multi-agent system example of time
dependent systems. We conclude in Section 7 by discussing some related work.

2 Real Time Interpreted Systems

In this section we briefly recall the concept of timed automata, which were
introduced in [2], and define Real Time Interpreted Systems.

2.1 Timed Automata

Let IR = [0,∞) be a set of non-negative real numbers, IR+ = (0,∞) a set of
positive real numbers, IN = {0, 1, . . .} a set of natural numbers, X a finite set
of real variables, called clocks, x ∈ X , c ∈ IN, and ∼ ∈ {≤, <,=, >,≥}. The
clock constraints over X are defined by the following grammar:

cc := true | x ∼ c | cc ∧ cc.

The set of all the clock constraints over X is denoted by C(X). Note that
inequalities involving differences of clocks are not in C(X).

A clock valuation on X is a tuple v ∈ IR|X |. The value of the clock x in v is
denoted by v(x). For a valuation v and δ ∈ IR, v + δ denotes the valuation
v′ such that for all x ∈ X , v′(x) = v(x) + δ. For a subset of clocks X ⊆ X ,
v[X := 0] denotes the valuation v′ such that v′(x) = 0 for all x ∈ X, and
v′(x) = v(x) for all x ∈ X\X. The satisfaction relation |= for a clock constraint
cc ∈ C(X) and v ∈ IR|X | is defined inductively as follows:

v |= true,

v |= (x ∼ c) iff v(x) ∼ c,

v |= (cc ∧ cc′) iff v |= cc iff v |= cc′.

For a clock constraint cc ∈ C(X), by [[cc]] we denote the set of all the clock
valuations satisfying cc, i.e., [[cc]] = {v ∈ IR|X | | v |= cc}.

Definition 1 (Timed automaton) A timed automaton is a tuple TA = (Z,
L, l0, E,X , I), where Z is a finite set of actions, L is a finite set of locations,
l0 ∈ L is an initial location, X is a finite set of clocks, E ⊆ L×Z×C(X)×2X×L
is a transition relation, and I : L → C(X) is a location invariant function,
assigning to each location l ∈ L a clock constraint defining the conditions
under which TA may stay in l.

3

Each element e of E is denoted by l
a,cc,X
−→ l′, where l is the source location, l′

is the target location, a is an action, cc is the enabling condition for e, and
X ⊆ X is the set of clocks reset when performing e.

The clocks of a timed automaton are used to express its timing conditions.
We differentiate between enabling conditions and invariant conditions. An en-
abling condition is a temporal constraint which must be satisfied for the tran-
sition to occur. An invariant condition I(l) specifies the temporal constraint
that must be satisfied for the automaton to remain in l.

t0

t3 t2

t1
x ≤ 500

x ≤ 500x ≤ 500

x ≤ 500

approach
x := 0

in
x ≥ 300

out

exit

Fig. 1. A Timed Automaton.

Example 1 Figure 1 shows a timed automaton consisting of four locations: t0,
t1, t2, and t3, where t0 is the initial location, one clock x, the set of actions Z =

{approach, in, out, exit}, and the following transitions: t0
approach,true,{x}

−→ t1,

t1
in,x≥300,∅
−→ t2, t2

out,true,∅
−→ t3, and t3

exit,x≤500,∅
−→ t0. The invariant of the location t0

is true, whereas all the others locations are labelled with the invariant x ≤ 500.
Intuitively, the example models a system starting from t0 and moving to t1 by
the action “approach” thereby causing the clock to be reset. The automaton
must then execute the action “in” between the clock values of 300 and 500,
thereby reaching location t2. From t2 the action “out” must be performed
before the clock reaches the value of 500 resulting in t3. From t3 the action
“exit” must be performed before the clock reaches the value of 500 resulting
in t0. Note that the enabling condition in t3 is in this case redundant.

We take a timed-automaton as a fine-grained model of a real-time agent. A
(real-time) multi-agent system will be defined as a set of communicating timed
automata combined via parallel composition into a global timed automaton.
In the composition the transitions not corresponding to a shared action are
interleaved, whereas the transitions labelled with a shared action are synchro-
nised. Several definitions of parallel composition exist. Here we use multi-way
synchronisation [27], i.e., we require that each component with a communica-
tion transition (labelled by a shared action) has to perform this action when
the global transition occurs.

Formally, let TAi = (Zi, Li, l
0
i , Ei,Xi, Ii) be a timed automaton for i = 1, . . . , m,

4

Li ∩ Lj = ∅ for all i, j ∈ {1, . . . , m} and i 6= j, and let Z(a) = {1 ≤ i ≤ m |
a ∈ Zi} denote the set of indices of the timed automata whose sets of actions
contain the action a. The parallel composition is defined as follows.

Definition 2 (Parallel composition) A parallel composition of m timed
automata TAi is a timed automaton TA = (Z, L, l0, E,X, I), where Z =⋃m
i=1 Zi, L =

∏m
i=1 Li, l

0 = (l01, . . . , l
0
m), X =

⋃m
i=1 Xi, I(l1, . . . , lm) =

∧m
i=1 Ii(li).

Each global transition is such that

((l1, . . . , lm), a, cc, X, (l′1, . . . , l
′
m)) ∈ E iff (∀i ∈ Z(a))(li, a, cci, Xi, l

′
i) ∈ Ei,

cc =
∧
i∈Z(a) cci, X =

⋃
i∈Z(a)Xi, and (∀j ∈ {1, . . . , m} \ Z(a)) l′j = lj.

Note that the agents for which no communication action is available remain
in the same location when this synchronisation action is performed.

Train

t3 t2

t1
p

x ≤ 500

x ≤ 500x ≤ 500

approach
x := 0

in
x ≥ 300

out

exit
x ≤ 500

Gate

g0

g3 g2

g1
y ≤ 100

y ≤ 200

lower
y := 0

down
y ≤ 100

q

y := 0
raise

up
100 ≤ y ≤ 200

Controller

c2

c0

c3

c1
z ≤ 100

approach
z := 0

lower
z = 100

z ≤ 100 z := 0
exit

raise
z ≤ 100

Fig. 2. Timed Automata for Train, Gate, and Controller.

1,0,1

1,3,1

0,3,0

1,1,2

2,0,1

2,3,1

1,2,2

2,1,2

3,0,1

3,3,1

2,2,2

3,1,2

0,1,3

0,2,3

3,2,2
0,0,0

y ≤ 200
z ≤ 300

x ≤ 500

x ≤ 500

x ≤ 500

x ≤ 500

x ≤ 500

x ≤ 500

x ≤ 500

x ≤ 500

x ≤ 500

y ≤ 200

y ≤ 200

y ≤ 200

y ≤ 100

y ≤ 100

y ≤ 100

z ≤ 100

z ≤ 100

z ≤ 100

z ≤ 100

z ≤ 100

z ≤ 100

z ≤ 100

x ≤ 800

y ≤ 200
z ≤ 100

x ≤ 500

x ≤ 500

y ≤ 100

x ≤ 500

up

out

approach
true

x=z=0

lower
z=100, y=0

down
y ≤ 100

in

true

y ≤ 100
down

in

in

up

approach
x=z=0

in
x ≥ 300

lower
z=100, y=0

lower
z=100, y=0

down

up
out

out

out

true

true

true

up

y ≤ 100
down

exit

z = 0

exit

z = 0

z ≤ 100
y = 0

raise

100 ≤ y ≤ 200

100 ≤ y ≤ 200

100 ≤ y ≤ 200

100 ≤ y ≤ 200

x ≤ 500

x ≥ 300

x ≥ 300

x ≥ 300

y ≤ 100

x ≤ 500

Fig. 3. The parallel composition of Train, Gate, and Controller.

Example 2 As an example of parallel composition let us consider the well-
known railroad crossing system (RCS) [17]. The system consists of three timed

5

automata: Train, Gate and Controller, as shown in Figure 2. The automaton
Train is modelled via the timed automaton considered in Example 1. The
automaton Gate consists of four locations: g0, g1, g2, and g3, one initial lo-
cation g0, one clock y, the set of actions Z = {lower, down, raise, up}, and

the following transitions: g0
lower,true,{y}

−→ g1, g1
down,y≤100,∅

−→ g2, g2
raise,true,{y}

−→ g3,

g3
up,100≤y≤200,∅

−→ g0. The invariant of the locations g0 and g2 is true, whereas
the locations g1 and g3 are labelled with the invariant y ≤ 100 and y ≤
200, respectively. The automaton Controller consists of four locations: c0,
c1, c2, and c3, one initial location c0, one clock z, the set of actions Z =

{approach, lower, exit, raise}, and the following transitions: c0
approach,true,{z}

−→

c1, c1
lower,z=100,∅

−→ c2, c2
exit,true,{z}

−→ c3, c3
raise,z≤100,∅

−→ c0. The invariant of the
locations c0 and c2 is true, whereas the locations c1 and c3 are labelled with
the invariant z ≤ 100.

The automata Train, Gate, and Controller synchronise through the actions:
approach, exit, lower and raise, and their parallel composition (known as the
RCS system) is shown in Figure 3. The locations of RCS are given by triples
(i, j, k) whose elements represent that Train, Gate, and Controller are at lo-
cations ti, gj and ck, for i, j, k ∈ {0, 1, 2, 3}, respectively. The initial location
of RCS is represented by the triple (0, 0, 0), whereas the invariants of all the
locations of RCS are the conjunction of the invariants of the three components.

2.2 Timed Automata

We use timed automata to interpret a logical language for real time and knowl-
edge.

Let TA = (Z, L, l0, E,X, I) be a timed automaton. An instantaneous state of
TA is a pair (l, v), where l ∈ L and v ∈ IR|X |.

Definition 3 The dense state space of TA is a tuple (L× IR|X |, q0,→), where
L×IR|X | is a set of all the instantaneous states, q0 = (l0, v0) is the initial state
such that v0(x) = 0 for all x ∈ X and v0 ∈ [[I(l0)]], and → ⊆ (L × IR|X |) ×
(Z ∪ IR) × (L× IR|X |) is the transition relation, defined by:

• Action transition: for a ∈ Z, (l, v)
a
→ (l′, v′) iff (∃cc ∈ C(X))(∃X ⊆ X)

such that l
a,cc,X
−→ l′ ∈ E, v ∈ [[cc]], v′ = v[X := 0], and v′ ∈ [[I(l′)]],

• Time transition: for δ ∈ IR, (l, v)
δ
→ (l, v + δ) iff v, v + δ ∈ [[I(l)]].

Intuitively, an action transition corresponds to an action performed by the au-
tomaton under consideration. Following this, its location changes accordingly,
and all the clocks that are associated with the action are set to zero (i.e., the

6

ones which belong to the set X ⊆ X). Obviously, the action can be performed
only if the underling enabling condition is satisfied. A time transition does not
involve a location change, but an equal increase in the value of all the clocks,
provided that the new clock valuations still satisfy all the location invariants.

For (l, v) ∈ L× IR|X |, let (l, v) + δ denote (l, v+ δ). A q0-run ρ of TA is a finite
or infinite sequence of instantaneous states:

q0
δ0→ q0 + δ0

a0→ q1
δ1→ q1 + δ1

a1→ q2
δ2→ . . .

such that qi ∈ L × IR|X |, ai ∈ Z, δ0 ≥ 0, and δi ∈ IR+ for each i ∈ IN \ {0}.
For the q0-runs we require that δ0 ∈ IR+. In other words, a run is a finite or
infinite path of TA, where action transitions are taken (in)finitely often and
time transitions are aggregated. Notice that the semantics does not permit
two consecutive action transitions to be performed one after the other, i.e.,
between each two action transitions some time must pass. This is a convenient
way of representing a series of events to be taken in a continuous time.

Example 3 Given the automaton shown in Figure 3, let (l, v) be an instan-
taneous state of the automaton such that l = (i, j, k) for i ∈ {0, 1, 2, 3}
and v = (v(x), v(y), v(z)). One of the possible q0−runs is the following:

((0, 0, 0)(0, 0, 0))
50
→ ((0, 0, 0), (50, 50, 50))

approach
→ ((1, 0, 1), (0, 50, 0))

100
→

((1, 0, 1), (100, 150, 100))
lower
→ ((1, 1, 2), (100, 0, 100))

30.5
→

In line with much of the literature of the area we make the assumption that
agents run continuously without termination. In a real-time context this re-
quirement is normally expressed by distinguishing between discrete progress
and time progress. Under discrete progress we allow for action transitions to
happen infinitely often, that is, no instantaneous state occurs without action
successors. Under time progress one assumes that time may pass without an
upper bound; this is usually formalised by the notion of non-zeno runs.

Formally, an infinite run ρ is said to be non-zeno iff Σi∈INδi is unbounded.
An infinite run ρ is said to be zeno iff Σi∈INδi is bounded by some real
value. As an example, consider the automaton shown in Figure 4. Its q0-

run (q0, 0)
1
→ (q0, 1)

a
→ (q0, 1)

0.5
→ (q0, 1.5)

a
→ (q0, 1.5)

0.25
→ (q0, 1.75)

a
→

(q0, 1.75)
0.125
→ (q0, 1.875)

a
→ (q0, 1.875)

0.0625
→ . . . is zeno. On the other hand

the following q0-run (q0, 0)
1
→ (q0, 1)

b
→ (q1, 1)

1
→ (q1, 2)

c
→ (q1, 0)

2
→ (q1, 2)

c
→

(q1, 0)
2
→ (q1, 2)

c
→ . . . is non-zeno.

q0 q1b

a c,x := 0

x := 0
x ≤ 2 x ≤ 2

Fig. 4. An example of non-zeno and zeno runs.

7

We say that TA is time-progressive iff all its q0-runs are non-zeno. For ease of
presentation, we consider only time-progressive timed automata.

2.3 Real Time Interpreted Systems

We used timed-automata as a fine-grained semantics to reason about real
time multi-agent systems. Technically we construct real-time traces generated
by communicating automata upon which we interpret a temporal epistemic
language. The standard (discrete time) semantics for temporal epistemic lan-
guages is the one of interpreted systems [9]. Here we introduce a real time
version of them. First, in line with [1], we partition the set of clock valuations.

Let TA be a timed automaton, C(TA) ⊆ C(X) be a non-empty set contain-
ing all the clock constraints occurring in all enabling conditions used in the
transition relation E and all state invariants of TA. Moreover, let cmax be the
largest constant appearing in C(TA) and let fr(σ) (respectively ⌊σ⌋), σ ∈ IR,
denote the fractional (respectively integral part) of σ. We define an equivalence
relation ≃ in the set of all the clock valuations as follows.

Definition 4 ([1]) For two clock valuations v, v′ ∈ IR|X |, v ≃ v′ if and only
if the following conditions are met:

1. For all x ∈ X , v(x) > cmax iff v′(x) > cmax,
2. For all x, y ∈ X , if v(x) ≤ cmax and v(y) ≤ cmax then

a.) ⌊v(x)⌋ = ⌊v′(x)⌋,
b.) fr(v(x)) = 0 iff fr(v′(x)) = 0, and
c.) fr(v(x)) ≤ fr(v(y)) iff fr(v′(x)) ≤ fr(v′(y)).

In other words the valuations are equivalent if they return values greater than
cmax for the same x and when their integral part is the same for any x, and
the fractional parts are either both nil or preserve the order of any two clock
values (see Figure 5 for an example).

The relation ≃ partitions IR|X | into zones, denoted by Z, Z ′, and so on. We
will denote the set of all the zones by Z(|X |).

Let AG be a set of m agents such that each agent is modelled by a timed au-
tomaton TAi = (Zi, Li, l

0
i , Ei,Xi, Ii), for i = 1, . . . , m, TA = (Z, L, l0, E,X, I)

the parallel composition of all the agents, and li : L → Li be a function re-
turning the location of agent i in a global location. Moreover, we take PV i to
be a set of propositional variables containing the constant true (denoted by
⊤) such that PV i ∩ PV j = ∅ for all i, j ∈ {1, . . . , m}, and PV =

⋃m
i=1 PV i. In

order to reason about multi-agent systems, where each agent is represented
by a timed automaton, we assume the existence of a (local) valuation function

8

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

10

1

Fig. 5. Equivalence of clock valuations for two clocks with cmax = 1.

VTAi
: Li → 2PVi for each agent i. We further require that ⊤ ∈ VTAi

(l) for
each l ∈ Li. The (global) valuation function VTA : L → 2PV for the parallel
composition, is defined by VTA((l1, . . . , lm)) =

⋃m
i=1 VTAi

(li). Given this, a real
time interpreted system is defined as follows.

Definition 5 (Real Time Interpreted System) A real time interpreted
system is a tuple M = (Q, q0,→,∼1, . . . ,∼m,V), where:

• Q is a subset of L× IR|X | such that all the instantaneous states in Q are
reachable 4 .

• q0, and → are defined as in Definition 3.
• ∼i ⊆ Q × Q is an (equivalence) relation defined by (l, v) ∼i (l′, v′) iff
li(l) = li(l

′) and v ≃ v′, for each agent i.
• V : Q→ 2PV is a valuation function such that V((l, v)) = VTA(l).

In line with [9] and related literature ∼i is an epistemic accessibility relation.
Two states are related for agent i if, according to all the information the agent
has available these two states cannot be distinguished; in other words the two
states are locally identical for agent i. In (discrete time) interpreted systems
the definition of ∼i is based on the equality of the local states for agent i in the
two global states. The definition we propose here extends that by assuming
that not only the local locations of the agents are the same, but also the two
clock valuations are in the same zone. In other words we assume the zones
of the clock valuations to be visible to agent i: if two states have the same
location but differ in the clock zone the agent is able to distinguish them, and,
consequently, the states will not be in the same equivalence class induced by
∼i.

4 An instantaneous state q ∈ L × IR|X | is reachable iff there is a q0−run ρ in TA
such that there exists an instantaneous state in ρ equal to q.

9

3 The Logic TECTLK

To reason about MAS, we introduce TECTLK, a logic for knowledge and
real time that is the fusion [5] of the two underlying languages: an existential
fragment of TCTL for branching real time [1] and S5n for the knowledge
operators. Obviously, defining the fusion with the full TCTL would not be
problematic [31], but we use here the fragment only because it is more suited
for the model checking method that is defined later on in the paper.

3.1 Syntax

Let PV be a set of propositional variables containing the symbol ⊤ that rep-
resents the constant true, AG a set of m agents, and I an interval in IR with
integer bounds of the form [n, n′], [n, n′), (n, n′], (n, n′), (n,∞), and [n,∞),
for n, n′ ∈ IN. Let p ∈ PV , i ∈ AG, and Γ ⊆ AG. The set of TECTLK

formulae is defined by the following grammar:

ϕ := p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | E(ϕUIϕ) | E(ϕRIϕ) | Kiϕ | DΓϕ | EΓϕ | CΓϕ.

As customary the formula E(ϕUIψ) is read as “there exists a computation in
which ϕ holds until, in the interval I, ψ holds”. R is the operator for “Release”;
E(ϕRIψ) represents “there exists a computation in which either ψ holds until,
in the interval I, both ψ and ϕ hold, or ψ always holds in the interval I”.
Ki is the dual for the standard epistemic modality, so Kiϕ is read as “agent i
considers ϕ as possible”. Similarly, the modalities DΓ,EΓ,CΓ are the diamonds
for DΓ,EΓ,CΓ representing distributed knowledge in the group Γ, “everyone
in Γ knows”, and common knowledge among agents in Γ.

The other basic temporal modalities can be introduced as usual: EGIϕ
def
=

E(⊥RIϕ), and EFIϕ
def
= E(⊤UIϕ). Moreover, ⊥

def
= ¬⊤, α → β

def
= ¬α ∨ β,

and α↔ β
def
= (α→ β) ∧ (β → α).

3.2 Semantics

Let AG be a set of m agents such that each agent is modelled by a timed
automaton TAi = (Zi, Li, l

0
i , Ei,Xi, Ii). Further, let TA = (Z, L, l0, E,X, I) be

the parallel composition of the agents and fTA(q) denote the set of all q-runs
for TA, that is, the set of all the runs in TA that start at the state q. In order
to give a semantics to TECTLK, we introduce the notion of a dense path πρ

corresponding to a q0-run ρ = q0
δ0→ q0 + δ0

a0→ q1
δ1→ q1 + δ1

a1→ q2
δ2→ Let

idx(ρ, r) be the greatest i ∈ IN such that Σi−1
j=0δj ≤ r. Notice that for i = 0 we

let Σi−1
j=0δj = 0. So, for r ≤ δ0, idx(ρ, r) = 0. A dense path πρ corresponding to

10

ρ is a mapping from IR to the set of states Q such that πρ(r) = qi + r−Σi−1
j=0δj

where i = idx(ρ, r). This can be done in a unique way because we assume that
runs of a TA do not contain two consecutive action transitions.

Moreover, for the group modalities we also, as customary, define the following.

If Γ ⊆ AG, then ∼E
Γ
def
=

⋃
i∈Γ ∼i, ∼

C
Γ
def
= (∼E

Γ)+ (the transitive closure of ∼E
Γ),

and ∼D
Γ
def
=

⋂
i∈Γ ∼i.

Definition 6 (Satisfaction) Let M = (Q, q0,→,∼1, . . . ,∼m,V) be a real
time interpreted system. M, q |= α denotes that α is true at state q in M . M
is omitted, if it is implicitly understood. The satisfaction relation |= is defined
inductively as follows:

q |= p iff p ∈ V(q),

q |= ¬p iff p /∈ V(q),

q |= ϕ ∨ ψ iff q |= ϕ or q |= ψ,

q |= ϕ ∧ ψ iff q |= ϕ and q |= ψ,

q |= E(ϕUIψ) iff (∃ ρ ∈ fTA(q))(∃r ∈ I)(πρ(r) |= ψ and (∀r′ < r) πρ(r
′) |= ϕ),

q |= E(ϕRIψ) iff (∃ ρ ∈ fTA(q))(∀r ∈ I)(πρ(r) |= ψ or (∃r′ < r) πρ(r
′) |= ϕ),

q |= Kiα iff (∃q′ ∈ Q)(q ∼i q
′ and q′ |= α),

q |= DΓα iff (∃q′ ∈ Q)(q ∼D
Γ q′ and q′ |= α),

q |= EΓα iff (∃q′ ∈ Q)(q ∼E
Γ q′ and q′ |= α),

q |= CΓα iff (∃q′ ∈ Q)(q ∼C
Γ q′ and q′ |= α).

Some examples of TECTLK formulae holding at state q of a real time inter-
preted system are shown in Figure 6.

A TECTLK formula ϕ is satisfiable iff there exists a real time interpreted
system M = (Q, q0,→, ∼1, . . . ,∼m,V) and an instantaneous state q of M
such that M, q |= ϕ. A TECTLK formula ϕ is valid on M (denoted M |= ϕ)
iff M, q0 |= ϕ, i.e., ϕ is true at the initial state of M ; we use the term model
checking problem to denote the problem of checking validity of ϕ when M is
given explicitly 5 .

Note that the “full” logic of branching real time, i.e., TCTL, is undecidable
[1] (in the sense that its theoremhood problem is undecidable). Since real time

5 Note that some authors have recently used the term “model checking problem”
only to refer to situations when M is given implicitly by means of a dedicated
(programming) language.

11

����������
����������
����������
����������

1 2 3 time
[2,3]

q

βα

q |= E(αU[2,3]β)

�����
�����
�����

�����
�����
�����

1 2 3 time
[2,3]

q

β

q |= E(αR[2,3]β)

������
������
������
������

�
�
�
�

�
�
�

�
�
�

1 2 3 time
[2,3]

q

β α ∧ β

q |= E(αR[2,3]β)

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��������������������

epistemic relations for:

agent b
agent a

q

α

q |= Kaα

Fig. 6. Examples of TECTLK formulae which hold at state q of a real time inter-
preted system.

interpreted systems can be shown to be as expressive as the TCTL structure of
a time graph in [1], and the fusion [5] between TCTL and S5 for knowledge
is a proper extension of TCTL, it follows that problem of satisfiability for
the full fusion is also undecidable. Still, the decidability of TECTL is not
known; if TECTL were decidable, it would be straightforward to show that
TECTLK is also decidable on real time interpreted systems. In fact, we do
not have decidability results for the satisfiability problem for TECTLK, but
for our application purposes, we are interested in the model checking problem
for TECTLK, and this can be shown to be decidable (see Lemma 1).

Lemma 1 Given a real time interpreted system M and a TECTLK formula
ϕ, there is a decision procedure for checking whether or not M satisfies ϕ.

Proof: The correctness of the lemma follows from Lemma [correctness of the
labelling algorithm] in [1] and Proposition 3.2.1 in [9]. ⊓⊔

4 Epistemic Region Graph and Its Discretisation

Any real time interpreted system is dense and hence infinite. To perform model
checking efficiently, we consider an appropriately generated finite version of it.
In particular we use an epistemic region graph (ERG), defined as an extension
of the region graph [1] augmented to include the relation ∼i, for each agent
i ∈ AG.

12

Let AG be a set of m agents, where each agent is modelled via a timed au-
tomaton and TA = (Z, L, l0, E,X , I) the parallel composition of them. The
epistemic region graph for the timed automaton TA is a tuple

Mrg = (S, ι,→rg,∼
rg
1 , . . . ,∼

rg
m ,Vrg)

where

• S ⊆ L×Z(|X |) is a set of reachable states, called regions; note that each
element of S is a pair (l, Z) where l is a location and Z is a zone.

• ι = (l0, Z0) is the initial region, where Z0 = {v0}; recall that v0(x) = 0,
for all x ∈ X ,

• →rg⊆ S × (Z ∪ {τ}) × S is defined by:
· Time transition: (l, Z)

τ
→rg (l, Z ′) iff there exist v ∈ Z and v′ ∈ Z ′

such that
a.) (l, v)

δ
→ (l, v′) for some δ ∈ IR+, and

b.) if (l, v)
δ′
→ (l, v′′)

δ′′
→ (l, v′) and (l, Z ′′) ∈ S for some Z ′′ such that

v′′ ∈ Z ′′, then either v ≃ v′′ or v′′ ≃ v′, and
c.) if v ≃ v′, then v ≃ v′ + δ′′ for each δ′′ ∈ IR.

· Action transition: For any a ∈ Z, (l, Z)
a
→rg (l′, Z ′) iff the following

conditions hold:
a.) (l, Z) is not boundary 6 and
b.) either there exist v ∈ Z and v′ ∈ Z ′ such that (l, v)

a
→ (l′, v′)

or there exist Z ′′ and v′′ ∈ Z ′′ such that (l, Z)
τ
→rg (l, Z ′′) and

(l, v′′)
a
→ (l′, v′).

• ∼rg
i ⊆ S × S is a relation defined by (l, Z) ∼i (l′, Z ′) iff li(l) = li(l

′) and
Z = Z ′, for each agent i. Obviously ∼i is an equivalence relation.

• Vrg : S → 2PV is a valuation function that extends VTA as follows
Vrg((l, Z)) = VTA(l).

An illustration of the above definition of the action and time transition relation
is shown in Figure 7.

The following lemma guarantees that the epistemic region graph preserves
validity of TECTLK formulae.

Lemma 2 Let AG be a finite set of agents modelled by timed automata, TA =
(Z, L, l0, E,X , I) their parallel composition, VTA a valuation function for TA,
and M the real time interpreted system for TA. Further, let l ∈ L, and v, v′ ∈
IR

|X |
+ with v ≃ v′. Then, for every TECTLK formula ϕ, M, (l, v) |= ϕ iff

M, (l, v′) |= ϕ.

Proof: The proof of the lemma follows directly from Lemma of equivalence
of clock valuations ([1]) and the definition of the accessibility relation ∼i for

6 A region (l, Z) is boundary if for each δ ∈ IR, v ∈ Z, ¬(v ≃ v + δ).

13

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���
���
���
���

���
���
���
���

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

1

0 1 x

y

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����
����
����
����

�������
�������
�������
�������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

����
����
����
����

�������
�������
�������
�������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

l× �������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���
���
���
���

���
���
���
���

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���

���
���
���
���

1

0 1 x

y

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����
����
����
����

�������
�������
�������
�������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

����
����
����
����

�������
�������
�������
�������

l×

Time transitions Action transitions

by transition l
a,true,{x}
−→ l

Fig. 7. Time and action transitions in an epistemic region graph.

each agent. ⊓⊔

In Section 5 we define a bounded model checking (BMC) technique to ver-
ify TECTLK properties of real time interpreted systems. The BMC method
relies on a symbolic encoding of the transition relations of the real time inter-
preted system under consideration as Boolean formulae. But, given Lemma 2,
it is sufficient to define Boolean formulae that encode the transition relations
of the epistemic region graph only. To perform this task we will discretise
the state space by using a discretisation method described in [33] and shortly
reported below.

4.1 Discretisation

Let TA = (Z, L, l0, E,X , I) be a timed automaton, ϕ a TECTLK formula,
and cmax(ϕ) the largest constant appearing in C(TA) and in any interval of
the temporal operators in ϕ. We choose ∆ = 1/2⌈log2(2|X |)⌉ as the discretisation
step 7 , and we define a discretised clock space D

|X | with

D = {k∆ | 0 ≤ k∆ ≤ 2cmax(ϕ) + 2, k ∈ IN}.

Note that the clocks do not go beyond 2cmax(ϕ) + 2. This is because while
evaluating TECTLK formula ϕ over timed automata we do not need to
distinguish between clock valuations above cmax(ϕ)+1. Therefore, the maximal
values of time delays can be restricted to cmax(ϕ) + 1, and the set of values
that can change a valuation in a zone can be defined as

E = {k∆ | 0 ≤ k∆ < cmax(ϕ) + 1}.

7 A different discretisation step is also possible, but the one reported here is con-
venient for the model checking method described later on.

14

Next, we take a subset U
|X | of D

|X | that allows us to preserve the time tran-
sitions of the epistemic region graph by insisting that either the values of all
the clocks in v ∈ U

|X | are only even or only odd multiplications of ∆:

U
|X | = {v ∈ D

|X | | (∀x ∈ X)(∃k ∈ IN) either v(x) = 2k∆ or v(x) = (2k+1)∆}.

To preserve action transitions of the epistemic region graph we use so called
adjust transitions

ǫ
→⊆ (L×D

|X |)×(L×U
|X |). The aim of these transitions is to

replace points no longer in U
|X | (after executing an action or time transition)

by zone-equivalent points in U
|X |. Formally such adjust transitions are defined

as follows. Let (l, v), (l, v′) ∈ (L × D
|X |). Then, (l, v)

ǫ
→ (l, v′) iff v′ ∈ U

|X |,
(∀x ∈ X)(v′(x) ≤ cmax(ϕ) + 1), and v ≃ v′.

Example 4 Consider a timed automaton TA with two clocks x and y, and
a TECTLK formula ϕ. Moreover, assume that cmax(ϕ) = 1. Figure 8 shows
the discretised clock space D

2 of TA. The chosen discretisation step is ∆ =
1

2⌈log2(2·2)⌉ = 1
4
. Therefore,

• D = {0, 1
4
, 2

4
, 3

4
, 1, . . . , 4},

• D
2 = {(0, 0), (0, 1

4
), (0, 2

4
), . . . , (0, 4), (1

4
, 0), (1

4
, 1

4
), (1

4
, 2

4
), . . . , (1

4
, 4), . . . , (4, 4)},

• U
2 = {(0, 0), (0, 2

4
), (0, 1), (0, 12

4
), . . . , (0, 4), (1

4
, 1

4
), (1

4
, 3

4
), (1

4
, 11

4
), . . . , (1

4
, 33

4
),

(2
4
, 2

4
), (2

4
, 1), . . . , (2

4
, 4), (3

4
, 1

4
), (3

4
, 3

4
), (3

4
, 11

4
), . . . , (3

4
, 33

4
), . . . , (4, 4)}.

3 4210

1/2

2

1

3

4

1/2 x

y

3 4210

1/2

2

1

3

4

1/2 x

y

(A) (B)

Fig. 8. (A) Discretisation of IR2 with cmax(ϕ) = 1; the elements of D
2. Notice that

both the black dots and the transparent rectangles are elements of D
2, but only the

transparent rectangles are elements of U
2. (B) Zones of IR2 with cmax(ϕ) = 1 and

the elements of U
2. The latter one are represented by black rectangles.

15

4.2 Discretised Interpreted System

In this section, we define a discretised interpreted system and show that it
enjoys the same property as the epistemic region graph Mrg, i.e., it preserves
validity of TECTLK formulae.

Definition 7 (Discretised Interpreted System) Let E+ denote the set
E \ {0}, and ; denote composition of two relations. A discretised interpreted
system for the timed automaton TA = (Z, L, l0, E,X , I) is a structure Md =
(Sd, s

0,→d,∼
d
1, . . . ,∼

d
m,Vd), where Sd ⊆ L× U

|X | is a set of reachable states,
s0 = (l0, v0) is the initial state, and the relation →d ⊆ Sd × (Z ∪ {τ}) × Sd is
defined by:

• (Discrete) time transition: (l, v)
τ
→d (l, v′) iff (l, v)

δ
→;

ǫ
→ (l, v′) for some

δ ∈ E+, and (∀δ′ ≤ δ) (v′ + δ′ ≃ v or v′ + δ′ ≃ v′), and if v ≃ v′, then
v ≃ v′ + δ′′ for each δ′′ ∈ E+.

• (Discrete) action transition: (l, v)
a
→d (l′, v′) iff (l, v) is not boundary 8

and [(l, v)
a
→;

ǫ
→ (l′, v′) or (l, v)

τ
→d;

a
→;

ǫ
→ (l′, v′)], for a ∈ Z.

The accessibility relation ∼d
i =∼i ∩(Sd × Sd), for i ∈ AG, where ∼i is the

accessibility relation in M . The valuation function Vd : Sd → 2PV is given by
Vd((l, v)) = VTA(l).

For an intuition of the above, consider a region as a pair (l, Z) for a location
l ∈ L and a zone Z. A time transition relation represents a move to a region
because of passage of time, but sharing the same location. In order to make
sure that valuations of the clocks do not go beyond 2cmax(ϕ) + 2, and that
before taking any transition the value of every clock does not exceed cmax(ϕ)+
1, we adjust each time transition by an ǫ-move. An action transition represents
a move by an action (adjusted by an ǫ-move in order to stay in U) taken from a
non-boundary region and possibly preceded by the time transition step. Note
that an action transition cannot be taken from a boundary region to make
sure that there are no two consecutive action transition steps in a run.

Lemma 3 (Discretisation Preserves Time Successor) Let Z̃ = Z∩U
|X |,

for any zone Z ∈ Z(|X |). For every region (l, Z) and (l, Z ′), if (l, Z)
τ
→rg

(l, Z ′), then there exist v ∈ Z̃, v′ ∈ Z̃ ′ such that (l, v)
τ
→d (l, v′).

Proof: The proof of the lemma follows directly from Lemmas 4.1 - 4.4 in [33].
⊓⊔

Lemma 4 (Discretisation for Action Successor) Let Z̃ = Z ∩ U
|X |, for

8 A state (l, v) is boundary if for any δ ∈ {k∆ | 0 < k∆ < 1}, it is not the case
that (v ≃ v + δ).

16

any zone Z ∈ Z(|X |). For any a ∈ Z and for every region (l, Z) and (l, Z ′),
if (l, Z)

a
→rg (l, Z ′), then there exists v ∈ Z̃ and there exists v′ ∈ Z̃ ′ such that

(l, v)
a
→d (l, v′).

Proof: The proof of the lemma follows directly from Lemma 4.2 in [33]. ⊓⊔

The reverse of Lemmas 4 and 3 also holds.

The following lemma guarantees that the discretised interpreted system pre-
serves validity of the TECTLK formulae.

Lemma 5 Let AG be a finite set of agents modelled by timed automata, TA =
(Z, L, l0, E,X , I) their parallel composition, VTA a valuation function for TA,

and M the real time interpreted system for TA, l ∈ L, and v ∈ IR
|X |
+ . Then,

for every TECTLK formula ϕ, M, (l, v) |= ϕ iff there exists v′ ∈ U
|X | such

that v ≃ v′ and M, (l, v′) |= ϕ.

Proof: The proof of the lemma follows directly from Lemma 2, Lemma 3, and
Lemma 4. ⊓⊔

5 TECTLK Bounded Model Checking

Bounded model checking (BMC) is a SAT-based technique for symbolic model
checking. Compared to BDD-based model checking it offers the advantage of
handling the verification of large state spaces, albeit for a smaller fragment of
the language.

The main idea of BMC is to avoid the full state space generation and, instead,
to look for witnesses of an existential specification on suitable subsets of the
full model. Once a submodel is selected, the formula to be checked as well
as the considered submodel are translated into propositional formulae and a
propositional satisfiability problem is solved via specialised SAT solvers. If
the test is positive, the specification holds on the submodel as well as on the
whole model, given the particular existential syntax checked. If not, a larger
submodel is selected and the whole procedure is run again.

Note that at times this procedure is used to find bugs on systems by attempting
to find counter examples to universal formulas by checking their negations.

While this approach is not intrinsically more efficient than BDD-based ap-
proaches, in applications that it is often the case that faults can be identified
on small fragments of a full model. In these cases BMC represents an extremely
appealing alternative to more standard techniques. The efficiency of this ap-
proach has been experimentally demonstrated in, among others, [4, 18, 24, 25].

17

For the case of this paper, knowledge and real time, we extend the technique
employed for TECTL [25] and ECTLK [23]. We first translate the model
checking problem for TECTLK into the model checking problem of another
logic, called ECTLKy, and then we define BMC for ECTLKy. Thanks to
these translations the model checking problem on an infinite state space is
translated into bounded model checking on a finite state space. Soundness
and completeness of the translations is guaranteed by Theorem 1, Theorem 2,
and Theorem 3 presented below.

5.1 Translation from TECTLK to ECTLKy

In general, the model checking problem for TECTL can be translated into
the model checking problem for a fair version of ECTL [1]. Since here we
have assumed that we deal with time-progressive timed automata only, to
extend the procedure of [1] to TECTLK, we introduce a slightly different
logic ECTLKy, as presented below.

Let AG be a finite set of agents modelled by timed automata, TA = (Z, L, l0, E,
X , I) be their parallel composition, VTA a valuation function, and ϕ a
TECTLK formula. First, we construct a new timed automaton TAϕ = (Z′, L,
l0, E ′,X ′, I) by extending TA with: (1) a new clock y that corresponds to all
the intervals appearing in ϕ, i.e., X ′ = X ∪ {y} 9 ; (2) an action ay, i.e.,
Z′ = Z∪{ay}; (3) a set Ey = {(l, ay, true, {y}, l) | l ∈ L} of special transitions
that are used to reset the new clock y, i.e., E ′ = E ∪ Ey. These transitions
are used to start the runs over which sub-formulae of ϕ are checked. We then
extend the set of propositional variables PV to the set PV ′ = PV ∪ {py∈I | I
is an interval in ϕ} ∪ {pb}, where py∈I is a propositional variable true at the
states where y ∈ I, and pb is a propositional variable representing the fact
that a state (region) is boundary. Further, we construct the discretised in-
terpreted system for TAϕ, and augment its valuation function with the set
PV ′ of propositional variables. Finally, we translate the TECTLK formula ϕ
into an ECTLKy formula ψ = cr(ϕ) such that model checking of ϕ over the
discretised interpreted system for TA can be reduced to the model checking
of ψ over the discretised interpreted system for TAϕ.

In order to translate a TECTLK formula ϕ into the corresponding ECTLKy

formula ψ we map the ECTLK language into ECTLKy by reinterpreting the
temporal operators, denoted by EyU and EyR. This language is interpreted
over the discretised interpreted system for TAϕ. Formally, for p ∈ PV , i ∈ AG

9 One clock is sufficient to perform the bounded model checking algorithm that is
presented in the next section. Note other model checking methods may require one
clock per interval appearing in the TECTLK formula under consideration.

18

and Γ ⊆ AG, the set WF of ECTLKy formulae is defined by the following
grammar:

α := p | ¬p | α ∧ α | α ∨ α | Ey(αUα) | Ey(αRα) | Kiα | DΓα | CΓα | EΓα.

Let Md = (Sd, s
0,→d,∼

d
1, . . . ,∼

d
m,Vd) be a discretised interpreted system for

TAϕ such that the set Sd contains reachable states only, s ∈ Sd, α, β formulae
of ECTLKy, →TA denote the part of →d, where transitions are labelled with
elements of Z ∪ {τ}, and →y denotes the transitions that reset the clock y.
A path π in Md is a sequence (s0, s1, . . .) of states such that si →TA si+1 for
each i ∈ IN. The set of all the paths starting at s in Md is denoted by Π(s).

Recall that, for Γ ⊆ AG, ∼E
Γ
def
=

⋃
i∈Γ ∼d

i , ∼
C
Γ
def
= (∼E

Γ)+, and ∼D
Γ
def
=

⋂
i∈Γ ∼d

i .
The satisfaction relation |= for ECTLKy is defined inductively as follows:

Md, s |= p iff p ∈ Vd(s),

Md, s |= ¬p iff p 6∈ Vd(s),

Md, s |= α ∨ β iff Md, s |= α or Md, s |= β,

Md, s |= α ∧ β iff Md, s |= α and Md, s |= β,

Md, s |= Ey(αUβ) iff (∃s′ ∈ S)(s→y s
′ and (∃π ∈ Π(s′))(∃m ≥ 0)

[Md, π(m) |= β and (∀j < m) Md, π(j) |= α]),

Md, s |= Ey(αRβ) iff (∃s′ ∈ S)(s→y s
′ and (∃π ∈ Π(s′))(∀m ≥ 0)

[Md, π(m) |= β or (∃j < m) Md, π(j) |= α]),

Md, s |= Kiα iff (∃s′ ∈ S)(s ∼d
i s

′ and s′ |= α),

Md, s |= DΓα iff (∃s′ ∈ S)(s ∼D
Γ s′ and s′ |= α),

Md, s |= EΓα iff (∃s′ ∈ S)(s ∼E
Γ s′ and s′ |= α),

Md, s |= CΓα iff (∃s′ ∈ S)(s ∼C
Γ s′ and s′ |= α).

An ECTLKy formula ϕ is valid on Md (denoted Md |= ϕ) iff Md, s
0 |= ϕ, i.e.,

ϕ is true at the initial state of the model Md.

Having defined syntax and semantics of the ECTLKy logic, we can now intro-
duce the translation mentioned above. A TECTLK formula ϕ is translated
inductively into the ECTLKy formula cr(ϕ) as follows:

• cr(p) = p if p ∈ PV ′,
• cr(¬p) = ¬p if p ∈ PV ′,
• cr(α ∨ β) = cr(α) ∨ cr(β),
• cr(α ∧ β) = cr(α) ∧ cr(β),
• cr(Kiα) = Kicr(α),

19

• cr(DΓα) = DΓcr(α),
• cr(EΓα) = EΓcr(α),
• cr(CΓα) = CΓcr(α),
• cr(E(αUIiβ)) = Ey(cr(α)U(cr(β) ∧ py∈Ii ∧ (pb ∨ cr(α)))),
• cr(E(αRIiβ)) = Ey(cr(α)R(cr(β) ∨ ¬py∈Ii ∨ (¬pb ∧ cr(α)))).

The translation of the propositional variables and their negations as well as
conjunctions and disjunctions is intuitive. Notice that the formula Ey(cr(α)U(cr(β)∧
py∈Ii ∧ (pb ∨ cr(α)))) expresses the following conditions:

a.) there exists a path π = (s0, s1, . . .) in the discretised interpreted system
for TAϕ that starts at a state with the value of the clock y equal to zero;
this statement is expressed by using the quantifier Ey in cr(E(αUIβ));

b.) there exists a state si = (l, v) on π such that v(y) ∈ I and the translation
of β holds in the state; this is expressed by the requirement cr(β)∧ py∈I ;

c.) the translation of α holds in all the states sj on the path π, for j < i; this
is expressed by employing the standard until operator, i.e., cr(α)U(cr(β)∧
py∈I ∧ (pb ∨ cr(α))),

Regarding the conjunct pb ∨ cr(α) notice that we have to take into
consideration the shape of a region in which cr(β) holds. Namely, if this
region is not boundary, then its borders are open, and therefore each state
belonging to the region has some time predecessors that also belong to
the same region. Thus, if we require that E(αUIβ) holds, then cr(α) must
hold continuously until cr(β) and cr(α) must hold at all the states of the
region where cr(β) holds; this is expressed by the condition pb∨cr(α) put
in conjunction with cr(β) ∧ py∈I .

Note that the translation for cr(E(αRIβ)) is the dual of the one for cr(E(αUIβ)).

The following lemma shows that validity of a TECTLK formula ϕ over the
real time interpreted system for TA is equivalent to the validity of the corre-
sponding ECTLKy formula cr(ϕ) over the discretised interpreted system for
TAϕ.

Lemma 6 M |= ϕ iff Md |= cr(ϕ), for each TECTLK formula ϕ.

Proof: The proof follows directly from Lemma on Correctness of the la-
belling algorithm of [1] and Theorem 4.1 of [33] for TECTL fragment of
TECTLK, and from the definition of the relation ∼i for the epistemic frag-
ment of TECTLK. ⊓⊔

In the following we present a BMC method for ECTLKy over discretised
interpreted systems. This, paired with the translation just shown, gives a
BMC method for TECTLK.

20

5.2 ECTLKy Bounded Model Checking

All the known BMC techniques are based on a notion of satisfaction on fi-
nite structures. In particular, BMC for ECTLKy is based on the k−bounded
satisfaction for ECTLKy, the definition of which we present below.

5.2.1 Bounded Satisfaction

We start with some auxiliary definitions. LetMd = (Sd, s
0,→d,∼

d
1, . . . ,∼

d
m,Vd)

be a discretised interpreted system, and k ∈ IN+ a bound. As before, we de-
note by →TA the subset of →d, where transitions are labelled with elements
of Z∪{τ}, and by →y the set of transitions resetting the clock y. A k−path π
in Md is a finite sequence of states (s0, . . . , sk) such that si →TA si+1 for each
0 ≤ i < k. We will denote the set of all the k-paths starting at s in Md by
Πk(s). Note that this set is a convenient way of representing the k−bounded
subtree rooted at s of the tree resulting from unwinding the discretised in-
terpreted system from s (see Figure 9). A k-path π = (s0, . . . , sk) is a loop if
there exists 0 ≤ l ≤ k such that π(k) →TA π(l) (see Figure 10).

s
s

k=2

(a) (b)

Fig. 9. (a) Unwinding of a discretised interpreted system Md from a state s of Md;
(b) Π2(s) for Md

Definition 8 (k-model) Let Md = (Sd, s
0,→d,∼

d
1, . . . ,∼

d
m,Vd) be a discre-

tised interpreted system, and k ∈ IN+ a bound. A k-model for Md is a struc-
ture Mk = (Sd, s

0, Pk, Py,∼
d
1, . . . ,∼

d
m,Vd), where Pk =

⋃
s∈Sd

Πk(s) and Py =
{(s, s′) | s→y s

′ and s, s′ ∈ Sd}.

Satisfaction of the temporal operator EyR on a k-path π in the bounded case
depends on whether or not π is a loop. Therefore, we introduce a function loop :
Pk −→ 2IN which allows for the identification of the k-paths that are actually
loops. This function is defined by loop(π) = {i | 0 ≤ i ≤ k and π(k) →TA

π(i)}, and it returns the set of all the indices of the states for which there is
a transition from the last state of a k-path π. Note that if a k-path is a loop,
then it represents an infinite path (see Figure 10).

21

s0 s1 sl sk s0 s1 sl sk

A k-path π with loop(π) = ∅ A k-path π with loop(π) = {l}

Fig. 10. Two kinds of k-paths.

Now we can define a notion of (bounded) satisfaction for ECTLKy formulae
on bounded structures. Let k ∈ IN+, Md be a discretised interpreted system,
Mk its k-model, and α, β ECTLKy formulae. Mk, s |= α denotes that α is
true at the state s of Mk. The satisfaction relation |= is defined inductively as
follows:

Mk, s |= p iff p ∈ Vd(s),

Mk, s |= ¬p iff p 6∈ Vd(s),

Mk, s |= α ∨ β iff Mk, s |= α or Mk, s |= β,

Mk, s |= α ∧ β iff Mk, s |= α and Mk, s |= β,

Mk, s |= Kiα iff (∃π ∈ Πk(s
0))(∃0 ≤ j ≤ k)(Mk, π(j) |= α and s ∼d

i π(j)),

Mk, s |= DΓα iff (∃π ∈ Πk(s
0))(∃0 ≤ j ≤ k)(Mk, π(j) |= α and s ∼D

Γ π(j)),

Mk, s |= EΓα iff (∃π ∈ Πk(s
0))(∃0 ≤ j ≤ k)(Mk, π(j) |= α and s ∼E

Γ π(j)),

Mk, s |= CΓα iff (∃π ∈ Πk(s
0))(∃0 ≤ j ≤ k)(Mk, π(j) |= α and s ∼C

Γ π(j)),

Mk, s |= Ey(αUβ) iff (∃s′ ∈ Sd)((s, s
′) ∈ Py and (∃π ∈ Πk(s

′))(∃0 ≤ j ≤ k)

(Mk, π(j) |= β and (∀0 ≤ i < j) Mk, π(i) |= α)),

Mk, s |= Ey(αRβ) iff (∃s′ ∈ Sd)((s, s
′) ∈ Py and (∃π ∈ Πk(s

′))[(∃0 ≤ j ≤ k)

(Mk, π(j) |= α and (∀0 ≤ i ≤ j)Mk, π(i) |= β) or

(∀0 ≤ j ≤ k)(Mk, π(j) |= β and loop(π) 6= ∅)]).

We use the definition above to interpret ECTLKy on finite structures. Picto-
rial descriptions for bounded satisfaction of ECTLKy formulae are shown in
Figure 11.

sl sks1

α α β

s0

s′0 sl sks1

α
βββ

s0

s′0

Mk, s0 |= Ey(αUβ) Mk, s0 |= Ey(αRβ)

s1 sl sk

β β ββ

s0

s′0 sks1 sj

α

s

∼i

s0
= s0

Mk, s0 |= Ey(αRβ) Mk, s |= Kiα

Fig. 11. Examples of satisfaction for ECTLKy formulae on bounded models.

22

An ECTLKy formula ϕ is valid on k-model Mk (denoted Md |=k ϕ) iff
Mk, s

0 |= ϕ, i.e., ϕ is true at the initial state of the k-model Mk. |Md| denotes
the size of Md, i.e., the sum of the elements of the set Sd and the elements of
→d.

We can now describe how the model checking problem (Md |= ϕ) can be
reduced to the bounded model checking problem (Md |=k ϕ).

Lemma 7 Let k ∈ IN+, Md be a discretised interpreted system, Mk its k-
model, and ϕ an ECTLKy formula. Then, for any s in Md, Mk, s |= ϕ
implies Md, s |= ϕ.

Proof: By straightforward induction on the length of ϕ. ⊓⊔

Lemma 8 Let Md be a discretised interpreted system, Mk its k-model, k =
|Md|, ϕ an ECTLKy formula and s a state of Md. If Md, s |= ϕ, then
Mk, s |= ϕ.

Proof:[By induction on the length of ϕ] The lemma follows directly for the
propositional variables and their negations. Next, assume that the hypothesis
holds for all the proper sub-formulae of ϕ. If ϕ is equal to either α ∧ β or
α ∨ β, then it is easy to check that the lemma holds. Consider ϕ to be of the
following forms:

(1) ϕ = Ey(αUβ). By the definition of unbounded satisfaction we have that
there is a state s′ in Md such that s →y s′ and there is a path π ∈
Π(s′) such that there exists m > 0 with (Md, π(m) |= β and (∀0 ≤ i < m)
Md, π(i) |= α). Since the set of states of Md is finite, we have that m ≤
k (i.e., m ≤ |Md|). Thus, by the inductive assumption we have that
Mk, π(m) |= β, and Mk, π(i) |= α for all 0 ≤ i < m. Now, consider the
prefix πk of length k of the path π. We have that πk ∈ Πk(s

′). By the
definition of the k-model, (s, s′) ∈ Py. Therefore, by the definition of
bounded satisfaction we have that Mk, s |= Ey(αUβ).

(2) ϕ = Ey(αRβ). By the definition of unbounded satisfaction we have that
there is a state s′ in Md such that s →y s′ and there is a path π ∈
Π(s′) such that (∀m ≥ 0)(Md, π(m) |= β or (∃0 ≤ i < m)Md, π(i) |= α).
This implies that either (1) (∀m ≥ 0)(Md, π(m) |= β), or (2) (∃i ≤
k)(Md, π(i) |= α and (∀j ≤ i)(Md, π(j) |= β)). Let us consider the fol-
lowing two cases:
• Assume that (1) holds. Since the set of state of Md is finite, we

have that the path π must be of the following form (π(0), . . . , π(i−
1))(π(i), . . . , π(k))ω for some i ≤ k. Thus, we have that loop(π) 6= ∅,
and that the prefix of π of the length k belongs to Πk(s

′). Further,
by the definition of the k-model we have that (s, s′) ∈ Py, and by the
inductive assumption we have that Mk, π(m) |= β for all 0 ≤ m ≤
k. Therefore, by the definition of bounded satisfaction we have that

23

Mk, s |= Ey(αRβ).
• Assume that (2) holds. Since the set of states of Md is finite, we have

that i ≤ k (i.e., i ≤ |Md|). Thus, by the inductive assumption we have
that Mk, π(i) |= α, and Mk, π(j) |= β for all 0 ≤ j ≤ i. Now, consider
the prefix πk of length k of the path π. It is obvious that πk ∈ Πk(s

′).
Further, by the definition of the k-model, (s, s′) ∈ Py. So, by the
definition of bounded satisfaction we have that Mk, s |= Ey(αRβ).

(3) ϕ = Kiα. By the definition of unbounded satisfaction, there is a state s′

in Md such that s ∼d
i s

′ and Md, s
′ |= α. By the inductive assumption,

we have that Mk, s
′ |= α. Since s′ is reachable, it is reachable from s0 in

k = |Md| steps at most. Thus, there is a k−path π ∈ Pk(s
0) such that

π(i) = s′ for some i ≤ k. So, we have Mk, s |= Kiα.
(4) ϕ = EΓα. ϕ = EΓα =

∨
i∈Γ Kiα. Therefore the result follows from the case

above for a specific i ∈ Γ, and the basic case for the Boolean connectives.
(5) ϕ = DΓα. Straightforward by definition from the case ϕ = Kiα.
(6) ϕ = CΓα. Note that Md, s |= CΓα iff Md, s |=

∨
i≤|Md|

(EΓ)iα. So, by

induction and the former case, we have Mk, s |= CΓα.
⊓⊔

The main theorem of this section states that |Md|-bounded satisfaction is
equivalent to the unbounded one.

Theorem 1 Let Md be a discretised interpreted system Mk its k-model where
k = |Md| and ψ an ECTLKy formula. Then, Md |= ψ iff Md |=k ψ.

Proof: The proof follows from Lemmas 7 and 8. ⊓⊔

5.2.2 Submodels of k-models

The previous subsection ends with the following conclusion: to check that an
ECTLKy formula ψ holds on a discretised interpreted system Md, it is enough
to show that ψ holds on its k-model Mk, for some k ≤ |Md|. In this subsection
we show a stronger property. Namely, we prove that ψ holds on Md if and only
if ψ holds on a submodel of Mk.

Definition 9 (Submodel) A submodel of a k-model Mk = (Sd, s
0, Pk, Py,

∼d
1, . . . ,∼

d
m,Vd) is a tuple M ′(s) = (S ′, s, P ′

k, P
′
y,∼

′
1, . . . ,∼

′
m,V

′) rooted at
state s ∈ Sd, such that P ′

k ⊆ Pk, S
′ = {r ∈ Sd | (∃π ∈ P ′

k)(∃i ≤ k)π(i) =
r} ∪ {s}, P ′

y ⊆ Py ∩ (S ′ × S ′), ∼′
i=∼i ∩(S ′ × S ′) for each i ∈ {1, . . . , m}, and

V ′ = Vd ⇂ S ′.

Satisfaction for ECTLKy over a submodel M ′(s) is defined as for Mk.

We now introduce a definition of a function fk that gives a bound on the
number of k-paths in the submodel M ′(s), and a function fy that gives a

24

bound on the number of elements of the set P ′
y in the submodel M ′(s). We

will show later that the validity of ψ in Mk is equivalent to the validity of ψ in
M ′(s) provided that the bound k is chosen appropriately considering fk and
fy, where these are given below.

The function fk : WF → IN is defined by:

• fk(p) = fk(¬p) = 0, where p ∈ PV ′,
• fk(α ∨ β) = max{fk(α), fk(β)},
• fk(α ∧ β) = fk(α) + fk(β),
• fk(Ey(αUβ)) = k · fk(α) + fk(β) + 1,
• fk(Ey(αRβ)) = (k + 1) · fk(β) + fk(α) + 1,
• fk(Y α) = fk(α) + 1, for Y ∈ {Ki,DΓ,EΓ},
• fk(CΓα) = fk(α) + k.

The function fy : WF → IN is defined by:

• fy(p) = fy(¬p) = 0, where p ∈ PV ′,
• fy(α ∨ β) = max{fy(α), fy(β)},
• fy(α ∧ β) = fy(α) + fy(β),
• fy(Ey(αUβ)) = k · fy(α) + fy(β) + 1,
• fy(Ey(αRβ)) = (k + 1) · fy(β) + fy(α) + 1,
• fy(Y α) = fk(α), for Y ∈ {Ki,DΓ,EΓ,CΓ}.

Lemma 9 Let M ′(s) and M ′′(s) be two submodels of Mk with P ′
k ⊆ P ′′

k ,
P ′
y ⊆ P ′′

y , and ψ an ECTLKy formula. If M ′(s) |=k ψ, then M ′′(s) |=k ψ.

Proof: By straightforward induction on the length of ψ. ⊓⊔

The lemma below shows that the validity of ψ in Mk is equivalent to the
validity of ψ in M ′(s) provided that the bound k is chosen by means of fk and
fy functions.

Lemma 10 Mk, s |= ψ iff there is a submodel M ′(s) of Mk with |P ′
k| ≤ fk(ψ)

and |P ′
y| ≤ fy(ψ) such that M ′(s), s |= ψ.

Proof: The implication from right to left is straightforward. To prove the
implication left to right, we will use induction on the length of ψ.

The “left-to-right” implication follows directly for the propositional variables
and their negations. Consider the following cases:

• Let ψ = α∨β and Mk, s |= α∨β. By the definition of bounded satisfaction
we have that Mk, s |= α or Mk, s |= β. Hence, by induction we have that
either there is a submodel M ′(s) of Mk such that M ′(s), s |= α and
|P ′
k| ≤ fk(α), |P ′

y| ≤ fy(α), or there is a submodel M ′′(s) of Mk such that

25

M ′′(s), s |= β and |P ′′
k | ≤ fk(β) and |P ′′

y | ≤ fy(β).
Now, consider a submodel M ′′′(s) of Mk such that:
• P ′′′

k = P ′
k and P ′′′

y = P ′
y if M ′(s), s |= α,

• P ′′′
k = P ′′

k and P ′′′
y = P ′′

y otherwise.
Thus, |P ′′′

k | ≤ max{fk(α), fk(β)} and |P ′′′
y | ≤ max{fy(α), fy(β)}. It is

obvious that M ′′′(s), s |= α or M ′′′(s), s |= β. Therefore, by the definition
of bounded satisfaction we have that M ′′′(s), s |= α ∨ β.

• Let ψ = α∧β and Mk, s |= α∧β. By the definition of bounded satisfaction
we have that Mk, s |= α and Mk, s |= β. Hence, by induction we have
that there is a submodel M ′(s) of Mk such that M ′(s), s |= α and |P ′

k| ≤
fk(α) and |P ′

y| ≤ fy(α), and there is a submodel M ′′(s) of Mk such that
M ′′(s), s |= β and |P ′′

k | ≤ fk(β) and |P ′′
y | ≤ fy(β). Now, consider the

submodel M ′′′(s) of Mk such that P ′′′
k = P ′

k ∪P
′′
k and P ′′′

y = P ′
y ∪P

′′
y . It is

easy to observe that |P ′′′
k | ≤ fk(α) + fk(β) and |P ′′′

y | ≤ fy(α) + fy(β). So,
by Lemma 9, we have that M ′′′(s), s |= α and M ′′′(s), s |= β. Therefore,
by the definition of bounded satisfaction we have that M ′′′(s), s |= α∧β.

• Let ψ = Ey(αUβ) and Mk, s |= Ey(αUβ). By the definition, there is a
state s′ ∈ Sd such that (s, s′) ∈ Py and there is a k−path π ∈ Πk(s

′) such
that

(∃0 ≤ m ≤ k)(Mk, π(m) |= β and (∀0 ≤ i < m)Mk, π(i) |= α). (1)

Hence, by the inductive assumption, for all i such that 0 ≤ i < m there
are submodels M i(π(i)) of Mk with |P i

k| ≤ fk(α) and |P i
y| ≤ fy(α) and

M i(π(i)), π(i) |= α. (2)

and there is a submodel Mm(π(m)) of Mk with |Pm
k | ≤ fk(β) and |Pm

y | ≤
fy(β) and

Mm(π(m)), π(m) |= β. (3)

Consider a submodel M ′(s) of Mk such that P ′
k =

⋃m

i=0 P
i
k ∪ {π} and

P ′
y =

⋃m

i=0 P
i
y∪{(s, s′)}. Thus, by the construction of M ′(s), we have that

(s, s′) ∈ P ′
y and π ∈ P ′

k. Therefore, since conditions (1), (2), and (3) hold,
by the definition of bounded satisfaction, we have that M ′, s |= Ey(αUβ)
and |P ′

k| ≤ k · fk(α) + fk(β) + 1 and |P ′
y| ≤ k · fy(α) + fy(β) + 1.

• Let ψ = Ey(αRβ) and Mk, s |= Ey(αRβ). By the definition, there is a
state s′ ∈ Sd such that (s, s′) ∈ Py and there is a k−path π ∈ Πk(s

′) such
that

(∃0 ≤ j ≤ k)(Mk, π(j) |= α and (∀0 ≤ i ≤ j)Mk, π(i) |= β) or (4)

(∀0 ≤ j ≤ k)(Mk, π(j) |= β and loop(π) 6= ∅). (5)

Let us consider the two cases. First, assume that condition (4) holds.
Then, by the inductive assumption, for all i such that 0 ≤ i ≤ j there
are submodels M i(π(i)) of Mk with |P i

k| ≤ fk(β) and |P i
y| ≤ fy(β) and

26

M i(π(i)), π(i) |= β, (6)

and there is a submodel M
′′
(π(m)) of Mk with |P

′′

k | ≤ fk(α) and |P
′′

y | ≤
fy(α) and

M
′′

(π(m)), π(m) |= α. (7)

Consider the submodel M ′(s) of Mk such that P ′
k =

⋃j

i=0 P
i
k ∪ P

′′

k ∪ {π}

and P ′
y =

⋃j
i=0 P

i
y ∪ P ′′

y ∪ {(s, s′)}. Thus, by the construction of M ′(s),
we have that (s, s′) ∈ P ′

y and π ∈ P ′
k. Therefore, since the conditions

(4), (6) and (7) hold, by the definition of bounded satisfaction we have
that M ′(s), s |= Ey(αRβ) and |P ′

k| ≤ (k + 1) · fk(β) + fk(α) + 1 and
|P ′
y| ≤ (k + 1) · fy(β) + fy(α) + 1.
Assume now that condition (5) holds. Then, by the inductive assump-

tion, for all j such that 0 ≤ j ≤ k there are submodels M j(π(j)) of Mk

with |P j
k | ≤ fk(β) and |P j

y | ≤ fy(β) and

(M j(π(j)), π(j) |= β). (8)

Consider the submodel M ′(s) of Mk such that P ′
k =

⋃k
j=0 P

j
k ∪ {π} and

P ′
y =

⋃k
i=0 P

i
y∪{(s, s′)}. Thus, by the construction of M ′(s), we have that

(s, s′) ∈ P ′
y and π ∈ P ′

k. Therefore, since conditions (4) and (8) hold, by
the definition of bounded satisfaction we have that M ′(s), s |= Ey(αRβ)
and |P ′

k| ≤ (k+1) ·fk(β)+fk(α)+1 and |P ′
y| ≤ (k+1) ·fy(β)+fy(α)+1.

• Let ψ = Kiα and Mk, s |= Kiα. By the definition, we have that there
exists π ∈ Πk(s

0) such that

(∃0 ≤ j ≤ k)(s ∼i π(j) and π(j) |= α). (9)

By the inductive assumption there is a submodel M ′(π(j)) of Mk with
|P ′
k| ≤ fk(α) and |P ′

y| ≤ fy(α) such that M ′(π(j)), π(j) |= α. Consider
a submodel M ′′(s) of Mk such that P ′′

k = P ′
k ∪ {π} and P ′′

y = P ′
y. Since

π ∈ P ′′
k , s ∈ S ′′, and condition (9) holds, by the construction of M ′′(s)

and the definition of bounded satisfaction, we have that M ′′, s |= Kiα
and |P ′′

k | ≤ fk(α) + 1 and |P ′′
y | ≤ fy(α).

• Let ψ = EΓα and Mk, s |= EΓα. By the definition, we have that there
exists π ∈ Πk(s

0) such that

(∃0 ≤ j ≤ k)(Mk, π(j) |= α and s ∼E
Γ π(j)). (10)

By the inductive assumption there is a submodel M ′(π(j)) of Mk with
|P ′
k| ≤ fk(α) and |P ′

y| ≤ fy(α) such that M ′(π(j)), π(j) |= α. Consider
a submodel M ′′(s) of Mk such that P ′′

k = P ′
k ∪ {π} and P ′′

y = P ′
y. Since

π ∈ P ′′
k , s ∈ S ′′, and condition (10) holds, by the construction of M ′′(s)

and the definition of bounded satisfaction, we have that M ′′(s), s |= EΓα
and |P ′′

k | ≤ fk(α) + 1 and |P ′′
y | ≤ fy(α).

27

• Let ψ = DΓα. This case can be proven similarly to the two above.
• Let ψ = CΓα and Mk, s |= CΓα. Below, we only prove that fk(CΓα) =
fk(α) + k is a sufficient number of paths in a submodel M ′(s) validating
ϕ and that fy(CΓα) = fy(α). The actual construction of M ′(s) can be
given similarly to the case ψ = Kiα and ψ = α ∨ β.

Note that CΓα =
∨

1≤i≤k(EΓ)iα, fk((EΓ)1α) = fk(EΓα) = fk(α) + 1,

and fy((EΓ)1α) = fy(EΓα) = fy(α). It is easy to show, by induction on
i, that fk((EΓ)iα) = fk(α) + i and fy((EΓ)iα) = fy(α), for i ∈ {1, . . . , k}.
Therefore, fk(ψ) = fk(

∨
1≤i≤k(EΓ)iα) = max{fk((EΓ)1α), . . . , fk((EΓ)kα)}

= fk((EΓ)kα) = fk(α) + k, and fy(ψ) = fy(
∨

1≤i≤k(EΓ)iα) =

max{fy((EΓ)1α), . . . , fy((EΓ)kα)} = fy((EΓ)kα) = fy(α).
⊓⊔

From Lemma 10 we can now derive the following.

Corollary 1 Mk, s
0 |= ψ iff there is a submodel M ′(s0) of Mk with |P ′

k| ≤
fk(ψ) and |P ′

y| ≤ fy(ψ) such that M ′(s0), s0 |= ψ.

Proof: It follows from the definition of bounded satisfaction and Lemma 10,
by using s = s0. ⊓⊔

Theorem 2 Let Md be a discretised interpreted system, Mk its k-model, ψ
an ECTLKy formula, and k = |Md|. Then, Md |= ψ iff there exists submodel
M ′(s0) of Mk with P ′

k ≤ fk(ψ) and |P ′
y| ≤ fy(ψ) such that M ′(s0) |=k ψ.

Proof: Follows from Theorem 1 and Corollary 1. ⊓⊔

5.2.3 Translation to Boolean formulae

As it was mentioned before, the main idea of BMC for ECTLKy consists
in translating the model checking problem for ECTLKy into the problem of
satisfiability of a propositional formula. Given an ECTLKy formula ψ and a
discretised interpreted system Md, this propositional formula is of the following
form:

[Md, ψ]k = [Mψ,s0

d]k ∧ [ψ]Mk
. (11)

The first conjunct of [Md, ψ]k represents all the possible submodels of Md

which consist of fk(ψ) k−paths of Md, whereas the second conjunct encodes a
number of constraints that must be satisfied on the ‘fk(ψ)-submodels’ of Md

for ψ to be satisfied. Once this translation is defined, checking satisfiability
of an ECTLKy formula can be done by means of a SAT-checker. In order to
define the formula [Md, ψ]k, we proceed as follows.

28

Let us assume that each state s of the discretised interpreted system Md

is encoded by a bit-vector whose length, say b, depends on the number of
locations, the number of clocks, the discretisation step, and cmax(ϕ). So, each
state s of Md can be represented by a vector w = (w[1], . . . , w[b]) (called global
state variable), where each w[i], for i = 1, . . . , b, is a propositional variable
(called state variable). Notice that we distinguish between states s encoded
as sequences of 0’s and 1’s and their representations in terms of propositional
variables w[i]. A finite sequence (w0, . . . , wk) of global state variables is called
a symbolic k-path. In general, we need to consider not just one but a number of
symbolic k-paths. This number depends on the formula ψ under investigation,
and it is returned as the value fk(ψ) of the function fk. The j-th symbolic
k-path is denoted by w0,j, . . . , wk,j, where wi,j are global state variables for
1 ≤ j ≤ fk(ψ), 0 ≤ i ≤ k. For two global state variables w,w′, we define the
following propositional formulae:

• Is(w) is a formula over w, which is true for a valuation sw of w iff sw = s.
• p(w) is a formula over w, which is true for a valuation sw of w iff p ∈ Vd(sw),

where p ∈ PV ′,
• Hi(w,w

′) is a formula over two global state variables w = (l, v), w′ = (l′, v′),
which is true for valuations sl of l, sl′ of l′, sv of v, and sv′ of v′ iff li(sl) =
li(sl′) and sv ≃ sv′ (encodes equivalence of local states of agent i).

• R(w,w′) is a formula over w,w′, which is true for two valuations sw of w
and sw′ of w′ iff sw →TA sw′ (encodes the non-resetting transition relation
of Md),

• Ry(w,w
′) is a formula over w, w′, which is true for two valuations sw of w

and sw′ of w′ iff sw →y sw′ (encodes the transitions resetting the clock y).

The propositional formula [Md, ψ]k is defined over state variables w0,0, wn,m,
for 0 ≤ m ≤ k and 1 ≤ n ≤ fk(ψ). We start off with the definition of its first

conjunct, i.e., the definition of [Mψ,s0

d]k, which constrains the fk(ψ) symbolic
k-paths to be valid k-path of Mk. Namely,

[Mψ,s0

d]k := Is0(w0,0) ∧

fk(ψ)∧

n=1

k−1∧

m=0

R(wm,n, wm+1,n).

The second conjunct, i.e., the formula [ψ]Mk
= [ψ]

[0,0]
k , is inductively defined

as follows:

29

[p]
[m,n]
k := p(wm,n),

[¬p]
[m,n]
k := ¬p(wm,n),

[α ∧ β]
[m,n]
k := [α]

[m,n]
k ∧ [β]

[m,n]
k ,

[α ∨ β]
[m,n]
k := [α]

[m,n]
k ∨ [β]

[m,n]
k ,

[Ey(αUβ)][m,n]
k

:=
∨fk(ψ)
i=1 (Ry(wm,n, w0,i) ∧

∨k

j=0([β]
[j,i]
k ∧

∧j−1
l=0 [α]

[l,i]
k)),

[Ey(αRβ)][m,n]
k

:=
∨fk(ψ)
i=1 (Ry(wm,n, w0,i) ∧ (

∨k
j=0([α]

[j,i]
k ∧

∧j
l=0[β]

[l,i]
k)

∨
∧k

j=0[β]
[j,i]
k ∧

∨k

l=0 R(wk,i, wl,i))),

[Klα]
[m,n]

k :=
∨fk(ψ)
i=1 (Is0(w0,i) ∧

∨k
j=0([α]

[j,i]
k ∧Hl(wm,n, wj,i))),

[DΓα]
[m,n]

k :=
∨fk(ψ)
i=1 (Is0(w0,i) ∧

∨k
j=0([α]

[j,i]
k ∧

∧
l∈ΓHl(wm,n, wj,i))),

[EΓα]
[m,n]

k :=
∨fk(ψ)
i=1 (Is0(w0,i) ∧

∨k

j=0([α]
[j,i]
k ∧

∨
l∈ΓHl(wm,n, wj,i))),

[CΓα]
[m,n]

k := [
∨k
i=1(EΓ)iα]

[m,n]
k .

This fully defines the encoding of Formula 11.

Now we show that the validity of an ECTLKy formula ψ on a submodel M ′(s),
defined by using the functions fk and fy, is equivalent to the satisfiability of
Formula 11. Once we have shown this fact, we can conclude that the validity
of ψ on the discretised interpreted system Md is equivalent to the satisfiability
of Formula 11 (see Theorem 3, p. 32). Further, by taking into account Lemma
6 we can claim that the validity of a TECTLK formula ϕ over the real time
interpreted system for TA is equivalent to the satisfiability of Formula 11;
note that this propositional formula encodes the translation of the ECTLKy

formula cr(ϕ) over the discretised interpreted system for TAϕ.

Lemma 11 Let Md be discretised interpreted system, Mk its k-model, and ψ
an ECTLKy formula. For each state s of Md, the following holds: [Mψ,s

d]k ∧
[ψ]Mk

is satisfiable iff there is a submodel M ′(s) of Mk with |P ′
k| ≤ fk(ψ) and

|P ′
y| ≤ fy(ψ) such that M ′(s), s |= ψ.

Proof: (=>) Let [Mψ,s
d]k ∧ [ψ]Mk

be satisfiable. By the definition of the trans-
lation, the propositional formula [ψ]Mk

encodes all the sets of k−paths of size
fk(ψ) which satisfy the formula ψ and all the sets of transitions resetting the
clock y of size fy(ψ) . By the definition of the unfolding of the transition rela-
tion, the propositional formula [Mψ,s]k encodes fk(ψ) symbolic k-paths to be
valid k−paths of Mk. Hence, there is a set of k−paths in Mk, which satisfies
the formula ψ of size smaller or equal to fk(ψ), and there is a set of transitions
resetting the clock y of size fy(ψ). Thus, we conclude that there is a submodel
M ′(s) of Mk with |P ′

k| ≤ fk(ψ) and |P ′
y| ≤ fy(ψ) such that M ′(s), s |= ψ.

30

(<=) The proof is by induction on the length of ψ. The lemma follows directly
for the propositional variables and their negations. Consider the following
cases:

(A) For ψ = α ∨ β, α ∧ β, or the temporal operators the proof is like in [24].
(B) Let ψ = Klα. Let M ′(s), s |= Klα with |P ′

k| ≤ fk(Klα) and |P ′
y| ≤

fy(Klα). By definition of bounded satisfaction we have that there is a
k−path π such that π(0) = s0 and (∃j ≤ k) s ∼d

l π(j)) and M ′(s), π(j) |=
α. Hence, by induction we obtain that for some j ≤ k the propositional
formula [α]

[0,0]
k ∧ [Mα,π(j)]k is satisfiable. Let ii = fk(α) + 1 be the in-

dex of a new symbolic k−path which satisfies the formulae Is0(w0,ii) and
Hl(w0,0, wj,ii) for some j ∈ {1, . . . , k}. Therefore, by the construction

above, it follows that the propositional formula Is0(w0,ii) ∧
∨k
j=0 ([α]

[j,ii]
k ∧

Hl(w0,0, wj,ii)) ∧ [MKlα,s]k is satisfiable. Therefore, the following propo-
sitional formula is satisfiable:

∨

1≤i≤fk(Klα)

(
Is0(w0,i) ∧

k∨

j=0

([α]
[j,i]
k ∧Hl(w0,0, wj,i)) ∧ [MKlα,s]k

)
.

Hence, by the definition of the translation of an ECTLKy formula, the

above formula is equal to the propositional formula [Klα]
[0,0]
k ∧ [MKlα,s]k.

(C) Let ψ = EΓα. Let M ′(s), s |= EΓα with |P ′
k| ≤ fk(EΓα) and |P ′

y| ≤

fy(EΓα). By definition of bounded satisfaction we have that there is a
k−path π such that π(0) = s0 and (∃j ≤ k) s ∼E

Γ π(j)) and M ′(s), π(j) |=
α. Hence, by induction we obtain that for some j ≤ k the propositional
formula [α]

[0,0]
k ∧ [Mα,π(j)]k is satisfiable. Let ii = fk(α) + 1 be the in-

dex of a new symbolic k−path which satisfies the formulae Is0(w0,ii) and
Hl(w0,0, wj,ii) for some j ∈ {1, . . . , k} and l ∈ Γ. Therefore, by the con-
struction above, it follows that the propositional formula Is0(w0,ii) ∧∨k

j=0 ([α]
[j,ii]
k ∧

∨
l∈ΓHl(w0,0, wj,ii)) ∧ [MEΓα,s]k is satisfiable. Therefore,

the following propositional formula is satisfiable:

∨

1≤i≤fk(EΓα)

(
Is0(w0,i) ∧

k∨

j=0

([α]
[j,i]
k ∧

∨

l∈Γ

Hl(w0,0, wj,i)) ∧ [MEΓα,s]k

)
.

Hence, by the definition of the translation of an ECTLKy formula, the

above formula is equal to the propositional formula [EΓα]
[0,0]
k ∧ [MEΓα,s]k.

(D) Let ψ = DΓα. Let M ′(s), s |= DΓα with |P ′
k| ≤ fk(DΓα) and |P ′

y| ≤

fy(DΓα). By definition of bounded satisfaction we have that there is a
k−path π such that π(0) = s0 and (∃j ≤ k) s ∼D

Γ π(j)) and M ′(s), π(j) |=
α. Hence, by induction we obtain that for some j ≤ k the propositional
formula [α]

[0,0]
k ∧ [Mα,π(j)]k is satisfiable. Let ii = fk(α) + 1 be the in-

dex of a new symbolic k−path which satisfies the formulae Is0(w0,ii)

31

and Hl(w0,0, wj,ii) for some j ∈ {1, . . . , k} and for all l ∈ Γ. There-
fore, by the construction above, it follows that the propositional formula
Is0(w0,ii) ∧

∨k

j=0 ([α]
[j,ii]
k ∧

∧
l∈ΓHl(w0,0, wj,ii)) ∧ [MDΓα,s]k is satisfiable.

Therefore, the following propositional formula is satisfiable:

∨

1≤i≤fk(DΓα)

(
Is0(w0,i) ∧

k∨

j=0

([α]
[j,i]
k ∧

∧

l∈Γ

Hl(w0,0, wj,i)) ∧ [MDΓα,s]k

)
.

Hence, by the definition of the translation of an ECTLKy formula, the

above formula is equal to the propositional formula [DΓα]
[0,0]
k ∧ [MDΓα,s]k.

(E) Let ψ = CΓα. This can be shown by noting that CΓα =
∨k

i=1(E)iα and
by a simple induction on i and case C.

⊓⊔

Theorem 3 Let Md be a discretised interpreted system, and ψ an ECTLKy

formula. Then, Md |= ψ iff there exists k ∈ IN+ such that [ψ]Mk
∧ [Mψ,s0]k is

satisfiable.

Proof: It follows from Theorem 2 and Lemma 11. ⊓⊔

6 Railroad Crossing System

To exemplify the use of the techniques of this paper we verify an extension
of the railroad crossing system (RCS) [17], a well-known example in the lit-
erature of real time verification. In the following we not only verify temporal
properties, as it is customary in reactive systems, but a specification that
includes epistemic concepts too. The system consists of three agents: Train,
Gate, and Controller running in parallel and synchronising through the events:
approach, exit, lower and raise (see Figure 2). When a train approaches the
crossing, Train sends an approach signal to Controller and enters the crossing
between 300 and 500 milliseconds (ms) from this event. When Train leaves
the crossing, it sends an exit signal to Controller. Controller sends a signal
lower to Gate exactly 100ms after the approach signal is received, and sends a
raise signal within 100ms after exit. Gate performs the transition down within
100ms of receiving the request lower, and responds to raise by moving up
between 100ms and 200ms.

To model the scenario we assume the following set of propositions: PV = {p, q}
with PVTrain = {p}, and PVGate = {q}, and denote by L1, L2, L3 sets of
locations for Train, Gate, and Controller respectively. The valuation functions
for Train (VTrain), Gate (VGate), and Controller (VCont) are shown in Figure 2.
The valuation function VRCS : L1×L2×L3 → 2PV for the parallel composition,

32

i.e., RCS system, is defined by VRCS(l) = VTrain(l1)∪VGate(l2)∪VCont(l3), for
all l = (l1, l2, l3) ∈ L1 × L2 × L3.

In addition to verifying standard specifications based on temporal properties
of the system, we can now check a variety of temporal epistemic properties.
For instance we could check specifications formalising that:

• There exists a behaviour of RCS such that agent Train considers possible
a situation in which it sends an approach signal but agent Gate does not
send the signal down within 50 milliseconds.

• There exists a behaviour of RCS such that agent Controller considers
possible a situation in which it sends a lower signal but agent Gate does
not send the signal down within 50 milliseconds.

• There exists a behaviour of RCS such that agent Train considers possible
a situation in which it sends an approach signal and agent Controller
sends a lower signal within 10 milliseconds but still agent Gate does not
send the signal down within 50 milliseconds.

In the following, as an example, we verify the first property above. This can
be formalised by the following TECTLK formula:

ϕ := EF[0,∞]KTrain(p ∧ EF[0,50](¬q)).

According to the BMC algorithm for TECTLK, presented in the previous
section, to perform BMC for the RCS system against property ϕ, all the
states of the discretised interpreted system Md for RCS with the additional
clock y have to be represented as bit vectors first. To do this we have to encode
all the possible configurations in terms of both the locations, and the clock
valuations of the RCS system.

Assume that we have the following bit representation for local locations. For
Train we take t0 = (0, 0), t1 = (0, 1), t2 = (1, 0), and t3 = (1, 1); for Gate
g0 = (0, 0), g1 = (0, 1), g2 = (1, 0), and g3 = (1, 1); for Controller c0 = (0, 0),
c1 = (0, 1), c2 = (1, 0), and c3 = (1, 1). So, the (global) locations of the RCS
system have the following encoding: t1×g0×c1 = (0, 1; 0, 0; 0, 1), t1×g0×c1 =
(0, 1; 0, 0; 0, 1), t1×g1×c2 = (0, 1; 0, 1; 1, 0), etc. In other words we need 6 state
variables (l[0], . . . , l[5]) to encode all the possible configuration of locations of
the RCS system.

In order to encode the clock valuations of significance for RCS, we have to en-
code the valuations in D = {k ·∆ | 0 ≤ k ·∆ ≤ 1002} = {0, 1

8
, 2

8
, 3

8
, 4

8
, 5

8
, 6

8
, 7

8
, 1,

. . . , 1002} for the clocks: x1, x2, x3, y by means of the discretisation step
∆ = 1

8
, and cmax(ϕ) = 500. Note that to do this, it is sufficient to encode

the integral parts of the valuations and the numerators of the fractional parts.
Since the largest integral value is 1002 and the largest value of the numer-

33

ators is 8, it is enough to take 10+3 state variables to encode these values
for one clock; this is because 210 = 1024 and 23 = 8. Therefore, we need
13 state variables to encode all the clock valuations for one clock, and re-
spectively 4 · 13 state variables (v[0], . . . , v[51]) to encode all the clock val-
uations for all 4 clocks. So, a global state variable for the RCS system is
w = ((l[0], . . . , l[5]), (v[0], . . . , v[51])) = (w[0], . . . , w[57]).

To proceed with the verification of the formula in question, the transition
relation of Md has to be translated into a Boolean formula and cr(ϕ) =
EyF(KTrain(p ∧ EyF(¬q ∧ py∈[0,50] ∧ (pb ∨ ⊤)) ∧ (pb ∨ ⊤))) = EyF(KTrain(p ∧
EyF(¬q∧py∈[0,50]))) has to be translated considering all the possible fk(cr(ϕ)) =
3 submodels of Md as described in the previous section.

To proceed with the translation of the transition relation of Md, we first con-
sider the initial state s0 = ((t0, g0, c0), v0) of RCS, where s0 is represented as a
bit vector of 58 consecutive 0’s. With the representation above this is encoded
by the following propositional formula:

Is0(w0,0) =

57∧

i=0

¬w0,0[i].

The next step is to encode the transitions of Md by the formula R(wi,j, wi+1,j)
with j = 1, 2, 3 and i ≤ k.

As an example we encode here the witness for depth k = 2:

[(t0, g0, c0), (0, 0, 0, 0)]
τ
→ [(t0, g0, c0), (

1

4
,

1

4
,
1

4
,

1

4
)]
approach
→ [(t1, g0, c1), (0,

1

4
, 0,

1

4
)].

The formula encoding the first transition for our witness has the following
form:

Rrcs(w0,1, w1,1) :=

5∧

i=0

(¬w0,1[i] ∧ ¬w1,1[i]) ∧
57∧

i=6

¬w0,1[i]∧ (12)

17∧

i=6

¬w1,1[i] ∧ w1,1[18] ∧
30∧

i=19

¬w1,1[i] ∧ w1,1[31]∧

43∧

i=32

¬w1,1[i] ∧ w1,1[44] ∧
56∧

i=45

¬w1,1[i] ∧ w1,1[57].

The formula encoding the second transition for our witness has the form:

Rrcs(w1,1, w2,1) :=

5∧

i=0

¬w1,1[i] ∧ ¬w2,1[0] ∧ ¬w2,1[2] ∧ ¬w2,1[3]∧ (13)

34

¬w2,1[4] ∧ w2,1[1] ∧ w2,1[5] ∧
17∧

i=6

¬w1,1[i] ∧ w1,1[18] ∧
30∧

i=19

¬w1,1[i]∧

w1,1[31] ∧
43∧

i=32

¬w1,1[i] ∧ w1,1[44] ∧
56∧

i=45

¬w1,1[i] ∧ w1,1[57]∧

30∧

i=6

¬w2,1[i] ∧ w2,1[31] ∧
56∧

i=32

¬w2,1[i] ∧ w2,1[57].

Note that in fact Formulae 12 and 13 are fragments of the formulae R(w0,1, w1,1)
and R(w1,1, w2,1), respectively. In order to encode the whole example we should
model, in a similar way to the above, all the possible transitions of Md, and
encode them as formulae R(wi,j, wi+1,j) with j = 1, 2, 3 and i ≤ k. This is a
process that can be automated.

To encode the translation of cr(ϕ), first we need to encode the propositions
used in cr(ϕ). For p we have p(w) := (¬w[0]∧w[1]), representing the fact that
p holds at all the global states with the first local locations equal to (0, 1).
For q we have q(w) := (w[4] ∧ ¬w[5]), representing the fact that q holds at
all the global states with the third local locations equal to (1, 0). To give the
translation of the proposition py∈[0,50](w), assume the following definition of
propositional formulae. For the vectors of state variables a = (a[1], . . . , a[t])
and b = (b[1], . . . , b[t]) we define:

• eq(a, b)
def
=

∧t
i=1 a[i] ⇔ b[i],

• ge(a, b)
def
=

∨t

i=1 (a[i] ∧ ¬b[i] ∧
∧t

j=i+1 a[j] ⇔ b[j]),

• geq(a, b)
def
= eq(a, b) ∨ ge(a, b),

• le(a, b)
def
= ¬geq(a, b).

Then, for 0 := (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), and 50 := (0, 0, 0, 0, 1, 1, 0, 0, 1, 0), we
define py∈[0,50](w) as follows:

py∈[0,50](w)
def
= geq((w[45], . . . , w[54]), 0) ∧

[le((w[45], . . . , w[54]), 50) ∨ (eq((w[45], . . . , w[54]), 50) ∧
∧57
i=55 ¬w[i])].

Further, we have to define the formulae Ry(w, v) and Hl(w, v). The formula
Ry(w, v) is defined as follows:

Ry(w, v) =

44∧

j=0

(w[j] ↔ v[j]) ∧
57∧

j=45

(v[j] ↔ ⊥). (14)

Let Idxl be a set of the indexes of the bits of the local states of agent l. Then,

35

the formula Hl(w, v) is defined as follows:

Hl(w, v) =
∧

i∈Idxl

w[i] ⇔ v[i]. (15)

In so doing, it is sufficient to unfold the formula [cr(ϕ)]0,0k , for k = 1, 2, . . .,
according to the definition on page 29. Namely,

[cr(ϕ)]0,0k = [EyF(KTrain(p ∧ EyF(¬q ∧ py∈[0,50] ∧ (pb ∨⊤)) ∧ (pb ∨⊤)))]0,0k =

[EyF(KTrain(p ∧ EyF(¬q ∧ py∈[0,50])))]
0,0
k =

[Ey(⊤U(KTrain(p ∧ EyF(¬q ∧ py∈[0,50]))))]
0,0
k =

3∨

i=1

(Ry(w0,0, w0,i) ∧
k∨

j=0

[KTrain(p ∧ EyF(¬q ∧ py∈[0,50]))]
[j,i]
k) =

(Ry(w0,0, w0,1) ∧
k∨

j=0

[KTrain(p ∧ EyF(¬q ∧ py∈[0,50]))]
[j,1]
k)∨

(Ry(w0,0, w0,2) ∧
k∨

j=0

[KTrain(p ∧ EyF(¬q ∧ py∈[0,50]))]
[j,2]
k)∨

(Ry(w0,0, w0,3) ∧
k∨

j=0

[KTrain(p ∧ EyF(¬q ∧ py∈[0,50]))]
[j,3]
k) =

(Ry(w0,0, w0,1) ∧
k∨

j=0

(
3∨

t=1

(Is0(w0,t) ∧
k∨

l=0

([p ∧ EyF(¬q ∧ py∈[0,50])]
[l,t]
k

∧Hl(wj,1, wl,t)))))∨

(Ry(w0,0, w0,2) ∧
k∨

j=0

(
3∨

t=1

(Is0(w0,t) ∧
k∨

l=0

([p ∧ EyF(¬q ∧ py∈[0,50])]
[l,t]
k

∧Hl(wj,2, wl,t)))))∨

(Ry(w0,0, w0,3) ∧
k∨

j=0

(
3∨

t=1

(Is0(w0,t) ∧
k∨

l=0

([p ∧ EyF(¬q ∧ py∈[0,50])]
[l,t]
k

∧Hl(wj,3, wl,t))))) =

[Ry(w0,0, w0,1) ∧
k∨

j=0

(

3∨

t=1

(Is0(w0,t) ∧
k∨

l=0

(p(wl,t) ∧ [EyF(¬q ∧ py∈[0,50])]
[l,t]
k ∧

Hl(wj,1, wl,t))))] ∨ [Ry(w0,0, w0,2) ∧
k∨

j=0

(

3∨

t=1

(Is0(w0,t) ∧
k∨

l=0

(p(wl,t)∧

36

[EyF(¬q ∧ py∈[0,50])]
[l,t]
k ∧Hl(wj,2, wl,t))))] ∨ [Ry(w0,0, w0,3) ∧

k∨

j=0

(

3∨

t=1

(Is0(w0,t)∧

k∨

l=0

(p(wl,t) ∧ [EyF(¬q ∧ py∈[0,50])]
[l,t]
k ∧Hl(wj,3, wl,t))))] =

[Ry(w0,0, w0,1) ∧
k∨

j=0

(

3∨

t=1

(Is0(w0,t) ∧
k∨

l=0

(p(wl,t) ∧Hl(wj,1, wl,t)∧

(

3∨

n=1

(Ry(wl,t, w0,n) ∧
k∨

m=0

[¬q ∧ py∈[0,50]]
[m,n]
k)))))]∨

[Ry(w0,0, w0,2) ∧
k∨

j=0

(
3∨

t=1

(Is0(w0,t) ∧
k∨

l=0

(p(wl,t) ∧Hl(wj,2, wl,t)∧

3∨

n=1

(Ry(wl,t, w0,n) ∧
k∨

m=0

[¬q ∧ py∈[0,50]]
[m,n]
k))))]∨

[Ry(w0,0, w0,3) ∧
k∨

j=0

(

3∨

t=1

(Is0(w0,t) ∧
k∨

l=0

(p(wl,t) ∧Hl(wj,3, wl,t)

∧
3∨

n=1

(Ry(wl,t, w0,n) ∧
k∨

m=0

[¬q ∧ py∈[0,50]]
[m,n]
k))))] =

[Ry(w0,0, w0,1) ∧
k∨

j=0

(
3∨

t=1

(Is0(w0,t) ∧
k∨

l=0

(p(wl,t) ∧Hl(wj,1, wl,t)∧

3∨

n=1

(Ry(wl,t, w0,n) ∧
k∨

m=0

(¬q(wm,n) ∧ py∈[0,50](wm,n))))))]∨

[Ry(w0,0, w0,2) ∧
k∨

j=0

(
3∨

t=1

(Is0(w0,t) ∧
k∨

l=0

(p(wl,t) ∧Hl(wj,2, wl,t)∧

3∨

n=1

(Ry(wl,t, w0,n) ∧
k∨

m=0

(¬q(wm,n) ∧ py∈[0,50](wm,n))))))]∨

[Ry(w0,0, w0,3) ∧
k∨

j=0

(

3∨

t=1

(Is0(w0,t) ∧
k∨

l=0

(p(wl,t) ∧Hl(wj,3, wl,t)∧

3∨

n=1

(Ry(wl,t, w0,n) ∧
k∨

m=0

(¬q(wm,n) ∧ py∈[0,50](wm,n))))))].

Checking that the RCS system satisfies the TECTLK formula above can now
be done by checking the propositional formula generated by this method with
an efficient SAT checker. This would produce a solution, thereby proving that

37

the propositional formula is satisfiable.

It is worth noting that the logic under analysis in this paper provides for a
richer specification language for verification when compared to existing ap-
proaches. For instance, in the RCS above we can specify and verify via BMC
the TECTLK specification “there exists a behaviour of RCS such that within
100 milliseconds agent Train considers possible a situation in which it sends
an approach signal but agent Gate does not send the signal down within 50
milliseconds”, represented by the formula:

EF[0,100]KTrain(p ∧ EF[0,50](¬q)).

Other bounded model checking formalisms have been defined for TCTL [25]
and CTLK [23]. With TCTL we can verify dense time but not knowledge. So
we could check a less expressive property, e.g., “there exists a behaviour of RCS
such that within 100 milliseconds agent Train sends an approach signal but
agent Gate does not send the signal down within 50 milliseconds”, expressible
by the TECTL formula:

EF[0,100](p ∧ EF[0,50](¬q)).

Conversely in a bounded model checking framework for CTLK we can express
combinations of knowledge and time but only limited to a discrete model of
time. In this weaker language we could for instance verify the specification
“there exists a behaviour of RCS such that agent Train considers possible a
situation in which it sends an approach signal but agent Gate does not send
the signal down”, expressible by the CTLK formula

EFKTrain(p ∧ EF(¬q)).

Clearly these two options are not as expressive as our original specification.
In the first we have no way of referring to agent Train’s knowledge, whereas
in the second we cannot make explicit the temporal interval the events should
be referring to.

7 Related Work and Conclusions

BMC was initially developed for the verification of reactive systems, and then
extended for Multi-Agent Systems [18, 23, 32]. In particular, BMC has been
extended to ACTL⋆ [30], TACTL [25], and ACTLKD [32]. These are log-
ics able to represent not only branching time but also modalities of concern

38

in Artificial Intelligence (individual and group knowledge, and correctness of
behaviour with respect to specifications). In separate developments BMC has
been explored for real time temporal logic [3, 25, 33].

In this paper we have tried to combine these directions and have developed
BMC to a new logic that combines real time and knowledge. There is no
obstacle to extend the method presented here to handle operators representing
correct functioning behaviour [19].

Combinations of real time and knowledge have been defined previously [7, 21]
but to our knowledge no verification mechanism has ever been defined for
them. To solve the difficulty of dense time, we have made use of discretisation
on equal intervals, already employed in [25, 33]. It is worth noting that intervals
with explicit length could be also used in principle. To do so one would have to
encode more information (the maximum value of each clock, different lengths
of bit-vectors that encode the integral parts of values of the clock, etc.), and
as a result any implementation of the method would suffer in terms of speed.

Like every SAT-based approach the size of formulae produced in the trans-
lation can be large, as the example of the paper demonstrates. To evaluate
its effectiveness in practical applications, we are currently implementing the
method in view of comparing experimental results. We are encouraged that
implementations of other BMC-based tools [18, 25, 24] showed largely posi-
tive results. We are therefore hopeful that the technique of this paper, once
implemented, will produce comparably fast results.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real-time.
Information and Computation, 104(1):2–34, 1993.

[2] R. Alur and D. Dill. Automata for modelling real-time systems. In
Proceedings of the International Colloquium on Automata, Languages
and Programming (ICALP’90), volume 443 of LNCS, pages 322–335.
Springer-Verlag, 1990.

[3] G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded
model checking for timed systems. In Proceedings of the 22nd Interna-
tional Conference on Formal Techniques for Networked and Distributed
Systems (FORTE’02), volume 2529 of LNCS, pages 243–259. Springer-
Verlag, 2002.

[4] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model
checking using SAT procedures instead of BDDs. In Proceedings of the
ACM/IEEE Design Automation Conference (DAC’99), pages 317–320,
1999.

[5] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of

39

Cambridge Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, 2001.

[6] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model check-
ing AgentSpeak. In J. S. Rosenschein, T. Sandholm, W. Michael, and
M. Yokoo, editors, Proceedings of the Second International Joint Con-
ference on Autonomous Agents and Multi-agent systems (AAMAS-03),
pages 409–416. ACM Press, 2003.

[7] R. I. Brafman, J. C. Latombe, Y. Moses, and Y. Shoham. Application
of a logic of knowledge to motion planning under uncertainty. Journal of
the ACM, 44(5):633–668, 1997.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, Cambridge, Massachusetts, 1999.

[9] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about
Knowledge. MIT Press, Cambridge, 1995.

[10] R. Fagin, J. Y. Halpern, and M. Y. Vardi. What can machines know? On
the properties of knowledge in distributed systems. Journal of the ACM,
39(2):328–376, 1992.

[11] P. Gammie and R. van der Meyden. MCK: Model checking the logic
of knowledge. In Proceedings of 16th International Conference on Com-
puter Aided Verification (CAV’04), volume 3114 of LNCS, pages 479–483.
Springer-Verlag, 2004.

[12] J. Halpern, R. van der Meyden, and M. Y. Vardi. Complete axioma-
tisations for reasoning about knowledge and time. SIAM Journal on
Computing, 33(3):674–703, 2003.

[13] J. Halpern and Y. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54:319–379,
1992.

[14] W. van der Hoek and M. Wooldridge. Model checking knowledge and
time. In SPIN 2002 – Proceedings of the Ninth International SPIN Work-
shop on Model Checking of Software, Grenoble, France, April 2002.

[15] W. van der Hoek and M. Wooldridge. Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications. Studia
Logica, 75(1):125–157, 2003.

[16] M. Kacprzak, A. Lomuscio, and W. Penczek. Verification of multiagent
systems via unbounded model checking. In N. R. Jennings, C. Sierra,
L. Sonenberg, and M. Tambe, editors, Proceedings of the Third Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’04), volume II, pages 638–645. ACM, July 2004.

[17] I. Kang and I. Lee. An efficient state space generation for analysis of real-
time systems. In Proceedings of the International Symposium on Software
testing and analysis(ISSTA ’96), pages 4–13. ACM Press, 1996.

[18] A. Lomuscio, T. Lasica, and W. Penczek. Bounded model checking for
interpreted systems: preliminary experimental results. In M. Hinchey,
editor, Proceedings of FAABS II, volume 2699 of LNCS. Springer Verlag,
2003.

40

[19] A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica,
75(1):63–92, 2003.

[20] R. van der Meyden and K. Wong. Complete axiomatizations for reasoning
about knowledge and branching time. Studia Logica, 75(1):93–123, 2003.

[21] Y. Moses and B. Bloom. Knowledge, timed precedence and clocks. In
Proceedings of the 13th ACM symposium on Principles of Distributed
Computing (PODC ’94), pages 274–303. ACM Press, 1994.

[22] W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, and M. Szreter.
VerICS 2004: A model checker for real time and multi-agent systems. In
Proceedings of the International Workshop on Concurrency, Specification
and Programming (CS&P’04), volume 170 of Informatik-Berichte, pages
88–99. Humboldt University, 2004.

[23] W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-
agent systems via bounded model checking. Fundamenta Informaticae,
55(2):167–185, 2003.

[24] W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the
universal fragment of CTL. Fundamenta Informaticae, 51(1-2):135–156,
2002.

[25] W. Penczek, B. Woźna, and A. Zbrzezny. Towards bounded model check-
ing for the universal fragment of TCTL. In Proceedings of the 7th Interna-
tional Symposium on Formal Techniques in Real-Time and Fault Tolerant
Systems (FTRTFT’02), volume 2469 of LNCS, pages 265–288. Springer-
Verlag, 2002.

[26] F. Raimondi and A. Lomuscio. Automatic verification of multi-agent
systems by model checking via OBDDs. Journal of Applied Logic, 2007.
To appear in Special issue on Logic-based agent verification.

[27] S. Tripakis and S. Yovine. Analysis of timed systems using time-
abstracting bisimulations. Formal Methods in System Design, 18(1):25–
68, 2001.

[28] R. van der Meyden and H. Shilov. Model checking knowledge and time
in systems with perfect recall. In Proceedings of the 19th Conference on
Foundations of Software Technology and Theoretical Computer Science
(FST&TCS’99), volume 1738 of LNCS, pages 432–445. Springer-Verlag,
1999.

[29] R. van der Meyden and Kaile Su. Symbolic model checking the knowledge
of the dining cryptographers. In Proceedings of the 17th IEEE Computer
Security Foundations Workshop (CSFW’04), pages 280–291, Washington,
DC, USA, 2004. IEEE Computer Society.

[30] B. Woźna. Bounded Model Checking for the universal fragment of CTL*.
Fundamenta Informaticae, 63(1):65–87, 2004.

[31] B. Woźna and A. Lomuscio. A logic for knowledge, correctness, and real
time. In Proceedings of the 5th International Workshop on Computational
Logic in Multi-Agent Systems (CLIMA’04), volume 3487 of LNAI, pages
1–15. Springer-Verlag, 2005.

[32] B. Woźna, A. Lomuscio, and W. Penczek. Bounded model checking for

41

deontic interpreted systems. In Proc. of the 2nd Workshop on Logic
and Communication in Multi-Agent Systems (LCMAS’04), volume 126
of ENTCS, pages 93–114. Elsevier, 2004.

[33] A. Zbrzezny. Improvements in SAT-based reachability analysis for timed
automata. Fundamenta Informaticae, 60(1-4):417–434, 2004.

42

